CoreMark Benchmarking for ARM

Cortex Processors
Application Note 350

ARM

Copyright © 2013 ARM Limited. All rights reserved.
ARM DAI 0350A (ID071213)

CoreMark Benchmarking for ARM® Cortex® Processors

CoreMark Benchmarking for ARM Cortex Processors
Application Note 350

Copyright © 2013 ARM Limited. All rights reserved.
Release Information

Table 1 Change history

Date Issue Confidentiality Change

July 2013 A Non-Confidential First release

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may
be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 2
Non-Confidential

1 Introduction

CoreMark Benchmarking for ARM® Cortex® Processors

Processors in embedded systems are becoming more complex. As processor complexity
increases, we require more sophisticated benchmarks to properly exercise and analyze those
processors.

CoreMark is a modern, sophisticated benchmark that lets you accurately measure processor
performance.

This application note addresses the following questions:

What is CoreMark?

Why does ARM recommend CoreMark over Dhrystone?

Where can I obtain the CoreMark benchmark?

How do I compile CoreMark, optimizing for either speed or code size?
How do I run CoreMark to obtain stable, reproducible results?

How do I interpret benchmark results and code size metrics?

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 3
Non-Confidential

2 About CoreMark

CoreMark Benchmarking for ARM® Cortex® Processors

Developed in 2009 by the Embedded Microprocessor Benchmark Consortium (EEMBC),
CoreMark is a freely available, easily portable benchmark program that measures processor
performance.

CoreMark is intended to replace the older Dhrystone benchmark. ARM recommends using
CoreMark in preference to Dhrystone.

Benchmarking modern processors with Dhrystone, developed in 1984, has a number of issues.
These issues include the following:

Workload realism

Dhrystone is a synthetic benchmark. This means that the workload it performs to exercise
processors does not correspond well to real world applications.

CoreMark uses a more realistic workload. The CoreMark workload comprises several
commonly used algorithms, including:

— Matrix manipulation, to exercise common math operations.

— Linked list manipulation, to exercise the common use of pointers.

— State machine operation, to exercise data dependent branches.

— Cyclic Redundancy Check (CRC), because CRC is a common function in embedded
systems.

Compiler optimizations

Dhrystone is susceptible to compilers being able to optimize work away. When this
happens, Dhrystone becomes an unreliable processor benchmark.

With CoreMark, every operation in the benchmark derives values that are not available at
compile time. This ensures that while compilers can still make optimizations, they cannot
pre-compute results to optimize the work away completely.

Library calls

Dhrystone contains library calls within the timed portion of the benchmark, which can
account for a significant portion of the benchmark time. This makes it difficult to compare
results where different libraries have been used.

CoreMark is designed so that it does not make any library calls during the timed portion
of the benchmark.
Version control

Dhrystone has no official source, so several different versions are in use. If the Dhrystone
version is undisclosed, it is difficult to compare benchmark results.

CoreMark is available from the CoreMark web site, http://www.coremark.org/.

ANSI C compliance
The original Dhrystone C code is not ANSI C compliant.
CoreMark code is ANSI C compliant.

Results reporting

Dhrystone does provide guidelines on how to run the benchmark, but these are not
universally known or enforced. As a result, Dhrystone results cannot be certified or
verified. In addition, there is no standardization of how to report results. Dhrystone results
might be reported in Dhrystones per second, DMIPS, or DMIPS/MHz.

CoreMark has a standard format for reporting results, and results can be uploaded to the
CoreMark web site for certification.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 4
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

ARM quotes figures for CoreMark 1.0. The format of CoreMark benchmark results is as
follows:

CoreMark 1.0 : N / C [/ P] [/ M]

where:

N displays the number of iterations per second with seeds 0,0,0x66,s1ze=2000.

C displays the compiler version and flags specified when compiling the benchmark.
P displays parameters such as data and code allocation specifics.

