a rm Realm Management Monitor

specification

Document number DENO0137
Document quality BET
Document version A-bet0

Document confidentiality Non-confidential
Document build information d96e12d7 doctool 0.53.1-af18927f

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Quality Status: Beta (BET)

Beta quality status has a particular meaning to Arm of which the recipient must be aware. At this
quality level the release is sufficiently stable and committed for initial product development. The
recipient can expect some changes to the Beta quality released material.

Realm Management Monitor specification

Release information

Date Version Changes

2022/Jul/15 A-betO e Initial Beta release

ii

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii)) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS 1IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without
notice. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT
OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if
Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon
giving written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee
or by Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination
of this Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. iii
A-bet0 Non-confidential

Licence, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. iv
A-bet0 Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Realm Management Monitor specification

Preface

Realm Management Monitor specification ii
Release information ii
Arm Non-Confidential Document Licence (“Licence”) iii
Conventions e e e Xiii
Typographical conventions a0 Xiii
Numbers e e Xiii
Pseudocode descriptions L e e xiii
AdAresses e e e e xiii
Rules-basedwriting xiv
Contentitem identifiers L e Xiv
Contentitemrendering L Xiv
Contentitemclasses e Xiv
Additionalreading e XVi
Feedback e Xvii
Feedbackonthisbook xvii
OpeENISSUES o o e e e e e e e XViii

Part A Architecture

Chapter A1

Chapter A2

Chapter A3

DENO0137
A-bet0

Overview
Al Confidential computing 20
A1.2 System software components L 21
A1.3 Realm Management Monitor oo 21
Concepts
A2.1 Realm e e 24
A2 OVerview 24
A2.1.2 Realm execution environment 24
A2.1.3 Realmattributes 25
A2.1.4 Realmliveness 26
A2.1.5 Realmlifecycle 26
A2.1.6 Realmparameters 27
A2.1.7 RealmDescriptor 28
A2.2 Granule e 29
A22.1 Granuleattributes 29
A2.22 Granuleownership 30
A2.2.3 Granulelifecycle. 30
A224 Granulewiping 32
A2.3 Realm Execution Context 34
A2.3.1 Overview e 34
A232 RECattributes. 34
A2.3.3 RECindexand MPIDRvalue. 35
A23.4 RECIlifecycle 36
Realm creation
A3.1 Realm feature discovery and selection 39
Copyright © 2022 Arm Limited or its affiliates. All rights reserved. v

Non-confidential

Contents

A3.1.1 Realm hash algorithmo oL 39
A3.12 RealmLPA2and IPAwidth 39
A3.1.3 Realm support for Scalable Vector Extension 40
A3.1.4 Realm support for self-hosteddebug 40
A3.1.5 Realm support for Performance Monitors Extension 40
A3.1.6 Realm support for Activity Monitors Extension 41
A3.1.7 Realm support for Statistical Profiling Extension 41
A3.1.8 Realm support for Trace Buffer Extension 41
Chapter A4 Realm exception model
A4 .1 Exception model overview L oL 43
A4.2 RECentry e e e e e 45
A421 RecEntryobject e 45
A4.2.2 General purpose registers restoredon RECentry 47
A4.2.3 REC entry following REC exit due to Data Abort 47
A4.3 RECexit e 48
A4.3.1 RecExitobject L 48
A4.3.2 Realmexitreason 50
A4.3.3 General purpose registers savedon RECexit 50
A4.3.4 REC exit due to synchronous exception 51
A435 RECexitduetolRQ 53
A436 RECexitduetoFIQ. L 53
A43.7 RECexitduetoPSCIl 53
A43.8 RECexitdueto RIPASchangepending. 54
A43.9 RECexitduetoHostcall 55
A4.3.10 RECexitduetoSError 55
Ad.4 Emulated Data Aborts 56
A4.5 Hostcall o e e 56
Chapter A5 Realm memory management
A5.1 Realm memory management overview 58
A5.2 Realm view of memory management 58
A5.2.1 RealmIPAspace 58
A522 ReamlIPAstate 58
A5.2.3 RealmaccesstoaProtected IPA, 59
A5.24 Realmaccesstoan UnprotectedIPA 59
A5.25 Synchronous External Aborts 59
A5.2.6 Realmaccessoutside IPAspace 59
A5.2.7 Summary of Realm IPA space properties 60
A5.3 Host view of memory management 61
A5.3.1 HostIPAstate 61
A5.3.2 Hostcontrolof RIPASand HIPAS 61
A5.4 RIPASchange e 63
A5.5 Realm Translation Table 64
A5.5.1 RTToverview 64
A5.5.2 RTT structure and configuration 64
A553 RTTstartinglevel 64
A554 RTTentry e 65
A555 RTTreading 65
A556 RTTfolding 66
A55.7 RTTunfolding 66
A558 RTTIliveness. e 67
A559 RTTdestruction 67
A5510 RTTwalk. 67
A5.511 RTTentryattributes, 68
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. vi

A-bet0 Non-confidential

Contents

Chapter A6

Chapter A7

Chapter A8

Part B Interface

Chapter B1

Chapter B2

DENO0137
A-bet0

Realm interrupts and timers

A6.1
A6.2

Realminterrupts
Realmtimers

Realm measurement and attestation

A7

A7.2

Realm measurements
A7.1.1 Realm Initial Measurement L.
A7.1.2 Realm Extensible Measurement

Realm attestation
A7.2.1 Attestationtoken
A7.2.2 Attestationtokengeneration 0oL,
A7.2.3 Attestationtokenformat oL,

Realm debug and performance monitoring

A8.1 ReamPMU e e
Commands
B1.1 Overview e e
B1.2 Command definition Lo
B1.2.1 Examplecommand
B1.3 Commandregisters o c
B1.4 Command condition expressions
B1.5 Commandcontextvalues
B1.6 Command failure conditions
B1.7 Command success conditions
B1.8 Commandfootprint
Command condition functions
B2.1 AddrInRange function
B2.2 AddrisAligned function
B2.3 AddrisGranuleAligned function
B2.4 AddrlsProtected function
B2.5 AddrisRttLevelAligned function oL
B2.6 AddrRangelsProtected function oL
B2.7 CurrentRealm function
B2.8 CurrentRecfunction e
B2.9 Gicv3ConfiglsValid function oo
B2.10 Granule function
B2.11 MpidrEqual function
B2.12 MpidrisUsed function
B2.13 PalsDelegable function
B2.14 PsciReturnCodeEncode function
B2.15 ReadMemory function
B2.16 Realm function
B2.17 RealmConfig function.
B2.18 RealmHostCall function
B2.19 RealmlsLive function
B2.20 RealmParams function
B2.21 Recfunction
B2.22 RecAuxAlias function
B2.23 RecAuxAligned function L o
B2.24 RecAuxCount function

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

vii

Contents

Chapter B3

DENO0137
A-bet0

B2.25 RecAuxEqual function
B2.26 RecAuxSortfunction
B2.27 RecAuxStateEqual function
B2.28 RecAuxStates function
B2.29 RecFromMpidr function.
B2.30 RecIndex function.
B2.31 RecParams function
B2.32 RecRun function
B2.33 RemExtend function
B2.34 ResultEqual function
B2.35 RimExtendData function
B2.36 RimExtendRec function ol
B2.37 RimExtendRipas function Lo 0o
B2.38 Rimlnit function
B2.39 RmiFeatureRegisterOlsValid function
B2.40 RmiHashAlgorithmIsSupported function 0. ...
B2.41 RmiHashAlgorithmlsValid function~ . .0,
B2.42 RmiRecCreateFlagslsValid function
B2.43 RmiRecMpidrisValid function oo o oL
B2.44 RmiRipaslsValid function oo oo oo
B2.45 RsiRipaslsValid function0 e oo
B2.46 Rtt function e
B2.47 RttAllEntriesContiguous function
B2.48 RttAllEntriesRipas function L
B2.49 RttAllEntriesState function
B2.50 RttConfiglsValid function. «
B2.51 RttDescriptorlsValidForUnprotected function
B2.52 RttEntry function oL
B2.53 RttEntryFromDescriptor function oL oo
B2.54 RttEntrylndex function
B2.55 RttFold function
B2.56 RttlsHomogeneous function L L
B2.57 RttlsLive function
B2.58 RitLevellsBlockOrPage function
B2.59 RttLevellsStarting function,
B2.60 RttLevellsValid function
B2.61 RttLevelSize function
B2.62 RitsAllEntriesRipas function L
B2.63 RitsAllEntriesState function
B2.64 RitsGranuleState function
B2.65 RttsStateEqual function
B2.66 RttWalk function
B2.67 ToAddress function
B2.68 VmidlsFree function
B2.69 VmidlsValid function
Realm Management Interface
B3.1 RMlversion e
B3.2 RMIcommandreturncodes o
B3.3 RMlcommands e
B3.3.1 RMI_DATA_CREATEcommand
B3.3.2 RMI_DATA_CREATE_UNKNOWN command
B3.3.3 RMI_DATA_DESTROY command
B3.3.4 RMI_FEATUREScommand
B3.3.5 RMI_GRANULE_DELEGATE command

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Contents

B3.3.6 RMI_GRANULE_UNDELEGATEcommand 136
B3.3.7 RMI_PSCI_COMPLETEcommand 138
B3.3.8 RMI_REALM_ACTIVATEcommand 142
B3.3.9 RMI_REALM_CREATEcommand 144
B3.3.10 RMI_REALM_DESTROY command 148
B3.3.11 RMI_REC_AUX_COUNTcommand 150
B3.3.12 RMI_REC CREATEcommand. 152
B3.3.13 RMI_REC_DESTROYcommand. 157
B3.3.14 RMI_REC_ENTERcommand 159
B3.3.15 RMI_RTT_CREATEcommand 162
B3.3.16 RMI_RTT_DESTROYcommand 165
B3.3.17 RMI_RTT_FOLDcommand 168
B3.3.18 RMI_RTT_INIT_RIPAScommand 0. 171
B3.3.19 RMI_RTT_MAP_UNPROTECTED command 174
B3.3.20 RMI_RTT_READ_ENTRYcommand 177
B3.3.21 RMI_RTT_SET RIPAScommand 179
B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command 182
B3.3.23 RMI_VERSIONcommand 184

B3.4 RMItypes 185
B3.4.1 RmiCommandReturnCodetype 185
B3.4.2 RmiDataFlagstype oo oo 185
B3.4.3 RmiDataMeasureContenttype 186
B3.4.4 RmiEmulatedMmiotype oo 186
B3.45 RmiFeaturetype. 186
B3.4.6 RmiFeatureRegisterOtype 186
B3.4.7 RmiHashAlgorithmtype L 188
B3.4.8 RmilnjectSeatype 188
B3.4.9 RmilnterfaceVersiontype Lo 189
B3.4.10 RmiRealmParamstype, 189
B3.4.11 RmiRecCreateFlagstype 190
B3.4.12 RmiRecEntrytype 190
B3.4.13.. RmiRecEntryFlagstype 192
B3.4.14 RmiRecExittype 192
B3.4.15 . RmiRecExitReasontype L. 194
B3.4.16 RmiRecMpidrtype 195
B3.4.17 RmiRecParamstype 195
B3.4.18 RmiRecRuntype 197
B3.4.19 RmiRecRunnabletype 197
B3.4.20 RmiRipastype 197
B3.4.21 RmiRttEntryStatetype L 197
B3.4.22 RmiStatusCodetype 198
B3.4.23 RmiTraptype 198

Chapter B4 Realm Services Interface

B4.1 RSIversion 201
B4.2 RSlcommandreturncodes 201
B4.3 RSlcommands 202
B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command 203
B4.3.2 RSI_ATTESTATION_TOKEN_INIT command 205
B4.3.3 RSI_ HOST CALLcommand 207
B4.3.4 RSI_IPA_STATE_GET command 209
B4.3.5 RSI_IPA_STATE_SETcommand. 211
B4.3.6 RSI_MEASUREMENT_EXTEND command 213
B4.3.7 RSI_MEASUREMENT_READ command 215
B4.3.8 RSI_ REALM CONFIGcommand 217
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. ix

A-bet0 Non-confidential

Contents

Chapter B5

Part C Types
Chapter C1

Chapter C2

DENO0137
A-bet0

B4.3.9 RSI_VERSIONcommand
B4.4 RSItypes
B4.4.1 RsiCommandReturnCodetype
B4.42 RsiHostCalltype
B4.4.3 RsilnterfaceVersiontype
B4.4.4 RsiRealmConfigtype
B4.45 RsiRipastype
Power State Control Interface
B5.1 PSCloverview
B5.2 PSClversion
B5.3 PSClcommands e e
B5.3.1 PSCI_AFFINITY_INFOcommand0L
B5.3.2 PSCI CPU OFFcommand<...
B5.3.3 PSCI CPU ONcommand4 . . 0.
B5.3.4 PSCI_CPU SUSPENDcommandt . oo oo it
B5.3.5 PSCI FEATUREScommand««
B5.3.6 PSCI SYSTEM _OFFcommand
B5.3.7 PSCI_SYSTEM RESETcommand
B5.3.8 PSCI VERSIONcommand
B5.4 PSCltypes o e
B5.4.1 PscilnterfaceVersiontype«o oo oo
B5.4.2 PsciReturnCodetype
RMM types
C1.1 RmmGranuletype
C1.2 RmmGranuleState type
C1.3 RmmHashAlgorithmtype
Cl14 RmmHostCallPendingtype
C1.5 RmmMeasurementDescriptorDatatype
C1.6 RmmMeasurementDescriptorRectype
C1.7 RmmMeasurementDescriptorRipastype
C1.8 RmmPhysicalAddressSpacetype,
c1.9 RmmPsciPendingtype
C1.10 RmmRealmtype
C1.11 RmmRealmMeasurementtype
C1.12 RmmRealmStatetype
C1.13 RmmRectype e
C1.14 RmmRecAttestStatetype
C1.15 RmmRecEmulatableAborttype
C1.16 RmmRecFlagstype.
C1.17 RmmRecRunnabletype
C1.18 RmmRecStatetype
C1.19 RmmRipastype e
C1.20 RmmRtttype e
C1.21 RmmRtEntry type
C1.22 RmmRttEntryStatetype
C1.23 RmmRttWalkResulttype L
C1.24 RmmSystemRegisterstype

Generic types
c2.1

Addresstype

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Contents
Contents

Part D Usage
Chapter D1

Chapter D2

Glossary

DENO0137
A-bet0

Ca.2 BitsNtype 248
Cc2.3 INtNtype o 248
C2.4 UINtNtype 249
Flows
D1.1 Granule delegationflows 252
D1.1.1 Granuledelegationflow L 252
D1.1.2 Granule undelegationflow 252
D1.2 Realm lifecycle flows e 254
D1.21 Realmcreationflow L e 254
D1.2.2 Realm Translation Table creationflow 254
D1.2.3 Initialize memory of New Realmflow 255
D1.24 RECcreationflow o 0 L 257
D1.25 Realmdestructionflow oL oL 259
D1.3 Realm exception model flows 0. 261
D1.3.1 Realmentryandexitflowo oL 261
D1.3.2 Hostcallflow 261
D1.3.3 REC exitdue to Data Abort faultflow 262
D1.3.4 MMIOemulationflow©. . C .. oL 263
D1.4 PSClflows 265
D1.4.1 PSCILCPU ONflow0 265
D1.5 Realm memory managementflows 268
D1.5.1 Add memory to Active Realmflow 268
D1.52 NSmemoryflow. 268
D1.53 RIPASchangeflow, 269
D1.6 Realm interrupts and timersflows 271
D1.6.1 Interruptflow. 271
D1.6.2 Timerinterruptdeliveryflow 271
D1.7 Realm attestationflows o 273
D1.7.1 Attestation token generationflow 273
D1.7.2 _ Handling interrupts during attestation token generation flow 273

Realm shared memory protocol

D2.1 Realm shared memory protocol description 276
D2.2 Realm shared memory protocolflow 276
Copyright © 2022 Arm Limited or its affiliates. All rights reserved. Xi

Non-confidential

Conventions

Typographical conventions
The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
monospace
Used for pseudocode and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
pseudocode and source code examples.

SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text
Indicates an open issue.
Blue text
Indicates a link. This can be
* A cross-reference to another location within the document
* A URL, for example http://developer.arm.com
Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example OxFFEFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Addresses

Unless otherwise stated, the term address in this specification refers to a physical address.

xiii

http://developer.arm.com

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

¢ Declaration

¢ Rule

* Goal

¢ Information

¢ Rationale

* Implementation note
* Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers
A content item may have an associated identifier which is unique among content items in this specification.
After this specification reaches beta status, a given content item has the same identifier across subsequent versions

of the specification.

Content item rendering

Content item classes
Declaration
A Declaration is a statement that does one or more of the following:

* Introduces a concept

* Introduces a term

* Describes the structure of data
* Describes the encoding of data

A Declaration does not describe behaviour.
A Declaration is rendered with the label D.
Rule

A Rule is a statement that describes the behaviour of a compliant implementation.

Xiv

Preface

Rules-based writing

DENO0137
A-bet0

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid.to understanding the specification.

An Information statement is rendered with the label /.

Rationale

A Rationale statement explains why the specification was specified in the way it was.
A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.
An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the

specification.

A Software usage statement is rendered with the label S.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

XV

Additional reading

This section lists publications by Arm and by third parties.
See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Introducing Arm CCA. (ARM DEN 0125) Arm Limited.

[2] Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615) Arm Ltd.

[3] Arm Architecture Reference Manual for Armv8-A architecture profile. (ARM DDI 0487 G.b) Arm Ltd.
[4] Arm CCA Security model. (ARM DEN 0096) Arm Limited.

[5]1 Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4. (ARM THI 0069
G) Arm Ltd.

[6] Concise Binary Object Representation (CBOR).

[7] CBOR Object Signing and Encryption (COSE).

[8] Entity Attestation Token (EAT).

[9] Concise Data Definition Language (CDDL).

[10] IANA Hash Function Textual Names.

[11] SEC I: Elliptic Curve Cryptography, version 2.0.

[12] Tormore system architecture spec. (ARM-AES 0015) Arm Ltd.

[13] Arm SMC Calling Convention. (ARM DEN 0028 D) Arm Ltd.

[14] Arm Specification Language Reference Manual. (ARM DDI 0612) Arm Ltd.
[15] Secure Hash Standard (SHS).

[16] Arm Power State Coordination Interface (PSCI). (ARM DEN 0022 D.b) Arm Ltd.

Xvi

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

* The title (Realm Management Monitor specification).

e The number (DENO137 A-bet0).

* The page numbers to which your comments apply.

* The rule identifiers to which your comments apply, if applicable.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xXvii

Open issues

The following table lists known open issues in this version of the document.

Key Description

Xviii

Part A
Architecture

Chapter A1
Overview

The RMM is a software component which forms part of a system which implements the Arm Confidential Compute
Architecture (Arm CCA). Arm CCA is an architecture which provides protected execution environments called
Realms.

The threat model which Arm CCA is designed to address is described in Introducing Arm CCA [1].

The hardware architecture of Arm CCA is called the Realm Management Extension (RME), and is described in
Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2].

A1.1 Confidential computing

DENO0137
A-bet0

The Armv8-A architecture (Arm Architecture Reference Manual for Armv8-A architecture profile [3]) includes
mechanisms that establish a privilege hierarchy. Software operating at higher privilege levels is responsible for
managing the resources (principally memory and processor cycles) that are used by entities at lower privilege
levels.

Prior to Arm CCA, resource management was coupled with a right of access. That is, a resource that is managed
by a higher-privileged entity is also accessible by it. A Realm is a protected execution environment for which this
coupling is broken, so that the right to manage resources is separated from the right to access those resources.

The purpose of a Realm is to provide to the Realm owner an environment for confidential computing, without
requiring the Realm owner to trust the software components that manage the resources used by the Realm.

Construction of a Realm, and allocation of resources to a Realm at runtime, are the responsibility of the Virtual
Machine Monitor (VMM). In this specification, the term Host is used to refer to the VMM.

See also:

e A2.1 Realm

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 20
Non-confidential

Chapter A1. Overview
A1.3. Realm Management Monitor

A1.2 System software components

The system software architecture of Arm CCA is summarised in the following figure.

Realm Security state Non-secure Security state Secure Security state
VM VM
ELO App | | App App || App TA || TA
Realm Realm
EL1 Secure
OS kernel OS kernel TOS partition

EL2 RMM Hypervisor SPM
EL3 Monitor

Root Security state

Figure A1.1: System software architecture

The components shown in the diagram are listed below.

Component Description

Monitor The most privileged software component, which is responsible for
switching between the Security states used at EL2, EL1 and ELO.

Realm A protected execution environment.

Realm Management Monitor (RMM) The software component which is responsible for the management
of Realms.

Virtual Machine (VM) An execution environment within which an operating system can

run. Note that a Realm is a VM which executes in the Realm
security state.

Hypervisor The software component which is responsible for the management
of VMs.

Secure Partition Manager (SPM) The software component which is responsible for the management
of Secure Partitions.

Trusted OS (TOS) An operating system which runs in a Secure Partition.

Trusted Application (TA) An application hosted by a TOS.

A1.3 Realm Management Monitor

DENO0137
A-bet0

The Realm Management Monitor (RMM) is the system component that is responsible for the management of
Realms.

The responsibilities of the RMM are to:

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 21
Non-confidential

Chapter A1. Overview
A1.3. Realm Management Monitor

DENO0137
A-bet0

* Provide services that allow the Host to create, populate, execute and destroy Realms.

 Provide services that allow the initial configuration and contents of a Realm to be attested.

* Protect the confidentiality and integrity of Realm state during the lifetime of the Realm.

* Protect the confidentiality of Realm state during and following destruction of the Realm.
The RMM exposes the following interfaces, which are accessed via SMC instructions, to the Host:

* The Realm Management Interface (RMI), which provides services for the creation, population, execution and
destruction of Realms.

The RMM exposes the following interfaces, which are accessed via SMC instructions, to Realms:

* The Realm Services Interface (RSI), which provides services used to manage resources allocated to the
Realm, and to request an attestation report.

* The Power State Coordination Interface (PSCI), which provides services used to control power states of
VPEs within a Realm. Note that the HVC conduit for PSCI is not supported for Realms.

The RMM operates by manipulating data structures which are stored in memory accessible only to the RMM.
See also:

* Chapter B3 Realm Management Interface
* Chapter B4 Realm Services Interface
» Chapter BS Power State Control Interface

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 22
Non-confidential

Chapter A2
Concepts

This chapter introduces the following concepts which are central to the RMM architecture:

e A2.1 Realm
e A2.2 Granule
e A2.3 Realm Execution Context

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

23

Chapter A2. Concepts
A2.1. Realm

A2.1 Realm

This section describes the concept of a Realm.

A2.1.1 Overview

Dprrsr A Realm is an execution environment which is protected from agents in the Non-secure and Secure Security states,
and from other Realms.

A2.1.2 Realm execution environment

Trovry The execution environment of a Realm is an ELO + EL1 environment, as described in Arm Architecture Reference
Manual for Armv8-A architecture profile [3].

A2.1.2.1 Realm registers

RysHox On first entry to a Realm VPE, PE state is initialized according to “PE state on reset to AArch64 state” in Arm
Architecture Reference Manual for Armv8-A architecture profile [3], except for GPR and PC values which are
specified by the Host during Realm creation.

Gzreox Confidentiality is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

Gonzcs Confidentiality is guaranteed for other Realm VPE register state (including stack pointer, program counter and
ELO /EL1 system registers).

Gyruip Integrity is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

GyKriG Integrity is guaranteed for other Realm VPE register state (including stack pointer, program counter and ELO / EL1
system registers).

Tcoern A Realm can use a Host call to pass.arguments to the Host and receive results from the Host.

See also:

e A2.3 Realm Execution Context

* A4.5 Host call

e B3.3.9 RMI REALM_CREATE command
A2.1.2.2 Realm memory

Tromuz A Realm is able to determine whether a given IPA is protected or unprotected.

GroFos Confidentiality is guaranteed for memory contents accessed via a protected address. Informally, this means that a
change to the contents of such a memory location is not observable by any agent outside the CCA platform.

Gowms Integrity is guaranteed for memory contents accessed via a protected address. Informally, this means that the
Realm does not observe the contents of the location to change unless the Realm itself has either written a different
value to the location, or provided consent to the RMM for integrity of the location to be violated.

See also:
e AS5.2.1 Realm IPA space
A2.1.2.3 Realm processor features

Rycuyg The value returned to a Realm from reading a feature register is architecturally valid and describes the set of
features which are present in the Realm’s execution environment.

T kxeDP The RMM may suppress a feature which is supported by the underlying hardware platform, if exposing that feature
to a Realm could lead to a security vulnerability.

See also:
* A3.1 Realm feature discovery and selection
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 24

A-bet0 Non-confidential

Chapter A2. Concepts

A2.1. Realm

A2.1.2.4 IMPDEF system registers

A Realm read from or write to an IMPLEMENTATION DEFINED system register causes an Unknown exception
taken to the Realm.

A2.1.3 Realm attributes

Xpwpk

DENO0137
A-bet0

This section describes the attributes of a Realm.

A Realm attribute is a property of a Realm whose value can be observed or modified either by the Host or by the
Realm.

An example of a way in which a Realm attribute may be observable is the outcome of an RMM command.

The attributes of a Realm are summarized in the following table.

Name Type Description

ipa_width Ulnt8 IPA width in bits

measurements RmmRealmMeasurement[5] Realm measurements

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements
rec_index Ulnt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address
rtt_level_start Int64 RTT starting level

rtt_num_start Ulnt64 Number of physically contiguous starting level RTTs
state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

rpv Bits512 Realm Personalization Value

A Realm Initial Measurement (RIM) is a measurement of the configuration and contents of a Realm at the time of
activation.

A Realm Extensible Measurement (REM) is a measurement value which can be extended during the lifetime of a
Realm.

Attributes of a Realm include an array of measurement values. The first entry in this array is a RIM. The remaining
entries in this array are REMs.

During Realm creation, the Host provides ipa_width, rtt_level_start and rtt_num_start values as Realm parameters.
According to the VMSA, the rtt_num_start value is architecturally defined as a function of the ipa_width and
rtt_level_start values. It would therefore have been possible to design the Realm creation interface such that the
Host provided only the ipa_width and rtt_level_start values. However, this would potentially allow a Realm to
be successfully created, but with a configuration which did not match the Host’s intent. For this reason, it was
decided that the Host should specify all three values explicitly, and that Realm creation should fail if the values are
not consistent. See Arm Architecture Reference Manual for Armv8-A architecture profile [3] for further details.

The VMID of a Realm is chosen by the Host. The VMID must be within the range supported by the hardware
platform. The RMM ensures that every Realm on the system has a unique VMID.

A Realm Personalization Value (RPV) is a provided by the Host, to distinguish between Realms which have the
same Realm Initial Measurement, but different behavior.

Possible uses of the RPV include:
« A GUID

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 25
Non-confidential

Chapter A2. Concepts

A2.1. Realm
* Hash of Realm Owner public key
» Hash of a “personalisation document” which is provided to the Realm via a side-band (for example, via NS
memory) and contains configuration information used by Realm software.
Izrsuc The RMM treats the RPV as an opaque value.
IsrsrK The RPV is included in the Realm attestation report as a separate claim.

See also:

e A2.1.5 Realm lifecycle

e A2.3 Realm Execution Context

e A3.1.2 Realm LPA2 and IPA width

* AS5.2.1 Realm IPA space

e A5.5 Realm Translation Table

e A7.1 Realm measurements

e A7.2.3.1.2 Realm Personalization Value claim
e CI1.10 RmmRealm type

A2.1.4 Realm liveness

DuTxTJ Realm liveness is a property which means that there exists one or more Granules, other than the RD and the starting
level RTTs, which are owned by the Realm.

Tovpon If a Realm is live, it cannot be destroyed.
Dpckry A Realm is /ive if any of the following is true:

* The number of RECs owned by the Realm is not zero
A starting level RTT of the Realm is live

Tykke. If a Realm owns a non-zero number of Data Granules, this implies that it has a starting level RTT which is live,
and therefore that the Realm itself is live.

See also:

e A2.1.5 Realm lifecycle

e A2.2.2 Granule ownership

* A2.2.3 Granule lifecycle

e A2.3 Realm Execution Context

* AS5.5.8 RTT liveness

e B2.19 RealmlsLive function

e B3.3.10 RMI_REALM_DESTROY command

A2.1.5 Realm lifecycle

See also:

e Chapter A3 Realm creation
¢ DI1.2 Realm lifecycle flows

A2.1.5.1 States

Dapopg The states of a Realm are listed below.
State Description
NEW Under construction. Not eligible for execution.
ACTIVE Eligible for execution.
SYSTEM_OFF System has been turned off. Not eligible for execution.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 26

A-bet0 Non-confidential

Chapter A2. Concepts

A2.1. Realm
A2.1.5.2 State transitions
Irrurg Permitted Realm state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.
A transition from NULL represents creation of a Realm object. A transition to NULL represents destruction of a
Realm object.
From state To state Events
NULL NEW RMI_REALM_CREATE
NEW NULL RMI_REALM_DESTROY
ACTIVE NULL RMI_REALM_DESTROY
NEW ACTIVE RMI_REALM_ACTIVATE
ACTIVE SYSTEM_OFF PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET
Tvepww Permitted Realm state transitions are shown in the following figure: Each arc is labeled with the events which can

cause the corresponding state transition.

A transition from NULL represents creation of an RD. A transition to NULL represents destruction of an RD.

qom W R RMI_REALM_CREATE

v

NEW

P4
c
=
=

(

S T 2 RMI_REALM_DESTROY

RMI_REALM_ACTIVATE

|

ACTIVE

RMI_REALM_DESTROY

:

PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET

|

SYSTEM_OFF
RMI_REALM_DESTROY

Figure A2.1: Realm state transitions

See also:

e B3.3.8 RMI_REALM_ACTIVATE command
e B3.3.9 RMI_REALM_CREATE command

e B3.3.10 RMI_REALM_DESTROY command
e B5.3.6 PSCI_SYSTEM_OFF command

e B5.3.7 PSCI_SYSTEM_RESET command

A2.1.6 Realm parameters

Drgmvz A Realm parameter is a value which is provided by the Host during Realm creation.
See also:

e A2.1.3 Realm attributes
e A3.1 Realm feature discovery and selection
e B2.20 RealmParams function

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 27
A-bet0 Non-confidential

Chapter A2. Concepts
A2.1. Realm

* B3.3.9 RMI_REALM_CREATE command
* B3.4.10 RmiRealmParams type

A2.1.7 Realm Descriptor

Drnsey A Realm Descriptor (RD) is an RMM data structure which stores attributes of a Realm.
Dgexmx The size of an RD is one Granule.
See also:

e A2.1.3 Realm attributes
e A2.2.3 Granule lifecycle

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

28

Chapter A2. Concepts
A2.2. Granule

A2.2 Granule

Ukagip

This section describes the concept of a Granule.
A Granule is a unit of physical memory whose size is 4KB.
A Granule may be used to store one of the following:

* Code or data used by the Host

* Code or data used by software in the Secure Security state
* Code or data used by a Realm

* Data used by the RMM to manage a Realm

The use of a Granule is reflected in its lifecycle state.
A Granule is delegable if it can be delegated by the Host for use by the RMM or by a Realm.

In a typical implementation, all memory which is presented to the Host-as RAM is delegable. Examples of
non-delegable memory may include the following:

e Memory which is carved out for use by the Root world, the RMM or the Secure world
* Device memory

See also:

e A2.2.1 Granule attributes
* A2.2.3 Granule lifecycle

A2.2.1 Granule attributes

DENO0137
A-bet0

This section describes the attributes of a Granule.

A Granule attribute is a property of a Granule whose value can be observed or modified either by the Host or by a
Realm.

Examples of ways in which a Granule attribute may be observable include the outcome of an RMM command, and
whether a memory access generates a fault.

The attributes of a Granule are summarized in the following table.

Name Type Description
pas RmmPhysicalAddressSpace Physical Address Space
state RmmGranuleState Lifecycle state

The set of Physical Address Spaces is:

* NS
* REALM
* OTHER

The RMM cannot distinguish whether a Granule is in the Secure or Root PAS, so these two values are combined as
OTHER.

If the state of a Granule is not UNDELEGATED then the PAS of the Granule is REALM.
If the state of a Granule is UNDELEGATED then the PAS of the Granule is not REALM.

If the state of a Granule is UNDELEGATED then the RMM does not prevent the PAS of the Granule from being
changed by another agent to any value except REALM.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 29
Non-confidential

Chapter A2. Concepts

A2.2. Granule

Dvrskz

An NS Granule is a Granule whose PAS is NS.
See also:

e A2.1 Realm

e A2.1.7 Realm Descriptor
* A2.2.3 Granule lifecycle
e Cl1.1 RmmGranule type

A2.2.2 Granule ownership

A Granule whose state is neither UNDELEGATED nor DELEGATED is owned by a Realm.
The owner of a Granule is identified by the address of a Realm Descriptor (RD).

For a Granule whose state is RD, the ownership relation is recursive: the owning Realm is identified by the address
of the RD itself.

A Granule whose state is RTT is one of the following:
» A starting level RTT. The address of this RTT is stored in the RD of the owning Realm.

* A non-starting level RTT. The address of this RTT is stored in its parent RTT, in an RTT entry whose state is
TABLE. Recursively following the parent relationship leads to the RD of the owning Realm.

A Granule whose state is DATA is mapped at a Protected IPA, in an RTT entry whose state is ASSIGNED. The
Realm which owns the RTT is the owner of the DATA Granule.

A REC has an “owner” attribute which points to the RD of the owning Realm.
A REC is not mapped at a Protected IPA. Its ownership therefore needs to be recorded explicitly.
See also:

e A2.1 Realm

e A2.1.7 Realm Descriptor

e A2.3 Realm Execution Context

e AS5.2.1 Realm IPA space

e AS5.5 Realm Translation Table

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI _DATA_ CREATE_UNKNOWN command
e B3.3.12 RMI REC_CREATE command

e B3.3.15 RMI RTT _CREATE command

A2.2.3 Granule lifecycle

—)H% LG

DENO0137
A-bet0

A2.2.3.1 States

The states of a Granule are listed below.

State Description
UNDELEGATED Not delegated for use by the RMM.
DELEGATED Delegated for use by the RMM.
RD Realm Descriptor.
REC Realm Execution Context.
REC_AUX Realm Execution Context auxiliary Granule.
DATA Realm code or data.
Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 30

Non-confidential

Chapter A2. Concepts
A2.2. Granule

State Description

RTT Realm Translation Table.

A2.2.3.2 State transitions

Iz5mTT Permitted Granule state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

DENO0137
A-bet0

From state To state Events

UNDELEGATED DELEGATED RMI_GRANULE_DELEGATE

DELEGATED UNDELEGATED RMI_GRANULE_UNDELEGATE

DELEGATED RD RMI_REALM_CREATE

RD DELEGATED RMI_REALM_DESTROY

DELEGATED DATA RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

DATA DELEGATED RMI_DATA_DESTROY

DELEGATED REC RMI_REC_CREATE

REC DELEGATED RMI_REC_DESTROY

DELEGATED REC_AUX RMI_REC_CREATE

REC_AUX DELEGATED RMI_REC_DESTROY

DELEGATED RTT RMI_REALM_CREATE
RMI_RTT_CREATE

RTT DELEGATED RMI_REALM_DESTROY

RMI_RTT_DESTROY

Permitted Granule state transitions are shown in the following figure. Each arc is labeled with the events which
can cause the corresponding state transition.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 31

Non-confidential

Chapter A2. Concepts

A2.2. Granule

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

A 4

I

DATA

RMI_DATA_DESTROY

RMI_REALM_CREATE
I RMI_REALM_DESTROY
RMI_GRANULE_DELEGATE A 4 RMI_REC_CREATE
UNDELEGATED | "| DELEGATED B REC
RMI_GRANULE_UNDELEGATE RMI_REC_DESTROY.

A A
RMI_REC_CREATE

~
A 4

RD

A 4

REC_AUX

-
A 4

RMI_REC_DESTROY

RMI_REALM_CREATE
RMI_RTT_CREATE

A 4

RTT

RMI_REALM_DESTROY
RMI_RTT_DESTROY

Figure A2.2: Granule state transitions

See also:

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.5 RMI_GRANULE_DELEGATE command

e B3.3.6 RMI_GRANULE_UNDELEGATE command
e B3.3.9 RMI REALM CREATE command

e B3.3.10 RMI_REALM_DESTROY command

e B3.3.12 RMI_REC_CREATE command

e B3.3.13 RMI_REC_DESTROY command

e B3.3.15 RMI_RTT_CREATE command

e B3.3.16 RMI RTT _DESTROY command

A2.2.4 Granule wiping

RTLZ?:ZL

DENO0137
A-bet0

When the state of a Granule has transitioned from P to DELEGATED and then to any other state, any content
associated with P has been wiped.

Any sequence of Granule state transitions which passes through the DELEGATED state causes the Granule
contents to be wiped. This is necessary to ensure that information does not leak from one Realm to another, or from
a Realm to the Host. Note that no agent can observe the contents of a Granule while its state is DELEGATED.

Wiping is an operation which changes the observable value of a memory location from X to Y, such that the value X
cannot be determined from the value Y.

Wiping of a memory location does not reveal, directly or indirectly, any confidential Realm data.
Wiping is not guaranteed to be implemented as zero filling.

Realm software should not assume that the initial contents of uninitialized memory (that is, Realm IPA space
which is backed by DATA Granules created using RMI_DATA_CREATE_UNKNOWN) are zero.

See also:

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 32
Non-confidential

Chapter A2. Concepts

A2.2. Granule

DENO0137
A-bet0

* Arm CCA Security model [4]
e B3.3.2 RMI DATA_CREATE_UNKNOWN command
e B3.3.6 RMI_GRANULE_UNDELEGATE command

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter A2. Concepts
A2.3. Realm Execution Context

A2.3 Realm Execution Context

This section describes the concept of a Realm Execution Context (REC).

A2.3.1 Overview
—)kli; CP

See also:

e A2.1.2 Realm execution environment
* Chapter A4 Realm exception model

A2.3.2 REC attributes

This section describes the attributes of a REC.

A Realm Execution Context (REC) is an RMM data structure which stores the saved context of a Realm VPE.

Dz1c A REC attribute is a property of a REC whose value can be observed or modified either by the Host or by the
Realm which owns the REC.
Tcscer Examples of ways in which a REC attribute may be observable include the outcome of an RMM command, and
the PE state following Realm entry.
D1osr The attributes of a REC are summarized in the following table.
Name Type Description
attest_state RmmRecAttestState Attestation token generation state
attest_addr Address Address of under-construction attestation token
attest_challenge Bits512 Challenge for under-construction attestation token
aux Address[16] Addresses of auxiliary Granules

emulatable_abort

RmmRecEmulatable Abort

flags RmmRecFlags
gprs Bits64[32]

mpidr Bits64

owner Address

pc Address
psci_pending RmmPsciPending
state RmmRecState
sysregs RmmSystemRegisters
ripas_addr Address
ripas_top Address
ripas_value RmmRipas

host_call_pending RmmHostCallPending

Whether the most recent exit from this REC was due
to an Emulatable Data Abort

Flags which control REC behavior
General-purpose register values

MPIDR value

PA of RD of Realm which owns this REC
Program counter value

Whether a PSCI request is pending
Lifecycle state

EL1 and ELO system register values

Next address to be processed in RIPAS change
Top address of pending RIPAS change
RIPAS value of pending RIPAS change
Whether a Host call is pending

T pymry The aux attribute of a REC is a list of auxiliary Granules.

DENO0137
A-bet0

Non-confidential

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 34

Chapter A2. Concepts
A2.3. Realm Execution Context

The number of auxiliary Granules required for a REC is returned by the RMI_REC_AUX_COUNT command.

Depending on the configuration of the CCA platform and of the Realm, the amount of storage space required for a
REC may exceed a single Granule.

The number of auxiliary Granules required for a REC can vary between Realms on a CCA platform.
The number of auxiliary Granules required for a REC is a constant for the lifetime of a given Realm.

The gprs attribute of a REC is the set of general-purpose register values which are saved by the RMM on exit from
the REC and restored by the RMM on entry to the REC.

The mpidr attribute of a REC is a value which can be used to identify the VPE associated with the REC.

The pc attribute of a REC is the program counter which is saved by the RMM on exit from the REC and restored
by the RMM on entry to the REC.

The runnable flag of a REC determines whether the REC is eligible for execution. The RMI_REC_ENTER
command results in a REC entry only if the value of the flag is RUNNABLE.

The runnable flag of a REC is controlled by the Realm. Its initial value is reflected in the Realm Initial Measurement,
and during Realm execution its value can be changed by execution of the PSCI_CPU_ON and PSCI_CPU_OFF
commands.

The state attribute of a REC is controlled by the Host, by execution of the RMI_REC_ENTER command.

The sysregs attribute of a REC is the set of system register values which are saved by the RMM on exit from the
REC and restored by the RMM on entry to the REC.

See also:

e A2.3.3 REC index and MPIDR value
e A2.3.4 REC lifecycle

e A4.3.4.3 REC exit due to Data Abort
e B3.3.14 RMI_REC_ENTER command
e B5.3.2 PSCI CPU _OFF command

e B5.3.3 PSCI_CPU_ON command

e Cl1.13 RmmRec type

A2.3.3 REC index and MPIDR value

jf,,f VHN

DENO0137
A-bet0

The REC index is the unsigned integer value generated by by concatenation of MPIDR fields:
index = Aff3:Aff2:Aff1:Aff0[3:0]

This is illustrated by the following table.

REC

index Aff3 Aff2 Affl AffO[3:0]
0 0 0 0 0

1 0 0 0 1

16 0 0 1 0

4096 0 1 0 0

1048576 1 0 0 0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 35

Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

REC
index Aff3 Aff2 Affl AffO[3:0]
Tovizy The Af£0[7:4] field of a REC MPIDR value is RESO for compatibility with GICv3.
Trrwy When creating the nth REC in a Realm, the Host is required to use the MPIDR corresponding to REC index n.
See also:
* B2.30 RecIndex function
e B3.3.12 RMI REC _CREATE command
¢ B3.4.16 RmiRecMpidr type
A2.3.4 REC lifecycle
A2.3.4.1 States
DyTxc The states of a REC are listed below.
State Description
READY REC is not currently running.
RUNNING REC is currently running.
A2.3.4.2 State transitions
Tomat Permitted REC state transitions are shown in the following table. The rightmost column lists the events which can

cause the corresponding state transition.

