
 Copyright © 2015 - 2022 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0048C

Arm® Functional Fixed Hardware Specification

Platform Design Document
Non-Confidential

Version 1.2

Arm Functional Fixed Hardware Specification

Page 2 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Contents

RELEASE INFORMATION 3

ARM NON-CONFIDENTIAL DOCUMENT LICENCE (“LICENCE”) 4

1 ABOUT THIS DOCUMENT 6
1.1 References 6
1.2 Terms and abbreviations 6
1.3 Feedback 7

1.3.1 Feedback on this manual 7
1.4 Progressive terminology commitment 7

2 INTRODUCTION 8

3 USE CASES 9
3.1 Idle management and Low Power Idle states 9

3.1.1 FFH Usage in LPI state entry methods 9
3.1.2 FFH Usage in LPI residency and usage counter registers 10
3.1.3 Save and restore flags 10

3.2 Performance management and Collaborative Processor Performance Control 12
3.2.1 FFH Usage in _CPC object to monitor processor performance 12

3.3 Operation Regions 13
3.3.1 FFH usage in Operation Region Space for Secure Monitor Calls (SVC) and Hypervisor

Calls (HVC) 13

APPENDIX A PSCI STATE COMPOSITION FROM LPI STATES 15
A.1 Original StateID power_state parameter format: PSCI0.2 or above 16
A.2 Extended StateID power_state parameter format: PSCI 1.0 or above 19

APPENDIX B PROCESSOR PERFORMANCE MONITORING AND CONTROL IN HETEROGENOUS
SYSTEMS 22
B.1 Monitoring Processor Performance through CPPC 22
B.2 Controlling Processor Performance through CPPC 24

B.2.1 Performance Capabilities/Thresholds 24
B.2.2 Performance Controls 24

APPENDIX C FFH OPERATION REGIONS 27
C.1 Example of FFH Operation Regions which trigger SMC or HVC calls 27

Arm Functional Fixed Hardware Specification

Page 3 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Copyright © 2015 - 2022 Arm Limited. All rights reserved.

Release Information

The Change History table lists the changes made to this document.

Table 0-1 Change history

Date Issue Confidentiality Change

17 April 2015 A Non-Confidential First release.

17 June 2020 B Non-Confidential Support for Processor Performance Monitoring
through CPPC.

27 Sep 2022 C Non-Confidential ▪ Support for Operation Regions.

▪ Fix typographical mistake in Table 8 header.

Arm Functional Fixed Hardware Specification

Page 4 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the
Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence
to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that
is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual
property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of,
third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if
Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon
giving written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by
Licensee or by Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon
termination of this Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict
between the English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

Arm Functional Fixed Hardware Specification

Page 5 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to
use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2017 - 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

Arm Functional Fixed Hardware Specification

Page 6 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

1 About this Document

This document provides the specification for Arm reserved uses of Functional Fixed Hardware for ACPI-based
systems.

1.1 References

This document refers to the following documents.

Reference Document Number Title

[ACPI6.0] ACPI 6.0 Advanced Configuration and Power Interface Specification
version 6.0

[ACPI6.3] ACPI 6.3 Advanced Configuration and Power Interface Specification
version 6.3

[ACPI6.4] ACPI 6.4 Advanced Configuration and Power Interface Specification
version 6.4.

[ACPI6.5] ACPI 6.5 Advanced Configuration and Power Interface Specification
version 6.5.

[Arm ARM] DDI0487 Arm Architecture Reference Manual ARMv8, for ARMv8-A
architecture profile. See
https://developer.arm.com/documentation/ddi0487/latest

[FF-A] DEN0077 Arm Firmware Framework for Arm A-profile. See
https://developer.arm.com/documentation/den0077/latest/

[PSCI] DEN0028 Power State Coordination Interface. See
https://developer.arm.com/documentation/den0022/latest/

[SMCCC] DEN0028 Arm SMC Calling Convention. See
https://developer.arm.com/documentation/den0028/latest/

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

AMU Activity Monitor Unit

CPC Continuous Performance Control

CPPC Collaborative Processor Performance Control

FFH Functional Fixed Hardware. This refers to software (SW) operations that replace a
hardware (HW) function.

LPI Low Power Idle

MRS Move to Arm register from System Register Instruction

OSPM Operating System-directed configuration and Power Management

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/den0077/latest/
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/den0028/latest/

Arm Functional Fixed Hardware Specification

Page 7 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

1.3 Feedback

Arm welcomes feedback on its documentation.

1.3.1 Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title.

• The document and version number, DEN0048C.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

1.4 Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

file:///C:/Users/toneve01/Documents/Server%20Base%20System%20Architecture/errata@arm.com

Arm Functional Fixed Hardware Specification

Page 8 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

2 Introduction

This document provides a specification for Functional Fixed Hardware (FFH) in Arm-based systems that use the

Advanced Configuration and Power Interface (ACPI) specification.

At the time of writing, the three use cases are:

• Idle Management and Low Power Idle (LPI) states. See [ACPI6.0].

• Performance Management and Collaborative Processor Performance Control (CPPC). See Section 8.4.7

of [ACPI 6.3]

• Operation Regions. See [ACPI6.5].

Arm Functional Fixed Hardware Specification

Page 9 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

3 Use Cases

3.1 Idle management and Low Power Idle states

ACPI 6.0 [ACPI6.0] introduces Low Power Idle (LPI) states, which allow an operating system to manage the
power states of the processor power domain hierarchy. This section describes how FFH is used in Arm-based
systems to allow the operating system to discover:

• The entry method into a low power state.

