
Arm® Architecture Reference
Manual Supplement Armv9,

for Armv9-A architecture
profile

Document number DDI0608

Document version B.a

Document confidentiality Non-confidential

Document build information Printed on: January 27, 2022.

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.

Release information

Date Version Changes

2022/Feb/02 EAC • Initial Armv9.3 EAC release.
• Includes FEAT_BRBEv1p1.
• Updates to ETE and TRBE.

2021/May/20 EAC • Initial EAC release.
• BRBE, ETE, TME, and TRBE specifications.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks
.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement Armv9, for
Armv9-A architecture profile

Release information . ii
Non-Confidential Proprietary Notice . iii

Part A Preface

About this Supplement
Conventions . xviii

Typographical conventions . xviii
Numbers . xix
Pseudocode descriptions . xix
Assembler syntax descriptions . xix

Rules-based writing . xx
Content item identifiers . xx
Content item rendering . xx
Content item classes . xx

Additional reading

Feedback
Feedback on this supplement . xxiii
Progressive terminology commitment . xxiii

Part B Armv9-A Architecture Introduction and Overview

Chapter B1 Introduction to the Armv9-A Architecture
B1.1 Architectural extensions added by Armv9-A 25

B1.1.1 FEAT_ETE, Embedded Trace Extension 25
B1.1.2 FEAT_SVE2, Scalable Vector Extension version 2 26
B1.1.3 FEAT_TME, Transactional Memory Extension 26
B1.1.4 FEAT_TRBE, Trace Buffer Extension 26
B1.1.5 FEAT_ETEv1p1, Embedded Trace Extension 26
B1.1.6 FEAT_BRBE, Branch Record Buffer Extension 27
B1.1.7 FEAT_ETEv1p2, Embedded Trace Extension 27
B1.1.8 FEAT_BRBEv1p1, Branch Record Buffer Extension 27

Part C The Transactional Memory Extension

Chapter C1 Transactional Memory Extension
C1.1 Transactions . 29

C1.1.1 Transactional state . 29
C1.1.2 Transactional reservation granule, read and write sets 30

C1.2 Transaction failure . 31
C1.2.1 Failure causes . 31
C1.2.2 Transaction checkpoint . 32

C1.3 Memory model . 34

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

C1.3.1 External visibility . 34
C1.3.2 Atomicity . 35

C1.4 Transactions and memory attributes . 36
C1.5 Address translation . 37

C1.5.1 Transactional translation table walks . 37
C1.5.2 Hardware management of the Access flag and dirty state 37
C1.5.3 TLB shoot-down . 37
C1.5.4 Translation table modifications inside transactions 38

C1.6 Modification of instructions in Transactional state 39
C1.7 Interrupt masking . 40
C1.8 A64 instruction behavior in Transactional state 41

C1.8.1 MRS . 42
C1.8.2 MSR (register) . 43
C1.8.3 MSR (immediate) . 43
C1.8.4 SYS and SYSL . 43
C1.8.5 Wait for Event . 43
C1.8.6 DMB . 44
C1.8.7 ISB . 44
C1.8.8 First-fault and Non-fault load instructions 44

C1.9 Reset . 46
C1.10 Identification mechanism . 47

Chapter C2 Debug, PMU, Trace
C2.1 Self-hosted debug . 48

C2.1.1 Breakpoint Instruction exceptions . 48
C2.1.2 Breakpoint exceptions . 48
C2.1.3 Watchpoint exceptions . 48
C2.1.4 Software Step exceptions . 49

C2.2 External debug . 50
C2.2.1 Breakpoint and Watchpoint debug events 50
C2.2.2 Halting Instruction debug event . 50
C2.2.3 Halting Step debug events . 50
C2.2.4 External Debug Request debug event 50
C2.2.5 Reset Catch debug event . 51
C2.2.6 Other Halting debug events . 51
C2.2.7 Behavior in Debug state . 51
C2.2.8 The PC Sample-based Profiling Extension 51

C2.3 The Statistical Profiling Extension . 53
C2.3.1 Memory accesses by profiling operations 53
C2.3.2 Events packet payload . 53
C2.3.3 Profile Buffer management interrupts 53

C2.4 The Embedded Trace Extension . 54
C2.5 The Performance Monitors Extension . 55

C2.5.1 Event filtering . 55
C2.5.2 Accuracy of event filtering . 55
C2.5.3 TSTART_RETIRED . 56
C2.5.4 TCOMMIT_RETIRED . 56
C2.5.5 TME_TRANSACTION_FAILED . 56
C2.5.6 TME_INST_RETIRED_COMMITTED 56
C2.5.7 TME_CPU_CYCLES_COMMITTED . 56
C2.5.8 TME_FAILURE_CNCL . 57
C2.5.9 TME_FAILURE_ERR . 57
C2.5.10 TME_FAILURE_IMP . 57
C2.5.11 TME_FAILURE_MEM . 57
C2.5.12 TME_FAILURE_NEST . 57

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

C2.5.13 TME_FAILURE_SIZE . 58
C2.5.14 TME_FAILURE_TLBI . 58
C2.5.15 TME_FAILURE_WSET . 58
C2.5.16 Behavior on overflow . 58