A transition from NULL represents creation of a REC object. A transition to NULL represents destruction of a

REC object.
From state To state Events
NULL READY RMI_REC_CREATE
READY NULL RMI_REC_DESTROY
READY RUNNING RMI_REC_ENTER
RUNNING READY Return from RMI_REC_ENTER
TenstT Permitted REC state transitions are shown in the following figure. Each arc is labeled with the events which can

cause the corresponding state transition.

A transition from NULL represents creation of a REC. A transition to NULL represents destruction of a REC.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 36
A-bet0 Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

RMI_REC_CREATE -
| READY

NULL
----------------- RMI_REC_DESTROY N C
RMI_REC_ENTER Return from
RMI_REC_ENTER
\ 4
RUNNING
Figure A2.3: REC state transitions
See also:
e B3.3.12 RMI_REC_CREATE command
e B3.3.13 RMI_REC_DESTROY command
e B3.3.14 RMI REC_ENTER command
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 37

A-bet0 Non-confidential

Chapter A3
Realm creation

This section describes the process of creating a Realm.

See also:

e A2.1 Realm

e DI1.2 Realm lifecycle flows

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1 Realm feature discovery and selection

RMM implementations across different CCA platforms may support disparate features and may offer disparate
configuration options for Realms.

The features supported by an RMM implementation are discovered by reading feature pseudo-register values using
the RMI_FEATURES command.

The term pseudo-register is used because, although these values are stored in memory, their usage model is similar
to feature registers specified in the Arm A-profile architecture.

On Realm creation, the Host specifies a set of desired features by providing feature pseudo-register values in
a Realm parameters structure to the RMI_REALM_CREATE command. The RMM checks that the features
specified by the Host are supported by the implementation.

The features specified at Realm creation time are included in the Realm Initial Measurement.
See also:

e A2.1.6 Realm parameters

e A7.1.1 Realm Initial Measurement

e B3.3.4 RMI_FEATURES command

e B3.3.9 RMI REALM_ CREATE command

A3.1.1 Realm hash algorithm

Il} KGX

R}',I‘ BOM

The set of hash algorithms supported by the implementation is reported by the RMI_FEATURES command in
RmiFeatureRegister0.

Requesting an unsupported hash algorithm causes execution of RMI_REALM_CREATE to fail.
See also:

e A7.1 Realm measurements
e B3.3.9 RMI_REALM_CREATE command
* B3.4.6 RmiFeatureRegister0 type

A3.1.2 Realm LPA2 and IPA width

I NKLXQ

I LKJGN

FTVXC

DENO0137
A-bet0

Usage of LPA2 for Realm Translation Tables is an attribute which is set by the Host during Realm creation, using
RmiFeatureRegisterQ.LPA2.

Realm IPA width is an attribute which is set by the Host during Realm creation, using RmiFeatureRegister0.S2SZ.
Requesting a larger-than-supported IPA width causes execution of RMI_REALM_CREATE to fail.

The Host can choose a smaller IPA width than the maximum supported IPA width reported by RMI_FEATURES.
This is true regardless of whether LPA2 is enabled for the Realm.

The Host may want to enable LPA?2 for a Realm due to either or both of the following reasons:

* to allow the Realm to be configured with a larger IPA width
* to allow access from mappings in the Realm’s stage 2 translation to a larger PA space

A Realm can query its IPA width using the RSI_REALM_CONFIG command.
See also:

e AS5.2.1 Realm IPA space

e B3.3.9 RMI_REALM_CREATE command
* B3.4.6 RmiFeatureRegister0 type

e B4.3.8 RSI_REALM_CONFIG command

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 39
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1.3 Realm support for Scalable Vector Extension

PSS,

Availability of the Scalable Vector Extension (FEAT_SVE) to a Realm is determined by RmiFeatureRegister0.SVE_EN,
which is set by the Host during Realm creation.

SVE vector length for a Realm is determined by RmiFeatureRegister0.SVE_VL, which is set by the Host during
Realm creation.

Requesting a larger-than-supported SVE vector length causes execution of RMI_REALM_CREATE to fail. This
is different from the behaviour of the hardware architecture, in which a larger-than-supported SVE vector length
value is silently truncated.

The RMI ABI provides a natural mechanism to signal an invalid feature selection, via the return code of
RMI_REALM_CREATE. The analog in the hardware architecture would be to generate an illegal exception
return, which would cause undesirable coupling between two disparate parts of the architecture, namely the
exception model and the SVE feature.

If SVE is supported by the platform but is disabled for the Realm via the RMI. REALM_CREATE command then
aread of ID_AAG4PFRO_EL1 . SVE indicates that SVE is not supported.

The RMM should trap and emulate reads of ID_AA64PFRO_EL1.SVE.

A Realm should discover SVE support by reading ID_AA64PFRO_ELL. SVE rather than based on the platform
identity read from MIDR_EL1.

See also:

e B3.3.9 RMI REALM CREATE command
e B3.4.6 RmiFeatureRegisterQ type

A3.1.4 Realm support for self-hosted debug

T\,CTTT:

I

RcgoTe

Self-hosted debug is always available in Armv8-A.

The number of breakpoints and watchpoints are attributes which are set by the Host during Realm creation, using
RmiFeatureRegister0.NUM_BP and RmiFeatureRegister0.NUM_WP respectively.

Requesting a number of breakpoints which is different from the number of breakpoints available causes execution
of RMI_REALM_CREATE to fail.

Requesting a number of watchpoints which is different from the number of watchpoints available causes execution
of RMI_REALM_CREATE to fail.

See also:

e B3.3.9 RMI REALM_ CREATE command
e B3.4.6 RmiFeatureRegisterQ type

A3.1.5 Realm support for Performance Monitors Extension

IHHI‘,TL‘

DENO0137
A-bet0

Availability of the Performance Monitors Extension (FEAT_PMU) to a Realm is determined by
RmiFeatureRegister0.PMU_EN, which is set by the Host during Realm creation.

The number of PMU counters available to a Realm is determined by RmiFeatureRegister0.PMU_NUM_CTRS,
which is set by the Host during Realm creation.

Requesting a number of PMU counters which is different from the number of PMU counters available causes
RMI_REALM_CREATE to fail.

See also:

e AS8.1 Realm PMU
e B3.3.9 RMI_REALM_CREATE command
* B3.4.6 RmiFeatureRegisterQ type

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection
A3.1.6 Realm support for Activity Monitors Extension

Rygvazs The Activity Monitors Extension (FEAT_AMUV1) is not available to a Realm.
A3.1.7 Realm support for Statistical Profiling Extension

Rpcent The Statistical Profiling Extension (FEAT_SPE) is not available to a Realm.
A3.1.8 Realm support for Trace Buffer Extension

Ryxpxe The Trace Buffer Extension (FEAT_TRBE) is not available to a Realm.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

41

Chapter A4
Realm exception model

This section describes how Realms are executed, and how exceptions which cause exit from a Realm are handled.
See also:

e A2.1.2 Realm execution environment

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 42
A-bet0 Non-confidential

Chapter A4. Realm exception model
A4.1. Exception model overview

A4.1 Exception model overview

DENO0137
A-bet0

A Realm entry is a transfer of control to a Realm.

A Realm exit is a transition of control from a Realm.

When executing in a Realm, an exception taken to R-EL2 or EL3 results in a Realm exit.
A REC entry is a Realm entry due to execution of RMI_REC_ENTER.

The Host provides the address of a REC as an input to the RMI_REC_ENTER command.

In this chapter, both rec and “the target REC” refer to the REC which is provided to the RMI_REC_ENTER
command.

A RecRun object is a data structure used to pass values between the RMM and the Host on REC entry and on REC
exit.

A RecRun object is stored in Non-secure memory.
The Host provides the address of a RecRun object as an input to the RMI_REC_ENTER command.

An implementation is permitted to return RMI_SUCCESS from RMI.REC_ENTER without performing a REC
entry. For example, on observing a pending interrupt, the implementation can generate a REC exit due to IRQ
without entering the target REC.

A REC exit is return from an execution of RMI_REC_ENTER which caused a REC entry.

The following diagram summarises the possible control flows that result from a Realm exit.

Realm Security state Non-secure Secure
Security state Security state
ELO Realm
a b ¢ d e
EL1 O, O O 04 04
EL2 | RMM 0 & O @ Hypervisor @® SPM
EL3 O Monitor
o' O

Root Security state

Figure A4.1: Realm exit paths

a. The exception is taken to EL3. The Monitor handles the exception and returns control to the Realm.

b. The exception is taken to EL3. The Monitor pre-empts Realm Security state and passes control to the Secure
Security state. This may be for example due to an FIQ.

c. The exception is taken to EL2. The RMM decides to perform a REC exit. The RMM executes an SMC
instruction, requesting the Monitor to pass control to the Non-secure Security state.

d. The exception is taken to EL2. The RMM executes an SMC instruction, requesting the Monitor to perform
an operation, then returns control to the Realm.

e. The exception is taken to EL2. The RMM handles the exception and returns control to the Realm.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 43
Non-confidential

Chapter A4. Realm exception model
A4.1. Exception model overview

See also:

* A4.2 REC entry

* A4.3 REC exit

e B3.3.14 RMI REC_ENTER command
e B3.4.18 RmiRecRun type

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

44

Chapter A4. Realm exception model
A4.2. REC entry

A4.2 REC entry

This section describes REC entry.

See also:

e A4.3 REC exit
e B3.3.14 RMI REC _ENTER command

A4.2.1 RecEntry object

DENO0137
A-bet0

A RecEntry object is a data structure used to pass values from the Host to the RMM on REC entry.

A RecEntry object is stored in the RecRun object which is passed by the Host as an input to the RMI_REC_ENTER

command.
On REC entry, execution state is restored from the REC and from the RecEntry object to the PE.

A RecEntry object contains attributes which are used to manage Realm virtual interrupts.

The attributes of a RecEntry object are summarized in the following table.

Name Byte offset Type Description
flags 0x0 RmiRecEntryFlags Flags
gprs[0] 0x200 Bits64 Registers
gprs[1] 0x208 Bits64 Registers
gprs[2] 0x210 Bits64 Registers
gprs[3] 0x218 Bits64 Registers
gprs[4] 0x220 Bits64 Registers
gprs[5] 0x228 Bits64 Registers
gprs[6] 0x230 Bits64 Registers
gprs[7] 0x238 Bits64 Registers
gprs[8] 0x240 Bits64 Registers
gprs[9] 0x248 Bits64 Registers
gprs[10] 0x250 Bits64 Registers
gprs[11] 0x258 Bits64 Registers
gprs[12] 0x260 Bits64 Registers
gprs[13] 0x268 Bits64 Registers
gprs[14] 0x270 Bits64 Registers
gprs[15] 0x278 Bits64 Registers
gprs[16] 0x280 Bits64 Registers
gprs[17] 0x288 Bits64 Registers
gprs[18] 0x290 Bits64 Registers
gprs[19] 0x298 Bits64 Registers
gprs[20] 0x2a0 Bits64 Registers

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

45

Chapter A4. Realm exception model
A4.2. REC entry

Name Byte offset Type Description
gprs[21] 0x2a8 Bits64 Registers
gprs[22] 0x2b0 Bits64 Registers
gprs[23] 0x2b8 Bits64 Registers
gprs[24] 0x2c0 Bits64 Registers
gprs[25] 0x2c8 Bits64 Registers
gprs[26] 0x2d0 Bits64 Registers
gprs[27] 0x2d8 Bits64 Registers
gprs[28] 0x2e0 Bits64 Registers
gprs[29] O0x2e8 Bits64 Registers
gprs[30] 0x2£0 Bits64 Registers
gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value
gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values
gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values
gicv3_lIrs[2] 0x318 Bits64 GICv3 List Register values
gicv3_Irs[3] 0x320 Bits64 GICv3 List Register values
gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values
gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values
gicv3_Irs[6] 0x338 Bits64 GICv3 List Register values
gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values
gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values
gicv3_Irs[9] 0x350 Bits64 GICv3 List Register values
gicv3_Irs[10] 0x358 Bits64 GICv3 List Register values
gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values
gicv3_lIrs[12] 0x368 Bits64 GICv3 List Register values
gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values
gicv3_lIrs[14] 0x378 Bits64 GICv3 List Register values
gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values
T zurop In this chapter, both entry and “the RecEntry object” refer to the RecEntry object which is provided to the
RMI_REC_ENTER command.
I1ryDy On REC exit, all entry fields are ignored unless specified otherwise.
See also:

* A2.3 Realm Execution Context

* A4.3.1 RecExit object

e Chapter A6 Realm interrupts and timers
* B3.4.12 RmiRecEntry type

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

46

Chapter A4. Realm exception model
A4.2. REC entry

A4.2.2 General purpose registers restored on REC entry

RH‘ SF

On REC entry, if the most recent exit from the target REC was a REC exit due to PSCI, then all of the following
occur:

* X0 to X6 contain the PSCI return code and PSCI output values.
¢ GPR values X7 to X30 are restored from the REC to the PE.

On REC entry, if the most recent exit from the target REC was not a REC exit due to PSCI, then GPR values X0 to
X30 are restored from the REC to the PE.

On REC entry, if rec.host_call_pending is HOST_CALL_PENDING, then GPR values X0 to X6 are copied
from entry.gprs[0..6] to the RsiHostCall data structure.

On REC entry, if writing to the RsiHostCall data structure fails due to the target IPA not being mapped then a REC
exit to Data Abort results.

On REC entry, if writing to the RsiHostCall data structure succeeds then rec.host_call_pending is
NO_HOST_CALL_PENDING.

On REC entry, if RMM access to entry causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

* A4.3.3 General purpose registers saved on REC exit
e A4.3.4.3 REC exit due to Data Abort

e A4.3.7 REC exit due to PSCI

e A4.3.9 REC exit due to Host call

e A4.5 Host call

A4.2.3 REC entry following REC exit due to Data Abort

DENO0137
A-bet0

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and
entry.flags.emul_mmio == RMI_EMULATED_MMIO, then the return address is the next instruction following
the faulting instruction.

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and the
Realm memory access was aread and entry.flags.emul_mmio == RMI_EMULATED_MMIO, then the register
indicated by ESR_EL2.ISS.SRT is setto entry.gprs[0].

On REC entry, if the most recent exit from the target REC was a REC exit due to Data Abort at an Unprotected

IPA and entry.flags.emul_mmio == RMI_NOT_EMULATED_MMIO and
entry.flags.inject_sea == RMI_INJECT_SERA, then a Synchronous External Abort is taken to the Realm..
See also:

e A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

* AS5.2.4 Realm access to an Unprotected IPA
* AS5.2.5 Synchronous External Aborts

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 47
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

A4.3 REC exit

A4.3.1 RecExit object

DpapcE
TynoTL
Tk
Tzscnm
Drrcmn
DENO0137

A-bet0

This section describes REC exit.

See also:

* A4.2 REC entry
e B3.3.14 RMI REC _ENTER command

A RecExit object is a data structure used to pass values from the RMM to the Host on REC exit.
A RecExit object is stored in the RecRun object which is passed by the Host as an input to the RMI_REC_ENTER

command.

On REC exit, execution state is saved from the PE to the REC and to the RecEXxit object.

A RecExit object contains attributes which are used to manage Realm virtual interrupts and Realm timers.

The attributes of a RecExit object are summarized in the following table.

Name Byte offset Type Description
exit_reason 0x0 RmiRecExitReason Exit reason

esr 0x100 Bits64 Exception Syndrome Register
far 0x108 Bits64 Fault Address Register
hpfar 0x110 Bits64 Hypervisor IPA Fault Address register
gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

48

Chapter A4. Realm exception model

A4.3. REC exit

Name Byte offset Type Description

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2£0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_Irs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lIrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_Irs[3] 0x320 Bits64 GICv3 List Register values

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lIrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_Irs[7] 0x340 Bits64 GICv3 List Register values

gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values

gicv3_Irs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lIrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lIrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_Irs[14] 0x378 Bits64 GICv3 List Register values

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State
Register value

gicv3_vmer 0x390 Bits64 GICv3 Virtual Machine Control Register
value

cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control

DENO0137
A-bet0

Register value

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

49

Chapter A4. Realm exception model

A4.3. REC exit

Name Byte offset Type Description

cntp_cval 0x408 Bits64 Counter-timer Physical Timer
CompareValue Register value

cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control
Register value

cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value

ripas_base 0x500 Bits64 Base address of pending RIPAS change

ripas_size 0x508 Ulnt64 Size of pending RIPAS change

ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change

imm 0x600 Bits16 Host call immediate value

pmu_ovf 0x700 Bits64 PMU overflow

pmu_intr_en 0x708 Bits64 PMU interrupt enable

pmu_cntr_en 0x710 Bits64 PMU counter enable

In this chapter, both exit and “the RecExit object” refer to the RecExit object which is provided to the
RMI_REC_ENTER command.

On REC exit, all exit fields are zero unless specified otherwise.
See also:

* A2.3 Realm Execution Context

* A4.2.1 RecEntry object

* A4.5 Host call

* Chapter A6 Realm interrupts and timers

e Chapter A8 Realm debug and performance monitoring
* B3.4.14 RmiRecExit type

A4.3.2 Realm exit reason

I DYWHJ

On return from the RMI_REC_ENTER command, the reason for the REC exit is indicated by exit .exit_reason
and exit.esr.

See also:

¢ B3.4.15 RmiRecExitReason type

A4.3.3 General purpose registers saved on REC exit

Rppkve

DENO0137
A-bet0

On REC exit due to PSCI, all of the following are true:

* exit.gprs[0] contains the PSCI FID.

* exit.gprs[1..3] contain the corresponding PSCI arguments. If the PSCI command has fewer than 3
arguments, the remaining values contain zero.

* GPR values X7 to X30 are saved from the PE to the REC.

On REC exit for any reason which is not REC exit due to PSCI, GPR values X0 to X30 are saved from the PE to
the REC.

On REC exit for any reason which is neither REC exit due to Host call nor REC exit due to PSCI, exit.gprs is
zero.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

RprevT On REC exit, if RMM access to exit causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

e A4.2.2 General purpose registers restored on REC entry
* A4.3.7 REC exit due to PSCI
e A4.3.9 REC exit due to Host call

A4.3.4 REC exit due to synchronous exception

T snpns A synchronous exception taken to R-EL2 can cause a REC exit.

Irpsne The following table summarises the behavior of synchronous exceptions taken to R-EL2.
Exception class Behavior
Trapped WFI or WFE instruction execution REC exit due to WFI or WFE
HVC instruction execution in AArch64 state Unknown exception taken to Realm
SMC instruction execution in AArch64 state One of:

¢ REC exit due to PSCI
e RSI command handled by RMM, followed by
return to Realm

Trapped MSR, MRS or System instruction execution - Emulated by RMM, followed by return to Realm
in AArch64 state

Instruction Abort from a lower Exception level REC exit due to Instruction Abort

Data Abort from a lower Exception level REC exit due to Data Abort

Ryrrmp Realm execution of an SMC which is not part of one of the following ABIs results in a return value of
SMCCC_NOT_SUPPORTED:

* PSCI
* RSI

See also:

* A4.5 Host call
e Chapter B4 Realm Services Interface
* Chapter BS Power State Control Interface

A4.3.4.1 REC exit due to WFI or WFE

Derupx A REC exit due to WFI or WFE is a REC exit due to WFI, WFIT, WFE or WFET instruction execution in a Realm.

RyrJor On WFI or WFIT instruction execution in a Realm, a REC exit due to WFI or WFE is caused if entry.trap_wfi
is RMI_TRAP.

ReenGw On WFE or WFET instruction execution in a Realm, a REC exit due to WFI or WFE is caused if entry.trap_wfe
is RMI_TRAP.

RyowsT On REC exit due to WFI or WFE, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.TI contains the value of ESR_EL2.ISS.TI at the time of the Realm exit.
e All other exit fields are zero.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 51
A-bet0 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Repysc

DENO0137

A-bet0

On REC exit due to WFI or WFE, if the exit was caused by WFET or WFIT instruction execution then
exit.gprs[0] contains the timeout value.

A4.3.4.2 REC exit due to Instruction Abort

A REC exit due to Instruction Abort is a REC exit due to a Realm instruction fetch from a Protected IPA whose
HIPAS is UNASSIGNED or DESTROYED and whose RIPAS is RAM.

On REC exit due to Instruction Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.IFSC contains the value of ESR_EL2.ISS.IFSC at the time of the Realm exit.
e exit.hpfar contains the value of HPFAR_EL?2 at the time of the Realm exit.

¢ All other exit fields are zero.

See also:

e AS5.2.2 Realm IPA state
e AS5.2.3 Realm access to a Protected IPA

A4.3.4.3 REC exit due to Data Abort

A REC exit due to Emulatable Data Abort is a REC exit due to a Realm data access to an Unprotected IPA whose
HIPAS is UNASSIGNED, where the access caused ESR_EL2.ISS.ISVtobesetto '1'.

A REC exit due to Non-emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

* an Unprotected IPA whose HIPAS is UNASSIGNED, where the access caused ESR_EL2.ISS. ISV to be set
to'o’

 an Unprotected IPA whose HIPAS is VALID_NS, where caused a stage 2 permission fault

¢ a Protected IPA whose HIPAS is UNASSIGNED or DESTROYED and whose RIPAS is RAM.

On REC exit due to Data Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT_SYNC.

* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.
* exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

On REC exit due to Emulatable Data Abort, all of the following are true:

e rec.emulatable_abort is EMULATABLE_ ABORT.

* exit.esr.ISS.ISV contains the value of ESR_EL2.ISS. ISV at the time of the Realm exit.

* exit.esr.ISS.SAS contains the value of ESR_EL2.ISS.SAS at the time of the Realm exit.

* exit.esr.ISS.FnV contains the value of ESR_EL2.ISS.FnV at the time of the Realm exit.

* exit.esr.ISS.WnR contains the value of ESR_EL2.ISS.WnR at the time of the Realm exit.

¢ All other exit .esr fields are zero.

* exit.far contains the value of FAR_EL2 at the time of the Realm exit, with bits more significant than the
size of a Granule masked to zero.

On REC exit due to Non-emulatable Data Abort, all of the following are true:

e All other exit .esr fields are zero.
e exit.far is zero.

On REC exit due to Data Abort, all of the other exit fields are zero.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 52
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Xyuxc On REC exit due to Emulatable Data Abort, ESR_EL2.ISS. {SSE, SF} are not propagated to the Host. This is
because these fields are used to emulate sign extension on loads, which must be performed by the RMM so that the
Realm can rely on architecturally correct behavior of the virtual execution environment.

XHSHFR On REC exit due to Emulatable Data Abort, the Host can calculate the faulting IPA from the exit .hpfar and
exit.far values.

Reeyan On REC exit due to Emulatable Data Abort, if the Realm memory access was a write,
exit.gprs[0] contains the value of the register indicated by ESR_EL2.ISS.SRT at the time of the Realm exit.

RopTPR On REC exit not due to Emulatable Data Abort, rec.emulatable_abort is NOT_EMULATABLE_ABORT.

See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.4 Emulated Data Aborts

e AS5.2.1 Realm IPA space

e A5.2.3 Realm access to a Protected IPA

e AS5.2.4 Realm access to an Unprotected IPA

A4.3.5 REC exit due to IRQ

DyLuxk A REC exit due to IRQ is a REC exit due to an IRQ exception which should be handled by the Host.
RryJsx On REC exit due to IRQ, exit.exit_reason is RMI_EXIT IRQ.
Resoxv On REC exit due to IRQ, exit .esr is zero.

See also:

* Chapter A6 Realm interrupts and timers

A4.3.6 REC exit due to FIQ

Dyrymm A REC exit due to FIQ is a REC exit due to an FIQ exception which should be handled by the Host.
Repsap On REC exit due to FIQ, exit.exit_reason is RMI_EXIT_FIQ.
Rexzr On REC exit due to FIQ, exit .esr is zero.

See also:

* Chapter A6 Realm interrupts and timers

A4.3.7 REC exit due to PSCI

Isscrp A PSCI function executed by a Realm is either:

 handled by the RMM, returning to the Realm, or
* forwarded by the RMM to the Host via a REC exit due to PSCI.

DRETOD A REC exit due to PSCI is a REC exit due to Realm PSCI function execution by SMC instruction which was
forwarded by the RMM to the Host.

TvrJxy The following table summarises the behavior of PSCI function execution by a Realm.

PSCI functions not listed in this table are not supported. Calling a non-supported PSCI function results in a return
value of PSCI_NOT_SUPPORTED.

Can result in REC Requires Host to call

PSCI function exit due to PSCI RMI_PSCI_COMPLETE
PSCI_VERSION No -
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 53

A-bet0 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Can result in REC Requires Host to call

PSCI function exit due to PSCI RMI_PSCI_COMPLETE
PSCI_FEATURES No -

PSCI_CPU_SUSPEND Yes No

PSCI_CPU_OFF Yes No

PSCI_CPU_ON Yes Yes
PSCI_AFFINITY_INFO Yes Yes

PSCI_SYSTEM_OFF Yes No
PSCI_SYSTEM_RESET Yes No

On REC exit due to PSCI, exit.exit_reason is RMI_EXIT PSCI.

On REC exit due to PSCI, exit .gprs contains sanitised parameters from the PSCI call.

Following REC exit due to PSCI, if the command arguments include an MPIDR value, the Host must provide
the corresponding REC by calling the RMI_PSCI_COMPLETE command. This is because the RMM does not
maintain a mapping from MPIDR values to REC addresses. On execution of RMI_PSCI_COMPLETE, the RMM
validates that REC provided by the Host matches the MPIDR value, and then completes the PSCI operation.

See also:

* A4.3.3 General purpose registers saved on REC exit
e B3.3.7 RMI_PSCI_COMPLETE command

» Chapter BS Power State Control Interface

e DI1.4 PSCI flows

A4.3.8 REC exit due to RIPAS change pending

D JGCVY

Rosskx

Rormmn

DENO0137
A-bet0

A REC exit due to RIPAS change pending is a REC exit due to the Realm issuing a RIPAS change request.

On REC exit due to RIPAS change pending, all of the following are true:

* exit.
* exit.
* exit.
* exit.

exit_reasonis RMI_EXIT_RIPAS_CHANGE.

ripas_base is the base address of the region on which a RIPAS change is pending.
ripas_size is the size of the region on which a RIPAS change is pending.
ripas_value is the requested RIPAS value.

* rec.ripas_addr is the base address of the region on which a RIPAS change is pending.
* rec.ripas_top is the top address of the region on which a RIPAS change is pending.
* rec.ripas_value is the requested RIPAS value.

On REC exit due to RIPAS change pending:

* exit holds the base address and the size of the region on which a RIPAS change is pending. These values
inform the Host of the bounds of the RIPAS change request.

* rec holds the next address to be processed in a RIPAS change, and the top of the requested RIPAS change
region. These values are used by the RMM to enforce that the RMI_RTT_SET_RIPAS command can only
apply RIPAS change within the bounds of the RIPAS change request, and to report the progress of the RIPAS
change to the Realm on the next REC entry.

On REC exit not due to RIPAS change pending, all of the following are true:

* rec.ripas_addris 0

* rec.ripas_topis 0

See also:

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A4. Realm exception model
A4.3. REC exit

e A2.3.2 REC attributes
* AS5.4 RIPAS change

A4.3.9 REC exit due to Host call

Durzxk A REC exit due to Host call is a REC exit due to RSI_HOST_CALL execution in a Realm.
RgTarp On REC exit due to Host call, all of the following are true:

* rec.host_call_pendingis HOST_CALL_PENDING.

* exit.exit_reasonis RMI_EXIT HOST CALL.

* exit.imm contains the immediate value passed to the RSI_HOST_CALL command.

* exit.gprs[0..6] contain the register values passed to the RSI_HOST_CALL command.
e All other exit fields are zero.

See also:

e A4.5 Host call
e B4.3.3 RSI_ HOST_CALL command

A4.3.10 REC exit due to SError

Dpemup A REC exit due to SError is a REC exit due to an SError interrupt during Realm execution.
Rircrp On REC exit due to SError, all of the following occur:
* exit.exit_reason is RMI_EXIT_SERROR.
* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
* exit.esr.ISS.IDS contains the value of ESR_EL2.ISS.IDS at the time of the Realm exit.
* exit.esr.ISS.AET contains the value of ESR_EL2.ISS.AET at the time of the Realm exit.

* exit.esr.ISS.EA containsthe value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.

e All other exit fields are zero.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

55

Chapter A4. Realm exception model
A4.4. Emulated Data Aborts

A4.4 Emulated Data Aborts

I svypc On REC exit due to Emulatable Data Abort, sufficient information is provided to the Host to enable it to emulate
the access, for example to emulate a virtual peripheral.

On taking the REC exit, the Host can either

* Establish a mapping in the RTT, in which case it would want the Realm to re-attempt the access. In this case,
on the next REC entry the Host sets entry.flags.emul_mmio = RMI_NOT_EMULATED_MMIO, which
indicates that instruction emulation was not performed. This causes the return address to be the faulting
instruction.

* Emulate the access. For an emulated write, the data is provided in exit .gprs [0]. For an emulated read,
the data is provided in entry.gprs[0]. In this case, on the next REC entry the Host sets
entry.flags.emul_mmio = RMI_EMULATED_MMIO, which indicates that the instruction was emulated.
This causes the return address to be the address of the instruction which generated the Data Abort plus 4
bytes.

See also:

e A4.2.3 REC entry following REC exit due to Data Abort
* A4.3.4.3 REC exit due to Data Abort
e AS5.2.1 Realm IPA space

A4.5 Host call

This section describes the programming model for Realm communication with the Host.

Dypaw A Host call is a call made by the Realm to the Host, by execution of the RSI_HOST_CALL command.
T yNFK7, A Host call can be used by a Realm to-make a hypercall.
RpNBoF On Realm execution of HVC, an Unknown exception is taken to the Realm.

See also:

e A4.2.2 General purpose registers restored on REC entry
e A4.3.9 REC exit due to Host call

e B4.3.3 RSI_ HOST_CALL command

* DI1.3.2 Host call flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 56
A-bet0 Non-confidential

Chapter A5
Realm memory management

This section describes how Realm memory is managed. This includes:

* How the translation tables which describe the Realm’s address space are managed by the Host.
* Properties of the Realm’s address space, and of the memory which can be mapped into it.
* How faults caused by Realm memory accesses are handled.

See also:

* A2.1.2 Realm execution environment
e DI1.5 Realm memory management flows
e Chapter D2 Realm shared memory protocol

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

57

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.1 Realm memory management overview

Realm memory management can be viewed from one of two standpoints: the Realm and the Host.

From the Realm’s point of view, the RMM provides security guarantees regarding the IPA space of the Realm and
the memory which is mapped into it. These security guarantees are upheld via RST commands which the Realm
can execute in order to query the initial configuration and contents of its address space, and to modify properties of
the address space at runtime.

From the Host’s point of view, Realm memory management involves manipulating the stage 2 translation tables
which describe the Realm’s address space, and handling faults which are caused by Realm memory accesses.
These operations are similar to those involved in managing the memory of a normal VM, but in the case of a Realm
they are performed via execution of RMI commands.

See also:

e AS5.2 Realm view of memory management
* AS5.3 Host view of memory management

A5.2 Realm view of memory management

This section describes memory management from the Realm’s point of view.

A5.2.1 Realm IPA space

IpLro: The IPA space of a Realm is divided into two halves: Protected IPA space and Unprotected IPA space.

n

Software in a Realm should treat the most significant bit of an IPA as a protection attribute.

Dkxepv A Protected IPA is an address in the lower half of a Realm’s IPA space. The most significant bit of a Protected IPA
is 0.

Durwg An Unprotected IPA is an address in the upper half of a Realm’s IPA space. The most significant bit of an
Unprotected IPA is 1.

See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.2.2 Realm IPA state
DiwicBD A Protected IPA has an associated Realm IPA state (RIPAS).

The RIPAS values are shown in the following table.

RIPAS Description
EMPTY Unused address
RAM Private code or data owned by the Realm
Tgsgsw Changing the RIPAS of a Protected IPA for a Realm in the NEW state causes the Realm Initial Measurement to be
updated.
I nzxpc A Realm in the ACTIVE state can request changes to the RIPAS of a region of Protected IPA space.
See also:

* AS5.4 RIPAS change

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 58
A-bet0 Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

e A7.1.1 Realm Initial Measurement

A5.2.3 Realm access to a Protected IPA

RHV\ SD

Realm data access to a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken to the
Realm.

Realm data access to a Protected IPA can cause an REC exit due to Data Abort.

The Host can, by executing RMI_RTT_DESTROY, transition the HIPAS of a range of Protected IPAs from
UNASSIGNED to DESTROYED. Within this range, individual pages may have been configured with different
RIPAS values. The architecture has to choose whether a Realm access to any IPA in this range causes a Synchronous
External Data Abort taken to the Realm, or a REC exit due to Data Abort. The former would effectively allow
the Host to inject an SEA at any Protected IPA which had been configured with RIPAS=RAM, and therefore
potentially trigger unexpected behavior in the Realm. The latter does not have any negative impacts on Realm
security, and is therefore the option which has been chosen by the architecture.

Realm instruction fetch from a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken
to the Realm.

Realm instruction fetch from a Protected IPA whose RIPAS is RAM can cause a REC exit due to Instruction Abort.
See also:

e A4.3.4.2 REC exit due to Instruction Abort
e A4.3.4.3 REC exit due to Data Abort
* AS5.2.5 Synchronous External Aborts

A5.2.4 Realm access to an Unprotected IPA

An access by a Realm to an Unprotected IPA can result in a Granule Protection Fault (GPF).
The RMM does not ensure that the PAS of a Granule mapped at an Unprotected IPA is NS.
Realm software must be able tohandle taking a GPF during access to an Unprotected IPA.
Realm data access to an Unprotected IPA can cause a REC exit due to Data Abort.

On taking a REC exit due to Data Abort at an Unprotected IPA, the Host can inject a Synchronous External Abort
to the Realm.

The Host can inject an SEA in response to an unexpected Realm data access to an Unprotected IPA.

Realm data.access to an Unprotected IPA which caused ESR_EL2.ISS.ISVtobesetto '1' can be emulated by
the Host.

Realm instruction fetch from an Unprotected IPA causes a Synchronous External Abort taken to the Realm.
See also:

e A4.2.3 REC entry following REC exit due to Data Abort
e A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

* AS5.2.5 Synchronous External Aborts

A5.2.5 Synchronous External Aborts

R.\f NJW

When a Synchronous External Abort is taken to a Realm, ESR_EL1.EA == '1"'.

A5.2.6 Realm access outside IPA space

DENO0137

A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 59
Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

If stage 1 translation is enabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 Address Size Fault taken to the Realm, with the fault status code indicating the level at which the fault

occurred.

If stage 1 translation is disabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 level 0 Address Size Fault taken to the Realm.

A5.2.7 Summary of Realm IPA space properties

Lrpckuw

DENO0137
A-bet0

The following table summarises the properties of Realm IPA space.

Instruction

Data access Data access Instruction fetch causes

Data access causes REC can be fetch causes REC exit due

causes abort to exit due to emulated by abort to to Instruction
Realm IPA Realm? Data Abort? Host? Realm? Abort?
Protected, Always (SEA) Permitted, under No Always (SEA) Never
RIPAS=EMPTY control of Host
Protected, Never Permitted, under No Never Permitted, under
RIPAS=RAM control of Host control of Host
Unprotected Permitted Permitted, under Yes Always (SEA) Never

(SEA), under control of Host

control of Host
Outside Realm Always Never No Always Never

IPA space

(Address Size
Fault)

(Address Size
Fault)

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

60

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3 Host view of memory management
This section describes memory management from the Host’s point of view.

A5.3.1 Host IPA state
Dyz1z. A Realm IPA has an associated Host IPA state (HIPAS).

The HIPAS values for a Protected IPA are shown in the following table.

HIPAS Description

UNASSIGNED Address is not associated with any Granule.

ASSIGNED Address is associated with a DATA Granule.

DESTROYED Address is not associated with-any Granule. This address cannot be used

for the rest of the lifetime of the Realm.

The HIPAS values for an Unprotected IPA are shown in the following table.

HIPAS Description
UNASSIGNED Address is not associated with any Granule.
VALID_NS Host-owned memory is mapped at this address.

A5.3.2 Host control of RIPAS and HIPAS

I rrsk. HIPAS values are stored in a Realm Translation Table (RTT).

Ioom HIPAS transitions are caused by execution of RMI commands.

Tvzcy RIPAS values are stored in an RTT.

I5sBEN RIPAS transitions for a NEW Realm are caused by execution of RMI_RTT_INIT_RIPAS.

Trrgg RIPAS transitions for an ACTIVE Realm are caused by a RIPAS change process, which consists of RSI commands
executed by the Realm, followed by RMI commands executed by the Host.
Tnoces A mapping at a Protected IPA is valid if the HIPAS is ASSIGNED and the RIPAS is RAM.
T ymns The following table summarises, for each combination of RIPAS and HIPAS for a Protected IPA:
* the translation table entry attributes, and
* the behavior which results from Realm access to that IPA.
Instruction
RIPAS HIPAS TTE.ADDR TTE.NS TTE.VALID Data access fetch
EMPTY UNASSIGNED 0 SEA to Realm SEA to Realm
EMPTY ASSIGNED DATA 0 SEA to Realm SEA to Realm
EMPTY DESTROYED 0 REC exitdue to REC exit due to
Data Abort Instruction
Abort
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 61

A-bet0 Non-confidential

Chapter A5. Realm memory management

A5.3. Host view of memory management

Instruction
RIPAS HIPAS TTE.ADDR TTE.NS TTE.VALID Data access fetch
RAM UNASSIGNED 0 REC exitdue to REC exit due to
Data Abort Instruction
Abort
RAM ASSIGNED DATA 0 1 Data access Instruction fetch
RAM DESTROYED 0 REC exit due to REC exit due to
Data Abort Instruction
Abort
Tepes The following diagram summarises RIPAS and HIPAS transitions for a Protected IPA.

RMI_RTT_SET_RIPAS(EMPTY)

ASSIGNED

d ASSIGNED

(RAM <
__

A

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

RMI_RTT_SET_RIPAS(RAM) L

EMPTY

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

A

RMI_DATA_DESTROY

A 4

RMI_RTT_INIT_RIPAS
RMI_RTT_SET_RIPAS(RAM)

— RMI_RTT_SET_RIPAS(EMPTY) -
UNASSIGNED UNASSIGNED
RAM P EMPTY

RMI_DATA_DESTROY

Tynyey

See also:

e A5.4 RIPAS change

The following diagram summarises HIPAS transitions for an Unprotected IPA.

RMI_RTT_MAP_UNPROTECTED

» DESTROYED

A

UNASSIGNED

e AS5.5 Realm Translation Table

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.16 RMI_RTT_DESTROY command

e B3.3.18 RMI_RTT_INIT_RIPAS command

e B3.3.21 RMI RTT _SET RIPAS command

e B4.3.5 RSI_IPA_STATE_SET command

DENO0137
A-bet0

Non-confidential

RMI_RTT_UNMAP_UNPROTECTED

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

"| vaLD Ns

62

Chapter A5. Realm memory management
A5.4. RIPAS change

A5.4 RIPAS change

DENO0137
A-bet0

A RIPAS change is a process via which the RIPAS of a region of Protected IPA space is changed, for a Realm
whose state is ACTIVE.

A RIPAS change consists of actions taken by first the Realm, and then the Host:

* The Realm issues a RIPAS change request by executing RSI_IPA_STATE_SET.

— The input values to this command include the requested IPA range, and the requested RIPAS value.

— The RMM records these values in the REC, and then performs a REC exit due to RIPAS change pending.
* In response, the Host executes zero or more RMI_RTT_SET_RIPAS commands.

The return value from RSI_IPA_STATE_SET indicates the top of the IPA range which has been modified by the
command.

The RIPAS change process, together with the Realm Initial Measurement ensures that a Realm can always reliably
determine the RIPAS of any Protected IPA.

A RIPAS change is applied by one or more calls to the RMI_RTT_SET_RIPAS command.
Successful execution of RMI_RTT_SET_RIPAS targets an RTTE at address rec.ripas_addr.

Successful execution of RMI_RTT_SET_RIPAS increments rec. ripas_addr by the size of the address space
described by the target RTTE.

On REC entry following a REC exit due to RIPAS change, GPR values are updated to indicate for how much of
the target IPA range the RIPAS change has been applied.

To complete a RIPAS change for a given target IPA range, a Realm should execute RSI_IPA_STATE_SET in a
loop, until the value of X1 reaches the top of the target IPA range.

See also:

e A2.3.2 REC attributes

* A4.2 REC entry

* A4.3.8 REC exit due to RIPAS change pending
e A5.2.2 Realm IPA state

e A7.1.1 Realm Initial Measurement

e B3.3.14 RMI REC_ENTER command

e B3.3.21 RMI_RTT_SET _RIPAS command

e B4.3.5 RSI_IPA_STATE_SET command

* DI1.5.3‘RIPAS change flow

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 63
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

A5.5 Realm Translation Table

This section introduces the stage 2 translation table used by a Realm.

A5.5.1 RTT overview

—): RNCX

l\ IBCVZ

A Realm Translation Table (RTT) is an abstraction over an Armv8§-A stage 2 translation table used by a Realm.

The attributes and format of an Armv8-A stage 2 translation table are defined by the Armv8-A Virtual Memory
System Architecture (VMSA) Arm Architecture Reference Manual for Armv8-A architecture profile [3].

The translation granule size of an RTT is 4KB.

The RMM architecture can only be deployed on a hardware platform which implements a translation granule size
of 4KB.

The contents of an RTT are not directly accessible to the Host.

The contents of an RTT are manipulated using RMM commands. These commands allow the Host to manipulate
the contents of the RTT used by a Realm, subject to constraints imposed by the RMM.

An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor.
An RTTE contains an output address which can point to one of the following:

* Another RTT
* A DATA Granule which is owned by the Realm
* Non-secure memory which is accessible to both the Realm and the Host

A5.5.2 RTT structure and configuration

D"'HT WE

An RTT tree is a hierarchical data structure composed of RTTs, connected via Table Descriptors.
An RTT contains an array of RTTEs.
An RTT level is the depth of an RTT within an RTT tree.

An RTT does not have an intrinsic “level” attribute. The level of an RTT is determined by its position within an
RTT tree.

The RTT level of the root of an RTT tree is called the starting level.
The maximum depth of an RTT tree depends on all of the following:

¢ whether LPA?2 is selected when the Realm is created
e the rtt_level_start attribute of the Realm
* the ipa_width attribute of the Realm.