• How to collect power state residency, and usage count statistics.

This section also defines the flags used in an LPI state object to describe the architectural context that is lost
when the LPI state is entered.

3.1.1 FFH Usage in LPI state entry methods

ACPI ASL uses the Register keyword to define HW register addresses, or SW functions, when using FFH. The
Register keyword has the following format:

Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset, RegisterAddress, AccessSize,

DescriptorName)

For further information, see section 19.6.108 of [ACPI6.0]. Registers are used to specify one of the following two
entry methods into an LPI state:

• A Wait For Interrupt (WFI) instruction.

• A PSCI CPU_SUSPEND call. In this case, the entry method provides a way of describing the

power_state parameter of the CPU_SUSPEND call as specified by [PSCI].

When using FFH to describe LPI entry methods, the register field entries must be set as follows:

• AddressSpaceKeyword must be set to 0x7f. This denotes usage of the FFH address space.

• RegisterBitWidth must be set to 32.

• RegisterBitOffset must be set to 0.

• AccessSize must be set to 3 (Dword).

• WFIs states must be represented in the _LPI objects of processors. In the WFI case, the RegisterAddress

in the entry method of the LPI state has the following format:

Bits[63:32] Bits[31:0]

0x00000000 0xFFFFFFFF

• A PSCI power_state parameter is represented in the RegisterAddress field as follows:

Bits[63:32] Bits[31:0]

0x00000000
PSCI power_state parameter for CPU_SUSPEND call. See section

5.4 of [PSCI] for more details.

• For LPI entry methods, all other possible encodings of RegisterAddress, RegisterBitWidth,

RegisterBitOffset, and AccessSize where 0x7f is used for the AddressSpaceKeyword are reserved for

future use.

• DescriptorName is optional. See section 19.6.108 of [ACPI6.0] for further details.

Arm Functional Fixed Hardware Specification

Page 10 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

When the OS is working in OS Initiated mode, as defined by both [PSCI] and [ACPI6.0], the OS must regard cores
using the WFI state as being in a running state, for the purposes of last man tracking. To enter OS Initiated mode,
the OS must use the PSCI_SET_SUSPEND_MODE call described in sections 5.1.19 and 5.20 of [PSCI].

Appendix A provides a description and examples of how PSCI power states are composed from LPI entry
methods and _LPI LevelID. The examples cover platform coordinated and OS Initiated systems.

3.1.2 FFH Usage in LPI residency and usage counter registers

PSCI1.0 introduces the PSCI_STAT_RESIDENCY and PSCI_STAT_COUNT functions. For systems that implement

these functions, ASL Registers in the FFH space can be used for the residency and usage counter register fields
of LPI states. This allows matching those registers to a PSCI call. In this case, the format of the Register provided
is as follows:

• AddressSpaceKeyword must be 0x7f. This denotes usage of the FFH address space.

• RegisterBitWidth must be 32.

• RegisterBitOffset must be 0.

• AccessSize must be 3 (Dword).

• For both the residency and usage counter registers, the RegisterAddress field must have the following

encoding:

Bits[63:32] Bits[31:0]

0x00000000
PSCI power_state parameter for PSCI_STAT_* functions.

See section 5.21.1 of [PSCI].

• For residency and usage counter registers of LPI entries, all other possible encodings of RegisterAddress,

RegisterBitWidth, RegisterBitOffset, and AccessSize where 0x7f is used for the AddressSpaceKeyword are

reserved for future use.

• DescriptorName is optional and can be omitted. See section 19.6.108 of [ACPI6.0] for further details.

In the case of the residency counter register, this encoding instructs the processor driver of the OS to issue a
PSCI_STAT_RESIDENCY call. The residency counter frequency of the LPI must be set to 1000000, to indicate

that the count is in microseconds.

In the case of the usage counter register, this encoding instructs the processor driver of the OS to issue a
PSCI_STAT_COUNT call.

Note: The OSPM must use the PSCI_FEATURES API to ensure that PSCI_STAT_RESIDENCY and
PSCI_STAT_COUNT are provided by the PSCI implementation. See [PSCI] for more details.

3.1.3 Save and restore flags

LPI states provide an architectural context loss flags field that can be used to describe the context that might be
lost when an LPI state is entered. For Arm-based systems, the flags have the following format:

Table 2 Arm Architecture context loss flags

Flag Bit
offset

Bit
length

Description

Core context Lost 0x0 0x1 All core context is lost. This includes:

• General purpose registers.

• Floating point and SIMD registers.

• System registers, include the System register based

Arm Functional Fixed Hardware Specification

Page 11 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

generic timer for the core.

• Debug register in the core power domain.

• PMU registers in the core power domain.

• Trace register in the core power domain.

Trace context loss 0x1 0x1 Trace registers outside of the core power domain are lost.

GICR 0x2 0x1 GIC Redistributor logic.

GICD 0x3 0x1 GIC Distributor logic.

Reserved 0x4 0x1c Reserved must be zero.

Arm Functional Fixed Hardware Specification

Page 12 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

3.2 Performance management and Collaborative Processor Performance
Control

ACPI uses collaborative processor performance control (CPPC) to define an abstracted and flexible mechanism
for Operating System-directed configuration and Power Management (OSPM) to collaborate with an entity in the
platform to manage the performance of a logical processor. In this scheme, the platform entity is responsible for
creating and maintaining a performance definition that backs a continuous, abstract, unit-less performance scale.
During runtime, OSPM requests desired performance on this abstract scale and the platform entity is responsible
for translating the OSPM performance requests into actual hardware performance states. The control mechanisms
are abstracted by the Continuous Performance Control (_CPC) object method, which describes how to control and
monitor processor performance in a generic manner.

