
Developing games with Vulkan in Unity
Version 1.0

Guide

Non-Confidential
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102339_0100_01_en

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Developing games with Vulkan in Unity
Guide

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 17 December 2020 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 14

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 14

mailto:terms@arm.com

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Contents

Contents

1. Overview...6

2. Using Vulkan in Unity..7

3. Sky Force Reloaded case study...9

4. Related information... 13

5. Next steps.. 14

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Overview

1. Overview
Unity is a games development platform that can use different graphics and compute APIs to render
mobile games. One of these APIs is Vulkan, from the Khronos group that created OpenGL. This
guide reviews the benefits of Vulkan by following a case study of the mobile game Sky Force
Reloaded from Infinite Dreams.

The Vulkan driver is simpler and more efficient than OpenGL, reducing GPU and power
consumption. The simplicity means the low-level access work moves to the application, which
can make the application development work more complex. To keep the application development
work simple, Unity handles the low-level access on behalf of the developer. Game developers can
therefore enjoy the advantages of Vulkan without adding work for themselves.

The Sky Force Reloaded development team moved from OpenGL ES to Vulkan to improve the
graphics of the game, while lowering its power consumption. The team used Unity to work with
both APIs, so that they did not need to redevelop the game when switching from OpenGL ES to
Vulkan.

By the end of this guide, you will have insight into how Vulkan can help the performance of your
own game, and how to change the API that your game uses.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Using Vulkan in Unity

2. Using Vulkan in Unity
Implementing Vulkan can be a complex job, but Unity handles the complexity on behalf of game
developers. This means that switching from OpenGL or OpenGL ES to Vulkan does not require any
development work. Unity implements the change on its own.

Differences between OpenGL ES and Vulkan
There are many differences between Vulkan and the OpenGL and OpenGL ES APIs. These
differences include Vulkan:

• Providing a unified API for mobile, desktop, console, and embedded systems, and being
portable across a wide range of implementations.

• Using a simpler driver to minimize overhead and reduce application processor bottlenecks. The
driver has lower latency and is more efficient than OpenGL, so the application achieves better
performance. The application, instead of the driver, manages resources and has direct, low-level
control of the GPU.

• Supporting multithreading across multiple application processors. The game can therefore use
multiple application processors efficiently, lowering processing load and power consumption.
The application itself manages threads and synchronization.

• Using command buffers instead of direct function calls to execute commands. You can use
multithreading to create parallel buffers, and submit buffers to different device queues, for
example graphics, compute, and DMA. Having separate queues provides flexibility for job
creation. Multithreading runs the game on multiple application processor cores, which improves
performance. Also, using multiple processors at a lower clock rate, instead of a faster clock rate
single processor, reduces power consumption.

• Using SPIR-V, a multi-API, intermediate language for parallel compute and graphics. Using SPIR-
V means that there is no front-end compiler in the Vulkan driver. This makes the driver simpler,
and the shader compilation faster. You can use the same SPIR-V front-end compiler on multiple
platforms to generate pre-compiled shaders. With SPIR-V, you do not have to ship shader
source code with your application. You also have the option to use different shading languages
in the future.

• Loading validation layers in your development environment for testing and debugging, and
shipping to production without those layers.

• Performing multi-pass rendering, where each sub-pass in a group provides a different
output. Vulkan optimizes the order of grouped sub-passes so that each sub-pass can access
information provided by the previous sub-passes. This helps Vulkan reduce memory use and
hold data on the fast on-chip memory, which saves bandwidth and power.

Mutli-passing is more efficient on tile-based GPUs like Mali GPUs.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Using Vulkan in Unity

Changing the API in Unity to Vulkan
Unity 2019.3 and newer use Vulkan by default. If you are on an older version, or want to change
APIs for an existing game, you will need to manually add it to the API list and make it your new
default API.

To add the Vulkan API and make it default:

1. Select File > Build Settings…

2. Click Player Settings…

3. Uncheck Auto Graphics API in the Other Settings panel to allow manual API selection.

4. Click the plus button and select Vulkan from the list. Vulkan is added as the last option on the
list.

5. To use Vulkan, either:

• Move it to the top of the API list, as shown in this image:

Figure 2-1: Selecting Vulkan as the default graphics API

• Remove all other APIs from the list by selecting an API and clicking the minus button.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Sky Force Reloaded case study

3. Sky Force Reloaded case study
Sky Force Reloaded from mobile game developer Infinite Dreams is an action game that is set in
a rich graphics environment. The game demands a lot from both the application processor and
the GPU. Infinite Dreams first developed the game with OpenGL ES in Unity, and then started
examining optimization options.

