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About this document

Terms and abbreviations

Term Meaning

ABI Application Binary Interface

ACS Access Control Services. A set of features intended to ensure that uncontrolled
peer-to-peer transaction cannot occur. See PCIe specification [1] for more details.

AER Advanced Error Reporting. A PCIe feature that enables software to isolate and
analyze errors with fine granularity. See PCIe specification [1] for more details.

ARE Affinity Routing Enable (GICv3 [2]).

Arm ARM Arm Architecture Reference Manual. See [3].

ATS Address Translation Services

BBR Base Boot Requirements [4].

CBSA Client Base System Architecture. See [5].

CSP Cloud Service Provider

CTI Cross Trigger Interface, see [3].

DMA Direct Memory Access

DVM Distributed Virtual Memory

ECAM Enhanced Configuration Access Mechanism

GIC Generic Interrupt Controller

I/O coherent A device is I/O coherent with the PE caches if its transactions snoop the PE
caches for cacheable regions of memory. The PE does not snoop the device
cache.

LPI Locality-specific Peripheral Interrupt (GICv3 [2]).

MMIO Memory Mapped Input Output

P2P or Peer-to-peer See PCIe specification [1] for more details.

PCIe Host Bridge
(PHB)

See PCIe specification [1] for more details.

PE Processing Element, as defined in the Arm ARM. Typically a single hardware
thread of a PE.

PMU Performance Monitor Unit

PPI Private Peripheral Interrupt

PRI Page Request Interface

PTM Precision Time Measurement. PCIe standard specified method for finding the
relationship between a PTM primary clock and another clock in a device in the
same hierarchy.

RCEC Root Complex Event Collector. See PCIe specification [1] for more details.

RCiEP Root Complex integrated End Point. See PCIe specification [1] for more details.
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Term Meaning

Requester An agent in a computing system that is capable of initiating memory transactions.

Root Complex (RC) See PCIe specification [1] for more details.

Root Port (RP) See PCIe specification [1] for more details.

SBBR Server Base Boot Requirements [4].

SBSA Server Base System Architecture. See [6]

SGI Software-Generated Interrupt

SPI Shared Peripheral Interrupt

SR-IOV Single Root I/O virtualization. This is a method for a PCIe device to be virtualized.
See PCIe specification [1] for more details.

SRE System Register interface Enable (GICv3 [2]).

System firmware data System description data structures, for example ACPI or Flattened Device Tree.

TCG Trusted Computing Group

TPM Trusted Platform Module is a technology, typically implemented through a Secure
microcontroller, that can securely store artifacts used to authenticate a platform,
or platform components. The TPM technical specification is maintained by the
TCG consortium.

Trace unit A logical component which generates a trace stream from a PE.

VM Virtual Machine
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[16] IHI 0048 Arm® Architecture Specification, GIC architecture version 2.0. Arm Ltd.

Rules-based writing

This specification consists of a set of individual rules. Each rule is clearly identified by the letter R.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists,
individual rules are grouped into sections and subsections to provide the proper context. Where appropriate,
these sections contain a short introduction to aid the reader. An implementation which is compliant with the
architecture must conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was
specified as it was. Rationale statements are identified by the letter X.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I.

Implementation notes are identified by the letter U.

Software usage descriptions are identified by the letter S.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that
an implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements
are collectively referred to as content items.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002,
. . . ).

• Identifiers are volatile: the identifier for a given content item may change between versions of the
document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . . ).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

R This is a rule statement.

RX001 This is a rule statement.

I This is an information statement.
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X This is a rationale statement.

U This is an implementation note.

S This is a software usage description.

Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (Arm Base System Architecture).
• The document ID and version (DEN0094C 1.0C).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
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1 Background

Arm processors are used in a wide variety of system-on-chip products in many diverse markets. The
constraints on products in these markets are inevitably very different, and it is impossible to produce a single
product that meets all of the needs of the various markets.

The Arm architecture profiles, Application, Real-time, and Microcontroller, segment the solutions that are
produced by Arm and align with the varying functional requirements of particular target markets. The
differences between products that are targeted at different profiles are substantial. This is because of the
diverse functional requirements of the market segments.

However, even within an architectural profile, the wide-ranging use of a product means that there are frequent
requests for features to be removed to save silicon area. This is relevant for products targeted at cost-sensitive
markets. In these markets, where the cost of customizing software to accommodate the loss of a feature is
small compared to the overall cost saving of removing the feature itself.

In other markets, for example those which require an open platform with complex software, the savings that
are gained from removing a hardware feature are outweighed by the cost of software development to support
the different variants. In addition, software development is often performed by third parties. The uncertainty
about whether new features are widely deployed can be a substantial brake to the adoption of those features.

The Arm Application profile must balance these two competing business pressures. It offers a wide range of
features, for example Advanced SIMD and floating-point support, and TrustZone system security technology,
to tackle an increasing range of problems. It also provides the flexibility to reduce silicon space by removing
hardware features in cost-sensitive implementations.

Arm processors are built into a large variety of systems. Aspects of this system functionality are crucial to the
fundamental function of system software. Variability in PE features and certain key aspects of the system
impact on the cost of software system development and the associated quality risks.

Base System Architecture (BSA) specifications are part of Arm’s strategy of addressing this variability.
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2 Introduction

This document specifies a hardware system architecture, based on Arm 64-bit architecture, that system
software, for example operating systems, hypervisors, and firmware can rely on. This document addresses
PE features and key aspects of system architecture.

The primary goal of this document is to ensure sufficient standard system architecture to enable a suitably built
single OS image to run on all hardware compliant with this specification. A driver-based model for advanced
platform capabilities beyond basic system configuration and boot is required. However, this is outside the
scope of this document. Fully discoverable and describable peripherals aid the implementation of this type of
driver model.

Arm does not mandate compliance to this specification. However, Arm anticipates that OEMs, ODMs, cloud
service providers and software providers will require compliance to maximize Out of Box software compatibility
and reliability.

Implementations that are consistent with Base System Architecture can include additional features that are
not included in the definition of BSA. However, software that is written for a specific version of BSA, must run,
unaltered, on implementations that include this type of additional functionality.

Note

This is intended to avoid approaches, like software emulation of functionality that is critical to the
performance of software using the BSA. It is not intended to act as a restriction of legitimate exploration
of the power, performance, or area tradeoffs that characterize different products, nor to restrict the use of
trapping within a virtualization system.

Software that runs on a system including an Arm core inevitably includes code that is system specific. This
type of code is typically partitioned from the rest of the system software in the form of Firmware, Hardware
Abstraction Layers, Board Support Packages, drivers and similar constructs. This document refers to this type
of constructs as Hardware Specific Software. The Arm Base Boot Requirements (Arm BBR) specification
[4] describes boot requirements for operating systems that require the use of UEFI, ACPI, Device tree and
SMBIOS.

This specification uses the phrase software that is consistent with the Base System Architecture to indicate
software that is designed to be portable between different implementations that are consistent with the Base
System Architecture. Boot Software that is consistent with the Base System Architecture does not depend on
the presence of hardware features that are not required in this specification. However, software might use
features that are not included in this specification, after checking that the platform supports the features, for
example by using hardware ID registers or system firmware data.

2.1 Approach and scope

This document is structured as BSA and supplements:

Section 3 Base System Architecture

The Base System Architecture (BSA), Section 3, describes the requirements and run-time features
of a base system required to install, boot, and run an operating system.

Server BSA [6]

The Server Base System Architecture (SBSA) supplement [6] describes the requirements and
features required for Server OS boot and functionality. SBSA provides a consistent target for
software developers, driving the alignment of server market capabilities forward over time.
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Client BSA [5]

The Client Base System Architecture (CBSA) supplement [5] provides requirements that describe
the evolution of features to provide a consistent target for software developers, driving the alignment
of client market capabilities forward over time.

Appendixes

The Appendixes provide additional implementation requirements.

2.2 How to interpret this document

The sections and rules in this document can be visualized this way.

Figure 1: Target markets and Arm BSA

Standard OS boot: The rules in BSA, Section 3, must be implemented to support a Standard OS boot.

Server SoC designers: The rules in SBSA, [6] for the target level of compliance must be implemented.

Client SoC designers: The rules in in CBSA, [5], for the target level of compliance must be implemented.

PCIe: If devices are presented to software as PCIe devices, they must be compliant to rules mentioned in
Section E and Section 3.13.
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2.3 Design patterns

This section outlines design patterns that provide the rationale behind key requirements expressed within this
specification.

2.3.1 Non-secure operating systems

Operating systems can run on bare-metal or under virtualization. Fundamental to this is that the software
view, the operating system has of the system, is invariant.

This specification aims to ensure that operating systems have access to a known minimum amount of
functionality that they can rely on. This specification describes requirements on hardware and obligations on
hypervisors and operating systems to achieve this minimum amount of functionality.

The levels in BSA supplements map out increasing amounts of functionality to aid orderly adoption of new
functionality.

Non-secure devices offer much of the key functionality of a base system and are expected to be under the
control of the operating system. It is expected that devices will have device specific drivers in the operating
system to manage and control the device, however there are certain design patterns that are anticipated.

Interrupts from devices will use an interrupt controller that is compliant with Arm GIC architecture, with
no intervening logic. The interrupt controller is critical to the operating system, so it must be a standard
architecture with no device specific code to handle the acknowledgment and/or routing of interrupts. This
means that systems must not have non-standard components for combining interrupts or converting between
MSI and wired interrupts.

2.3.1.1 Memory allocation and DMA

Allocating memory for a device is carried out by the device driver interfacing with the operating system. Most
operating systems support allocating memory that is contiguous in (intermediate) physical address space.
However, it is impossible for operating systems to always guarantee this type of allocation. This is because
the memory space becomes fragmented over time. Although certain devices will always prefer memory to be
allocated either contiguously or in large chunks, it is expected that devices should be able to handle memory
that is non-contiguous in (I)PA space in 4kB chunks.

It is typical for an OS-level device driver to pin pages that are targeted by DMA, to avoid DMA page faults that
are in general fatal to the DMA transfer. Pinning ensures pages are both present and immune to page-out or
removal by other threads. Depending on the driver and OS, DMA memory might be allocated or managed by
the driver and pinned for the lifetime of the driver, or might be user space pages that are pinned before the
DMA transfer begins and unpinned upon its completion.

Some devices can withstand DMA page faults, for example using the PCIe ATS and PRI protocols. A typical
usage is for this type of a device to be mapped directly into the address space of an application. The
application programs the DMA directly, using virtual addresses and avoids the cost of passing requests
through a kernel driver. The resulting DMA might lead to a page fault, which is dealt with in a common OS
service in a similar way to a CPU page fault. After resolving the fault, the service instructs the device to retry
the transfer. Just as for a CPU page fault, the procedure is transparent to the application software aside from
a small delay.

There are two design patterns that are anticipated for devices to work with non-contiguous memory:

• The device has a device specific structure, for example an MMU or scatter-gather tables, under the
control of the device’s device driver that handles the mapping. In this design pattern the MMU or other
structure is not required to be standard. The MMU and device specific structure is under the control
of device specific software. Whether a device can tolerate page faults on memory that it has been
assigned is device specific, and the responsibility of the driver to allocate memory accordingly. If the
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device requires stage 2 SMMU functionality, as described in Non-secure hypervisors section, then this
must be an Arm SMMU-compliant stage 2 implementation.

• The device is behind a stage 1 Arm SMMU that the operating system configures to map contiguous
virtual memory addresses to discontiguous physical allocations. The device driver then uses virtual
addresses for device DMA. In this design pattern, the stage 1 SMMU functionality must be an Arm
SMMU compliant implementation so that it can be managed by standard operating system code.

2.3.2 Hypervisors

Arm expects that the use of hypervisors in the non-secure space will become common place in client, edge,
and server devices. Figure 2 illustrates the various means to host an OS through virtualization as compared
to a baseline of bare-metal hosting.

Figure 2: Nested virtualization

As previously outlined, the software view the OS has of the system must be agnostic to the hosting approach.
This means the VM that the hypervisor exposes to the main operating system must meet certain minimum
functional requirements that the operating system can rely on. For example, a minimum number of hardware
breakpoints and watchpoints, a minimum number of performance monitors, a PSCI [7] interface for power
management, a GIC interface for interrupts and so forth.

This specification covers the hardware requirements for this as well as the implied obligations on the hypervisor.

Page 16 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

Providing these requirements enables software systems to be composed from operating systems and
hypervisors from different providers.

Hypervisors use stage 2 translation table to create Virtual Machines (VMs). For example, one VM to run the
main operating system and then other VMs to run security tasks. The stage 2 translation table might also be
used to enforce certain security policies on the main operating system, such as only allowing certain areas of
memory to be executable when the policy engine in a security VM is satisfied. In client and edge devices,
Arm does not expect these hypervisors to use the translation capability of the stage 2 translation table. Arm
only expects these hypervisors to use the protection properties.

Hardware implementations must expect to support 4KB granules at stage 2, although it is expected that to
reduce the performance overhead of virtualization, operating systems and hypervisors will work to keep the
page size at stage 2 as large as possible for as much memory as possible.

In client devices, it is expected that most Non-secure devices will be assigned to the main operating system.

In general, to keep the other VMs and the hypervisor secure, all DMA must be behind a stage 2 Arm SMMU.
The hypervisors will want to keep device specific code to a minimum. This means that stage 2 SMMU
functionality must be compliant with the Arm architected SMMU.

2.3.3 Platform security functionality

TrustZone is an environment where Silicon providers and OEMs implement key platform-specific security
functionality. This functionality is often a complex mix of security hardware and various software components,
for example Trusted operating systems and applications, coming together to offer rich functionality, surfaced
to the main operating system through APIs.

This functionality varies across platforms and is often differentiating, including examples such as key stores,
biometric unlock, Secure video paths and electronic payment.

Arm has introduced Secure-EL2 (S-EL2) to the A-profile architecture, in Armv8.4, to help manage the
increasing complexity of TrustZone Software and improve the overall system security.

Before S-EL2, all software running in S-EL1 had access to all of the Secure and Non-secure address spaces.
On many systems that is a significant amount of code, maybe from multiple providers, with fundamental
access to the system and therefore an increasing vulnerability.

2.3.3.1 Secure EL2

S-EL2 enables the introduction of a hypervisor that can control the Secure stage 2 translation table and
therefore supports partitioning of the secure side software into different VMs. Each S-EL1 VM only has access
to the address space that it needs to function. This introduces the security principle of hardware backed
separation in TrustZone between Trusted operating systems.

Each secure side VM will be isolated from other secure side VMs. This means that each VM can reason
about its security independent of the other VMs. This makes managing the security of TrustZone software
significantly more scalable.

Another key advantage of S-EL2 is that the S-EL1 VMs can have their access of the non-secure address
space limited. With the advent of ‘security VMs’ on the Non-secure side, this will be key to reasoning about
the security of the Non-secure VMs without needing any knowledge of the Secure VMs. This is because,
S-EL2 will guarantee isolation.

Arm believes that the benefits of S-EL2 will best be realized when supported by standards. For example,the
Firmware Framework for A-Profile systems [8] provides an ABI for communicating between VMs, whether the
VMs are non-secure or secure.

Arm also believes that the client devices eco-system should move to firmware that is as standard as possible
at EL3 and S-EL2. This will make it much easier to reason about the fundamentals of TrustZone security
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across the eco-system. Arm wants to build on the success of Arm Trusted Firmware being used as reference
code for EL3 and include reference code for S-EL2.

Over time Arm hopes to encourage as much platform-specific code to be migrated out of EL3 and into a
Secure-EL1 VM.

To support this standard firmware implementation this specification introduces a Secure timer, a Secure
watchdog and a Secure UART when S-EL2 is present.

Specialist security hardware offers key functionality and protections in modern systems, for example hardware
cryptography and key storage. This type of hardware will have drivers in TrustZone Software. APIs will surface
core functionality through the standard firmware. Other functionality, for example Secure video playback, will
be controlled by platform specific code in a S-EL1 VM and surfaced to the main operating system.

2.3.4 Memory partitioning

It is assumed that the device memory is partitioned into the Secure and Non-secure address spaces. There is
no architectural support for moving memory from one address space to another. However, it is recognized
that there may be system specific support for moving memory between address spaces, but great care needs
to be taken to ensure memory remains coherent.

2.3.5 Peripheral subsystems

To ease debugging and bring-up at early stages of boot, and the implementation of standard firmware, this
specification requires implementation of standard UART and watchdog components for certain target markets.

To ease the development and portability of operating system specific device drivers this specification requires
key interface IP to implement register interfaces according to established standards.

Also, this specification provides specific requirements and guidance for successful integration of PCIe into
Arm based systems.
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3 Base System Architecture

The BSA describes the hardware features that are required to install, boot, and run an operating system on
bare-metal or within a virtualization environment.

3.1 Approach

Arm BSA specifications are structured in terms of requirements for three software views of a system:

• Operating system: This view describes a base set of functionalities that an operating system, either
running on bare-metal or under virtualization, can rely on.

• Hypervisor: This view describes a base set of functionalities that a Normal world hypervisor can rely
on. It is consistent with this specification for a hypervisor to be hosted using nested virtualization.

• Platform security functionality: This view describes a base set of functionality that standard platform
Secure firmware can rely on. Specifically, it provides requirements to support software running in Secure
state.

The software views approach reflects that the software systems of today’s devices are composed from
software components that rely on these views and that each of these may be from different providers.

3.2 Scope

This document describes the features for a generic system based on Arm 64-bit architecture.

The rules applicable to a specific target market are described in the respective supplements:

• Server BSA [6]
• Client BSA [5]

3.3 PE Architecture

I The PEs that are referred to in this specification are those that are running the operating system or hypervisor,
not PEs that are acting like devices.

3.3.1 Operating system

PEs in the base system are compliant with Armv8-A [3] or Armv9-A [9] and the following is true:

RB_PE_01 All PEs are architecturally symmetric except for the permitted exceptions listed in Section A.

I Mixing PEs based on Armv8 and Armv9 architectures in the same system is not allowed.

RB_PE_02 The number of PEs must not exceed:

• Eight, when the interrupt controller is compliant to GICv2.

• 228, when the interrupt controller is compliant to GICv3 or higher.

Note
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Where the features required in the section represent a set of extensions or features, for example Advanced
SIMD and floating-point support, then Arm Architecture Reference Manual for Armv8-A[3] describes the
specific architecture extensions or features that are required.

RB_PE_03 PEs must implement the Advanced SIMD (FEAT_AdvSIMD) and floating-point (FEAT_FP) support.

RB_PE_04 PEs must support 4KB translation granules at stage 1.

RB_PE_05 All PEs are coherent and in the same Inner Shareable domain.

RB_PE_06 Where export restrictions allow, PEs must implement cryptography extension support for FEAT_AES,
FEAT_SHA1 and FEAT_SHA256.

RB_PE_07 PEs must implement little-endian support.

RB_PE_08 PEs must implement EL1 and EL0 in the AArch64 Execution state.

RB_PE_09 PEs must implement the PMU extension, and the base system must expose a minimum of four programmable
PMU counters to the operating system.

RB_PE_10 If the interrupt controller is compliant to GICv3 or higher, the PMU overflow signal from each PE must be
wired to a unique PPI interrupt with no intervening logic.

RB_PE_11 Each PE must implement a minimum of six breakpoints, two of which must be able to match virtual address,
contextID or VMID.

RB_PE_12 Each PE implements a minimum of four synchronous watchpoints.

RB_PE_13 PEs must implement the FEAT_CRC32 instructions.

RB_PE_14 Implementation of SVE or SVE2 is optional. If implemented, Arm strongly recommends that the performance
of well-optimized SVE or SVE2 code is no worse than code which uses the equivalent NEON instructions.