. This parameter can be omitted if all data was allocated on the heap in RAM.
. This parameter cannot be omitted when reporting CoreMark/MHz.

M shows the type of parallel algorithm execution (if used) and number of contexts.

. This parameter can be omitted if parallel execution is not used.

For example:

CoreMark 1.0 : 256.344527 / ARM C/C++ Compiler, 5.03 [Build 24] -03 -Otime / STACK

For CoreMark benchmark results to be valid, the CoreMark code must run for at least 10
seconds.

Generally, longer runs are better. ARM recommends averaging multiple runs of at least 10000
iterations or 30 seconds, whichever is longer. See Running CoreMark on page 10 for more
information.

CoreMark stipulates a number of additional rules for valid benchmarks. You can find the
complete set of rules in the readme. txt file included with the CoreMark source.

This application note describes how to build and run CoreMark on bare-metal systems.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 5
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

3 Downloading the source

The official CoreMark source is available from the CoreMark web site,
http://www.coremark.org.

ARM DAI 0350A Copyright © 2013 ARM Limited. All rights reserved. 6
ID071213 Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

4 Compiling CoreMark with ARM Compiler

CoreMark consists of the following C source and header files:

. coremark.h

. core_main.c

. core_Tlist_join.c

. core_matrix.c

. core_state.c

. core_util.c

. simple/core_portme.c
. simple/core_portme.h

You must modify the source files in the simple/ directory to target CoreMark to your particular
platform.

4.1 Library functions required by CoreMark

CoreMark requires the following C library functions:
. printf() to report the benchmarking results.

. A function for measuring elapsed time appropriate to your platform, to compute the
execution time of the benchmark.

Typically this is the C library clock() function. However you could use cycle counters to
directly implement the start_time() and stop_time() functions in core_portme.c instead.

These functions are contained in the following libraries:

. The standard C library, included with the ARM Compiler toolchain and the Keil™ MDK
toolkit.

. An alternative, size-optimized C library called microlib, included with the Keil MDK
toolkit.

When compiling CoreMark for a bare-metal system you must provide the startup code and the
retargeted printf() and clock() functions.

Most modern ARM processors include performance counters. You can program these
performance counters to count the number of processor cycles, and then accurately compute the
elapsed time. To use this feature, you must retarget the clock() function. Appendix A on page 14
shows a sample implementation of a retargeted clock() function for a Cortex-M4 processor.

In the absence of performance counters and a retargeted clock() function, you can use the
semihosted clock() function from the standard C library. You must connect a debugger capable
of supporting semihosting, such as the DS-5 Debugger.

Note

Using semihosting can introduce extra delay, because the target system must communicate with
the host. This extra delay can be unpredictable, because of variations in transmission and
process scheduling. To reduce the effects of variable semihosting overheads in your benchmark
results, you can increase the number of CoreMark iterations.

As with the clock() function, you can use a semihosted printf() function with DS-5 Debugger.
MDK-ARM also allows the use of UART for printf() on microcontroller boards.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 7
Non-Confidential

4.2 Memory layout

CoreMark Benchmarking for ARM® Cortex® Processors

Systems containing ARM processors can have a wide variety of memories and memory
hierarchies. Common memories include:

. On-chip Tightly Coupled Memory (TCM).

. L1 and L2 instruction and data caches.
. Flash memory.
. ROM.

You must compile your application to use memory correctly and efficiently. ARM compiler
supports scatter-loading, which lets you match code and data with the most appropriate type of
memory. See the ARM Compiler toolchain Linker Reference for more information.

4.3 Command-line options

Using the ARM Compiler, armcc, you can build CoreMark to run in a bare-metal or semihosted
environment.

To optimize for execution speed, use the -Otime, -03, and --Toop_optimization_level=2 options.

To reduce code size, you can use microlib instead of the standard C library.