See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.5.3 RTT starting level

DENO0137
A-bet0

The RTT starting level is set when a Realm is created.

The number of starting level RTTs is architecturally defined as a function of the Realm IPA width and the RTT
starting level. See Arm Architecture Reference Manual for Armv8-A architecture profile [3] for further details.

The address of the first starting level RTT is stored in the RTT base attribute of the owning Realm.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

The RTT base attribute is set when a Realm is created.

See also:

e A2.1.3 Realm attributes

A5.5.4 RTT entry

Is5caz An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor. The attributes and
format of an Armv8-A stage 2 translation table descriptor are defined by the Armv8-A Virtual Memory System
Architecture (VMSA) Arm Architecture Reference Manual for Armv8-A architecture profile [3].
Danroo An RTTE has a state.
The values of RTTE state are:
* TABLE: the output address of the RTTE points to another RTT
¢ A HIPAS value
Towose The state of an RTTE in a RTT which is not level 2 or level 3 is UNASSIGNED, DESTROYED or TABLE.
DysasT The output address of an RTTE whose state is TABLE and which is in a level n RTT is the physical address of a
level n+1 RTT.
Ipsztm An RTT whose level n is not the starting RTT level is pointed-to by exactly one TABLE RTTE in a level n-/ RTT.
Ioxonz The following diagram shows an example RTT tree, annotated with RTTE states.
RD
L Level 0 RTT d Block
" UNASSIGNED
TABLE ﬁ R Level 1 RTT
UNASSIGNED | unassioneD R Level 2 RTT
UNASSIGNED UNASSIGNED [unassieneD Level 3 RTT
UNASSIGNED ASSIGNED ASSIGNED
/\/\ UNASSIGNED UNASSIGNED UNASSIGNED
"\/\ TABLE J UNASSIGNED Page
UNASSIGNED /\/\ UNASSIGNED
UNASSIGNED ’\/\ /\/\
TABLE ’_\/\ /\/\
UNASSIGNED TABLE ’_\/\
UNASSIGNED UNASSIGNED
UNASSIGNED
Trcuos The function AddrIsRttLevelAligned () is used to evaluate whether an address is aligned to the address range

described by an RTTE at a specified RTT level.
See also:
* AS5.3.1 Host IPA state

* B1.4 Command condition expressions

A5.5.5 RTT reading

TKJwKQ Attributes of an RTTE, including the RTTE state, can be read by calling the RMI_RTT_READ_ENTRY command.
The set of RTTE attributes which are returned depends on the state of the RTTE.

See also:

e B3.3.20 RMI_RTT_READ_ENTRY command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 65
A-bet0 Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

A5.5.6 RTT folding

Drumc

An RTT is homogeneous if its entries satisfy one of the conditions in the following table. If an RTT is homogeneous,
the following table specifies the state to which the parent RTTE is set.

Parent RTTE

Conditions on child RTT contents state
All of the following are true: UNASSIGNED

* State of all entries is UNASSIGNED

» RIPAS of all entries is the same
State of all entries is DESTROYED DESTROYED
All of the following are true: ASSIGNED

e Levelis 3

* State of all entries is ASSIGNED

* Qutput address of first entry is aligned to size of level 2 entry

* Qutput addresses of all entries are contiguous

¢ RIPAS of all entries is the same
All of the following are true: VALID_NS

e Levelis 3

¢ State of all entries is VALID_NS

* Output address of first entry is aligned to size of level 2 entry
* Qutput addresses of all entries are contiguous

* Attributes of all entries are identical

The function Rt t IsHomogeneous () is used to evaluate whether an RTT is homogeneous.

RTT folding is the operation of destroying a homogeneous child RTT, and updating the state of the parent RTTE.
On RTT folding, the state of the parent RTTE is determined from the contents of the child RTTEs.

The function Rt tFold () is used to evaluate the parent RTTE state which results from an RTT folding operation.

On RTT folding, if the state of the parent RTTE is VALID_NS then the attributes of the parent RTTE are copied
from the child RTTEs.

See also:

e B2.55 RttFold function
e B2.56 RttlsHomogeneous function
e B3.3.17 RMI_RTT_FOLD command

A5.5.7 RTT unfolding

DENO0137
A-bet0

RTT unfolding is the operation of creating a child RTT, and populating it based on the contents of the parent RTTE.
On RTT unfolding, the state of all RTTEs in the child RTT are set to the state of the parent RTTE.

On RTT unfolding, if the state of the parent RTTE is ASSIGNED or VALID_NS, then the output addresses of
RTTE:s in the child RTT are set to a contiguous range which starts from the address of the parent RTTE.

See also:

e B3.3.15 RMI_RTT_CREATE command

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 66
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

A5.5.8 RTT liveness

DHP‘.J R

Dypsru

I YPLKM

RTT liveness is a property which means that there exists another RMM data structure which is referenced by the
RTT.

An RTT is live if the state of any entry in the RTT is either ASSIGNED or TABLE.
The function RttIsLive () is used to evaluate whether an RTT is live.
See also:

e AS5.5.9 RTT destruction
e B2.57 RttIsLive function

A5.5.9 RTT destruction

RTT destruction is the operation of destroying a child RTT, and updating the state of the parent RTTE to
DESTROYED.

An RTT cannot be destroyed if it is live.
See also:

e A5.5.8 RTT liveness
e B3.3.16 RMI_RTT_DESTROY command

A5.5.10 RTT walk

I BWSX

Trpwy

TEE;?‘;

DENO0137
A-bet0

An IPA is translated to a PA by walking an RTT tree, starting at the RTT base.

The behaviour of an RTT walk is defined by the Armv8-A Virtual Memory System Architecture (VMSA) Arm
Architecture Reference Manual for Armv8-A architecture profile [3].

The inputs to an RTT walk are:

* a Realm Descriptor, which contains the address of the initial RTT
* atarget IPA
e atarget RTT level.

The RTT walk terminates when either:

* it reaches the target RTT level, or
« it reaches an RTTE whose state is not TABLE.

The result of an RTT walk performed by the RMM is a data structure of type RmmRttWalkResult.

The attributes of an RmmRt tWalkResult are summarized in the following table.

Name Type Description

level Int8 RTT level reached by the walk
rtt_addr Address Address of RTT reached by the walk
entry RmmRttEntry RTTE reached by the walk

The function RmmRttWalkResult RttWalk (rd, addr, level) isused to represent an RTT walk.
The input address to an RTT walk is always less than 2~w, where w is the IPA width of the target Realm.
See also:

e A2.1.3 Realm attributes

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 67
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

* B1.4 Command condition expressions

» B2.66 RttWalk function

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command

e B3.3.3 RMI_DATA_DESTROY command

e B3.3.15 RMI_RTT_CREATE command

e B3.3.16 RMI_RTT_DESTROY command

e B3.3.19 RMI_RTT_MAP_UNPROTECTED command

e B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command
¢ C1.23 RmmRttWalkResult type

A5.5.11 RTT entry attributes

RicreT The cacheability attributes of an RTT entry whose state is ASSIGNED are independent of any stage 1 descriptors
and of the state of the stage 1| MMU.

Unpven The RMM uses FEAT_S2FWB to ensure that the cacheability attributes of an RTT entry whose state is ASSIGNED
are independent of stage 1 translation.

Ryzxma The attributes of an RTT entry whose state is ASSIGNED include the following:

* Normal memory
¢ Inner Write-Back Cacheable
¢ Inner Shareable

DrJrur The following attributes of an RTT entry whose state is VALID_NS are Host-controlled RTT attributes:
¢ ADDR
®* MemAttr[2:0]
* S2AP
* SH
XOHLKB In an RTT entry whose state is VALID_NS, MemAttr[3] is RESO because the RMM uses FEAT_S2FWB.
RurzTL Hardware access flag and dirty bit management is disabled for the stage 2 translation used by a Realm.
Torcic Hardware access flag and dirty bit management may be enabled by software executing within the Realm, for its

own stage 1 translation.
See also:

e AS5.2.1'Realm IPA space

e B2.51 RttDescriptorlsValidForUnprotected function

e B3.3.19 RMI_RTT_MAP_UNPROTECTED command
e B3.3.20 RMI_RTT_READ_ENTRY command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 68
A-bet0 Non-confidential

Chapter A6
Realm interrupts and timers

This specification requires that a virtual Generic Interrupt Controller (vGIC) is presented to a Realm. This vGIC
should be architecturally compliant with respect to GICv3 with no legacy operation.

The Host is able to inject virtual interrupts using the GIC virtual CPU interface.

The vGIC presented to a Realmis expected to be implemented via a combination of Host emulation and RMM
mediation, as follows:

Management of Non-secure physical interrupts is performed by the Host, via the GIC Interrupt Routing
Infrastructure (IRI).

The Host is responsible for emulating a GICv3 distributor MMIO interface.
The Host is responsible for emulating a GICv3 redistributor MMIO interface for each REC.

The GIC MMIO interfaces emulated by the Host must be presented to the Realm via its Unprotected IPA
space.

The Host may optionally provide a virtual Interrupt Translation Service (ITS). The Realm must allocate ITS
tables within its Unprotected IPA space.

The RMM allows the Host to control some of the GIC virtual CPU interface state which is observed by the
Realm. This state is designed to be the minimum required to allow the Host to correctly manage interrupts
for the Realm, with integrity guaranteed by the RMM for the remainder of the GIC CPU interface state.

On REC exit, the RMM exposes some of the GIC virtual CPU interface state to the Host. This state is
designed to be the minimum required to allow the Host to correctly manage interrupts for the Realm, with
confidentiality guaranteed by the RMM for the remainder of the GIC virtual CPU interface state.

On every REC exit, the EL1 timer state is exposed to the Host. The RMM guarantees that a Realm exit occurs
whenever a Realm EL1 timer asserts or de-asserts its output.

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 69
Non-confidential

Chapter A6. Realm interrupts and timers

DENO0137
A-bet0

See also:

* Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
e AS5.2.1 Realm IPA space
e DI1.6 Realm interrupts and timers flows

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

A6.1 Realm interrupts

Xpmspz

Tsmuxs

DENO0137
A-bet0

This section describes the programming model for a REC’s GIC CPU interface.
The value of entry.gicv3_1lrs[n] is valid if all of the following are true:

* The value is an architecturally valid encoding of ICH_LR<n>_EL2 according to Arm Generic Interrupt
Controller (GIC) Architecture Specification version 3 and version 4 [5].
o HW == '0'.

The GICv3 architecture states that, if HW == '1' then the virtual interrupt must be linked to a physical interrupt
whose state is Active, otherwise behavior is undefined. The RMM is unable to validate that invariant, so it imposes
the constraint that Hw == '0"'.

The value of entry.gicv3_hcr is valid if the value is an architecturally valid encoding of ICH_HCR_EL2
according to Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 .and version 4 [5].

REC entry fails if the value of any entry.gicv3_x attribute is invalid.
On REC entry, ICH_LR<n>_EL2 is set to entry.gicv3_lrs[n], for all values of n supported by the PE.
On REC entry, the following fields in ICH_HCR_EL? are set to the corresponding values in entry.gicv3_hcr:

* UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
® VGrplEIE
® VGrplDIE
* TDIR

On REC entry, fields in entry.gicv3_her are RESO except for the following:

e UIE

* LRENPIE
* NPIE

* VGrpOEIE
® VGrpODIE
* VGrplEIE
® VGrplDIE
* TDIR

The RMM provides access to the GIC virtual CPU interface to the Realm and therefore controls the enable bit
and most trap bits in ICH_HCR_EL2. The maintenance interrupt control bits are controlled by the Host, because
the maintenance interrupts are provided as hints to the hypervisor to allocate List Registers optimally and to
correctly emulate GICv3 behavior. The TDIR bit is also controlled by the Host because it is used when supporting
EOImode == '1' in the Realm. This mode is used to allow deactivation of virtual interrupts across RECs. This
deactivation must be handled by the Host because the RMM can only operate on a single REC during execution of
RMI_REC_ENTER.

A REC exit due to IRQ is not generated for an interrupt which is masked by the value of 1cC_PMR_EL1 at the
time of REC entry.

The RMM should preserve the value of 1cc_PMR_EL1 during REC entry.
On REC exit, exit .gicv3_vmcr contains the value of ICH_VMCR_EL?2 at the time of the Realm exit.

On REC exit, exit .gicv3_misr contains the value of TCH_MISR_EL?2 at the time of the Realm exit.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 71
Non-confidential

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

XpBGXE

o
w
[vs}

DENO0137
A-bet0

The Host could in principle infer the value of ICH_MISR_EL2 at the time of the Realm exit from the combination
of exit.gicv3_lrs[n] and exit.gicv3_hcr. However, this would be cumbersome, error-prone, and diverge
from the design of existing hypervisor software.

On REC exit, exit .gicv3_1lrs[n] contains the value of ICH_LR<n>_EL2 at the time of the Realm exit, for all
values of n supported by the PE.

On REC exit, the following fields in exit.gicv3_hcr contains the value of the corresponding field in
ICH_HCR_EL?2 at the time of the Realm exit:

® EOIcount
* UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
® VGrplEIE
* VGrplDIE
* TDIR

All other fields contain zero.
On REC exit, the values of the following registers may have changed:

e ICH_APOR<n>_EL2
e ICH AP1R<n>_EL2
® ICH_LR<n>_EL2

e TCH_VMCR_EL2

® ICH_HCR_EL2

It is the responsibility of the caller to'save and restore GIC virtualization system control registers if their value
needs to be preserved following execution of RMI_REC_ENTER.

On REC entry, the values of the GIC virtualization control system registers are overwritten. The Non-secure
hypervisor runs at EL2 and therefore does not make direct use of the virtual GIC CPU interface for its own
execution. This means that saving / restoring the caller’s GIC virtualization control system registers would typically
not be required and would add additional runtime overhead for each execution of RMI_REC_ENTER.

On REC exit, ICH_HCR_EL2.En == '0".

Disabling the virtual GIC CPU interface ensures that the caller does not receive unexpected GIC maintenance
interrupts. A stronger constraint, for example stating that all GIC virtualization control system registers are zero
on REC exit, was considered. However, this was rejected on the basis that it may preclude future optimisations,
such as returning early from execution of RMI_REC_ENTER, without needing to first write zero to all GIC
virtualization control system registers, if an interrupt is pending.

See also:

* Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
* A4.2 REC entry

* A4.3 REC exit

e B3.3.14 RMI REC _ENTER command

e B3.4.12 RmiRecEntry type

* B3.4.14 RmiRecEXxit type

e DI1.6.1 Interrupt flow

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 72
Non-confidential

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

A6.2 Realm timers

(97]

DENO0137
A-bet0

This section describes the programming model for Realm EL1 timers.
Architectural timers are available to a Realm and behave according to their architectural specification.
During Realm execution, if a Realm EL1 timer asserts its output, a Realm exit occurs.

If the Host has programmed an EL1 timer to assert its output during Realm execution, that timer output is not
guaranteed to assert.

If the Host has programmed an EL2 timer to assert its output during Realm execution, that timer output is
guaranteed to assert.

Both the virtual and physical counter values are guaranteed to be monotonically increasing when read by a Realm,
in accordance with the architectural counter behavior.

When read by a Realm, either the virtual or physical counter returns the same value at a given point in time on a
given PE.

In order to ensure that the Realm has a consistent view of time, the virtual timer offset must be fixed for the lifetime
of the Realm. The absolute value of the virtual timer offset is not important, so the value zero has been chosen for
simplicity of both the specification and the implementation.

Provisional

The rule that virtual and physical counter values are identical may need to be amended if a future version
of the specification supports migration and / or virtualization of time based on the virtual counter differing
from the physical counter.

On REC exit, Realm EL1 timer state is exposed via the RecExit object:

¢ exit.cntv_ctl contains the value of CNTV_CTI_ELO at the time of the Realm exit.

* exit.cntv_cval contains the value of CNTV_CVAL_ELO at the time of the Realm exit, expressed as if the
virtual counter offset was zero.

* exit.cntp_ctl contains the value of CNTP_CTL_ELO at the time of the Realm exit.

* exit.cntp_cval contains the value of CNTP_CVAL_ELO at the time of the Realm exit, expressed as if the
physical counter offset was zero.

The Host should check the Realm EL1 timer state on every return from RMI_REC_ENTER, and if a timer condition
is met, the Host should inject a virtual interrupt. This is true regardless of the value of exit .exit_reason: even
if the return occurred for a reason unrelated to timer state (for example, a REC exit due to Data Abort), the timer
condition should be checked.

This is to ensure that the Realm does not miss a timer interrupt if, for example, there is no other event causing a
return from RMI_REC_ENTER. In other words, the RMM only guarantees that the Host can observe a change in
timer output state during return from RMI_REC_ENTER, but does not guarantee a REC exit specifically indicating
an asserted timer output change.

See also:

* A4.3 REC exit
* B3.4.14 RmiRecEXxit type
e D1.6.2 Timer interrupt delivery flow

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 73
Non-confidential

Chapter A7
Realm measurement and attestation

This section describes how the initial state of a Realm is measured and can be attested.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

74

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1

RKWB

Realm measurements

This section describes how Realm measurement values are calculated.

A Realm measurement value is a rolling hash.

A Realm Hash Algorithm (RHA) is an algorithm which is used to extend a Realm measurement value.
The RHA used by a Realm is selected via the hash_algo attribute.

See also:

e A2.1.3 Realm attributes

* A3.1.1 Realm hash algorithm

A7.2.3.1.3 Realm Initial Measurement claim

e A7.2.3.1.4 Realm Extensible Measurements claim

A7.1.1 Realm Initial Measurement

This section describes how the Realm Initial Measurement (RIM) is calculated.
The initial RIM value for a Realm is calculated from a subset of the Realm parameters.

A RIM is extended by applying the RHA to the inputs of RMM operations which are executed during Realm
construction.

The following operations cause a RIM to be extended:

¢ Creation of a DATA Granule during Realm construction
* Creation of a REC
* Changes to RIPAS of Protected IPA during Realm construction

On execution of an operation which requires extension of a RIM, the RMM first constructs a measurement
descriptor structure. The measurement descriptor contents include the current RIM value. The new RIM value is
computed by applying the RHA to the measurement descriptor.

desc = MeasurementDescriptor(M;_1,...)
M; = RHA(desc)

A RIM is immutable while the state of the Realm is ACTIVE. This implies that a RIM reflects the configuration
and contents of the Realm, at the moment when it transitioned from the NEW to the ACTIVE state.

A RIM depends upon the order of the RMM operations which are executed during Realm construction.

The order in which RMM operations are executed during Realm construction must be agreed between the Realm
owner (or a delegate of the Realm owner which will receive and validate the RIM) and the Host which executes the
RMM commands. This ensures that a correctly-constructed Realm will have the expected measurement.

The value of a RIM can be read using the RSI_MEASUREMENT_READ command.
See also:

* B3.3.1.4 RMI_DATA_CREATE extension of RIM

¢ B3.3.9.4 RMI_REALM_CREATE initialization of RIM
e B3.3.12.4 RMI_REC_CREATE extension of RIM

* B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

e B4.3.7 RSI_ MEASUREMENT _READ command

A7.1.2 Realm Extensible Measurement

DENO0137

A-bet0

This section describes the behavior of a Realm Extensible Measurement (REM).

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 75
Non-confidential

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

Tospum A REM is extended using the RSI_MEASUREMENT_EXTEND command.
TcermBT The value of a REM can be read using the RSI_ MEASUREMENT_READ command.
Tupore The initial value of a REM is zero.

See also:

e B4.3.6 RSI_ MEASUREMENT _EXTEND command
e B4.3.7 RSI_ MEASUREMENT_READ command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

76

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2 Realm attestation

This section describes the primitives which are used to support remote Realm attestation.

A7.2.1 Attestation token

DyRrrLN A CCA attestation token is a collection of claims about the state of a Realm and of the CCA platform on which the

Realm is running.
IsxmsD A CCA attestation token consists of two parts:
* Realm token
Contains attributes of the Realm, including:

— Realm Initial Measurement
— Realm Extensible Measurements

* CCA platform token
Contains attributes of the CCA platform on which the Realm is running; including:

— CCA platform identity
— CCA platform lifecycle state
— CCA platform software component measurements

See also:

e A7.1.1 Realm Initial Measurement
e A7.1.2 Realm Extensible Measurement

A7.2.2 Attestation token generation

TxrMRH The process for a Realm to obtain an attestation token is:

e Call RSI_ATTESTATION_TOKEN_INIT once
e Call RSI_ATTESTATION_TOKEN_CONTINUE in a loop, until the result is not RSI_INCOMPLETE

SMLMF The following pseudocode illustrates the process of a Realm obtaining an attestation token.

int get_attestation_token(...)

{

int ret;

ret = RSI_ATTESTATION_TOKEN_INIT(...);
if (ret) {
return ret;

}
do {

ret = RSI_ATTESTATION_TOKEN_CONTINUE (...);
} while (ret == RSI_INCOMPLETE)

return ret;

T wocs Up to one attestation token generation operation may be ongoing on a REC.

Trmove On execution of RSI_ATTESTATION_TOKEN_INIT, if an attestation token generation operation is ongoing on

the calling REC, it is terminated.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

The size of an attestation token is no larger than 4KB.

The challenge value provided to RSI_ATTESTATION_TOKEN_INIT is included in the generated attestation token.
This allows the relying party to establish freshness of the attestation token.

If the size of the challenge provided by the relying party is less than 64 bytes, it should be zero-padded prior to
calling RSI_ATTESTATION_TOKEN_INIT. Arm recommends that the challenge should contain at least 32 bytes
of unique data.

The token address passed to RSI_ATTESTATION_TOKEN_CONTINUE must match the token address passed to
the preceding call to RSI_ATTESTATION_TOKEN_INIT.

Generation of an attestation token can be a long-running operation, during which interrupts may need to be handled.

If a physical interrupt becomes pending during execution of RSI_ ATTESTATION_TOKEN_CONTINUE, a REC
exit due to IRQ can occur.

On the next entry to the REC:

* If a virtual interrupt is pending on that REC, it is taken to the REC’s exception handler
* RSI_ATTESTATION_TOKEN_CONTINUE returns RSI_INCOMPLETE
* The REC should call RSI_ATTESTATION_TOKEN_CONTINUE again

See also:

e A4.3.5 REC exit due to IRQ

e AG6.1 Realm interrupts

* A7.23.1.1 Realm challenge claim

e B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

e B4.3.2 RSI_ATTESTATION_TOKEN_INIT command

e DI1.7.1 Attestation token generation flow

* DI1.7.2 Handling interrupts during attestation token generation flow

A7.2.3 Attestation token format

DENO0137
A-bet0

The CCA attestation token is a profiled IETF Entity Attestation Token (EAT).

The CCA attestation token is a Concise Binary Object Representation (CBOR) map, in which the map values are
the Realm token and the CCA platform token.

The Realm token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to the
CBOR Object Signing and Encryption (COSE) standard.

The Realm token is signed by the Realm Attestation Key (RAK).

The CCA platform token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to
the COSE standard.

The CCA platform token is signed by the Initial Attestation Key (IAK).

The CCA platform token contains a hash of RAK_pub. This establishes a cryptographic binding between the
Realm token and the CCA platform token.

The CCA attestation token is defined as follows:

cca-token = #6.399 (cca-token—-collection) ; EAT token-collection extension

cca-platform-token = COSE_Signl_Tagged
cca-realm-delegated-token = COSE_Signl_Tagged

cca-token-collection = {
44234 => cca-platform-token ; 44234 = OxACCA
44241 => cca-realm-delegated-token

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 78
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
A-bet0

; EAT standard definitions
COSE_Signl_Tagged = #6.18 (COSE_Signl)

’

; pull in the full set of definitions
COSE_Signl = "COSE-Signl placeholder"

Deliberately shortcut these definitions until EAT is finalised and able to

The composition of the CCA attestation token is summarised in the following figure.

Client challenge

See also:

e Arm CCA Security model [4]

Concise Binary Object Representation (CBOR) [6]
CBOR Object Signing and Encryption (COSE) [7]
Entity Attestation Token (EAT) [8]

A7.2.3.1 Realm claims

A7.2.3.2 CCA platform claims

CCA attestation token

Realm token

COSE_Sign1 envelope

Realm token claim map

:I challenge ‘

I

I realm_public_key = RAK_pub l

| Signature(RAK)

CCA platform token

COSE_Sign1 envelope

Platform token claim map

| challenge = Hash(RAK_pub) |L

| Signature(IAK)

Figure A7.1: Attestation token format

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

79

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
A-bet0

A7.2.3.1 Realm claims

This section defines the format of the Realm token claim map. The format is described using a combination of
Concise Data Definition Language (CDDL) and text description.

The Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

}

See also:

e Concise Data Definition Language (CDDL) [9]

e A7.2.3.1.1 Realm challenge claim

e A7.2.3.1.2 Realm Personalization Value claim

e A7.2.3.1.3 Realm Initial Measurement claim

e A7.2.3.1.4 Realm Extensible Measurements claim

e A7.2.3.1.5 Realm hash algorithm ID claim

e A7.2.3.1.6 Realm public key claim

e A7.2.3.1.7 Realm public key hash algorithm identifier claim
e A7.2.3.1.8 Collated CDDL for Realm claims

e A7.2.3.1.9 Example Realm claims

A7.2.3.1.1 Realm challenge claim

The Realm challenge claim is used to carry the challenge provided by the caller to demonstrate freshness of the
generated token.

The Realm challenge claim is identified using the EAT nonce label (10).
The length of the Realm challenge is 64 bytes.
The Realm challenge claim must be present in a Realm token.

The format of the Realm challenge claim is defined as follows:

cca-realm-challenge—-label = 10
cca-realm-challenge-type = bytes .size 64

cca-realm-challenge = (
cca-realm-challenge—label => cca-realm-challenge-type

)

See also:

e A7.2.2 Attestation token generation
e B4.3.2 RSI_ATTESTATION_TOKEN_INIT command

A7.2.3.1.2 Realm Personalization Value claim
The Realm Personalization Value claim contains the RPV which was provided at Realm creation.

The Realm Personalization Value claim must be present in a Realm token.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

I QKNDV

Tken
Ipsnre

I ZKVMN

DENO0137
A-bet0

The format of the Realm Personalization Value claim is defined as follows:

cca-realm-personalization-value-label = 44235
cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type

)

See also:
e A2.1.3 Realm attributes
A7.2.3.1.3 Realm Initial Measurement claim
The Realm Initial Measurement claim contains the values of the Realm Initial Measurement.
The Realm Initial Measurement claim must be present in a Realm token.

The format of the Realm Initial Measurement claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-initial-measurement—-label = 44238
cca-realm-initial-measurement = (

cca-realm-initial-measurement-label => cca-realm-measurement-type

)

See also:

e A7.1 Realm measurements
e A7.2.3.1.4 Realm Extensible Measurements claim

A7.2.3.1.4 Realm Extensible Measurements claim
The Realm Extensible Measurements claim contains the values of the Realm Extensible Measurements.
The Realm Extensible Measurements claim must be present in a Realm token.

The format of the Realm measurements claim is defined as follows:

cca-realm—measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-extensible-measurements—-label = 44239
cca-realm-extensible—-measurements = (

cca-realm-extensible-measurements—-label => [4%x4 cca-realm-measurement-type]

)

See also:

e A7.1 Realm measurements
e A7.2.3.1.3 Realm Initial Measurement claim

A7.2.3.1.5 Realm hash algorithm ID claim

The Realm hash algorithm ID claim identifies the algorithm used to calculate all hash values which are present in
the Realm token.

Arm recommends that the value of the Realm hash algorithm ID claim is an IANA Hash Function name JANA
Hash Function Textual Names [10].

The Realm hash algorithm ID claim must be present in a Realm token.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 81
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

TewpLy The format of the Realm hash algorithm ID claim is defined as follows:

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

)

A7.2.3.1.6 Realm public key claim

Tzcrmo The Realm public key claim identifies the key which is used to sign the Realm token.

T wsnHC The value of the Realm public key claim is RAK_pub, encoded according to SEC I: Elliptic Curve Cryptography,
version 2.0 [11].

T1snpo The Realm public key claim must be present in a Realm token.

T unnDs The format of the Realm public key claim is defined as follows:

cca-realm-public-key-label = 44237

; TODO: support public key sizes other than ECC-P384
cca-realm-public-key-type = bytes .size 97

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

)

See also:

e SEC I: Elliptic Curve Cryptography, version 2.0 [11]
e A7.2.3.1.7 Realm public key hash algorithm identifier claim
e A7.2.3.2.2 CCA platform challenge claim

A7.2.3.1.7 Realm public key hash algorithm identifier claim

TywsLe The Realm public key hash algorithm identifier claim identifies the algorithm used to calculate HRAK_pub).
T TNREN The Realm public key hash algorithm identifier claim must be present in a Realm token.
Tunpvx The format of the Realm public key hash algorithm identifier claim is defined as follows:

cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text
)

See also:

e SEC I: Elliptic Curve Cryptography, version 2.0 [11]
e A7.2.3.1.6 Realm public key claim
e A7.2.3.2.2 CCA platform challenge claim

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 82
A-bet0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1.8 Collated CDDL for Realm claims

Dpeyxz The format of the Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

cca-realm-challenge-label = 10
cca-realm-challenge-type = bytes .size 64
cca-realm-challenge = (

cca-realm-challenge-label => cca-realm-challenge-type
cca-realm-personalization-value-label = 44235

cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (

cca-realm-personalization-value-label => cca-realm-personalization-value-type

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes
cca-realm-initial-measurement-label = 44238

cca-realm-initial-measurement = (

cca-realm-initial-measurement-label => cca-realm-measurement-type

cca-realm-extensible-measurements—-label = 44239

cca-realm—-extensible-measurements = (

cca-realm-extensible-measurements—label => [4%x4 cca-realm-measurement-type]

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

cca-realm-public-key-label = 44237

; TODO: support public key sizes other than ECC-P384
cca-realm-public-key-type = bytes .size 97

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

cca-realm-public-key-hash-algo-id-label = 44240

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

83

Chapter A7. Realm measurement and attestation

A7.2. Realm attestation

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

)

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Tcprrr

DENO0137
A-bet0

A7.2.3.1.9 Example Realm claims

An example Realm claim map is shown below in COSE-DIAG format:

/ Realm claim map /
{
/ cca-realm-challenge /
10: h'ABABABABABABABABARABABABABABABABABARABARABABABABABABABABARBRABARAB
ABABABABABABABABABARABARABABABABABABABABABABABRABABRABABABABABABAB',

/ cca-realm-personalization-value /
44235: h'ABABABARABABABABABABABABABABARABABABABABABABABABABABABABRABABABAB
ABABABABABABABABABABABABABABABABABRABABABABARABABABABABABABABABAB',

/ cca-realm-initial-measurement /
44238: h'00",

/ cca-realm—-extensible-measurements /

44239: [
h'00",
h'00",
h'00",
h'00"

]I

/ cca-realm-hash-algo-id /
44236: "sha-256",

/ cca-realm-public-key /

44237: h'0476F988091BES585ED41801AECFAB858548C63057E16B0E676120BBDOD2F9C29
EO056C5D41A0130EB9C21517899DC23146B28E1B062BD3EA4B315FD219F1CBB52
8CB6ET74CA49BE16773734F61A1CA61031B2BBF3D918F2F94FFC4228E50919544
AE',

/ cca-realm-public-key-hash-algo-id /
44240: "sha-256"

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
A-bet0

A7.2.3.2 CCA platform claims

This section defines the format of the CCA platform token claim map. The format is described using a combination
of Concise Data Definition Language (CDDL) and text description.

The Realm token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw—components
? cca-platform-verification-service
cca-platform-hash-algo-id

}

See also:

* Concise Data Definition Language (CDDL) [9]

e A7.2.3.2.1 CCA platform profile claim

e A7.2.3.2.2 CCA platform challenge claim

e A7.2.3.2.3 CCA platform Implementation ID claim

e A7.2.3.2.4 CCA platform Instance ID claim

* A7.23.2.5 CCA platform config claim

* A7.2.3.2.6 CCA platform lifecycle claim

e A7.2.3.2.7 CCA platform software components claim
e A7.2.3.2.8 CCA platform verification service claim

* A7.2.3.2.9 CCA platform hash algorithm ID claim

* A7.2.3.2.10 Collated CDDL for CCA platform claims
e A7.2.3.2.11 Example CCA platform claims

A7.2.3.2.1 CCA platform profile claim

The CCA platform profile claim identifies the EAT profile to which the CCA platform token conforms. Note that
because the platform token is expected to be issued when bound to a Realm token, the profile document should
include a description of the Realm claims.

The CCA platform profile claim is identified using the EAT profile label (265).
The CCA platform profile claim must be present in a CCA platform token.
The format of the CCA platform profile claim is defined as follows:

cca-platform-profile-label = 265 ; EAT profile
cca-profile-type = "http://arm.com/CCA-SSD/1.0.0"
cca-platform-profile = (

cca-platform-profile-label => cca-profile-type

)

A7.2.3.2.2 CCA platform challenge claim

The CCA platform challenge claim contains a hash of the public key used to sign the Realm token.
The CCA platform challenge claim is identified using the EAT nonce label (10).

The length of the CCA platform challenge is either 32, 48 or 64 bytes.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 86
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

I LRWHR

DENO0137
A-bet0

The CCA platform challenge claim must be present in a CCA platform token.

The format of the CCA platform challenge claim is defined as follows:

cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10
cca-platform-challenge = (

cca-platform-challenge—-label => cca—-hash-type

)

See also:
e A7.2.3.1.6 Realm public key claim
A7.2.3.2.3 CCA platform Implementation ID claim
The CCA platform Implementation ID claim uniquely identifies the implementation of the CCA platform.

The value of the CCA platform Implementation ID claim can be used by a verification service to locate the details
of the CCA platform implementation from an endorser or manufacturer. Such details are used by a verification
service to determine the security properties or certification status of the CCA platform implementation.

The semantics of the CCA platform Implementation ID value are defined by the manufacturer or a particular
certification scheme. For example, the ID could take the form of a product serial number, database ID, or other
appropriate identifier.

The CCA platform Implementation ID claim does not identify a particular instance of the CCA implementation.
The CCA platform Implementation ID claim must be present in a CCA platform token.

The format of the CCA platform Implementation ID claim is defined as follows:

cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation—-id-type = bytes .size 32

cca-platform-implementation—-id = (
cca-platform-implementation-id-label => cca-platform-implementation-id-type

)

See also:

* Arm CCA Security model [4]
e A7.2.3.2.4 CCA platform Instance ID claim

A7.2.3.2.4 CCA platform Instance ID claim

The CCA platform Instance ID claim represents the unique identifier of the Initial Attestation Key (IAK) for the
CCA platform.

The CCA platform Instance ID claim is identified using the EAT ueid label (256).
The first byte of the CCA platform Instance ID value must be 0x01.
The CCA platform Instance ID claim must be present in a CCA platform token.

The format of the CCA platform Instance ID claim is defined as follows:

cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
A-bet0

)

See also:

e Arm CCA Security model [4]
* A7.2.3.2.3 CCA platform Implementation ID claim

A7.2.3.2.5 CCA platform config claim

The CCA platform config claim describes the set of chosen implementation options of the CCA platform. As an
example, these may include a description of the level of physical memory protection which is provided.

The CCA platform config claim is expected to contain the System Properties field which is present in the Root
Non-volatile Storage (RNVS) public parameters.

The CCA platform config claim must be present in a CCA platform token.

cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration
cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)

See also:
e Tormore system architecture spec [12]
A7.2.3.2.6 CCA platform lifecycle claim
The CCA platform lifecycle claim identifies the lifecycle state of the CCA platform.
The value of the CCA platform lifecycle claim is an integer which is divided as follows:

* value[15:8]: CCA platform lifecycle state
¢ value[7:0]: IMPLEMENTATION DEFINED

The CCA platform lifecycle claim must be present in a CCA platform token.

A non debugged CCA platform will be in psa-lifecycle-secured state. Realm Management Security Domain
debug is always recoverable, and would therefore be represented by psa-lifecycle-non-psa-rot-debug state. Root
world debug is recoverable on a HES system and would be represented by psa-lifecycle-recoverable-psa-rot
state. On a non-HES system Root world debug is usually non-recoverable, and would be represented by
psa-lifecycle-lifecycle-decommissioned state.

The format of the CCA platform lifecycle claim is defined as follows:

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =
cca-platform-1lifecycle-unknown-type /
cca-platform-lifecycle-assembly-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot—-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 88
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

T DC

Rxproc

DENO0137
A-bet0

cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type
)

See also:
e Arm CCA Security model [4]
A7.2.3.2.7 CCA platform software components claim

The CCA platform software components claim is a list of software components which can affect the behavior of
the CCA platform. It is expected that an implementation will describe the expected software component values
within the profile.

The CCA platform software components claim must be present in a CCA platform token.

The format of the CCA platform software components claim is defined as follows:

cca-platform-sw—components—-label = 2399 ; PSA software components
cca-platform-sw—component = {
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value
? 4 => text, ; version
5 => cca-hash-type, ; signer id
? 6 => text, ; hash algorithm identifier

cca-platform-sw—components = (
cca-platform-sw-components—-label => [+ cca-platform-sw-component]

)

CCA platform software component type

The CCA platform software component type is a string which represents the role of the software component.

The CCA platform software component type is intended for use as a hint to help the relying party understand how
to evaluate the CCA platform software component measurement value.

The CCA platform software component type is optional in a CCA platform token.
CCA platform software component measurement value

The CCA platform software component measurement value represents a hash of the state of the software component
in memory at the time it was initialized.

The CCA platform software component measurement value must be a hash of 256 bits or stronger.
The CCA platform software component measurement value must be present in a CCA platform token.
CCA platform software component version

The CCA platform software component version is a text string whose meaning is defined by the software component
vendor.

The CCA platform software component version is optional in a CCA platform token.
CCA platform software component signer ID

The CCA platform software component signer ID is the hash of a signing authority public key for the software
component. It can be used by a verifier to ensure that the software component was signed by an expected trusted
source.

The CCA platform software component signer ID value must be a hash of 256 bits or stronger.
The CCA platform software signer ID must be present in a CCA platform token.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 89
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Tyryex

IHR S XY

DENO0137
A-bet0

CCA platform software hash algorithm ID

The CCA platform software hash algorithm ID identifies the way in which the hash algorithm used to measure the
CCA platform software component.

Arm recommends that the value of the CCA platform software hash algorithm ID is an IANA Hash Function name
IANA Hash Function Textual Names [10].

Arm recommends that the hash algorithm used to measure the CCA platform software component is one of the
algorithms listed in the Arm CCA Security model [4].

The CCA platform software hash algorithm ID is optional in a CCA platform token.
A7.2.3.2.8 CCA platform verification service claim

The CCA platform verification service claim is a hint which can be used by a relying party to locate a verifier for
the token.

The value of the CCA platform verification service claim is a text string which can be used to locate the service or
a URL specifying the address of the service.

The CCA platform verification service claim may be ignored by arelying party in favor of other information.
The CCA platform verification service claim is optional in a CCA platform token.

The format of the CCA platform verification service claim is defined as follows:

cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>
cca-platform-verification-service-type

)

A7.2.3.2.9 CCA platform hash algorithm ID claim

The CCA platform hash algorithm ID claim identifies the algorithm used to calculate the extended measurements
in the CCA platform token.

Arm recommends that the value of the CCA platform hash algorithm ID claim is an IANA Hash Function name
TANA Hash Function Textual Names [10].

The CCA platform hash algorithm ID claim must be present in a CCA platform token.
The format of the CCA platform hash algorithm ID claim is defined as follows:

cca-platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text
)

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 90
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.10 Collated CDDL for CCA platform claims

Dpvmaz The format of the CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation—-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw—-components
? cca-platform-verification-service
cca-platform-hash-algo-id

cca-platform-profile-label = 265 ; EAT profile
cca-profile-type = "http://arm.com/CCA-SSD/1.0.0"
cca-platform-profile = (

cca-platform-profile-label => cca-profile-type
)
cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge—-label = 10
cca-platform-challenge = (

cca-platform-challenge-label => cca—-hash-type
cca-platform-implementation—-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32
cca-platform-implementation—-id = (

cca-platform-implementation-id-label => cca-platform-implementation-id-type
cca-platform-instance-id-label = 256 ; EAT ueid
; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33
cca-platform-instance-id = (

cca-platform-instance-id-label => cca-platform-instance-id-type

cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration
cca-platform-config-type = bytes
cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff

cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff

cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =
cca-platform-lifecycle-unknown-type /
cca-platform-lifecycle-assembly—-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /
cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type

cca-platform-sw-components—-label = 2399 ; PSA software components
cca-platform-sw—component = ({
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value
? 4 => text, ; version
5 => cca-hash-type, ; signer id
? 6 => text, ; hash algorithm identifier

cca-platform-sw—components = (
cca-platform-sw—components—label => [+ cca-platform-sw-component]

..0x50ff

cca-platform-verification-service-label = 2400 ; PSA verification service

cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>
cca-platform-verification-service-type

cca-platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Trvexe

DENO0137
A-bet0

A7.2.3.2.11 Example CCA platform claims

An example CCA platform claim map is shown below in COSE-DIAG format:

/ CCA platform claim map /

{

/ cca-platform-profile /
265: "http://arm.com/CCA-SSD/1.0.0",

/ cca-platform-challenge /
10: h'AA
AAT,

/ cca-platform-implementation-id /
2396: h'AA',

/ cca-platform-instance-id /
256: h'010BBEBBBBBBBRBBBRBBBBRBBRBBBERBBBRBBBBBBRBBBERBBBRBBBBRBBBERBBBBBBBBBBEB
BB',

/ cca-platform-config /
2401: h'CFCFCFCF',

/ cca-platform-lifecycle /
2395: 12288,

/ cca-platform-sw-components /
2399: [
{
/ measurement value /
2: h'AA
AA',

/ signer id /
5: h'BBBBRBBBRBBBEBBBBBBRBBBRBBBBBBRBBBRBBBEBBBBBBRBBBBBBBBBBRBBBBRBBBBB
BBBBBBBBBBRBRBBBBBBBBBBBRRBBBBBBBBBBBBRRBBBBBBBBBBBBRBBBBBBBBBBBBBEB ',

/ version /
4: "1.0.0",

/ hash algorithm identifier /
6: "sha-256"

/ measurement value /
2: h'CCCCCCCCCCCCCCCCCCTrrreeeceeceeeceeceecececececececeececececececececececcececcecececceccece
CCCCCCCCCCCCcereeeceeecececececececececcecceceeccececececececececececececececececececcccecceccececce,

/ signer id /
5: h'DD
DD ',

/ version /
4. "1.0.0",

/ hash algorithm identifier /
"sha-256"

o

1y

/ cca-platform-verification-service /

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 93
Non-confidential

Chapter A7. Realm measurement and attestation

A7.2. Realm attestation

2400:

"https://cca_verifier.org",

/ cca-platform-hash-algo-id /

2402:

"sha-256"

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter A8
Realm debug and performance monitoring

This section describes the debug and performance monitoring features which are available to a Realm.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

95

Chapter A8. Realm debug and performance monitoring
A8.1. Realm PMU

A8.1 Realm PMU

DENO0137
A-bet0

This section describes the programming model for usage of PMU by a Realm.
On REC entry, Realm PMU state is restored from the REC.
On REC exit, the following Realm PMU state is exposed via the RecExit object:

e exit.pmu_ovf contains the value of PMOVSSET_ELO at the time of the Realm exit.

e exit.pmu_intr_en contains the value of PMINTENSET_EL1 at the time of the Realm exit.
* exit.pmu_cntr_en contains the value of PMCNTENSET_ELO at the time of the Realm exit.

