
Low-level debug using CSAT on Armv8-based
platforms
Version 1.0

Non-Confidential
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102706_0100_02_en

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Low-level debug using CSAT on Armv8-based platforms

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-02 1 January 2021 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 20

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 20

mailto:terms@arm.com

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Contents

Contents

1. Overview...6

2. Armv8 topology...7

3. Useful debug registers...9

4. Useful CTI registers... 10

5. Worked examples...11

6. Related information... 20

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Overview

1. Overview
This tutorial will give an overview of performing low level debug using the CoreSight Access
Tool (CSAT) with an Armv8 target. Low level debug allows you to manipulate individual registers,
including debug registers that are not normally accessible to an application-level debugger, and
perform functions such as halting and restarting the core, setting breakpoints and watchpoints and
reading the ROM table.

CSAT includes something called a CoreSight component to provide a convenient way to access and
control particular CoreSight devices on the debug bus.We have going to look at CSAT CoreSight
components, in particular, the v7dbg and v8cs CoreSight components in this tutorial.

Below is a listing of the different CSAT CoreSight components, which CoreSight devices you use
the different CSAT CoreSight components with, the architecture of the system or core the CSAT
component is appropriate for, whether you can use the CSAT CoreSight component to access the
CoreSight devices registers, and whether you can use the CSAT CoreSight component to access
memory via the CoreSight device.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Armv8 topology

2. Armv8 topology
This chapter gives a brief description about the CoreSight ROM table and the CoreSight
components.

What is a CoreSight ROM table?
A CoreSight ROM (read-only memory) table is a section of memory that stores the locations of all
the debug components available. The values listed in the ROM table can be read as consecutive
entries, starting at the base address of the ROM table, which can be found on the memory map
in the target’s technical reference manual (TRM). Alternatively, the base address can be found by
reading the MEM-AP register BASE at offset 0xf8 on the access port you are using.

The position of the debug components as seen by the processor, listed on the memory map, is
often different from the position seen by the external debugger. The external debugger is used
to access the debug registers to bypass locks that could restrict software. For example, on Arm’s
Cortex-A53x2 SMM, the target’s TRM lists the debug component at address 0x20000000, but
using the external debugger, the registers are accessed at 0x80000000. For more information,
look at the ‘Memory system design’ section of the ARM CoreSight Architecture Specification.

The ROM table is located at the beginning of the debug region and occupies 4KB of memory. For
targets with more than one cluster of processors, there will often be a ROM table for each cluster
as well as a ROM table that covers the entire debug region.

What are CoreSight components?
CoreSight components are used to provide the debug and trace infrastructure of a SoC (System-
on-Chip). The components include the control and access components such as the DAP and the
CTI, trace sources, links and sinks.

A Debug Access Port (DAP) is a collection of components used to access the on-chip debug and
trace tools. The DAP includes debug ports, to access the DAP from the external debugger, and
access ports, to access the on-chip system resources.

An Access Port (AP) links the debug port interface with one or more of the debug components
present within the system. In this tutorial, we will be using the APB access port, a memory access
port, which can be used to access the memory-mapped debug registers we will be reading from
and writing to.

The Cross Trigger Interface (CTI) is a CoreSight component that allows other CoreSight components
to interact with each other.

The CTI has input triggers that respond to internal changes in the core, such as a core restarting
or an interrupt request from the PMU, and output triggers that can cause changes such as halting
or restarting the core. These triggers can be connected to channels, which can be used to connect
triggers on multiple cores’ CTIs together via the Cross Trigger Matrix (CTM). An input trigger
can generate a channel event on the channel or channels that it is connected to, or the user can
generate their own channel event. This channel event then triggers the output trigger event. If

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 20

https://developer.arm.com/documentation/ihi0029/latest

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Armv8 topology

more than one core is connected to the channel, then one core halting can be used to trigger a
synchronous halt of all the connected cores.