Chapter C3 System registers
C3.1 General system control registers . 60

C3.1.1 CTR_EL0 . 60
C3.1.2 ID_AA64ISAR0_EL1 . 60
C3.1.3 TCR_EL1 . 60
C3.1.4 TCR_EL2 . 61
C3.1.5 ISS encoding for an exception from a TSTART instruction 62
C3.1.6 SCTLR_EL1 . 62
C3.1.7 SCTLR_EL2 . 64
C3.1.8 SCTLR_EL3 . 65
C3.1.9 HCR_EL2 . 66
C3.1.10 SCR_EL3 . 66

C3.2 Performance Monitors registers . 67
C3.2.1 PMEVTYPER<n>_EL0 . 67
C3.2.2 PMCCFILTR_EL0 . 67
C3.2.3 PMSEVFR_EL1 . 67

C3.3 Performance Monitors external registers . 68
C3.3.1 PMPCSR . 68

Chapter C4 Instructions
C4.1 TCANCEL . 70
C4.2 TCOMMIT . 71
C4.3 TSTART . 72
C4.4 TTEST . 73

Chapter C5 Interaction with Memory Tagging Extension

Chapter C6 Transactional Memory Extension additional reading

Part D The Embedded Trace Extension

Chapter D1 Embedded Trace Extension
D1.1 Introduction . 77

D1.1.1 Mathematical notation . 77
D1.2 Attributes of tracing . 79
D1.3 Self-hosted Trace . 80
D1.4 External Debug . 81
D1.5 Trace output . 82
D1.6 Trace Sessions . 83
D1.7 Elements . 84
D1.8 Layer Model . 85
D1.9 Trace protocol synchronization . 86

D1.9.1 Non-periodic trace protocol synchronization 86
D1.9.2 Periodic trace protocol synchronization 86
D1.9.3 Synchronization of instruction trace . 87

D1.10 Speculation in the trace element stream . 91
D1.10.1 Tracing Transactions . 91

Chapter D2 Trace Element Model
D2.1 Trace Info element . 94

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

D2.2 P0 element . 95
D2.2.1 Atom Element . 95
D2.2.2 Exception Element . 95
D2.2.3 Source Address Element . 97
D2.2.4 Q Element . 98
D2.2.5 Transaction Start Element . 98

D2.3 Virtual Address Space Elements . 99
D2.3.1 Trace On Element . 99
D2.3.2 Target Address Element . 99
D2.3.3 Context Element . 99

D2.4 Temporal Elements . 100
D2.4.1 Cycle Count Element . 100
D2.4.2 Timestamp Element . 100
D2.4.3 Timestamp Marker element . 101

D2.5 Speculation Resolution Elements . 102
D2.5.1 Commit Element . 102
D2.5.2 Cancel Element . 102
D2.5.3 Discard Element . 103
D2.5.4 Mispredict Element . 103

D2.6 Others . 104
D2.6.1 Event Element . 104
D2.6.2 Overflow Element . 104

D2.7 Transactional Memory . 105
D2.7.1 Transaction Start element . 105
D2.7.2 Transaction Commit element . 105
D2.7.3 Transaction Failure element . 105

Chapter D3 Instruction and Exception classifications
D3.1 AArch64 A64 . 107

D3.1.1 Direct P0 instructions . 107
D3.1.2 Indirect P0 instructions . 107
D3.1.3 Branch with link instructions . 108
D3.1.4 Meaning of Atom elements . 108

D3.2 AArch32 A32 . 109
D3.2.1 Direct P0 instructions . 109
D3.2.2 Indirect P0 instructions . 109
D3.2.3 Branch with link instructions . 110
D3.2.4 Meaning of Atom elements . 110

D3.3 AArch32 T32 . 111
D3.3.1 Direct P0 instructions . 111
D3.3.2 Indirect P0 instructions . 111
D3.3.3 Branch with link instructions . 112
D3.3.4 Meaning of Atom elements . 112

D3.4 WFI and WFE Instructions . 113
D3.4.1 WFxT . 113

D3.5 Exceptions to Exception element encodings 114

Chapter D4 Recommended Configurations
D4.1 Configurations . 117

Chapter D5 Protocol Description
D5.1 Introduction . 118
D5.2 Summary . 119
D5.3 Encoding Schemes . 122