On REC exit, all other Realm PMU state is saved to the REC.
See also:

e A3.1.5 Realm support for Performance Monitors Extension
* A4.3 REC exit
* B3.4.14 RmiRecEXxit type

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Part B
Interface

Chapter B1
Commands

This chapter describes how RMM commands are defined in this specification.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

98

Chapter B1. Commands
B1.1. Overview

B1.1

DENO0137
A-bet0

Overview

The RMM exposes the following interfaces:

* The Realm Management Interface (RMI)
* The Realm Services Interface (RSI)
¢ The Power State Coordination Interface (PSCI)

An RMM interface consists of a set of RMM commands.
An RMM interface is compliant with the SMC Calling Convention (SMCCC).
SMCCC version >= 1.2 is required.

SMCCC version 1.2 increases the number of SMC64 arguments and return values from 4 to 17. Some RMM
commands use more than 4 input or output values.

On a CCA platform which implements FEAT_SVE, SMCCC version >= 1.3 is required.

SMCCC version 1.3 introduces a bit in the FID which a caller can use to indicate that SVE state does not need to
be preserved across the SMC call.

On a CCA platform which implements FEAT_SME, SMCCC version >= 1.4 is required.
SMCCC version 1.4 adds support for preservation of SME state across an SMC call.

An RMM command uses the SMC64 calling convention.

To determine whether an RMM interface is implemented, software should use the following flow:

1. Determine whether the SMCCC_VERSION command is implemented, following the procedure described in
Arm SMC Calling Convention [13].

2. Check that the SMCCC version is>=1.1.
3. Execute the <Interface>.Version command, which returns:

* SMCCC_NOT_SUPPORTED (-1) if <Interface> is not implemented.
* A version number (>0) if <Interface> is implemented.

All data types defined in this specification are little-endian.
See also:

» Chapter B3 Realm Management Interface
* Chapter B4 Realm Services Interface
» Chapter BS Power State Control Interface

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 99
Non-confidential

Chapter B1. Commands
B1.2. Command definition

B1.2 Command definition

Typmvp The definition of an RMM command consists of:
* A function identifier (FID)
* A set of input values (referred to as “arguments” in SMCCC)
¢ A set of output values (referred to as “results” in SMCCC)
¢ A set of context values
* A partially-ordered set of failure conditions
e A set of success conditions
e A set of footprint items
Tcevie Each failure condition, success condition and footprint item has an associated identifier. Identifiers are unique

within each of the above groups, within each command.

An identifier has no meaning. It is only a label by which a given condition or footprint item can be referred to.

See also:

* SMCCC Arm SMC Calling Convention [13]

B1.2.1 Example command

TIIL”; GE
are presented in this document.

The following command, EXAMPLE_ADD, is an example of how the components of an RMM command definition

This command takes as an input value the address params_ptr of an NS Granule which contains two integer

values x and y. On successful execution of the command:

* The output value sum contains the sum of x and y

* The output value zero indicates whether either of x or y is zero

EXAMPLE_ADD is defined as follows:
Interface
FID

0x042

Input values

Name Register Field Type

Description

fid X0 [63:0]

[63:0]

Ulnt64

params_ptr X1 Address

Command FID

PA of parameters

Context

The EXAMPLE_ADD command operates on the following context.

Name Value

Type

Before

Description

params ExampleParams Params (params_ptr)

false

Parameters

Output values

DENO0137

A-bet0 Non-confidential

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

100

Chapter B1. Commands
B1.3. Command registers

Name Register Field Type Description

result X0 [15:0] CommandReturnCode Command return status

sum X1 [63:0] Ulnt64 Sum of x and y

zero X2 [63:0] Ulnt64 Whether either x or y was zero

Failure conditions

ID Condition

params_align pre: 'AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, ERROR_INPUT)

params_state pre: if Granule (params_ptr) .state != NS
post: ResultEqual (result, ERROR_MEMORY)

Success conditions

ID Post-condition
sum sum == params.xX + params.y
zZero zero == (params.x == 0) || (params.y == 0)

B1.3 Command registers

Dspenm An FID is a value which identifies a particular RMM command.

Tmrock The FID of an RMM command is unique among the RMM commands in an RMM interface.
IrvpGy An FID is read from general-purpose register XO.

Dx1sFs An inputvalue is a value read by an RMM command from general-purpose registers.

Dyvepew An output value is a value written by an RMM command to general-purpose registers.

Deanv. A command return code is a value which specifies whether an RMM command succeeded or failed.
Irrzr A command return code is written to general-purpose register XO0.

B1.4 Command condition expressions

DcuryB A condition expression is an expression which evaluates to a boolean value.
Tyrnxe A condition expression can contain the following macros:
¢ OFFSETOF (struct_name, member_name)

Expands to the offset in bytes of the struct member from the start of the struct.
® SIZEOF (struct_name, member_name)

Expands to the size in bytes of the struct member.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 101
A-bet0 Non-confidential

Chapter B1. Commands
B1.5. Command context values

Following expansion of macros, a condition expression is a valid expression in Arm Specification Language (ASL).
See also:

e Arm Specification Language Reference Manual [14]
e Chapter B2 Command condition functions

B1.5 Command context values

Dpipve

DENO0137
A-bet0

A context value is a value which is derived from the value of a command input register and which is used by a
command condition expression.

A context value can be thought of as a local variable for use by command condition expressions.

For example, consider the following example command condition expressions:

'AddrIsGranuleAligned (RealmParams (params_ptr) .rtt_base)

'RmiFeatureRegister0IsValid (RealmParams (params_ptr) .features_0)

By introducing a context value params with the value RealmParams (params_ptr), these two command
condition expressions can be re-written as:

!AddrIsGranuleAligned (params.rtt_base)

'RmiFeatureRegister(0IsValid (params. features_0)

The before property of a context value indicates whether its expression is re-evaluated after the command has
executed.

true: the expression is not re-evaluated after the command has executed
false: the expression is re-evaluated after the command has executed

* before
* before

Specifying before = true for a context value allows system state to be sampled before command execution,
and then used after command execution in a command success condition.

For example, the RMI_REALM_DESTROY command takes as an input value the address rd of a Realm Descriptor.
Successful execution of the command results observable effects including the following:

* The state of the RD Granule changes from RD to DELEGATED
* The state of the RTT base Granule, whose address was previously held in the RD, changes from RTT to
DELEGATED

The address of the RTT base Granule is not included in the input values of the command.

A context value is defined as follows:

Name Type Value Before Description

rtt_base Address Realm(rd) .rtt_base true RTT base address

The state change of the RTT Granule can then be expressed as:

Granule (rtt_base) .state == DELEGATED

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 102
Non-confidential

Chapter B1. Commands
B1.6. Command failure conditions

DENO0137
A-bet0

The before property of a context value has no effect if the value is only used in command failure conditions.

An in-memory value is a value passed to a command via an in-memory data structure, the address of which is
passed in an input register.

An in-memory value is a context value.
See also:

e B3.3.9 RMI REALM_CREATE command

Command failure conditions

An RMM command failure condition defines a way in which the command can fail.
A failure condition consists of a pre-condition and a post-condition.

A failure pre-condition can be thought of as the “trigger” of the failure: if the pre-condition is true then the
command fails.

A failure post-condition can be thought of as the “effect” of the failure: if the command failed due to a particular
trigger, then the post-condition defines the error code which is returned.

A failure pre-condition is a condition expression whose terms can include input values and context values.
A failure post-condition is a condition expression whose terms can include input values and context values.
Observability of the checking of command failure conditions is subject to a partial order.

An ordering relation “A precedes B” means either of the following:

* The pre-condition of B is well-formed only-if the pre-condition of A is false. This is referred to as a
well-formedness ordering.

* If the pre-conditions of A and B are both true, then the post-condition of A is observed. This is referred to as
a behavioral ordering.

The absence of an ordering relation “A precedes B” means that, if the pre-conditions of A and B are both true then
either the post-condition of A is observed or the post-condition of B is observed.

Orderings are specified between groups of failure conditions. For example, the expression [A, B] < [C, D]
means that both conditions A and B precede both conditions C and D.

The same information is also presented graphically, with failure conditions represented as nodes and ordering
relations represented as edges.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 103
Non-confidential

Chapter B1. Commands
B1.7. Command success conditions

The specification does not state whether an individual ordering relation is a well-formedness ordering or a
behavioral ordering.

T jurTY A given implementation of the RMM is expected to have deterministic behavior. That is, for a runtime instance of
the RMM in a particular state, two executions of a command without an interleaving of other commands, with the
same input values, results in the same outcome (either success, or the same failure condition.)

Ruxzgs If a failure pre-condition evaluates to true then the corresponding failure post-condition evaluates to true.
Robepu If a failure pre-condition evaluates to true then the command is aborted.
Rvyurup If no failure pre-condition evaluates to true then the command succeeds.

B1.7 Command success conditions

Dszenz An RMM command success.condition define an observable effect of a successful execution of the command.

T17xuB A success condition is a condition expression whose terms can include input values, context values and output
values.

Tames The order in which success conditions are listed has no architectural significance.

Tngorc If an RMM command succeeds then the return code is <Interface>_SUCCESS.

Rukrvy If an RMM command succeeds then all of its success conditions evaluate to true.

B1.8 Command footprint

Dspape The footprint of an RMM command defines the set of state items which successful execution of the command can
modify.

Tymzys The footprint of an RMM command may include state items which are not modified by successful execution of the
command.

T RuwomJ If an RMM command changes the state of a Granule then the footprint typically does not include all attributes of

the object which is created or destroyed.

For example, the footprint of RMI_REALM_CREATE includes the state of the RD Granule, but does not include
attributes of the newly-created Realm.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 104
A-bet0 Non-confidential

Chapter B1. Commands
B1.8. Command footprint

Ruzvey Except for items in the footprint of an RMM command and registers in the output values of the RMM command,
execution of the command does not have any observable effects.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 105
A-bet0 Non-confidential

Chapter B2
Command condition functions

This chapter describes functions which are used in command condition expressions.

See also:

e B1.4 Command condition expressions

B2.1 AddrinRange function

Returns TRUE if addr is within [base, base+size].

func AddrInRange (

addr :: Address,
base :: Address,
size :: integer) => boolean

return ((UInt (addr) >= Ulnt (base))
&& (UInt (addr) <= UInt (base) + size));
end

B2.2 AddrisAligned function

Returns TRUE if address addr is aligned to an n byte boundary.

func AddrIsAligned(

addr :: Address,
n :: integer) => boolean
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 106

A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.3. AddrlsGranuleAligned function

B2.3 AddrisGranuleAligned function

Returns TRUE if address addr is aligned to the size of a Granule.

func AddrIsGranuleAligned (
addr :: Address) => boolean

func AddrIsGranuleAligned (
addr :: integer) => boolean

See also:

e A2.2 Granule

B2.4 AddrisProtected function

Returns TRUE if address addr is a Protected IPA for realm.

func AddrIsProtected(

addr :: Address,

realm :: RmmRealm) => boolean

return UInt (addr) < 2" (realm.ipa_width - 1);
end

B2.5 AddrisRttLevelAligned function

Returns TRUE if Address addr is aligned to the size of the address range described by an RTTE in a level 1evel
RTT.

Returns FALSE if 1level is invalid.

func AddrIsRttLevelAligned (
addr :: Address,
level :: integer) => boolean

B2.6 AddrRangelsProtected function

Returns TRUE if all addresses in range [base, base+size) are Protected IPAs for realm.

func AddrRangeIsProtected(

base :: Address,
size :: integer,
realm :: RmmRealm) => boolean

return (AddrIsProtected(base, realm)
&& size > 0
&& size < 2”realm.ipa_width
&& AddrIsProtected (ToAddress (UInt (base) + size - 1), realm));
end

B2.7 CurrentRealm function

Returns the current Realm.

func CurrentRealm() => RmmRealm

B2.8 CurrentRec function

Returns the current REC.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 107
A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.9. Gicv3ConfiglsValid function

func CurrentRec () => RmmRec

B2.9 Gicv3ConfiglsValid function

Returns TRUE if the values of all entry.gicv3_x attribute are valid.

func Gicv3ConfigIsValid(

gicv3_hcr :: bits(64),
gicv3_1lrs :: array [16] of bits(64)) => boolean
See also:

e AG6.1 Realm interrupts
e B3.4.12 RmiRecEntry type

B2.10 Granule function

Returns the Granule located at physical address addr.

func Granule (
addr :: Address) => RmmGranule

See also:

e A2.2 Granule

B2.11 MpidrEqual function

Returns TRUE if the specified MPIDR values are logically equivalent.

func MpidrEqual (
rmm_mpidr :: bits(64),
rmi_mpidr :: RmiRecMpidr) => boolean
return (rmm_mpidr[3: 0] = rmi_mpidr.aff0
&& rmm_mpidr[15: 8] == rmi_mpidr.affl
&& rmm_mpidr[23:16] == rmi_mpidr.aff2
&& rmm_mpidr[31:24] = rmi_mpidr.aff3);

end

B2.12 MpidrisUsed function

Returns TRUE if the specified MPIDR value identifies a REC in the current Realm.

func MpidrIsUsed (
mpidr :: bits(64)) => boolean

B2.13 PalsDelegable function

Returns TRUE if the Granule located at physical address addr is delegable.

func PalIsDelegable (
addr :: Address) => boolean

B2.14 PsciReturnCodeEncode function

Return encoding for a PsciReturnCode value.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

108

Chapter B2. Command condition functions
B2.15. ReadMemory function

B2.15

B2.16

B2.17

B2.18

B2.19

B2.20

DENO0137
A-bet0

func PsciReturnCodeEncode (
value :: PsciReturnCode) => bits (64)

ReadMemory function

Read contents of memory at address range [addr + offset, addr + offset + size)

offset and size are both numbers of bytes.

func ReadMemory (
addr :: bits(64),
offset :: integer,
size :: integer) => bits(size * 8)

Realm function

Returns the Realm whose RD is located at physical address addr.

func Realm(
addr :: Address) => RmmRealm

See also:

e A2.1 Realm

RealmConfig function

Returns Realm configuration stored at IPA addr, mapped in the current Realm.

func RealmConfig(
addr :: Address) => RsiRealmConfig

RealmHostCall function

Returns Host call data stored at IPA addr, mapped in the current Realm.

func RealmHostCall (
addr :: Address) => RsiHostCall

RealmlsLive function

Returns TRUE if the Realm whose RD is located at physical address addr is live.

func RealmIsLive (
addr :: Address) => boolean

See also:

e A2.1.4 Realm liveness

RealmParams function

Returns Realm parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RealmParams (
addr :: Address) => RmiRealmParams

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter B2. Command condition functions
B2.21. Rec function

See also:

e A2.1.6 Realm parameters

B2.21 Rec function

Returns the REC located at physical address addr.

func Rec(
addr :: Address) => RmmRec

See also:

e A2.3 Realm Execution Context

B2.22 RecAuxAlias function

Returns TRUE if any of the first count entries in a list of REC auxiliary Granule addresses are aliased - either
among themselves, or with the REC address itself.

func RecAuxAlias (
rec :: Address,
aux :: array [16] of Address,
count :: integer) => boolean
assert 0 <= count && count <= 16;
var sorted = RecAuxSort (aux, count);
for i = 0 to count - 1 do
if sorted[i] == rec then
return TRUE;
end
if i >= 1 && sorted[i] == sorted[i - 1] then
return TRUE;
end
end
return FALSE;
end

B2.23 RecAuxAligned function

Returns TRUE if the first count entries in a list of REC auxiliary Granule addresses are aligned to the size of a
Granule.

func RecAuxAligned(

aux :: array [16] of Address,
count :: integer) => boolean
assert 0 <= count && count <= 16;
for i = 0 to count - 1 do

if 'AddrIsGranuleAligned(aux[i]) then
return FALSE;
end
end
return TRUE;
end

B2.24 RecAuxCount function

Returns the number of auxiliary Granules required for a REC in the Realm described by rd.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 110
A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.25. RecAuxEqual function

func RecAuxCount (
rd :: Address) => integer

B2.25 RecAuxEqual function

Returns TRUE if the first count entries in two lists of REC auxiliary Granule addresses are equal.

func RecAuxEqual (

auxl :: array [16] of Address,
aux2 :: array [16] of Address,
count :: integer) => boolean
assert 0 <= count && count <= 16;
for 1 = 0 to count - 1 do

if aux1l[i] !'= aux2[i] then

return FALSE;

end
end
return TRUE;

end

B2.26 RecAuxSort function

Sort first count entries in array of auxiliary Granule addresses.

func RecAuxSort (
addrs :: array [16] of Address,
count :: integer) => array [16] of Address

B2.27 RecAuxStateEqual function

Returns TRUE if the state of the first count entries in a list of REC auxiliary Granule addresses is equal to state.

func RecAuxStateEqual (

aux :: array [16] of Address,
count :: integer,
state :: RmmGranuleState) => boolean
assert 0 <= count && count <= 16;
for i = 0 to count - 1 do

if (!PalIsDelegable (aux[i])

| | Granule (aux[1]) .state != state) then
return FALSE;

end

end

return TRUE;
end

B2.28 RecAuxStates function

Inductive function which identifies the states of the first count entries in a list of REC auxiliary Granules.

This function is used in the definition of command footprint.

func RecAuxStates (

aux :: array [16] of Address,
count :: integer)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 111

A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.29. RecFromMpidr function

B2.29 RecFromMpidr function

Returns the REC identified by the specified MPIDR value, in the current Realm.

func RecFromMpidr (
mpidr :: bits(64)) => RmmRec

B2.30 Recindex function

Returns the REC index which corresponds to mpidr.

func RecIndex (
mpidr :: RmiRecMpidr) => integer
return (UInt (mpidr.aff0)
+ 16 % UInt (mpidr.affl)
+ 16 % 256 * UInt (mpidr.aff2)
+ 16 % 256 x 256 % UInt (mpidr.aff3));
end

See also:

e A2.3.3 REC index and MPIDR value

B2.31 RecParams function

Returns REC parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RecParams (
addr :: Address) => RmiRecParams

B2.32 RecRun function

Returns the RecRun object stored at physical address addr.

func RecRun (
addr :: Address) => RmiRecRun

See also:

* A4.2 REC entry
* A43 REC exit

B2.33 RemExtend function

Extend REM, using size LSBs from new_value, with the remaining bits zero-padded to form a 512-bit value.

func RemExtend (

hash_algo :: RmmHashAlgorithm,

old_value :: RmmRealmMeasurement,

new_value :: RmmRealmMeasurement,

size :: integer) => RmmRealmMeasurement
See also:

e A7.1.2 Realm Extensible Measurement

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

112

Chapter B2. Command condition functions
B2.34. ResultEqual function

B2.34 ResultEqual function

Returns TRUE if command result matches the stated value.

func ResultEqual (
result :: RmiCommandReturnCode,
status :: RmiStatusCode) => boolean

func ResultEqual (

result :: RmiCommandReturnCode,
status :: RmiStatusCode,
index :: integer) => boolean

B2.35 RimExtendData function

Extend RIM with contribution from DATA creation.

func RimExtendData (

realm :: RmmRealm,

ipa :: Address,

data :: Address,

flags :: RmiDataFlags) => RmmRealmMeasurement
See also:

* B3.3.1.4 RMI_DATA_CREATE extension of RIM

B2.36 RimExtendRec function

Extend RIM with contribution from REC creation.

func RimExtendRec (

realm :: RmmRealm,
params :: RmiRecParams) => RmmRealmMeasurement
See also:

e B3.3.12.4 RMI_REC_CREATE extension of RIM

B2.37 RimExtendRipas function

Extend RIM with contribution from RIPAS change.

func RimExtendRipas (

realm :: RmmRealm,

ipa :: Address,

level :: integer) => RmmRealmMeasurement
See also:

e B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

B2.38 Rimlnit function

Initialize RIM.
func RimInit (
hash_algo :: RmmHashAlgorithm,
params :: RmiRealmParams) => RmmRealmMeasurement
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 113

A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.39. RmiFeatureRegister0lsValid function

B2.39

B2.40

B2.41

B2.42

B2.43

B2.44

B2.45

DENO0137
A-bet0

See also:

e B3.3.9.4 RMI REALM_CREATE initialization of RIM

RmiFeatureRegisterOlsValid function

Returns TRUE if value is a valid encoding of RmiFeatureRegisterOIsValid.

func RmiFeatureRegister0IsValid(
value :: bits(64)) => boolean

See also:

e A3.1 Realm feature discovery and selection

RmiHashAlgorithmlsSupported function

Returns TRUE if the hash algorithm is supported by the implementation.

func RmiHashAlgorithmIsSupported (
value :: RmiHashAlgorithm) => boolean

RmiHashAlgorithmlsValid function

Returns TRUE if the value is a valid encoding of RmiHashAlgorithm.

func RmiHashAlgorithmIsValid(
value :: bits(8)) => boolean

RmiRecCreateFlagsisValid function

Returns TRUE if value is a valid encoding of RmiRecCreateFlags.

func RmiRecCreateFlagsIsValid(
value :: bits(64)) => boolean

RmiRecMpidrisValid function

Returns TRUE if the value is a valid encoding of RmiRecMpidr.

func RmiRecMpidrIsValid (

value :: bits(64)) => boolean
return (value[7:4] == Zeros|()
&& value[63:32] == Zeros());
end

RmiRipaslsValid function

Returns TRUE if the value is a valid encoding of RmiRipas.

func RmiRipasIsValid(
value :: bits(32)) => boolean

RsiRipaslsValid function

Returns TRUE if the value is a valid encoding of RsiRipas.

func RsiRipasIsValid(

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter B2. Command condition functions
B2.46. Ritt function

value :: bits(8)) => boolean

B2.46 Rtt function

Returns the RTT at address rtt.

func Rtt(
addr :: Address) => RmmRtt

B2.47 RttAllEntriesContiguous function

Returns TRUE if all entries in the RTT at address rtt at level level have contiguous output addresses, starting
with addr.

func RttAllEntriesContiguous (

rtt :: RmmRtt,

addr :: Address,

level :: integer) => boolean
See also:

e AS5.5 Realm Translation Table

B2.48 RttAllEntriesRipas function

Returns TRUE if all entries in the RTT at address rtt have RIPAS ripas.

func RttAllEntriesRipas (
rtt :: RmmRtt,
ripas :: RmmRipas) => boolean

B2.49 RttAllEntriesState function

Returns TRUE if all entries in the RTT at address rtt have state state.

func RttAllEntriesState (

rtt :: RmmRtt,
state :: RmmRttEntryState) => boolean
See also:

e A5.5 Realm Translation Table

B2.50 RttConfiglsValid function

Returns TRUE if the RTT configuration values provided are self-consistent and are supported by the platform.

func RttConfigIsValid(

ipa_width :: integer,

rtt_level_start :: integer,

rtt_num_start :: integer) => boolean
See also:

e A5.5 Realm Translation Table

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 115
A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.51. RitDescriptorlsValidForUnprotected function

B2.51 RttDescriptorisValidForUnprotected function

Returns TRUE if, within the descriptor desc, all of the following are true:

* All fields which are Host-controlled RTT attributes are set to architecturally valid values.

¢ All fields which are not Host-controlled RTT attributes are set to zero.

func RttDescriptorIsValidForUnprotected(
desc :: bits(64)) => boolean

See also:

* AS5.5.11 RTT entry attributes

B2.52 RttEntry function

Returns the ith entry in the RTT at address rtt.

func RttEntry(

addr :: Address,
i :: integer) => RmmRttEntry
See also:

e A5.5 Realm Translation Table

B2.53 RttEntryFromDescriptor function

Converts a descriptor to an RmmRttEntry object.

func RttEntryFromDescriptor (
desc :: bits(64)) => RmmRttEntry

B2.54 RttEntrylndex function

Returns the index of the entry in a level level RTT which is identified by addr.

func RttEntryIndex(

addr :: Address,
level :: integer) => integer
See also:

e AS5.5 Realm Translation Table

B2.55 RttFold function

Returns the RTTE which results from folding the homogeneous RTT at address rtt.

func RttFold(
rtt :: RmmRtt) => RmmRttEntry

See also:

* AS5.5.6 RTT folding

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

116

Chapter B2. Command condition functions
B2.56. RttlsHomogeneous function

B2.56 RttisHomogeneous function

Returns TRUE if the RTT at address rtt is homogeneous.

func RttIsHomogeneous (
rtt :: RmmRtt) => boolean

See also:

e AS5.5.6 RTT folding

B2.57 RittisLive function

Returns TRUE if the RTT at address rtt is live.

func RttIsLive (
rtt :: RmmRtt) => boolean

See also:

e AS5.5.8 RTT liveness
e AS5.5.9 RTT destruction

B2.58 RttLevellsBlockOrPage function

Returns TRUE if 1evel is either a block or page RTT level for the Realm described by rd.

func RttLevelIsBlockOrPage (

rd :: Address,
level :: integer) => boolean
See also:

e AS5.5 Realm Translation Table

B2.59 RttLevellsStarting function

Returns TRUE if 1evel is the starting level of the RTT for the Realm described by rd.

func RttLevelIsStarting(

rd :: Address,
level :: integer) => boolean
See also:

e AS5.5 Realm Translation Table

B2.60 RttLevellsValid function

Returns TRUE if 1evel is a valid RTT level for the Realm described by rd.

func RttLevelIsValid(

rd :: Address,
level :: integer) => boolean
See also:

e AS5.5 Realm Translation Table

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

117

Chapter B2. Command condition functions
B2.61. RittLevelSize function

B2.61 RttLevelSize function

Returns the size of the address space described by each entry in an RTT at level.

If 1evel is invalid, the return value is UNKNOWN.

func RttLevelSize (
level :: integer) => integer

See also:

e A5.5 Realm Translation Table

B2.62 RttsAllEntriesRipas function

Returns TRUE if the RIPAS of all entries in all of the starting-level RTT Granules is equal to ripas.

func RttsAllEntriesRipas (
rtt_base :: Address,
rtt_num_start :: integer,
ripas :: RmmRipas) => boolean
for 1 = 0 to rtt_num_start — 1 do
var addr = (UInt (rtt_base) + i » RMM_GRANULE_SIZE) [63:0];
var rtt = Rtt (addr);
if !'RttAllEntriesRipas(rtt, ripas) then
return FALSE;
end
end
return TRUE;
end

B2.63 RttsAllEntriesState function

Returns TRUE if the state of all entries in all of the starting-level RTT Granules is equal to state.

func RttsAllEntriesState (

rtt_base :: Address,
rtt_num_start :: integer,
state :: RmmRttEntryState) => boolean
for 1 = 0 to rtt_num_start - 1 do
var addr = (UInt (rtt_base) + i » RMM_GRANULE_SIZE) [63:0];

var rtt = Rtt (addr);
if !RttAllEntriesState(rtt, state) then
return FALSE;
end
end
return TRUE;
end

B2.64 RttsGranuleState function

Inductive function which identifies the states of the starting-level RTT Granules.

This function is used in the definition of command footprint.

func RttsGranuleState(

rtt_base :: Address,
rtt_num_start :: integer)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 118

A-bet0 Non-confidential

Chapter B2. Command condition functions
B2.65. RitsStateEqual function

B2.65 RttsStateEqual function

Returns TRUE if the state of all of the starting-level RTT Granules is equal to state.

func RttsStateEqual (

rtt_base :: Address,
rtt_num_start :: integer,
state :: RmmGranuleState) => boolean
for 1 = 0 to rtt_num_start - 1 do
var addr = (UInt (rtt_base) + i » RMM_GRANULE_SIZE) [63:0];
if (!PalsDelegable (addr)
| | Granule (addr) .state != state) then
return FALSE;
end
end
return TRUE;
end

B2.66 RttWalk function

Returns the result of an RTT walk from the RTT base of rd to address addr.

If 1evel is provided, the walk terminates at level.

func RttWalk (
rd :: Address,
addr :: Address) => RmmRttWalkResult

func RttWalk (

rd :: Address,

addr :: Address,

level :: integer) => RmmRttWalkResult
See also:

* AS5.5.10 RTT walk

B2.67 ToAddress function

Convert integer to Address.

func ToAddress (value :: integer) => Address
return value[63:0];
end

B2.68 VmidlsFree function

Returns TRUE if vmid is unused.

func VmidIsFree (
vmid :: bits(16)) => boolean

B2.69 VmidlsValid function

Returns TRUE if vmid is valid on the platform.

func VmidIsValid (
vmid :: bits(16)) => boolean

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

Chapter B3
Realm Management Interface

This chapter defines the interface used by the Host to manage Realms.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 120
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.2. RMI command return codes

B3.1 RMI version

RNcFDX This specification defines version 1.0 of the Realm Management Interface.
See also:

e B3.3.23 RMI VERSION command

B3.2 RMI command return codes

T somBN The return code of an RMI command is a tuple which contains status and index fields.
Tvcuov The status field of an RMI command return code indicates whether the command

¢ succeeded, or
« failed, and the reason for the failure.

Ippns If an RMI command succeeds then the status of its return code is RMI_SUCCESS.

Tueveg The index field of an RMI command return code can provide additional information about the reason for a command
failure. The meaning of the index field depends on the status, and is described by the following table.

Status Description Meaning of index

RMI_SUCCESS Command completed successfully None: index is zero.

RMI_ERROR_INPUT The value of a command input value caused the None: index is zero.
command to fail

RMI_ERROR_IN_USE An operation cannot be completed because a None: index is zero.
resource is in use

RMI_ERROR_REALM An attribute of a Realm does not match the Varies between usages.
expected value See individual commands

for details.

RMI_ERROR_REC An attribute of a REC does not match the None: index is zero.
expected value

RMI_ERROR_RTT An RTT walk terminated before reaching the RTT level at which the

target RTT level, or reached an RTTE with an walk terminated.
unexpected value

ToooNB Multiple failure conditions in an RMI command may return the same error code - that is, the same status and index
values.
Ryzpyo If an input to an RMI command uses an invalid encoding then the command fails and returns RMI_ERROR_INPUT.

Command inputs include registers and in-memory data structures.
Invalid encodings include:

* setting a “must be zero” bitto '1"
* using a reserved encoding in an enumeration

See also:

¢ B3.4.1 RmiCommandReturnCode type

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 121
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3 RMI commands

The following table summarizes the FIDs of commands in the RMI interface.

FID

Command

0xC4000153

0xC4000154

0xC4000155

0xC4000165

0xC4000151

0xC4000152

0xC4000164

0xC4000157

0xC4000158

0xC4000159

0xC4000167

0xC400015A

0xC400015B

0xC400015C

0xC400015D

0xC400015E

0xC4000166

0xC4000168

0xC400015F

0xC4000161

0xC4000169

0xC4000162

0xC4000150

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN
RMI_DATA_DESTROY
RMI_FEATURES
RMI_GRANULE_DELEGATE
RMI_GRANULE_UNDELEGATE
RMI_PSCI_COMPLETE
RMI_REALM_ACTIVATE
RMI_REALM_CREATE
RMI_REALM_DESTROY
RMI_REC_AUX_COUNT
RMI_REC_CREATE
RMI_REC_DESTROY
RMI_REC_ENTER
RMI_RTT_CREATE
RMI_RTT_DESTROY
RMI_RTT_FOLD
RMI_RTT_INIT_RIPAS
RMI_RTT_MAP_UNPROTECTED
RMI_RTT_READ_ENTRY
RMI_RTT_SET_RIPAS
RMI_RTT_UNMAP_UNPROTECTED
RMI_VERSION

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 122

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.1 RMI_DATA_CREATE command

DENO0137
A-bet0

Creates a Data Granule, copying contents from a Non-secure Granule provided by the caller.

See also:

e Chapter A5 Realm memory management
* B3.3.3 RMI_DATA_DESTROY command
* D1.2.3 Initialize memory of New Realm flow

B3.3.1.1 Interface
B3.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000153

data X1 63:0 Address PA of the target Data

rd X2 63:0 Address PA of the RD for the target Realm

ipa X3 63:0 Address IPA at which the Granule will be
mapped in the target Realm

src X4 63:0 Address PA of the source Granule

flags X5 63:0 RmiDataFlags Flags

B3.3.1.1.2 Context

The RMI_DATA_CREATE command operates-on the following context.

Name Type Value Before Description
realm RmmRealm Realm (rd) true Realm
walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,
RMM_RTT_PAGE_LEVEL)
entry_idx Ulnt64 RttEntryIndex (false RTTE index

ipa, walk.level)

B3.3.1.1.3 Output values

Name Register

Bits

Type

Description

result X0

63:0

RmiCommandReturnCode

Command return status

B3.3.1.2 Failure conditions

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

123

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
src_align pre: !AddrIsGranuleAligned(src)

post: ResultEqual (result, RMI_ERROR_INPUT)
src_bound pre: !'PalIsDelegable (src)

post: ResultEqual (result, RMI_ERROR_INPUT)
src_pas pre: Granule(src).pas != NS

post: ResultEqual (result, RMI_ERROR_INPUT)
data_align pre: !AddrIsGranuleAligned(data)

post: ResultEqual (result, RMI_ERROR_INPUT)
data_bound pre: !PalsDelegable (data)

post: ResultEqual (result, RMI_ERROR_INPUT)
data_state pre: Granule(data) .state != DELEGATED

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_align pre: !AddrIsGranuleAligned(rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD

post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_align pre: !AddrIsGranuleAligned(ipa)

post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_bound pre: !AddrIsProtected(ipa, realm)

post: ResultEqual (result, RMI_ERROR_INPUT)
realm_state pre: realm.state != NEW

post: ResultEqual (result, RMI_ERROR_REALM)
rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL

post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
rtte_state pre: walk.entry.state != UNASSIGNED

post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

DENO0137
A-bet0

B3.3.1.2.1 Failure condition ordering

[rd_bound,
[rd_bound,
[ipa_bound]

rd_state] < [realm_state]
rd_state] < [rtt_walk, rtte_state]

<

[rtt_walk, rtte_state]

Copyright © 2022 Arm Limited or its affiliates.
Non-confidential

All rights reserved.

124

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.1.3 Success conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 125
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
data_state Granule (data) .state == DATA
data_content Contents of “data’ Granule are equal to the contents
of “src’ Granule.
rtte_state walk.entry.state == ASSIGNED
rtte_addr walk.entry.addr == data
rim Realm(rd) .measurements[0] == RimExtendData (
realm, ipa, data, flags)
B3.3.1.4 RMI_DATA_CREATE extension of RIM
On successful execution of RMI_DATA_CREATE, the new RIM value of the target Realm is calculated by the
RMM as follows:
1. If flags.measure == RMI_MEASURE_CONTENT then using the RHA of the target Realm, compute the
hash of the contents of the DATA Granule.
2. Allocate an RmmMeasurementDescriptorData data structure.
3. Populate the measurement descriptor:
* Set the desc_type field to the descriptor type.
* Set the len field to the descriptor length.
* Set the rim field to the current RIM value of the target Realm.
* Set the ipa field to the IPA at which the DATA Granule is mapped in the target Realm.
* Set the flags field to the flags provided by the Host.
¢ If flags.measure == RMI_MEASURE_CONTENT then set the content field to the hash of the contents of the
DATA Granule. Otherwise, set the content field to zero.
4. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.
See also:
e A7.1.1 Realm Initial Measurement
* B2.35 RimExtendData function
e C1.5 RmmMeasurementDescriptorData type
B3.3.1.5 Footprint
ID Value
data_state Granule (data) .state
rim Realm(rd) .measurements[0]
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 126

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.2 RMI_DATA_CREATE_UNKNOWN command

Creates a Data Granule with unknown contents.
See also:

e A2.2.4 Granule wiping

e Chapter AS Realm memory management
* B3.3.3 RMI_DATA_DESTROY command
* DI1.5.1 Add memory to Active Realm flow

B3.3.2.1 Interface
B3.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000154

data X1 63:0 Address PA of the target Data

rd X2 63:0 Address PA of the RD for the target Realm
ipa X3 63:0 Address IPA at which the Granule will be

mapped in the target Realm

B3.3.2.1.2 Context
The RMI_DATA_CREATE_UNKNOWN command operates on the following context.

Name Type Value Before Description
walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,

RMM_RTT_ PAGE_LEVEL)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

B3.3.2.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.2.2 Failure conditions

ID Condition

data_align pre: !AddrIsGranuleAligned (data)
post: ResultEqual (result, RMI_ERROR_INPUT)

data_bound pre: !'PalsDelegable (data)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 127
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

data_state pre: Granule(data).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: 'AddrIsProtected(ipa, Realm(rd))
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != UNASSIGNED
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.2.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]

s

B3.3.2.3 Success conditions

ID Condition

data_state Granule (data) .state == DATA
data_content Contents of target Granule are wiped.
rtte_state walk.entry.state == ASSIGNED

rtte_addr walk.entry.addr == data

B3.3.2.4 Footprint

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

128

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Value
data_state Granule (data) .state
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 129

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.3 RMI_DATA_DESTROY command

Destroys a Data Granule.
See also:

e Chapter A5 Realm memory management

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e DI1.2.5 Realm destruction flow

B3.3.3.1 Interface
B3.3.3.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000155

rd X1 63:0 Address PA of the RD which owns the target
Data

ipa X2 63:0 Address IPA at which the Granule is mapped in

the target Realm

B3.3.3.1.2 Context
The RMI_DATA_DESTROY command operates on the following context.

Name Type Value Before Description
walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,

RMM_RTT_PAGE_LEVEL)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

data Address RttWalk (rd, ipa, true PA of the target
RMM_RTT_PAGE_LEVEL Data

) .entry.addr

B3.3.3.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.3.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 130
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: !AddrIsProtected(ipa, Realm(rd))
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != ASSIGNED
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.3.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]

B3.3.3.3 Success conditions

ID Condition
data_state Granule (data) .state == DELEGATED
ripas_empty pre: walk.entry.ripas == EMPTY
post: walk.entry.state == UNASSIGNED
ripas_ram pre: walk.entry.ripas == RAM
post: walk.entry.state == DESTROYED

B3.3.3.4 Footprint

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 131
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Value
data_state Granule (data) .state
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 132

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.4 RMI_FEATURES command

Read feature register.

The following table indicates which feature register is returned depending on the index provided.

Index Feature register

0 Feature register 0

See also:

* A3.1 Realm feature discovery and selection

B3.3.4.1 Interface
B3.3.4.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000165
index X1 63:0 Ulnt64 Feature register index

B3.3.4.1.2 Output values

Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
value X1 63:0 Bits64 Feature register value

B3.3.4.2 Failure conditions
The RMI_FEATURES command does not have any failure conditions.

B3.3.4.3 Success conditions

1D Condition
index pre: index != 0
post: X1 == Zeros()

B3.3.4.4 Footprint
The RMI_FEATURES command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

133

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.5 RMI_GRANULE_DELEGATE command

Delegates a Granule.
See also:

e A2.2 Granule
e B3.3.6 RMI_GRANULE_UNDELEGATE command
e DI1.2.1 Realm creation flow

B3.3.5.1 Interface
B3.3.5.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000151
addr X1 63:0 Address PA of the target Granule

B3.3.5.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.5.2 Failure conditions

ID Condition

ran_align pre: 'AddrIsGranuleAligned (addr)
g g
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_bound pre: !PalsDelegable (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_state pre: Granule(addr).state != UNDELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_pas pre: Granule (addr) .pas != NS
post: ResultEqual (result, RMI_ERROR_INPUT)

B3.3.5.2.1 Failure condition ordering
The RMI_GRANULE_DELEGATE command does not have any failure condition orderings.

B3.3.5.3 Success conditions

ID Condition
gran_state Granule (addr) .state == DELEGATED
gran_pas Granule (addr) .pas == REALM
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 134

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.5.4 Footprint

ID Value
gran_pas Granule (addr) .pas
gran_state Granule (addr) .state
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 135

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.6 RMI_GRANULE_UNDELEGATE command

Undelegates a Granule.
See also:

e A2.2 Granule
* B3.3.5 RMI_GRANULE_DELEGATE command
* DI1.2.5 Realm destruction flow

B3.3.6.1 Interface
B3.3.6.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000152
addr X1 63:0 Address PA of the target Granule

B3.3.6.1.2 Output values

Name Register Bits Type

Description

result X0 63:0 RmiCommandReturnCode

Command return status

B3.3.6.2 Failure conditions

ID Condition
gran_align pre: !AddrIsGranuleAligned (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)
gran_bound pre: !PalsDelegable (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)
gran_state pre: Granule(addr) .state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)
B3.3.6.2.1 Failure condition ordering
The RMI_GRANULE_UNDELEGATE command does not have any failure condition orderings.
B3.3.6.3 Success conditions
ID Condition
gran_pas Granule (addr) .pas == NS
gran_state Granule (addr) .state == UNDELEGATED
gran_content Contents of target Granule are wiped.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 136

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

See also:

* A2.2.4 Granule wiping
B3.3.6.4 Footprint

ID Value
gran_pas Granule (addr) .pas
gran_state Granule (addr) .state
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 137

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.7 RMI_PSCI_COMPLETE command

Completes a pending PSCI command which was called with an MPIDR argument, by providing the corresponding
REC.