I SVE can only be supported on PEs that are based on Armv8 architecture. SVE2 can only be supported on
PEs that are based on Armv9 architecture.

I Typical operating systems will not be able to take advantage of differences in maximum vector length among
PEs.

RB_PE_15 If FEAT_PAuth (Pointer Authentication), mandatory from Armv8.3, is implemented, it is recommended that the
standard algorithm defined by the Arm architecture [3] is implemented for address and generic authentication.

• If an alternative algorithm is used it must be at least as cryptographically strong as the Arm recommended
algorithm.

RB_PE_16 If FEAT_MTE (Memory Tagging Extension), is implemented,

• The implementation can be full including instructions and checks, or just provide support for the
instructions.

• All general-purpose volatile host DRAM that can be used by an operating system for applications must
support memory tagging.

• Dedicated memories for accelerators, or remote memory, or non-volatile memory do not need to support
it. Firmware tables will indicate the memory ranges to the OS.

RB_PE_17 If PEs implement the Scalable Vector Extension (SVE) and the Statistical Profiling Extension (SPE), the PEs
must implement FEAT_SPEv1p1.

Note

Whether the instruction caches are implemented as VIPT or PIPT is IMPLEMENTATION DEFINED. Not all
PEs are required to support the same instruction cache addressing scheme.
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Note

It is consistent with this specification to implement PEs with support for the AArch32 Execution state.

3.3.1.1 PE security requirements

PEs must implement the cache speculation side-channel attack mitigations that are introduced in Armv8.5:

RB_SEC_01 PEs must implement the restrictions on speculation that are introduced in the Arm v8.5 extensions to the
Arm architecture [3] and SCXTNUM_ELx registers as indicated by ID_AA64PFR0_EL1.CSV2==b0010 and
ID_AA64PFR0_EL1.CSV3==b0001. See FEAT_CSV2 and FEAT_CSV3 in [3].

RB_SEC_02 PEs implement the PSTATE/CPSR SSBS (Speculative Store Bypass Safe) bit and the instructions to
manipulate it. See FEAT_SSBS in [3]. This is identified by ID_AA64PFR1_EL1.SSBS==b0010.

RB_SEC_03 PEs implement the CSDB, SSBB and PSSBB barriers. [3].

RB_SEC_04 PEs implement the FEAT_SB. This is indicated by ID_AA64ISAR1_EL1.SB== b0001.

RB_SEC_05 PEs implement the CFP RCTX, DVP RCTX, CPP RCTX instructions to restrict use of information gathered
through control flow, data value prediction, or cache prefetch prediction, from affecting speculative execution.
See FEAT_SPECRES in [3].

Support for the instructions is indicated by ID_AA64ISAR1_EL1.SPECRES==b0001.

Note

Introduced by the Armv8.5-A extension [3], these mitigations can be implemented on any prior version of
Armv8.

3.3.2 Hypervisor

The following additional requirements are applicable when standard hypervisor support is required:

RB_PE_18 PEs must implement Non-secure EL2 in AArch64.

RB_PE_19 PEs must support 4KB translation granules at stage 2.

RB_PE_20 The translation granules supported at stage 2 must match those supported at stage 1.

RB_PE_21 The base system must expose a minimum of two programmable PMU counters to a hypervisor.

Note

The combined requirements of operating system and hypervisor views is the implementation of a minimum
of six programmable PMU counters.

RB_PE_22 Two of the implemented breakpoints in each PE, must be able to match on VMID. see B_PE_11.

3.3.3 Platform security functionality

The following additional requirements are needed to support software running in Secure state.

RB_PE_23 PEs must implement EL3 in the AArch64 Execution state.
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RB_PE_24 PEs must implement Secure state.

Note

From Armv8.4 onwards, if both EL2 and Secure state are implemented, then Secure EL2 must be
implemented.

3.3.3.1 Expected usage of Secure state

I The base system is expected to use the PE EL3 and Secure state as a place to implement platform-specific
firmware. The system might choose to implement further functionality in the Secure state, but this is beyond
the scope of BSA specification.

I Arm does not expect PCI Express to be present in the Secure state. This is reflected in the GICv3 architecture,
which does not support Secure LPI.

3.4 Memory map

3.4.1 Operating system

I This specification does not require a standard memory map. Arm expects that the system memory map is
described to system software by system firmware data.

X Systems will not necessarily fully populate all of the addressable memory space.

RB_MEM_01 All memory accesses, whether they access memory space that is populated or not, must respond within finite
time, to avoid the possibility of system deadlock.

Note

Compliant software must not make any assumptions about the memory map that might prejudice compliant
hardware. For example, the full physical address space must be supported. There must be no dependence
on memory or peripherals being located at certain physical locations.

RB_MEM_02 Where a memory access is to an unpopulated part of the addressable memory space, accesses must be
terminated in a manner that is presented to the PE as either a precise Data Abort, or as a system error
interrupt, or an SPI, or LPI interrupt to be delivered to the GIC.

RB_MEM_03 All Non-secure on-chip DMA requesters in a base system that are expected to be under the control of the
operating system or hypervisor must be capable of addressing all of the Non-secure address space.

RB_MEM_04 If the DMA requests goes through a SMMU then the requester must be capable of addressing all of the
Non-secure address space when the SMMU is turned off.

RB_MEM_05 All PEs must be able to access all of the Non-secure address space.

RB_MEM_06 Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed
behind a stage 1 SMMU that is compatible with the Arm SMMUv2 or SMMUv3 specification, that has an
output address size large enough to address all of the Non-secure address space. See Section 3.7.

RB_MEM_07 Where it is possible for the forward progress of a memory transaction to depend on a second memory access,
the system must avoid deadlock if the memory access gets ordered behind the original transaction.

Page 22 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

I This can occur in PCI memory or I/O physical address space. For example, in the case of PCI, without an
appropriate mitigation, a deadlock could arise if the memory access were also a PCI transaction, and therefore
might be ordered behind the original PCI transaction. A system is permitted to resolve this dependency by
terminating the memory accesses. A transaction that is terminated in this case might return any value, have
any written data ignored, or be terminated with an error.

Note

• For example, in line with the PCI ordering rules, the completion for a read of an SMMU or GIC table
might be blocked behind an earlier inbound PCI transaction which the SMMU or GIC is blocking, until
the table access completes.

• Because a system is permitted to avoid deadlock by terminating transactions in this way, system
software must not allocate any structures that relate to a SMMU or GIC in PCIe address space or I/O
address space.

3.4.2 Platform security functionality

The following additional requirements are needed to support software running in Secure state.

RB_MEM_08 The system must provide some memory that is mapped in the Secure address space.

RB_MEM_09 This Secure memory must not be aliased in the Non-secure address space.

I The amount of Secure memory that is provided is platform-specific. This is because the intended use of the
memory is for platform-specific firmware.

3.5 Interrupt Controller

3.5.1 Operating system

RB_GIC_01 A base system must present OSs and hypervisors with the interfaces defined by the one of the following:

• A Generic Interrupt Controller (GIC) v2 interrupt controller.
• A GICv2 interrupt controller with GICv2m extension.
• A GICv3 interrupt controller.

RB_GIC_02 Table 2 shows the limitations and valid configurations allowed in a base system.

Table 2: GIC valid configurations

GIC Arch
Limitations: number of
PE PCIe MSI[X] Support

v2 8 No PCIe support

v2 + v2M 8 MSI[X] to SPI. See Section I

v3 without ITS 2ˆ28 Valid only if no PCIe

v3 + ITS 2ˆ28 Full MSI[X] support

RB_GIC_03 If the system includes PCI Express and GICv3 interrupt controller is supported, then the GICv3 interrupt
controller must implement ITS and LPI.
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RB_GIC_04 If a GICv3 interrupt controller is supported, then the interrupt controller must support two Security states.

Note

• The Arm PL011 UART requires a level interrupt for legacy interrupt support.

For a base system implementing a GICv3 interrupt controller and PCI Express:

• It is recommended that MSI and MSI-X are mapped to LPI interrupts.
• It is permissible to build a system with no support for SPI. However, Arm expects that the peripheral

ecosystem will continue to rely on wired level interrupts, and expects that most systems to support
SPI and LPI interrupts. PCI legacy INTA-INTD interrupts are wired interrupts. See Section E.6 for
more details.

• A PCIe root complex requires a level interrupt for legacy interrupt support.

3.5.2 Platform firmware

RB_GIC_05 The system shall implement at least eight Non-secure SGIs, assigned to interrupt IDs 0-7.

3.6 PPI assignments

A base system must map the interrupts shown in Table 3, Table 4 and Table 5 to PPI.

Note

The interrupt IDs in an implementation are allowed to be different from the recommended values that are
given in the following tables. However, assignment of the PPIs within the base PPI INTID range of 16 - 31
is recommended.

RB_PPI_01 Table 3: PPI assignments for operating system

Recommended
Interrupt ID Interrupt Description

30 Overflow interrupt from
CNTP

Non-secure physical timer
interrupt.

27 Overflow interrupt from
CNTV

Virtual timer interrupt.

24 CTIIRQ Cross Trigger Interface (CTI)
interrupt.

23 Performance Monitors
Interrupt

Indicates an overflow condition in
the Performance monitoring unit.

22 COMMIRQ Debug Communication Channel
(DCC) interrupt.

21 PMBIRQ Statistical profiling Interrupt, if
Statistical Profiling Extensions
are implemented.
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Note

An implementation might need to reserve a PPI for trace buffer overflow.

RB_PPI_02 Table 4: PPI assignments for Hypervisor

Recommended
Interrupt ID Interrupt Description

28 Overflow interrupt from
CNTHV

Non-secure EL2 virtual timer
interrupt (if PEs are Armv8.1 or
greater).

26 Overflow interrupt from
CNTHP

Non-secure EL2 physical timer
interrupt.

25 GIC Maintenance interrupt The virtual PE interface list
register overflow interrupt.

RB_PPI_03 Table 5: PPI assignments for platform security functionality

Recommended
Interrupt ID Interrupt Description

29 Overflow interrupt from
CNTPS

Secure Physical timer interrupt.

20 CNTHPS Secure EL2 physical timer
interrupt (if Secure EL2 is
implemented).

19 CNTHVS Secure EL2 virtual timer interrupt
(if Secure EL2 is implemented).

3.7 System MMU and device assignment

I The base system might implement an IMPLEMENTATION DEFINED number of SMMU components. Arm expects
that these components will be described by system firmware data along with a description of how to associate
them with the devices they police.

I SMMUv3 is not backwards compatible with SMMUv2.

I If a system implements PCIe, it is recommended that the SMMU is compliant to SMMUv3 or higher.

I SMMUv2 does not have PCI Express ATS support. Standard PCI Express ATS support is included in
SMMUv3.

RB_SMMU_01 All the System MMUs presented to an OS or hypervisor must be compliant with the same architecture version.

RB_SMMU_02 The SMMU must support the translation granule sizes that are supported by the PEs.

RB_SMMU_03 if PEs implement FEAT_LVA (ID_AA64MMFR2_EL1.VARange = 0b0001), the SMMU must support extended
virtual addresses (SMMU_IDR5.VAX = 0b01).
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RB_SMMU_04 If PEs use Armv8.4 and can issue TLB range invalidation instructions, the SMMU must support range
invalidation.

RB_SMMU_05 All DVM receivers visible to normal world software in a system must receive all DVM messages initiated by a
DVM requester. This would require that the DVM capabilities of the SMMU and the interconnect are the same
or a superset of the initiator (typically PE).

X A device behind an SMMU must be able to see the whole non-secure physical address space that is visible to
PEs.

RB_SMMU_06 This means that, if PEs implement FEAT_LPA (ID_AA64MMFR0_EL1.PARange = 0b0110), then the SMMU
must support a 52-bit output size (SMMU_IDR5.OAS = 0b0110).

3.7.1 Operating system

I If a device is subject to stage 1 translation, allocation of memory attributes, and application of permission
checks then this specification collectively refers to this translation, attribution, and permission checking as
stage 1 policing. The act of stage 1 policing is called stage 1 System MMU functionality.

RB_SMMU_07 Devices that operate across non-contiguously allocated memory require stage 1 System MMU functionality.

I Stage 1 System MMU functionality visible only to device specific drivers, is IMPLEMENTATION DEFINED.

RB_SMMU_08 If Secure-EL2 is not implemented, stage 1 System MMU functionality that is made visible to an operating
system must present the interface of a System MMU compatible with one of the following:

• The SMMUv2 specification, where each context bank must present a unique physical interrupt to the
GIC.

• The Arm SMMUv3 specification or higher, where the integration of the System MMUs is compliant with
the requirements in Section D.

RB_SMMU_09 If Secure-EL2 is implemented, stage 1 System MMU functionality that is made visible to an operating system
must present the interface of a System MMU compatible with the Arm SMMUv3.2, or higher, architecture
revision where:

• The integration of the System MMUs is compliant with the rules in SMMUv3 integration, Section D.
• SMMU implementations must provide level 1 or level 2 support for page table resizing. It is recommended

that the SMMU implements level 2. If the SMMU implementation provides level 2, then it is recommended
that the PE also provides level 2.

X MPAM architecture requires that all requesters that can access an MPAM controlled resource must support
passing MPAM ID information.

RB_SMMU_11 Therefore, a SMMUv3.2, or higher, implementation must support the MPAM extension if the requests it serves
access MPAM controlled resources.

RB_SMMU_12 All addresses output from a device to an SMMU must lie in a continuous space with no holes. All address in
said space will be treated equally by the SMMU. There should be no areas within the address space that
receive exceptional treatment, like bypassing the SMMU.

I Software can either program stage 1 System MMUs to use the same page tables as the PE or build shadow
page tables.

I MSIs from a PCI Express device are translated in the same way as any other writes from that device.

I Support for broadcast TLB maintenance operations is not required.

X To facilitate page table sharing between PE and SMMU, the SMMU features must match the PE features:

RB_SMMU_13 If PE supports 16-bit ASID, The SMMU must implement support for 16-bit ASID.
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RB_SMMU_14 The SMMU will support little-endian for translation table walks, and at a minimum must match the endianness
support of the PEs.

3.7.2 Hypervisor

I It is IMPLEMENTATION DEFINED whether any given device in a system supports the ability to be hardware
virtualized, for example SR-IOV. Arm expects that devices that can be hardware virtualized have that property
expressed either by system firmware data, or though hardware discoverability.

RB_SMMU_16 If a device is assigned and passed through to an operating system under a hypervisor, then the memory
transactions of the device must be subject to stage 2 translation, allocation of memory attributes, and
application of permission checks, under the control of the hypervisor.

I This specification collectively refers to this translation, attribution, and permission checking as policing. The
act of policing is called stage 2 System MMU functionality.

RB_SMMU_17 From a hardware perspective, this means that a base system supporting a protection hypervisor requires all
non-secure DMA capable devices that will be assigned to a non-secure VM for direct control to be policed by
stage 2 System MMU functionality.

RB_SMMU_18 If Secure-EL2 is not implemented, stage 2 System MMU functionality must be provided by a System MMU
compatible with the Arm SMMUv2 specification or Arm SMMUv3 specification.

RB_SMMU_19 When stage 2 System MMU functionality is provided by a System MMU compatible with the Arm SMMUv2
specification:

• Each context bank must present a unique physical interrupt to the GIC.

RB_SMMU_20 If Secure EL2 is implemented, stage 2 System MMU functionality that is made visible to a hypervisor must
present the interface of a System MMU compatible with the Arm SMMUv3.2, or higher, architecture revision
where:

• The integration of the System MMUs is compliant with the rules in SMMUv3 integration, Section D.
• SMMU implementations must provide level 1 or level 2 support for page table resizing. It is recommended

that the SMMU implements level 2. If the SMMU implementation provides level 2, then it is recommended
that the PE also provides level 2.

RB_SMMU_21 When stage 2 System MMU functionality is provided by a System MMU compatible with the Arm SMMUv3
spec:

• The integration of the System MMUs is compliant with the specification in Section D.

X MPAM architecture requires that all requesters that can access an MPAM controlled resource must support
passing MPAM ID information.

RB_SMMU_22 Therefore, a SMMUv3.2, or higher, implementation must support the MPAM extension if the requests the
SMMU serves access MPAM controlled resources.

RB_SMMU_23 If PE supports 16-bit VMID, The SMMU must implement support for 16-bit VMID.

I Software can either program stage 2 System MMUs to use the same translation tables as the PE or build
shadow translation tables.

I For systems that implement SMMU architecture revision 3.2, if the PEs do not implement secure EL2, the
SMMUs are not required to implement Secure stage 2.

3.7.3 Platform security functionality
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I It is IMPLEMENTATION DEFINED whether any given Secure device in a base architecture system supports
the ability to be hardware virtualized. It is expected that devices that can be hardware virtualized have that
property expressed either by system firmware data, or through hardware discoverability.

RB_SMMU_24 If Secure-EL2 is implemented, all secure DMA capable devices that can be assigned to a Secure VM must be
policed by stage 2 Secure SMMU functionality.

RB_SMMU_25 If Secure-EL2 is implemented, stage 2 Secure MMU functionality must be provided by a System MMU
compatible with the Arm SMMUv3.2, or higher, architecture revision where:

• The integration of the System MMUs is compliant with the rules in Section D.
• SMMU implementations must provide level 1 or level 2 support for page table resizing.

I It is recommended that the SMMU implements level 2. If the SMMU implementation provides level 2, then it is
recommended that the PE also provides level 2.

3.8 Clock and timer subsystem

3.8.1 Operating system

RB_TIME_01 The base system must include the system counter of the Generic Timer, as specified in the Arm ARM [3].

RB_TIME_02 The system counter of the Generic Timer must run at a minimum frequency of 10MHz.

RB_TIME_03 The counter must not roll over inside a 10-year period.

RB_TIME_04 The architecture of the counter mandates that the counter must be at least 56 bits, and at most 64 bits. From
Armv8.4, for systems that implement counter scaling, the minimum becomes 64 bits.

I As part of the Generic Timer subsystem. the Generic Timer system counter also exports its count value, or
an equivalent encoded value, through the system to the timers in the PEs.

RB_TIME_05 This count must be available to the PE timers when they are active, which is when the PEs are in power states
where the PE timer is required to be on.

I The local PE timers have a programmable count value. When the value expires it generates a Private
Peripheral Interrupt for the associated PE.

I The local PE timers can be built so that they are always on, as long as the PE does not support the Off state.
This property is described in the system firmware data.

RB_TIME_06 Unless all of the local PE timers are always on, the base system must implement a system wakeup timer that
can be used when PE timers are powered down.

RB_TIME_07 The system wakeup timer must in the form of the memory mapped timer that is described in the Armv8 ARM
[3].

RB_TIME_08 On timer expiry, the system wakeup timer must generate an interrupt that must be wired to the GIC as an SPI
or LPI. Also, the system wakeup timer can be used to wake up PEs. See Section 3.9.

X It is recognized that in large system a shared resource like the system wakeup timer can create a system
bottleneck. This is because access to it must be arbitrated through a system-wide lock. It is anticipated that
this will be dealt with by the platform by having the firmware tables describe the PE timers as always on and
remove the need for the system timer.

RB_TIME_09 The platform will either implement hardware always-on PE timers or use the platform firmware to save and
restore the PE timers in a performance scalable fashion.

I The wakeup timer does not require a virtual timer to be implemented and it is permissible for the virtual offset
register to Read-as-Zero. Writes to the virtual offset register in CNTCTLBase frame are ignored. The timer is
not required to have a CNTEL0Base frame.

Page 28 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

RB_TIME_10 If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure
address space. This is called the Non-secure system wakeup timer.

Table 6 summarizes which address space the register frames must be mapped to.