D5.3.1 Field encodings . 122

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

D5.3.2 Instruction set encoding . 122
D5.4 Alignment Synchronization Packet . 124
D5.5 Discard Packet . 125
D5.6 Overflow Packet . 126
D5.7 Trace Info Packet . 127
D5.8 Trace On Packet . 131
D5.9 Timestamp Packet . 132
D5.10 Timestamp Marker Packet . 134
D5.11 Transaction Start Packet . 135
D5.12 Transaction Commit Packet . 136
D5.13 Exception Exact Match Address Packet . 137
D5.14 Exception Short Address IS0 Packet . 139
D5.15 Exception Short Address IS1 Packet . 141
D5.16 Exception 32-bit Address IS0 Packet . 143
D5.17 Exception 32-bit Address IS1 Packet . 145
D5.18 Exception 64-bit Address IS0 Packet . 147
D5.19 Exception 64-bit Address IS1 Packet . 149
D5.20 Exception 32-bit Address IS0 with Context Packet 151
D5.21 Exception 32-bit Address IS1 with Context Packet 156
D5.22 Exception 64-bit Address IS0 with Context Packet 161
D5.23 Exception 64-bit Address IS1 with Context Packet 167
D5.24 Transaction Failure Packet . 173
D5.25 PE Reset Packet . 174
D5.26 Cycle Count Format 1_0 unknown count Packet 175
D5.27 Cycle Count Format 1_1 unknown count Packet 176
D5.28 Cycle Count Format 1_0 with count Packet . 177
D5.29 Cycle Count Format 1_1 with count Packet . 179
D5.30 Cycle Count Format 2_0 small commit Packet 180
D5.31 Cycle Count Format 2_0 large commit Packet 181
D5.32 Cycle Count Format 2_1 Packet . 182
D5.33 Cycle Count Format 3_0 Packet . 183
D5.34 Cycle Count Format 3_1 Packet . 184
D5.35 Commit Packet . 185
D5.36 Cancel Format 1 Packet . 186
D5.37 Cancel Format 2 Packet . 187
D5.38 Cancel Format 3 Packet . 188
D5.39 Mispredict Packet . 189
D5.40 Atom Format 1 Packet . 190
D5.41 Atom Format 2 Packet . 191
D5.42 Atom Format 3 Packet . 192
D5.43 Atom Format 4 Packet . 194
D5.44 Atom Format 5.1 Packet . 195
D5.45 Atom Format 5.2 Packet . 196
D5.46 Atom Format 6 Packet . 197
D5.47 Target Address Short IS0 Packet . 198
D5.48 Target Address Short IS1 Packet . 199
D5.49 Target Address 32-bit IS0 Packet . 200
D5.50 Target Address 32-bit IS1 Packet . 201
D5.51 Target Address 64-bit IS0 Packet . 202
D5.52 Target Address 64-bit IS1 Packet . 203
D5.53 Target Address Exact Match Packet . 204
D5.54 Context Same Packet . 205
D5.55 Context Packet . 206
D5.56 Target Address with Context 32-bit IS0 Packet 209
D5.57 Target Address with Context 32-bit IS1 Packet 213

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

D5.58 Target Address with Context 64-bit IS0 Packet 217
D5.59 Target Address with Context 64-bit IS1 Packet 221
D5.60 Source Address Short IS0 Packet . 225
D5.61 Source Address Short IS1 Packet . 226
D5.62 Source Address 32-bit IS0 Packet . 227
D5.63 Source Address 32-bit IS1 Packet . 228
D5.64 Source Address 64-bit IS0 Packet . 229
D5.65 Source Address 64-bit IS1 Packet . 230
D5.66 Source Address Exact Match Packet . 231
D5.67 Ignore Packet . 232
D5.68 Event Packet . 233
D5.69 Q Packet . 235
D5.70 Q with count Packet . 236
D5.71 Q with Exact match address Packet . 237
D5.72 Q short address IS0 Packet . 239
D5.73 Q short address IS1 Packet . 241
D5.74 Q 32-bit address IS0 Packet . 243
D5.75 Q 32-bit address IS1 Packet . 245

Chapter D6 Trace Unit
D6.1 Resetting the trace unit . 248

D6.1.1 Trace unit reset . 248
D6.2 System Behaviors . 249

D6.2.1 Behavior on enabling . 249
D6.2.2 Behavior on disabling . 249
D6.2.3 Behavior on flushing . 250
D6.2.4 Low-power state . 251
D6.2.5 Trace unit behavior when the PE is in a low-power state 251
D6.2.6 Trace unit behavior in the low-power state 251

D6.3 Trace unit behavior while the PE is in Debug state 253
D6.4 Trace unit behavior on a trace unit buffer overflow 254
D6.5 Trace unit power states . 255
D6.6 Visibility of the PE operation . 257

D6.6.1 ETE trace operation . 258
D6.6.2 Impact on PE Behavior . 259
D6.6.3 Behavior on a PE Warm reset . 259
D6.6.4 Instruction Block . 259
D6.6.5 Exposing Speculation . 260
D6.6.6 Trace Prohibited regions . 261
D6.6.7 Multi-threaded processor . 262
D6.6.8 Sharing between multiple PEs . 262

D6.7 Speculation resolution . 263
D6.7.1 Initialization . 263
D6.7.2 New block operation . 263
D6.7.3 Resolved operation . 264
D6.7.4 Cancel operation . 264

D6.8 Filtering trace generation . 265
D6.8.1 ViewInst function . 265
D6.8.2 ViewInst start/stop function filtering . 266
D6.8.3 ViewInst include/exclude function filtering 269
D6.8.4 Guidelines for interpreting the ViewInst function result 270
D6.8.5 Rules for tracing Exceptional occurrences 272
D6.8.6 Forced tracing of Exceptional occurrences 273