See also:

e A4.3.7 REC exit due to PSCI

e B5.3.1 PSCI_AFFINITY_INFO command
e B5.3.3 PSCI_CPU_ON command

e DI1.4 PSCI flows

B3.3.7.1 Interface
B3.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000164
calling_rec X1 63:0 Address PA of the calling REC
target_rec X2 63:0 Address PA of the target REC

B3.3.7.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.7.2 Failure conditions

ID Condition

alias pre: calling_rec == target_rec
post: ResultEqual (result, RMI_ERROR_INPUT)

calling_align pre: !AddrIsGranuleAligned(calling_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

calling_bound pre: !PalsDelegable(calling_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

calling_state pre: Granule(calling_rec) .state != REC
post: ResultEqual (result, RMI_ERROR_INPUT)

target_align pre: !AddrIsGranuleAligned(target_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

target_bound pre: !'PalsDelegable (target_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

target_state pre: Granule (target_rec) .state != REC
post: ResultEqual (result, RMI_ERROR_INPUT)

pending pre: Rec(calling_rec) .psci_pending != PSCI_REQUEST_PENDING
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 138
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

owner pre: Rec(target_rec).owner != Rec(calling_rec) .owner
post: ResultEqual (result, RMI_ERROR_INPUT)

target pre: Rec(target_rec).owner != Rec(calling_rec) .gprs[l]
post: ResultEqual (result, RMI_ERROR_INPUT)

B3.3.7.2.1 Failure condition ordering

The RMI_PSCI_COMPLETE command does not have any failure condition orderings.

B3.3.7.3 Success conditions

ID Condition
pending Rec(calling_rec) .psci_pending == NO_PSCI_REQUEST_PENDING
on_already pre: (Rec(calling_rec) .gprs[0] == FID_PSCI_CPU_ON
&& Rec (target_rec) .flags.runnable == RUNNABLE)
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_ALREADY ON))
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 139

A-bet0 Non-confidential

Chapter B3. Realm Management Interface

B3.3. RMI commands

ID Condition
on_success pre: (Rec (calling_rec) .gprs[0] == FID_PSCI_CPU_ON
&& Rec (target_rec).flags.runnable != RUNNABLE)
post: (Rec(target_rec) .gprs[0] == Rec(calling_rec) .gprs[2]
&& Rec (target_rec) .gprs[l] == Zeros()
&& Rec (target_rec) .gprs[2] == Zeros()
&& Rec (target_rec) .gprs[3] == Zeros()
&& Rec (target_rec) .gprs[4] == Zeros()
&& Rec(target_rec) .gprs[5] == Zeros()
&& Rec (target_rec) .gprs[6] == Zeros()
&& Rec (target_rec) .gprs[7] == Zeros()
&& Rec(target_rec) .gprs([8] == Zeros()
&& Rec (target_rec) .gprs[9] == Zeros()
&& Rec(target_rec) .gprs[10] == Zeros()
&& Rec(target_rec) .gprs([ll] == Zeros()
&& Rec (target_rec) .gprs[l2] == Zeros/()
&& Rec(target_rec) .gprs([13] == Zeros()
&& Rec (target_rec) .gprs[l4] == Zeros()
&& Rec (target_rec) .gprs[l5] == Zeros()
&& Rec (target_rec) .gprs[l6] == Zeros|()
&& Rec (target_rec) .gprs[1l7] == Zeros()
&& Rec (target_rec) .gprs[1l8] == Zeros/()
&& Rec (target_rec) .gprs[19] == Zeros|()
&& Rec (target_rec) .gprs[20] == Zeros ()
&& Rec (target_rec) .gprs[21] == Zeros()
&& Rec (target_rec) .gprs[22] == Zeros|()
&& Rec (target_rec) .gprs[23] == Zeros ()
&& Rec (target_rec) .gprs[24] == Zeros /()
&& Rec (target_rec) .gprs[25] == Zeros ()
&& Rec (target_rec) .gprs[26] == Zeros/()
&& Rec (target_rec) .gprs[27] == Zeros /()
&& Rec (target_rec) .gprs[28] == Zeros ()
&& Rec (target_rec) .gprs[29] == Zeros/()
&& Rec (target_rec) .gprs[30] == Zeros /()
&& Rec (target_rec) .gprs[31] == Zeros()
&& Rec (target_rec).pc == Rec(calling_rec) .gprs[2]
&& Rec (target_rec) .flags.runnable == RUNNABLE
&& Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_SUCCESS))
affinity_on pre: (Rec(calling_rec) .gprs[0] == FID_PSCI_AFFINITY_INFO

affinity_off

&& Rec (target_rec) .flags.runnable == RUNNABLE)
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_SUCCESS))

pre: (Rec (calling_rec) .gprs[0] == FID_PSCI_AFFINITY_INFO
&& Rec (target_rec).flags.runnable != RUNNABLE)
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_OFF))

gprs (Rec(calling_rec) .gprs[l] == Zeros()
&& Rec(calling_rec) .gprs[2] == Zeros()
&& Rec(calling_rec) .gprs[3] == Zeros())
B3.3.7.4 Footprint
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 140

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID

Value

target_flags
target_gprs
target_pc
calling_pend
calling_gprs

Rec (target_rec) .flags

Rec (target_rec) .gprs

Rec (target_rec) .pc

Rec (calling_rec) .psci_pending

Rec (calling_rec) .gprs

DENO0137

A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.8 RMI_REALM_ACTIVATE command

Activates a Realm.
See also:

e A2.1 Realm
B3.3.8.1 Interface
B3.3.8.1.1 Input values

A-bet0

Non-confidential

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000157
rd X1 63:0 Address PA of the RD
B3.3.8.1.2 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
B3.3.8.2 Failure conditions
ID Condition
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PaIsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
realm_state pre: Realm(rd).state != NEW
post: ResultEqual (result, RMI_ERROR_REALM)
B3.3.8.2.1 Failure condition ordering
[rd_bound, rd_state] < [realm_state]
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 142

Chapter B3. Realm Management Interface
B3.3. RMI commands

| r--—-- - - - - - - ----=- == |
I | |
| I rd_bound |
I | |
| | — . _ _ _ _ _ _ _ _ _ — — — — 4
: RMI_ERROR_INPUT
,_ __________ -
| |
| realm_state !
| |
| |
| RMI_ERROR_REALM |
B3.3.8.3 Success conditions
ID Condition
realm_state Realm(rd) .state == ACTIVE
B3.3.8.4 Footprint
ID Value
realm_state Realm(rd) .state
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 143

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.9 RMI_REALM_CREATE command

Creates a Realm.
See also:

e A2.1 Realm

* A2.1.6 Realm parameters

e B3.3.10 RMI_REALM_DESTROY command
e DI1.2.1 Realm creation flow

B3.3.9.1 Interface
B3.3.9.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000158
rd X1 63:0 Address PA of the RD
params_ptr X2 63:0 Address PA of Realm parameters

B3.3.9.1.2 Context
The RMI_REALM_CREATE command operates on the following context.

Name Type Value Before Description

params RmiRealmParams RealmParams (params_ptr) false Realm parameters

B3.3.9.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.9.2 Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_bound pre: !PalsDelegable (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_pas pre: Granule (params_ptr) .pas != NS
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 144
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
hash_valid pre: !RmiHashAlgorithmIsValid (
ReadMemory (
params_ptr,
__OFFSETOF (RmiRealmParams, hash_algo),
__SIZEOF (RmiRealmParams, hash_algo)))
post: ResultEqual (result, RMI_ERROR_INPUT)
haﬂLjupp pre: 'RmiHashAlgorithmIsSupported (params.hash_algo)
post: ResultEqual (result, RMI_ERROR_INPUT)
alias pre: AddrInRange(rd, params.rtt_base,
(params.rtt_num_start - 1) » RMM_GRANULE_SIZE)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_align pre: !AddrIsAligned(params.rtt_base,
params.rtt_num_start * RMM_GRANULE_SIZE)
post: ResultEqual (result, RMI_ERROR_INPUT)
feat_valid pre: !RmiFeatureRegister0IsvValid(
ReadMemory (
params_ptr,
_ OFFSETOF (RmiRealmParams, features_0),
_ SIZEOF (RmiRealmParams, features_0)))
post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_num_level pre: !RttConfigIsValid/(
params. features_0.S2SZ,
params.rtt_level_start, params.rtt_num_start)
post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_state pre: 'RttsStateEqual (
params.rtt_base, params.rtt_num_start, DELEGATED)
post: ResultEqual (result, RMI_ERROR_INPUT)
vmid_valid pre: !VmidIsValid(params.vmid) || !VmidIsFree (params.vmid)
post: ResultEqual (result, RMI_ERROR_INPUT)

B3.3.9.2.1 Failure condition ordering
The RMI_REALM_CREATE command does not have any failure condition orderings.

B3.3.9.3 Success conditions

ID Condition
rd_state Granule (rd) .state == RD
realm_state Realm(rd) .state == NEW

DENO0137

A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

145

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
rec_index Realm(rd) .rec_index == 0
rtt_base Realm(rd) .rtt_base == params.rtt_base
rtt_state RttsStateEqual (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start, RTT)
rtte_states RttsAllEntriesState (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start,
UNASSIGNED)
rtte_ripas RttsAllEntriesRipas (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start,
EMPTY)
ipa_width Realm(rd) .ipa_width == params.features_0.S25%
hash_algo Equal (Realm(rd) .hash_algo, params.hash_algo)
rim Realm(rd) .measurements[0] == RimInit (
Realm(rd) .hash_algo, params)
rem (Realm(rd) .measurements[1l] == Zeros /()
&& Realm(rd) .measurements[2] == Zeros()
&& Realm(rd) .measurements[3] == Zeros ()
&& Realm(rd) .measurements[4] == Zeros())
rtt_level Realm(rd) .rtt_level_start == params.rtt_level_start
rtt_num Realm(rd) .rtt_num_start == params.rtt_num_start
vmid Realm(rd) .vmid == params.vmid
pv Realm(rd) .rpv == params.rpv
B3.3.9.4 RMI_REALM CREATE initialization of RIM
On successful execution of RMI_REALM_CREATE, the initial RIM value of the target Realm is calculated by the
RMM as follows:
1. Allocate a zero-filled RmiRealmParams data structure to hold the measured Realm parameters.
2. Copy the following attributes from the Host-provided RmiRealmParams data structure into the measured
Realm parameters data structure:
* hash_algo
e features_0
3. Using the RHA of the target Realm, compute the hash of the measured Realm parameters data structure. Set
the RIM of the target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size
of the RIM.
See also:
e A7.1.1 Realm Initial Measurement
* B2.38 Rimlinit function
* B3.4.10 RmiRealmParams type
B3.3.9.5 Footprint
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 146

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Value
rd_state Granule (rd) .state
rtt_state RttsGranuleState(Realm(rd) .rtt_base,

Realm(rd) .rtt_num_start)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 147
A-bet0 Non-confidential

Chapter B3. Realm Management Interface

B3.3. RMI commands

B3.3.10 RMI_REALM_DESTROY command

Destroys a Realm.
See also:

e A2.1 Realm

e B3.3.9 RMI_REALM_CREATE command
* DI1.2.5 Realm destruction flow

B3.3.10.1 Interface

B3.3.10.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000159
rd X1 63:0 Address PA of the RD

B3.3.10.1.2 Context

The RMI_REALM_DESTROY command operates on the following context.

Name Type Value Before Description
realm RmmRealm Realm(rd) true Realm
B3.3.10.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B3.3.10.2 Failure conditions

ID Condition
rd_align pre: !AddrIsGranuleAligned (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD

post: ResultEqual (result, RMI_ERROR_INPUT)
realm_live pre: RealmIsLive (rd)

post: ResultEqual (result, RMI_ERROR_IN_USE)

B3.3.10.2.1 Failure condition ordering

DENO0137
A-bet0

Non-confidential

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

148

Chapter B3. Realm Management Interface
B3.3. RMI commands

[rd_bound, rd_state] < [realm_live]

B3.3.10.3 Success conditions

ID Condition

rtt_state RttsStateEqual (
realm.rtt_lbase, realm.rtt_num_start, DELEGATED)

rd_state Granule (rd) .state == DELEGATED

vmid VmidIsFree (realm.vmid)

B3.3.10.4 Footprint

ID Value
rd_state Granule (rd) .state
rtt_state RttsGranuleState (

realm.rtt_base, realm.rtt_num_start)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 149
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.11 RMI_REC_AUX_COUNT command
Get number of auxiliary Granules required for a REC.
See also:
e A2.3 Realm Execution Context
e B3.3.12 RMI_REC_CREATE command
* B3.4.17 RmiRecParams type
* DI1.2.4 REC creation flow
B3.3.11.1 Interface
B3.3.11.1.1 Input values
Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000167
rd X1 63:0 Address PA of the RD for the target Realm
B3.3.11.1.2 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
aux_count X1 63:0 Ulnt64 Number of auxiliary Granules
required for a REC
B3.3.11.2 Failure conditions
ID Condition
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
B3.3.11.2.1 Failure condition ordering
The RMI_REC_AUX_COUNT command does not have any failure condition orderings.
B3.3.11.3 Success conditions
ID Condition
aux_count aux_count == RecAuxCount (rd)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 150
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.11.4 Footprint
The RMI_REC_AUX_COUNT command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 151
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.12 RMI_REC_CREATE command
Creates a REC.
See also:

e A2.3 Realm Execution Context

e A2.3.3 REC index and MPIDR value

e B3.3.11 RMI REC_AUX_COUNT command
e B3.3.13 RMI_REC_DESTROY command

e DI1.2.4 REC creation flow

B3.3.12.1 Interface
B3.3.12.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC400015A

rec X1 63:0 Address PA of the target REC

rd X2 63:0 Address PA of the RD for the target Realm
params_ptr X3 63:0 Address PA of REC parameters

B3.3.12.1.2 Context
The RMI_REC_CREATE command operates on the following context.

Name Type Value Before Description
realm RmmRealm Realm(rd) true Realm

params RmiRecParams RecParams (params_ptr) false REC parameters
rec_index Ulnt64 Realm(rd) .rec_index true REC index

B3.3.12.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.12.2 Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_bound pre: !PalsDelegable (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 152
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
params_pas pre: Granule (params_ptr).pas != NS
post: ResultEqual (result, RMI_ERROR_INPUT)
rec_align pre: !AddrIsGranuleAligned(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
rec_bound pre: !PalsDelegable(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
rec_state pre: Granule(rec).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
realm_state pre: realm.state != NEW
post: ResultEqual (result, RMI_ERROR_REALM)
mpidr_valid pre: !RmiRecMpidrIsvValid(
ReadMemory (
params_ptr,
__OFFSETOF (RmiRecParams, mpidr),
__SIZEOF (RmiRecParams, mpidr)))
post: ResultEqual (result, RMI_ERROR_INPUT)
mpidr_index pre: RecIndex(params.mpidr) != realm.rec_index
post: ResultEqual (result, RMI_ERROR_INPUT)
num_aux pre: params.num_aux != RecAuxCount (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
aux_align pre: !RecAuxAligned (params.aux, params.num_aux)
post: ResultEqual (result, RMI_ERROR_INPUT)
aux_alias pre: RecAuxAlias(rec, params.aux, params.num_aux)
post: ResultEqual (result, RMI_ERROR_INPUT)
aux_state pre: 'RecAuxStateEqual (
params.aux, params.num_aux, DELEGATED)
post: ResultEqual (result, RMI_ERROR_INPUT)
flags_valid pre: !RmiRecCreateFlagsIsValid(
ReadMemory (
params_ptr,
__OFFSETOF (RmiRecParams, flags),
__SIZEOF (RmiRecParams, flags)))
post: ResultEqual (result, RMI_ERROR_INPUT)

B3.3.12.2.1 Failure condition ordering

[rd_bound, rd_state]

< [realm_state]

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Non-confidential

153

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.12.3 Success conditions

ID Condition
rec_index Realm(rd) .rec_index == rec_index + 1
rec_gran_state Granule (rec) .state == REC
rec_owner Rec (rec) .owner == rd
rec_attest Rec(rec) .attest_state == NO_ATTEST_IN_PROGRESS
rec_mpidr MpidrEqual (Rec (rec) .mpidr, params.mpidr)
rec_state Rec(rec) .state == READY
runnable pre: params.flags.runnable == RMI_RUNNABLE
post: Rec(rec).flags.runnable == RUNNABLE
not_runnable pre: params.flags.runnable == RMI_NOT_RUNNABLE
post: Rec(rec).flags.runnable == NOT_RUNNABLE
rec_gprs (Rec(rec) .gprs[0] == params.gprs[0]
&& Rec(rec) .gprs[l] == params.gprs[1l]
&& Rec(rec) .gprs[2] == params.gprs[2]
&& Rec(rec) .gprs[3] == params.gprs[3]
&& Rec(rec) .gprs[4] == params.gprs([4]
&& Rec (rec) .gprs[5] == params.gprs[5]
&& Rec(rec) .gprs[6] == params.gprs[6]
&& Rec(rec) .gprs[7] == params.gprs[7]
&& Rec(rec) .gprs[8] == Zeros()
&& Rec(rec) .gprs[9] == Zeros()
&& Rec(rec) .gprs[10] == Zeros()
&& Rec(rec) .gprs[ll] == Zeros()
&& Rec(rec) .gprs[l2] == Zeros()
&& Rec(rec) .gprs[1l3] == Zeros()
&& Rec(rec) .gprs[l14] == Zeros()
&& Rec(rec) .gprs[1l5] == Zeros()
&& Rec(rec) .gprs[l6] == Zeros()
&& Rec(rec) .gprs[l1l7] == Zeros()
&& Rec(rec) .gprs[1l8] == Zeros()
&& Rec(rec) .gprs[1l9] == Zeros()
&& Rec(rec) .gprs[20] == Zeros()
&& Rec(rec) .gprs[21] == Zeros()
&& Rec(rec) .gprs[22] == Zeros()
&& Rec(rec) .gprs[23] == Zeros()
&& Rec(rec) .gprs[24] == Zeros()
&& Rec(rec) .gprs[25] == Zeros()
&& Rec(rec) .gprs[26] == Zeros()
&& Rec(rec) .gprs[27] == Zeros()
&& Rec(rec) .gprs[28] == Zeros()
&& Rec(rec) .gprs[29] == Zeros()
&& Rec(rec) .gprs[30] == Zeros()
&& Rec(rec) .gprs[31] == Zeros())
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 154

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID

Condition

rec_pc

rim

rec_aux

Rec (rec) .pc == params.pcC

Realm(rd) .measurements[0] == RimExtendRec (
realm, params)

RecAuxEqual (
Rec (rec) .aux, params.aux,
RecAuxCount (rd))

rec_aux_state RecAuxStateEqual (

ripas_addr
ripas_top

host_call

Rec (rec) .aux, RecAuxCount (rd), REC_AUX)
Rec (rec) .ripas_addr == Zeros()
Rec (rec) .ripas_top == Zeros ()

Rec (rec) .host_call_pending == NO_HOST_CALL_PENDING

B3.3.12.4 RMI_REC_CREATE extension of RIM

On successful execution of RMI_REC_CREATE, the new RIM value of the target Realm is calculated by the
RMM as follows:

1.
2.

Allocate a zero-filled RmiRecParams data structure to hold the measured REC parameters.

Copy the following attributes from the Host-provided RmiRecParams data structure into the measured REC
parameters data structure:

gprs
pc
flags

Using the RHA of the target Realm, compute the hash of the measured REC parameters data structure.

Allocate an RmmMeasurementDescriptorRec data structure.

. Populate the measurement descriptor:

Set the desc_type field to the descriptor type.

Set the len field to the descriptor length.

Set the rim field to the current RIM value of the target Realm.

Set the content field to the hash of the measured REC parameters.

. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the

target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.

See also:

e A7.1.1 Realm Initial Measurement

¢ B2.36 RimExtendRec function

e B3.4.17 RmiRecParams type

e C1.6 RmmMeasurementDescriptorRec type

B3.3.12.5 Footprint

ID

Value

rec_index

DENO0137
A-bet0

Realm(rd) .rec_index

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 155
Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Value
rec_state Granule (rec) .state
rec_aux_state RecAuxStates (Rec (rec) .aux,

RecAuxCount (rd))

rim Realm(rd) .measurements[0]

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 156
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.13 RMI_REC_DESTROY command
Destroys a REC.
See also:

e A2.3 Realm Execution Context
e B3.3.12 RMI_REC_CREATE command
e DI1.2.5 Realm destruction flow

B3.3.13.1 Interface
B3.3.13.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC400015B
rec X1 63:0 Address PA of the target REC

B3.3.13.1.2 Context
The RMI_REC_DESTROY command operates on the following context.

Name Type Value Before Description
rd Address Rec (rec) .owner true RD address
rec_obj RmmRec Rec (rec) true REC

B3.3.13.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.13.2 Failure conditions

ID Condition

rec_align pre: !AddrIsGranuleAligned(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_bound pre: !PalsDelegable(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_gran_state pre: Granule(rec).state != REC
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_state pre: Rec(rec).state == RUNNING
post: ResultEqual (result, RMI_ERROR_IN_USE)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 157
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.13.2.1 Failure condition ordering

[rec_bound, rec_gran_state] < [rec_state]

B3.3.13.3 Success conditions

ID Condition
rec_gran_state Granule (rec) .state == DELEGATED
rec_aux_state RecAuxStateEqual (
rec_obj.aux, RecAuxCount (rd), DELEGATED)
B3.3.13.4 Footprint

ID Value

rec_state Granule (rec) .state

rec_aux_state RecAuxStates (rec_obj.aux, RecAuxCount (rd))

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 158

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.14 RMI_REC_ENTER command

Enter a REC.
See also:

e A2.3 Realm Execution Context
* Chapter A4 Realm exception model
* D1.3.1 Realm entry and exit flow

B3.3.14.1 Interface
B3.3.14.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC400015C
rec X1 63:0 Address PA of the target REC
run_ptr X2 63:0 Address PA of RecRun object

B3.3.14.1.2 Context

The RMI_REC_ENTER command operates on the following context.

Name Type Value Before Description
run RmiRecRun RecRun (run_ptr) false RecRun object
B3.3.14.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B3.3.14.2 Failure conditions

ID Condition
run_align pre: !AddrIsGranuleAligned (run_ptr)

post: ResultEqual (result, RMI_ERROR_INPUT)
run_bound pre: !PalIsDelegable (run_ptr)

post: ResultEqual (result, RMI_ERROR_INPUT)
run_pas pre: Granule(run_ptr).pas != NS

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_align pre: !AddrIsGranuleAligned(rec)

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_bound pre: !PalsDelegable(rec)

post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 159

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rec_gran_state pre: Granule(rec).state != REC
post: ResultEqual (result, RMI_ERROR_INPUT)

realm_new pre: Realm(Rec(rec) .owner).state == NEW
post: ResultEqual (result, RMI_ERROR_REALM, O0)

system_off pre: Realm(Rec(rec).owner).state == SYSTEM_OFF
post: ResultEqual (result, RMI_ERROR_REALM, 1)

rec_state pre: Rec(rec).state == RUNNING
post: ResultEqual (result, RMI_ERROR_IN_USE)

rec_runnable pre: Rec(rec).flags.runnable == NOT_RUNNABLE
post: ResultEqual (result, RMI_ERROR_REC)

rec_mmio pre: (run.entry.flags.emul_mmio == RMI_EMULATED_MMIO
&& Rec (rec) .emulatable_abort != EMULATABLE_ABORT)
post: ResultEqual (result, RMI_ERROR_REC)

rec_gicv3 pre: !Gicv3ConfigIsValid(
run.entry.gicv3_hcr, run.entry.gicv3_1rs)
post: ResultEqual (result, RMI_ERROR_REC)

rec_psci pre: Rec(rec).psci_pending == PSCI_REQUEST_PENDING
post: ResultEqual (result, RMI_ERROR_REC)

B3.3.14.2.1 Failure condition ordering

[rec_bound, rec_gran_state] < [rec_state, rec_runnable, rec_mmio, realm_ new,
—system_off, rec_gicv3, rec_psci]

B3.3.14.3 Success conditions

ID Condition
rec_exit run.exit contains Realm exit syndrome information.
rec_emul_abt rec.emulatable_abort is updated.

B3.3.14.4 Footprint

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

160

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Value
emul_abt Rec (rd) .emulatable_abort
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 161

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.15 RMI_RTT_CREATE command
Creates an RTT.
See also:

e AS5.5 Realm Translation Table
e AS5.5.7 RTT unfolding

e B3.3.16 RMI_RTT_DESTROY command
e B3.3.17 RMI_RTT_FOLD command

B3.3.15.1 Interface
B3.3.15.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC400015D
rtt X1 63:0 Address PA of the target RTT
rd X2 63:0 Address PA of the RD for the target Realm
ipa X3 63:0 Address Base of the IPA range described by the
RTT
level X4 63:0 Int64 RTT level
B3.3.15.1.2 Context
The RMI_RTT_CREATE command operates on the following context.
Name Type Value Before Description
walk RmmRttWalkResult ~ RttwWalk (false RTT walk result
rd, ipa,
level - 1)
entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)
unfold RmmRttEntry RttWalk (true RTTE before
rd, ipa, command execution
level - 1) .entry
B3.3.15.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B3.3.15.2 Failure conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Non-confidential

162

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !'PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

level_bound pre: (!RttLevelIsValid(rd, level)
|| RttLevellIsStarting(rd, level))
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: Ulnt (ipa) >= (2 ~ Realm(rd).ipa_width)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_align pre: !AddrIsGranuleAligned(rtt)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_bound pre: !PalsDelegable(rtt)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_state pre: Granule(rtt).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level - 1
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state == TABLE
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.15.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

B3.3.15.3 Success conditions

ID Condition
rtt_state Granule (rtt) .state == RTT
rtte_state walk.entry.state == TABLE
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 163

A-bet0 Non-confidential

Chapter B3. Realm Management Interface

B3.3. RMI commands

ID Condition
rtte_addr walk.entry.addr == rtt
rtte_c_ripas RttAllEntriesRipas (Rtt (rtt), unfold.ripas)
rtte_c_state RttAllEntriesState (Rtt (rtt), unfold.state)
rtte_c_addr pre: (unfold.state != UNASSIGNED
&& unfold.state != DESTROYED)
post: RttAllEntriesContiguous (Rtt (rtt), unfold.addr, level)
B3.3.15.4 Footprint

ID Value

rtt_state Granule (rtt) .state

rtte RttEntry (walk.rtt_addr, entry_idx)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 164

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.16 RMI_RTT_DESTROY command

DENO0137
A-bet0

Destroys an RTT.
See also:

e AS5.5 Realm Translation Table

e AS5.5.9 RTT destruction

e B3.3.15 RMI_RTT_CREATE command
e B3.3.17 RMI_RTT_FOLD command

B3.3.16.1 Interface
B3.3.16.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC400015E

rtt X1 63:0 Address PA of the target RTT

rd X2 63:0 Address PA of the RD for the target Realm

ipa X3 63:0 Address Base of the IPA range described by the
RTT

level X4 63:0 Int64 RTT level

In addition to the ipa and 1evel input values which identify the target RTTE, the RMI_RTT_DESTROY command
also takes the rtt address as an input value. The reason for this is to enable concurrent RTT modification from
different Host threads.

As an example, consider a parent RTT, within which the entry for IPA x points to a child RTT c1. Host thread A
destroys the child RTT at IPA x (c1) and replaces it with a new child RTT c2. Host thread B wishes to destroy the
child RTT at IPA x.

In a traditional hypervisor; atomic check-and-modify behavior could be achieved through the use of fine-grained
locking, for example:

spin_lock (x);

pte = read_pte (x);

if (extract_output_address(pte) != cl) {
ret = ERROR;
goto unlock;

}

write_pte(x, NULL); // Clear table entry

unlock:
spin_unlock (x);

A naive RMM equivalent would be:

spin_lock (x);

pte = RMI_RTT_READ(..., ipa=x);

if (extract_output_address(pte) != cl) {
ret = ERROR;
goto unlock;

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 165
Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ret = RMI_RTT_DESTROY (..., ipa=x);
unlock:
spin_unlock (x);

However, because execution of each RMI command may take a significant number of cycles, it may not be practical
for the Host to hold a lock across this sequence.

By passing the expected RTT address as an input value to the RMI_RTT_DESTROY command, detection of an
unexpected output address can be deferred to the RMM, and the Host-side locks can be removed:

RMI_RTT_DESTROY (..., ipa=x, rtt=cl);

B3.3.16.1.2 Context
The RMI_RTT_DESTROY command operates on the following context.

Name Type Value Before Description
walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,

level - 1)
entry_idx Ulnt64 RttEntryIndex (false RTTE index

ipa, walk.level)

B3.3.16.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.16.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

level _bound pre: (!RttLevellIsValid(rd, level)
|| RttLevellIsStarting(rd, level))
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: Ulnt(ipa) >= (2 *~ Realm(rd) .ipa_width)

post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 166
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rtt_walk pre: walk.level < level - 1
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != TABLE
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_addr pre: walk.entry.addr != rtt
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtt_live pre: RttIsLive (Rtt (rtt))
post: ResultEqual (result, RMI_ERROR_IN_USE)

B3.3.16.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state, rtte_addr]
[rtt_walk, rtte_state] < [rtt_live]
[level_bound, ipa_bound] < [rtt_walk, rtte_state, rtte_addr]

f [
| | I
: rtte_addr I : I
|
! 1 _____________ — 1
|
| RMI_%»ROR_RTT :
[|
| |
| |
| |
| |

RMI_ERROR_IN_USE

B3.3.16.3 Success conditions

ID Condition
rtte_state walk.entry.state == DESTROYED
rtt_state Granule (rtt) .state == DELEGATED

B3.3.16.4 Footprint

ID Value
rtt_state Granule (rtt) .state
rtte RttEntry(walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 167

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.17 RMI_RTT_FOLD command

Destroys a homogeneous RTT.
See also:

e AS5.5 Realm Translation Table
e AS5.5.6 RTT folding

e B3.3.15 RMI_RTT_CREATE command
e B3.3.16 RMI_RTT_DESTROY command

B3.3.17.1 Interface
B3.3.17.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000166
rtt X1 63:0 Address PA of the target RTT
rd X2 63:0 Address PA of the RD for the target Realm
ipa X3 63:0 Address Base of the IPA range described by the
RTT
level X4 63:0 Int64 RTT level
B3.3.17.1.2 Context
The RMI_RTT_FOLD command operates on the following context.
Name Type Value Before Description
walk RmmRttWalkResult RttwWalk (false RTT walk result
rd, ipa,
level - 1)
entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)
fold RmmRttEntry RttFold (Rtt (rtt)) true Result of folding
RTT
B3.3.17.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B3.3.17.2 Failure conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Non-confidential

168

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !'PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

level_bound pre: (!RttLevelIsValid(rd, level)
|| RttLevellIsStarting(rd, level))
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: Ulnt (ipa) >= (2 ~ Realm(rd).ipa_width)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level - 1
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != TABLE
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_addr pre: walk.entry.addr != rtt
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtt_homo pre: 'RttIsHomogeneous (Rtt (rtt))
post: ResultEqual (result, RMI_ERROR_IN_USE)

B3.3.17.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state, rtte_addr]
[rtt_walk, rtte_state] < [rtt_homo]
[level_bound, ipa_bound] < [rtt_walk, rtte_state, rtte_addr]

! ~
| | I
: rtte_addr I : I
|
: 1 _____________ —___h
I RMI_%»ROR_RTT :
[|
G
| |
| |
| |

RMI_ERROR_IN_USE

B3.3.17.3 Success conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 169
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
rtte_state walk.entry.state == fold.state
rtte_addr pre: (fold.state != UNASSIGNED
&& fold.state != DESTROYED)
post: walk.entry.addr == fold.addr
rtte_attr pre: fold.state == VALID_NS
post: (walk.entry.MemAttr == fold.MemAttr && walk.entry.S2AP == fold
—.S2AP && walk.entry.SH == fold.SH)
rtt_state Granule (rtt) .state == DELEGATED
B3.3.17.4 Footprint
ID Value
rtt_state Granule (rtt) .state
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 170

A-bet0 Non-confidential

Chapter B3. Realm Management Interface

B3.3. RMI commands

B3.3.18 RMI_RTT_INIT_RIPAS command
Set the RIPAS of a target IPA range to RAM, for a Realm in the NEW state.

See also:

e AS5.2.2 Realm IPA state
* D1.2.3 Initialize memory of New Realm flow

B3.3.18.1

Interface

B3.3.18.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xc4000168

rd X1 63:0 Address PA of the RD for the target Realm
ipa X2 63:0 Address IPA

level X3 63:0 Int64 RTT level

B3.3.18.1.2 Context

The RMI_RTT_INIT_RIPAS command operates on the following context.

Name Type Value Before Description
realm RmmRealm Realm(rd) true Realm
walk RmmRttWalkResult RttWalk (rd, ipa, level) false RTT walk result
entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)
B3.3.18.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
B3.3.18.2 Failure conditions
ID Condition
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 171

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

level _bound pre: !RttlLevellIsValid(rd, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: !AddrIsProtected(ipa, realm)
post: ResultEqual (result, RMI_ERROR_INPUT)

realm_state pre: realm.state != NEW
post: ResultEqual (result, RMI_ERROR_REALM)

rtt_walk pre: walk.level < level
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != UNASSIGNED
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.18.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state]
[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

B3.3.18.3 Success conditions

ID Condition
rtte_ripas walk.entry.ripas == RAM
rim Realm(rd) .measurements[0] == RimExtendRipas (

realm, ipa, level)

B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

On successful execution of RMI_RTT_INIT_RIPAS, the new RIM value of the target Realm is calculated by the
RMM as follows:

1. Allocate an RmmMeasurementDescriptorRipas data structure.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 172
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

2. Populate the measurement descriptor:

* Set the desc_type field to the descriptor type.
* Set the len field to the descriptor length.

* Set the ipa field to the IPA value

* Set the level field to the RTT level.

3. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.

See also:

* A7.1.1 Realm Initial Measurement
* B2.37 RimExtendRipas function
* C1.7 RmmMeasurementDescriptorRipas type

B3.3.18.5 Footprint

ID Value
rtte_ripas RttEntry (walk.rtt_addr, entry_idx) .ripas
rim Realm(rd) .measurements[0]
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 173

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.19 RMI_RTT_MAP_UNPROTECTED command

DENO0137
A-bet0

Creates a mapping from an Unprotected IPA to a Non-secure PA.
See also:

e AS5.5 Realm Translation Table
e B3.3.22 RMI RTT _UNMAP_UNPROTECTED command

B3.3.19.1 Interface
B3.3.19.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xc400015F

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address IPA at which the Granule will be
mapped in the target Realm

level X3 63:0 Int64 RTT level

desc X4 63:0 Bits64 RTTE descriptor

The layout and encoding of fields in the desc input value match “Attribute fields in stage 2 VMSAv8-64 Block
and Page descriptors” in Arm Architecture Reference Manual for Armv8-A architecture profile [3].

See also:

* Arm Architecture Reference Manual for Armv8-A architecture profile [3]
e AS5.5.11 RTT entry attributes
* B2.51 RttDescriptorlsValidForUnprotected function

B3.3.19.1.2 Context
The RMI_RTT_MAP_UNPROTECTED command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa, level)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

rtte RmmRttEntry RttEntryFromDescriptor false RTT entry
—desc)

B3.3.19.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.19.2 Failure conditions

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 174
Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

attr_valid pre: !RttDescriptorIsValidForUnprotected (desc)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

level bound pre: !RttlLevellIsBlockOrPage (rd, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

addr_align pre: !AddrIsRttLevelAligned(rtte.addr, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned (ipa, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: (UInt(ipa) >= (2 ~ Realm(rd).ipa_width)
| | AddrIsProtected(ipa, Realm(rd)))
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: (walk.entry.state != UNASSIGNED
&& walk.entry.state != DESTROYED)
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.19.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

B3.3.19.3 Success conditions

ID Condition
rtte_state walk.entry.state == VALID_NS
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 175

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

rtte_contents (walk.entry.MemAttr == rtte.MemAttr
&& walk.entry.S2AP == rtte.S2AP
&& walk.entry.SH == rtte.SH
&& walk.entry.addr == rtte.addr)

B3.3.19.4 Footprint

1D Value
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 176

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.20 RMI_RTT_READ_ENTRY command

DENO0137
A-bet0

Reads an RTTE.
See also:

* AS.5 Realm Translation Table
B3.3.20.1 Interface
B3.3.20.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000161

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address Realm Address for which to read the
RTTE

level X3 63:0 Int64 RTT level at which to read the RTTE

B3.3.20.1.2 Context
The RMI_RTT_READ_ENTRY command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa, level)

rtte RmmRttEntry RttEntryFromDescriptor (false RTT entry
—desc)

B3.3.20.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

walk_level X1 63:0 Ulnt64 RTT level reached by the RTT walk
state X2 7:0 RmiRttEntryState State of RTTE reached by the walk
desc X3 63:0 Bits64 RTTE descriptor

ripas X4 7:0 RmiRipas RIPAS of RTTE reached by the walk

Unused bits of RMI_RTT_READ_ENTRY output values must be zero.

The layout and encoding of fields in the rtte output value match “Attribute fields in stage 2 VMSAv8-64 Block
and Page descriptors” in Arm Architecture Reference Manual for Armv8-A architecture profile [3].

See also:

* Arm Architecture Reference Manual for Armv8-A architecture profile [3]
e AS5.5.11 RTT entry attributes

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 177
Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.20.2 Failure conditions

ID Condition
rd_align pre: !AddrIsGranuleAligned(rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD

post: ResultEqual (result, RMI_ERROR_INPUT)
level _bound pre: !RttlLevellIsValid(rd, level)

post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_align pre: !AddrIsRttLevelAligned (ipa, level)

post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_bound pre: Ulnt(ipa) >= (2 *~ Realm(rd) .ipa_width)

post: ResultEqual (result, RMI_ERROR_INPUT)

B3.3.20.2.1 Failure condition ordering

The RMI_RTT_READ_ENTRY command does not have any failure condition orderings.

B3.3.20.3 Success conditions

ID

state_invalid

state_prot

state_unprot

ripas_unprot

Condition
pre: (walk.entry.state == UNASSIGNED
|| walk.entry.state == DESTROYED)
post: X3 == Zeros|()
pre: (walk.entry.state == ASSIGNED
|| walk.entry.state == TABLE)
post: (rtte.MemAttr == Zeros()
&& rtte.S2AP == Zeros ()
&& rtte.SH == Zeros()
&& rtte.addr == walk.entry.addr)
pre: walk.entry.state == VALID_NS
post: (rtte.MemAttr == walk.entry.MemAttr
&& rtte.S2AP == walk.entry.S2AP
&& rtte.SH == walk.entry.SH
&& rtte.addr == walk.entry.addr)
pre: (!'AddrIsProtected(ipa, Realm(rd))

post:

|| (walk.entry.state != UNASSIGNED
&& walk.entry.state != ASSIGNED))
X4 == Zeros|()

B3.3.20.4 Footprint

The RMI_RTT_READ_ENTRY command does not have any footprint.

DENO0137

A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

178

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.21 RMI_RTT_SET_RIPAS command
Completes a request made by the Realm to change the RIPAS of a target IPA range.

See also:

e AS5.4 RIPAS change
B3.3.21.1 Interface

B3.3.21.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000169

rd X1 63:0 Address PA of the RD for the target Realm
rec X2 63:0 Address PA of the target REC

ipa X3 63:0 Address IPA

level X4 63:0 Int64 RTT level

ripas X5 7:0 RmiRipas RIPAS value

Unused bits of RMI_RTT_SET_RIPAS input values must be zero.

B3.3.21.1.2 Context

The RMI_RTT_SET_RIPAS command operates on the following context.

Name Type Value Before Description
walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa, level)
entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)
ripas_addr Address Rec (rec) .ripas_addr true Target address
B3.3.21.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B3.3.21.2 Failure conditions

ID Condition

rd_align pre:
post:

'AddrIsGranuleAligned (rd)

ResultEqual (result,

RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

A-bet0

179

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition
rd_bound pre: !PalsDelegable (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD

post: ResultEqual (result, RMI_ERROR_INPUT)
level_bound pre: !RttLevelIsValid(rd, level)

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_align pre: !AddrIsGranuleAligned(rec)

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_bound pre: !PaIsDelegable (rec)

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_gran_state pre: Granule(rec) .state != REC

post: ResultEqual (result, RMI_ERROR_INPUT)
rec_state pre: Rec(rec).state == RUNNING

post: ResultEqual (result, RMI_ERROR_IN_USE)
rec_owner pre: Rec (rec) .owner != rd

post: ResultEqual (result, RMI_ERROR_REC)
ipa_align pre: !AddrIsRttLevelAligned (ipa, level)

post: ResultEqual (result, RMI_ERROR_INPUT)
ripas_valid pre: !RmiRipasIsValid(X5[31:0])

post: ResultEqual (result, RMI_ERROR_INPUT)
target_addr pre: ipa != Rec(rec).ripas_addr

post: ResultEqual (result, RMI_ERROR_INPUT)
target_bound pre: ((UInt(ipa) + RttLevelSize(level)) > UInt (Rec(rec).ripas_top))

post: ResultEqual (result, RMI_ERROR_INPUT)
tmgeLmeS pre: 'Equal (ripas, Rec(rec) .ripas_value)

post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_walk pre: walk.level < level

post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
rtte_state pre: (walk.entry.state != UNASSIGNED

&& walk.entry.state != ASSIGNED)
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

DENO0137
A-bet0

B3.3.21.2.1 Failure condition ordering

[rd_bound,
[rec_bound,

[target_addr,

rd_state]

<

[rtt_walk,

rec_gran_state] <

target_bound,

[rec_state,

level_bound]

<

rtte_state]

rec_owner)]
[rtt_walk,

rtte_state]

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

180

Chapter B3. Realm Management Interface
B3.3. RMI commands

‘
‘
‘
‘

B3.3.21.3 Success conditions

ID Condition
rtte_ripas Equal (walk.entry.ripas, ripas)
ripas_addr Rec (rec) .ripas_addr == ToAddress (
UInt (ripas_addr) + RttLevelSize (level))
B3.3.21.4 Footprint

ID Value

rtte RttEntry (walk.rtt_addr, entry_idx)

ripas_addr Rec (rec) .ripas_addr

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 181

A-bet0

Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command
Removes a mapping at an Unprotected IPA.
See also:

e AS5.5 Realm Translation Table
e B3.3.19 RMI RTT_MAP_UNPROTECTED command

B3.3.22.1 Interface
B3.3.22.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xc4000162

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address IPA at which the Granule is mapped in
the target Realm

level X3 63:0 Int64 RTT level

B3.3.22.1.2 Context
The RMI_RTT_UNMAP_UNPROTECTED command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa, level)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

B3.3.22.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B3.3.22.2 Failure conditions

1D Condition

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 182
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

ID Condition

level _bound pre: !RttlLevellIsBlockOrPage (rd, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level)
post: ResultEqual (result, RMI_ERROR_INPUT)

ipa_bound pre: Ulnt(ipa) >= (2 *~ Realm(rd) .ipa_width)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.entry.state != VALID_NS
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)

B3.3.22.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

B3.3.22.3 Success conditions

ID Condition

rtte_state walk.entry.state == UNASSIGNED

B3.3.22.4 Footprint

ID Value
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 183

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.3. RMI commands

B3.3.23 RMI_VERSION command

DENO0137
A-bet0

Returns RMI version.