Table 6: Generic counter and timer memory mappings

Register Frame

CNTControlBase Secure

CNTReadBase Not required

CNTCTLBase Non-secure and
Secure

CNTBaseN Non-secure

I The Generic Timer register frames in Table 6 are described in the Arm ARM [3].

3.9 Wakeup semantics

X Systems implement many different power domains and power states. It is important for the OS or hypervisor,
or both, to understand the relationship between these power domains and the facilities a system has for
waking PEs from various low power states.

I A key component in controlling the entry to and exit from low-power states is the IMPLEMENTATION DEFINED

power controller. The power controller controls the application of power to the various power domains. On
entry to low-power states hardware-specific software will program the power controller to take the correct
action. On exit from a low-power state, hardware-specific software might need to reprogram the power
controller. Hardware-specific software is required to save and restore system state when entering and exiting
some low-power states.

I This specification defines two classes of wakeup methods: interrupts, and always-on power domain wake
events.

The first class of wakeup methods are interrupts. This specification defines interrupts that wake PEs as
wakeup interrupts.

A wakeup interrupt is any interrupt that is any one of the following:

• An SPI that directly targets a PE.
• An SGI.
• A PPI.
• An LPI

In addition, for an interrupt to be a wakeup interrupt, it must be enabled in the distributor.

RB_WAK_01 A PE must wake in response to a wakeup interrupt, independent of the state of its PSTATE interrupt mask
bits, which are the A, I, and F bits, and of the wakeup interrupt priority.

Note

• Typically, a wakeup signal is exported from the GIC to the power controller to initiate the PE wakeup.
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• There are some power states where a PE will not wake on an interrupt. It is the responsibility of
system software to ensure there are no wakeup interrupts targeting a PE entering these states. See
Table 7.

I The local PE timers are an important source of interrupts that can wake the PE. However, the local PE timer
might be powered down in some low-power states. This is because the local PE timer might be in the same
power domain as the PE. In low-power states where the local PE timer is powered down, system software
can use an SGI from other running PEs to wake the PE, or system software can configure the system wakeup
timer to send a wakeup interrupt to the PE to wake it.

In some very deep low power states, the GIC will be powered down. To wake from these states, another class
of wakeup methods can be used: always-on power domain wake events.

RB_WAK_02 If the system supports a low-power state where the GIC is powered down, then there must be an IMPLEMEN-
TATION DEFINED way to program the power controller to wake a PE on expiry of the system wakeup timer or
the generic watchdog. In this scenario, the system wakeup timer or generic watchdog is still required to send
its interrupt.

I There might be other IMPLEMENTATION DEFINED always-on power domain wakeup events that can wake PEs
from deep low-power states, for example PCI Express wakeup events and Wake-on-LAN.

See Section 3.10 for a description of the power state semantics that the system must comply with.

RB_WAK_03 Whenever a PE is woken from a sleep or off state the OS or hypervisor must be presented with an interrupt
so that the PE software can determine which device requested the wakeup.

RB_WAK_04 The interrupt must be pending in the GIC at the point that control is handed back to the OS or hypervisor from
the system-specific software performing the state restore.

RB_WAK_05 This interrupt must behave like any other: a device sends an interrupt to the GIC, and the GIC sends the
interrupt to the OS or hypervisor. The OS or hypervisor is not required to communicate with a system-specific
interrupt controller.

RB_WAK_06 If the wakeup event is an edge, then the system must ensure that this edge is not lost. The system must
ensure that the edge wakes the system and is subsequently delivered to the GIC without losing the edge.

I An example of an expected chain of events would be:

1. Wakeup event occurs, for example GPIO or wake-on-LAN.
2. The power controller responds by powering on the necessary resources that include the PE and the

GIC.
3. The PE comes out of reset and hardware-specific software restores state, including the GIC.
4. An interrupt is presented to the GIC representing the wakeup event. In many situations this might be

exactly the same signal as the wakeup event.
5. The system must ensure that, by the time the hardware-specific restore software has delegated to the

OS or hypervisor, the interrupt is pending in the GIC.
6. The OS or hypervisor can respond to the interrupt.

3.10 Power State Semantics

I This specification does not require a given hierarchy of power domains, but there are some rules and
semantics that must be followed.

Figure 3 is an example block diagram showing a possible hierarchy of power domains. Note that there are
other examples that conform to this specification that are not subsets of the system in the diagram.

RB_WAK_07 In order for either the OS or hypervisor, or both, to be able to reason about wakeup events and to know which
timers will be available to wake the PE, all PEs must be in a state that is consistent with one of the semantics
described in Table 7 and Table 8.

Page 30 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

Note

All PEs do not need to be in the same state. Arm expects that the semantics of the power states that a
system supports will be described by system firmware data. Table 9 describes the power state semantics
in a set of component-specific rules.

RB_WAK_08 System MMUs and GICv3 make use of tables in memory in the power states where GIC is ‘On’. For this type
of state, system memory must be available and will respond to requests without requiring intervention from
software running on the PEs.

I Hardware-specific software is required to save and restore system state when entering and exiting low-power
states.

X It is highly likely that many systems will support very low-power states where most system logic is powered
down and the system memory is in self-refresh, but the OS retains control over future wakeup. This is reflected
in power state semantic E.

I In this state, the GIC can be powered off after system software has saved its state. In this state, wakeup
signals go straight to the system power controller and do not require use of the GIC to wake the PEs. The
system power controller is system specific. When in a power state of semantic E, the system power controller
wakes an IMPLEMENTATION DEFINED PE, or set of PEs, when the system wakeup timer expires. Other
system-specific events might also cause wakeup from this state, for example a PCI Express wakeup event.
The events that will cause wakeup from this state are expected to be discoverable from system firmware data.

RB_WAK_09 When the system is in a state where the GIC is powered down, devices must not send messaged interrupts to
the GIC. see Table 8.

I
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Figure 3: Example system block diagram showing power domains and timer hierarchy

Table 7: PE Power States

PE State Description

Run The PE is powered up and running code.

Idle_standby The PE is in STANDBYWFI state, but remains powered up. There is full
state retention, and no state saving, or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are accessible.

Idle_retention The PE is in STANDBYWFI state, but remains powered up. There is full
state retention, and no state saving, or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are not accessible.

Sleep The PE is powered down but hardware will wake the PE autonomously, for
example, on receiving a wakeup interrupt. No PE state is retained. State
must be explicitly saved. The woken PE starts execution at the reset vector,
and then hardware-specific software restores state.
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PE State Description

Off The PE is powered down and is not required to be woken by interrupts.
The only way to wake the PE is by explicitly requesting the power controller,
for example, from system software running on another PE, or an external
source like a poweron_reset. This state can be used to support hot remove
of PE. No PE state is retained.

Note

The Timers column in Table 8 applies to system wake timers, system counters and generic watchdogs.

RB_WAK_10 Table 8: Power State Semantics

Semantic

PE and
GIC PE
Interface

PE
timers

GIC
Distributor Timers Note

A Run On On On -

B Idle On On On PE will resume execution on receipt of any
interrupt.

C Sleep On On On PE will wake on receipt of a wakeup interrupt.

D Sleep Off On On PE will wake on receipt of a wakeup interrupt,
but local timer is off.

E Sleep Off Off On PE will wake from system timer wakeup event
or other system specific events.

F Off Off On On Some, but not all, PEs are in Off state.

G Off Off Off Off All PEs in Off state.

H Sleep On Off On PE will wake from PE timer, system timer
wakeup event or other system specific events.

I Idle Off On On PE will resume execution on receipt of any
interrupt, but the local timer is off.

RB_WAK_11 Table 9: Component Power State Semantics

PE and GIC PE Interface Individual PEs and their associated GIC PE interface can be in Run, Idle,
Sleep or Off state.

PE timers Must be On if the associated PE is in the Run state.
Might be On or Off if the PE is in Idle or Sleep state.
Must be Off if the PE is in the Off state.

GIC Distributor Must be On if any PE is in the Run or Idle state.
Might be On or Off if all PEs are in either the Sleep or Off state, with at
least one PE in the Sleep state.
Must be Off If all PEs are in the Off state.
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Table 9: Component Power State Semantics

System wakeup timers and
system counter and generic
watchdog

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

3.11 Watchdogs

Implementation of a Watchdog is OPTIONAL. If implemented, the following rules apply:

RB_WD_01 The Generic Watchdog must be implemented as specified in Section C.

RB_WD_02 The watchdog must have both its register frames mapped on to Non-secure address space. This watchdog is
referred to as the Non-secure watchdog.

RB_WD_03 Watchdog Signal 0 is routed as an SPI or an LPI to the GIC and it is expected this will be configured as a
Non-secure EL2 interrupt, directly targeting a single PE.

I In this context, platform means any entity that is more privileged than the code running at Non-secure EL2.
Examples of the platform component that services Watchdog Signal 1 are: EL3 system firmware, or a system
control processor, or dedicated reset control hardware.

RB_WD_04 Watchdog Signal 1 must be routed to the platform.

RB_WD_05 The action taken on the raising of Watchdog Signal 1 is platform-specific.

Note

Only directly targeted SPI are required to wake a PE; see Section 3.9 for more information. Programming
the watchdog SPI to be directly targeted ensures delivery of the interrupt independent of PE power states.
However, it is possible to use a 1 of N SPI to deliver the interrupt, if one of the target PEs is running.

3.12 Peripheral Subsystems

RB_PER_01 If the system has a USB2.0 host controller peripheral it must conform to EHCI v1.1 or later.

RB_PER_02 If the system has a USB3.0 host controller peripheral it must conform to XHCI v1.0 or later.

RB_PER_03 If the system has a SATA host controller peripheral it must conform to AHCI v1.3 or later.

RB_PER_04 Peripheral subsystems which do not conform to rues B_PER_01, B_PER_02 or B_PER_03 are permitted, if
those peripherals are not required to boot and install an OS.

RB_PER_05 For the purpose of system development and bring up, the base system must include a UART. The UART must
be one of:

• The Generic UART as specified in Section B.
• A fully 16550 compatible UART [10].

RB_PER_06 The UART interrupt output is connected to the GIC as an SPI or an LPI.

RB_PER_07 The UART must be mapped on to Non-secure address space. This is called the Non-secure UART.

RB_PER_08 If the system has a PCI Express root complex then it must comply with the rules in Section E.
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RB_PER_09 The memory attributes of DMA traffic must be one of the following:

• Inner Write-Back, Outer Write-Back, Inner Shareable.
• Inner Non-cacheable, Outer Non-cacheable.
• A device type.

RB_PER_10 I/O coherent DMA traffic must have the attribute - Inner Write-Back, Outer Write-Back, Inner Shareable.

3.12.1 Platform security functionality

RB_PER_11 If a TCG TPM based security model is supported, the base system needs to provide a TPM implementation
that is compliant to TPM Library Specification, Family 2.0 [12].

3.12.2 PCIe Integration

RB_PER_12 To ensure standard software support, a device claiming to follow the PCI Express specification [1] must follow
all the rules in PCIe specification [1] which are software-visible.

I PCI Express integration is covered Section E. Device assignment requirements are covered in Section E.7

3.13 Presenting an On-chip Peripheral as PCIe device

There are two options for presenting on-chip peripherals as a PCIe device.

3.13.1 Option 1: Root Complex Integrated Endpoint (RCiEP)

RB_REP_1 Section F describes the rules required for an RCiEP device.

In this option, the on-chip peripheral appears to software during enumeration as a Root Complex Integrated
EndPoint (RCiEP) that is connected to the root bus behind a host bridge. Figure 4 shows how the peripheral
is visible to software with this option.

Figure 4: Peripheral presented as an RCiEP behind a host bridge

In this option, a Root Complex Event Collector (RCEC) must be present if any of the following is true:
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• Any of the functions in the RCiEP must implement Advanced Error Reporting (AER) or PCIe baseline
error reporting. Please refer to Section 6.2 of the PCIe specification for details on baseline and Advanced
error reporting.[1]

• The RCiEP must implement PCIe PME event signaling. Please refer to Section 6.1.6 of the PCIe
specification for details on PCIe PME support. [1]

3.13.2 Option 2: Integrated Endpoint (i-EP)

In this option, the on-chip peripheral appears to software during enumeration as an endpoint that is behind a
Root Port, which in turn is behind a host bridge. Figure 5 shows how the peripheral or accelerator is visible to
software with this option. In this document, the acronym i-EP describes this combination of Root Port and the
integrated Endpoint.

Figure 5: Peripheral presented as an Endpoint behind a Root Port

RB_IEP_1 Section G describes the rules to implement for an i-EP device.

3.13.3 Option 1 and Option 2: A comparison

Table 10 lists the key differences between the RCiEP and i-EP options.

Table 10: Comparison between RCiEP and i-EP options

Functional Area RCiEP option i -EP option

Enumeration OS support is available. OS support is available.

RAS: AER based error Requires RCEC. At the time of OS support is available.

logging and reporting support. writing of this specification,

OS support is not available.

Power management: PCIe PME event Requires RCEC. At the time of OS support is available.

reporting and logging. writing of this specification,
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Functional Area RCiEP option i -EP option

OS support is not available.

Link related registers Not required. Required by PCIe specification

in Root Port and the endpoint.

Greater than 8 Physical Functions Not possible since ARI Mode is Possible.

per device not permitted.

Note

AER or PCIe baseline error reporting is necessary only if the RCiEP or the RCEC detects errors that are
defined by the PCIe specification. See Section 6.2.7 in the PCIe specification for the list of errors.[1]

3.14 Base System Architecture - checklist

This section lists the minimum hardware requirements required to install, boot, and run an operating system
on bare-metal or within a virtualization environment.

PE Rule ID

Operating system

B_PE_01

B_PE_02

B_PE_03

B_PE_04

B_PE_05

B_PE_06

B_PE_07

B_PE_08

B_PE_09

B_PE_10

B_PE_11

B_PE_12

B_PE_13

B_PE_14

B_PE_15

B_PE_16

B_PE_17
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PE Rule ID

B_SEC_01

B_SEC_02

B_SEC_03

B_SEC_04

B_SEC_05

Hypervisor

B_PE_18

B_PE_19

B_PE_20

B_PE_21

B_PE_22

Platform security

B_PE_23

B_PE_24

Memory map Rule ID

Operating system

B_MEM_01

B_MEM_02

B_MEM_03

B_MEM_04

B_MEM_05

B_MEM_06

B_MEM_07

Platform security

B_MEM_08

B_MEM_09

Interrupts Rule ID

Operating system

B_GIC_01

B_GIC_02

B_GIC_03
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Interrupts Rule ID

B_GIC_04

B_GIC_05

Operating system

B_PPI_01

Hypervisor

B_PPI_02

Platform security

B_PPI_03

SMMU Rule ID

Operating system

B_SMMU_01

B_SMMU_02

B_SMMU_03

B_SMMU_04

B_SMMU_05

B_SMMU_06

B_SMMU_07

B_SMMU_08

B_SMMU_09

B_SMMU_11

B_SMMU_12

B_SMMU_13

B_SMMU_14

Hypervisor

B_SMMU_16

B_SMMU_17

B_SMMU_18

B_SMMU_19

B_SMMU_20

B_SMMU_21

B_SMMU_22

B_SMMU_23

Platform security
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SMMU Rule ID

B_SMMU_24

B_SMMU_25

Timer subsystem Rule ID

Operating system

B_TIME_01

B_TIME_02

B_TIME_03

B_TIME_04

B_TIME_05

B_TIME_06

B_TIME_07

B_TIME_08

B_TIME_09

B_TIME_10

Power and wakeup Rule ID

Operating system

B_WAK_01

B_WAK_02

B_WAK_03

B_WAK_04

B_WAK_05

B_WAK_06

B_WAK_07

B_WAK_08

B_WAK_10

B_WAK_11

Peripherals Rule ID

Operating system

B_PER_01
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Peripherals Rule ID

B_PER_02

B_PER_03

B_PER_04

B_PER_05

B_PER_06

B_PER_07

B_PER_08

B_PER_09

B_PER_10

B_PER_12

Platform security

B_PER_11

.
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A Heterogenous systems

This section outlines the requirements for systems composed of heterogeneous PEs, such as big.LITTLE.

A.1 Implementation, identification, and revision differences

Table 18 shows the permitted differences in architected registers between PEs in a single base system. These
variations are not expected to be perceived as architectural differences by an operating system or other
supervisory software.

The permitted differences column lists the bit fields for a register that can vary from PE to PE. Where a bit
field is not listed, the value must be the same across all PEs in the system.

Table 18: Permitted architectural differences

Description Short-Form Permitted Differences

AArch64 Memory Features
Register

ID_AA64MMFR0_EL1 Bits [3:0] describing the supported
physical address range.

Main ID Register MIDR_EL1 Part number [15:4], Revision [3:0],
Variant [23:20].

Virtualization Processor ID
Register

VPIDR_EL2 Same fields as MIDR_EL1, writable by
hypervisor.

Multiprocessor ID Register MPIDR_EL1 Bits [39:32] and Bits [24:0]. Affinity fields
and MT bit.

Virtualization Multiprocessor
ID Register

VMPIDR_EL2 Same fields as MPIDR, writable by
hypervisor.

Cache type register CTR_EL0 Bits [15:14] Level 1 Instruction Cache
Policy.

Revision ID Register REVIDR_EL1 Specific to implementation indicates
implementation specific Revisions/ECOs.
All bits can vary.

Cache level ID register CLIDR_EL1 All bits, each PE can have a unique
cache hierarchy.

If Armv8.3-CCIDX is not
implemented: currentCache
Size ID Register

CCSIDR_EL1 Sets [27:13], Data cache associativity
[12:3]. Caches on different PEs can be
different sizes.

If Armv8.3-CCIDX is
implemented: Current
Cache Size ID Register

CCSIDR_EL1 The number of Sets [55:32] and the
associativity of Caches [23:3] can be
different on each PE.

If Armv8.3-CCIDX is
implemented: Current
Cache Size ID Register 2

CCSIDR2_EL1 The number of Sets [23:0] can be
different on each PE.

Auxiliary Control Register ACTLR_EL{1,2,3} Specific to implementation, all bits can
vary.

Auxiliary Fault Status
Registers

AFSR{0,1}_EL{1,2,3} Specific to implementation, all bits can
vary.
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B Generic UART

B.1 About

This specification of the Arm generic UART is designed to offer a basic facility for software bring up. This
specification describes the registers and behavior that is required for system software to use the UART to
receive and transmit data. This specification does not describe registers that are needed to configure the UART.
This is because these registers are considered hardware-specific and will be set up by hardware-specific
software. This specification does not cover the physical interface of the UART to the outside world, as this is
system specific.

The registers that are described in this specification are a subset of the Arm PL011 r1p5 UART. An instance
of the PL011 r1p5 UART will be compliant with this specification.

An implementation of the Generic UART must provide a transmit FIFO and a receive FIFO. Both FIFOs must
have the same number of entries, and this number must be at least 32. The generic UART does not support
DMA Features, Modem control features, Hardware flow control features, or IrDA SIR features.

The generic UART uses 8-bit words, equivalent to UARTLCR_H.WLEN == b11.

The basic use model for the FIFO allows software polling to manage flow, but this specification also requires
an interrupt from the UART to allow for interrupt-driven use of the UART.

Table 19 identifies the minimum register set used for SW management of the UART.

B.2 Generic UART register frame

The Generic UART is specified as a set of 32-bit registers. However, it is required that implementations
support accesses to these registers using read and writes accesses of various sizes. The required access
sizes are included in Table 19. The base address of each access, independent of access size, must be the
same as the base address of the register being accessed.

If an access size not listed in the table is used, the results are IMPLEMENTATION DEFINED.

The Generic UART is little-endian.