Speed-optimized

armcc -c -W <cflags> --cpu=name -03 -Otime --Toop_optimization_Tevel=2
-I./ -Isimple -DITERATIONS=0 -DSEED_METHOD=SEED_ARG
-DCOMPILER_FLAGS=\"<cflags> --cpu=name -03 -Otime --loop_optimization_Tevel=2\"
core_main.c core_list_join.c core_matrix.c core_state.c core_util.c
simple/core_portme.c

armlink core_main.o core_list_join.o core_matrix.o core_state.o core_util.o
core_portme.o -o coremark.axf

The compiler switches used here are:

-C Performs the compilation and link steps separately.
-W Disables all warnings. This is optional.
<cflags> Any additional compiler flags you require.

--cpu=name Specifies the name of the target processor, for example --cpu=Cortex-M4.

-03 Applies maximum optimization.
-Otime Optimizes for time.
-1./ -Isimple

Lists the directories to search for source files.

--Toop_optimization_level=2
Specifies that the compiler performs high-level optimization, including
aggressive loop optimization. This option is usually best for performance.

-DSEED_METHOD=SEED_ARG
Specifies that randomization seeds are passed as command-line arguments at
runtime, rather than being automatically generated.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 8
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

-DITERATIONS=0
Specifies that the number of iterations is passed as a command-line argument at
runtime.

Note

If you prefer, you can specify the number of iterations here rather than passing the
iteration count as an argument. See Running CoreMark on page 10 for more
information.

-DCOMPILER_FLAGS=\"<cflags> --cpu=name -03 -Otime --loop_optimization_Tevel=2\"
Specifies the compiler flags, as provided to the compiler earlier on the command
line. This allows the compiler flags to be included in the output of the CoreMark
results.

This example uses UNIX-style escaped quotes. On Windows, use
_DCOMPILER_FLAGS="""<C'F| ags> --cpu=nanme. . . TETEn)

Speed-optimized, with microlib

armcc -c -W <cflags> --cpu=name -03 -Otime --Toop_optimization_level=2
--library_type=microlib -I./ -Isimple -DITERATIONS=0 -DSEED_METHOD=SEED_ARG
-DCOMPILER_FLAGS=\"<cflags> --cpu=name -03 -Otime --Tloop_optimization_level=2
--Tibrary_type=microlib\”
core_main.c core_list_join.c core_matrix.c core_state.c core_util.c
simple/core_portme.c

armlink core_main.o core_list_join.o core_matrix.o core_state.o core_util.o
core_portme.o -o coremark.axf

The compiler and linker switches used here are the same as in the speed-optimized example,
with the following difference:

--Tibrary_type=microlib
Links with the size-optimized library.

Size-optimized, with microlib

armcc -c -W <cflags> --cpu=cpuname -03 -Ospace -I./ -Isimple -DITERATIONS=0
-DSEED_METHOD=SEED_ARG -DCOMPILER_FLAGS=\"<cflags> --cpu=cpuname -03 -Ospace\”
--Tibrary_type=microlib --split_sections core_main.c core_list_join.c
core_matrix.c core_state.c core_util.c simple/core_portme.c

armlink core_main.o core_list_join.o core_matrix.o core_state.o core_util.o
core_portme.o -o coremark.axf

The compiler and linker switches used here are the same as in the speed-optimized example,
with the following differences:

--Tibrary_type=microlib
Links with the size-optimized library.

-Ospace Optimizes for size.

--split_sections
Generates one ELF section for each function in the source file.

Compilers usually collect functions and data together and emit one section for
each category. The linker can only eliminate a section if it is entirely unused. The
--split_sections option ensures that each function is in a separate section, so that
the linker can eliminate all unused functions.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 9
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

5 Running CoreMark

CoreMark is a small benchmark that must be run multiple times to obtain reproducible numbers.

To minimize the variation caused by inconsistent processor states, ARM recommends you
perform two validation runs followed by at least ten profile runs, then calculate the average for
the profile runs.