B3.3.23.1 Interface
B3.3.23.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000150
B3.3.23.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmilnterfaceVersion Interface version

See also:

e B3.1 RMI version

B3.3.23.2 Failure conditions
The RMI_VERSION command does not have any failure conditions.

B3.3.23.3 Success conditions

The RMI_VERSION command does not have any success conditions.

B3.3.23.4 Footprint

The RMI_VERSION command does not have any footprint.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

184

Chapter B3. Realm Management Interface
B3.4. RMI types

B3.4 RMI types

This section defines types which are used in the RMI interface.

B3.4.1 RmiCommandReturnCode type
The RmiCommandReturnCode fieldset contains a return code from an RMI command.
The width of the RmiCommandReturnCode fieldset is 64 bits.
See also:
* Chapter Bl Commands

The fields of the RmiCommandReturnCode fieldset are shown in the following diagram.

| RESO |

~
=)

.131 16,15 8
| RESO | index status I

The fields of the RmiCommandReturnCode fieldset are shown in the following table.

Name Bits Description Value
status 7:0 Status of the command RmiStatusCode
index 15:8 Index which identifies the reason for a Ulnt8
command failure
63:16 Reserved Must be zero

B3.4.2 RmiDataFlags type
The RmiDataFlags fieldset contains flags provided by the Host during DATA Granule creation.
The width of the RmiDataFlags fieldset is 64 bits.

The fields of the RmiDataFlags fieldset are shown in the following diagram.

163 32,

| RESO I
D! 1,0,
| RESO | |
|_mea sure
The fields of the RmiDataFlags fieldset are shown in the following table.
Name Bits Description Value
measure 0:0 Whether to measure DATA Granule contents ~ RmiDataMeasureContent
63:1 Reserved Must be zero
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 185

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

B3.4.3 RmiDataMeasureContent type

The RmiDataMeasureContent enumeration represents whether to measure DATA Granule contents.
The width of the RmiDataMeasureContent enumeration is 1 bits.

The values of the RmiDataMeasureContent enumeration are shown in the following table.

Encoding Name Description
0 RMI_NO_MEASURE_CONTENT Do not measure DATA Granule contents.
1 RMI_MEASURE_CONTENT Measure DATA Granule contents.

B3.4.4 RmiEmulatedMmio type

The RmiEmulatedMmio enumeration represents whether the host has completed emulation for an Emulatable
Abort.

The width of the RmiEmulatedMmio enumeration is 1 bits.

The values of the RmiEmulatedMmio enumeration are shown in the following table.

Encoding Name Description
0 RMI_NOT_EMULATED_MMIO - Host has not completed emulation for an Emulatable Abort.
1 RMI_EMULATED_MMIO Host has completed emulation for an Emulatable Abort.

B3.4.5 RmiFeature type

The RmiFeature enumeration represents whether a feature is supported or enabled.
The width of the RmiFeature enumeration is 1 bits.

The values of the RmiFeature enumeration are shown in the following table.

Encoding < Name Description

0 RMI_NOT_SUPPORTED * During discovery: Feature is not supported.
* During selection: Feature is not enabled.

1 RMI_SUPPORTED * During discovery: Feature is supported.
* During selection: Feature is enabled.

B3.4.6 RmiFeatureRegister0 type

DENO0137
A-bet0

The RmiFeatureRegister0 fieldset contains feature register 0.
The width of the RmiFeatureRegister0 fieldset is 64 bits.
See also:

* A3.1 Realm feature discovery and selection
e B3.3.4 RMI FEATURES command

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 186
Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

The fields of the RmiFeatureRegisterO fieldset are shown in the following diagram.

63

32

RESO

31 30,29,28,27 23,22,21 18,17 14,13 10,9 ,8,7

{|RESO NUM WPS | NUM_BPS | SVE VL

5257

HASH SHA 512 L Lpmu EN sve ENJ LLPA2
HASH SHA 256 PMU_NUM_CTRS

The fields of the RmiFeatureRegisterO fieldset are shown in the following table.

Name Bits Description Value

S2S7 7:0 Specifies the input address size for stage 2 Ulnt8
translation to be 2 ~ s25z. Note this format
expresses the IPA width directly and is
therefore different from the VICR_EL2.T0SZ
encoding.

* During discovery: maximum Realm
IPA width supported by the RMM.

¢ During selection: requested Realm TPA
width.

LPA2 8:8 * During discovery: Whether LPA2 is RmiFeature

supported.
* During selection: Whether LPA2 is
enabled.

SVE_EN 9:9 * During discovery: Whether SVE is RmiFeature

supported.
* During selection: Whether SVE is
enabled.

SVE_VL 13:10 * During discovery: maximum SVE Ulnt4
vector length supported by the RMM.
The effective vector length supported by
the RMMis (SVE_VL + 1)=x128,
similar to the value of ZCR_ELx . LEN.
* During selection: requested SVE vector
length.

NUM_BPS 17:14 * During discovery: number of Ulnt4
breakpoints available.
* During selection: requested number of
breakpoints.

NUM_WPS 21:18 * During discovery: number of Ulnt4
watchpoints available.
* During selection: requested number of
watchpoints.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

187

Chapter B3. Realm Management Interface
B3.4. RMI types

Name Bits Description Value
PMU_EN 22:22 * During discovery: Whether PMU is RmiFeature
supported.
* During selection: Whether PMU is
enabled.
PMU_NUM_CTRS 27:23 ¢ During discovery: number of PMU Ulnt5

counters available.
* During selection: requested number of
PMU counters.

HASH_SHA_256 28:28 * During discovery: Whether SHA-256 is RmiFeature
supported.
* During selection: ignored.

HASH_SHA_512 29:29 * During discovery: Whether SHA-512'is RmiFeature
supported.
* During selection: ignored.

63:30 Reserved Must be zero

B3.4.7 RmiHashAlgorithm type

The RmiHashAlgorithm enumeration represents hash algorithm.
The width of the RmiHashAlgorithm enumeration is 8 bits.

The values of the RmiHashAlgorithm enumeration are shown in the following table.

Encoding Name Description
0 RMI_HASH_SHA_256 SHA-256 (Secure Hash Standard (SHS) [15])
1 RMI_HASH_SHA_512 SHA-512 (Secure Hash Standard (SHS) [15])

Unused encodings for the RmiHashAlgorithm enumeration are reserved for use by future versions of this
specification.

B3.4.8 RmilnjectSea type
The RmilnjectSea enumeration represents whether to inject a Synchronous External Abort into the Realm.
The width of the RmilnjectSea enumeration is 1 bits.

The values of the RmilnjectSea enumeration are shown in the following table.

Encoding Name Description
0 RMI_NO_INJECT_SEA Do not inject an SEA into the Realm.
1 RMI_INJECT_SEA Inject an SEA into the Realm.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 188

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

B3.4.9 RmilnterfaceVersion type
The RmilnterfaceVersion fieldset contains an RMI interface version.
The width of the RmilnterfaceVersion fieldset is 64 bits.
See also:

e B3.1 RMI version
e B3.3.23 RMI_VERSION command

The fields of the RmilnterfaceVersion fieldset are shown in the following diagram.

| RESO |

131,30 16,15 0,
: major minor ‘

LRrESe

The fields of the RmilnterfaceVersion fieldset are shown in the following table:

Name Bits Description Value
minor 15:0 Interface minor version number Ulnt16
major 30:16 Interface major version number Ulnt15

63:31 Reserved Must be zero

B3.4.10 RmiRealmParams type
The RmiRealmParams structure contains parameters provided by the Host during Realm creation.
The width of the RmiRealmParams structure is 4096 (0x1000) bytes.
See also:

* A2.1.6 Realm parameters
e B3.3.9 RMI REALM_CREATE command

The members of the RmiRealmParams structure are shown in the following table.

Name Byte offset Type Description

features_0 0x0 RmiFeatureRegister0 Feature register 0

hash_algo 0x100 RmiHashAlgorithm Algorithm used to measure the initial state
of the Realm

pv 0x400 Bits512 Realm Personalization Value

vmid 0x800 Bits16 Virtual Machine Identifier

rtt_base 0x808 Address Realm Translation Table base

rtt_level_start 0x810 Int64 RTT starting level

rtt_num_start 0x818 Ulnt32 Number of starting level RTTs

Unused bits of the RmiRealmParams structure should be zero.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 189
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

B3.4.11 RmiRecCreateFlags type
The RmiRecCreateFlags fieldset contains flags provided by the Host during REC creation.
The width of the RmiRecCreateFlags fieldset is 64 bits.

The fields of the RmiRecCreateFlags fieldset are shown in the following diagram.

1 63 32,

| RESO |

131 1,0,

‘ RESO | |
Lrunnable

The fields of the RmiRecCreateFlags fieldset are shown in the following table.

Name Bits Description Value
runnable 0:0 Whether REC is eligible for execution RmiRecRunnable
63:1 Reserved Must be zero

B3.4.12 RmiRecEntry type
The RmiRecEntry structure contains data passed from the Host to the RMM on REC entry.
The width of the RmiRecEntry structure is 2048 (0x800) bytes.
See also:

e A4.2.1 RecEntry object
e B3.3.14 RMI_REC_ENTER command
¢ B3.4.14 RmiRecExit type

The members of the RmiRecEntry structure are shown in the following table.

Name Byte offset Type Description
flags 0x0 RmiRecEntryFlags Flags
gprs[0] 0x200 Bits64 Registers
gprs[1] 0x208 Bits64 Registers
gprs[2] 0x210 Bits64 Registers
gprs[3] 0x218 Bits64 Registers
gprs[4] 0x220 Bits64 Registers
gprs[5] 0x228 Bits64 Registers
gprs[6] 0x230 Bits64 Registers
gprs[7] 0x238 Bits64 Registers
gprs[8] 0x240 Bits64 Registers
gprs[9] 0x248 Bits64 Registers
gprs[10] 0x250 Bits64 Registers
gprs[11] 0x258 Bits64 Registers
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 190

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Name Byte offset Type Description

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2£0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_Irs[0] 0x308 Bits64 GICv3 List Register values

gicv3_Irs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_Irs[3] 0x320 Bits64 GICv3 List Register values

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lIrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values

gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lIrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lIrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lIrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lIrs[14] 0x378 Bits64 GICv3 List Register values
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 191

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Name Byte offset Type Description

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

Unused bits of the RmiRecEntry structure should be zero.

B3.4.13 RmiRecEntryFlags type
The RmiRecEntryFlags fieldset contains flags provided by the Host during REC entry.
The width of the RmiRecEntryFlags fieldset is 64 bits.

The fields of the RmiRecEntryFlags fieldset are shown in the following diagram.

63 32,
RESO

31 4 13,;2;1,0

RESO
trap_wfeJ J L Lemul_mmio
trap wfi inject _sea

The fields of the RmiRecEntryFlags fieldset are shown in the following table.

Name Bits Description Value

emul_mmio 0:0 Whether the host has completed emulation for RmiEmulatedMmio
an Emulatable Data Abort

inject_sea 1:1 Whether to inject a Synchronous External RmilnjectSea
Abort into the Realm.

trap_wfi 2:2 Whether to trap WFI execution by the Realm. RmiTrap

trap_wfe 3:3 Whether to trap WFE execution by the Realm. RmiTrap

63:4 Reserved Must be zero

B3.4.14 RmiRecEXxit type
The RmiRecEXxit structure contains data passed from the RMM to the Host on REC exit.
The width of the RmiRecExit structure is 2048 (0x800) bytes.
See also:

* A4.3.1 RecExit object
e B3.3.14 RMI REC _ENTER command
e B3.4.12 RmiRecEntry type

The members of the RmiRecEXxit structure are shown in the following table.

Name Byte offset Type Description
exit_reason 0x0 RmiRecExitReason Exit reason
esr 0x100 Bits64 Exception Syndrome Register
far 0x108 Bits64 Fault Address Register
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 192

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Name Byte offset Type Description

hpfar 0x110 Bits64 Hypervisor IPA Fault Address register

gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] O0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2£0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lIrs[1] 0x310 Bits64 GICv3 List Register values
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 193

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Name Byte offset Type Description
gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values
gicv3_Irs[3] 0x320 Bits64 GICv3 List Register values
gicv3_lIrs[4] 0x328 Bits64 GICv3 List Register values
gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values
gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values
gicv3_lIrs[7] 0x340 Bits64 GICv3 List Register values
gicv3_lIrs[8] 0x348 Bits64 GICv3 List Register values
gicv3_lIrs[9] 0x350 Bits64 GICv3 List Register values
gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values
gicv3_lIrs[11] 0x360 Bits64 GICv3 List Register values
gicv3_Irs[12] 0x368 Bits64 GICv3 List Register values
gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values
gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values
gicv3_lIrs[15] 0x380 Bits64 GICv3 List Register values
gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State
Register value
gicv3_vmer 0x390 Bits64 GICv3 Virtual Machine Control Register
value
cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control

Register value

cntp_cval 0x408 Bits64 Counter-timer Physical Timer
CompareValue Register value

cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control
Register value

cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value

ripas_base 0x500 Bits64 Base address of pending RIPAS change

ripas_size 0x508 Ulnt64 Size of pending RIPAS change

ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change

imm 0x600 Bits16 Host call immediate value

pmu_ovf 0x700 Bits64 PMU overflow

pmu_intr_en 0x708 Bits64 PMU interrupt enable

pmu_cntr_en 0x710 Bits64 PMU counter enable

Unused bits of the RmiRecEXxit structure must be zero.

B3.4.15 RmiRecExitReason type

The RmiRecExitReason enumeration represents the reason for a REC exit.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 194
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

The width of the RmiRecExitReason enumeration is 8 bits.

The values of the RmiRecExitReason enumeration are shown in the following table.

Encoding Name Description

0 RMI_EXIT SYNC REC exit due to synchronous exception
1 RMI_EXIT_IRQ REC exit due to IRQ

2 RMI_EXIT_FIQ REC exit due to FIQ

3 RMI_EXIT_PSCI REC exit due to PSCI

4 RMI_EXIT RIPAS CHANGE REC exit due to RIPAS change pending
5 RMI_EXIT_HOST_CALL REC exit due to Host call

6 RMI_EXIT_SERROR REC exit due to SError

Unused encodings for the RmiRecExitReason enumeration are reserved for use by future versions of this
specification.

B3.4.16 RmiRecMpidr type
The RmiRecMpidr fieldset contains MPIDR value which identifies a REC.
The width of the RmiRecMpidr fieldset is 64 bits.
See also:

e A2.3.3 REC index and MPIDR value
e B3.3.12 RMI_REC_CREATE command

The fields of the RmiRecMpidr fieldset are shown in the following diagram.

163 32,

| RESO I
N 24,23 16, 15 8,7 4,3 0
| aff3 aff2 affl RESO affo |
The fields of the RmiRecMpidr fieldset are shown in the following table.
Name Bits Description Value
affo 3:0 Affinity level 0 Bits4
7:4 Reserved Must be zero
affl 15:8 Affinity level 1 Bits8
aff2 23:16 Affinity level 2 Bits8
aff3 31:24 Affinity level 3 Bits8
63:32 Reserved Must be zero

B3.4.17 RmiRecParams type

The RmiRecParams structure contains parameters provided by the Host during REC creation.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 195
A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

The width of the RmiRecParams structure is 4096 (0x1000) bytes.

The number of valid entries in the aux array is determined by the return value from the RMI_REC_AUX_COUNT
command.

See also:
e B3.3.11 RMI_REC_AUX_COUNT command

The members of the RmiRecParams structure are shown in the following table.

Name Byte offset Type Description
flags 0x0 RmiRecCreateFlags Flags
mpidr 0x100 RmiRecMpidr MPIDR of the REC
pc 0x200 Bits64 Program counter
gprs[0] 0x300 Bits64 General-purpose registers
gprs[1] 0x308 Bits64 General-purpose registers
gprs[2] 0x310 Bits64 General-purpose registers
gprs[3] 0x318 Bits64 General-purpose registers
gprs[4] 0x320 Bits64 General-purpose registers
gprs[5] 0x328 Bits64 General-purpose registers
gprs[6] 0x330 Bits64 General-purpose registers
gprs[7] 0x338 Bits64 General-purpose registers
num_aux 0x800 Ulnt64 Number of auxiliary Granules
aux[0] 0x808 Address Addresses of auxiliary Granules
aux[1] 0x810 Address Addresses of auxiliary Granules
aux[2] 0x818 Address Addresses of auxiliary Granules
aux[3] 0x820 Address Addresses of auxiliary Granules
aux[4] 0x828 Address Addresses of auxiliary Granules
aux[5] 0x830 Address Addresses of auxiliary Granules
aux[6] 0x838 Address Addresses of auxiliary Granules
aux[7] 0x840 Address Addresses of auxiliary Granules
aux[8] 0x848 Address Addresses of auxiliary Granules
aux[9] 0x850 Address Addresses of auxiliary Granules
aux[10] 0x858 Address Addresses of auxiliary Granules
aux[11] 0x860 Address Addresses of auxiliary Granules
aux[12] 0x868 Address Addresses of auxiliary Granules
aux[13] 0x870 Address Addresses of auxiliary Granules
aux[14] 0x878 Address Addresses of auxiliary Granules
aux[15] 0x880 Address Addresses of auxiliary Granules
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 196

A-bet0 Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Unused bits of the RmiRecParams structure should be zero.

B3.4.18 RmiRecRun type

The RmiRecRun structure contains used to share information between RMM and Host during REC entry and REC
exit.

The width of the RmiRecRun structure is 4096 (0x1000) bytes.
See also:

* A4.2.1 RecEntry object
* A4.3.1 RecExit object
e B3.3.14 RMI REC_ENTER command

The members of the RmiRecRun structure are shown in the following table.

Name Byte offset Type Description
entry 0x0 RmiRecEntry Entry information
exit 0x800 RmiRecExit Exit information

B3.4.19 RmiRecRunnable type

The RmiRecRunnable enumeration represents whether a REC is eligible for execution.
The width of the RmiRecRunnable enumeration is 1 bits.

The values of the RmiRecRunnable enumeration are shown in the following table.

Encoding Name Description
0 RMI_NOT_RUNNABLE Not eligible for execution.
1 RMI_RUNNABLE Eligible for execution.

B3.4.20 RmiRipas type
The RmiRipas enumeration represents realm IPA state.
The width of the RmiRipas enumeration is 8 bits.

The values of the RmiRipas enumeration are shown in the following table.

Encoding Name Description
0 RMI_EMPTY Unused IPA location.
1 RMI_RAM Private code or data owned by the Realm.

Unused encodings for the RmiRipas enumeration are reserved for use by future versions of this specification.
B3.4.21 RmiRttEntryState type

The RmiRttEntryState enumeration represents the state of an RTTE.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 197
A-bet0 Non-confidential

Chapter B3. Realm Management Interface

B3.4. RMI types

The width of the RmiRttEntryState enumeration is 8 bits.

The values of the RmiRttEntryState enumeration are shown in the following table.

Encoding

Name

Description

0
1

RMI_UNASSIGNED
RMI_DESTROYED

RMI_ASSIGNED
RMI_TABLE
RMI_VALID_NS

This RTTE is not associated with any Granule.

This RTTE cannot be used for the rest of the lifetime of the
Realm.

The output address of this RTTE points to a DATA Granule.
The output address of this RTTE points to the next-level RTT.

The output address of this RTTE is in the Non- secure PAS.
The mapping is valid.

Unused encodings for the RmiRttEntryState enumeration are reserved for use by future versions of this

specification.

B3.4.22 RmiStatusCode type

The RmiStatusCode enumeration represents the status of an RMI operation.

The width of the RmiStatusCode enumeration is 8 bits.

See also:

* B1.3 Command registers
e B1.5 Command context values

The values of the RmiStatusCode enumeration are shown in the following table.

Encoding

Name

Description

0
1

RMI_SUCCESS
RMI_ERROR_INPUT

RMI_ERROR_REALM
RMI_ERROR_REC
RMI_ERROR_RTT

RMI_ERROR_IN_USE

Command completed successfully

The value of a command input value caused the command to
fail

An attribute of a Realm does not match the expected value
An attribute of a REC does not match the expected value

An RTT walk terminated before reaching the target RTT level,
or reached an RTTE with an unexpected value

An operation cannot be completed because a resource is in use

Unused encodings for the RmiStatusCode enumeration are reserved for use by future versions of this specification.

B3.4.23 RmiTrap type

The RmiTrap enumeration represents whether a trap is enabled.

The width of the RmiTrap enumeration is 1 bits.

The values of the RmiTrap enumeration are shown in the following table.

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 198

Non-confidential

Chapter B3. Realm Management Interface
B3.4. RMI types

Encoding Name Description
0 RMI_NO_TRAP Trap is disabled.
1 RMI_TRAP Trap is enabled.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 199

A-bet0 Non-confidential

Chapter B4
Realm Services Interface

This chapter defines the interface used by Realm software to request services from the RMM.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 200
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.1. RSl version

B4.1 RSI version

Rokicy This specification defines version 1.0 of the Realm Services Interface.
See also:

e B4.3.9 RSI VERSION command

B4.2 RSI command return codes

Tcyong An RSI command return code indicates whether the command

¢ succeeded, or
e failed, and the reason for the failure.

Iposse If an RSI command succeeds then it returns RSI._SUCCESS.
T ymukC Multiple failure conditions in an RSI command may return the same return code.
RurepM If an input to an RSI command uses an invalid encoding then the command fails and returns RSI_ERROR_INPUT.

Command inputs include registers and in-memory data structures.
Invalid encodings include:

* setting a “must be zero” bitto '1"
* using a reserved encoding in an enumeration

See also:

¢ B4.4.1 RsiCommandReturnCode type

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 201
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3 RSI commands

DENO0137
A-bet0

The following table summarizes the FIDs of commands in the RSI interface.

FID Command
0xC4000195 RSI_ATTESTATION_TOKEN_CONTINUE
0xC4000194 RSI_ATTESTATION_TOKEN_INIT
0xC4000199 RSI_HOST_CALL
0xCc4000198 RSI_IPA_STATE_GET
0xC4000197 RSI_IPA_STATE_SET
0xC4000193 RSI_MEASUREMENT_EXTEND
0xC4000192 RSI_MEASUREMENT_READ
0xC4000196 RSI_REALM_CONFIG
0xC4000190 RSI_VERSION

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 202

Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
Continue the operation to retrieve an attestation token.
See also:

e A7.2 Realm attestation
e B4.3.2 RSI ATTESTATION_TOKEN_INIT command

B4.3.1.1 Interface
B4.3.1.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000195
addr X1 63:0 Address IPA of the Granule to which the token

will be written

B4.3.1.1.2 Context
The RSI_ATTESTATION_TOKEN_CONTINUE command operates on the following context.

Name Type Value Before Description
realm RmmRealm CurrentRealm() false Current Realm
rec RmmRec CurrentRec () false Current REC

B4.3.1.1.3 Output values

Name Register Bits Type Description
result X0 63:0 RsiCommandReturnCode Command return status
size X1 63:0 Ulnt64 Token size in bytes

B4.3.1.2 Failure conditions

ID Condition

addr pre: addr != rec.attest_addr
post: result == RSI_ERROR_INPUT

state pre: rec.attest_state != ATTEST_IN_PROGRESS
post: result == RSI_ERROR_STATE

B4.3.1.2.1 Failure condition ordering
The RSI_ATTESTATION_TOKEN_CONTINUE command does not have any failure condition orderings.

B4.3.1.3 Success conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 203
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

ID Condition
incomplete pre: Token generation is not complete.
post: result == RSI_INCOMPLETE
complete pre: Token generation is complete.
post: rec.attest_state == NO_ATTEST_IN_PROGRESS

B4.3.1.4 Footprint

1D Value
state rec.attest_state
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 204

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.2 RSI_ATTESTATION_TOKEN_INIT command

Initialize the operation to retrieve an attestation token.

DENO0137
A-bet0

See also:

e A7.2 Realm attestation

* B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

B4.3.2.1
B4.3.2.1.1 Input values

Interface

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xc4000194

addr X1 63:0 Address IPA of the Granule to which the token
will be written

challenge_0 X2 63:0 Bits64 Doubleword 0 of the challenge value

challenge_1 X3 63:0 Bits64 Doubleword 1 of the challenge value

challenge_2 X4 63:0 Bits64 Doubleword 2 of the challenge value

challenge_3 X5 63:0 Bits64 Doubleword 3 of the challenge value

challenge_4 X6 63:0 Bits64 Doubleword 4 of the challenge value

challenge_5 X7 63:0 Bits64 Doubleword 5 of the challenge value

challenge_6 X8 63:0 Bits64 Doubleword 6 of the challenge value

challenge_7 X9 63:0 Bits64 Doubleword 7 of the challenge value

B4.3.2.1.2 Context

The RSI_ATTESTATION. TOKEN_INIT command operates on the following context.

Name Type Value Before Description
realm RmmRealm CurrentRealm() false Current Realm
rec RmmRec CurrentRec () false Current REC

B4.3.2.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B4.3.2.2 Failure conditions

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

205

Chapter B4. Realm Services Interface
B4.3. RSI commands

ID Condition

addr_align pre: !AddrIsGranuleAligned (addr)
post: result == RSI_ERROR_INPUT

addr_bound pre: !AddrIsProtected (addr, realm)
post: result == RSI_ERROR_INPUT

B4.3.2.2.1 Failure condition ordering

The RSI_ATTESTATION_TOKEN_INIT command does not have any failure condition orderings.

B4.3.2.3 Success conditions

ID Condition

state rec.attest_state == ATTEST_IN_PROGRESS
addr rec.attest_addr == addr

challenge rec.attest_challenge == [

challenge_Q0,
challenge_1,
challenge_2,
challenge_3,
challenge_4,
challenge_5,
challenge_6,
challenge_7

B4.3.2.4 Footprint

ID Value
state rec.attest_state
addr rec.attest_addr
challenge rec.attest_challenge
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 206

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.3 RSI_HOST_CALL command

Make a Host call.
See also:

e A4.5 Host call
B4.3.3.1
B4.3.3.1.1 Input values

Interface

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000199
addr X1 63:0 Address IPA of the Host call data structure

B4.3.3.1.2 Context

The RSI_HOST_CALL command operates on the following context.

Name Type Value Before Description
realm RmmRealm CurrentRealm() false Current Realm
rec RmmRec CurrentRec () false Current REC
data RsiHostCall RealmHostCall (addr) false Host call data
structure

B4.3.3.1.3 Output values

Name Register - Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B4.3.3.2 Failure conditions

ID Condition
addr_align pre: !AddrIsGranuleAligned (addr)
post: result == RSI_ERROR_INPUT
addr_bound pre: !AddrIsProtected(addr, realm)
post: result == RSI_ERROR_INPUT
B4.3.3.2.1 Failure condition ordering
The RSI_HOST_CALL command does not have any failure condition orderings.
B4.3.3.3 Success conditions
The RSI_HOST_CALL command does not have any success conditions.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 207

A-bet0

Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.3.4 Footprint

ID Value
host_call rec.host_call_pending
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 208

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.4 RSI_IPA_STATE_GET command

Get RIPAS of a target page.
See also:

e AS5.2 Realm view of memory management
e B4.3.5 RSI_IPA_STATE_SET command

B4.3.4.1 Interface
B4.3.4.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xc4000198
addr X1 63:0 Address IPA of target page

B4.3.4.1.2 Context
The RSI_IPA_STATE_GET command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B4.3.4.1.3 Output values

Name Register Bits Type Description
result X0 63:0 RsiCommandReturnCode Command return status
ripas X1 7:0 RsiRipas RIPAS value

Unused bits of RSI_IPA_STATE_GET output values must be zero.

B4.3.4.2 Failure conditions

ID Condition
addr_align pre: !AddrIsGranuleAligned (addr)
post: result == RSI_ERROR_INPUT
addr_bound pre: !AddrIsProtected(addr, realm)
post: result == RSI_ERROR_INPUT
B4.3.4.2.1 Failure condition ordering
The RSI_IPA_STATE_GET command does not have any failure condition orderings.
B4.3.4.3 Success conditions
The RSI_IPA_STATE_GET command does not have any success conditions.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 209

A-bet0

Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.4.4 Footprint
The RSI_IPA_STATE_GET command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 210
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.5 RSI_IPA_STATE_SET command
Request RIPAS of a target IPA range to be changed to a specified value.

See also:

e AS5.2 Realm view of memory management

e AS5.4 RIPAS change

e B4.3.4 RSI IPA_STATE_GET command

B4.3.5.1
B4.3.5.1.1 Input values

Interface

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000197
base X1 63:0 Address Base of target IPA region
size X2 63:0 Ulnt64 Size of target IPA region
ripas X3 7:0 RsiRipas RIPAS value

Unused bits of RSI_IPA_STATE_SET input values must be zero.

B4.3.5.1.2 Context

The RSI_IPA_STATE_SET command operates on the following context.

Name Type Value Before Description
realm RmmRealm CurrentRealm /() false Current Realm
rec RmmRec CurrentRec () false Current REC

B4.3.5.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

new_base X1 63:0 Address Base of IPA region which was not

modified by the command

B4.3.5.2 Failure conditions

ID Condition
addr_align pre: !AddrIsGranuleAligned (base)
post: result == RSI_ERROR_INPUT
size_bound pre: !AddrIsGranuleAligned(size)
post: result == RSI_ERROR_INPUT
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 211

A-bet0

Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

ID Condition

rgn_bound pre: !AddrRangelsProtected(base, size, realm)
post: result == RSI_ERROR_INPUT

ripas_valid pre: !RsiRipasIsValid(X3[7:01])
post: result == RSI_ERROR_INPUT

B4.3.5.2.1 Failure condition ordering
The RSI_IPA_STATE_SET command does not have any failure condition orderings.

B4.3.5.3 Success conditions

ID Condition

new_base new_base == rec.ripas_addr

B4.3.5.4 Footprint
The RSI_IPA_STATE_SET command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 212
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.6 RSI_MEASUREMENT_EXTEND command
Extend Realm Extensible Measurement (REM) value.

B4.3.6.1 Interface
B4.3.6.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000193

index X1 63:0 Ulnt64 Measurement index

size X2 63:0 Ulnt64 Measurement size in bytes

value_0 X3 63:0 Bits64 Doubleword 0 of the measurement
value

value_1 X4 63:0 Bits64 Doubleword 1 of the measurement
value

value_2 X5 63:0 Bits64 Doubleword 2 of the measurement
value

value_3 X6 63:0 Bits64 Doubleword 3 of the measurement
value

value_4 X7 63:0 Bits64 Doubleword 4 of the measurement
value

value_5 X8 63:0 Bits64 Doubleword 5 of the measurement
value

value_6 X9 63:0 Bits64 Doubleword 6 of the measurement
value

value_7 X10 63:0 Bits64 Doubleword 7 of the measurement
value

B4.3.6.1.2 Context
The RSI_ MEASUREMENT_EXTEND command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

meas_old RmmRealmMeasuremenCurrentRealm() . true Previous
—measurements [index] measurement value

B4.3.6.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B4.3.6.2 Failure conditions

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 213
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

ID Condition
index_bound pre: index < 1 || index > 4
post: result == RSI_ERROR_INPUT
size_bound pre: size > 64
post: result == RSI_ERROR_INPUT

B4.3.6.2.1 Failure condition ordering

The RSI_MEASUREMENT_EXTEND command does not have any failure condition orderings.

B4.3.6.3 Success conditions

ID Condition

realm_meas realm.measurements [index] == RemExtend (
realm.hash_algo, meas_old,
[value_0, wvalue_1, value_2, value_3,
value_4, value_5, value_6, value_7],
size)

B4.3.6.4 Footprint

1D Value
realm_meas realm.measurements [index]
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 214

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.7 RSI_MEASUREMENT_READ command

Read measurement for the current Realm.
See also:

e A7.1 Realm measurements
e DI1.2.1 Realm creation flow

B4.3.7.1 Interface
B4.3.7.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xCc4000192
index X1 63:0 Ulnt64 Measurement index

index 0 selects the RIM. An index of 1 or greater selects the corresponding REM.

B4.3.7.1.2 Output values

Name Register Bits Type Description
result X0 63:0 RsiCommandReturnCode Command return status
value_0 X1 63:0 Bits64 Doubleword 0 of the Realm
measurement identified by “index”
value_1 X2 63:0 Bits64 Doubleword 1 of the Realm
measurement identified by “index”
value_2 X3 63:0 Bits64 Doubleword 2 of the Realm
measurement identified by “index”
value_3 X4 63:0 Bits64 Doubleword 3 of the Realm
measurement identified by “index”
value_4 X5 63:0 Bits64 Doubleword 4 of the Realm
measurement identified by “index”
value_5 X6 63:0 Bits64 Doubleword 5 of the Realm
measurement identified by “index”
value 6 X7 63:0 Bits64 Doubleword 6 of the Realm
measurement identified by “index”
value_7 X8 63:0 Bits64 Doubleword 7 of the Realm

measurement identified by “index”

If the size of the measurement value is smaller than 512 bits, the output values are padded with zeroes.

B4.3.7.2 Failure conditions

ID Condition
index_bound pre: index > 4
post: result == RSI_ERROR_INPUT
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 215

A-bet0

Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.7.3 Success conditions
The RSI_MEASUREMENT_READ command does not have any success conditions.

B4.3.7.4 Footprint
The RSI_MEASUREMENT_READ command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 216

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.8 RSI_REALM_CONFIG command
Read configuration for the current Realm.

B4.3.8.1 Interface
B4.3.8.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000196
addr X1 63:0 Address IPA of the Granule to which the

configuration data will be written

B4.3.8.1.2 Context
The RSI_REALM_CONFIG command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

cfg RsiRealmConfig RealmConfig (addr) false Realm configuration
B4.3.8.1.3 Output values
Name Register Bits Type Description
result X0 63:0 RsiCommandReturnCode Command return status

B4.3.8.2 Failure conditions

ID Condition

addr_align pre: [!AddrIsGranuleAligned (addr)
post: result == RSI_ERROR_INPUT

addr_bound pre: !AddrIsProtected(addr, realm)

post: result == RSI_ERROR_INPUT

B4.3.8.2.1 Failure condition ordering
The RSI_REALM_CONFIG command does not have any failure condition orderings.

B4.3.8.3 Success conditions

ID Condition
ipa_width cfg.ipa_width == realm.ipa_width
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 217

A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.8.4 Footprint
The RSI_REALM_CONFIG command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 218
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.3. RSI commands

B4.3.9 RSI_VERSION command

Returns RSI version.

B4.3.9.1 Interface
B4.3.9.1.1 Input values

Name Register Type Description

fid X0 Ulnt64 FID, value 0xC4000190
B4.3.9.1.2 Output values

Name Register Type Description

result X0 Rsilnterface Version Interface version

See also:

e B4.1 RSI version
B4.3.9.2 Failure conditions
The RSI_VERSION command does not have any failure conditions.

B4.3.9.3 Success conditions
The RSI_VERSION command does not have any success conditions.

B4.3.9.4 Footprint

The RSI_VERSION command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Non-confidential

219

Chapter B4. Realm Services Interface
B4.4. RSl types

B4.4 RSl types

This section defines types which are used in the RSI interface.

B4.4.1 RsiCommandReturnCode type

The RsiCommandReturnCode enumeration represents a return code from an RSI command.

The width of the RsiCommandReturnCode enumeration is 64 bits.

See also:

* Chapter Bl Commands

The values of the RsiCommandReturnCode enumeration are shown in the following table:.

Encoding Name

Description

0 RSI_SUCCESS

1 RSI_ERROR_INPUT
2 RSI_ERROR_STATE
3 RSI_INCOMPLETE

Command completed successfully

The value of a command input value caused the command to
fail

The state of the current Realm or current REC does not match
the state expected by the command

The operation requested by the command is not complete

Unused encodings for the RsiCommandReturnCode enumeration are reserved for use by future versions of this

specification.

B4.4.2 RsiHostCall type

The RsiHostCall structure contains data structure used to pass Host call arguments and return values.

The width of the RsiHostCall structure is 4096 (0x1000) bytes.

See also:

e A4.5 Host call

e B4.3.3RSI HOST_CALL command

The members of the RsiHostCall structure are shown in the following table.

Name Byte offset Type Description

imm 0x0 Ulntl6 Immediate value
gprs[0] 0x8 Bits64 Registers

gprs[1] 0x10 Bits64 Registers

gprs[2] 0x18 Bits64 Registers

gprs[3] 0x20 Bits64 Registers

gprs[4] 0x28 Bits64 Registers

gprs[5] 0x30 Bits64 Registers

gprs[6] 0x38 Bits64 Registers

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 220

A-bet0

Non-confidential

Chapter B4. Realm Services Interface
B4.4. RSl types

Unused bits of the RsiHostCall structure should be zero.

B4.4.3 RsilnterfaceVersion type
The RsilnterfaceVersion fieldset contains an RSI interface version.
The width of the RsilnterfaceVersion fieldset is 64 bits.
See also:

e B4.1 RSI version
e B4.3.9 RSI_VERSION command

The fields of the RsilnterfaceVersion fieldset are shown in the following diagram.

163 32,
] RES@ |

131,30 16,15 0
’ major minor ‘

LRrESe

The fields of the RsilnterfaceVersion fieldset are shown in the following table.

Name Bits Description Value
minor 15:0 Interface minor version number Ulnt16
major 30:16 Interface major version number Ulnt15

63:31 Reserved Must be zero

B4.4.4 RsiRealmConfig type
The RsiRealmConfig structure contains realm configuration.
The width of the RsiRealmConfig structure is 4096 (0x1000) bytes.
See also:
e B4.3.8RSI_REALM_CONFIG command

The members of the RsiRealmConfig structure are shown in the following table.

Name Byte offset Type Description

ipa_width 0x0 Ulnt64 IPA width in bits

Unused bits of the RsiRealmConfig structure should be zero.

B4.4.5 RsiRipas type
The RsiRipas enumeration represents realm IPA state.
The width of the RsiRipas enumeration is 8 bits.
See also:
* AS5.4 RIPAS change
e B4.3.4 RSI IPA_STATE _GET command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 221
A-bet0 Non-confidential

Chapter B4. Realm Services Interface
B4.4. RSl types

DENO0137
A-bet0

e B4.3.5 RSI IPA_STATE_SET command

The values of the RsiRipas enumeration are shown in the following table.

Encoding Name Description
0 RSI_EMPTY Unused IPA location.
1 RSI_RAM Private code or data owned by the Realm.

Unused encodings for the RsiRipas enumeration are reserved for use by future versions of this specification.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter B5
Power State Control Interface

This section describes how Power State Control Interface (PSCI) function execution by a Realm execution of SMC
instructions is handled.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 223
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.1. PSCI overview

B5.1 PSCI overview

T pvnx In this section,

* rec refers to the currently executing REC
* exit refer to the RecExit object which was provided to the RMI_REC_ENTER command
* target_rec refers to the REC identified by an MPIDR value passed to a PSCI function.

T cuxe. The RMM provides a trusted implementation of parts of the PSCI ABI. This section describes the checks performed
by the RMM when a Realm executes a PSCI command, and the internal RMM state changes which result from a
successful PSCI command execution. Successful execution by the RMM of some PSCI commands results in a
REC exit due to PSCI, which allows the Host to perform further processing of the command.

Tyupor The HVC conduit for PSCI is not supported for Realms.
See also:

* Arm Power State Coordination Interface (PSCI) [16]
e A2.3.2 REC attributes

e A4.3.7 REC exit due to PSCI

e A4.5 Host call

* D1.4 PSCI flows

B5.2 PSCI version

Rrrcvr The RMM must support version >= 1.1 of the Power State Control Interface.
See also:

e B5.3.8 PSCI_VERSION command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 224
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3 PSCI commands

DENO0137
A-bet0

The following table summarizes the FIDs of commands in the PSCI interface.

FID Command

0xC4000004 PSCI_AFFINITY_INFO
084000002 PSCI_CPU_OFF
0xC4000003 PSCI_CPU_ON
0xC4000001 PSCI_CPU_SUSPEND
0x8400000A PSCI_FEATURES
0x84000008 = PSCI_SYSTEM_OFF
0x84000009 PSCI_SYSTEM_RESET
0x84000000 PSCI_VERSION

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

225

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.1 PSCI_AFFINITY_INFO command
Query status of a VPE.

This command causes a REC exit due to PSCI. In response, the Host should provide the target REC (identified by
target_affinity) by calling RMI_PSCI_COMPLETE.

See also:

e A2.3.2 REC attributes

* A4.3.7 REC exit due to PSCI

e B3.3.7 RMI _PSCI_COMPLETE command
e B5.3.2 PSCI_CPU_OFF command

e B5.3.3 PSCI_CPU_ON command

B5.3.1.1 Interface
B5.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000004

target_affinity X1 63:0 Bits64 This parameter contains a copy of the
affinity fields of the MPIDR register

lowest_affinity_leve 1 X2 31:0 Ulnt32 Denotes the lowest affinity level field
that is valid in the target_affinity
parameter

Unused bits of PSCI_AFFINITY_INFO input values must be zero.
B5.3.1.1.2 Context
The PSCI_AFFINITY_INFO command operates on the following context.

Name Type Value Before Description

target_rec RmmRec RecFromMpidr (false Target REC
target_affinity)

B5.3.1.1.3 Output values

Name Register Bits Type Description

result X0 31:0 PsciReturnCode Command return code

Unused bits of PSCI_AFFINITY_INFO output values must be zero.

B5.3.1.2 Failure conditions

ID Condition
target_bound pre: lowest_affinity_level != 0
post: result == PSCI_INVALID_PARAMETERS
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 226

A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

ID Condition

target_match pre: !MpidrIsUsed(target_affinity)

post: result

== PSCI_INVALID_PARAMETERS

B5.3.1.2.1 Failure condition ordering

The PSCI_AFFINITY_INFO command does not have any failure condition orderings.