Table 19: Base UART Register Set

Offset Name Description

Permitted
access
sizes/bits

0x000-0x003 UARTDR
Data Register

A 32-bit read/write register.
Bits [7:0]

An 8-bit data register
used to access the Tx
and Rx FIFOs.

Bits [11:8]
4 bits of error status used
to detect frame errors.
Read-only.

Bits [31:12] - Reserved.
(Ref Section 3.3.1 - PL011TRM [11])

Read: 16,32
Write: 8,16,32
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Offset Name Description

Permitted
access
sizes/bits

0x004-0x007 UARTRSR/UARTECR
Receive status
and error clear
register

A 32-bit read/write register – a write
clears the bits
Bits [3:0]

Four bits of error status,
used to detect frame
errors as in the UARTDR
register, except it allows
clearing of these bits.

Bits [31:4] - Reserved.
(Ref Section 3.3.2 - PL011TRM [11])

Read: 16,32
Write: 8,16,32

0x018-0x01c UARTFR
Flag Register

A 32-bit read-only register.
Bits [2:0] - Reserved
Bits [7:3]

Bits indicate state of
UART and FIFOs, with
operation as PL011.

Bits [15:8] - Reserved.
(Ref Section 3.3.3 - PL011TRM [11])

Read: 8, 16, 32

0x03c-0x03f UARTRIS
Raw Interrupt
Status Register

A 32 bit read-only register.
Bits [3:0] - Reserved.
Bits [10:4]

Bits used indicate state of
Interrupts.

Bits [31:11] - Reserved.
(Ref Section 3.3.11 - PL011TRM [11])

Read: 16, 32

0x040-0x043 UARTMIS
Masked Interrupt
Status Register

A 32 bit read-only register.
Bits [3:0] - Reserved.
Bits [10:4]

Bits used indicate state of
Interrupts.

Bits [31:11] - Reserved.
(Ref Section 3.3.12 - PL011TRM [11])

Read: 16, 32
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Offset Name Description

Permitted
access
sizes/bits

0x038-0x03b UARTIMSC
Mask Set/Clear
Register

A 32-bit read/write register showing
the current mask status.
Bits [3:0]
Write as Ones.
Bits[10:4]

Bits used to set or clear
the mask bits assigned to
the corresponding
interrupts:
1 = mask
0 = unmask.

Bits [31:11]
Reserved, preserve
value.

Note: Setting the mask bit to 1
enables the interrupt. (Ref Section
3.3.10 - PL011TRM [11])

Read: 16, 32
Write: 16, 32

0x044-0x047 UARTICR
Interrupt Clear
Register

A 32-bit write-only register.
Bits[3:0]

Reserved
Bits [10:4]

Bits used to clear the
interrupts whose status is
indicated in UARTRIS.

Bits[31:11] - Reserved
(Ref Section 3.3.13 - PL011TRM [11])

Write: 16, 32

B.3 Interrupts

The UARTINTR interrupt output must be connected to the GIC.

B.4 Control and setup

Hardware-specific software is required to set up the UART into a state where the above specification can be
met and the UART can be used.

This setup is equivalent to the following PL011 state:

UARTLCR_H.WLEN == b11 // 8-bit word
UARTLCR_H.FEN == b1 // FIFO enabled
UARTCR.RXE == b1 // receive enabled
UARTCR.TXE == b1 // transmit enabled
UARTCR.UARTEN == b1 // UART enabled
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B.5 Operation

The base UART operation complies with the subset of features implemented of the PL011 Primecell UART,
the operation of which can be found in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.5 of the ARM® PrimeCell® UART
(PL011) Technical Reference Manual [11]. Operations of the IrDA SIR, modem, hardware flow control, and
DMA are not supported.
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C Generic Watchdog

C.1 About

The Generic Watchdog aids the detection of errant system behavior. If the Generic Watchdog is not refreshed
periodically, it will raise a signal, which is typically wired to an interrupt. If this watchdog remains un-refreshed,
it will raise a second signal which can be used to interrupt higher-privileged software or cause a PE reset.

The Generic Watchdog has two register frames, one that contains the refresh register and one for control of
the watchdog.

C.2 Watchdog operation

The basic function of the Generic Watchdog is to count for a fixed period of time, during which it expects to be
refreshed by the system indicating normal operation. If a refresh occurs within the watch period, the period is
refreshed to the start. If the refresh does not occur then the watch period expires, and a signal is raised and a
second watch period is begun.

The initial signal is typically wired to an interrupt and alerts the system. The system can attempt to take
corrective action that includes refreshing the watchdog within the second watch period. If the refresh is
successful, the system returns to the previous normal operation. If it fails, then the second watch period
expires and a second signal is generated. The signal is fed to a higher agent as an interrupt or reset for it to
take executive action.

The Watchdog uses the Generic Timer system counter as the timebase against which the decision to trigger
an interrupt is made.

Note

The Arm ARM states that the system counter measures the passing of real-time. This counter is sometimes
called the physical counter.

The Watchdog is based on a 64-bit compare value and comparator. When the generic timer system count
value is greater than the compare value, a timeout refresh is triggered.

The compare value can either be loaded directly or indirectly on an explicit refresh or timeout refresh.

When the watchdog is refreshed explicitly, the compare value is loaded with the sum of the zero-extended
watchdog offset register and the current generic timer system count value.

Revision 1 of watchdog increases the length the watchdog offset register to 48 bit. The operation of the
watchdog remains the same. Software can determine which version of the watchdog is implemented through
the watchdog interface identification register (W_IID).

When the watchdog is refreshed through a timeout, the compare value is loaded with the sum of the
zero-extended watchdog offset register and the current generic timer system count value. See below for
exceptions.

An explicit watchdog refresh occurs when one of a number of different events occur:

• The Watchdog Refresh Register is written.
• The Watchdog Offset Register is written.
• The Watchdog Control and Status register is written.
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In the case of an explicit refresh, the Watchdog Signals are cleared. A timeout refresh does not clear the
Watchdog Signals.

The watchdog has the following output signals:

• Watchdog Signal 0 (WS0).
• Watchdog Signal 1 (WS1).

If WS0 is asserted and a timeout refresh occurs, then the compare value must retain its current value. This
means that the compare value records the time that WS1 is asserted.

If both watchdog signals are deasserted and a timeout refresh occurs, WS0 is asserted.

If WS0 is asserted, the architectural state of the watchdog is not reset.

If WS0 is asserted and a timeout refresh occurs, WS1 is asserted.

WS0 and WS1 remain asserted until an explicit refresh or watchdog Cold reset occurs.

System firmware must record the WS1 assert event. The mechanism to report WS1 assertion event to the
Operating System is IMPLEMENTATION DEFINED.

WS0 and WS1 are deasserted when the watchdog is disabled.

The status of WS0 and WS1 can be read in the Watchdog Control and Status Register.

Watchdog Cold reset must only occur as part of the watchdog powering-up sequence. On a Cold reset,
certain Generic Watchdog register values are reset to a known state.

Note

The following pseudo-code describes the Generic Watchdog behavior.

TimeoutRefresh = (SystemCounter [63:0] > CompareValue [63:0])
If WatchdogColdReset

WatchdogEnable = DISABLED
Endif
If LoadNewCompareValue

CompareValue = new_value
ElseIf ExplicitRefresh == TRUE or (TimeoutRefresh == TRUE and WS0 == FALSE)

CompareValue = SystemCounter [63:0] + ZeroExtend(WatchdogOffsetValue
↪→[47:0])

Endif
If WatchdogEnable == DISABLED

WS0 = FALSE
WS1 = FALSE

ElseIf ExplicitRefresh == TRUE
WS0 = FALSE
WS1 = FALSE

ElseIf TimeoutRefresh == TRUE
If WS0 == FALSE

WS0 = TRUE
Else

WS1 = TRUE
Endif

Endif

The Generic Watchdog must be disabled when the System Counter is being updated, or the results are
UNPREDICTABLE.
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C.3 Register summary

This section gives a summary of the registers, relative to the base address of the relevant frames.

All registers are 32 bits in size and should be accessed using 32-bit reads and writes. If an access size other
than 32 bits is used, the results are IMPLEMENTATION DEFINED. There are two register frames, one for a
refresh register, and the other containing the status and setup registers.

The Generic Watchdog is little-endian. Table 20 shows the refresh frame.

Table 20: Refresh Frame

Offset Name Description

0x000-0x003 WRR Watchdog refresh register. A write to this
location causes the watchdog to refresh and
start a new watch period. A read has no effect
and returns 0.

0x004-0xFCB - Reserved.

0xFCC-0xFCF W_IID See Section C.4.2

0xFD0-0xFFF - IMPLEMENTATION DEFINED.

Table 21 shows the watchdog control frame.

Table 21: Watchdog Control Frame

Offset Name Description

0x000-0x003 WCS Watchdog control and status register. A read/write register
containing a watchdog enable bit, and bits indicating the
current status of the watchdog signals.

0x004-0x007 - Reserved.

0x008-0x00B WOR[31:0] Watchdog offset register. A read/write register containing the
lower 32 bits of the unsigned watchdog countdown timer
value.

0x00C-0x00F WOR[63:32] Watchdog offset register:
Bits [31:16]

Reserved. Read all zeros, write has no effect.
Bits [15:0]

Read/write upper 16 bits of the watchdog
countdown timer.

0x010-0x013 WCV[31:0] Watchdog compare value. Read/write registers

0x014-0x017 WCV[63:32] containing the current value in the watchdog compare
register.

0x018-0xFCB - Reserved.

0xFCC-0xFCF W_IIDR See Section C.4.2
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Offset Name Description

0xFD0-0xFFF - IMPLEMENTATION DEFINED

Note

In the previous revision of the Generic Watchdog, revision 0, the Watchdog offset register was 32 bit, and
offset 0x00C-0x00F was Reserved.

C.4 Register descriptions

C.4.1 Watchdog Control and Status Register

The format of the Watchdog Control and Status Register is:

Bits [31:3]

Reserved. Read all zeros, write has no effect.

Bits [2:1] – Watchdog Signal Status bits

A read of these bits indicates the current state of the watchdog signals; bit [2] reflects the status of
WS1 and bit [1] reflects the status of WS0.

A write to these bits has no effect.

Bit [0] – Watchdog Enable bit

A write of 1 to this bit enables the Watchdog, a 0 disables the Watchdog.

A read of these bits indicates the current state of the Watchdog enable.

The watchdog enable bit resets to 0 on watchdog Cold reset.

C.4.2 Watchdog Interface Identification Register

W_IIDR is a 32-bit read-only register. The format of the register is:

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture version, bits [19:16]

Revision field for the Generic Watchdog architecture. The value of this field depends on the Generic
Watchdog architecture version:

• 0x1 for Generic Watchdog v1.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the component.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Generic Watchdog:

Bits [11:8] The JEP106 continuation code of the implementer.
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Bit [7] Always 0.

Bits [6:0] The JEP106 identity code of the implementer.
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D SMMUv3 integration

This appendix details rules about the integration of a SMMUv3 SMMU into system.

I The system is permitted to include any number of SMMUs.

RSMMU_01 All SMMU translation table walks and all SMMU accesses to SMMU memory structures and queues are I/O
coherent (SMMU_IDR0.COHACC == 1).

I SMMUv3 supports two distinct page table fault models: stall on fault, and terminate on fault. Care must be
taken when designing a system to use the stall on fault model.

RSMMU_02 The system must be constructed so the act of the SMMU stalling on a fault from a device must not stall the
progress of any other device or PE that is not under the control of the same operating system as the stalling
device.

I The SMMUv3 spec requires that PCIe root complex must not use the stall model due to potential deadlock.

I See Section E.12 for requirements on PCIe PASID support.

I See Section H for requirements on how DeviceID and StreamID should be assigned and how ITS groups
should be used.
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E PCI Express integration

E.1 Configuration space

RPCI_IN_01 Systems must map memory space to PCI Express Configuration Space, using the PCI Express Enhanced
Configuration Access Mechanism (ECAM). For more information about ECAM, see PCI Express Base
Specification Revision 3.1[1].

I The ECAM maps Configuration Space to a contiguous region of memory address space, using bit slices of
the memory address to map on to the PCI Express Configuration Space address fields. This mapping is
shown in Table 22.

Table 22: Enhanced Configuration Address Mapping

Memory Address bits
PCI Express Configuration Space address
field

(20 + n - 1):20 Bus Number 1 <= n <= 8.

19:15 Device Number.

14:12 Function Number.

11:8 Extended Register Number.

7:2 Register Number.

1:0 Byte.

To ensure that the enumeration process works correctly, a combination of PCIe host bridge (PHB) and PCIe
Root Port must meet the following requirements:

RPCI_IN_02 Once boot firmware hands control over to the operating system, application processor accesses to ECAM
regions must work with no additional programming. The accesses must not require any OS visible
programming.

RPCI_IN_03 The Configuration Space of all the devices, Root Ports, Root Complex Integrated Endpoints, and switches
behind a PHB must be in a single ECAM region.

RPCI_IN_04 The configuration space of all the Endpoints and Switches in a Root port’s hierarchy must be in the same
ECAM space as the root port.

RPCI_IN_05 Root Port must appear as a PCI-PCI bridge to software (See Section 7.1 [1]). This implies that Root Port:

• must have all registers that are part of the Type 1 header, as specified in PCIe specification (See Section
7.5.1.3 [1]).

• must have all the capabilities required by PCIe specification for a Root Port. This includes the PCI
express capability structure (See Section 7.5.3 [1]).

• registers must follow the access attributes (RW/RO etc) specified in the PCIe specification.

RPCI_IN_06 PHB, in conjunction with Root Port, must recognize transactions that are coming in from application PEs as
PCIe configuration transactions if the transaction address is within the ECAM range mapped to the Root Port,
or the hierarchy that originates at that Root Port. This must be done by mapping the address of the incoming
memory transaction to the PCIe Configuration address space, as described in Table 22 (See Section 7.2.2
[1]).
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RPCI_IN_07 PHB in conjunction with Root Port must return all 1s as read response data for Configuration read requests to
non-existent functions and devices on the root bus, that is the primary bus of the Root Port. No error must be
reported to software by the Root Port unless explicitly enabled to do so (See Section 2.3.2 [1]).

RPCI_IN_08 PHB, in conjunction with Root Port, must return all 1s as read response data for Configuration read requests
that get an unsupported request response from downstream Endpoints or switches. No error must be reported
to software by the Root Port unless explicitly enabled to do so (See Section 2.3.2 [1]).

RPCI_IN_09 PHB in conjunction with Root Port must return all 1s as read response data for Configuration read requests
that arrive at the Root Port targeting downstream functions when the Root port link is in DL_Down status
(See Section 2.9.1 [1]).Note that this includes the case when the link is in L3 and the downstream device is
in D3cold. No error must be reported to software by the Root Port unless explicitly enabled to do so (See
Section 2.3.2 [1]).

I Accesses to the Root Port’s own ECAM space while the link is in DL_down status must function correctly.

RPCI_IN_10 PHB in conjunction with Root Port must send out Configuration transactions that are intended for the
subordinate bus range of the Root Port as Type 1 Configuration transactions to downstream devices and
switches. Subordinate bus range is between secondary bus number, exclusive, and the subordinate bus
number, inclusive. (See Section 3.2.2.3.1 [12]).

RPCI_IN_11 PHB in conjunction with Root Port must send out Configuration transactions that are intended for the secondary
bus of the Root Port as Type 0 Configuration transactions to devices and switches downstream (See Section
3.2.2.3.1 [12]).

RPCI_IN_12 PHB in conjunction with Root Port must Recognize and consume Configuration transactions intended for
the Root Port Configuration space and, read or write the appropriate Root Port Configuration register (See
Section 3.2.2.3.1 [12]).

RPCI_IN_13 PHB in conjunction with Root Port must recognize transactions received on the primary side of the Root Port
PCI-PCI bridge, targeting prefetchable or non-prefetchable memory spaces of devices and switches that are
on the secondary side of the bridge:

• Where the address falls within the prefetchable or non-prefetchable memory windows specified in the
type 1 header registers, the transactions must be forwarded to the secondary side (See Section 6.27.2
[1], Chapter 4 [13]).

• Where the address of the request does not fall within the prefetchable or non-prefetchable memory
windows that are specified in the type 1 header registers, the Root Port must respond with unsupported
request (See Section 6.27.2 [1], Chapter 4 [13]).

RPCI_IN_14 PHB in conjunction with Root Port must return all 1s data to the requestor PE as the response for a
configuration read if all of the following are true:

• CRS software visibility is disabled or not present.

• CRS response was received for the request the first time it was issued by the Root Complex. The Root
Complex then tried to make the request return valid data by re-issuing the request an implementation
defined number of times, but CRS was the response received for all such re-issues.

RPCI_IN_15 PHB in conjunction with Root Port must return all 1s data to the requestor PE as the response for a
configuration read if all of the following are true:

• CRS software visibility is enabled.

• The Configuration read is not targeting the Vendor ID register.

• CRS response was received for the request the first time it was issued by the Root Complex. The Root
Complex then tried to make the request return valid data by re-issuing the request an implementation
defined number of times, but CRS was the response received for all such re-issues.

Page 54 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

RPCI_IN_16 PHB in conjunction with the Root Port must return all 1s data to the requestor PE as the response for a
configuration read if all of the following are true:

• Target bus number of the request is not within the secondary bus to subordinate bus range of any of the
Root Ports.

• Target Bus, Device and Function (BDF) of the request does not match BDF of any on-chip functions.

• Target BDF of the request does not match the BDF of any of the Root Ports

RPCI_IN_17 The Root port must comply with the following (as per section 6.13 of [1]).

If the target bus number of a configuration request is equal to the Root Port’s secondary bus number, then:

• If ARI forwarding is disabled and the target device number of the request==0, then the access is to
the secondary bus of the Root Port, and the access is forwarded downstream as type 0 configuration
request.

• If ARI forwarding is disabled and target device number of the request > 0, then the access is terminated
and all 1s data is returned to the requestor PE.

• If ARI forwarding is enabled, then the access is to the secondary bus of the Root Port, and the access is
forwarded downstream as type 0 configuration request regardless of the target device number of the
request.

RPCI_IN_18 The Root Port must comply with the byte enable rules that are specified in the PCIe specification (See Section
2.2.5 [1]) and must support 1 byte, 2 byte and 4 byte Configuration read and write requests.

RPCI_IN_19 All registers present in the Root Port PCIe configuration space must follow the rules as defined in section 7.2
of the PCIe specification [1].

RPCI_IN_20 Any vendor specific data in the PCIe configuration space must be presented by one of the following capabilities,
as defined in the PCIe specification [1] :

• Vendor Specific Capability

• Vendor Specific Extended Capability (VSEC)

• Designated Vendor Specific Extended Capability (DVSEC)

I It is recommended that if the Root Port is the requester of a PCIe transaction, then the requestor ID of the
transaction is formed using the bus, device, and function numbers of the Root Port.

I It is recommended that completer ID for PCIe completions generated by the Root Port, for example, Completion
for a memory read request made earlier from an Endpoint to memory, is formed using the bus, device ,and
function numbers of the Root Port.

I It is recommended that the Root Port supports Configuration Request Retry Status (CRS) software visibility
feature. (See Section 2.3.2 [1]). If CRS software visibility is supported, then it must be according to the CRS
completion handling rules that are specified in the PCIe specification (See Section 2.3.2 [1]).

I The system can implement multiple ECAM regions. The base address of each ECAM region within the system
memory map is IMPLEMENTATION DEFINED and is expected to be discoverable from system firmware data.

I Whether a system supports non-PE agents accessing ECAM regions is system specific.