This section describes how FFH is used in Arm-based systems to monitor the performance of a logical processor
using the Activity Monitor Unit (AMU).

3.2.1 FFH Usage in _CPC object to monitor processor performance

ACPI ASL uses the Register keyword to define HW register addresses, or SW functions, when using FFH. The
Register keyword has the following format:

Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset, RegisterAddress, AccessSize,
DescriptorName)

For further information, see section 19.6.114 of [ACPI6.3].

Arm cores which implement the Activity Monitor Unit (AMU), can use ASL Registers in the FFH space to specify
the following two fields of the _CPC package to monitor the performance of a logical processor:

• DeliveredPerformanceCounterRegister

• ReferencePerformanceCounterRegister

ASL registers in the FFH space allow to map:

• a read from the DeliveredPerformanceCounterRegister to a corresponding read from the AMU event
counter that counts cycles at core frequency (AMEVCNTR0_EL0[0]).

• a read from the ReferencePerformanceCounterRegister to a corresponding read from the AMU event
counter that counts cycles at constant frequency (AMEVCNTR0_EL0[1]).

The AMU Event Counters can be read through a system register read using the MRS instruction. Details on AMU
event counters can be found in the [Arm ARM].

When FFH is used to describe the DeliveredPerformanceCounterRegister and the
ReferencePerformanceCounterRegister fields of the _CPC package, the register field entries must be set as
follows:

• AddressSpaceKeyword must be set to 0x7f. This denotes usage of the FFH address space.

• RegisterBitWidth must be set to 64.

• RegisterBitOffset must be set to 0.

• AccessSize must be set to 4 (Qword).

• RegisterAddress must be set to

o 0x0 for DeliveredPerformanceCounterRegister.

o 0x1 for ReferencePerformanceCounterRegister.

• DescriptorName is optional. See section 19.6.114 of [ACPI6.3] for further details.

All other possible encodings of RegisterAddress, RegisterBitWidth, RegisterBitOffset, and AccessSize where 0x7f
is used for the AddressSpaceKeyword are reserved for future use.

Appendix B describes the fields of the _CPC package that should be provided to monitor and control processor
performance through CPPC for Arm-based systems.

Arm Functional Fixed Hardware Specification

Page 13 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

3.3 Operation Regions

ACPI Control Methods can read and write data to locations in address spaces by using the Field operator to
declare a data element within an entity known as an “Operation Region”. Control methods must have exclusive
access to any address accessed via fields declared in Operation Regions. FFH can be used to describe an
Operation Region space. For more details on Operation Regions, see [ACPI6.5].

This section describes how FFH can be used in Arm-based systems to describe Operation Region spaces and the
expected behavior when reading or writing FFH Operation Region fields.

3.3.1 FFH usage in Operation Region Space for Secure Monitor Calls (SVC) and
Hypervisor Calls (HVC)

FFH Operation Region space can be used to trigger SMC or HVC calls, using the Arm SMC Calling Convention
(SMCCC). For more details see [SMCCC]. The choice of conduit (SMC or HVC) is implementation defined and
outside the scope of the FFH Operation Region definition.

The syntax of the OperationRegion term is described below:

OperationRegion (
 RegionName, //NameString
 RegionSpace, //RegionSpacekeyword
 Offset, //Integer
 Length //Integer
)
Where:

• RegionName specifies a name for this Operation Region (for example, “AFFH”).

• RegionSpace must be set to 0x7F (FFixedHW). This denotes usage of the FFH address space.

• Offset is used to identify the functionality offered by this FFH address space. It must be set to one of the

following values:

o 0x0 to indicate usage of 32-bit calling convention.

o 0x1 to indicate usage of 64-bit calling convention.

o All other values are reserved.

• Length specifies the higher of either the number of argument bytes, or the number of result bytes,

exchanged over the SMC/HVC call. It is used to interpret the number of registers to use for the call. The
registers are listed sequentially, beginning from, and including, the Function Identifier (W0/R0). For
example, when Length is 12, registers W0, W1, W2 are used in a SMC32 call.

Length must be set to one of the following values, where ‘N’ denotes the higher of either the number of
argument registers or the number of result registers used for the call:

o If Offset is 0 (32 bit calling convention):

▪ Length must be 4*N, where 1 ≤ N ≤ 8.

o If Offset is 1 (64 bit calling convention):

▪ Length must be 8*N, where 1 ≤ N ≤ 18.

o All other values of Length are reserved.

FFH operation regions are only accessible via the Field term. The syntax of the Field term is described below:

Field (
 RegionName, //NameString
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

Arm Functional Fixed Hardware Specification

Page 14 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Where:

• RegionName specifies the operation region name previously defined for this FFH Operation Region.

• Accesstype must be set to BufferAcc. This denotes usage of the FFH address space.

• LockRule indicates if access to this Operation Region requires acquisition of the Global Lock for

synchronization. This field must be set to NoLock, as required for HW-reduced ACPI platforms.

• UpdateRule is not applicable for FFH Operation Regions since each virtual register is accessed in its

entirety.

• FieldUnitList comprises of a single element representing the entire Operation Region and the total data

exchanged over the SMC or HVC call. Writing to this field element triggers the call.
This means that each argument register cannot be broken down within the field definition. Access to
argument registers can be done only outside of the field definition. This limitation is imposed both to
simplify the interface and to maintain consistency with the model defined by the Arm SMC Calling
Convention [SMCCC].