D6.9 Element Generation . 275
D6.9.1 Trace Info Element Generation . 275

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

D6.9.2 Atom Element . 275
D6.9.3 Exception Element . 277
D6.9.4 Source Address Element . 277
D6.9.5 Q Element . 277
D6.9.6 Event Element . 278
D6.9.7 Cancel Element Generation . 278
D6.9.8 Commit Element Generation . 278
D6.9.9 Transaction Start . 279
D6.9.10 Transaction Commit . 279
D6.9.11 Transaction Failure . 279
D6.9.12 Context Element . 280
D6.9.13 Target Address Element . 281
D6.9.14 Mispredict Element . 283
D6.9.15 Overflow Element . 283
D6.9.16 Timestamp Element . 283
D6.9.17 Trace On Element . 285
D6.9.18 Cycle Count Element . 285
D6.9.19 Discard Element . 286

D6.10 Trace unit features . 287
D6.10.1 Branch broadcasting . 287
D6.10.2 Q Regions . 287
D6.10.3 Cycle Counting . 288
D6.10.4 Timestamping . 289
D6.10.5 Stalling the execution of the PE . 289
D6.10.6 No overflow . 290
D6.10.7 Event Trace . 291
D6.10.8 Context identifier tracing . 291
D6.10.9 Virtual context identifier tracing . 291

D6.11 Compression . 293
D6.11.1 Implied commits . 293
D6.11.2 Atom packing . 293
D6.11.3 Address Compression . 294
D6.11.4 Return Stack Address Matching . 295
D6.11.5 Timestamp Value Compression . 297

Chapter D7 Resources
D7.1 Resource operation . 299

D7.1.1 Behavior of the resources while in the Running state 299
D7.1.2 Behavior of the resources while in the Pausing state 300
D7.1.3 Behavior of the resources while in the Paused state 300
D7.1.4 Behavior of resources on a Trace synchronization event 301

D7.2 Resource organization . 302
D7.2.1 Precise Resources . 302
D7.2.2 Imprecise Resources . 303

D7.3 Selecting a resource or a pair of resources . 303
D7.3.1 A Resource Selector pair . 305

D7.4 Address comparators . 307
D7.4.1 Single Address Comparators . 307
D7.4.2 Address Range Comparators . 308

D7.5 Context Identifier Comparator . 311
D7.6 Virtual Context Identifier Comparators . 313
D7.7 Counters . 315

D7.7.1 Forming a larger Counter from two separate Counters 317
D7.7.2 Counter Operation in Self-reload mode 319

D7.8 Sequencer . 321

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

D7.8.1 Pseudocode . 324
D7.9 Single-shot Comparator Controls . 328

D7.9.1 Single-shot Comparator Control modes 329
D7.9.2 Operation while in Paused state . 330

D7.10 External Outputs . 331
D7.10.1 Operation while in Paused state . 331

D7.11 External Inputs . 332
D7.11.1 Operation while in Paused state . 333
D7.11.2 Operation while in the Low-power state 333

D7.12 PE Comparator Inputs . 334

Chapter D8 Register Description
D8.1 Accessing ETE registers . 335

D8.1.1 External debugger interface . 335
D8.1.2 System instructions . 337

D8.2 Synchronization of register updates . 338
D8.2.1 AArch64 system registers . 338
D8.2.2 External Debugger registers . 339
D8.2.3 Synchronization and the authentication interface 339

D8.3 Trace unit programming states . 340
D8.4 External debug registers . 344

D8.4.1 Trace registers, external debug register map 344
D8.4.2 Management registers, external debug register map 345
D8.4.3 Integration registers . 346

Chapter D9 Trace Analyzer
Rules-based writing . 347

D9.1 Introduction . 348
D9.1.1 Using Trace Info elements to start trace analysis 348
D9.1.2 Encountering Trace Info elements after trace analysis has started . . . 348
D9.1.3 Decompression information . 348

D9.2 Stage 1 - Parsing the byte stream . 349
D9.2.1 Retained state . 349
D9.2.2 Parsing . 350
D9.2.3 Alignment Sync packet . 351
D9.2.4 Discard . 352
D9.2.5 Overflow . 352
D9.2.6 Trace Info . 353
D9.2.7 Trace On . 354
D9.2.8 Speculation . 354
D9.2.9 Mispredict . 357
D9.2.10 Atom Packets . 357
D9.2.11 Q Packets . 361
D9.2.12 Source Address Packets . 363
D9.2.13 Exceptions . 364
D9.2.14 Address and context . 366
D9.2.15 Transactions . 372
D9.2.16 Timestamps . 373
D9.2.17 Event Tracing . 375
D9.2.18 Functions . 376

D9.3 Stage 2 - Speculation Resolution . 378
D9.3.1 Emit() . 378
D9.3.2 Trace Info element . 378
D9.3.3 Commit element . 379
D9.3.4 Cancel element . 380

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

D9.3.5 Discard element . 381
D9.3.6 Stack . 382

D9.4 Stage 2 - Transaction Resolution . 383
D9.4.1 ProcessTransaction() . 383
D9.4.2 Transaction Start element . 383
D9.4.3 Transaction Commit element . 383
D9.4.4 Transaction Failure element . 383