To find out the specific functions of each trigger, look in the ‘Trigger inputs and outputs’ section in
the ‘Cross Trigger’ chapter of the implementation’s TRM. It should be noted that in Armv8, the CTI
is now part of the architecture specification as opposed to an optional extra. For an Armv8 core,
the CTI must be used to halt or restart the core.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Useful debug registers

3. Useful debug registers
To perform low level debug using CSAT, you need to read and write registers that are accessible via
the external memory mapped interface. Some of the useful registers are:

• EDSCR - External Debug Status and Control Register - offset 0x088 This register is the main
control register for an Armv8 core.

• OSLAR_EL1 - OS Lock Access Register - offset 0x300 This register controls the OS Lock.
Unlocking the OS Lock allows you to access the debug registers. This is a write only register.

• EDPCSRlo - External Debug Program Counter Sample Register[31:0] and EDPCSRhi - External
Debug Program Counter Sample Register [63:32] - offsets 0x0a0 and 0x0ac These optional
registers allow you to read the program counter whilst externally debugging. These are read
only registers. As these registers are optional, consult the implementation’s TRM to see if they
are implemented.

• EDPRCR - External Debug Power/Reset Control Register - offset 0x310 This register controls
the powerup, reset and powerdown functionality of the CPU.

• EDPRSR - External Debug Processor Status Register - offset 0x314 This register holds
information regarding the reset and powerdown state of the CPU.

Each hardware breakpoint has a pair of registers that you must use. The number of hardware
breakpoints available is implementation specific.

• DBGBVR<n>_EL1 - Debug Breakpoint Value Register - offset 0x400 + 16n This register holds
the address of hardware breakpoint n.

• DBGBCR<n>_EL1 - Debug Breakpoint Control Register - offset 0x408 + 16n This register is
used to control hardware breakpoint n. This includes enabling the hardware breakpoint.

Similarly, each watchpoint has a pair of registers that you must use. The number of watchpoints
available is implementation specific.

• DBGWVR<n>_EL1 - Debug Watchpoint Value Register - offset 0x800 + 16n This register
holds the address of watchpoint n.

• DBGWCR<n>_EL1 - Debug Watchpoint Control Register - offset 0x808 + 16n This register is
used to control watchpoint n. This includes enabling the watchpoint.

The offsets of other debug registers can be found in the ‘External Debug Register Descriptions’
section of the Arm Architecture Reference Manual for Armv8-A. These offsets are relative to the
address of the debug region of the core, which can be found in the target’s TRM.

For example, if the base address of the target’s debug and trace region is 0x80000000, the
cluster’s offset is 0x02000000, the individual core’s debug region offset is 0x00010000 and
the EDSCR has an offset of 0x088, the address of the EDSCR of that core is 0x80000000 +
0x02000000 + 0x00010000 + 0x088 = 0x82010088.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Useful CTI registers

4. Useful CTI registers
To halt/restart the core, we need to use the CTI. Useful registers for CTI include:

• CTICONTROL - CTI Control Register - offset 0x000 This register is used to enable or disable
CTI.

• CTIGATE - CTI Channel Gate Enable Register - offset 0x140 This register controls whether
the internal channels are connected to the CTM, allowing channel events on specific cores to
propagate to other components.

• CTIOUTEN<n> - CTI Input Channel to Output Trigger Enable Registers - offset 0x0a0 + 4n
These registers connect input channels to output trigger n, allowing channel events on these
channels to generate trigger events on output trigger n. The number of output triggers available
is implementation specific.

• CTIINEN<n> - CTI Input Trigger to Output Channel Enable Registers - offset 0x020 +
4n These registers connect input trigger n to output channels, allowing input trigger n to
generate channel events on the connected channels. The number of input triggers available is
implementation specific.

• CTIAPPPULSE - CTI Application Pulse Register - offset 0x01c This register can be used to
generate channel events on a specific channel. This is a write only register.

• CTIINTACK - CTI Output Trigger Acknowledge Register - offset 0x010 This register can be
used to create soft acknowledges of output triggers. It can be used to deassert a trigger event
by writing 1 to bit 0. This is a write only register.