CoreMark requires a minimum execution time of 10 seconds for a valid result. ARM
recommends a minimum execution time of 30 seconds. Execution time varies with the processor
frequency. As guidance, 15000 iterations on a Cortex-M4 processor running at 168MHz yields
an execution time of about 30 seconds.

ARM recommends the following process for deciding on a suitable iteration count:
1. Set the iteration count to 10000 iterations initially.

2. Ifthis iteration count produces an execution time for a single profile run less than 30
seconds, increase the number of iterations until the CoreMark execution time is at least 30
seconds.

3. Run ten profile runs with this iteration count, and calculate the average CoreMark score.

4. Increase both the iteration count and the number of profile runs until the Coremark score
converges to a value. That is, subsequent runs show a small standard deviation.

Table 2 shows an example of this process.

Table 2 Increasing iterations and number of runs until results converge

Single Numberof Average
Number of . .
. X profilerun profile CoreMark Notes
iterations .

time runs score
10000 25s 1 - Check run time: minimum not met.
12000 32s 1 - Check run time: minimum OK.
12000 - 10 230 First profile run.
12000 - 10 290 Run again. Results not yet converged.
14000 - 12 320 Increase iterations and number of runs.

Results still not converged.

16000 - 14 321 Results have converged.

The arguments used for the runs are as follows:

. One validation run with arguments: 0x@ @x@ 0x66 ITER_VALIDATION 7 1 2000

. One validation run with arguments: 0x3415 0x3415 0x66 ITER_PROFILE 7 1 2000

. 10 profile runs with arguments: 0x@ 0x0 0x66 ITER_PROFILE 7 1 2000

Where:

. ITER_VALIDATION is the number of iterations for a validation run. For example, 2000.

. ITER_PROFILE is the number of iterations for a profile run. For example, 20000.

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 10
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

Note

If you prefer, you can specify the number of iterations at compile time rather than passing the
iteration count as an argument. Use the compiler options -DITERATION=7terations
-DPERFORMANCE_RUN=1, where iterations is the required number of iterations.

51 CoreMark output

The CoreMark output shown in Example 1 is from a development board containing a
Cortex-M4 processor running at 168MHz.

Example 1 CoreMark output

2K performance run parameters for coremark.
CoreMark Size 1 666

Total ticks 1 3512687483

Total time (secs): 20.908854
Iterations/Sec : 478.266287

Iterations : 10000

Compiler version : ARM C/C++ Compiler, 5.03 [Build 24]
Compiler flags : -03 -Otime --loop_optimization_level=2
Memory Tocation : STACK

seedcrc 1 0xe9f5

[@]crclist : Oxe714

[@]crecmatrix 1 Ox1fd7

[@]crcstate 1 0x8e3a

[0]crcfinal 1 0x988c

Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 478.266287 / ARM C/C++ Compiler, 5.03 [Build 24] -03 -Otime
--Toop_optimization_level=2 / STACK

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 11
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

6 Measurement characteristics

The CoreMark benchmark number is the number of iterations per second. In the output shown
in Example 1 on page 11, the CoreMark number is 478.266287.

A commonly reported figure is CoreMarks / MHz. For Example 1 on page 11, this is calculated
as the CoreMark number (478.266287) divided by the processor speed in MHz (168):

478.266287 / 168 = 2.8468

6.1 Measuring code and image size

When measuring the code size of an executable, you must decide whether to include or exclude
libraries. For example, if an embedded device runs only a single application, then the total ROM
size required for the device includes both the application and libraries. However, if the device
runs multiple applications then the measurement might exclude any shared libraries that the
executable uses.

You can use the fromelf utility, provided with the ARM Compiler toolchain, to compute the
code size of an executable. For example, the following command prints the code size of
CoreMark, including the standard C library:

fromelf -z coremark.axf

where coremark.axf is the CoreMark executable compiled using the commands described in
Command-line options on page 8. The -z option prints the code and data size information. The
output is shown in Example 2.