Choosing what to optimize
Sky Force Reloaded is a very rich game, displaying many objects at the same time. The team
decided that the area likely to yield the best optimization would be fill rate.

Fill rate is the speed at which the GPU can draw frames every second. Gamers like to see 60
frames per second (FPS), but performance issues can make the FPS drop. Usually, you can eliminate
fill rate problems by decreasing the resolution of the frame buffer. But Sky Force Reloaded had
performance problems even at a low resolution and on high-end devices, and could not always
maintain 60 FPS.

The team learned that the game was making as many as 1,000 draw calls per frame. To prepare
data for the GPU for those draw calls, the OpenGL ES driver was keeping the application processor
busy for long periods. Even on the high-end devices, this much work on the application processor
was causing the device to slow down. In other words, every draw call has a computation overhead,
so the large number of calls the game makes is computationally expensive.

With OpenGL ES, the team had two options to optimize the fill rate: minimize the number of draw
calls, or modify the calls so that the game engine could batch them. However, both options can
reduce the quality of the game. So the team decided to see what sort of optimization Vulkan can
provide.

Testing OpenGL ES and Vulkan on Sky Force Reloaded
The team decided to compare the performance of the game using Vulkan and OpenGL ES. They
created a benchmark from the slowest part of the game, where OpenGL ES could not deliver 60
FPS. Using a specific scene of the game as a benchmark meant that the team could compare both
APIs directly.

Performance was measured by the total time, in seconds, that each API could provide 60 FPS.
In the following graph, you can see that the Vulkan performance is a 15% improvement on the
OpenGL ES performance:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Sky Force Reloaded case study

Figure 3-1: Comparing OpenGL ES and Vulkan on the same scene

The team decided to push the APIs a bit further. They added more objects to the benchmark
scene, until even Vulkan was struggling to provide 60 FPS. With all the additional objects, the
performance gap between the APIs grew. Vulkan was now 32% more efficient than OpenGL ES, as
measured as total time each API could provide 60 FPS. The graph shows the FPS for each API as
they rendered the benchmark scene:

Figure 3-2: Comparing OpenGL ES and Vulkan with more objects in the scene

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Sky Force Reloaded case study

The test clearly showed that when using Vulkan, the team could add more objects, animations,
and particles without sacrificing their FPS. The game looked even richer, without requiring changes
other than the API switch.

Comparing object quantities at 60 FPS
Next, the team checked how many objects Vulkan can render without negatively impacting the
FPS. The team found that at a frame rate of 60 FPS, Vulkan can render six times more stars and
twice as many bullets as OpenGL ES. Our side-by-side video demonstrates the difference, as
shown in this screen capture:

Figure 3-3: Side-by-side comparison of OpenGL ES and Vulkan object quantities

Comparing power consumption
Sky Force Reloaded is a game that is GPU and processor intensive, leading some players to
complain of battery drain. The team did not want to compromise on the console-like graphics,
so they compared power consumption with Vulkan and OpenGL ES. Vulkan lowered power
consumption by 10-12%, increasing play time for a given battery charge. You can see a side-by-
side comparison on YouTube, as shown in this screen capture:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 14

https://www.youtube.com/watch?v=WI7nXq8oozw
https://www.youtube.com/watch?v=WI7nXq8oozw

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Sky Force Reloaded case study

Figure 3-4: Side-by-side comparison of Vulkan and OpenGL ES power consumption

Case study results
By switching Sky Force Reloaded to Vulkan, the development team gained better graphics at a
lower power consumption. Because they relied on Unity to interface with Vulkan, the switch did
not require development work.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 14

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0

Related information

4. Related information
Here are some resources related to material in this guide:

• Arm community - Ask development questions, and find articles and blogs on specific topics
from Arm experts.

• Arm Developer: Graphics and Gaming Development

• Arm Guide for Unity Developers

• Sky Force Reloaded on the Infinite Dreams site

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 14

https://community.arm.com/
https://developer.arm.com/solutions/graphics-and-gaming
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers
https://www.idreams.pl/en/our-products/show/product/77-Sky-Force-Reloaded

Developing games with Vulkan in Unity Guide Document ID: 102339_0100_01_en
Version 1.0
Next steps

5. Next steps
In this guide, we saw how switching the Unity API from OpenGL ES to Vulkan helped the game
development team get better performance, without adding development work. You can try Vulkan
on your own games and see what results you get.

Further guides in this series introduce other aspects of game development in Unity. To keep
learning, see more in our series of guides.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 14

https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers

	Developing games with Vulkan in Unity Guide
	Contents
	1. Overview
	2. Using Vulkan in Unity
	3. Sky Force Reloaded case study
	4. Related information
	5. Next steps