• CTITRIGOUTSTATUS - CTI Trigger Out Status Register - offset 0x134 This register gives the
status of the trigger outputs. To confirm an output trigger has been deasserted, the debugger
must poll bit 0 of this register until it reads 0. This must be done before attempting to generate
another trigger event. This is a read only register.

The offsets of other CTI registers can be found in the ‘External Debug Register Descriptions’
section of the Arm Architecture Reference Manual for Armv8-A. These offsets are relative to
the address of the CTI region of the core, which can be found in the ‘CoreSight debug and trace’
section of the target’s TRM.

For a more detailed register descriptions, have a look at the Arm Architecture Reference Manual for
Armv8-A.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

5. Worked examples
In this chapter you can find worked examlpes for setting up CSAT to use on your target, reading
the ROM table, halting multiple cores, restarting a single core, restarting multiple cores, setting
hardware breakpoints, setting watchpoints or automating the process.

Description of the example target
This tutorial was completed on a Versatile Express with a Cortex-A53x2 SMM implemented on a
LogicTile Express 20MG V2F-1XV7 FPGA board.

Setting up CSAT to use on your target
• Turn on the target and make sure it is in a state which can be connected to using a bare metal

connection.

• Connect DSTREAM to the host via USB or TCP.

• Connect the DSTREAM to the target and check TARGET indicator light is on.

• Open a DS-5 command prompt and type CSAT.

csat

• Connect your DSTREAM to CSAT.

con USB (if connected by USB) or con TCP:<IP address or host name of your target>
 (if connected by TCP)

• Auto detect the scan chain of your device.

chain dev=auto

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

• You must now open a device on the scan chain. You can only have one device open at a time.
For the example target, the DAP was device 0, but may be another number, for example if your
target has secure JTAG mode enabled.

dvo <device number>

• Enumerate the access ports available on the Debug Access Ports (DAPs).

dpe

Reading the ROM table
• Locate the base address of the ROM table you wish to read. This is listed on the memory map

in the target’s TRM or can be found by reading the MEM-AP register BASE at offset 0xf8 on
the access port you are using.

• Once you have the base address of the ROM table, you can read it using the dmr command.
You will need to specify the number of entries you want to read. ROM tables can be quite big
so start with a large value like 32. All the consecutive non-zero entries above the base address
are ROM table entries. You will also need to specify the access port number from the available
access ports listed when you used the dpe command. In this case, we will use the APB access
port, AP1.

dmr 1 0x82000000 32

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

The values printed are the offsets of the available components relative to the base address of the
ROM table. You will notice that the bottom two bits of all the ROM table entries are set to 1. On
a Cortex-A53, this indicates that the component is present and the ROM table entry is in 32-bit
format. Therefore, in this instance, the offset of the component is only represented by the top
20 bits (bits 11 to 2 are reserved). For example, a ROM table entry 0x00010003 read using the
command dmr 1 0x82000000 32 means that there is a component at address 0x82000000
+ 0x00010000 = 0x82010000. For information on reading the ROM table entries, look at the
implementation’s TRM.

For the following examples, the base addresses of the components are:

• Core 0 debug region - 0x82010000

• Core 0 CTI region - 0x82020000

• Core 1 debug region - 0x82110000

• Core 1 CTI region - 0x82120000

Halting a single core
To halt a core we use the CTI to trigger debug request events. There are multiple channels available
for CTI. In this tutorial, we will use channel 2 to generate a channel event that generates a debug
request trigger on output trigger 0. On a Cortex-A53 core, output trigger 0 is the trigger that
causes the processor to enter debug state, halting the core.

• First, unlock the OS Lock by writing 0 to bit 0 of the OSLAR.

dmw 1 0x82010300 0x0

• Read the value of the EDPRSR to see the status of the processor.

dmr 1 0x82010314 1

• Write 1 to bit 0 of the CTICONTROL register to enable CTI.

dmw 1 0x82020000 0x1

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

• Write 0 to bit 2 of the CTIGATE register so the channel event is not passed on internal channel
0 to the CTM.

dmw 1 0x82020140 0x0

• Write 1 to bit 2 of the CTIOUTEN0 register to generate a debug request trigger event using
trigger 0 when a channel event happens on channel 2.

dmw 1 0x820200a0 0x4

• Write 1 to bit 2 of the CTIAPPPULSE register to generate a channel event on channel 2.

dmw 1 0x8202001c 0x4

At this point, the core should halt.