An example Operation Region and Field definition is shown below. Here we declare 5 argument registers used for
a SMC32 call.

OperationRegion(AFFH, FFixedHW, 0, 20)

Field (AFFH, BufferAcc, NoLock, Preserve) { SMCC, 160 }

Appendix C describes detailed examples of FFH Operation Region Usage in various calling modes.

3.3.1.1 Restrictions

The usage of FFH Operation Region space for SMC or HVC calls is subject to the following restrictions:

• All calls must be compliant with the Arm SMC Calling Convention.

• Function Identifiers from only the following ranges are allowed:
▪ SMCCC SiP Service call range.
▪ SMCCC OEM Service call range.
▪ FF-A specific Function Identifiers. For more details see [FF-A].

• It is recommended to use Fast Service Calls to simplify the usage model. The call appears to be atomic
from the perspective of the calling PE and returns when the requested operation has completed. If
Yielding Service Calls are used, then it is the responsibility of the caller to safely resume the operation
post pre-emption.

3.3.1.2 Error handling

There might be circumstances where the SMC or HVC call cannot be triggered when the Operation Region field

element is written to. Examples could be when the Function Identifier (R0/W0) of the SMC call is malformed, or

when the restrictions specified in Section 3.3.1.1 are violated. In such cases, an appropriate negative integer

return code from the Arm SMC Calling Convention [SMCCC] can be used to specify the error condition in:

• The first 32 bits (W0) of the Operation Region field element when 32-bit calling convention is used.

• The first 64 bits (X0) of the Operation Region field element when 64-bit calling convention is used.

Arm Functional Fixed Hardware Specification

Page 15 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Appendix A PSCI state composition from LPI states

Section 8.4.4.3.4 of [ACPI6.0] describes how entry methods of local LPI states are composed to produce the final
command that is issued to platform firmware to enter a composite power state. This appendix describes how this
composition takes place in Arm systems that provide a PSCI implementation. In such systems, the composition
results in the value of the power_state parameter that is passed to a CPU_SUSPEND call to enter the composite

state.

Each LPI state provides an entry method field that is used to determine the PSCI power_state parameter to be

used with a CPU_SUSPEND call. The parameter is composed through the following steps:

1. The OS extracts an initial base power_state parameter from the lower 32 bits of the RegisterAddress

field of the entry method of a processor LPI. For processors, entry methods must be a register that
adheres to the definition provided in section see 3.1.1.

2. If the composite power state selected by an OS affects power levels above the processor, the OS must
walk the LPI states defined in processor containers above the processor. For the LPI states in those
containers, the entry method can be an integer or a register:

a. If the entry method is an integer value, then the base power_state parameter obtained in step 1

must have this integer value added to it.

b. If the entry method defined is a register, then the lower 32 bits of the RegisterAddress field

becomes the new base power_state parameter

This process is repeated across the LPIs that form the target power state. For OS and PSCI firmware
working in platform coordinated mode, the base power_state parameter obtained in steps 1 and 2

forms the final power_state parameter that is passed to a CPU_SUSPEND call.

3. For OS and PSCI firmware working in OS Initiated mode, the OS must indicate the power level in which it
observes that the calling processor is the last to go idle. To do so, the OS adds the value of the LevelID
field of the _LPI object [ACPI6.0], defined at the appropriate power level, to the base power_state

parameter, to form the final power_state argument for the CPU_SUSPEND call.

The steps are described in the following pseudocode:

// Initially LPIx points to a processor-level LPI state

LPIx = ChooseLPIStateForLevel(LevelOf(CurrentProcessor),NULL)

power_state = LPIx.EntryMethod.Address

if power_state == uint_64(-1) // WFI case

 doWFI()

 return

for level = Parent(CurrentProcessor) to system

 LPIx = ChooseLPIStateForLevel(level,LPIx)

 If LocalState == Run

 break

EM = LPIx.EntryMethod

if IsInteger(EM)

 power_state = power_state+ZeroExtend(IntegerValue(EM))

else

 power_state = EM.Address

Arm Functional Fixed Hardware Specification

Page 16 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

If IdleMode == OS_Initiated

LastProc = ProcessorContainerWhereCallingIsLastToIdle()

LastProcLPI = LastProc.LPI

power_state = power_state+LastProcLPI.LevelID

doCPU_SUSPEND(power_state)

return

The following sections provide examples of how power states can be represented in systems using the original
StateID power_state parameter format, and the extended StateID power_state parameter format. The first

example applies to PSCI 0.2 or PSCI 1.0, while the second applies only to PSCI 1.0.

A.1 Original StateID power_state parameter format: PSCI0.2 or above

PSCI 0.2 supports only the original power_state parameter format with a 16-bit StateID field. See [PSCI] for

further details. Figure 1 shows an example system.

System Level

Power States:

• Retention

• Power-down

Cluster Level

Cluster 1

Power States:

• Retention

• Power-down

Cluster Level

Cluster 0

Power States:

• Retention

• Power-down

Core Level

Core 0

Power States:

• Standby WFI

• Retention

• Power-down

Core Level

Core 1

Power States:

• Standby WFI

• Retention

• Power-down

Core Level

Core 2

Power States:

• Standby WFI

• Retention

• Power-down

Core Level

Core 3

Power States:

• Standby WFI

• Retention

• Power-down

Figure 1 Example system

Figure 1 shows an example system composed of three power levels, core, cluster, and system. For each power
level, the local power states are shown. Our example system PSCI supports the composite power states shown in
Table 3.