I Alternative Routing-ID Interpretation (ARI) is permitted. For buses with an ARI device the ECAM field [19:12]
is interpreted as the 8-bit function number.

E.2 PCI Express Memory Space

I It is system specific whether a system supports mapping PCI Express memory space as cacheable.
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RPCI_MM_01 All systems must support mapping PCI Express memory space as device memory.

RPCI_MM_02 All systems must support mapping PCI Express memory space as non-cacheable memory.

RPCI_MM_03 When PCI Express memory space is mapped as normal memory, the system must support unaligned
accesses to that region.

I PCI Type 1 headers, used in PCI-to-PCI bridges, and therefore in root ports and switches, have to be
programmed with the address space resources claimed by the given bridge.

I For non-prefetchable (NP) memory, Type 1 headers only support 32-bit addresses. This implies that endpoints
on the other end of a PCI-to-PCI bridge only support 32-bit NP BARs.

RPCI_MM_04 Systems compliant to this specification must support 32-bit programming of NP BARs on such endpoints.
This can be achieved in two ways:

Method 1: PE physical address space can be reserved below 4GB, whilst maintaining a one to one mapping
between PE physical address space and NP memory address space.

Method 2: It is also possible to use a fixed offset translation scheme that creates a fixed offset indirection
between PE physical address space, and PCI memory. This allows a window in PE physical address
space that is above 4G to be mirrored in PCI memory space below 4G. This requires support in the PHB.
Furthermore, firmware must program the PHB with the fixed offset, and to supply this information to the
OS [4].

Method 1 is recommended, because this method eases peer-to-peer support in NP memory.

E.3 PCI Express device view of memory

X Transactions originating from a PCI express device will either directly address the memory system of the base
system or be presented to a SMMU for optional address translation and permission policing.

For accesses from a PCIe endpoint to the host memory system, the following must be true:

RPCI_MM_05 For accesses from a PCIe endpoint to the host memory system, the address sent by PCI express devices
must be presented to the memory system or SMMU unmodified.

RPCI_MM_06 For accesses from a PCIe endpoint to the host memory system, in a system where the PCI express does not
use an SMMU, the PCI express devices have the same view of physical memory as the PEs.

RPCI_MM_07 For accesses from a PCIe endpoint to the host memory system, in a system with a SMMU for PCI express
there are no transformations to addresses being sent by PCI express devices before they are presented as
an input address to the SMMU.

Note

For accesses from a PE to the PCI memory space in a PCIe endpoint, offset based translation is permissible,
as described in Method 2 of section Section E.2

E.4 Message Signaled Interrupts

RPCI_MSI_1 Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices.

I MSI and MSI-X are edge-triggered interrupts that are delivered as a memory write transaction.

I Arm introduced standard support for MSI(-X) in the GICv2m architecture, this support is extended in GICv3.
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RPCI_MSI_2 The intended use model is that each unique MSI(-X) must trigger an interrupt with a unique ID and the MSI(-X)
must target GIC registers requiring no hardware specific software to service the interrupt.

E.5 GICv3 support for MSI(-X)

I GICv3 adds a new class of interrupt, LPI, to address MSI(-X). LPI can be targeted to a single PE.

In GICv3, SPI can be targeted at a single PE or can be “1 of N”, where the interrupt will be delivered to any
one of the PEs in the system currently powered up.

In GICv3, SPI are still limited in scale, but an implementation can support thousands of LPIs.

In GICv3, MSI(-X) can target SPI or LPI.

A single GICD_SETSPI_NSR register is supported for MSI targeting SPI. This is a compatibility break with
GICv2m, and does not support I/O virtualization.

GICv3 provides the GITS_TRANSLATER register for MSI targeting LPI. This register uses a Device_ID to
uniquely identify the originating device to fully support I/O virtualization, and is backed by memory-based
tables to support flexible re-targeting of interrupts.

E.6 Legacy interrupts

RPCI_LI_01 PCI Express legacy Interrupt messages must be converted to an SPI.

RPCI_LI_02 A unique SPI ID must be allocated to each of the legacy interrupt lines of a PHB. It is permissible to share SPI
IDs across PCI host bridges.

RPCI_LI_03 Each legacy interrupt SPI must be programmed as level-sensitive in the appropriate GIC_ICFGR.

I The exact SPI IDs that are allocated are IMPLEMENTATION DEFINED.

RPCI_LI_04 IMPLEMENTATION DEFINED registers must not be used to deliver these messages, only registers defined in the
PCI Express specification and the Arm GIC specification.

E.7 System MMU and Device Assignment

RPCI_SM_01 Hardware support for function or virtual function assignment to a VM or user space driver is optional, but if
required must use a System MMU compliant with the Arm System MMU specification [14].

Note

Individual Base System Architectures require certain versions of the SMMU to be used at particular levels
of the specification.

I Each function or virtual function that can be assigned to a VM or to a user space driver is associated with
a SMMU context. The programming of this association is IMPLEMENTATION DEFINED and is expected to be
described by system firmware data.

I SMMU does not support PCI Express ATS until SMMUv3, and as such ATS support is system-specific in
systems that do not have a SMMUv3 or later.

RPCI_SM_02 Functions intended for VM assignment, or assignment to a user space driver must implement function level
reset.
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E.8 I/O Coherency

I I/O interfaces such as PCI Express do not support the coherency operations necessary to maintain a fully
coherent cache in the I/O device. I/O coherency refers to the mechanism that an I/O subsystem uses to
enable I/O components to coherently access cacheable memory. In the Arm architecture, memory types and
attributes are applied to each transaction and determine the coherence properties of the transaction. See
“Memory types and attributes” in [3]. Some memory types and attributes also have cache allocation hints
associated with them. See “Cacheability, cache allocation hints, and cache transient hints” in [15].

RPCI_IC_11 If an I/O subsystem supports I/O coherency, it must be in the same Inner Shareability domain as the PEs.

X The system may need to snoop PE caches in order to maintain coherency for I/O accesses. For accesses to
Normal memory that use the Outer Shareable attribute, shareability applies across both the Inner Shareability
and Outer Shareability domains.

I All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
See “Shareable Normal memory” in [15].

I Prior revisions of the BSA required I/O subsystems that support PCI Express components to also support
I/O Coherency. This requirement was relaxed for the BSA and may be strengthened in domain-specific
specifications like the Server BSA [6].

I If an I/O subsystem does not support I/O coherency, it may be in a different Inner or Outer Shareability domain
as the PEs and the system is not required to snoop PE caches for I/O accesses.

E.8.1 Memory type and attribute assignment

I Memory type and attribute assignment for PCI Express DMA transactions is conceptually described in several
sequential steps. This flow is shown in [Figure 6]. This description does not mandate the order in which an
implementation chooses to apply the memory type and attribute assignment steps as long as the observed
result is equivalent with the sequential description for the supported system configurations.
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Figure 6: Memory type and attribute assignment for PCI Express DMA transactions

RPCI_IC_12 Until final memory type and attributes are known, the transaction must follow PCI Express transaction rules
and must not be collapsed/combined/merged or otherwise altered based on an intermediate memory type or
attribute.

RPCI_IC_13

Page 59 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

PCI Express Translated transactions may contain ATS Memory Attributes (AMA). An implementation must
provide a mode of operation where AMA values, if presented in the PCI Express transaction, are ignored
and do not alter the memory type, memory attributes, or cache allocation hints of a transaction. Any other
interpretation of AMA is IMPLEMENTATION DEFINED. Arm may provide guidance in the future with respect to
AMA.

E.8.1.1 Initial memory type and attributes

RPCI_IC_14 The initial memory attributes associated with a PCI Express transaction must be Normal Inner and Outer
Write-back Cacheable Outer Shareable.

I PCI Express transactions contain TLP Processing Hints (TPH). TPH is comprised of three fields: TH, PH
(Processing Hint), and ST (Steering Tag). The interpretation of these fields is IMPLEMENTATION DEFINED. It is
recommended that the initial cache allocation hints are formed according to the TH value and that set implies
allocate (Read-Allocate or Write-Allocate). Arm may provide additional guidance in the future with respect to
TPH.

E.8.1.2 No_snoop transformation

RPCI_IC_15 PCI Express transactions contain a No_snoop attribute. If the No_snoop attribute is set in the PCI Express
transaction, the memory attributes associated with the transaction must be replaced with Normal Inner and
Outer Non-cacheable.

I Because all data access to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable. See “Shareable Normal Memory” in [15].

I A transformation based on the No_snoop attribute is specified in contemporary versions of the SMMUv3
architecture [15]. The System MMU transformation may cause the No_snoop Transformation specified in
this specification to not be observable when a System MMU is present. Future revisions of the System MMU
architecture may introduce a modal behavior that affects the System MMU interpretation of the No_snoop
attribute and the observability of the No_snoop Transformation specified in this specification.

E.8.1.3 System MMU transformation

RPCI_IC_16 If there is a System MMU in the path of the transaction, the memory attributes associated with the transaction
must be provided as input to the System MMU. The memory attributes of the transaction must be replaced
with the output of the System MMU. See [15] for System MMU operation.

E.8.1.4 Target-specific transformation

RPCI_IC_17 For some address targets and platform configurations, an IMPLEMENTATION DEFINED mechanism may need
to be provided to override or ignore the memory type and attributes associated with the transaction in order to
guarantee the required properties of the target:

• Message Signaled Interrupts (MSIs) must be recorded according to PCI Express transaction rules. They
must remain ordered behind prior writes, must not merge, and must not allocate in caches.

• If PCI Express peer-to-peer functionality is supported, PCI Express transactions that target PCI Express
memory-mapped I/O space must not violate PCI Express transaction rules or the properties required by
the target PCI Express BAR region.

• Other special address regions may be defined by the platform.

X Some address targets, such as those associated with peripherals or memory mapped I/O ranges may require
special transaction properties. Hardware and/or firmware mechanisms may need to be provided to ensure
correct functionality for these targets across the supported platform configurations. These mechanisms are
particularly needed if the System MMU is not present, bypassed, or otherwise not involved in assigning
memory types and attributes (as is the case for ATS Translated transactions).
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E.8.1.5 Final memory attributes and coherence properties of Arm memory transactions

I If the final attributes associated with the transaction match the attributes used by the PE to access the memory,
PCI Express transactions are coherent with accesses from the PEs. See “Memory types and attributes” in
[15].

I If the final attributes associated with the transaction are mismatched with the attributes used by the PE to
access the memory, PCI Express transactions are not guaranteed to be coherent with accesses from the
PEs and software may need to use Cache Maintenance Operations (CMOs) to maintain coherency. See
“Mismatched memory attributes” in [15].

I Some system implementations may guarantee coherency even for mismatched memory attributes.

RPCI_IC_18 The shareability domain of an I/O subsystem that supports PCI Express must not contain any caches outside
the shareability domain of the PEs.

X Software-managed coherency requires that there are no caches that are accessible to PCI Express
transactions but inaccessible to the PEs. Cache Maintenance Operations (CMOs) issued by a PE operate
only within the shareability domain of the PEs.

E.9 Legacy I/O

I The specification does not require a support for legacy I/O transactions.

RPCI_IO_01 If an implementation supports legacy I/O, it is supported using a one to one mapping between legacy I/O
space and a window in the host physical address space. However, such schemes must not require a kernel
driver to be set up, any necessary initialization must be performed before OS boot.

E.10 Integrated end points

X Feedback from OS vendors has indicated that they have seen many ‘almost PCI Express’ integrated endpoints.
This leads to a bad experience and either no OS support for the endpoint or painful bespoke support.

RPCI_IEP_1 Anything claiming to follow the PCI Express specification must follow all the specification that is software-visible
to ensure standard, quality software support.

E.11 Peer-to-peer

RPCI_PP_01 It is system-specific whether peer-to-peer traffic through the system is supported.

RPCI_PP_02 Systems must not deadlock if PCI express devices attempt peer-to-peer transactions – even if the system
does not support peer-to-peer traffic. This rule is needed to uphold the principle that a virtual machine and its
assigned devices should not deadlock the system for other virtual machines or the hypervisor.

RPCI_PP_03 In a system where the PCIe hierarchy allows peer-to-peer transactions, the root ports in an Arm based SoC
must implement PCIe access control service (ACS) features.

RPCI_PP_04 For Root ports this means that the following must be supported:

1. ACS Source Validation. (V)
2. ACS Translation Blocking. (B)
3. ACS P2P Request Redirect (R).
4. ACS P2P Completion Redirect (C).
5. ACS Upstream Forwarding (U).
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6. The root port must support redirected request validation by querying an Arm architecture compliant
SMMU to get the final target physical address and access permission information.

7. The root port must support ACS violation error detection, logging and reporting. Logging and reporting
must be through the usage of AER mechanism.

I ACS P2P egress control is optional.

RPCI_PP_05 If the Root port supports peer-to-peer traffic with other root ports, then it must support the following:

• Validation of the peer-to-peer transactions before sending it to the destination root port using the same
mechanism as ACS redirected request validation. Any ACS violation error generated because of the
request validation should be reported using the standard ACS violation error detection, logging and
reporting mechanism specified in PCIe specification.

• If the root port supports Address Translation services and peer-to-peer traffic with other root ports, then
it must support ACS direct translated P2P (T).

IPCI_PP_06 Since isolation between IO devices can be broken by the presence of any peer-to-peer capable entity in a
PCIe hierarchy, Arm strongly recommends the following for an Arm based system:

• All PCIe switches should support the following features:
1. ACS Source Validation (V).
2. ACS Translation Blocking (B).
3. ACS P2P Request Redirect (R).
4. ACS P2P Completion Redirect (C).
5. ACS Upstream Forwarding (U).
6. ACS Direct Translated P2P (T).
7. ACS violation error detection, logging, and reporting as specified in PCIe specification for ACS.
8. Use of AER capability for logging and reporting ACS violation errors

• All multi-function devices, SR-IOV and non-SR-IOV, that are capable of peer-to-peer traffic between
different functions should support the following features:

1. ACS P2P Request Redirect (R).
2. ACS P2P Completion Redirect (C).
3. ACS Direct Translated P2P (T)
4. The device must support ACS violation error detection, logging, and reporting as specified in PCIe

specification for ACS.

E.12 PASID support

SMMUv3 included optional support for PCIe PASID.

RPCI_PAS_1 If the system supports PCIe PASID, then at least 16 bits of PASID must be supported. This support must
be full system support, from the root complex through to the SMMUv3 and any end points for which PASID
support is required.

E.13 PCIe Precision Time Measurement

RPCI_PTM_1 Any system that implements PCIe Precision Time Measurement (PTM) [1] must use the Arm architecture
defined System Counter [3] as PTM primary time source at the PTM root(s).
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F RCiEP

In this option, the on-chip peripheral appears to software during enumeration as a Root Complex Integrated
EndPoint (RCiEP) that is connected to the root bus behind a host bridge. See Section 3.13 for an introduction
on RCiEP.

This section describes the rules that are applicable when an on-chip peripheral is presented as a Root
complex integrated endpoint.

F.1 Rules for RCiEP

RRE_PCI_1 A RCiEP must obey all the rules that are specified in Section 1.3.2.3 of the PCIe 5.0 specification [1].

RRE_PCI_2 The RCEC must obey all the rules that are specified in Section 1.3.4 of the PCIe 5.0 specification [1].

RRE_CFG_1 Ability to recognize read or write requests coming in from PEs as PCIe configuration requests if the requests
address is within the ECAM range that is allocated to the host bridge of RCiEP.

RRE_CFG_2 An IMPLEMENTATION DEFINED mechanism for providing the bus and device number to each RCiEP.

RRE_CFG_3 An IMPLEMENTATION DEFINED mechanism for providing the bus and device number to each RCEC.

RRE_CRS_1 When a RCiEP or RCEC function is temporarily unable to process a configuration request following a reset
and the reset is one of the valid reset conditions defined in Section 2.3.1 of the PCIe specification [1], the
following are response options:

• Respond as defined in PCIe specification if the following are true:

– Configuration Retry Status (CRS) visibility is present and is enabled.
– The request is a configuration read to an address that includes the two bytes of the Vendor ID field.

• Otherwise, all 1s data must be sent back to the requestor PE.

RRE_BAR_1 All BAR registers in an RCiEP must be writeable and readable as per the PCIe specification.

RRE_BAR_2 Dynamic re-programming of these BAR registers must be allowed.

RRE_BAR_3 A RCiEP must not support I/O space claimed through BARs.

RRE_INT_1 If the RCiEP supports interrupt generation, the RCiEP must support MSI or MSI-X interrupt generation.

I It is recommended that RCiEP Endpoint does not have any wire-based interrupts.

RRE_ORD_1 The RCiEP must obey PCIe ordering rules for the configuration and BAR mapped memory spaces when
accessed in the inbound direction, towards the RCiEP.

RRE_ORD_2 PCIe ordering rules must be obeyed while sending out completions for configuration space and BAR mapped
memory space accesses.

RRE_ORD_3 If the RCiEP uses the PCIe producer-consumer model for the interaction with software or peer devices, then
the following must be ensured by the RCiEP in collaboration with rest of the system:

• Write requests from the RCiEP are observed by other agents in the order required for the
producer-consumer model to work.

• A read request from the RCiEP must not overtake previously issued write requests from the same RCiEP
if there is a Read after Write dependency between the Read and previously issued write or writes.

RRE_ORD_4 The Transactions Pending bit must be cleared only after all non-posted requests, such as outstanding reads,
have received responses.
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RRE_SMU_1 The RCiEP must interact with the SMMU in the same way that an external Endpoint does. The rules to
achieve this are:

RRE_SMU_2 PCIe ATS capability must be supported if the RCiEP has a software visible cache for address translations.

RRE_SMU_3 PCIe PRI mechanism must be supported if RCiEP requires memory pages dynamically.

RRE_SMU_4 If the RCiEP supports PASIDs, the PASID is used as SubStreamID as specified in the SMMU architecture
specification.

RRE_SMU_5 RCiEP must use its BDF to generate StreamID using rules that are described in Section H.

RRE_RST_1 RCiEP must have Function Level Reset (FLR) support.

RRE_PWR_1 RCiEP must have D state support and must have PCI Power management capability as specified in the PCIe
specification.

RRE_PWR_2 RCiEP must support PME messages for wake up signaling if the RCiEP needs to have a wake-up notification
mechanism.

RRE_PWR_3 PM_PME wake messages must be logged in the Root Complex Event collector that is associated with the
RCiEP.

I The RCiEP is not expected to use Aux_Current.

RRE_ACS_1 ACS capability must be present in the RCiEP if the RCiEP is a multi-function device and supports peer to
peer traffic between its functions. It must comply with the PCIe specification on specific ACS access controls
that must be supported.

RRE_ACS)2 If the RCiEP has ACS capability, then it must have AER capability for reporting ACS violation errors.

RRE_ACS_3 RCiEP requests that target peer Endpoints have to be mediated by the SMMU before proceeding to the target.

F.2 RCiEP capabilities and registers

A RCiEP implementation requires the following register implementation.

RRE_REG_1 All type 0 header registers must be implemented for RCiEP and RCEC.

The registers are

Register Register Register

Device ID Vendor ID Status

Class Code Revision ID BIST

Header Type Latency Timer Cache Line Size

Base Address Registers Command Cardbus CIS Pointer

Subsystem ID Subsystem Vendor ID Capabilities Pointer

Exp ROM Base Address Interrupt Pin Interrupt Line

Max_Lat Min_Gnt

RRE_REG_2 All registers of the PCI power management capability must be implemented for RCiEP and RCEC. The
registers must be implemented as described in Table 24.
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Table 24: Power management capability registers

Register Requirement

Power Management Capabilities (PMC) see Section F.3.6

Next Capability Pointer Implement as described in PCIe specification.

Capability ID Implement as described in PCIe specification.