• To check that the core is halted, read the EDPRSR again. You will notice that bit 4 is now set.
This indicates that the core has halted.

dmr 1 0x82010314 1

Halting multiple cores
The procedure for halting all cores is similar to halting a single core, but the setup steps must be
replicated on every core you wish to halt. You also need to use the CTIGATE register to connect
channel 2 of every core you wish to halt to the CTM so that when core 0 generates a channel
event on channel 2, it can propagate via the CTM to all the other cores connected to channel 2.
This may look something like this:

#Unlock OS Lock
dmw 1 0x82010300 0x0
dmw 1 0x82110300 0x0

#Read the unhalted value of the External Debug Processor Status Register
dmr 1 0x82010314 1
dmr 1 0x82110314 1

#Set CTICONTROL[0] = 1 to enable CTI
dmw 1 0x82020000 0x1
dmw 1 0x82120000 0x1

#Set CTIGATE[2] = 1 so CTI passes channel events on internal channel 2 to
#CTM
dmw 1 0x82020140 0x4
dmw 1 0x82120140 0x4

#Set CTIOUTEN0[2] = 1 so CTI generates a debug request trigger event 0 in
#response to a channel event on channel 2
dmw 1 0x820200a0 0x4
dmw 1 0x821200a0 0x4

#Set CTIAPPPULSE[2] = 1 to generate channel event on channel 2 on core 0
dmw 1 0x8202001c 0x4

#Read the halted value of the External Debug Processor Status Register

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

dmr 1 0x82010314 1
dmr 1 0x82110314 1

Restarting a single core
To restart the core, the process is similar to halting the core. This time, we will use channel 1 to
generate a channel event that causes a debug request trigger on output trigger 1. On a Cortex-
A53 core, output trigger 1 is the trigger that causes the processor to exit debug state, restarting
the core.

• Unlock the OS Lock by writing 0 to bit 0 of the OSLAR.

dmw 1 0x82010300 0x0

• Read the EDPRSR to see the status of the processor. Bit 4 should be set to 1, indicating that
the core has halted.

dmr 1 0x82010314 1

• Write 1 to bit 0 of the CTICONTROL register to enable CTI.

dmw 1 0x82020000 0x1

• Write 1 to bit 0 of the CTIINTACK register to clear any debug request trigger event that halted
the core. Then, read the CTITRIGOUTSTATUS register until bit 0 is 0 to confirm that the output
trigger event has been deasserted.

dmw 1 0x82020010 0x1
dmr 1 0x82020134 1

• Write 0 to bit 1 of the CTIGATE register so the channel event is not passed on internal channel
1 to the CTM.

dmw 1 0x82020140 0x0

• Write 1 to bit 1 of the CTIOUTEN1 register to generate a restart request trigger event using
trigger 1 when a channel event happens on channel 1.

dmw 1 0x820200a4 0x2

• Write 1 to bit 1 of the CTIAPPPULSE register to generate a channel event.

dmw 1 0x8202001c 0x2

At this point, the core should restart.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

• To check that the core has restarted, read the EDPRSR again. Bit 4 should now equal 0,
indicating that the processor has restarted.

dmr 1 0x82010314 1

Restarting multiple cores
The procedure for restarting multiple cores is similar to restarting only one core, but the setup
steps must be replicated on every core you wish to halt. You also need to use the internal channel
1 to connect the cores to the CTM so that when core 0 generates a channel event on channel 1, it
can propagate via the CTM to all the other cores connected to channel 1. This may look something
like this:

#Unlock OS Lock
dmw 1 0x82010300 0x0
dmw 1 0x82110300 0x0

#Read the halted value of the External Debug Processor Status Register
dmr 1 0x82010314 1
dmr 1 0x82110314 1