D9.5 Stage 3 - Analysis . 385
D9.5.1 AnalyzeElement() . 385
D9.5.2 Retained state . 385
D9.5.3 Operation of the return stack . 386
D9.5.4 Atom element . 387
D9.5.5 Context element . 389
D9.5.6 Exception element . 389
D9.5.7 Source Address element . 391
D9.5.8 Target Address element . 392
D9.5.9 Trace Info element . 393
D9.5.10 Trace On element . 393
D9.5.11 Mispredict element . 393
D9.5.12 ETEEvent element . 394
D9.5.13 Discard element . 394
D9.5.14 Overflow element . 394
D9.5.15 Q element . 395
D9.5.16 Timestamp element . 396
D9.5.17 Cycle Count element . 396
D9.5.18 Functions . 396

Chapter D10 Programming
D10.1 Example code sequences . 399

D10.1.1 Enabling the trace unit . 399
D10.1.2 Disabling the trace unit . 399
D10.1.3 Example save restore routine . 400

D10.2 Minimal programming . 402
D10.3 Filtering models . 403
D10.4 Filtering used the exclude function . 404
D10.5 Filtering used the include function . 404
D10.6 OS Save and Restore routines . 405

Chapter D11 Trace Examples
D11.1 Basic Examples . 407

D11.1.1 Simple example of basic program trace 408
D11.1.2 Simple example of basic program trace filtering applied 409

Chapter D12 Examples of basic program trace when exceptions occur
D12.1 Basic program trace when an exception occurs, example one 411
D12.2 Basic program trace when an exception occurs, example two 412
D12.3 Example of basic program trace when two consecutive exceptions occur . . . 413

Chapter D13 Examples of changes in Context
D13.1 Exception in software executed after context synchronization 416
D13.2 Exception immediately after ISB . 417
D13.3 Exception immediately before ISB . 418

Chapter D14 An example of the use of the trace unit return stack
D14.1 Transactions . 422

D14.1.1 Simple successful transaction . 423

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

D14.1.2 Simple Failed Transaction example . 424
D14.1.3 Canceled Transaction failure example 425
D14.1.4 Speculated Transaction example . 426

Chapter D15 Pseudocode
D15.1 ETE element ASL . 427

D15.1.1 Atom enumeration . 427
D15.1.2 AtomElement() . 427
D15.1.3 QElement() . 428
D15.1.4 CancelElement() . 428
D15.1.5 CommitElement() . 428
D15.1.6 ContextElement() . 429
D15.1.7 CycleCountElement() . 429
D15.1.8 DiscardElement() . 430
D15.1.9 ExceptionElement() . 430
D15.1.10 EventElement() . 430
D15.1.11 MispredictElement() . 431
D15.1.12 OverflowElement() . 431
D15.1.13 TimestampElement() . 431
D15.1.14 TraceInfoElement() . 432
D15.1.15 TraceOnElement() . 432
D15.1.16 TargetAddressElement() . 432
D15.1.17 SourceAddressElement() . 433
D15.1.18 TransactionStartElement() . 433
D15.1.19 TransactionCommitElement() . 433
D15.1.20 TransactionFailureElement() . 434

D15.2 ETE decompressor enumerations . 435
D15.2.1 SubISA enumeration . 435
D15.2.2 SynchronisationState enumeration . 435
D15.2.3 InstType enumeration . 435

D15.3 ETE decompressor functions . 437
D15.3.1 EndOfStream() . 437
D15.3.2 ReservedEncoding() . 437
D15.3.3 ReadAndConsume() . 437
D15.3.4 LogDecompressor() . 437
D15.3.5 SBZ() . 437
D15.3.6 ResolutionQueue . 438
D15.3.7 TransactionQueue . 439
D15.3.8 ReturnStack . 440
D15.3.9 AddressHistoryBufferEntry . 440
D15.3.10 AddressHistoryBuffer . 440
D15.3.11 ProgramImage . 441
D15.3.12 ExceptionWithUnknownAddress() . 441

D15.4 ETE data encodings . 442
D15.4.1 POD() . 442
D15.4.2 ULEB128() . 442
D15.4.3 BitReplacement() . 442

D15.5 Common functions . 443
D15.5.1 Replicate() . 443
D15.5.2 Zeros() . 443

Chapter D16 Functional Differences from ETMv4

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

Part E The Trace Buffer Extension

Chapter E1 Trace Buffer Extension
E1.1 Description . 447

E1.1.1 About the Trace Buffer Extension . 447
E1.1.2 System events . 449
E1.1.3 Interrupts . 449

E1.2 Specification . 450
E1.2.1 The trace buffer . 450
E1.2.2 Trace buffer management . 463
E1.2.3 Synchronization and the Trace Buffer Unit 471

E1.3 Events . 484
E1.3.1 Common microarchitectural events . 484
E1.3.2 Common architectural events . 485

Part F The Branch Record Buffer Extension

Chapter F1 Branch Record Buffer Extension
F1.1 Branch Record Buffer Extension specification 489