B5.3.1.3 Success conditions

1D Condition

runnable pre: target_

post: result

not_runnable pre: target_

post: result

rec.flags.runnable == RUNNABLE
== PSCI_SUCCESS

rec.flags.runnable == NOT_RUNNABLE
== PSCI_OFF

B5.3.1.4 Footprint

The PSCI_AFFINITY_INFO command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Non-confidential

227

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.2 PSCI_CPU_OFF command
Power down the calling core.
This command causes a REC exit due to PSCIL.
See also:

e A2.3.2 REC attributes

e A4.3.7 REC exit due to PSCI

e B5.3.3 PSCI_CPU_ON command

e B5.3.4 PSCI _CPU_SUSPEND command

B5.3.2.1 Interface
B5.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0x84000002

B5.3.2.1.2 Context
The PSCI_CPU_OFF command operates on the following context.

Name Type Value Before Description

rec RmmRec CurrentRec () false Current REC

B5.3.2.1.3 Output values

The PSCI_CPU_OFF command does not have any output values.

Following execution of PSCI._CPU_OFF, control does not return to the caller.
B5.3.2.2 Failure conditions

The PSCI_CPU_OFF command does not have any failure conditions.
B5.3.2.3 Success conditions

The PSCI_CPU_OFF command does not have any success conditions.
Following execution of PSCI_CPU_OFF, control does not return to the caller.

B5.3.2.4 Footprint
The PSCI_CPU_OFF command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 228
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.3 PSCI_ CPU _ON command

DENO0137
A-bet0

Power up a core.

This command causes a REC exit due to PSCI. In response, the Host should provide the target REC (identified by

target_cpu) by calling RMI_PSCI_COMPLETE.

See also:

e A2.3.2 REC attributes

* A4.3.7 REC exit due to PSCI

e B3.3.7 RMI _PSCI_COMPLETE command
e B5.3.2 PSCI_CPU_OFF command

e B5.3.4 PSCI_CPU_SUSPEND command

e DI1.4.1 PSCI_CPU_ON flow

B5.3.3.1 Interface
B5.3.3.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000003

target_cpu X1 63:0 Bits64 This parameter contains a copy of the
affinity fields of the MPIDR register

entry_point_address X2 63:0 Address Address at which the core must
resume execution

context_id X3 31:0 Ulnt32 This parameter is only meaningful to

the caller (must be present in X0 of
the target PE upon first entry to
Non-Secure exception level)

Unused bits of PSCI_CPU_ON input values must be zero.

B5.3.3.1.2 Context

The PSCI_CPU_ON command operates on the following context.

Name Type Value Before Description
realm RmmRealm CurrentRealm () false Current Realm
target_rec RmmRec RecFromMpidr (target_cpu) false Target REC

B5.3.3.1.3 Output values

Name Register Bits Type Description

result X0 31:0 PsciReturnCode Command return code

Unused bits of PSCI_CPU_ON output values must be zero.

B5.3.3.2 Failure conditions

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 229
Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

ID Condition

entry pre: !AddrIsProtected(entry_point_address, realm)
post: result == PSCI_INVALID_ADDRESS

mpidr pre: !MpidrIsUsed (target_cpu)
post: result == PSCI_INVALID_PARAMETERS

runnable pre: target_rec.flags.runnable == RUNNABLE
post: result == PSCI_ALREADY_ON

B5.3.3.2.1 Failure condition ordering

The PSCI_CPU_ON command does not have any failure condition orderings.

B5.3.3.3 Success conditions

ID Condition

entry target_rec.pc == entry_point_address

runnable target_rec.flags.runnable == RUNNABLE

sysreg // REVISIT: specify sysreg reset values which are applied to rec

B5.3.3.4 Footprint

ID Value
runnable target_rec.flags.runnable
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 230

A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.4 PSCI_CPU_SUSPEND command
Suspend execution on the calling VPE.
This command causes a REC exit due to PSCIL.
See also:

e A4.3.7 REC exit due to PSCI
e B5.3.2 PSCI_CPU_OFF command
e B5.3.3 PSCI_CPU_ON command

B5.3.4.1 Interface
B5.3.4.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000001
power_state X1 31:0 Ulnt32 Identifier for a specific local state
entry_point_address X2 63:0 Address Address at which the core must

resume execution

context_id X3 63:0 Ulnt64 This parameter is only meaningful to
the caller (must be present in X0 upon
first entry to Non- Secure exception
level)

Unused bits of PSCI_CPU_SUSPEND input values must be zero.

The RMM treats all target power states as suspend requests, and therefore the entry_point_address and
context_id arguments are ignored.

B5.3.4.1.2 Output values

The PSCI_CPU_SUSPEND command does not have any output values.

Following execution of PSCI_CPU_SUSPEND, control does not return to the caller.
B5.3.4.2 Failure conditions

The PSCI_CPU_SUSPEND command does not have any failure conditions.
B5.3.4.3 Success conditions

The PSCI_CPU_SUSPEND command does not have any success conditions.
Following execution of PSCI_CPU_SUSPEND, control does not return to the caller.
B5.3.4.4 Footprint

The PSCI_CPU_SUSPEND command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 231
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.5 PSCI_FEATURES command

Query whether a specific PSCI feature is implemented.

See also:

e B5.3.1 PSCI_AFFINITY_INFO command
e B5.3.2 PSCI_CPU_OFF command

e B5.3.3 PSCI_CPU_ON command

e B5.3.4 PSCI_CPU_SUSPEND command
e B5.3.6 PSCI_SYSTEM _OFF command

e B5.3.7 PSCI_SYSTEM_RESET command

B5.3.5.1 Interface
B5.3.5.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0x8400000A
psci_func_id X1 31:0 Ulnt32 Function ID for a PSCI Function

Unused bits of PSCI_FEATURES input values must be zero.

B5.3.5.1.2 Output values

Name Register Bits

Type

Description

result X0 31:0

PsciReturnCode

Command return code

Unused bits of PSCI_FEATURES output values must be zero.

B5.3.5.2 Failure conditions

The PSCI_FEATURES command does not have any failure conditions.

B5.3.5.3 Success conditions

ID Condition
func_ok pre: psci_func_id is a supported PSCI function.
post: result == PSCI_SUCCESS
func_not_ok pre: psci_func_id is not a supported PSCI function.
post: result == PSCI_NOT_SUPPORTED
B5.3.5.4 Footprint
The PSCI_FEATURES command does not have any footprint.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 232

A-bet0

Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.6 PSCI_SYSTEM_OFF command
Shut down the system.
This command causes a REC exit due to PSCIL.
See also:

e A2.3.2 REC attributes
e A4.3.7 REC exit due to PSCI
e B5.3.7 PSCI SYSTEM RESET command

B5.3.6.1 Interface
B5.3.6.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0x84000008

B5.3.6.1.2 Context
The PSCI_SYSTEM_OFF command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B5.3.6.1.3 Output values

The PSCI_SYSTEM_OFF command does not have any output values.

Following execution of PSCI_SYSTEM_OFF, control does not return to the caller.
B5.3.6.2 Failure conditions

The PSCI_SYSTEM_OFF command does not have any failure conditions.
B5.3.6.3 Success conditions

The PSCI_SYSTEM_OFF command does not have any success conditions.
Following execution of PSCI_SYSTEM_OFF, control does not return to the caller.
B5.3.6.4 Footprint

The PSCI_SYSTEM_OFF command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 233
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.7 PSCI_SYSTEM_RESET command
Shut down the system.
This command causes a REC exit due to PSCIL.
See also:

e A2.3.2 REC attributes
e A4.3.7 REC exit due to PSCI
e B5.3.6 PSCI_SYSTEM OFF command

B5.3.7.1 Interface
B5.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0x84000009

B5.3.7.1.2 Context
The PSCI_SYSTEM_RESET command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B5.3.7.1.3 Output values

The PSCI_SYSTEM_RESET command does not have any output values.

Following execution of PSCI_SYSTEM_RESET, control does not return to the caller.
B5.3.7.2 Failure conditions

The PSCI_SYSTEM_RESET command does not have any failure conditions.
B5.3.7.3 Success conditions

The PSCI_SYSTEM_RESET command does not have any success conditions.
Following execution of PSCI_SYSTEM_RESET, control does not return to the caller.
B5.3.7.4 Footprint

The PSCI_SYSTEM_RESET command does not have any footprint.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 234
A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.3. PSCI commands

B5.3.8 PSCI_VERSION command

DENO0137
A-bet0

Query the version of PSCI implemented.

B5.3.8.1
B5.3.8.1.1 Input values

Interface

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0x84000000
B5.3.8.1.2 Output values

Name Register Bits Type Description

result X0 63:0 Pscilnterface Versidnterface version

See also:

e B5.2 PSCI version
B5.3.8.2 Failure conditions

The PSCI_VERSION command does not have any failure conditions.

B5.3.8.3 Success conditions

The PSCI_VERSION command does not have any success conditions.

B5.3.8.4 Footprint

The PSCI_VERSION command does not have any footprint.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter B5. Power State Control Interface
B5.4. PSCI types

B5.4 PSCI types

This section defines types which are used in the PSCI interface.

B5.4.1 PscilnterfaceVersion type
The PscilnterfaceVersion fieldset contains an PSCI interface version.
The width of the Pscilnterface Version fieldset is 64 bits.

The fields of the PscilnterfaceVersion fieldset are shown in the following diagram.

| RESO |

131,30 16,15 0
’ major minor ‘

LRrESo

The fields of the PscilnterfaceVersion fieldset are shown in the following table.

Name Bits Description Value
minor 15:0 Interface minor version number Ulnt16
major 30:16 Interface major version number Ulnt15

63:31 Reserved Must be zero

B5.4.2 PsciReturnCode type
The PsciReturnCode enumeration represents the return code of a PSCI command.
The width of the PsciReturnCode enumeration is 32 bits.

The values of the PsciReturnCode enumeration are shown in the following table.

Encoding Name Description

-9 PSCI_INVALID_ADDRESS Refer to PSCI specification
-8 PSCI_DISABLED Refer to PSCI specification
-7 PSCI_NOT_PRESENT Refer to PSCI specification
-6 PSCI_INTERNAL_FAILURE Refer to PSCI specification
-5 PSCI_ON_PENDING Refer to PSCI specification
-4 PSCI_ALREADY_ON Refer to PSCI specification
-3 PSCI_DENIED Refer to PSCI specification
-2 PSCI_INVALID_PARAMETERS Refer to PSCI specification
-1 PSCI_NOT_SUPPORTED Refer to PSCI specification
0 PSCI_SUCCESS Refer to PSCI specification
1 PSCI_OFF Refer to PSCI specification

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 236

A-bet0 Non-confidential

Chapter B5. Power State Control Interface
B5.4. PSCI types

Unused encodings for the PsciReturnCode enumeration are reserved for use by future versions of this specification.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 237
A-bet0 Non-confidential

Part C
Types

Chapter C1
RMM types

This section describes types which are used to model the abstract state of the RMM.

C1.1 RmmGranule type

The RmmGranule structure contains attributes of a Granule.

The members of the RmmGranule structure are shown in the following table.

Name Type Description
pas RmmPhysicalAddressSpace Physical Address Space
state RmmGranuleState Lifecycle state

C1.2 RmmGranuleState type

The RmmGranuleState enumeration represents the state of a granule.

The values of the RmmGranuleState enumeration are shown in the following table.

Name Description
DATA Realm code or data.
DELEGATED Delegated for use by the RMM.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 239

A-bet0 Non-confidential

Chapter C1. RMM types
C1.5. RmmMeasurementDescriptorData type

Name Description

RD Realm Descriptor.

REC Realm Execution Context.

REC_AUX Realm Execution Context auxiliary Granule.
RTT Realm Translation Table.

UNDELEGATED Not delegated for use by the RMM.

C1.3 RmmHashAlgorithm type

The RmmHashAlgorithm enumeration represents hash algorithm.

The values of the RmmHashAlgorithm enumeration are shown in the following table.

Name Description
HASH_SHA_256 SHA-256 (Secure Hash Standard (SHS) [15])
HASH_SHA_512 SHA-512 (Secure Hash Standard (SHS) [15])

C1.4 RmmHostCallPending type

The RmmHostCallPending enumeration represents whether a Host call is pending.

The values of the RmmHostCallPending enumeration are shown in the following table.

Name Description

HOST_CALL_PENDING No Host call is pending.
NO_HOST CALL_PENDING A Host call is pending.

C1.5 RmmMeasurementDescriptorData type
The RmmMeasurementDescriptorData structure contains data structure used to calculate the contribution to the
RIM of a DATA Granule.
The width of the RmmMeasurementDescriptorData structure is 256 (0x100) bytes.
See also:
* B3.3.1.4 RMI_DATA_CREATE extension of RIM

The members of the RmmMeasurementDescriptorData structure are shown in the following table.

Name Byte offset Type Description

desc_type 0x0 Bits8 Measurement descriptor type, value 0x0

len 0x8 Ulnt64 Length of this data structure in bytes
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 240

A-bet0 Non-confidential

Chapter C1. RMM types
C1.7. RmmMeasurementDescriptorRipas type

Name Byte offset Type Description

rim 0x10 RmmRealmMeasurement Current RIM value

ipa 0x50 Address IPA at which the DATA Granule is mapped
in the Realm

flags 0x58 RmiDataFlags Flags provided by Host

content 0x60 RmmRealmMeasurement Hash of contents of DATA Granule, or zero
if flags indicate DATA Granule contents are
unmeasured

Unused bits of the RmmMeasurementDescriptorData structure must be zero.

C1.6 RmmMeasurementDescriptorRec type

The RmmMeasurementDescriptorRec structure contains data structure used to calculate the contribution to the
RIM of a REC.

The width of the RmmMeasurementDescriptorRec structure is 256 (0x100) bytes.
See also:
* B3.3.12.4 RMI_REC_CREATE extension of RIM

The members of the RmmMeasurementDescriptorRec structure are shown in the following table.

Name Byte offset Type Description

desc_type 0x0 Bits8 Measurement descriptor type, value 0x1
len 0x8 Ulnt64 Length of this data structure in bytes
rim 0x10 RmmRealmMeasurement Current RIM value

content 0x50 RmmRealmMeasurement Hash of 4KB page which contains REC

parameters data structure

Unused bits of the RmmMeasurementDescriptorRec structure must be zero.

C1.7 RmmMeasurementDescriptorRipas type

DENO0137
A-bet0

The RmmMeasurementDescriptorRipas structure contains data structure used to calculate the contribution to the
RIM of a RIPAS change.

The width of the RmmMeasurementDescriptorRipas structure is 256 (0x100) bytes.
See also:
* B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

The members of the RmmMeasurementDescriptorRipas structure are shown in the following table.

Name Byte offset Type Description
desc_type 0x0 Bits8 Measurement descriptor type, value 0x2
Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 241

Non-confidential

Chapter C1. RMM types
C1.10. RmmRealm type

Name Byte offset Type Description

len 0x8 Ulnt64 Length of this data structure in bytes

rim 0x10 RmmRealmMeasurement Current RIM value

ipa 0x50 Address IPA at which the RIPAS change occurred

level 0x58 Int8 RTT level at which the RIPAS change
occurred

Unused bits of the RmmMeasurementDescriptorRipas structure must be zero.

C1.8 RmmPhysicalAddressSpace type

The RmmPhysicalAddressSpace enumeration represents the PAS of a Granule.

The values of the RmmPhysicalAddressSpace enumeration are shown in the following table.

Name Description

NS Non-secure PAS.

OTHER PAS other than Non-secure or Realm.
REALM Realm PAS.

C1.9 RmmPsciPending type

The RmmPsciPending enumeration represents whether a PSCI request is pending.

The values of the RmmPsciPending enumeration are shown in the following table.

Name Description

NO_PSCI_REQUEST_PENDING A PSCI request is pending.
PSCI_REQUEST_PENDING No PSCI request is pending.

C1.10 RmmRealm type

The RmmRealm structure contains attributes of a Realm.
See also:
e A2.1 Realm

The members of the RmmRealm structure are shown in the following table.

Name Type Description
ipa_width Ulnt8 IPA width in bits
measurements RmmRealmMeasurement[5] Realm measurements
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 242

A-bet0 Non-confidential

Chapter C1. RMM types
C1.13. RmmRec type

Name Type Description

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements
rec_index Ulnt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address

rtt_level start Int64 RTT starting level

rtt_num_start Ulnt64 Number of physically contiguous starting level RTTs
state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

rpv Bits512 Realm Personalization Value

C1.11 RmmRealmMeasurement type

The RmmRealmMeasurement type is realm measurement.

The width of the RmmRealmMeasurement type is 512 bits.
C1.12 RmmRealmState type

The RmmRealmState enumeration represents the state of a Realm.

The values of the RmmRealmState enumeration are shown in the following table.

Name Description

ACTIVE Eligible for execution.

NEW Under construction. Not eligible for execution.
SYSTEM_OFF System has been turned off. Not eligible for execution.

C1.13 RmmRec type

The RmmRec structure contains attributes of a REC.
See also:
e A2.3 Realm Execution Context

The members of the RmmRec structure are shown in the following table.

Name Type Description
attest_state RmmRecAttestState Attestation token generation state
attest_addr Address Address of under-construction attestation token
attest_challenge Bits512 Challenge for under-construction attestation token
aux Address[16] Addresses of auxiliary Granules

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 243

A-bet0 Non-confidential

Chapter C1. RMM types

C1.15. RmmRecEmulatableAbort type

Name

Type

Description

emulatable_abort

flags

gprs

mpidr

owner

pc
psci_pending
state

sysregs
ripas_addr
ripas_top

ripas_value

RmmRecEmulatable Abort

RmmRecFlags
Bits64[32]

Bits64

Address

Address
RmmPsciPending
RmmRecState
RmmSystemRegisters
Address

Address

RmmRipas

host_call_pending RmmHostCallPending

Whether the most recent exit from this REC was due
to an Emulatable Data Abort

Flags which control REC behavior
General-purpose register values

MPIDR value

PA of RD of Realm which owns this REC
Program counter value

Whether a PSCI request is pending
Lifecycle state

EL1 and ELO system register values

Next address to be processed in RIPAS change
Top address of pending RIPAS change
RIPAS value of pending RIPAS change
Whether a Host call is pending

C1.14 RmmRecAttestState type

The RmmRecAttestState enumeration represents whether an attestation token generation operation is ongoing on

this REC.

The values of the RmmRecAttestState enumeration are shown in the following table.

Name

Description

ATTEST_IN_PROGRESS
NO_ATTEST_IN_PROGRESS

An attestation token generation operation is in progress.

No attestation token generation operation is in progress.

C1.15 RmmRecEmulatableAbort type

The RmmRecEmulatable Abort enumeration represents whether the most recent exit from a REC was due to an
Emulatable Data Abort.

The values of the RmmRecEmulatable Abort enumeration are shown in the following table.

Name

Description

EMULATABLE_ABORT

NOT_EMULATABLE_ABORT

The most recent exit from a REC was due to an Emulatable Data
Abort.

The most recent exit from a REC was not due to an Emulatable

Data Abort.

DENO0137
A-bet0

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 244
Non-confidential

Chapter C1. RMM types
C1.19. RmmRipas type

C1.16 RmmRecFlags type

The RmmRecFlags structure contains REC flags.

The members of the RmmRecFlags structure are shown in the following table.

Name Type Description

runnable RmmRecRunnable Whether the REC is elgible to run

C1.17 RmmRecRunnable type

The RmmRecRunnable enumeration represents whether a REC is eligible for execution.

The values of the RmmRecRunnable enumeration are shown in the following table.

Name Description
NOT_RUNNABLE Not eligible for execution.
RUNNABLE Eligible for execution.

C1.18 RmmRecState type

The RmmRecState enumeration represents the state of a REC.

The values of the RmmRecState enumeration are shown in the following table.

Name Description
READY REC is not currently running.
RUNNING REC is currently running.

C1.19 RmmRipas type

The RmmRipas enumeration represents realm IPA state.

The values of the RmmRipas enumeration are shown in the following table.

Name Description
EMPTY Unused IPA location.
RAM Private code or data owned by the Realm.
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 245

A-bet0 Non-confidential

Chapter C1. RMM types
C1.22. RmmRittEntryState type

C1.20 RmmRtt type

The RmmRtt structure contains an RTT.

The members of the RmmRtt structure are shown in the following table.

Name Type Description

entries RmmRttEntry[512] Entries

C1.21 RmmRtiEntry type

The RmmRttEntry structure contains attributes of an RTT Entry.
See also:
* AS5.5 Realm Translation Table

The members of the RmmRttEntry structure are shown in the following table.

Name Type Description
addr Address Output address
ripas RmmRipas RIPAS

state RmmRttEntryState State

MemAttr Bits3 MemAttr
S2AP Bits2 S2AP

SH Bits2 SH

C1.22 RmmRttEntryState type

The RmmRttEntryState enumeration represents the state of an RTTE.

The values of the RmmRttEntryState enumeration are shown in the following table.

Name Description

ASSIGNED The output address of this RTTE points to a DATA Granule.

DESTROYED This RTTE cannot be used for the rest of the lifetime of the
Realm.

TABLE The output address of this RTTE points to the next-level RTT.

UNASSIGNED This RTTE is not associated with any Granule.

VALID_NS The output address of this RTTE is in the Non- secure PAS.
The mapping is valid.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 246

A-bet0 Non-confidential

Chapter C1. RMM types
C1.24. RmmSystemRegisters type

C1.23 RmmRttWalkResult type

The RmmRttWalkResult structure contains result of an RTT walk.
See also:
e A5.5.10 RTT walk

The members of the RmmRttWalkResult structure are shown in the following table.

Name Type Description

level Int8 RTT level reached by the walk
rtt_addr Address Address of RTT reached by the walk
entry RmmRttEntry RTTE reached by the walk

C1.24 RmmSystemRegisters type

The RmmSystemRegisters structure contains ELO and EL1 system registers.

The members of the RmmSystemRegisters structure are shown in the following table.

Name Type Description
SCTLR_EL1 Bits64 System control register
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 247

A-bet0 Non-confidential

Chapter C2
Generic types

This section defines types which are shared between RMM interfaces and descriptions of RMM abstract state.
See also:

* B3.4 RMI types

e B4.4 RSI types

e B5.4 PSCI types

e Chapter C1 RMM types

C2.1 Address type

The Address type is an address.
The width of the Address type is 64 bits.

C2.2 BitsN type

The BitsN type is an N-bit field.
The width of the BitsN type is N bits.

C2.3 IntN type

The IntN type is an signed N-bit integer.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 248
A-bet0 Non-confidential

Chapter C2. Generic types
C2.4. UintN type

The width of the IntN type is N bits.

C2.4 UlntN type

The UlntN type is an unsigned N-bit integer.
The width of the UIntN type is N bits.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 249
A-bet0 Non-confidential

Part D
Usage

Chapter D1

Flows

DENO0137
A-bet0

This section presents flows which-explain how the RMM architecture can be used by the Host, and by Realm
software.

Note that parts of the sequences below are for illustration only. For example, in the Realm creation flows, the
RMI_GRANULE_DELEGATE and RMI_GRANULE_UNDELEGATE commands are called immediately before
or after the RMI_X_CREATE and RMI_X_DESTROY commands respectively. An alternative flow would be for
the Host to maintain a pool of Granules in the DELEGATED state, from which RMM data structures and Realm
data can be allocated on demand.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 251
Non-confidential

Chapter D1. Flows
D1.1. Granule delegation flows

D1.1 Granule delegation flows

D1.1.1 Granule delegation flow
The following diagram shows how the PAS of a Granule is changed from NS to REALM.

Provisional

See Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A
[2] for example software flows for the operations performed by the Monitor in this flow.

It is anticipated that the Monitor software will be required to use synchronization mechanisms to serialize

access to the GPT.
QO O O

Holst Monlitor RIV!M
| RMI_GRIANULE_DELEGATE(addr)\ |

check_state_and_lock(addr, Undelegated)

| |

1 1

| | «

1 1

1 1

! ' _ SET_PAS(addr, Realm)

1

. [T

Update PAS in GPT entry; TLBI; SYNCB|
I_lresult

.....................................)

alt / [result == RMI_SUCCESS]
set_state_and_unlock(addr, Delegated)

Before the granule is used (either B‘

by the RMM, or mapped into a Realm)
it will be zero-filled by the RMM.

A

See also:

e A2.2.1 Granule attributes
e B3.3.5 RMI_GRANULE_DELEGATE command
* DI1.1.2 Granule undelegation flow

D1.1.2 Granule undelegation flow
The following diagram shows how the PAS of a Granule is changed from REALM to NS.

Provisional

See Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A
[2] for example software flows for the operations performed by the Monitor in this flow.

It is anticipated that the Monitor software will be required to use synchronization mechanisms to serialize
access to the GPT.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 252
A-bet0 Non-confidential

Chapter D1. Flows
D1.1. Granule delegation flows

DENO0137
A-bet0

O O

Host Monitor
1 1

| RMI_GRANULE_UNDELEGATE(addr)_ !

O

RIV!M

1
1
|
1
! _ SET_PAS(addr, NS)
! [T
Perform cache maintenance B‘

Update PAS in GPT entry; TLBI; SYNC

result

See also:

e A2.2.1 Granule attributes
e B3.3.6 RMI_GRANULE_UNDELEGATE command,
e DI.1.1 Granule delegation flow

seveussesnensenssnsasransrassusnannannene ol

check_state_and_lock(addr, Delegated)

/ [result == RMI_SUCCESS]

set_state_and_unlock(addr, Undelegated)

/ [result != RMI_SUCCESS]

panic() | PAS transition should never faiI.B]

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

253

Chapter D1. Flows
D1.2. Realm lifecycle flows

D1.2 Realm lifecycle flows

This section contains flows which relate to the Realm lifecycle.
See also:

* A2.1.5 Realm lifecycle

D1.2.1 Realm creation flow
The following diagram shows the flow for creating a Realm.
To create a Realm, the Host must allocate and delegate three Granules:

* rd to store the Realm Descriptor
* rtt which will be the starting level Realm Translation Table (RTT)

The Host also provides an NS Granule (params) containing Realm creation parameters.

O

Host RMM
|
| RMI_FEATURES(index=0) |
I RMI_SUCCESS U
1 @RMISUCCESS o

i Select hash algorithm |
' I
! !
1 (rd, rtt, params) = alloc_granules():

!

1
' RMI_GRANULE_DELEGATE(rd) !

|
' RMI_SUCCESS
<

| RMI_GRANULE_DELEGATE(rtt) _

| RMI_SUCCESS
L RMIL

Parameters are passed —)| params.rtt_base = rtt
in an NS granule.

!
1 params.hash_algo = <value>

i RMI_REALM_CREATE(rd, params)

RTT is zero-filled.

!
! !

. RD is populated with Realm parameters!j
|

!

1 free_granule(params) |
|
|

1 1

See also:

e B3.3.5 RMI_GRANULE_DELEGATE command
e B3.3.9 RMI REALM CREATE command
e DI1.2.5 Realm destruction flow

D1.2.2 Realm Translation Table creation flow
The following diagram shows the flow for populating the Realm Translation Tables (RTTs).

The starting level Realm Translation Tables (RTTs) are provided at Realm creation time.

Subsequent levels of RTT are added using the RMI_RTT_CREATE command. This can be performed when the
state of the Realm is NEW or ACTIVE.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 254
A-bet0 Non-confidential

Chapter D1. Flows
D1.2. Realm lifecycle flows

D1.2.3

DENO0137
A-bet0

See also:

Initia

* Chapter A5 Realm memory management
e B3.3.15 RMI_RTT CREATE command
¢ DI1.2.1 Realm creation flow

e D1.2.3 Initialize memory of New Realm flow

lize memory of New Realm flow

Create Realm (rd)

(rttl, rtt2, rtt3) = alloc_granules()

-

RMI_GRANULE_DELEGATE(rttl)

DRSS o
RMI_RTT_CREATE(rttl, rd, ipa, level=1)
RMI_SUCCESS
(.......: ...
RMI_GRANULE_DELEGATE(rtt2) o
RMI_SUCCESS
(.......: ...
RMI_RTT_CREATE(rtt2, rd, ipa, level=2)
RMI_SUCCESS
(....... TTasdccsscccsscccsscccsscccsssccsssccsssscscsscscssasas
RMI_GRANULE_DELEGATE(rtt3) o
RMI_SUCCESS
(.......: ...
RMI_RTT_CREATE(rtt3, rd, ipa, level=3)
RMI_SUCCESS
(.......: ...

Immediately following Realm creation, every page in the Protected IPA space has its RIPAS set to EMPTY. There
are two ways in which the Host can set the RIPAS of a given page of Protected IPA space to RAM:

1.

Change the RIPAS by executing RMI_RTT_INIT_RIPAS, but do not populate the contents of the page. The
RIM is extended to reflect the RIPAS change.

Populate the page with contents provided by the Host. The RIPAS is changed to RAM, and the RIM is
extended to reflect the contents added by the Host.

Once the Host has performed either of these actions for a given page of Protected IPA space, that page cannot be
further modified prior to Realm activation.

The following diagram shows the flow for initializing the RIPAS without providing contents.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Non-confidential

255

Chapter D1. Flows
D1.2. Realm lifecycle flows

DENO0137
A-bet0

To do this, the Host must:

* Delegate a destination Granule (dst).

@, O

Host RMM

Create Realm (rd) and RTTs Iﬁ

RMI_RTT_INIT_RIPAS(rd, ipa, level) |

RMI_REALM_ACTIVATE(rd)

L RMLSUCCESS u

Realm Initial Measurement has been
updated to reflect the RIPAS change.
I
RIPAS of RTTE identified by ip
has been updated to RAM.
T

\|
rI

The following diagram shows the flow for populating the page with contents provided by the Host.

* Provide an NS Granule (src), whose contents will be copied into the destination Granule.
* Provide an NS Granule (params), which contains parameters. These include the Protected IPA at which the

dst Granule will be mapped in the Realm’s IPA space.

* Ensure that the level 3 RTT which contains the RTTE identified by the Protected IPA has been created.

Once the Data Granule has been created, the src and params Granules can be reallocated by the Host.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 256

Non-confidential

Chapter D1. Flows
D1.2. Realm lifecycle flows

I Create Realm (rd) and RTTs

(src, dst) = alloc_granules()

RMI_GRANULE_DELEGATE(dst)

RMI_SUCCESS ,_J
e RMLSUCCESS e

Copy initial Realm image into src

RMI_DATA_CREATE(dst, rd, ipa, src, flags).

RMI_SUCCESS
lg--vee- Eohrdoivioieon oI, . . W |

src contents have been copied to dst.lﬁ
|
Realm Initial Measurement has beenj

updated with the IPA and contents
of the DATA Granule.
I

HIPAS of RTTE identified by ipa
has been updated to ASSIGNED.

|
RIPAS of RTTE identified by ip
has been updated to RAM.

free_granule(src)

RMI_REALM_ACTIVATE(rd)

>
>

Once the Realm state has changed
to Active, further Data granules
with Host-controlled contents can
no longer be added to the Realm

I

See also:

e A2.2.1 Granule attributes

e AS5.2.2 Realm IPA state

* A7.1.1 Realm Initial Measurement

e B3.3.1 RMI_DATA_CREATE command

e B3.3.5RMI_GRANULE_DELEGATE command
e B3:3.18 RMI_RTT_INIT_RIPAS command

¢ DI1.2.1 Realm creation flow

e D1.2.2 Realm Translation Table creation flow

* D1.2.5 Realm destruction flow

D1.2.4 REC creation flow

The following diagram shows the flow for creating a REC during Realm creation.
To create a REC, the Host must:

* Delegate a destination Granule (rec).

* Query the number of auxiliary Granules required, by calling RMI_REC_AUX_COUNT

* Delegate the required number of auxiliary Granules (aux)

* Provide auxiliary Granule addresses, register values and REC activation status in an NS Granule (params).

Once the REC has been created, the params Granule can be reallocated by the Host.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 257
A-bet0 Non-confidential

Chapter D1. Flows
D1.2. Realm lifecycle flows

I Create Realm (rd)

RMI_REC_AUX_COUNT(rd) I

. (RMILSUCCESS, aux count) . H

(rec, params) = alloc_granules()
aux = alloc_granules(aux_count)

RMI_GRANULE_DELEGATE(rec)

RMI_SUCCESS U
[e T e e e e i

loop / [i=0toaux_count-1]
RMI_GRANULE_DELEGATE(aux[i])

RMI_SUCCESS H

params.aux[i] = aux[i]

Only runnable RECs can be schedulecP‘
by the Host. Software in the Realm
can activate other RECs via PSCI.

params.flags.runnable = <bool>

The Host provides (in an NS Granule)B
the initial value of the registers
stored in the REC.

params.gprs = <value>

RMI_REC_CREATE(rd, rec, mpidr, params)

RMI_SUCCESS u
(...,..,: ..

Realm Initial Measurement has been

updated with the contents of the REC

and its runnable status.
I

Multiple RECs can be created per Realm.

All contribute to the Realm Initial Measurement.
|

mpidr value can be used by softwar

to identify this REC.

free_granule(params)

RMI_REALM_ACTIVATE(rd)

>
>

Once the Realm state has changed
to Active, further RECs can
no longer be added to the Realm

l

See also:

e B3.3.5 RMI_GRANULE_DELEGATE command
* B3.3.11 RMI_REC_AUX_COUNT command

e B3.3.12 RMI_REC_CREATE command

e DI1.2.1 Realm creation flow

e DI1.2.5 Realm destruction flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 258
A-bet0 Non-confidential

Chapter D1. Flows
D1.2. Realm lifecycle flows

D1.2.5 Realm destruction flow
The following diagram shows the flow for destroying a Realm.

To destroy a Realm, the Host must first make the Realm non-live. This is done by destroying (in any order) the
objects which are associated with the Realm:

¢ Data Granules
* RECs
* RTTs

Finally, the Realm itself can be destroyed.

Once each of these objects has been destroyed, the corresponding Granules can be undelegated and reallocated by

the Host.
Q Q

HO|St RMM

|
loop / [Foreach REC]
. RMI_REC_DESTROY(rec)
1

' RMI_SUCCESS
I<

RMI_GRANULE_UNDELEGATE(rec) _ !

I
I
!
| RMI_SUCCESS
L RML

1 free_granule(rec) |
1
1

| |
loop /) [For each Data Granule] :
' RMI_DATA_DESTROY(data) !
1

' RMI_SUCCESS
< =

RMI_GRANULE_UNDELEGATE(data)_

1
1
i
' RMI_SUCCESS
<€

| free_granule(data)

Non-starting level RTTs must be destroyed
leaf-upwards, using RMI_DATA_DESTROY, RMI_RTT_DESTROY
and RMI_GRANULE_UNDELEGATE commands.

Once all objects associated with
the Realm have been reclaimed,
the Realm itself can be destroyed
and the RD and starting level RTT
can then be reclaimed.

| RMI_REALM_DESTROY(rd) |

| RMI_SUCCESS
| RMI_
| RMI_GRANULE_UNDELEGATE(rd) _ |

RMI_SUCCESS
< _

RMI_GRANULE_UNDELEGATE(rtt) |

RMI_SUCCESS
(oG TR -

See also:

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 259
A-bet0 Non-confidential

Chapter D1. Flows
D1.2. Realm lifecycle flows

e A2.1.4 Realm liveness

e B3.3.3 RMI_DATA_DESTROY command

e B3.3.6 RMI_GRANULE_UNDELEGATE command
e B3.3.10 RMI_REALM_DESTROY command

e B3.3.13 RMI_REC_DESTROY command

e DI1.2.1 Realm creation flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 260
A-bet0 Non-confidential

Chapter D1. Flows
D1.3. Realm exception model flows

D1.3 Realm exception model flows

This section contains flows which relate to the Realm exception model.
See also:

e Chapter A4 Realm exception model

D1.3.1 Realm entry and exit flow

The following diagram shows how a Realm is executed, and illustrates the different reasons for exiting the Realm
and returning control to the Host.

A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

* a RecEntry object, which is a data structure used to pass values from the Host to the RMM on REC entry
* a RecExit object, which is a data structure used to pass values from the RMM tothe Host on REC exit

Q O O

Host RMM Realm

returned in an NS Granule. entry, exit = alloc_granules()
For REC exit due to HVC,

REC exit information is
this includes the GPR values.

RMI_REC_ENTER(rec, entry, exit)

Restore EL1/ELO context from rec

ERET

Load into GPRs values to be returned to Host

HVC

Interrupt

stage 2 fault

Store EL1/ELO context to rec

Update exit with exit reason and associated information

alt /J [If REC exit due to HVC]
Store GPR values in exit

RMI_SUCCESS

free_granules(entry, exit)

See also:

* Chapter A4 Realm exception model

e DI1.3.2 Host call flow

e DI1.3.3 REC exit due to Data Abort fault flow
* DI1.3.4 MMIO emulation flow

D1.3.2 Host call flow

The following diagram shows how software executing inside the Realm can voluntarily yield control back to the
Host by making a Host call.

A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

* a RecEntry object, which is a data structure used to pass values from the Host to the RMM on REC entry
* a RecExit object, which is a data structure used to pass values from the RMM to the Host on REC exit

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 261
A-bet0 Non-confidential

Chapter D1. Flows
D1.3. Realm exception model flows

On execution of RSI_HOST_CALL, arguments are copied from the RsiHostCall object in Realm memory into the
RecExit object in NS memory. On the subsequent RMI_REC_ENTER, return values are copied from the RecEntry
object in NS memory into the RsiHostCall object in Realm memory.

O O O

Host RMM Realm

entry, exit = alloc_granules()

RMI_REC_ENTER(rec, entry, exit)

Restore EL1/ELO context from rec

ERET

Write Host call arguments into RsiHostCall object

RSI_HOST CALL

Store EL1/ELO context to rec

Copy Host call arguments to exit

RMI_SUCCESS

Determine from exit that REC exit was due to Host cal

Read Host call arguments from exit

Write Host call results to entry

RMI_REC_ENTER(rec, entry, exit)

Restore EL1/ELO context from rec

Copy Host call results to RsiHostCall

ERET

Read Host call results from RsiHostCall object

See also:

e A4.5 Host call

D1.3.3 REC exit due to Data Abort fault flow
The following diagram shows how a Data Abort due to a Realm access is taken to the Host.
A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

* a RecEntry object, which is a data structure used to pass values from the Host to the RMM on REC entry
* a RecExit object, which is a data structure used to pass values from the RMM to the Host on REC exit

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 262
A-bet0 Non-confidential

Chapter D1. Flows
D1.3. Realm exception model flows

@, O O

Host RMM Realm

REC exit information is
returned in an NS Granule. entry, exit = alloc_granules()
For an exit due to a fault,

this includes the syndrome.

RMI_REC_ENTER(rec, entry, exit)

Restore EL1/ELO context from rec

ERET

v _ Stage 2 fault ||

Store EL1/ELO context to rec

Store fault syndrome to exit

RMI_SUCCESS
(....... T LLLLLTTTrrrsea %

Determine from exit that a stage 2 fault occurred

Read fault syndrome from exit and take appropriate actio

See also:

* Chapter A4 Realm exception model

D1.3.4 MMIO emulation flow

The following diagram shows how an MMIO access by a Realm can be emulated by the Host.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 263
A-bet0 Non-confidential

Chapter D1. Flows
D1.3. Realm exception model flows

@, O O

Host RMM Realm

entry, exit = alloc_granules()

I

RMI_REC_ENTER(rec, entry, exit)

‘ ERET

_ Stage 2 fault | |
RMI_SUCCESS

Determine from fault syndrome
that MMIO emulation is required

I

alt / [if emulating read]
entry.gprs[0] = <value>

I

alt / [If emulating write]
<value> = exit.gprs[0]

I

entry.is_emul_mmio = RMI_EMULATED_MMIO

I

RMI_REC_ENTER(rec, entry, exit)

211
Because entry.is_emul_mmio == RMI_EMULATED_ MMIO /
Check that rec.ESR_EL2 indicates an emulatable abort

<

alt / [If emulating read]
rec.<reg> = entry.gprs[0]

Restore EL1/ELO context from rec

<

ERET

_{

See also:

e Chapter A4 Realm exception model

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 264
A-bet0 Non-confidential

Chapter D1. Flows
D1.4. PSCI flows

D1.4 PSCI flows

D1.4.1 PSCI_CPU_ON flow

The following diagram shows how one Realm VPE can set the “runnable” flag in another Realm VPE by executing
PSCI_CPU_ON.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 265
A-bet0 Non-confidential

Chapter D1. Flows
D1.4. PSCI flows

DENO0137
A-bet0

O

Host

RMI_REC_ENTER(rec_a, entry, exit)

RMM

O

VPEl_A

O

VPEl_B

Create two VPEs, with
VPE_A runnable and
VPE_B not runnable.

Check rec_a.flags.runnable == RUNNABLE

ERET

_ PSCI_CPU_ON(mpidr_b, entry_point_address) | I

>
-1

Check that mpidr_b is valid

Check that entry_point_address is a Protected IPA

Exit to PSCI
(xndueoSC

fid = exit.gprs[0]

i

Determine that Realm called PSCI_CPU_ON

i

mpidr_b = exit.gprs.x1

i

rec_b = find_rec(mpidr_b)

i

RMI_PSCI_COMPLETE(rec_a, rec_b)

Y

Check that rec_b.mpidr == rec_a.gprs[1]

mpidr_b is still held

per the specification of PSCI_CPU_ON,
so there is no need for a dedicated
"pending MPIDR" REC attribute.

in rec_a.gprs[1]

RMI_SUCCESS

RMI_REC_ENTER(rec_b, entry, exit)

rec_a.gprs[0] = PSCI_SUCCESS

rec_b.flags.runnable = RUNNABLE

rec_b.pc = rec_a.gprs[2]

Check rec_b.flags.runnable == RUNNABLE
ERET o
>
(RECexit] |
RMI E
| RMLSUCCESS o i
RMI_REC_ENTER(rec_a, entry, exit) |
Check rec_a.flags.runnable == RUNNABLE
ERET o
11
VPE_A observes return
from PSCI_CPU_ON call
T T
T T i

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter D1. Flows
D1.4. PSCI flows

See also:

e B3.3.7 RMI_PSCI_COMPLETE command
e B5.3.3 PSCI_CPU_ON command

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 267
A-bet0 Non-confidential

Chapter D1. Flows
D1.5. Realm memory management flows

D1.5 Realm memory management flows

This section contains flows which relate to management of Realm memory.
See also:

e Chapter AS Realm memory management

D1.5.1 Add memory to Active Realm flow
The following diagram shows the flow for adding memory to a Realm whose state is ACTIVE.
To add memory to a Realm whose state is ACTIVE, the Host must:

* Delegate a destination Granule (dst).

* Specify the Protected IPA at which the dst Granule will be mapped in the Realm’s IPA space.

* Ensure that the level 3 RTT which contains the RTTE identified by the Protected IPA has been created.
* Ensure that the RIPAS of the Protected IPA is RAM.