#Set CTICONTROL[0] = 1 to enable CTI
dmw 1 0x82020000 0x1
dmw 1 0x82120000 0x1

#Set CTIINTACK[0] = 1 to clear the debug request trigger event
dmw 1 0x82020010 0x1
dmw 1 0x82120010 0x1

#Read CTITRIGOUTSTATUS[0] to check trigger event is deasserted
dmr 1 0x82020134 1
dmr 1 0x82120134 1

#Set CTIGATE[1] = 1 so CTI passes channel events on internal channel 1 to
#CTM
dmw 1 0x82020140 0x2
dmw 1 0x82120140 0x2

#Set CTIOUTEN1[1] = 1 so CTI generates a debug request trigger event 0 in
#response to a channel event on channel 1
dmw 1 0x820200a4 0x2
dmw 1 0x821200a4 0x2

#Set CTIAPPPULSE[1] = 1 to generate channel event on channel 1 on core 0
dmw 1 0x8202001c 0x2

#Read the unhalted value of the External Debug Processor Status Register
dmr 1 0x82010314 1
dmr 1 0x82110314 1

Setting hardware breakpoints
A hardware breakpoint is used to halt the execution at a particular instruction in the code. There
are a limited number of hardware breakpoints available on each core. Each breakpoint has a value
register, which holds the address of the instruction to break on, and a control register, which
dictates the type of breakpoint, as well as if it is enabled or not.

For this tutorial, we are going to setup hardware breakpoint 0.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

• Halt the core.

• To check if the core is halted, read the EDPRSR.

dmr 1 0x82010314 1

• If bit 14 of the EDSCR is not already set, write 1 to it to enable halting debug.

dmw 1 0x82010088 0x03007f13 (for example)

• Write the address of the instruction you wish to break on in your image to the DBGBVR0_EL1.
If the address is longer than 32 bits, write bits 32 to 63 to DBGBVR0_EL1[63:32]. If the
address is only 32 bits, it is a good idea to write zeros to this register.

dmw 1 0x82010400 0x80000008 (for example)
dmw 1 0x82010404 0x0

• Write 0x000021e7 to the DBGBCR0_EL1 to set a basic breakpoint: an enabled, unlinked
address match breakpoint that will cause the execution to break, at any exception level, on both
AArch64 and AArch32 instructions. For more information on different breakpoint variations,
look at the **DBGBCR<n>_EL1** register description in the Arm Architecture Reference
Manual.

dmw 1 0x82010408 0x000021e7

• Restart the core and your program should break on the address you have specified.

• To check the program has broken on the breakpoint, you can read the EDPRSR’s value. Bit 4
should be set to 1, indicating that the core has stopped.

dmr 1 0x82010314 1

The STATUS bits[5:0] of the EDSCR give the debug status and can tell you why the core has
halted. If the core has stopped on a breakpoint, the STATUS bits should read 0b000111. You can
check that execution has broken on the correct address by reading the program counter registers
EDPCSRlo and EDPCSRhi and see if their values match the breakpoint address.

dmr 1 0x82010088 1
dmr 1 0x820100a0 1
dmr 1 0x820100ac 1

• To disable a breakpoint without losing the settings, write 0 to bit 0 of the breakpoint’s control
register.

dmw 1 0x82010408 0x000021e6 (for example)

• To delete the breakpoint entirely, simply clear the breakpoint’s control and value registers.

dmw 1 0x82010400 0x0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

dmw 1 0x82010404 0x0
dmw 1 0x82010408 0x0

Setting watchpoints
A watchpoint is used to halt the execution when a particular value in memory is accessed. Unlike a
breakpoint, you do not need to know the exact location the data is used within the code, only the
address in memory that that data is stored at. Watchpoints are sometimes called data breakpoints.
There are a limited number of watchpoints available on each core. Each watchpoint has a value
register, which holds the address value for comparison, and a control register, which dictates the
type of watchpoint, as well as if it is enabled or not.

For this tutorial, we are going to set watchpoint 0.