Data see Section F.3.8

Power Management Control/Status (PMCSR) see Section F.3.7

RRE_REG_3 The registers that are specified in Section 7.5.3 of the PCIe specification [1] for all devices must be
implemented for RCiEP. The registers must be implemented as described in Table 25.

Table 25: PCI Express Capability registers required for RCiEP

Register Requirement

PCI Express Capabilities Register see Section F.3.1

Next Cap Pointer Implement as described in PCIe specification.

PCI Express CAP ID Implement as described in PCIe specification.

Device Capabilities see Section F.3.2

Device Status Implement as described in PCIe specification.

Device Control see Section F.3.3

Device Capabilities 2 see Section F.3.4

Device Status 2 Implement as described in PCIe specification.

Device Control 2 see Section F.3.5

RRE_REC_1 The registers that are specified in Section 7.5.3 of the PCIe specification [1] for Root Complex Event Collectors
must be implemented for RCEC. The registers must be implemented as described in Table 26.

Table 26: PCI Express Capability registers

Register Requirement

PCI Express Capabilities Register see Section F.3.1

Next Cap Pointer Implement as described in PCIe specification.

PCI Express CAP ID Implement as described in PCIe specification.

Device Capabilities see Section F.3.2

Device Status Implement as described in PCIe specification.

Device Control see Section F.3.3

Root Capabilities Implement as described in PCIe specification.
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Register Requirement

Root Control Implement as described in PCIe specification.

Root Status Implement as described in PCIe specification.

Device Capabilities 2 see Section F.3.4

Device Status 2 Implement as described in PCIe specification.

Device Control 2 see Section F.3.5

RRE_REC_2 All registers of the Root Complex Event Collector Endpoint Association Extended Capability must be
implemented by the RCEC. The registers must be implemented as shown in Table 27.

Table 27: RCEC Endpoint Association Extended Capability registers

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.

Association Bitmap for RCiEPs Implement as described in PCIe specification.

RCEC Associated Bus Numbers Implement as described in PCIe specification.

F.3 Register bit field rules for the RCiEP option

For all registers that are described in this section, unless otherwise specified, HW implementation and usage
of each field must behave as described by the PCIe specification [1].

In addition, the attributes of all register fields must be as described in PCIe specification.

Any bit or field that is specified as HWIGNORE has the following properties:

• The bit or field is a don’t care for HW and the value of the bit or field will be ignored by hardware.
• The attributes must be as described in the PCIe specification.

F.3.1 PCI Express Capabilities Register

RCiEP : Device type must be hardwired as RCiEP type. The rest of the fields in this register must be
implemented as specified in the PCIe specification.

RCEC : Device type must be hardwired as RCEC type. The rest of the fields in this register must be
implemented as specified in the PCIe specification.

F.3.2 Device Capabilities Register

Device Capabilities Register Requirement

Role based error reporting RCEC and RCiEP: Hardwired to 1

Endpoint L0s acceptable latency RCEC and RCiEP: Hardwired to 0
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Device Capabilities Register Requirement

L1 acceptable latency RCEC and RCiEP: Hardwired to 0

Captured slot power limit scale RCEC and RCiEP: Hardwired to 0

Captured slot power limit value RCEC and RCiEP: Hardwired to 0

Max payload size See note below

Phantom functions RCEC and RCiEP: Recommendation is to

hardwire this bit to 0.

Extended tag field Hardwired to 1

Note

For both the RCEC and RCiEP, the value reported in this field must be compliant with the PCIe specification
[1].

F.3.3 Device Control Register

Device Control Register field Requirement

Max_Rd_Request Size, Max payload size RCEC and RCiEP: HWIGNORE.

Phantom functions Enable RCEC and RCiEP: Recommended to be hardwired to 0.

Aux power PM enable RCEC and RCiEP: Recommended to be hardwired to 0.

Enable relaxed ordering RCiEP: If HW can set RO or an equivalent attribute

for transactions, then this bit controls RO

attribute setting. Otherwise hardwired to 0.

RCEC: Hardwired to 0.

Enable No Snoop RCiEP:This bit enables/disables HW’s ability

to set non-cacheable attribute for transactions.

RCEC: Hardwired to 0.

Extended Tag field enable RCiEP and RCEC:HWIGNORE.

F.3.4 Device capabilities 2 register

TPH Completer Supported

• RCiEP: This field must be set to appropriate valid values if the RCiEP can sink transactions with TPH
hints and/or extended TPH hints.

• RCEC: Recommendation is to set this bit to 0.

10-Bit Tag Requester Supported, 10-Bit Tag Completer Supported
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• HWIGNORE for RCEC and RCiEP.

End-End TLP prefix supported, Max End-End TLP prefixes

• RCiEP: Value of these bit fields are IMPLEMENTATION DEFINED.
• RCEC: Recommendation is to set these bit fields to 0.

FRS Supported

• RCiEP and RCEC: The value of this bit is IMPLEMENTATION DEFINED, based on the capability of the
RCEC HW and associated RCiEP HW. If the RCiEPs support FRS, RCEC must support FRS.

LTR Mechanism Supported

• RCiEP and RCEC: This bit’s value is IMPLEMENTATION DEFINED, based on the capability of the RCEC
HW and associated RCiEP HW. If the RCiEP’s support LTR mechanism, then the RCEC must support
LTR mechanism.

10-bit tag requester supported

• RCiEP and RCEC: Recommendation is that these bits are hardwired to 1.

10-bit tag completer supported, Extended Fmt field supported

• RCiEP and RCEC:It is strongly recommended that this bit is set to 1.

F.3.5 Device control 2 register

IDO Request Enable:

• RCiEP: If the RCiEP HW can set an attribute equivalent to that of IDO for requests, then this bit controls
the setting of that attribute. Otherwise, this bit is hardwired to 0.

• RCEC: Hardwired to 0.

IDO Completion Enable:

• RCiEP: If the RCiEP HW is capable of setting an attribute equivalent to that of IDO for completions, then
this bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

• RCEC: Hardwired to 0.

F.3.6 Power Management Capabilities Register

For RCiEP and RCEC Aux_Current must be hardwired to 0 indicating that the RCiEP/RCEC is self powered.

F.3.7 Power Management Control/Status Register

For both RCiEP and RCEC it is recommended that the Data_Select and Data_Scale fields are hardwired to
0.

F.3.8 Data Register

For both the RCEC and RCiEP it is recommended that this register is not implemented.
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G I-EP

In this option, the on-chip peripheral appears to software during enumeration as an endpoint that is behind a
Root Port, which in turn is behind a host bridge. See Section 3.13 for an introduction on i-EP.

This section describes the rules that are applicable when an on-chip devices is presented as an i-EP.

G.1 Rules for i-EP

RIE_CFG_1 Ability to recognize read or write requests coming in from PEs as PCIe configuration requests if the request’s
address is within the ECAM range that is allocated to the host bridge of i-EP.

RIE_CFG_2 An IMPLEMENTATION DEFINED mechanism for providing the bus and device number to each i-EP.

RIE_CFG_3 The i-EP Root Port must comply with all the enumeration related requirements that are given in Section E.1.

RIE_CFG_4 The i-EP Endpoint must be able to capture the bus number for each of its functions.

Note

If bus number consumption is a concern, then it is recommended that each i-EP has its own segment
group.

RIE_CRS_1 When a i-EP function is temporarily unable to process a configuration request following a reset and the reset
is one of the valid reset conditions defined in Section 2.3.1 of the PCIe specification [1], the following are
response options: - Respond as defined in PCIe specification if the following are true: - Configuration Retry
Status (CRS) visibility is present and is enabled. - The request is a configuration read to an address that
includes the two bytes of the Vendor ID field. - Otherwise, do not respond to the request until the function is
ready.

RIE_BAR_1 All BAR registers in an i-EP endpoint and i-EP Root Port must be writeable and readable as per the PCIe
specification.

RIE_BAR_2 Dynamic re-programming of these BAR registers must be allowed.

RIE_BAR_3 A i-EP Endpoint, and its i-EP Root Port, must not support IO space claimed through BARs.

RIE_INT_1 i-EP Endpoint must generate only MSI or MSI-X interrupts.

RIE_INT_2 i-EP Endpoint must not have any wire-based interrupts.

RIE_ORD_1 The i-EP must obey PCIe ordering rules for the configuration and BAR mapped memory spaces when
accessed in the inbound direction, towards the i-EP.

RIE_ORD_2 PCIe ordering rules must be obeyed while sending out completions for configuration space and BAR mapped
memory space accesses.

RIE_ORD_3 If the i-EP uses the PCIe producer-consumer model for the interaction with software or peer devices, then the
following must be ensured by the i-EP in collaboration with rest of the system:

• Write requests from the i-EP are observed by other agents in the order required for the
producer-consumer model to work.

• A read request from the i-EP must not overtake previously issued write requests from the same i-EP if
there is a Read after Write dependency between the Read and previously issued write or writes.

RIE_ORD_4 The Transactions Pending bit must be cleared only after all outstanding reads, atomic requests and write
requests have received responses.
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X The i-EP Endpoint must interact with the SMMU in the same way that an external Endpoint does. The rules to
achieve this are:

RIE_SMU_1 PCIe ATS capability must be supported if the i-EP has a software visible cache for address translations.

RIE_SMU_2 PCIe PRI mechanism must be supported if i-EP Endpoint requires memory pages dynamically.

RIE_SMU_3 If the i-EP Endpoint supports PASIDs, the PASID is used as SubStreamID as specified in the SMMU
architecture specification.

RIE_SMU_4 i-EP Endpoint must use its BDF to generate StreamID using rules that are described in Section H.

RIE_RST_1 i-EP Endpoint must have Function Level Reset (FLR) support.

RIE_RST_2 For i-EP, the Root Port must provide the ability to do a hot reset of the Endpoint using the Secondary Bus
Reset bit in bridge Control Register.

RIE_RST_3 For i-EP, the Root Port must provide the ability to hold the Endpoint in hot reset if the Link Disable bit in the
Link Control Register is set. Refer to the PCIe specification for details on Link Disable, Secondary Bus Reset
and hot reset.

RIE_PWR_1 i-EP Endpoint and the i-EP Root Port must have D state support and must have PCI Power management
capability as specified in the PCIe specification.

RIE_PWR_2 i-EP Endpoint must support PME messages for wake up signaling if the Endpoint needs to have a wake-up
notification mechanism.

RIE_PWR_3 PM_PME wake messages must be logged in the Root Complex Event collector that is associated with the
Root Port for i-EP option.

I The i-EP Endpoint is not expected to use Aux_Current.

RIE_ACS_1 ACS capability must be present in the i-EP endpoint functions if the i-EP Endpoint is a multi-function device
and supports peer to peer traffic between its functions. It must comply with the PCIe specification on specific
ACS access controls that must be supported. If the i-EP Endpoint has ACS capability, then it must have AER
capability for reporting ACS violation errors.

RIE_ACS_2 The i-EP Root Port must have ACS capability if the i-EP Endpoint can send transactions to a peer endpoint. It
must comply with the PCIe specification on specific ACS access controls that must be supported. If the i-EP
Root Port has ACS capability, then it must have AER capability for reporting ACS violation errors.

G.2 I-EP capabilities and registers

RIE_REG_1 All type 0 header registers must be implemented for i-EP Endpoint. The registers must be implemented as
described in PCIe specification.

The registers are

Register Register Register

Device ID Vendor ID Status

Class Code Revision ID BIST

Header Type Latency Timer Cache Line Size

Base Address Registers Command Cardbus CIS Pointer

Subsystem ID Subsystem Vendor ID Capabilities Pointer

Exp ROM Base Address Interrupt Pin Interrupt Line
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Register Register Register

Max_Lat Min_Gnt

RIE_REG_2 The registers mandated in Section 7.5.3 of the PCIe specification [1] for an endpoint that is not a RCiEP must
be implemented for i-EP Endpoint. The registers must be implemented as described in Table 31.

Table 31: PCI Express Capability registers required for Endpoint

Register Requirement

PCI Express Capabilities Register see Section F.3.1

Next Cap Pointer Implement as described in PCIe specification.

PCI Express CAP ID Implement as described in PCIe specification.

Device Capabilities see Section G.3.9

Device Status Implement as described in PCIe specification.

Device Control see Section G.3.10

Link Capabilities see Section G.3.13

Link Status see Section G.3.15

Link Control see Section G.3.14

Device Capabilities 2 see Section G.3.11

Device Status 2 Implement as described in PCIe specification.

Device Control 2 see Section G.3.12

Link Capabilities 2 see Section G.3.16

Link Status 2 see Section G.3.17

Link Control 2 see Section G.3.18

RIE_REG_3 All type 1 header registers must be implemented for i-EP Root Port. The registers must be implemented as
described in the PCIe specification.

The registers to be implemented as described in the PCIe specification are

Register Register Register

Device ID Vendor ID Status

Class Code Revision ID BIST

Header Type Primary Latency Timer Cache Line Size

Base Address Register 0 Base Address Register 1 Secondary Latency Timer

Subordinate Bus Number Secondary Bus Number Primary Bus Number

Secondary Status I/O Limit I/O Base

Memory Limit Memory Base Prefetchable Memory Limit
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Register Register Register

Prefetchable Memory Base PM Base Upper 32 Bits PM Limit Upper 32 Bits

I/O Base Limit 16 Bits I/O Base Upper 16 Bits Capabilities Pointer

Exp ROM Base Address Interrupt Pin Interrupt Line

The register which have specific requirements are described in Table 33.

Table 33: Type 1 header registers requirement

Register Requirement

Command see Section G.3.1

Bridge Control see Section G.3.1

RIE_REG_4 The registers mandated in Section 7.5.3 of the PCIe specification [1] for Root Ports must be implemented for
Root Port. The registers must be implemented as described in Table 34.

Table 34: PCI Express Capability registers required for Root Port

Register Requirement

PCI Express Capabilities Register see Section G.3.8

Next Cap Pointer Implement as described in PCIe specification.

PCI Express CAP ID Implement as described in PCIe specification.

Device Capabilities see Section G.3.9

Device Status Implement as described in PCIe specification.

Device Control see Section G.3.10

Link Capabilities see Section G.3.13

Link Status see Section G.3.15

Link Control see Section G.3.14

Slot Capabilities see Section G.3.5

Slot Status see Section G.3.7

Slot Control see Section G.3.6

Root Capabilities Implement as described in PCIe specification.

Root Control Implement as described in PCIe specification.

Root Status Implement as described in PCIe specification.

Device Capabilities 2 see Section G.3.11

Device Status 2 Implement as described in PCIe specification.

Device Control 2 see Section G.3.12
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Register Requirement

Link Capabilities 2 see Section G.3.16

Link Status 2 see Section G.3.17

Link Control 2 see Section G.3.18

RIE_REG_5 All registers of the PCI Power Management Capability must be implemented for i-EP Endpoint and i-EP Root
Port. The registers must be implemented as described in Table 35.

Table 35: Power management capability registers required for Root Port and Endpoint

Register Requirement

Power Management Capabilities (PMC) see Section G.3.2

Next Capability Pointer Implement as described in PCIe specification.

Capability ID Implement as described in PCIe specification.

Data see Section G.3.4

Power Management Control/Status (PMCSR) see Section G.3.3

G.2.1 Supported Link Speed Declaration in Link Capabilities 2

Depending on the supported link speeds declared, PCIe specification mandates that certain additional
capabilities must be present.

RIE_REG_6 If the supported link speeds declared in Link Capabilities 2 includes 8GT/s or higher speeds, then the
Secondary PCI Express Extended Capability Structure must be available for software to read and write. This
capability must be present in both Root Port and the Endpoint. This capability has the registers that are shown
in Table 36.

Table 36: Registers in Secondary PCI Express Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.

Link Control 3 Register see Section G.3.20

Lane Error Status Register see Section G.3.25

Lane Equalization Control Register see Section G.3.24

RIE_REG_7 If the supported link speeds that are declared in Link Capabilities 2 includes speeds that are 16GT/s and
higher, then Datalink Feature extended capability required for i-EP root port and end point.
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Table 37: Registers in Datalink Feature extended capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.

Data Link Feature Capabilities Register see Section G.3.25

Data Link Feature Status Register see Section G.3.25

RIE_REG_8 If the supported link speeds that are declared in Link Capabilities 2 includes speeds that are 16GT/s and
higher, then Physical layer 16GT/s extended capability is required for that Root Port or Endpoint.

Table 38: Registers in Physical Layer 16GT/s Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.

16.0 GT/s Capabilities Register Implement as described in PCIe specification.

16.0 GT/s Control Register Implement as described in PCIe specification.

16.0 GT/s Status Register see Section G.3.23

16.0 GT/s Local Data Parity Mismatch Status Register see Section G.3.26

16.0 GT/s First Retimer Data Parity Mismatch Status Register see Section G.3.26

16.0 GT/s Second Retimer Data Parity Mismatch Status Register see Section G.3.26

RIE_REG_9 If the supported link speeds that are declared in Link Capabilities 2 includes speeds that are 16GT/s and
higher, then Lane Margining at the Receiver Extended Capability is required for the Root Port and the
Endpoint.

Table 39: Registers in Lane Margining at the Receiver Extended Capability

Register Requirement

PCI Express Extended Capability Header Implement as described in PCIe specification.

Margining Port Status Register Implement as described in PCIe specification.

Margining Port Capabilities Register see Section G.3.22

Margining Lane Status see Section G.3.21

Margining Lane Control see Section G.3.21

G.3 Register bit field rules for the i-EP option

For all registers that are described in this section, unless otherwise specified, HW implementation and usage
of each field must behave as described by the PCIe specification [1]. In addition, the attributes of all register
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fields must be as described in PCIe specification.

Any bit or field specified as HWIGNORE has the following properties:

• The bit or field is a don’t care for HW and the value of the bit or field will be ignored by hardware.
• The attributes must be as described in PCIe specification.

G.3.1 Type 1 header registers

i-EP Root Port:

• Type 1 header registers.

– In Bridge Control register, setting Secondary bus reset must cause a hot reset of the integrated
Endpoint. Refer to PCIe specification for details on the effect of hot reset on the Endpoint.

– if the Bus Master Enable (BME) bit in Command register is cleared, the i-EP Endpoint must not
generate any memory read or write requests.

G.3.2 Power Management Capabilities Register

For both i-EP Root Port and Endpoint, Aux_Current must be hardwired to 0, this is to indicate that the i-EP
Root Port/Endpoint is self powered.

G.3.3 Power Management Control/Status Register

For both the endpoint and the port, it is recommended that the Data_Select and Data_Scale fields are
hardwired to 0.

G.3.4 Data Register

For both the endpoint and the port, it is recommended that this register is not implemented.

G.3.5 Slot Capabilities Register

All bits in this registers must be set to 0.

G.3.6 Slot Control Register

For the Root Port, Data Link Layer State Changed Enable bit must be implemented as per PCIe specification.
All other bits in this register must be set to 0.

G.3.7 Slot Status Register

Slot Status Register field Requirement

Data link layer state changed i-EP Root Port: Implement as described in PCIe

specification [1].

Presence detect state i-EP Root Port: Implement as described in PCIe

specification [1].
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Slot Status Register field Requirement

All other bits i-EP Root Port: Always set to 0.

G.3.8 i-EP option: Rules for PCI Express Capabilities Register

For the i-EP Root Port:

• Device type must be hardwired as Root Port type.
• Slot implemented must be hardwired to 0b.

For the i-EP Endpoint:

• Device type must be hardwired as Endpoint type.

G.3.9 Device Capabilities Register

Device Capabilities Register Requirement

Role based error reporting i-EP Root Port and Endpoint: Hardwired to 1.