F1.1.1 Branch records . 489
F1.1.2 Cycle counting . 489
F1.1.3 Mispredicted branches . 490
F1.1.4 BRBE Prohibited regions . 491
F1.1.5 Branch records for exceptions . 492
F1.1.6 Branch records for exception returns 492
F1.1.7 Transactional Memory Extension . 493
F1.1.8 PE Speculation . 493
F1.1.9 Branch record filtering . 493
F1.1.10 Branch record buffer operation . 497
F1.1.11 Branch record buffer . 499
F1.1.12 Invalidating the Record Buffer . 500
F1.1.13 Programmers Model . 501

F1.2 Events . 504
F1.2.1 Common architectural events . 504

Part G Appendixes

Chapter G1 Synchronization requirements for System registers

Chapter G2 Stages of execution
G2.1 Stages of execution without Transactional Memory Extension (TME) 511
G2.2 Stages of execution with TME . 512

Chapter G3 Additional Trace Buffer Extension software usage notes
G3.1 Context switching . 513
G3.2 Controlling generation of trace buffer management events 516

Chapter G4 Transactional Memory Extension (TME) Litmus tests
G4.1 Conventions . 518
G4.2 Transaction strong isolation . 519

G4.2.1 Containment . 519
G4.2.2 Non-interference . 519

G4.3 Transactions and barriers . 520
G4.3.1 Simple weakly consistent ordering . 520

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents
Contents

G4.3.2 Message passing . 520

Chapter G5 Transactional Memory Extension (TME) Transactional Lock Elision
G5.1 Overview . 522
G5.2 Conventions . 523
G5.3 Acquiring a lock . 524

G5.3.1 Checking the lock inside the transaction 524
G5.3.2 Checking the lock at the fallback path 525
G5.3.3 Synchronization between transactions and the fallback path 525

G5.4 Releasing a lock . 526
G5.4.1 Elision and nesting . 526

Chapter G6 Transactional Memory Extension (TME) Implementation recommen-
dations
G6.1 Permitted architectural difference between PEs 527
G6.2 Individual operation latency . 528
G6.3 Read and write set capacity . 529
G6.4 State tracking . 530
G6.5 Transactional conflicts . 531

Part H Glossary

Chapter H1 Glossary

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Part A
Preface

About this Supplement

This Supplement is the Arm ® Architecture Reference Manual Supplement, Armv9-A, for Armv9-A architecture
profile. This book describes the changes and additions to the Armv8-A architecture that are introduced by the
Armv9-A architecture extensions, and therefore must be read with the Arm ® Architecture Reference Manual, for
A-profile architecture.

This manual is organized into parts:

• Part B

Introduces the Arm ® Architecture Reference Manual Supplement, Armv9-A, for Armv9-A architecture profile.

• Part C

Describes the Transactional Memory Extension (TME).

• Part D

Describes the Embedded Trace Extensions (ETE).

• Part E

Describes the Trace Buffer Extension (TRBE).

• Part F

Describes the Branch Record Buffer Extension (BRBE).

• Part G

Provides additional information.

Chapter G1 provides system registers synchronization requirements.

Chapter G2 provides stages of execution information for FEAT_TRBE.

Chapter G3 provides software usage information for FEAT_TRBE.

Chapter G4 provides Transactional Memory Extension (TME) litmus tests.

Chapter G5 provides TME Transactional Lock Elision

Chapter G6 provides TME implementation recommendations.

• Part H

Glossary that defines terms used in this document that have a specialized meaning.

xvii

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text

Indicates a link. This can be:

• A URL, for example http://developer.arm.com
• A cross-reference to another location within the document
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that

defines the colored term.

{ and }

Braces, { and }, have two distinct uses:

Optional items

In syntax descriptions braces enclose optional items. In the following example they indicate
that the <shift> parameter is optional:

‘ADD <Wd|WSP>, <Wn|WSP>, #{, }“

Similarly they can be used in generalized field descriptions, for example TCR_ELx.{I}PS
refers to a field in the TCR_ELx registers that is called either IPS or PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set of
two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes

Notes are formatted as:

xviii

http://developer.arm.com

About this Supplement
Conventions

Note

This is a note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a Note
never provides any part of the definition of the architecture.

Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n

At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions.

These are shown in a monospace font.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration

A Declaration is a statement that either

• introduces a concept, or
• introduces a term, or
• describes the structure of data, or
• describes the encoding of data.

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

xx

About this Supplement
Rules-based writing

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxi

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer, http://developer.arm.com, for access to Arm documentation.

[1] Arm® Architecture Reference Manual, for A-profile architecture. (ARM DDI 0487).

[2] Arm® Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 615).

[3] Arm® Embedded Trace Macrocell Architecture Specification ETMv4. (ARM IHI 0064).

[4] AMBA ATB Protocol Specification. (ARM IHI 0032).

[5] ARM CoreSight Architecture Specification. (ARM IHI 0029).

[6] Arm® Architecture Reference Manual Supplement; Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598).

This supplement should also be read with the following System register and ISA descriptions:

• System Register XML for Armv9-A.
• A64 ISA XML for Armv9-A.

xxii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this supplement

If you have comments on the content of this supplement, send an e-mail to errata@arm.com. Give:

• The title, Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile.
• The number, DDI0608 B.a.
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

xxiii

Part B
Armv9-A Architecture Introduction and Overview

Chapter B1
Introduction to the Armv9-A Architecture

B1.1 Architectural extensions added by Armv9-A

An Armv9 compliant implementation must also be Armv8.5 compliant.