Table 3 Supported power states in the example system and PSCI power_state parameter encoding in

original StateID format

Composite power state

Core

local state

Cluster

local state

System

local state

PCI power_state

parameter

Retention Run Run 0x00000001

Power-down Run Run 0x00010002

Retention Retention Run 0x01000011

Arm Functional Fixed Hardware Specification

Page 17 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Power-down Retention Run 0x01010012

Power-down Power-down Run 0x01010022

Retention Retention Retention 0x02000111

Power-down Retention Retention 0x02010112

Power-down Power-down Retention 0x02010122

Power-down Power-down Power-down 0x02010222

 Note: Standby WFI is not listed as this state is entered via a WFI instruction and not via PSCI.

Table 3 shows the supported power states and their PSCI encoding. The example uses the following encoding:

• The power state StateID field, bits[15:0], is broken into sections that indicate the local power state of the
core, cluster, and system. The possible values for each level are:

0: The entity is in the Run state.

1: The entity is in the Retention state.

2: The entity is in is the Power-down state.

The bit fields of the StateID field are as follows:

o Bits[1:0] indicate the local power state at the core level.

o Bits[5:4] indicate the local power state at the cluster level.

o Bits[9:8] indicate the local power state at the system level.

o Bits[13:12] are used by an OS working in OS Initiated mode to indicate the level in which the
calling core is the last man. The OS might write:

▪ 0x0 if the core is not the last man at cluster or system level.

▪ 0x1 if the core is the last man at cluster level.

▪ 0x2 if the core is the last man in the system.

o All other bits are set to zero.

• As indicated in [PSCI], the PowerLevel field, bits[25:24], of the power_state parameter reflects the

highest power level affected by the state.

• As indicated in [PSCI], the StateType bit, bit 16, of the power_state parameter is set whenever the

local state of the core is Power-down.

Table 4 shows how this PSCI encoding for power states can be represented in LPI entry methods.

Table 4 LPI States

Core Level – LevelID 0

State Description Entry Method Entry method value Enabled Parent State

LPI1 Standby WFI Register RegisterAddress
0xffffffff

0 // Does not enable states in
cluster or system levels.

LPI2 Retention Register RegisterAddress
0x00000001

1 // Enables cluster retention.

LPI3 Power-down Register RegisterAddress
0x00010002

2 // Enables cluster retention and
power-down.

Arm Functional Fixed Hardware Specification

Page 18 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Cluster Level – LevelID 0x1000

LPI1 Retention Integer 0x01000010 1 // Enables system retention.

LPI2 Power-down Integer 0x01000020 2 // Enables system retention and
power-down.

System Level – LevelID 0x2000

LPI1 Retention Integer 0x01000100 0 // N/A.

LPI2 Power-down Integer 0x01000200 0 // N/A.

Table 5 demonstrates how the entry methods for the LPI states are combined to produce the correct PSCI power-
state parameters.

Table 5 PSCI power_state composition from LPI states

Composite power state

Core

local state

Cluster

local state

System

local state

PCI power_state

parameter

LPI2: Retention + LPI0: Run + LPI0: Run

0x00000001 + 0 + 0 = 0x00000001

LPI3: Power-down + LPI0: Run + LPI0: Run

0x00010002 +0 +0 = 0x00010002

LPI2: Retention + LPI1: Retention + LPI0: Run

0x00000001 + 0x01000010 + 0 = 0x01000011

LPI3: Power-down + LPI1: Retention + LPI0: Run

0x00010002 + 0x01000010 + 0 = 0x01010012

LPI3: Power-down +LPI2: Power-down + LPI0: Run

0x00010002 +0x01000020 + 0 = 0x01010022

LPI2: Retention + LPI1: Retention + LPI1: Retention

0x00000001 + 0x01000010 +0x01000100 = 0x02000111

LPI3: Power-down + LPI1: Retention + LPI1: Retention

0x00010002 + 0x01000010 +0x01000100 = 0x02010112

LPI3: Power-down +LPI2: Power-down + LPI1: Retention

0x00010002 + 0x01000020 +0x01000100 = 0x02010122

LPI3: Power-down +LPI2: Power-down +LPI2: Power-down

0x00010002 +0x01000020 +0x01000200 = 0x02010222

A system using OS Initiated mode adds the LevelID field value to the power_state parameter obtained by

combining the LPI state entry methods:

Arm Functional Fixed Hardware Specification

Page 19 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

• If a core is not the last man in the cluster or system, no addition is required.

• If a core is the last man in the cluster, the LevelID value of 0x1000 must be added to the power_state

parameter.

• If a core is the last man in the system, the LevelID value of 0x2000 must be added to the power_state

parameter.

A.2 Extended StateID power_state parameter format: PSCI 1.0 or above

PSCI 1.0 introduces an optional new format for the power_state parameter with an extended StateID field. This

provides more flexibility to PSCI implementers on how to encode power states. Referring to the example system
from Figure 1, Table 6 shows a possible PSCI 1.0 encoding using the extended ID format.

Table 6 Supported power states in the example system and PSCI power_state parameter encoding in the

extended StateID format

Composite power state

Core

local state

Cluster

local state

System

local state

PCI
power_state

parameter

Retention Run Run 0x00000001

Power-down Run Run 0x40000002

Retention Retention Run 0x00000011

Power-down Retention Run 0x40000012

Power-down Power-down Run 0x40000022

Retention Retention Retention 0x00000111

Power-down Retention Retention 0x40000112

Power-down Power-down Retention 0x40000122

Power-down Power-down Power-down 0x40000222

 Note: Standby WFI is not listed as this state is entered via a WFI instruction and not via PSCI.