Endpoint L0s acceptable latency i-EP Root Port and Endpoint: Hardwired to 0.

Endpoint L1 acceptable latency i-EP Root Port and Endpoint: Hardwired to 0.

Captured slot power limit scale i-EP Root Port and Endpoint: Hardwired to 0.

Captured slot power limit value i-EP Root Port and Endpoint: Hardwired to 0.

Max payload size i-EP Root Port and Endpoint: Value in this field is

IMPLEMENTATION DEFINED and must be the same in both Root Port

and Endpoint.

Phantom functions i-EP Root Port and Endpoint: Recommendation is

to Hardwire this bit to 0.

Function level reset capability i-EP Root Port and Endpoint: Implement as described in

the PCIe specification.

Extended Tag Field supported i-EP Root Port and Endpoint: Hardwired to 1.

G.3.10 Device control register

Device control register field Requirement

Max_Rd_Request Size, Max payload size i-EP Root Port and Endpoint: HWIGNORE.

Phantom functions Enable i-EP Root Port and Endpoint: Recommended to be

hardwired to 0.

Aux power PM enable i-EP Root Port and Endpoint: Recommended to be

hardwired to 0.
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Device control register field Requirement

Enable relaxed ordering i-EP Root Port: Recommendation is that HW does

not use this bit.

i-EP Endpoint: If HW can set RO or an equivalent

attribute for transactions, then this bit controls RO

attribute setting. Otherwise hardwired to 0.

Enable no Snoop i-EP Root Port: HW must not use this bit.

i-EP Endpoint: This bit enables/disables HW’s ability

to set non-cacheable attribute for transactions.

Extended Tag field enable i-EP Root Port and Endpoint: HWIGNORE.

Initiate FLR i-EP Root Port: Must be hardwired to 0.

i-EP Endpoint:HW implementation and usage as described

in the PCIe spec.

G.3.11 Device Capabilities 2 register

Table 43: Device Capabilities 2 rules for the Root Port

Device Capabilities 2 register field Requirement

Completion timeout ranges supported This field is hardwired to 0, if Root Port HW

is not involved in transaction forwarding.

Completion timeout disable supported This field is hardwired to 0, if Root Port HW

is not involved in transaction forwarding.

ARI forwarding supported Must be set to 1 f the Endpoint requires

ARI mode.

AtomicOp routing supported Must be set to 1 if the Endpoint needs to

send atomic transactions to peer Endpoints.

32/64bit AtomicOp completer supported Must be set to 1, if the Endpoint can

generate 32 bit/64bit AtomicOps targeted

towards main memory.

128bit CAS completer supported Must be set to 1, if the Endpoint can

generate 128Bit CAS atomic operations

targeted towards main memory.

NO RO enabled PR-PR passing Set to 1 only if the Endpoint sends/receives

peer to peer transactions and needs to

have RO bit set in such transactions with
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Device Capabilities 2 register field Requirement

the restriction that posted requests must

not pass older posted requests.

LTR mechanism supported Must be the same value as that in Endpoint

Device Capabilities register.

TPH completer supported Must be set to appropriate valid values if

the Endpoint generates transactions with

the equivalent of TPH hints

and/or extended TPH hints.

LN system CLS Must be set to appropriate values according

to what the Endpoint needs in-terms of an

LN completer.

10-bit tag requester supported Hardwired to 1.

10-bit tag completer supported Hardwired to 1.

OBFF supported Must be set to the same value as that in

Endpoint device capabilities 2 register.

How the OBFF messaging/signalling

implemented is IMPLEMENTATION DEFINED.

Extended Fmt field supported Hardwired to 1.

End-End TLP prefix supported See Note below

Max End-End TLP prefixes See Note below

Emergency power reduction supported Hardwired to 0

Emergency power reduction init required Hardwired to 0

FRS supported Set to 1 if the Endpoint generates FRS

messages.

Note

Must be set to the same value as in the Endpoint Device Capabilities 2 register.

For i-EP Endpoint:

• Emergency power reduction supported, Emergency power reduction initialization required : It
is recommended that these bits are set to 0.

• End-End TLP prefix supported, Max End-End TLP prefixes : Value of these bit fields are IMPLEMEN-
TATION DEFINED based on the Endpoint capabilities for sinking TLP prefixes.

• Extended Fmt field supported. Hardwired to 1.
• 10-bit tag requester supported. Hardwired to 1.
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G.3.12 Device Control 2 register

Table 44: Device control 2 rules for the Root Port

Device Control 2 register field Requirement

End-End TLP prefix blocking Implement as described in PCIe specification. If this

bit is set, then any transactions targeting the

endpoint with End-End prefixes must be processed as

described in PCIe specification.

Emergency power reduction request Hardwired to 0. Not used/No effect for Root Port.

IDO completion enable Recommendation is that HW does not use this bit.

IDO request enable Recommendation is that HW does not use this bit.

LTR mechanism enable If LTR is supported, and this bit is set then

the HW must have a mechanism of reporting

queueing and reporting LTR messages to the

system from the Endpoint.

OBFF enable If OBFF is supported and this bit is set, then

the HW must have a mechanism of reporting OBFF

states/cases to the Endpoint.

AtomicOp requester enable If the endpoint dos not support AtomicOps as a

completer, then this bit must be hardwired to 0.

If the endpoint supports AtomicOps as a completer,

and this bit is set, then AtomicOp requests from

the host side, requested by PEs or by peer PCIe

or peer non PCIe devices, will be accepted by

the i-EP endpoint. If this bit is not set, then

corresponding transaction will be given an error

response.

AtomicOp egress blocking If this bit is set, then either the Root Port or

the Endpoint HW must discard any atomic requests

that is received and must log an error in the

Root Port error registers/Status register as

appropriate.

Completion timeout value If the Root Port HW is not

involved in forwarding transactions, then this

field is hardwired to 0.

Completion timeout disable If Root Port HW is
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Device Control 2 register field Requirement

not involved in transaction forwarding, this

bit is hardwired to 0.

ARI forwarding enable Implement as described in PCIe specification.

10 bit tag requester enable HWIGNORE.

For the i-EP endpoint:

IDO Request Enable:

• If the i-EP Endpoint HW is capable of setting an attribute equivalent to that of IDO for requests, then this
bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

IDO Completion Enable:

• If the i-EP Endpoint HW is capable of setting an attribute equivalent to that of IDO for completions, then
this bit controls the setting of that attribute. Otherwise, this bit is hardwired to 0.

10 bit tag requester enable

• HWIGNORE.

G.3.13 Link Capabilities Register

Link Capabilities Register fields Requirement

ASPM support i-EP Root Port and Endpoint: Hardwired to 0

L1 exit latency i-EP Root Port and Endpoint: Implement as

described in PCIe specification.

Clock power management i-EP Root Port and Endpoint: Hardwired to 0

Surprise down error reporting capable i-EP Root Port and Endpoint: Hardwired to 0

Max link speed, Max link width i-EP Root Port and Endpoint: The value in

these fields are implementation

defined but it must obey the following

conditions:

* The value in these fields must be the

same in both Endpoint and Root Port.

* The value must be one of the encodings

defined in PCIe specification [1].

Port number i-EP Root Port:Value is IMPLEMENTATION DEFINED. Must be unique

for each Root Port.

i-EP Endpoint:Value is IMPLEMENTATION DEFINED.
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G.3.14 Link Control Register

Link control register field Requirement

Common clock configuration i-EP Root Port and Endpoint: HWIGNORE.

Extended synch i-EP Root Port and Endpoint: HWIGNORE.

Enable clock power management i-EP Root Port and Endpoint: HWIGNORE.

ASPM control i-EP Root Port and Endpoint: HWIGNORE.

DRS signalling control i-EP Root Port and Endpoint: Implement as

per PCIe specification [1].

RCB control i-EP Root Port and Endpoint: HWIGNORE.

ASPM optionality compliance i-EP Root Port and Endpoint: Implement as described in

PCIe specification.

Link disable i-EP Root Port:If this bit is set, the Endpoint will

be held in reset that is equivalent

to hot reset. Refer to PCIe specification for details.

i-EP Endpoint: Implement as described in PCIe specification.

Retrain Link i-EP Root Port: When a 1 is written to this bit,

and the target link speed value is different from

default in either the EP or the RP, then the current

link speed field must be changed to the minimum of

target link speed value of both EP and the RP.

As per PCIe specification, read of this bit must

always return 0.

i-EP Endpoint: Implement as described in PCIe specification.

G.3.15 Link Status Register

Link Status Register field Requirement

Current link speed i-EP Root Port and Endpoint: The value in this

field is the minimum of the target link speed

value field of the Root Port and that of the Endpoint.

The Root Port and end point link status

registers must have the same value in this field.

Negotiated link width i-EP Root Port and Endpoint: The value in

this field is IMPLEMENTATION DEFINED, but the Root Port and endpoint

Link Status registers must have the same value.
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Link Status Register field Requirement

Slot clock configuration i-EP Root Port and Endpoint: Hardwired to 0.

Link autonomous bandwidth mgnt status i-EP Root Port: Set this bit to 1 on or before

Data Link layer link active bit goes from 0 to 1.

Refer to PCIe specification for details.

i-EP Endpoint:Implement as described in PCIe specification.

Data link layer link active See note below.

Link training i-EP Root Port: Set this bit to 1 whenever the

retrain link bit is set, or an IMPLEMENTATION DEFINED amount of

time after reset de-assertion.Clear this bit

prior to Data Link Layer link active bit is set.

This bit must be cleared only after equalization

status bits are set for speeds where equalization

is required.Default value is 0b.

i-EP Endpoint: Implement as described in PCIe specification.

Link Bandwidth Management Status i-EP Root Port: Set this bit when the retrain link bit

is set. The delay between retrain bit being set

and this bit being set is IMPLEMENTATION DEFINED.

i-EP Endpoint: Implement as described in PCIe specification.

Note

i-EP Root Port and Endpoint: Hardwired to 0 if link speed is less than 5 GT/s. If speed is greater than or
equal to 5GT/s, then this bit must be set to 1 for the following conditions:

• After reset deassertion, the delay between reset de-assertion and this bit going from 0 to 1 is
IMPLEMENTATION DEFINED.

• After a 1 to 0 transition of the link disable bit occurs, the delay between link disable de-assertion and
this bit going from 0 to 1 is IMPLEMENTATION DEFINED.

• After a 1 to 0 transition of the secondary bus reset bit, the delay between secondary bus reset
de-assertion and this bit going from 0 to 1 is IMPLEMENTATION DEFINED.

This bit must be set to 0 for the following conditions:

• After reset assertion.
• After a 0 to 1 transition of the Link disable bit in Link Control Register.
• After a 0 to 1 transition of the secondary bus reset bit in bridge control.

Refer to PCIe specification for details. i-EP Root Port and Endpoint must have the same value for this bit.

G.3.16 Link Capabilities 2 Register
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Link Capabilities 2 Register field Requirement

Supported link speeds vector i-EP Root Port and Endpoint: Value in this field

is IMPLEMENTATION DEFINED. The value must be compliant to

PCIe specification [1]. Both Root Port and

Endpoint must have the same value in this field.

Cross link supported i-EP Root Port and Endpoint: Hardwired to 0

Lower SKP OS supported speeds vector i-EP Root Port and Endpoint: Hardwired to 0

Lower SKP OS reception

Supported speeds vector i-EP Root Port and Endpoint: Hardwired to 0

Retimer presence detect supported i-EP Root Port and Endpoint: Hardwired to 0

Two retimers presence detect supported i-EP Root Port and Endpoint: Hardwired to 0

DRS supported i-EP Root Port: If the Endpoint needs to support DRS or

FRS, then this bit must be set for the Root Port as well.

i-EP Endpoint: Implement as described in PCIe specification.

G.3.17 Link Status 2 Register

Link Status 2 Register field Requirement

Current de-emphasis level i-EP Root Port and Endpoint: Value in this field is

IMPLEMENTATION DEFINED and is present for only emulating the link.

Equalization 8.0 GT/s successful i-EP Root Port and Endpoint: See note below

Equalization 8.0 GT/s phase 1 successful i-EP Root Port and Endpoint: See note below

Equalization 8.0 GT/s phase 2 successful i-EP Root Port and Endpoint: See note below

Equalization 8.0 GT/s phase 3 successful i-EP Root Port and Endpoint: See note below

Link equalization request i-EP Root Port and Endpoint: HW must never set this

bit.

Retimer presence detected i-EP Root Port and Endpoint: Hardwired to 0

Two retimers presence detected i-EP Root Port and Endpoint: Hardwired to 0

Crosslink resolution i-EP Root Port and Endpoint: Hardwired to 0

Downstream component presence i-EP Root Port: Only 010, 100 and 101 are allowed.

In addition, when the link state goes from inactive to active,

this field must change in value from 010 to 100/101.

When the link state goes from active to inactive, this field must

change from 100/101 to 010. Refer to PCIe specification for details.

i-EP Endpoint: Implement as described in PCIe specification.

DRS message received i-EP Root Port and Endpoint: Implement as described in
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Link Status 2 Register field Requirement

PCIe specification [1].

Note

This bit is set to 1 if the following conditions are true:

• The Data Link Layer Link Active bit has a 0 to 1 transition.
• Supported Link speeds includes 8GT/s and higher speeds.
• 32 GT/s speed is not supported or 32GT/s is supported and Equalization bypass to highest rate

Disable is set in 32GT/s Control Register.

Refer to Section 4.2.3 and 4.2.6.4.2 of the PCIe specification for details or bypass mode. Note that this bit
must go to 1 before the Link Active bit in Data Link Layer goes to 1.

This bit is set to 0 for an IMPLEMENTATION DEFINED amount of time if one of the following conditions is true:

• Link disable bit transitions from 1 to 0.
• Hot reset bit transitions from 1 to 0.

If Retrain Link bit is set to 1, target link speed is 8GT/s and perform equalization bit in Link Control 3 register
is set, this bit is set to 0 for an IMPLEMENTATION DEFINED amount of time. The perform equalization bit
must be cleared after this bit is set to 0.

The amount of time for which this bit is set to 0 must meet the following constraints:

• Large enough for software polling to succeed.
• Less than the delay between hot reset bit going to 0 and the Data Link Layer link active bit going to 1.
• Less than the delay between link disable bit going to 0 and the Data Link Layer link active bit going to

1.

The Endpoint and Root Port must have the same value for this bit. Refer to PCIe specification for details.

G.3.18 Link Control 2 Register

Link Control 2 Register field Requirement

Target link speed i-EP Root Port and Endpoint: Implement

as per PCIe specification.The Current link

speed field in the Link Status Register in

Root Port and Endpoint would be the minimum

of Root Port’s target link speed field and end

point’s target link speed field.

Enter compliance i-EP Root Port: HWIGNORE.

i-EP Endpoint:If this field is set to 1, then writes

to Target link speed will take effect. Refer to

PCIe specification for details.
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Link Control 2 Register field Requirement

Enter modified compliance i-EP Root Port and Endpoint: HWIGNORE.

Selectable deemphasis i-EP Root Port and Endpoint: HWIGNORE.

Transmit margin i-EP Root Port and Endpoint: HWIGNORE.

Enter modified compliance i-EP Root Port and Endpoint: HWIGNORE.

Compliance SOS i-EP Root Port and Endpoint: HWIGNORE.

Compliance preset/deemphasis i-EP Root Port and Endpoint: HWIGNORE.

G.3.19 Lane Equalization Control Register

For both the Root Port and Endpoint, all fields in this register must show values that are as per the encoding
specified in the PCIe specification [1].

G.3.20 Link Control 3 Register

Link Control 3 Register field Requirement

Perform Equalization i-EP Root Port: See note on Equalization Successful bits

in Section G.3.17 and Section G.3.23.

i-EP endpoint: Implement as described in PCIe

specification [1].

Enable Lower SKP OS Generation Vector i-EP Root Port and Endpoint: Attributes as

per PCIe specification. HWIGNORE.

Link Equalization Request Interrupt

Enable i-EP Root Port and Endpoint: HWIGNORE.

G.3.21 Margining Lane Control Register and Margining Lane Status Register

For both Root Port and endpoint, these two registers must emulate the behavior of the same registers in a
Root port with real links. Only time margining needs to be supported and emulated. Healthy margin values
must be presented to software, when software does time margining.

G.3.22 Margining Port Capabilities Register

For both Root Port and endpoint, the margining uses Driver Software field is set to 0.

G.3.23 16.0 GT/s Status Register
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16.0 GT/s Status Register field Requirement

Equalization 16.0 GT/s complete i-EP Root Port and Endpoint: See note below

Equalization 16.0 GT/s phase 1 successful i-EP Root Port and Endpoint: See note below

Equalization 16.0 GT/s phase 2 successful i-EP Root Port and Endpoint: See note below

Equalization 16.0 GT/s phase 3 successful i-EP Root Port and Endpoint: See note below

Link equalization request 16 GT/s i-EP Root Port and Endpoint: HW must never

set this bit.

Note

This bit is set to 1 if the following conditions are true:

• The Data Link Layer Link Active bit has a 0 to 1 transition.
• Supported Link speeds includes 16GT/s and higher speeds.
• 32 GT/s speed is not supported or 32GT/s is supported and Equalization bypass to highest rate

Disable is set in 32GT/s Control Register.

Please refer to Section 4.2.3 and 4.2.6.4.2 of the PCIe specification for details on bypass mode.

Note that this bit must go to 1 before the data link layer link active bit goes to 1.

This bit is set to 0 for an IMPLEMENTATION DEFINED amount of time if one of the following conditions is true:

• Link disable bit transitions from 1 to 0.
• Hot reset bit transitions from 1 to 0.

If Retrain link bit is set to 1, target link speed is 16GT/s or higher, and perform link equalization bit in link
Control 3 register is set, this bit is set to 0 for an IMPLEMENTATION DEFINED amount of time. The perform
equalization bit must be cleared after this bit is set to 0.

The amount of time for which this bit is set to 0 must meet the following constraints:

• Large enough for software polling to succeed.
• Less than the delay between hot reset bit going to 0 and the Data Link Layer link active bit going to 1.
• Less than the delay between link disable bit going to 0 and the Data Link Layer link active bit going to

1.

The endpoint and Root Port must have the same value for this bit. Refer to PCIe specification for details.

G.3.24 i-EP option: Rules for 16.0 GT/s Lane equalization control register

For both i-EP Root Port and Endpoint, this register, which is per lane, must have values in all fields which are
within expected ranges as described in PCIe specification [1].

G.3.25 Data Link Feature Capabilities and Data Link Feature Status

For i-EP Root Port:

• These registers must emulate the behavior of the same registers in a port with a real link.

Page 86 of 98 Copyright © 2020-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0094C
1.0C



Arm Base System Architecture

G.3.26 16GT/s registers and Lane Error status register

For both i-EP Root Port and endpoint, The following registers if present, must have all bits set to 0:

• 16.0 GT/s Local Data Parity Mismatch Status register
• 16.0 GT/s First Retimer Data Parity Mismatch Status register
• 16.0 GT/s Second Retimer Data Parity Mismatch Status register
• Lane Error Status Register
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H DeviceID generation and ITS groups

H.1 ITS groups

H.1.1 Introduction

I Every ITS block in the system is a member of a logical ITS group. Devices that send MSIs are also associated
with an ITS group. Devices are only programmed to send MSIs to an ITS in their group. In the simplest case,
the system contains one ITS group which contains all devices and ITS blocks. Devices are assigned DeviceID
values within each ITS group. See Section H.2.

Note

The concept of ITS grouping means the system does not have to support the use of any ITS block from any
device, which can ease system design.

H.1.2 Rules

The system contains one or more ITS group(s).

RITS_01 An ITS group can contain one or more ITS blocks.

