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Overview

1. Overview
This guide introduces the advantages and disadvantages of tile-based GPU architectures. It also
compares Arm Mali’s tile-based GPU architecture design against the, more traditional, immediate
mode GPU that you typically find in a desktop PC or console.

Mali GPUs use a tile-based rendering architecture. This means that the GPU renders the output
framebuffer as several distinct smaller sub-regions called tiles. Then it writes each tile out to
memory as it is completed. With Mali GPUs, these tiles are small, spanning just 16x16 pixels each.

By the end of this guide you’ll understand the key benefits and challenges of immediate mode
GPUs and tile-based GPUs.
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Immediate Mode GPUs

2. Immediate Mode GPUs
Traditional desktop GPU architecture is commonly known as immediate mode architecture.
Immediate mode GPUs process rendering as a strict command stream, executing the vertex and
fragment shaders in sequence on each primitive in every draw call.

Ignoring parallel processing and pipelining, here is a high-level pseudo-code example of this
approach:

python
for draw in renderPass:
    for primitive in draw:
        for vertex in primitive:
            execute_vertex_shader(vertex)
        if primitive not culled:
            for fragment in primitive:
                execute_fragment_shader(fragment)

The diagram below shows the hardware data flow and memory interactions:

Figure 2-1: Hardware data flow and memory interactions

Vertex Shader FIFO Fragment Shader

Attributes Textures Framebuffer
Working Set

GPU

DDR

Advantages
The output of the vertex shader, and other geometry related shaders, can remain on-chip inside
the GPU. The output of these shaders can be stored in a FIFO buffer until the next stage in the
pipeline is ready to use the data. This means that the GPU uses little external memory bandwidth
storing and retrieving intermediate geometry results.

Disadvantages
The fragment shading jumps around the screen depending on the locations of the triangles in
each draw. This happens because any triangle in the stream may cover any part of the screen and
triangles are processed in draw order.

The effect of this means that the active working set is the size of the entire framebuffer. For
example, consider a device with 1440p resolution, it uses 32 Bits-Per-Pixel (BPP) for color, and 32
BPP for packed depth/stencil. This gives a total working set of 30MB, which is far too large to keep
on chip and therefore must be stored off-chip in DRAM.

The GPU must fetch from this working set the current value of the data for the pixel coordinate of
the current fragment for every blending, depth testing, and stencil testing operation.
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Immediate Mode GPUs

Typically, all shaded fragments access this working set. Therefore, at high resolutions the bandwidth
load placed on this memory can be very high because of multiple read-modify-write operations for
each fragment. However, caching can mitigate high bandwidth load by keeping recently accessed
parts of the framebuffer close to the GPU.
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Tile-based GPUs

3. Tile-based GPUs
Mali GPUs take a different approach to processing render passes, and this is called tile-based
rendering. This approach is designed to minimize the amount of external memory accesses the
GPU needs during fragment shading.

Tile-based renders split the screen into small pieces and fragment shade each small tile to
completion before writing it out to memory. To make this work, the GPU must know upfront which
geometry contributes to each tile. Therefore, tile-based renderers split each render pass into two
processing passes:

1. The first pass executes all the geometry related processing, and generates a tile list data
structure that indicates what primitives contribute to each screen tile.

2. The second pass executes all the fragment processing, tile by tile, and writes tiles back to
memory as they have been completed. Note that Mali GPUs render 16x16 tiles.

Here is an example of the rendering algorithm for tile-based architectures:

python
# Pass one
for draw in renderPass:
    for primitive in draw:
        for vertex in primitive:
            execute_vertex_shader(vertex)
        if primitive not culled:
            append_tile_list(primitive)

# Pass two
for tile in renderPass:
    for primitive in tile:
        for fragment in primitive:
            execute_fragment_shader(fragment)

This image shows the hardware data flow and interactions with memory: </>

Figure 3-1: Hardware data flow and interactions

Fragment Shader

Attributes

GPU

DDR Geometry
Working Set

Local Tile
MemoryVertex Shader Tiler

Compressed
FramebufferTextures

Advantage: Bandwidth
The main advantage of tile-based rendering is that a tile is only a small fraction of the total
framebuffer. Therefore, it is possible to store the entire working set of color, depth, and stencil on
fast on-chip RAM, that is tightly coupled to the GPU shader core.
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Tile-based GPUs

The framebuffer data that the GPU needs for depth testing and for blending transparent fragments
is therefore available without requiring external memory access. Fragment-heavy content can be
made significantly more energy efficient by reducing the number of external memory accesses the
GPU needs for common framebuffer operations.