Table 6 shows the supported power states and their PSCI encoding. The example uses the following encoding:

• StateID:

o Bits[1:0] represent the power state of the core power level, where 0 represents the Run state, 1
the Retention state, and 2 the Power-down state.

o Bits[5:4] represent the power state of the cluster power level. 0 represents the Run state, 1 the
Retention state, and 2 the Power-down state.

o Bits[9:8] represent the power state of the system power level. 0 represents the Run state, 1 the
Retention state, and 2 the Power-down state.

o Bits[25:24] are used by an OS working in OS Initiated mode to indicate the level in which the
calling core is the last man. The OS might write:

▪ 0x0 if the core is not the last man at cluster or system level.

▪ 0x1 if the core is the last man at cluster level.

▪ 0x2 if the core is the last man in the system.

o All other bits are set to zero

Arm Functional Fixed Hardware Specification

Page 20 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

• As indicated in [PSCI] the StateType bit, bit 30, of the power_state parameter is set whenever the local

state of the core is Power-down.

Table 7 shows how this PSCI encoding for power states can be represented in LPI entry methods.

Table 7 LPI States

Core Level – LevelID 0

State Description Entry Method Entry method value Enables Parent State

LPI1 Standby WFI Register RegisterAddress
0xffffffff

0 // Does not enable states in cluster or
system levels.

LPI2 Retention Register RegisterAddress
0x00000001

1 // Enables cluster retention.

LPI3 Power-down Register RegisterAddress
0x40000002

2 // Enables cluster retention and power-
down.

Cluster Level – LevelID 0x01000000

LPI1 Retention Integer 0x00000010 1 // Enables system retention.

LPI2 Power-down Integer 0x00000020 2 // Enables system retention and power-
down.

System Level – LevelID 0x02000000

LPI1 Retention Integer 0x00000100 0 // N/A.

LPI2 Power-down Integer 0x00000200 0 // N/A.

Table 8 demonstrates how the entry methods for the LPI states are combined to produce the correct PSCI power-
state parameters:

Table 8 PSCI power_state composition from LPI states

Composite power state

Core

local state

Cluster

local state

System

local state

PSCI
power_state

parameter

LPI2: Retention + LPI0: Run + LPI0: Run

0x00000001 + 0 + 0 = 0x00000001

LPI3: Power-down + LPI0: Run + LPI0: Run

0x40000002 +0 +0 = 0x40000002

LPI2: Retention + LPI1: Retention + LPI0: Run

0x00000001 + 0x00000010 + 0 = 0x00000011

LPI3: Power-down + LPI1: Retention + LPI0: Run

Arm Functional Fixed Hardware Specification

Page 21 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

0x40000002 + 0x00000010 + 0 = 0x40000012

LPI3: Power-down +LPI2: Power-down + LPI0: Run

0x40000002 + 0x00000020 + 0 = 0x40000022

LPI2: Retention + LPI1: Retention + LPI1: Retention

0x00000001 + 0x00000010 + 0x00000100 = 0x00000111

LPI3: Power-down + LPI1: Retention + LPI1: Retention

0x40000002 + 0x00000010 + 0x00000100 = 0x40000112

LPI3: Power-down +LPI2: Power-down + LPI1: Retention

0x40000002 + 0x00000020 + 0x00000100 = 0x40000122

LPI3: Power-down +LPI2: Power-down +LPI2: Power-down

0x40000002 + 0x00000020 + 0x00000200 = 0x40000222

A system using OS Initiated mode also adds the value of the LevelID field to the power_state parameter that is

obtained by combining the LPI state entry methods:

• If a core is not the last man in the cluster or system, no addition is required.

• If a core is the last man in the cluster, the LevelID value of 0x01000000 must be added to the
power_state parameter.

• If a core is the last man in the system, the LevelID value of 0x02000000 must be added to the
power_state parameter.

Arm Functional Fixed Hardware Specification

Page 22 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Appendix B Processor performance monitoring and control in

heterogenous systems

To implement processor performance management through CPPC, the platform needs to specify the fields of the
_CPC package as outlined in Section B.1 and B.2.

B.1 Monitoring Processor Performance through CPPC

To monitor processor performance through CPPC, the platform should specify the following fields of the _CPC
package:

• DeliveredPerformanceCounterRegister

• ReferencePerformanceCounterRegister

• ReferencePerformance

• PerformanceLimitedRegister - This Register returns zero when read if the hardware does not support
signaling performance limited events.

The platform must use the same performance scale for all processors in the system such that any two processors
running the same workload at the same performance level will complete in approximately the same time. OSPM
reads the set of performance counters from the Reference Performance Counter Register and the Delivered
Performance Counter Register to determine the actual performance level delivered over time (refer Section
8.4.7.1.3.1 of [ACPIv6.3]). OSPM calculates the delivered performance over a given time period by taking a
beginning and ending snapshot of both the reference and delivered performance counters, and calculating:

ReferencePerformance indicates the performance level at which the Reference Performance Counter
accumulates. When the reference performance counter and the delivered performance counter are incrementing
at the same rate, the processor is running at ReferencePerformance.