Once a given Protected IPA has been populated with unknown content, it cannot be repopulated.

@, O

Host RMM

| data = alloc_granule()

1
' RMI_GRANULE_DELEGATE(data)

data contents have been initialize
to an unknown value.

State of RTTE identified by ip.
has been updated.

See also:

A2.1.5 Realm lifecycle

» Chapter AS Realm memory management

* B3.3.2 RMI_DATA_CREATE_UNKNOWN command
o B3.3.5 RMI_GRANULE_DELEGATE command

D1.5.2 NS memory flow

The following diagram describes how NS memory can be mapped into a Realm.

Q O O

Holst RN!M Realm

| RMI_RTT_MAP_UNPROTECTED(ns, rd, ipa)

RMI_SUCCESS

update_stage_2(ipa, ns, NS=1) |

See also:

* Chapter A5 Realm memory management

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 268
A-bet0 Non-confidential

Chapter D1. Flows
D1.5. Realm memory management flows

* B3.3.19 RMI_RTT_MAP_UNPROTECTED command
e B3.3.22 RMI_ RTT_UNMAP_UNPROTECTED command

D1.5.3 RIPAS change flow

The following diagram describes how a Realm requests a RIPAS change, and how that request is handled by the
Host.

* The Realm calls RSI_IPA_STATE_SET to request a RIPAS change for IPA range [base, base + size).
* This causes a REC exit due to RIPAS change pending.

If the Host accepts the RIPAS change request:

* The Host reads the region base address and size from the RecExit object.

e The Host calls RMI_RTT_SET_RIPAS for each RTTE within the target IPA region.
* The Host calls RMI_REC_ENTER to re-enter the REC.

* The Realm receives a response of ACCEPT from RSI_IPA_STATE_SET.

* The Realm observes that the RIPAS of the target IPA region has changed:

If the Host rejects the RIPAS change request:

e The Host calls RMI_REC_ENTER to re-enter the REC.
* The Realm receives a response of REJECT from RSL IPA_STATE_SET.
* The Realm observes that the RIPAS of the target IPA region has not changed.

If the Host partially applies the RIPAS change:

* The Host reads the region base address and size from the RecExit object.

* The Host calls RMI_RTT_SET_RIPAS for a subset of RTTEs within the target IPA region.
e The Host calls RMI_REC_ENTER to re-enter the REC.

* RMI_REC_ENTER fails with error code RMI_ERROR_REC.

O O O

Host RMM Realm
)]

Starting state: j

Starting state:
HIPAS = UNASSIGNED for Protected IPA range [base, base+size)

!
!
3 RIPAS = EMPTY for Protected IPA range [base, base+size)
i

| RMI_REC_ENTER(rec, run)

ERET

RSI_IPA_STATE_SET(addr=base, size=size, ripas=RAM)

rec.exit_reason = RIPAS
rec.ripas_addr = base
rec.ripas_top = addr + size
rec.ripas_value = RAM

!
!
!
!
!
!
!
i
!
|
!
i
|
i run.exit.exit_reason = RIPAS
I run.exit.ripas_base = base

X run.exit.ripas_size = size

! run.exit.ripas_value = RAM

!

!

!

RMI_SUCCESS

i
IOOE) [for each RTTE in IPA range [base, base:

| RMI_RTT_SET_RIPAS(..., ipa, level, ripas=RAM)
>

progress), where progress <= size]

E—— -

Check target IPA range and target RIPAS
against values in REC

Update REC and RTTE

RMI_SUCCESS

|
|
|
|
1
<
<

1 RMI_REC_ENTER(rec, run)

’_|X0=RSI_SUCCESS, X1=base+progress

| T

See also:

e AS5.4 RIPAS change

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 269
A-bet0 Non-confidential

Chapter D1. Flows
D1.5. Realm memory management flows

e B3.3.14 RMI_REC_ENTER command

e B3.3.21 RMI_RTT_SET_RIPAS command
e B4.3.5 RSI_IPA_STATE _SET command

e D2.2 Realm shared memory protocol flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 270
A-bet0 Non-confidential

Chapter D1. Flows
D1.6. Realm interrupts and timers flows

D1.6 Realm interrupts and timers flows

D1.6.1 Interrupt flow

The following diagram shows how a virtual interrupt is injected into a Realm by the Host.

O O O @)

Host RMM Realm VPE GIC

Save virtual GIC CPU interface state

Set virtual interrupt pending
by writing to run.entry.gicv3_Irs

RMI_REC_ENTER(rec, run)

Validate run.entry.gicv3*

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

ERET

Y

_ Virtual interrupt

Acknowledge interrupt

Handle interrupt

REC exit for wi

hatever reasoﬁ

Save virtual GIC CPU interface state to rec and run.exit.gicv3

B T OO

See also:

e AG6.1 Realm interrupts

D1.6.2 Timer interrupt delivery flow

The following diagram shows how a timer interrupt is delivered to and handled by a Realm.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

271

Chapter D1. Flows
D1.6. Realm interrupts and timers flows

O O @) O

Host RMM Realm VPE GIC EL1 Generic Timer

RMI_REC_ENTER(rec, run) |

If timer output is asserted,
mask its interrupt signal at EL2

i

If timer output is not asserted,
unmask its interrupt signal it at EL2

i

Restore EL1 timer state from rec

1

Validate run.entry.gicv3*

i

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

m“
bl
m
=

’ | Set timer
f

TimerConditionMe
Physical interrupt

IRQ exception taken to EL2

Save EL1 timer state to rec

Save EL1 timer state to run.exit.cnt*

Save virtual GIC CPU interface state to rec and run.exit.gicv3*

RMI_EXIT_IRQ

Read run.exit.cnt* values

Determine that Realm timer condition is met

Set virtual interrupt pending
by writing to run.entry.gicv3_Irs

RMI_REC_ENTER(rec, run)

If timer output is asserted,
mask its interrupt signal at EL2

1

If timer output is not asserted,
unmask its interrupt signal it at EL2

1

Restore EL1 timer state from rec

i

Validate run.entry.gicv3*

1

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

-
ERET
’ Virtual interrupt
T T [
See also:
e A6.2 Realm timers
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 272

A-bet0 Non-confidential

Chapter D1. Flows
D1.7. Realm attestation flows

D1.7 Realm attestation flows

D1.7.1 Attestation token generation flow
The following diagram shows the flow for a Realm to obtain an attestation token.

The Realm first calls RSI_ATTESTATION_TOKEN_INIT, providing the address where the attestation token will
be written, and a challenge value.

The Realm then calls RSI_ATTESTATION_TOKEN_CONTINUE, providing the same address. This command is
called in a loop, until the result is not RSI_INCOMPLETE.

O @,

RMM Realm
\ _ RSI_ATTESTATION_TOKEN_INIT(addr, challenge) I

rec.attest_state = ATTEST_IN_PROGRESS

i

rec.attest addr = addr

i

rec.attest_challenge = challenge

i

RSI_SUCCESS

loop / [until result '= RSI_INCOMPLETE]
: RSI_ATTESTATION_TOKEN_CONTINUE(addr)

Check that rec.attest state == ATTEST_IN_PROGRESS

i

Check that addr == rec.attest_addr

i

Proceed with token generation

<

alt / [Token generation complete] \

(RSI_SUCCESS, size) |
e T
RSI_INCOMPLETE |
L e Dy
1 1
1 1

See also:

e A7.2.2 Attestation token generation
e B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
e B4.3.2 RSI_ ATTESTATION_TOKEN_INIT command

D1.7.2 Handling interrupts during attestation token generation flow
The following diagram shows how interrupts are handled during generation of an attestation token.

If the RMM detects that a physical interrupt is pending during execution of RSI_ATTESTATION_TOKEN_CONTINUE,
it saves the execution context to the REC, and performs a REC exit due to IRQ.

During handling of the IRQ, the Host may signal a virtual interrupt to the REC.

On the next entry to the REC, if a virtual interrupt is pending, it is taken to the REC’s exception vector.

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 273
A-bet0 Non-confidential

Chapter D1. Flows
D1.7. Realm attestation flows

Whether or not a virtual interrupt was taken, on return to the original thread, the REC determines that X0 is
RSI_INCOMPLETE, and therefore calls RSI_ATTESTATION_TOKEN_CONTINUE again.

Q O

O

Host RMM Realm thread Realm exce_ption vector

RMI_REC_ENTER(rec, entry, exit)

Restore execution context from rec

ERET o
T

L RSI_ATTESTATION_TOKEN_INIT(addr, challenge)

| IESI_SUCCESS

RSI_ATTESTATION_TOKEN_CONTINUE(addr)
[T

loop / [While no physical interrupt pending]
Proceed with token generation

>

Physical interrupt pendinﬁ

Save execution context to rec

rec.gprs[0] = RSI_INCOMPLETE

1

exit.reason = IRQ

RMI_SUCCESS

i
During handling of the physica
interrupt, the Host may signal

a virtual interrupt to the REC.

T

RMI_REC_ENTER(rec, entry, exit)
Restore execution context from rec
alt / [Virtual interrupt pending]
ERET N
Push registers to stack
Handle interrupt
Pop registers from stack
ERET -
X0 == RSI_INCOMPLETE
RSI_ATTESTATION_TOKEN_CONTINUE(addr)
rr< 1
™ T

See also:

¢ A4.3.5 REC exit due to IRQ

e AG6.1 Realm interrupts

e A7.2.2 Attestation token generation

e B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
e B4.3.2 RSI_ ATTESTATION_TOKEN_INIT command

e DI1.3.1 Realm entry and exit flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
A-bet0 Non-confidential

274

Chapter D2
Realm shared memory protocol

This section describes a protocol for management of memory which is shared between a Realm and the Host. This
protocol makes use of the primitives described in this specification. However, the protocol itself is not part of the
RMM architecture. Use of this protocol is subject to a contract between the Realm and Host software agents.

Provisional

Arm plans to publish a standard interface via which a Realm can discover whether the Host supports this
protocol.

See also:

e Chapter A5 Realm memory management

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 275
A-bet0 Non-confidential

Chapter D2. Realm shared memory protocol
D2.1. Realm shared memory protocol description

D2.1 Realm shared memory protocol description

The Host agrees to provide the Realm with a certain amount of memory. This memory is referred to below as the
Realm’s “memory footprint”.

The memory footprint is described to the Realm, for example via firmware tables. The Realm can choose, at any
point during its execution, how much of its memory footprint is protected (accessible only to the Realm) and how
much is shared with the Host.

Realm software treats the most significant IPA bit as a “protection attribute” bit. This means that for every
Protected IPA (in which the most significant bit is ' 0 '), there exists a corresponding Unprotected IPA alias, which
is generated by setting the most significant bitto '1'.

The choice of whether a given page is protected or shared at a given time is expressed by setting the RIPAS of the
Protected IPA:

* If the RIPAS of the Protected IPA is RAM, the page is protected and access to the Unprotected IPA alias
causes a Synchronous External Abort taken to the Realm.

* If the RIPAS of the Protected IPA is EMPTY, the page is shared and access to the Unprotected IPA alias does
not cause a Synchronous External Abort taken to the Realm.

The initial RIPAS for every page in the Realm’s memory footprint is described to the Realm, for example via
firmware tables. The Host agrees that during Realm execution, it will accept a RIPAS change request on any page
within the Realm’s memory footprint.

See also:

e AS5.2.1 Realm IPA space
e AS5.2.2 Realm IPA state
* AS5.4 RIPAS change

D2.2 Realm shared memory protocol flow

DENO0137
A-bet0

The following diagram illustrates how the protocol is used to set up and tear down a shared memory buffer.

Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 276
Non-confidential

Chapter D2. Realm shared memory protocol
D2.2. Realm shared memory protocol flow

Protected IPA space

Unprotected IPA space

Memory footprint (Protected IPA alias)

Memory footprint (Unprotected IPA alias)

Initial state - [[[[[[[[[

1

et all pages in Protected memory footprint to RIPAS = RAM

OK OK OK OK OK ©OK OK OK

Access to any page within Protected memory footprint does not generate an SEA
Access to any page within Unprotected memory footprint generates an SEA

SEA SEA SEA SEA SEA SEA SEA SEA

L U S

N

SEA SEA

Create shared buffer by setting RIPAS of Protected alias to EMPTY

Tear down shared buffer by setting RIPAS of Protected alias to RAM

SEA SEA

b
LT]

*lll

[] rieas=ewpry
I RPAs=RAM
D Unprotected page

See also:

e DI1.5.3 RIPAS change flow

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

A-bet0

Figure D2.1: Realm shared memory protocol flow

Non-confidential

277

Glossary

ASL
Arm Specification Language
Language used to express pseudocode implementations. Formal language definition can be found in Arm Specifica-
tion Language Reference Manual [14].
CBOR
Concise Binary Object Representation
CCA

Confidential Compute Architecture
CCA platform

All hardware and firmware components which are involved in delivering the CCA security guarantee. See Arm
CCA Security model [4].

CDDL

Concise Data Definition Language
COSE

CBOR Object Signing and Encryption
EAT

Entity Attestation Token
FID

Function Identifier
GIC

Generic Interrupt Controller

See Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
GPF

Granule Protection Fault
GPT

Granule Protection Table

Table which determines the Physical Address Space of each Granule.
HIPAS

Host IPA state
Host

Software executing in Non-secure Security state which manages resources used by Realms
IAK

Initial Attestation Key Key used to sign the CCA platform attestation token.
IPA

278

Glossary

Intermediate Physical Address
Address space visible to software executing at EL1 in the Realm.

IPI
Inter-processor interrupt
IRI
Interrupt Routing Infrastructure
A subset of the components which make up the GIC.
ITS
Interrupt Translation Service
A service provided by the GIC.
MMIO
Memory-mapped I/O
MPIDR
Multiprocessor Affinity Register
NS
Non-secure
PAS
Physical Address Space
PE
Processing Element
PMU
Performance Monitor Unit
PSCI
Power State Control Interface
See Arm Power State Coordination Interface (PSCI) [16]
RAK
Realm Attestation Key Key used to sign the Realm attestation token.
RD
Realm Descriptor
Object which stores attributes of a Realm.
Realm
A protected execution environment
REC
Realm Execution Context
Object which stores PE state associated with a thread of execution within a Realm.
REM
Realm Extensible Measurement Measurement value which can be extended during the lifetime of a Realm.
RHA
Realm Hash Algorithm
DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 279

A-bet0 Non-confidential

Glossary

RIM

RIPAS

RMI

RMM

RNVS

RPV

RSI

RTT

RTTE

SEA

SGl

SMCCC

SPM

TA

TOS

VMM

VMSA

VPE

DENO0137
A-bet0

Realm Initial Measurement Measurement of the state of a Realm at the time of activation.

Realm IPA state

Realm Management Interface The ABI exposed by the RMM for use by the Host.

Realm Management Monitor

Root Non-volatile Storage

Realm Personalization Value

Realm Services Interface The ABI exposed by the RMM for use by the Realm.

Realm Translation Table
Object which describes the IPA space of a Realm.

Realm Translation Table Entry

Synchronous External Abort

Software Generated Interrupt

SMC Calling Convention
See Arm SMC Calling Convention [13]

Secure Partition Manager

Trusted Application

Trusted OS

Virtual Machine Monitor

Virtual Memory System Architecture

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Glossary

Virtual Processing Element

Wiping
An operation which changes the value of a memory location from X to Y, such that the value X cannot be determined
from the value Y

DENO0137 Copyright © 2022 Arm Limited or its affiliates. All rights reserved. 281
A-bet0 Non-confidential

	Realm Management Monitor specification
	Release information
	Arm Non-Confidential Document Licence (``Licence'')

	Contents
	Preface
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Addresses

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage

	Additional reading
	Feedback
	Feedback on this book

	Open issues

	A Architecture
	A1 Overview
	A1.1 Confidential computing
	A1.2 System software components
	A1.3 Realm Management Monitor

	A2 Concepts
	A2.1 Realm
	A2.1.1 Overview
	A2.1.2 Realm execution environment
	A2.1.2.1 Realm registers
	A2.1.2.2 Realm memory
	A2.1.2.3 Realm processor features
	A2.1.2.4 IMPDEF system registers

	A2.1.3 Realm attributes
	A2.1.4 Realm liveness
	A2.1.5 Realm lifecycle
	A2.1.5.1 States
	A2.1.5.2 State transitions

	A2.1.6 Realm parameters
	A2.1.7 Realm Descriptor

	A2.2 Granule
	A2.2.1 Granule attributes
	A2.2.2 Granule ownership
	A2.2.3 Granule lifecycle
	A2.2.3.1 States
	A2.2.3.2 State transitions

	A2.2.4 Granule wiping

	A2.3 Realm Execution Context
	A2.3.1 Overview
	A2.3.2 REC attributes
	A2.3.3 REC index and MPIDR value
	A2.3.4 REC lifecycle
	A2.3.4.1 States
	A2.3.4.2 State transitions

	A3 Realm creation
	A3.1 Realm feature discovery and selection
	A3.1.1 Realm hash algorithm
	A3.1.2 Realm LPA2 and IPA width
	A3.1.3 Realm support for Scalable Vector Extension
	A3.1.4 Realm support for self-hosted debug
	A3.1.5 Realm support for Performance Monitors Extension
	A3.1.6 Realm support for Activity Monitors Extension
	A3.1.7 Realm support for Statistical Profiling Extension
	A3.1.8 Realm support for Trace Buffer Extension

	A4 Realm exception model
	A4.1 Exception model overview
	A4.2 REC entry
	A4.2.1 RecEntry object
	A4.2.2 General purpose registers restored on REC entry
	A4.2.3 REC entry following REC exit due to Data Abort

	A4.3 REC exit
	A4.3.1 RecExit object
	A4.3.2 Realm exit reason
	A4.3.3 General purpose registers saved on REC exit
	A4.3.4 REC exit due to synchronous exception
	A4.3.4.1 REC exit due to WFI or WFE
	A4.3.4.2 REC exit due to Instruction Abort
	A4.3.4.3 REC exit due to Data Abort

	A4.3.5 REC exit due to IRQ
	A4.3.6 REC exit due to FIQ
	A4.3.7 REC exit due to PSCI
	A4.3.8 REC exit due to RIPAS change pending
	A4.3.9 REC exit due to Host call
	A4.3.10 REC exit due to SError

	A4.4 Emulated Data Aborts
	A4.5 Host call

	A5 Realm memory management
	A5.1 Realm memory management overview
	A5.2 Realm view of memory management
	A5.2.1 Realm IPA space
	A5.2.2 Realm IPA state
	A5.2.3 Realm access to a Protected IPA
	A5.2.4 Realm access to an Unprotected IPA
	A5.2.5 Synchronous External Aborts
	A5.2.6 Realm access outside IPA space
	A5.2.7 Summary of Realm IPA space properties

	A5.3 Host view of memory management
	A5.3.1 Host IPA state
	A5.3.2 Host control of RIPAS and HIPAS

	A5.4 RIPAS change
	A5.5 Realm Translation Table
	A5.5.1 RTT overview
	A5.5.2 RTT structure and configuration
	A5.5.3 RTT starting level
	A5.5.4 RTT entry
	A5.5.5 RTT reading
	A5.5.6 RTT folding
	A5.5.7 RTT unfolding
	A5.5.8 RTT liveness
	A5.5.9 RTT destruction
	A5.5.10 RTT walk
	A5.5.11 RTT entry attributes

	A6 Realm interrupts and timers
	A6.1 Realm interrupts
	A6.2 Realm timers

	A7 Realm measurement and attestation
	A7.1 Realm measurements
	A7.1.1 Realm Initial Measurement
	A7.1.2 Realm Extensible Measurement

	A7.2 Realm attestation
	A7.2.1 Attestation token
	A7.2.2 Attestation token generation
	A7.2.3 Attestation token format
	A7.2.3.1 Realm claims
	A7.2.3.1.1 Realm challenge claim
	A7.2.3.1.2 Realm Personalization Value claim
	A7.2.3.1.3 Realm Initial Measurement claim
	A7.2.3.1.4 Realm Extensible Measurements claim
	A7.2.3.1.5 Realm hash algorithm ID claim
	A7.2.3.1.6 Realm public key claim
	A7.2.3.1.7 Realm public key hash algorithm identifier claim
	A7.2.3.1.8 Collated CDDL for Realm claims
	A7.2.3.1.9 Example Realm claims

	A7.2.3.2 CCA platform claims
	A7.2.3.2.1 CCA platform profile claim
	A7.2.3.2.2 CCA platform challenge claim
	A7.2.3.2.3 CCA platform Implementation ID claim
	A7.2.3.2.4 CCA platform Instance ID claim
	A7.2.3.2.5 CCA platform config claim
	A7.2.3.2.6 CCA platform lifecycle claim
	A7.2.3.2.7 CCA platform software components claim
	CCA platform software component type
	CCA platform software component measurement value
	CCA platform software component version
	CCA platform software component signer ID
	CCA platform software hash algorithm ID

	A7.2.3.2.8 CCA platform verification service claim
	A7.2.3.2.9 CCA platform hash algorithm ID claim
	A7.2.3.2.10 Collated CDDL for CCA platform claims
	A7.2.3.2.11 Example CCA platform claims

	A8 Realm debug and performance monitoring
	A8.1 Realm PMU

	B Interface
	B1 Commands
	B1.1 Overview
	B1.2 Command definition
	B1.2.1 Example command
	Interface
	FID
	Input values
	Context
	Output values

	Failure conditions
	Success conditions

	B1.3 Command registers
	B1.4 Command condition expressions
	B1.5 Command context values
	B1.6 Command failure conditions
	B1.7 Command success conditions
	B1.8 Command footprint

	B2 Command condition functions
	B2.1 AddrInRange function
	B2.2 AddrIsAligned function
	B2.3 AddrIsGranuleAligned function
	B2.4 AddrIsProtected function
	B2.5 AddrIsRttLevelAligned function
	B2.6 AddrRangeIsProtected function
	B2.7 CurrentRealm function
	B2.8 CurrentRec function
	B2.9 Gicv3ConfigIsValid function
	B2.10 Granule function
	B2.11 MpidrEqual function
	B2.12 MpidrIsUsed function
	B2.13 PaIsDelegable function
	B2.14 PsciReturnCodeEncode function
	B2.15 ReadMemory function
	B2.16 Realm function
	B2.17 RealmConfig function
	B2.18 RealmHostCall function
	B2.19 RealmIsLive function
	B2.20 RealmParams function
	B2.21 Rec function
	B2.22 RecAuxAlias function
	B2.23 RecAuxAligned function
	B2.24 RecAuxCount function
	B2.25 RecAuxEqual function
	B2.26 RecAuxSort function
	B2.27 RecAuxStateEqual function
	B2.28 RecAuxStates function
	B2.29 RecFromMpidr function
	B2.30 RecIndex function
	B2.31 RecParams function
	B2.32 RecRun function
	B2.33 RemExtend function
	B2.34 ResultEqual function
	B2.35 RimExtendData function
	B2.36 RimExtendRec function
	B2.37 RimExtendRipas function
	B2.38 RimInit function
	B2.39 RmiFeatureRegister0IsValid function
	B2.40 RmiHashAlgorithmIsSupported function
	B2.41 RmiHashAlgorithmIsValid function
	B2.42 RmiRecCreateFlagsIsValid function
	B2.43 RmiRecMpidrIsValid function
	B2.44 RmiRipasIsValid function
	B2.45 RsiRipasIsValid function
	B2.46 Rtt function
	B2.47 RttAllEntriesContiguous function
	B2.48 RttAllEntriesRipas function
	B2.49 RttAllEntriesState function
	B2.50 RttConfigIsValid function
	B2.51 RttDescriptorIsValidForUnprotected function
	B2.52 RttEntry function
	B2.53 RttEntryFromDescriptor function
	B2.54 RttEntryIndex function
	B2.55 RttFold function
	B2.56 RttIsHomogeneous function
	B2.57 RttIsLive function
	B2.58 RttLevelIsBlockOrPage function
	B2.59 RttLevelIsStarting function
	B2.60 RttLevelIsValid function
	B2.61 RttLevelSize function
	B2.62 RttsAllEntriesRipas function
	B2.63 RttsAllEntriesState function
	B2.64 RttsGranuleState function
	B2.65 RttsStateEqual function
	B2.66 RttWalk function
	B2.67 ToAddress function
	B2.68 VmidIsFree function
	B2.69 VmidIsValid function

	B3 Realm Management Interface
	B3.1 RMI version
	B3.2 RMI command return codes
	B3.3 RMI commands
	B3.3.1 RMI_DATA_CREATE command
	B3.3.1.1 Interface
	B3.3.1.1.1 Input values
	B3.3.1.1.2 Context
	B3.3.1.1.3 Output values

	B3.3.1.2 Failure conditions
	B3.3.1.2.1 Failure condition ordering

	B3.3.1.3 Success conditions
	B3.3.1.4 RMI_DATA_CREATE extension of RIM
	B3.3.1.5 Footprint

	B3.3.2 RMI_DATA_CREATE_UNKNOWN command
	B3.3.2.1 Interface
	B3.3.2.1.1 Input values
	B3.3.2.1.2 Context
	B3.3.2.1.3 Output values

	B3.3.2.2 Failure conditions
	B3.3.2.2.1 Failure condition ordering

	B3.3.2.3 Success conditions
	B3.3.2.4 Footprint

	B3.3.3 RMI_DATA_DESTROY command
	B3.3.3.1 Interface
	B3.3.3.1.1 Input values
	B3.3.3.1.2 Context
	B3.3.3.1.3 Output values

	B3.3.3.2 Failure conditions
	B3.3.3.2.1 Failure condition ordering

	B3.3.3.3 Success conditions
	B3.3.3.4 Footprint

	B3.3.4 RMI_FEATURES command
	B3.3.4.1 Interface
	B3.3.4.1.1 Input values
	B3.3.4.1.2 Output values

	B3.3.4.2 Failure conditions
	B3.3.4.3 Success conditions
	B3.3.4.4 Footprint

	B3.3.5 RMI_GRANULE_DELEGATE command
	B3.3.5.1 Interface
	B3.3.5.1.1 Input values
	B3.3.5.1.2 Output values

	B3.3.5.2 Failure conditions
	B3.3.5.2.1 Failure condition ordering

	B3.3.5.3 Success conditions
	B3.3.5.4 Footprint

	B3.3.6 RMI_GRANULE_UNDELEGATE command
	B3.3.6.1 Interface
	B3.3.6.1.1 Input values
	B3.3.6.1.2 Output values

	B3.3.6.2 Failure conditions
	B3.3.6.2.1 Failure condition ordering

	B3.3.6.3 Success conditions
	B3.3.6.4 Footprint

	B3.3.7 RMI_PSCI_COMPLETE command
	B3.3.7.1 Interface
	B3.3.7.1.1 Input values
	B3.3.7.1.2 Output values

	B3.3.7.2 Failure conditions
	B3.3.7.2.1 Failure condition ordering

	B3.3.7.3 Success conditions
	B3.3.7.4 Footprint

	B3.3.8 RMI_REALM_ACTIVATE command
	B3.3.8.1 Interface
	B3.3.8.1.1 Input values
	B3.3.8.1.2 Output values

	B3.3.8.2 Failure conditions
	B3.3.8.2.1 Failure condition ordering

	B3.3.8.3 Success conditions
	B3.3.8.4 Footprint

	B3.3.9 RMI_REALM_CREATE command
	B3.3.9.1 Interface
	B3.3.9.1.1 Input values
	B3.3.9.1.2 Context
	B3.3.9.1.3 Output values

	B3.3.9.2 Failure conditions
	B3.3.9.2.1 Failure condition ordering

	B3.3.9.3 Success conditions
	B3.3.9.4 RMI_REALM_CREATE initialization of RIM
	B3.3.9.5 Footprint

	B3.3.10 RMI_REALM_DESTROY command
	B3.3.10.1 Interface
	B3.3.10.1.1 Input values
	B3.3.10.1.2 Context
	B3.3.10.1.3 Output values

	B3.3.10.2 Failure conditions
	B3.3.10.2.1 Failure condition ordering

	B3.3.10.3 Success conditions
	B3.3.10.4 Footprint

	B3.3.11 RMI_REC_AUX_COUNT command
	B3.3.11.1 Interface
	B3.3.11.1.1 Input values
	B3.3.11.1.2 Output values

	B3.3.11.2 Failure conditions
	B3.3.11.2.1 Failure condition ordering

	B3.3.11.3 Success conditions
	B3.3.11.4 Footprint

	B3.3.12 RMI_REC_CREATE command
	B3.3.12.1 Interface
	B3.3.12.1.1 Input values
	B3.3.12.1.2 Context
	B3.3.12.1.3 Output values

	B3.3.12.2 Failure conditions
	B3.3.12.2.1 Failure condition ordering

	B3.3.12.3 Success conditions
	B3.3.12.4 RMI_REC_CREATE extension of RIM
	B3.3.12.5 Footprint

	B3.3.13 RMI_REC_DESTROY command
	B3.3.13.1 Interface
	B3.3.13.1.1 Input values
	B3.3.13.1.2 Context
	B3.3.13.1.3 Output values

	B3.3.13.2 Failure conditions
	B3.3.13.2.1 Failure condition ordering

	B3.3.13.3 Success conditions
	B3.3.13.4 Footprint

	B3.3.14 RMI_REC_ENTER command
	B3.3.14.1 Interface
	B3.3.14.1.1 Input values
	B3.3.14.1.2 Context
	B3.3.14.1.3 Output values

	B3.3.14.2 Failure conditions
	B3.3.14.2.1 Failure condition ordering

	B3.3.14.3 Success conditions
	B3.3.14.4 Footprint

	B3.3.15 RMI_RTT_CREATE command
	B3.3.15.1 Interface
	B3.3.15.1.1 Input values
	B3.3.15.1.2 Context
	B3.3.15.1.3 Output values

	B3.3.15.2 Failure conditions
	B3.3.15.2.1 Failure condition ordering

	B3.3.15.3 Success conditions
	B3.3.15.4 Footprint

	B3.3.16 RMI_RTT_DESTROY command
	B3.3.16.1 Interface
	B3.3.16.1.1 Input values
	B3.3.16.1.2 Context
	B3.3.16.1.3 Output values

	B3.3.16.2 Failure conditions
	B3.3.16.2.1 Failure condition ordering

	B3.3.16.3 Success conditions
	B3.3.16.4 Footprint

	B3.3.17 RMI_RTT_FOLD command
	B3.3.17.1 Interface
	B3.3.17.1.1 Input values
	B3.3.17.1.2 Context
	B3.3.17.1.3 Output values

	B3.3.17.2 Failure conditions
	B3.3.17.2.1 Failure condition ordering

	B3.3.17.3 Success conditions
	B3.3.17.4 Footprint

	B3.3.18 RMI_RTT_INIT_RIPAS command
	B3.3.18.1 Interface
	B3.3.18.1.1 Input values
	B3.3.18.1.2 Context
	B3.3.18.1.3 Output values

	B3.3.18.2 Failure conditions
	B3.3.18.2.1 Failure condition ordering

	B3.3.18.3 Success conditions
	B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM
	B3.3.18.5 Footprint

	B3.3.19 RMI_RTT_MAP_UNPROTECTED command
	B3.3.19.1 Interface
	B3.3.19.1.1 Input values
	B3.3.19.1.2 Context
	B3.3.19.1.3 Output values

	B3.3.19.2 Failure conditions
	B3.3.19.2.1 Failure condition ordering

	B3.3.19.3 Success conditions
	B3.3.19.4 Footprint

	B3.3.20 RMI_RTT_READ_ENTRY command
	B3.3.20.1 Interface
	B3.3.20.1.1 Input values
	B3.3.20.1.2 Context
	B3.3.20.1.3 Output values

	B3.3.20.2 Failure conditions
	B3.3.20.2.1 Failure condition ordering

	B3.3.20.3 Success conditions
	B3.3.20.4 Footprint

	B3.3.21 RMI_RTT_SET_RIPAS command
	B3.3.21.1 Interface
	B3.3.21.1.1 Input values
	B3.3.21.1.2 Context
	B3.3.21.1.3 Output values

	B3.3.21.2 Failure conditions
	B3.3.21.2.1 Failure condition ordering

	B3.3.21.3 Success conditions
	B3.3.21.4 Footprint

	B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command
	B3.3.22.1 Interface
	B3.3.22.1.1 Input values
	B3.3.22.1.2 Context
	B3.3.22.1.3 Output values

	B3.3.22.2 Failure conditions
	B3.3.22.2.1 Failure condition ordering

	B3.3.22.3 Success conditions
	B3.3.22.4 Footprint

	B3.3.23 RMI_VERSION command
	B3.3.23.1 Interface
	B3.3.23.1.1 Input values
	B3.3.23.1.2 Output values

	B3.3.23.2 Failure conditions
	B3.3.23.3 Success conditions
	B3.3.23.4 Footprint

	B3.4 RMI types
	B3.4.1 RmiCommandReturnCode type
	B3.4.2 RmiDataFlags type
	B3.4.3 RmiDataMeasureContent type
	B3.4.4 RmiEmulatedMmio type
	B3.4.5 RmiFeature type
	B3.4.6 RmiFeatureRegister0 type
	B3.4.7 RmiHashAlgorithm type
	B3.4.8 RmiInjectSea type
	B3.4.9 RmiInterfaceVersion type
	B3.4.10 RmiRealmParams type
	B3.4.11 RmiRecCreateFlags type
	B3.4.12 RmiRecEntry type
	B3.4.13 RmiRecEntryFlags type
	B3.4.14 RmiRecExit type
	B3.4.15 RmiRecExitReason type
	B3.4.16 RmiRecMpidr type
	B3.4.17 RmiRecParams type
	B3.4.18 RmiRecRun type
	B3.4.19 RmiRecRunnable type
	B3.4.20 RmiRipas type
	B3.4.21 RmiRttEntryState type
	B3.4.22 RmiStatusCode type
	B3.4.23 RmiTrap type

	B4 Realm Services Interface
	B4.1 RSI version
	B4.2 RSI command return codes
	B4.3 RSI commands
	B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
	B4.3.1.1 Interface
	B4.3.1.1.1 Input values
	B4.3.1.1.2 Context
	B4.3.1.1.3 Output values

	B4.3.1.2 Failure conditions
	B4.3.1.2.1 Failure condition ordering

	B4.3.1.3 Success conditions
	B4.3.1.4 Footprint

	B4.3.2 RSI_ATTESTATION_TOKEN_INIT command
	B4.3.2.1 Interface
	B4.3.2.1.1 Input values
	B4.3.2.1.2 Context
	B4.3.2.1.3 Output values

	B4.3.2.2 Failure conditions
	B4.3.2.2.1 Failure condition ordering

	B4.3.2.3 Success conditions
	B4.3.2.4 Footprint

	B4.3.3 RSI_HOST_CALL command
	B4.3.3.1 Interface
	B4.3.3.1.1 Input values
	B4.3.3.1.2 Context
	B4.3.3.1.3 Output values

	B4.3.3.2 Failure conditions
	B4.3.3.2.1 Failure condition ordering

	B4.3.3.3 Success conditions
	B4.3.3.4 Footprint

	B4.3.4 RSI_IPA_STATE_GET command
	B4.3.4.1 Interface
	B4.3.4.1.1 Input values
	B4.3.4.1.2 Context
	B4.3.4.1.3 Output values

	B4.3.4.2 Failure conditions
	B4.3.4.2.1 Failure condition ordering

	B4.3.4.3 Success conditions
	B4.3.4.4 Footprint

	B4.3.5 RSI_IPA_STATE_SET command
	B4.3.5.1 Interface
	B4.3.5.1.1 Input values
	B4.3.5.1.2 Context
	B4.3.5.1.3 Output values

	B4.3.5.2 Failure conditions
	B4.3.5.2.1 Failure condition ordering

	B4.3.5.3 Success conditions
	B4.3.5.4 Footprint

	B4.3.6 RSI_MEASUREMENT_EXTEND command
	B4.3.6.1 Interface
	B4.3.6.1.1 Input values
	B4.3.6.1.2 Context
	B4.3.6.1.3 Output values

	B4.3.6.2 Failure conditions
	B4.3.6.2.1 Failure condition ordering

	B4.3.6.3 Success conditions
	B4.3.6.4 Footprint

	B4.3.7 RSI_MEASUREMENT_READ command
	B4.3.7.1 Interface
	B4.3.7.1.1 Input values
	B4.3.7.1.2 Output values

	B4.3.7.2 Failure conditions
	B4.3.7.3 Success conditions
	B4.3.7.4 Footprint

	B4.3.8 RSI_REALM_CONFIG command
	B4.3.8.1 Interface
	B4.3.8.1.1 Input values
	B4.3.8.1.2 Context
	B4.3.8.1.3 Output values

	B4.3.8.2 Failure conditions
	B4.3.8.2.1 Failure condition ordering

	B4.3.8.3 Success conditions
	B4.3.8.4 Footprint

	B4.3.9 RSI_VERSION command
	B4.3.9.1 Interface
	B4.3.9.1.1 Input values
	B4.3.9.1.2 Output values

	B4.3.9.2 Failure conditions
	B4.3.9.3 Success conditions
	B4.3.9.4 Footprint

	B4.4 RSI types
	B4.4.1 RsiCommandReturnCode type
	B4.4.2 RsiHostCall type
	B4.4.3 RsiInterfaceVersion type
	B4.4.4 RsiRealmConfig type
	B4.4.5 RsiRipas type

	B5 Power State Control Interface
	B5.1 PSCI overview
	B5.2 PSCI version
	B5.3 PSCI commands
	B5.3.1 PSCI_AFFINITY_INFO command
	B5.3.1.1 Interface
	B5.3.1.1.1 Input values
	B5.3.1.1.2 Context
	B5.3.1.1.3 Output values

	B5.3.1.2 Failure conditions
	B5.3.1.2.1 Failure condition ordering

	B5.3.1.3 Success conditions
	B5.3.1.4 Footprint

	B5.3.2 PSCI_CPU_OFF command
	B5.3.2.1 Interface
	B5.3.2.1.1 Input values
	B5.3.2.1.2 Context
	B5.3.2.1.3 Output values

	B5.3.2.2 Failure conditions
	B5.3.2.3 Success conditions
	B5.3.2.4 Footprint

	B5.3.3 PSCI_CPU_ON command
	B5.3.3.1 Interface
	B5.3.3.1.1 Input values
	B5.3.3.1.2 Context
	B5.3.3.1.3 Output values

	B5.3.3.2 Failure conditions
	B5.3.3.2.1 Failure condition ordering

	B5.3.3.3 Success conditions
	B5.3.3.4 Footprint

	B5.3.4 PSCI_CPU_SUSPEND command
	B5.3.4.1 Interface
	B5.3.4.1.1 Input values
	B5.3.4.1.2 Output values

	B5.3.4.2 Failure conditions
	B5.3.4.3 Success conditions
	B5.3.4.4 Footprint

	B5.3.5 PSCI_FEATURES command
	B5.3.5.1 Interface
	B5.3.5.1.1 Input values
	B5.3.5.1.2 Output values

	B5.3.5.2 Failure conditions
	B5.3.5.3 Success conditions
	B5.3.5.4 Footprint

	B5.3.6 PSCI_SYSTEM_OFF command
	B5.3.6.1 Interface
	B5.3.6.1.1 Input values
	B5.3.6.1.2 Context
	B5.3.6.1.3 Output values

	B5.3.6.2 Failure conditions
	B5.3.6.3 Success conditions
	B5.3.6.4 Footprint

	B5.3.7 PSCI_SYSTEM_RESET command
	B5.3.7.1 Interface
	B5.3.7.1.1 Input values
	B5.3.7.1.2 Context
	B5.3.7.1.3 Output values

	B5.3.7.2 Failure conditions
	B5.3.7.3 Success conditions
	B5.3.7.4 Footprint

	B5.3.8 PSCI_VERSION command
	B5.3.8.1 Interface
	B5.3.8.1.1 Input values
	B5.3.8.1.2 Output values

	B5.3.8.2 Failure conditions
	B5.3.8.3 Success conditions
	B5.3.8.4 Footprint

	B5.4 PSCI types
	B5.4.1 PsciInterfaceVersion type
	B5.4.2 PsciReturnCode type

	C Types
	C1 RMM types
	C1.1 RmmGranule type
	C1.2 RmmGranuleState type
	C1.3 RmmHashAlgorithm type
	C1.4 RmmHostCallPending type
	C1.5 RmmMeasurementDescriptorData type
	C1.6 RmmMeasurementDescriptorRec type
	C1.7 RmmMeasurementDescriptorRipas type
	C1.8 RmmPhysicalAddressSpace type
	C1.9 RmmPsciPending type
	C1.10 RmmRealm type
	C1.11 RmmRealmMeasurement type
	C1.12 RmmRealmState type
	C1.13 RmmRec type
	C1.14 RmmRecAttestState type
	C1.15 RmmRecEmulatableAbort type
	C1.16 RmmRecFlags type
	C1.17 RmmRecRunnable type
	C1.18 RmmRecState type
	C1.19 RmmRipas type
	C1.20 RmmRtt type
	C1.21 RmmRttEntry type
	C1.22 RmmRttEntryState type
	C1.23 RmmRttWalkResult type
	C1.24 RmmSystemRegisters type

	C2 Generic types
	C2.1 Address type
	C2.2 BitsN type
	C2.3 IntN type
	C2.4 UIntN type

	D Usage
	D1 Flows
	D1.1 Granule delegation flows
	D1.1.1 Granule delegation flow
	D1.1.2 Granule undelegation flow

	D1.2 Realm lifecycle flows
	D1.2.1 Realm creation flow
	D1.2.2 Realm Translation Table creation flow
	D1.2.3 Initialize memory of New Realm flow
	D1.2.4 REC creation flow
	D1.2.5 Realm destruction flow

	D1.3 Realm exception model flows
	D1.3.1 Realm entry and exit flow
	D1.3.2 Host call flow
	D1.3.3 REC exit due to Data Abort fault flow
	D1.3.4 MMIO emulation flow

	D1.4 PSCI flows
	D1.4.1 PSCI_CPU_ON flow

	D1.5 Realm memory management flows
	D1.5.1 Add memory to Active Realm flow
	D1.5.2 NS memory flow
	D1.5.3 RIPAS change flow

	D1.6 Realm interrupts and timers flows
	D1.6.1 Interrupt flow
	D1.6.2 Timer interrupt delivery flow

	D1.7 Realm attestation flows
	D1.7.1 Attestation token generation flow
	D1.7.2 Handling interrupts during attestation token generation flow

	D2 Realm shared memory protocol
	D2.1 Realm shared memory protocol description
	D2.2 Realm shared memory protocol flow

	Glossary