An Armv9.1 compliant implementation must also be Armv8.6 compliant.

An Armv9.2 compliant implementation must also be Armv8.7 compliant.

An Armv9.3 compliant implementation must also be Armv8.8 compliant.

The AArch32 Execution state might optionally be implemented at EL0. The AArch32 Execution state is not
implemented at EL1, EL2, or EL3.

An implementation of the Armv9-A architecture must include all of the extensions that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv9-A architecture.

The implementation of FEAT_DoubleLock in an Armv9 implementation is prohibited.

An implementation of the Armv9-A architecture cannot include an Embedded Trace Macrocell (ETM).

The Armv9-A architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

B1.1.1 FEAT_ETE, Embedded Trace Extension

FEAT_ETE provides a trace unit that records details about software control flow running on a Processing Element
(PE), which can be used to aid debugging or optimizing. The trace unit provides filtering functionality to allow the
targeting of the information to specific code regions or periods of operation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter B1. Introduction to the Armv9-A Architecture
B1.1. Architectural extensions added by Armv9-A

This feature is OPTIONAL in an Armv9.0 implementation.

This feature requires FEAT_TRBE and FEAT_TRF.

This feature is supported in both AArch64 and AArch32 states.

The ID_AA64DFR0_EL1.TraceVer field identifies the presence of FEAT_ETE.

B1.1.2 FEAT_SVE2, Scalable Vector Extension version 2

The Scalable Vector Extension version 2 (SVE2) is a superset of SVE that incorporates functionality similar to
Advanced SIMD, and other enhancements.

FEAT_SVE2 is OPTIONAL.

This feature is supported in AArch64 state only.

FEAT_SVE2 requires FEAT_SVE.

The following fields indicate the presence of FEAT_SVE2:

• ID_AA64PFR0_EL1.SVE.
• ID_AA64ZFR0_EL1.SVEver.

Although FEAT_SVE2 is OPTIONAL, standard Armv9-A software platforms support FEAT_SVE2.

For more information, see The Scalable Vector Extension (SVE) section in the Arm® Architecture Reference
Manual, for A-profile architecture [1].

B1.1.3 FEAT_TME, Transactional Memory Extension

FEAT_TME adds the TCANCEL, TCOMMIT, TSTART, and TTEST instructions. These instructions support
hardware transactional memory, which means a group of instructions can appear to be collectively executed as a
single atomic operation.

FEAT_TME is OPTIONAL.

This feature is supported in AArch64 state only.

The ID_AA64ISAR0_EL1.TME field identifies the presence of FEAT_TME.

B1.1.4 FEAT_TRBE, Trace Buffer Extension

FEAT_TRBE enables support for a Trace Buffer Unit within a processing element (PE). When the Trace Buffer
Unit is enabled, Program Flow Trace generated by a trace unit is written directly to memory by the Trace Buffer
Unit, rather than routing trace data to a trace sink.

This feature is OPTIONAL in an Armv9.0 implementation.

This feature requires FEAT_ETE and FEAT_TRF.

This feature is supported in both AArch64 and AArch32 states.

The ID_AA64DFR0_EL1.TraceBuffer field identifies the presence of FEAT_TRBE.

B1.1.5 FEAT_ETEv1p1, Embedded Trace Extension

FEAT_ETEv1p1 extends FEAT_ETE to support FEAT_FGT.

This feature is OPTIONAL in an Armv9.1 implementation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter B1. Introduction to the Armv9-A Architecture
B1.1. Architectural extensions added by Armv9-A

This feature requires FEAT_ETE, FEAT_TRBE, FEAT_FGT, and FEAT_TRF.

The TRCDEVARCH.REVISION field identifies the presence of FEAT_ETEv1p1.

For more information on FEAT_FGT, see Arm® Architecture Reference Manual, for A-profile architecture [1].

For more information on FEAT_ETEv1p1, see Chapter D1 Embedded Trace Extension.

B1.1.6 FEAT_BRBE, Branch Record Buffer Extension

FEAT_BRBE provides a Branch record buffer for capturing control path history.

This feature is OPTIONAL in an Armv9.2 implementation.

This feature is supported in AArch64 only.

The ID_AA64DFR0_EL1.BRBE field identifies the presence of FEAT_BRBE.

B1.1.7 FEAT_ETEv1p2, Embedded Trace Extension

FEAT_ETEv1p2 extends FEAT_ETE to support FEAT_RME.

This feature is OPTIONAL in an Armv9.2 implementation.

This feature requires FEAT_RME and FEAT_ETEv1p1.

The TRCDEVARCH.REVISION field identifies the presence of FEAT_ETEv1p2.

For more information on FEAT_RME and FEAT_ETEv1p2, see Arm® Architecture Reference Manual Supplement,
The Realm Management Extension (RME), for Armv9-A [2].

B1.1.8 FEAT_BRBEv1p1, Branch Record Buffer Extension

FEAT_BRBEv1p1 FEAT_BRBEv1p1 extends FEAT_BRBE to enable branch recording at EL3.