When DeliveredPerformanceCounterRegister and ReferencePerformanceCounterRegister are mapped to AMU
event counters (refer Section 3.2.1), ReferencePerformance can be mathematically derived as follows:

ReferencePerformance = Rconst X Ruarch X k, where

• Rconst is the fixed rate at which the AMU event counter that counts cycles at constant frequency
(AMEVCNTR0_EL0[1]) accumulates. This is equal to the rate at which the system counter
accumulates.

• Ruarch is a micro-architectural multiplier. It is a first-order approximation of the relative performance of
the logical processor.

o On platforms where performance characteristics of all the logical processors are identical at
the same processor frequency, Ruarch is set to 1.

o On platforms with heterogeneous processors, the performance characteristics of all logical
processors are not always identical at the same processor frequency. Such heterogeneity can
be the result of micro-architectural differences, like in Arm big.LITTLE systems. In this case,
as mandated by Section 8.4.7 of [ACPIv6.3], the platform must synthesize a performance
scale that adjusts for differences in processors, such that any two processors running the
same workload at the same performance level will complete in approximately the same time.
Ruarch is the multiplier that normalizes for differences in performance between logical
processors running at identical processor frequency. It is a first order approximation. Ruarch

Arm Functional Fixed Hardware Specification

Page 23 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

can be measured by running a representative benchmark on each logical processor. An
example of Ruarch can be the DMIPS/MHz of the logical processor.

• k is the multiplier that normalizes Rconst X Ruarch to the performance scale synthesized by the
platform. k should be the same across all logical processors in the system.

An example of a performance scale in a simplified big.LITTLE system is shown in Figure 2. In this example, the
platform synthesizes a performance scale between 0 and 100. For simplicity we assume that the performance of
the cores scale linearly with core frequency. The AMU event counter which counts cycles at constant frequency is
running at 1000MHz (=Rconst). The LITTLE cores can run at frequencies ranging between 250MHz to 1250MHz
with Ruarch = 1. The big cores can run at frequencies ranging between 500MHz to 2000MHz with Ruarch = 2. Ruarch

of 2 signifies that the performance of the big cores is 2x the performance of the LITTLE cores at the same core
frequency. k is chosen to be 0.025 to synthesize a performance scale between 0 and 100. When k is 0.025,
ReferencePerformance is 25 for the LITTLE core and 50 for the big core.

250 500 750 1000 1250 1500 1750 2000

10

20

30

40

50

60

70

80

90

100

ReferencePerformance (=50)

Frequency (MHz)

P
er

fo
rm

an
ce

 L
ev

e
l

Rconst = 1000
k = 25/1000

X

ReferencePerformance (=25)X

Figure 2: Example performance scale setup in a big.LITTLE system.

Arm Functional Fixed Hardware Specification

Page 24 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

B.2 Controlling Processor Performance through CPPC

To control processor performance through CPPC, the platform should report the performance
capabilities/thresholds and performance controls as specified in the sections below.

B.2.1 Performance Capabilities/Thresholds

Platforms should specify the following performance capabilities/threshold fields of the _CPC package as a
Register (refer Section 8.4.7.1.1 of [ACPIv6.3]):

• HighestPerformance

• NominalPerformance

• LowestNonlinearPerformance

• LowestPerformance

Platforms should also provide the following optional fields of the _CPC package as a Register or DWORD, when
they must work with Operating Systems which need to report CPU frequency, and there is no alternate
mechanism to discover this information. For more details, refer Section 8.4.7.1.1.7 of [ACPIv6.3].

• LowestFrequency

• NominalFrequency

Figure 3 shows the performance thresholds of the same big.LITTLE system as referred in Figure 2.

Figure 3: Example performance thresholds in a big.LITTLE system with same characteristics as Figure 2.

B.2.2 Performance Controls

Platforms should specify the following performance control field of the _CPC package as a Register (refer Section
8.4.7.1.2 of [ACPIv6.3]):

• DesiredPerformanceRegister

All other fields of the _CPC package can be optionally implemented by the platform depending on its capabilities.

An example implementation of _CPC for the system corresponding to Figure 3 is shown below.

10

20

30

40

50

60

70

80

90

100

LITTLE Core

P
er

fo
rm

an
ce

 L
ev

e
l

big Core

Lowest Performance

Lowest Nonlinear Performance

Nominal Performance

Highest Performance

Lowest Performance
Lowest Nonlinear Performance

Nominal Performance

Highest Performance

Arm Functional Fixed Hardware Specification

Page 25 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

DefinitionBlock("DsdtTable.aml", "DSDT", 1, "ARMLTD", "ARM-Example", 1) {

 Scope(_SB) {

 Device(CPU1) {

 Name(_HID, "ACPI0007")

 Name(_UID, 1)

 Name(_CPC, Package()

 {

 23, // NumEntries

 3, // Revision

 32, // Highest Performance

 20, // Nominal Performance

 6, // Lowest Nonlinear Performance

 3, // Lowest Performance

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Guaranteed Performance Register

 ResourceTemplate(){Register(SystemMemory, 0x20, 0, 0xA0051000, 0x3)}, // Desired Perf Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Minimum Performance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Maximum Performance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Performance Red. Tolerance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Time Window Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Counter Wraparound Time

 ResourceTemplate(){Register(FFixedHW, 0x40, 0, 1, 0x4)},// Reference Performance Counter Register

 ResourceTemplate(){Register(FFixedHW, 0x40, 0, 0, 0x4)},// Delivered Performance Counter Register

 ResourceTemplate(){Register(SystemMemory, 0x20, 0, 0xA0051004, 0x3)}, // Performance Ltd Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // CPPC Enable Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Autonomous Selection Enable