Also, a significant proportion of content has a depth and stencil buffer that is transient and
only needs to exist for the duration of the shading process. If you tell the Mali drivers that an
attachment does not need to be preserved, then the drivers will not write them back to main
memory.

You can achieve this with a call to glDiscardFramebufferEXT in OpenGL ES 2.0,
glInvalidateFramebuffer in OpenGL ES 3.0, or using the appropriate render pass storeOp settings
in Vulkan.

More bandwidth optimizations are possible because Mali GPUs only have to write the color data
for a tile back to memory once rendering is complete, and at this point you know its final state.
You can compare the content of a tile with the current data already in main memory with a Cyclic
Redundancy Check (CRC) check. This runs a process called Transaction Elimination. This process
skips writing the tile to external memory if there is no change in color.

In many situations, Transaction Elimination does not help performance as the fragment shaders
must still build the tile content. However, the process greatly reduces the external memory
bandwidth in many common use cases, such as UI rendering and casual gaming. As a result, it also
reduces system power consumption.

Mali GPUs can also compress the color data for the tiles that they write out using a lossless
compression scheme called Arm Frame Buffer Compression (AFBC), which lowers the bandwidth
and power consumed even further.

AFBC works for render-to-texture workloads. However, compression of the window
surface requires an AFBC enabled display controller. Framebuffer compression
therefore saves bandwidth multiple times; once on write out from the GPU and
once each time that framebuffer is read.

Advantage: Algorithms
Tile-based renderers enable some algorithms that would otherwise be too computationally
expensive or too bandwidth heavy.

A tile is small enough that a Mali GPU can store enough samples locally in memory to allow Multi-
Sample Anti-Aliasing (MSAA). As a result, the hardware can resolve multiple samples to a single
pixel color during tile writeback to external memory without needing a separate resolve pass. The
Mali architecture allows for very low performance overhead and bandwidth costs when performing
anti-aliasing.

Some advanced techniques, such as deferred lighting, can benefit from fragment shaders
programmatically accessing values that are stored in the framebuffer by previous fragments.
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Traditional algorithms would implement deferred lighting using Multiple Render Target (MRT)
rendering, writing back multiple intermediate values per pixel back to main memory, and then re-
reading them in a second pass.
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Lowering Bandwidth Use

4. Lowering Bandwidth Use
Tile-based renderers can enable lower bandwidth approaches where intermediate per-pixel data is
shared directly from the tile-memory, and the GPU only writes the final lit pixels back to memory.

For a deferred shading G-Buffer, that can use four 1080p 32bpp intermediate textures, this
approach can save up to 4GB/s of bandwidth at 60 FPS.

The following extensions expose this functionality in OpenGL ES:

• ARM_shader_framebuffer_fetch

• ARM_shader_framebuffer_fetch_depth_stencil

• EXT_shader_pixel_local_storage

In Vulkan, using mergeable subpasses allows access to this functionality.

Disadvantages
Tile-based rendering carries a number of advantages, in particular it gives significant reductions
in the bandwidth associated with framebuffer data and provides low-cost anti-aliasing. However,
there is an important downside to consider.

The principal additional overhead of any tile-based rendering scheme applies at the point of hand-
over from the geometry pass to the fragment pass.

The GPU must store the output of the geometry pass – the per-vertex varying data and tiler
intermediate state – to main memory, which the fragment pass will subsequently read. There is
therefore a balance to be struck between the extra bandwidth costs related to geometry, and the
bandwidth savings for the framebuffer data.

It is also important to consider that some rendering operations, such as tessellation, are
disproportionately expensive for a tile-based architecture. These operations are designed to suit
the strengths of the immediate mode architecture where the explosion in geometry data can be
buffered inside the on-chip FIFO buffer, rather than being written back to main memory.
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5. Next steps
Understanding the fundamentals of tile-based GPUs will help you as you begin to work with Arm
Mali GPUs. In addition, it’s important to consider both the advantages and disadvantages of tile-
based renderers as you start to consider how to optimize your graphics workflow to get the best
performance from the Mali architecture.
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