• Halt the core. *To check if the core is halted, read the EDPRSR.

dmr 1 0x82010314 1

• If bit 14 of the EDSCR is not already set, write 1 to it to enable halting debug.

dmw 1 0x82010088 0x03007f13 (for example)

• Write the address of the memory location you want to ‘watch’ to the DBGWVR0_EL1. If the
address is longer than 32 bits, write bits 32 to 63 to DBGWVR0_EL1[63:32]. If the address is
only 32 bits, it is a good idea to write zeros to this register.

dmw 1 0x82010800 0x80000100 (for example)
dmw 1 0x82010804 0x0

• Write 0x00003fff to the DBGWCR0_EL1 to set a basic watchpoint for testing: an enabled,
unlinked data address match watchpoint that causes the execution to break, at any exception
level, on both loads and stores to the memory location being watched. More information on the
different watchpoint options available (break on load only, break on store only) can be found in
the **DBGWCR<n>_EL1** register description in the Arm Architecture Reference Manual.

dmw 1 0x82010808 0x00003fff (for example)

• Restart the core and your program should break on a load or store to the address you have
specified.

• To check the program has broken on the watchpoint, you can read the EDPRSR’s value. Bit 4
should be set to 1, indicating that the core has stopped.

dmr 1 0x82010314 1

The STATUS bits[5:0] of the EDSCR give the debug status and can tell you why the core has
halted. If the core has stopped on a watchpoint, the STATUS bits should read 0b101011. You can

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 20

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Worked examples

check where execution has broken in the code by reading the program counter registers EDPCSRlo
and EDPCSRhi.

dmr 1 0x82010088 1
dmr 1 0x820100a0 1
dmr 1 0x820100ac 1

• To disable a watchpoint without losing the settings, write 0 to bit 0 of the watchpoint’s control
register.

dmw 1 0x82010808 0x00003ffe (for example)

• To delete the watchpoint entirely, simply clear the watchpoint’s control and value registers.

dmw 1 0x82010800 0x0
dmw 1 0x82010804 0x0
dmw 1 0x82010808 0x0

Automating the process
Any of the examples mentioned above can be achieved by creating .cst files listing all the
commands and saving them in the directory where you are running CSAT. These scripts can be run
using the command batch <script name>.cst.

You can download the example .cs scripts for this tutorial, as well as the equivalent DS-5 .ds
scripts. For information on running scripts whilst debugging in Eclipse, have a look at the Arm DS-5
Debugger User Guide.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 20

https://developer.arm.com/-/media/developer/products/software-tools/ds-5-development-studio/resources/csat_example_scripts.zip
https://developer.arm.com/-/media/developer/products/software-tools/ds-5-development-studio/resources/csat_example_scripts.zip
https://developer.arm.com/-/media/developer/products/software-tools/ds-5-development-studio/resources/csat_example_scripts.zip
https://developer.arm.com/documentation/100953/latest/
https://developer.arm.com/documentation/100953/latest/

Low-level debug using CSAT on Armv8-based platforms Document ID: 102706_0100_02_en
Version 1.0

Related information

6. Related information
This tutorial has provided an overview of how to use CSAT with an Armv8 target to perform tasks
such as halting the core, restarting the core and setting breakpoints and watchpoints.

For more information on CSAT commands, have a look at the CSAT User Guide. To learn more
about the CoreSight components, look at the CoreSight SoC-400 TRM.

Low level debug can also be done in simulation or, if DS-5 Debug Configuration files have already
been created, through Eclipse for DS-5 using similar scripts, or via the Memory view.

The Arm Architecture Reference Manual for Armv8-A also has a section on external debug.
Interesting chapters for this topic include:

• Breakpoints/Watchpoints - Chapter H2

• CTI Examples - Chapter H5

• Register Description - Chapter H9

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 20

https://developer.arm.com/documentation/epm051792/1-0
https://developer.arm.com/documentation/100536/

	Low-level debug using CSAT on Armv8-based platforms
	Contents
	1. Overview
	2. Armv8 topology
	3. Useful debug registers
	4. Useful CTI registers
	5. Worked examples
	6. Related information