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Autonomous Activity Window Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Energy Performance Preference Register

 25, // Reference Performance

 120, // Lowest Frequency

 800, // Nominal Frequency

 })

 } // CPU1

 Device(CPU2) {

 Name(_HID, "ACPI0007")

 Name(_UID, 2)

 Name(_CPC, Package()

 {

 23, // NumEntries

 3, // Revision

 100, // Highest Performance

 75, // Nominal Performance

 25, // Lowest Nonlinear Performance

 12, // Lowest Performance

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Guaranteed Performance Register

 ResourceTemplate(){Register(SystemMemory, 0x20, 0, 0xA0051010, 0x3)}, // Desired Perf. Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Minimum Performance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Maximum Performance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Performance Red. Tolerance Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Time Window Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Counter Wraparound Time

 ResourceTemplate(){Register(FFixedHW, 0x40, 0, 1, 0x4)},// Reference Performance Counter Register

 ResourceTemplate(){Register(FFixedHW, 0x40, 0, 0, 0x4)},// Delivered Performance Counter Register

 ResourceTemplate(){Register(SystemMemory, 0x20, 0, 0xA0051014, 0x3)}, // Performance Ltd Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // CPPC Enable Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Autonomous Selection Enable

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Autonomous Activity Window Register

 ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, // Energy Performance Preference Register

 50, // Reference Performance

Arm Functional Fixed Hardware Specification

Page 26 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

 240, // Lowest Frequency

 1500, // Nominal Frequency

 })

 } //CPU2

 } //SCOPE

} //DefinitionBlock

Arm Functional Fixed Hardware Specification

Page 27 of 27 Copyright © 2015 - 2022 Arm Limited. All rights reserved. DEN0048C
 Non-Confidential

Appendix C FFH Operation Regions

C.1 Example of FFH Operation Regions which trigger SMC or HVC calls

The following ASL code shows the use of FFH Operation Region to trigger SMC32 calls using 5 registers.

// FFH operation region for using SMC32 calls using 5 registers (FID + 4 args)

OperationRegion(AFFH, FFixedHW, 0, 20)

Field (AFFH, BufferAcc, NoLock, Preserve) { SMCC, 160 }

// Create the command buffer (20 bytes)

Name(BUFF, Buffer(20){}) // Create SMCCC command buffer. Must match the field length.

CreateDWordField(BUFF, 0x00, BFW0) // W0 (FID)

CreateDWordField(BUFF, 0x04, BFW1) // W1

CreateDWordField(BUFF, 0x8, BFW2) // W2

CreateDWordField(BUFF, 0xC, BFW3) // W3

CreateDWordField(BUFF, 0x10, BFW4) // W4

BFW0 = 0x8200FFFF // Set FID. The OS validates that this field is within ranges.

BFW1 = 0xdeadbeef // Some param

...

BUFF = (SMCC = BUFF) // Invoke SMC32 and get return values.

If (BFW0 == 0x0) {

// Success

}

The following ASL code shows the use of FFH Operation Region to trigger SMC64 calls using 18 registers.

// FFH operation region for using SMC64 calls using 18 registers (FID + 17 args)

OperationRegion(AFFH, FFixedHW, 1, 144)

Field (AFFH, BufferAcc, NoLock, Preserve) { SMCC, 1152 }

// Create the command buffer (144 bytes)

Name(BUFF, Buffer(140){}) // Create SMCCC command buffer. Must match the field length.

CreateQWordField(BUFF, 0x00, BFX0) // X0 (FID)

CreateQWordField(BUFF, 0x08, BFX1) // X1

CreateQWordField(BUFF, 0x10, BFX2) // X2

CreateQWordField(BUFF, 0x18, BFX2) // X3

…

CreateQWordField(BUFF, 0x88, BFX17) // X17

BFX0 = 0xC200FFFF // Set FID. The OS validates that this field is within ranges.

BFX1 = 0xdeaddeadbeef // Some param

...

BUFF = (SMCC = BUFF) // Invoke SMC64 and get return values.

If (BFX0 == 0x0) {

// Success

}

	Release Information
	Arm Non-Confidential Document Licence (“Licence”)
	1 About this Document
	1.1 References
	1.2 Terms and abbreviations
	1.3 Feedback
	1.3.1 Feedback on this manual

	1.4 Progressive terminology commitment

	2 Introduction
	3 Use Cases
	3.1 Idle management and Low Power Idle states
	3.1.1 FFH Usage in LPI state entry methods
	3.1.2 FFH Usage in LPI residency and usage counter registers
	3.1.3 Save and restore flags

	3.2 Performance management and Collaborative Processor Performance Control
	3.2.1 FFH Usage in _CPC object to monitor processor performance

	3.3 Operation Regions
	3.3.1 FFH usage in Operation Region Space for Secure Monitor Calls (SVC) and Hypervisor Calls (HVC)
	3.3.1.1 Restrictions
	3.3.1.2 Error handling

	Appendix A PSCI state composition from LPI states
	A.1 Original StateID power_state parameter format: PSCI0.2 or above
	A.2 Extended StateID power_state parameter format: PSCI 1.0 or above

	Appendix B Processor performance monitoring and control in heterogenous systems
	B.1 Monitoring Processor Performance through CPPC
	B.2 Controlling Processor Performance through CPPC
	B.2.1 Performance Capabilities/Thresholds
	B.2.2 Performance Controls

	Appendix C FFH Operation Regions
	C.1 Example of FFH Operation Regions which trigger SMC or HVC calls