Example 2 fromelf output for CoreMark including the C library

+% Object/Image Component Sizes

Code (inc. data) RO Data RW Data ZI Data Debug Object Name

14292 1262 724 160 65376 2548 coremark.axf

14292 1262 724 160 0 0 ROM Totals for coremark.axf

The first column shows the application code size in bytes that includes the size of inline data
shown in the second column. The inline data is located in the code section and comprises literal
pools, case-branch offset tables, and short strings. The third, fourth, and fifth columns show the
size of the read-only data, read-write data, and zero initialized data respectively of CoreMark
and the library. The read-only data comprises constant strings and constant variables, while the
read-write data includes initialized variables. The zero-initialized data comprises uninitialized
global variables.

This example shows the total instruction size in bytes of CoreMark including the library (code
minus inline data) is:

14292 - 1262 = 13030

You can use this output to calculate the ROM and RAM requirements of CoreMark. The total
ROM footprint including the library (code plus RO data plus RW data) is:

14292 + 724 + 160 = 15176

The total RAM footprint (not including the stack and heap), including the library, is (RW data
plus ZI data):

160 + 65376 = 65536

ARM DAI 0350A
ID071213

Copyright © 2013 ARM Limited. All rights reserved. 12
Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

To calculate the code size of CoreMark excluding the library, sum the code sizes from all object
files for the application. This size includes the vector table, CMSIS code, and C startup code.

Use the following command to calculate the code size of CoreMark excluding the library code:

fromelf -z core_main.o core_list_join.o core_matrix.o core_state.o core_util.o
core_portme.o

This produces the output shown in Example 3:

Example 3 fromelf output for CoreMark excluding the C library

+% Object/Image Component Sizes

Code (inc. data) RO Data RW Data ZI Data Debug Object Name

2420 924 193 42 0 140 core_main.o

2360 6 0 0 0 492 core_list_join.o
2148 0 0 0 0 444 core_matrix.o
1096 18 128 64 0 152 core_state.o

484 0 0 0 0 256 core_util.o

296 68 0 48 4096 336 core_portme.o

This example shows that the total instruction size in bytes of CoreMark excluding the library
(code minus data) is:

(2420 + 2360 + 2148 + 1096 + 484 + 296) - (924 + 6 + 18 + 68) = 7788

The total instruction size in bytes of CoreMark including the library (code inc data) is:
(2420 + 2360 + 2148 + 1096 + 484 + 296) = 8804

The ROM footprint excluding the library (code plus RO Data plus RW Data) is:

(2420 + 2360 + 2148 + 1096 + 484 + 296) + (193 + 128) + (42 + 64 + 48) = 9279
The total RAM footprint excluding the library (RW Data plus ZI Data) is:

(42 + 64 + 48) + (4096) = 4250

Comparing code size

To determine how effective the compiler is at generating code (for example, to compare it with
other compilers), the following key metrics used are:

. Total ROM footprint including the library (code plus RO data plus RW data).

. Total instruction size excluding the library and related data, such as inline strings and
literal pools (code minus data).

. Total instruction size in bytes of CoreMark including the library (code inc data).

For deeply embedded, size-constrained applications, the total ROM footprint including the
library (preferably microlib) is a good metric to evaluate the effectiveness of the compilation
toolchain.

ARM DAI 0350A Copyright © 2013 ARM Limited. All rights reserved. 13
ID071213 Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

7 Appendix A

A sample implementation of the clock() function using Cortex-M4 performance counters:
« Copyright (C) 2011,2013 ARM Ltd. ATl rights reserved. =/
« A small implementation of the clock function using the performance counters
+ available on the Cortex-M4 processor. =/

/% The cpu cycle counter (SysTick) in Cortex-M4 counts down from OxFFFFFF and an
« overflow interrupt is generated when the value reaches @. The clock function
+ relies on the startup code to install an interrupt handler to catch the

interrupt and update the overflow counter. =/

%

#include <stdint.h>
#include <time.h>

/+ Compile with -DCMSIS to use the CMSIS SysTick definition, otherwise
« we use a compatible definition. =/
#ifdef CMSIS