RITS_02 An ITS block is associated with one ITS group.

RITS_03 A device that is expected to send an MSI is associated with one ITS group.

RITS_04 Devices can be programmed to send MSIs to any ITS block within the group.

RITS_05 If a device sends an MSI to an ITS block outside of its assigned group, the MSI write is illegal and does not
trigger an interrupt that could appear to originate from a different device. See Section H.2.2 for permitted
behavior of illegal MSI writes.

I The association of devices and ITS blocks to ITS groups is considered static by high-level software.

RITS_06 An ITS group represents a DeviceID namespace independent of any other ITS group.

RITS_07 All ITS blocks within an ITS group support a common DeviceID namespace size, a common input EventID
namespace size and are capable of receiving an MSI from any device within the group.

RITS_08 All ITS blocks within an ITS group observe the same DeviceID for any given device in the same ITS group.

Note

The two preceding rules allow software to use ITS blocks sharing a common group interchangeably.

I System firmware data, for example, firmware tables like ACPI/FDT, describe the association of ITS blocks and
devices with ITS groups to high-level software.

I It is recommended that the DeviceID namespace in each group is packed as densely as possible, and that it
starts at 0.

Note
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It is not required that all DeviceIDs be entirely contiguous but excessive fragmentation makes the software
configuration of an ITS more difficult.

H.1.3 Examples of ITS groups

Figure 7: Device and ITS grouping

In Figure 7:

• ITS A serves two devices.
• ITS B and ITS C serve three devices. Any of these devices can send an MSI to either B or C.
• Two unrelated DeviceID namespaces exist. DeviceID 0 in Group 0 is different to DeviceID 0 in Group 1.
• A device in Group 0 can only trigger an MSI on its assigned ITS, A, and should not be configured to do

otherwise. It cannot send an MSI to ITS B as it is in a different group to the device. If this is done, the
MSI write might be ignored or aborted, but in any case, does not cause an interrupt that might appear to
be valid.

I The properties that system-description structures convey to high-level software are:

• Identification of the two devices that are associated with Group 0, and the three associated with Group 1.
• ITS block A is in Group 0, B and C are in Group 1.
• For each MSI-capable requester device, which DeviceID in the group namespace the device has been

assigned.

H.2 Generation of DeviceID values

H.2.1 Introduction
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RITS_DEV_1 Every device that is expected to send MSIs has a DeviceID associated with it.

I This DeviceID is used to program the interrupt properties of MSIs originating from each device. The term
“device” is used in the context of a logical programming interface used by one body of software.

I Where a device is a client of an SMMU, that is, behind an SMMU, a granularity of source identification is
typically chosen to distinguish the client device traffic from other clients. This allows the device to be assigned
to a less-privileged software independent of other SMMU client devices.

RITS_DEV_2 The system designer assigns a requester a unique StreamID to device traffic input to the SMMU.

I The simplest way to achieve the same granularity of interrupt source differentiation and SMMU DMA
differentiation is for the device’s DeviceID to be generated from the device’s SMMU StreamID. It is beneficial
for high-level software and firmware system descriptions to ensure that this relationship is as simple as
possible. DeviceID is derived from a StreamID 1:1 or with a simple linear offset.

RITS_DEV_3 When a device is not behind an SMMU, its DeviceID appears to high-level software as though it is assigned
directly by the system designer.

I If a requester is a bridge from a different interconnect with an originator ID, like a PCIe RequesterID, and
devices on that interconnect might need to send MSIs, the originator ID is used to generate a DeviceID. The
function to generate the DeviceID should be an identity or a simple offset.

X The overall principle of DeviceID and StreamID mapping is that the relationship between one ID space, for
example, a PCIe RequesterID namespace and a DeviceID, be easily described using linear span-and-offset
operations.

X When an SMMU is used to allow devices to be programmed by possibly malicious software that is not the
most privileged part of the system, devices that are not designed to directly trigger MSIs could be misused to
direct a DMA write transaction at an ITS MSI target register.

RITS_DEV_4 The system must not allow this behavior to trigger an MSI that masquerades as originating from a different
requester. The system must anticipate that PEs also have the potential to be misused in this manner.

I Exposing an ITS to a VM for legitimate MSI purposes can mean that the untrusted VM software is able to
write to the ITS MSI target register from a PE.

H.2.2 Rules

RITS_DEV_5 Every device that is expected to originate MSIs is associated with a DeviceID.

RITS_DEV_6 DeviceID arrangement and system design prevents any mechanism that any software that is not the most
privileged in the system, for example VM, or application, can exploit to trigger interrupts associated with a
different body of software, for example. a different VM, or OS driver.

• A write to an ITS GITS_TRANSLATER from a PE, or from a device that is known at design time to
not support genuine MSIs and is under control of software less privileged than the software controlling
the ITS, is an illegal MSI write and must not be able to trigger an MSI appearing to have a DeviceID
associated with a different device. See Section H.1.2, an MSI sent to an ITS in a group different to the
originating device is also an illegal MSI write.

• An illegal MSI write is permitted to complete with WI semantics, or be terminated with an abort, or trigger
an MSI having a DeviceID that does not alias any DeviceID of a legitimate source.

Note

Devices that are known at design time to only be controlled by the most privileged software in the system,
such as those without an MMU/MPU, can be trusted not to send malicious writes to the ITS. For these
devices no special steps are required to prevent malicious MSI writes. Devices that have the potential to be
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controlled by a VM cannot be trusted. Devices that are clients of an SMMU fall into the latter category.

RITS_DEV_7 If a device is a client of an SMMU, the associated DeviceID is derived from the SMMU’s StreamID with an
identity or simple offset function:

• The SMMU component must output the input StreamID unmodified so it can be used to derive the
DeviceID downstream of the SMMU.

• If two devices have different StreamIDs, they must also have distinct DeviceIDs.

– It is not permitted for >1 StreamID to be associated with 1 DeviceID.

– It is not permitted for >1 DeviceID to be associated with 1 StreamID.

• The generic StreamID to DeviceID relationship is:

– DeviceID = zero_extend( SMMU_StreamID )+ Constant_Offset_A

• A PCIe Root Complex behind an SMMU generates a StreamID on that SMMU from its RequesterID with
this relationship:

– StreamID = zero_extend( RequesterID[N-1:0] )+ (1<<N)*Constant_B
– This StreamID is then used post-SMMU, as above, to generate a DeviceID.

Note

Arm expects N above to be 16 bits, but this is not mandatory.

RITS_DEV_8 DeviceIDs derived from other kinds of system IDs are also created from an identity or simple offset function.

• For a Root Complex without an SMMU, the relationship is:
– DeviceID = zero_extend( RequesterID[N-1:0] )+ (1<<N)*Constant_C

RITS_DEV_9 The relationships between a device, its StreamID and its DeviceID are considered static by OS or hypervisor
software. If the mapping is not fixed by hardware, the relationship between a StreamID and a DeviceID must
not change after system initialization, and OS drivers must not be required to set it up.

I Am recommends that all devices expected to originate MSIs have a DeviceID unique to their ITS group, even
if the devices are not connected to an SMMU.

Note

Providing separate DeviceIDs for different devices can improve the efficiency of structure allocation in GIC
driver software.

H.3 System description of DeviceID and ITS groups from FW data

The properties of the GIC distributor, Redistributors and ITS blocks such as base addresses will be described
to high-level software by system firmware data. In addition, for any given device expected to send MSIs,
system firmware data tables must ensure that:

• The DeviceID of the device can be determined, either:
– Directly: A device is labeled with a DeviceID value.
– Hierarchically indirect: If a device has a known ID on a sub-interconnect, the transformation between

that interconnect ID and the DeviceID namespace is described in a manner that allows the DeviceID
to be derived. This might comprise multiple transformations ascending a hierarchy, where a device
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is associated with intermediate IDs (such as a StreamID) which are ultimately used to generate a
DeviceID.

* Example: A PCIe Root Complex without an SMMU is described in terms of the DeviceID range
output for its RequesterID range. The DeviceID of an endpoint served by the Root Complex
is not directly provided, but is derived from the endpoint’s RequesterID given the described
mapping.

* Example: A PCIe Root Complex with an SMMU is described in terms of the transformation of
RequesterID range to SMMU input StreamID range and the transformation of StreamID range
to DeviceID range.

• The device association with an ITS group can be determined and the ITS blocks within the group can be
enumerated.

Note

• More compact descriptions result by describing a range of DeviceIDs to allow DeviceIDs to be derived
from a formula instead of directly describing individual DeviceIDs. This is especially pertinent for
interconnects such as PCIe.

• PEs and other requesters that do not support MSIs are not described as being part of an ITS group;
as they are not intended to invoke valid MSIs, there is no association to an ITS on which it is valid to
invoke MSIs.

The DeviceID and ITS group associations are not expected to be discoverable through a programming
interface of hardware components and a system is not required to provide such an interface.

H.4 DeviceIDs from hot-plugged devices

• If a device is not physically present at system initialization time, values in the DeviceID namespace
appropriate to the potential physical location of future devices must be reserved and associated with the
device when it later becomes present, in a system-specific manner.

• When a device is hot-plugged, it can be enumerated using an interconnect ID whose mapping to
DeviceID was statically described in system description tables and its DeviceID derived from this existing
mapping.

• If a new device’s DeviceID cannot be derived from existing mappings in system description tables, the
hot-plug mechanism, for example via firmware, must provide a means to determine the new device’s
DeviceID.

Note

• These points also apply to a new device’s SMMU StreamID.

• In current systems, hot-plug device that are capable of sending MSIs are most likely to be PCIe
endpoints. When a system and PCIe-specific mechanism makes a new endpoint present, the existing
indirect description of the Root Complex’s DeviceID span is used to calculate the new DeviceID from
the new RequesterID.

It is recommended that description of a sub-interconnect bridge, such as a PCIe Root Complex, includes all
potential endpoints (on PCIe, up to 216) rather than limiting description to the endpoints present at boot time,
if more client endpoints can later become present.
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I GICv2m Architecture

I.1 Introduction

The purpose of this specification is to provide a standardized means for ensuring that each individual PCI
Express MSI and MSI-X message is presented to the operating system (OS) as a unique interrupt ID. It is
designed to be used alongside an existing GICv2 implementation.

The standard abstraction that is expected to be given to the OS is the address of the MSI_SETSPI register
and the set of SPIs that it can generate. It is expected that this abstraction will be represented by system
firmware data.

I.2 About the GICv2m architecture

GICv2m provides an extension to GICv2 Generic Interrupt Controller Architecture, which enables MSIs
to set GICv2 Shared Peripheral Interrupts (SPIs) to pending. This provides a similar mechanism to the
message-based interrupt features added in GICv3.

The additional registers provided by GICv2m are specified as an additional memory-mapped Non-secure
MSI register frame, described in Non-secure MSI register summary in Section I.7. This allows a GICv2m
implementation to be built by adding a component that implements the additional registers to an existing
GICv2-compatible interrupt controller. The additional component is connected to a subset of the SPI inputs to
the GICv2 interrupt controller. When the additional component receives an MSI it generates an edge on the
corresponding SPI input.

I.3 Security

GICv2m can optionally include Security Extensions to include support for Secure MSI or MSI-X. The GICv2m
Security Extensions are optional even when the GIC Security Extensions are included. However, if the
GICv2m Security Extensions are included the GIC Security Extensions are mandatory.

Table 53: GIC and GICv2m security extensions

GIC Security Extensions
GICv2m Security
Extensions Description

Not included Not included No support for Secure interrupts.

Included Not included MSI are Non-secure. Other interrupts can
be Secure or Non-secure

Not included Included Not supported.

Included Included All interrupts can be Secure and
Non-secure.

The inclusion of the GICv2m Security Extensions adds a further memory-mapped Secure MSI register frame,
described in Section I.8.
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I.4 Virtualization

To support virtualization, GICv2m supports the inclusion of an IMPLEMENTATION DEFINED number of instances
of the Non-secure MSI register frame.

A hypervisor can allocate one or more instance to each guest operating system. Stage 2 translation tables
ensure each PCI Express function only has visibility of the Non-secure MSI register frames allocated to the
operating system that is controlling the device. This ensures that a guest operating system is not able to
program a PCI Express device to trigger MSI interrupts allocated to another guest operating system.

I.5 SPI allocation

GICv2m allows the allocation of SPIs to each of the register frames defined by the architecture.

Each instance of the Non-secure MSI register frame is allocated an IMPLEMENTATION DEFINED number of
contiguous SPIs. For details of Non-secure MSI register frame instances, see Section I.4.

When GICv2m includes the Security Extensions, an additional IMPLEMENTATION DEFINED number of
contiguous SPIs are allocated for Secure MSI.

The Secure MSI SPI range and the Non-secure MSI SPI range must not overlap, and are not required to be
adjacent.

SPIs that are allocated to MSIs must only be controllable by the GICv2m MSI registers. This means that other
interrupt sources must not share SPIs that are allocated as MSIs.

I.6 GICv2 programming

MSIs have edge-triggered properties. All SPIs that are allocated to MSIs must be programmed as
edge-triggered in the appropriate GICv2 GICD_ICFGRn registers. For details of the GICD_ICFGRn registers
see the Arm Generic Interrupt Controller v2 Architecture Specification.

In implementations that include the GICv2m Security Extensions, Secure system software must program the
GIC so that:

• SPIs that are allocated to Secure MSI can be defined as Secure or Non-secure interrupts.
• SPIs that are allocated to Non-secure MSI must be defined as

Non-secure interrupts, unless the GIC has been configured to permit

Non-secure software to create and manage the interrupt.

When used with a processor that includes the Arm Security Extensions, this means that SPIs allocated to
Secure MSI must be included in Group 0, and SPIs allocated to Non-secure MSI must be included in Group
1. This is achieved using the GICv2 GICD_IGROUPRn registers. Additionally, Non-secure software can
be permitted to manage a Group 0 interrupt using the GICv2 GICD_NSACRn registers. For details of the
GICD_IGROUPRn and GICD_NSACRn registers see the Arm Generic Interrupt Controller v2 Architecture
Specification [16].

When using GICv2m, it is a programming error to incorrectly define the security of SPIs mapped to Non-secure
MSI interrupts in GICv2. This will adversely affect the ability to port GICv2m-compatible software to GICv3.
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I.7 Non-secure MSI register summary

This section summarizes the Non-secure MSI registers, relative to a base memory address. This register
frame is present in all GICv2m implementations.

This register frame is 4KB in size, and all registers are 32 bits wide. It must be accessible using Non-secure
accesses. All registers have similar behavior to equivalent registers in the GICv3 distributor.

Table 54: GICv2m Non-secure MSI register summary

Offset Name Description

0x000-0x007 - Reserved.

0x008 MSI_TYPER See Section I.9.1.

0x00C-0x03C - Reserved.

0x040 MSI_SETSPI_NS See Section I.9.2.

0x044-0xFC8 - Reserved.

0xFCC MSI_IIDR See Section I.9.3.

0xFD0-0xFFC - IMPLEMENTATION DEFINED.

I.8 Secure MSI register summary

This section summarizes the optional Secure MSI registers, relative to a base memory address. This register
frame is only included in GICv2m implementations that include the optional GICv2m Security Extensions.

This register frame is 4KB in size, and all registers are 32 bits wide. It must only be accessible using Secure
accesses. All registers have similar behavior to equivalent registers in the GICv3 distributor

Table 55: GICv2m Non-secure MSI register summary

Offset Name Description

0x000-0x007 - Reserved.

0x008 MSI_TYPER See Section I.9.1.

0x00C-0x03C - Reserved.

0x040 MSI_SETSPI_S See Section I.9.2.

0x044-0xFC8 - Reserved.

0xFCC MSI_IIDR See Section I.9.3.

0xFD0-0xFFC - IMPLEMENTATION DEFINED.
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I.9 Register descriptions

All registers must support 32-bit word accesses. The MSI_SETSPI_S and MSI_SETSPI_NS registers must
also support 16-bit writes to bits [15:0]. Whether other access sizes are permitted is IMPLEMENTATION

DEFINED.

The GICv2m is little-endian.

I.9.1 MSI type register

MSI_TYPER is a 32-bit read-only register that provides information about the SPIs that are assigned to the
MSI frame. For information about how SPIs are assigned to each frame, see Section I.5.

The format of the register is:

Bits [31:26]

Reserved, RES0.

Base SPI number, bits [25:16]

Returns the IMPLEMENTATION DEFINED ID of the lowest SPI assigned to the frame. SPI ID values
must be in the range 32 to 1020.

Bits [15:10]

Reserved, RES0.

Number of SPIs, bits [9:0]

Returns the IMPLEMENTATION DEFINED number of contiguous SPIs assigned to the frame.

I.9.2 Set SPI register

MSI_SETSPI_NS and MSI_SETSPI_S are 32-bit write-only registers.

The format of the register is:

Bits [31:10]

Reserved, RES0.

SPI, bits [9:0]

On a write, an edge-triggered interrupt is generated to the GICv2 generic interrupt controller for an
SPI with the ID identified by the value of this field. If the resulting value does not identify an SPI
that is allocated to this frame, the write has no effect.

I.9.3 MSI Interface Identification Register

MSI_IIDR is a 32-bit read-only register.

The format of the register is:

ProductID, bits [31:20]

An IMPLEMENTATION DEFINED product identifier.

Architecture version, bits [19:16]
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Revision field for the GICv2m architecture. The value of this field depends on the GICv2m
architecture version:

• 0x0 for GICv2m v0.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number for the component.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the GICv2m:

Bits [11:8] The JEP106 continuation code of the implementer.

Bit [7] Always 0.

Bits [6:0] The JEP106 identity code of the implementer.
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J GICv2m compatibility in a GICv3 system

A key difference between GICv3[2] and GICv2[16] is that GICv3 can support more than 8 PEs, which is the
maximum supported by GICv2. To achieve this, there is a change in some of the architectural concepts.
GICv3 has introduced a new type of interrupt, called LPI, which is designed to be more scalable. It also
changes the routing semantics of SPI to enable them to scale to more than 8 PEs.

However, GICv3 supports full backwards compatibility with GICv2 when ARE==SRE==0.

GICv2m is an extension of the GICv2 architecture that adds register frames to support MSI(-X). This note
explains how to achieve compatibility between a GICv3 hardware system and GICv2m software.

J.1 GICv2m-based hypervisor (GICv2m guests) or GICv2m OS without hyper-
visor

The GICv3 must be configured to have SRE==ARE==0 and can therefore only be used with 8 PEs or less, but
is fully GICv2 compatible. To be GICv2m compatible, the hardware system must implement GICv2m register
frames for MSI support.

J.2 GICv3-based hypervisor with GICv2m guest OS

The hypervisor runs with ARE==1 so can address > 8 PEs.

The GICv2m guests run with EL1.SRE==EL1.ARE==0 which aligns with GICv2 functionality. The guest must
be restricted to eight PEs or fewer.

The GICv2m register frames are not needed for the guests though as long as the OS is using a suitable
abstraction for MSI support. The expected abstraction for the MSI targets is the tuple of (register address,
interrupt ID set).

It is expected that the firmware interface of the OS will hand over a set of these MSI registers to the OS, which
in this case will be supplied by the hypervisor.

In this compatibility case, the hypervisor hands over the address of GITS_TRANSLATER and a set of IDs (the
ID set need to be in the valid SPI range of 32-1019). The hypervisor creates a single interrupt translation table
for all the devices that belong to the OS, and creates translations for the IDs handed to the OS to unique LPIs.

Whenever a device sends an MSI, the hypervisor receives the corresponding LPI. The hypervisor then posts
the original ID to the guest. The target PE is chosen by the hypervisor based on the routing information the
GICv2m guest programs into the SPI route register, which is trapped by the hypervisor.
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