/% Replace this with your device-specific include file =/
#include <ARMCM4.h>

#else

/% Set the clock frequency appropriately for your device. =/
uint32_t SystemCoreClock = (20+1000000);

/+ SysTick registers =/
typedef struct

{
volatile uint32_t CTRL; /x Offset: 0x000 (R/W) SysTick Control and Status Register =/
uint32_t LOAD; /« Offset: 0x004 (R/W) SysTick Reload Value Register %/
volatile uint32_t VAL; /x Offset: 0x008 (R/W) SysTick Current Value Register %/
const uint32_t CALIB; /« Offset: 0x00C (R/) SysTick Calibration Register %/

} SysTick_Type;

#define SCS_BASE (OxE00QEQOQUL)

#define SysTick_BASE (SCS_BASE + 0x0010UL)

#define SysTick ((SysTick_Type %) SysTick_BASE)

/% SysTick CSR register bits =/

#define SysTick_CTRL_COUNTFLAG_Msk (1 << 16)
#define SysTick_CTRL_CLKSOURCE_Msk (1 << 2)
#define SysTick_CTRL_TICKINT_Msk (1 << 1)
#define SysTick_CTRL_ENABLE_Msk (1 <«< 0)

#endif
static volatile unsigned int systick_overflows = 0;

/% This function is called by the SysTick overflow interrupt handler. The
+ address of this function must appear in the SysTick entry of the vector
% table. =/

extern __irq void SysTick_Handler(void)

{

systick_overflows++;

}

static void reset_cycle_counter(void)
{
/+ Set the reload value and clear the current value. =/
SysTick->LOAD = OxQ0ffffff;
SysTick->VAL = 0;
/% Reset the overflow counter =/

ARM DAI 0350A Copyright © 2013 ARM Limited. All rights reserved. 14
ID071213 Non-Confidential

CoreMark Benchmarking for ARM® Cortex® Processors

systick_overflows = 0;

}

static void start_cycle_counter(void)
{
/+ Enable the SysTick timer and enable the SysTick overflow interrupt =/
SysTick->CTRL |=
(SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_ENABLE_Msk |
SysTick_CTRL_TICKINT_Msk);
}

static uint64_t get_cycle_counter(void)
{
unsigned int overflows = systick_overflows;
/% A systick overflow might happen here =/
unsigned int systick_count = SysTick->VAL;
/% check if it did and reload the Tow bit if it did =/
unsigned int new_overflows = systick_overflows;
if (overflows != new_overflows)

/% This suffices as Tong as there is no chance that a second
overflow can happen because new_overflows was read =/
systick_count = SysTick->VAL;
overflows = new_overflows;
}
/+ Recall that the SysTick counter counts down. =/
return (((uint64_t)overflows << 0x18) + (Ox0OFFFFFF - systick_count));
}

extern clock_t clock(void)
{

return (clock_t) ((get_cycle_counter() = CLOCKS_PER_SEC) / SystemCoreClock);
}

/% The C Tibrary initialization code calls _clock_init() to initialize
* anything that is required for clock() to work. Here we do this by
% starting the systick timer. =/
extern void _clock_init(void)
{
reset_cycle_counter();
start_cycle_counter();

}

ARM DAI 0350A Copyright © 2013 ARM Limited. All rights reserved. 15
ID071213 Non-Confidential

	CoreMark Benchmarking for ARM Cortex Processors
	1 Introduction
	2 About CoreMark
	3 Downloading the source
	4 Compiling CoreMark with ARM Compiler
	4.1 Library functions required by CoreMark
	4.2 Memory layout
	4.3 Command-line options

	5 Running CoreMark
	5.1 CoreMark output

	6 Measurement characteristics
	6.1 Measuring code and image size

	7 Appendix A