This feature is OPTIONAL in an Armv9.3 implementation.

This feature requires FEAT_BRBE.

This feature is supported in AArch64 only.

The ID_AA64DFR0_EL1.BRBE field identifies the presence of FEAT_BRBEv1p1.

For more information on FEAT_BRBE, see Chapter F1 Branch Record Buffer Extension.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Part C
The Transactional Memory Extension

Chapter C1
Transactional Memory Extension

C1.1 Transactions

RTJXB A transaction is a group of instructions executing in Transactional state.

RYQLB Instructions outside a transaction execute in Non-transactional state.

C1.1.1 Transactional state

C1.1.1.1 Entering transactional state: starting a transaction (TSTART)

RZYKL When a TSTART instruction is committed for execution in Non-transactional state, it starts an outer transaction.

RBMPK When starting an outer transaction, the Processing Element (PE) enters Transactional state.

RZFWF When a TSTART instruction is committed for execution in Transactional state it starts a transaction nested within the
pre-existing transaction, or simply a nested transaction.

RDCDQ The transactional nesting depth indicates the degree of nesting of a transaction.

RDNMF The architecture requires the maximum transactional nesting depth to be 255.

RRRJX In Non-transactional state, the transactional nesting depth is 0.

RXKHY When starting a transaction, the transactional nesting depth is incremented by 1.

IWTLG In the rest of the document, unless explicitly prefixed with outer or nested, the term transaction will refer to an
outer transaction and all the nested transactions contained within.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter C1. Transactional Memory Extension
C1.1. Transactions

C1.1.1.2 Exiting transactional state by committing a transaction (TCOMMIT)

RHXMY A transaction commits when a TCOMMIT instruction is committed for execution in Transactional state.

RDDFV Transactional state is exited when committing an outer transaction.

RWYQK When committing a transaction, the transactional nesting depth is decremented by 1.

C1.1.1.3 Exiting transactional state by cancelling (TCANCEL) or failing a transaction

RLJYW A transaction is canceled when a TCANCEL instruction is committed for execution in Transactional state.

RCSXK A transaction fails when the PE exits transactional state for any reason other than the execution of a TCOMMIT

instruction or the execution of a TCANCEL instruction.

RHVFD When a transaction fails or is canceled, Transactional state is exited, and execution continues at the instruction that
follows the TSTART instruction of the outer transaction.

RMNVC The result of the TSTART instruction of the outer transaction encodes the cause of the failure (see Section C1.2.1
Failure causes).

RVRLY When a transaction fails or is canceled, the transactional nesting depth is set to 0.

C1.1.2 Transactional reservation granule, read and write sets

RXCXC The transactional reservation granule is defined as a contiguous memory block of size 2a bytes, formed by ignoring
the least significant bits of a memory access.

RDVWQ The size of the memory block is IMPLEMENTATION DEFINED in the range 4 – 512 words.

RNYST The Exclusive Reservation Granule CTR_EL0.ERG identifies the transactional reservation granule.

Below the notions of Location and read or write memory effects are as described in Arm® Architecture Reference
Manual, for A-profile architecture [1] Basic definitions.

C1.1.2.1 Transactional read set

RRRZY The transactional read set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory reads inside the transaction.

RKJCC The reads in the transactional read set are referred to as transactional reads.

C1.1.2.2 Transactional write set

RXJNK The transactional write set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory writes inside the transaction.

RHWVK The writes in the transactional write set are referred to as transactional writes.

RBLGB Limits to the transactional read set size and the transactional write set size are IMPLEMENTATION DEFINED.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

C1.2 Transaction failure

C1.2.1 Failure causes

RBWYQ When a transaction fails or is canceled, the destination register of the TSTART instruction of the outer transaction
encodes the cause of the failure as follows.

RSJJT For causes that are due to direct or attempted execution of an instruction, only the cause generated by the instruction
that appears first in program order is reported.

RPTGZ For causes that are not due to direct or attempted execution of an instruction, any number of causes may be
reported.

RYXLQ When more than one cause is reported, then RTRY is set to the logical AND of the prescribed or expected RTRY
value of each identified failure cause.

RYSWY RTRY, bit [15]

When this bit is set it signifies that the transaction may commit on retry.

When this bit is clear the software should assume that the transaction will not commit on retry.

RTRY is not a failure cause.

RYDHF REASON, bits [14:0]

This field holds the 15 low order bits of the TCANCEL operand value when CNCL is 1 else this field is 0.

Bits [63:25]

Reserved, RES0.

RTYHM TRIVIAL, bit [24]

When this bit is set it signifies that the system is currently running the trivial implementation enabled
by the bits described in C3.1.5 ISS encoding for an exception from a TSTART instruction.

The prescribed RTRY value is 0.

RBXPB INT, bit [23]

When IMP=1, this bit indicates whether or not an unmasked interrupt was delivered in transactional
state but not subsequently taken in non-transactional state due to being masked by the PE. See Section
C1.7 Interrupt masking for more information.

The prescribed RTRY value is 0.

RTTKV DBG, bit [22]

When this bit is set it signifies that a debug-related exception was encountered but not raised.

The prescribed RTRY value is 0.

RSTJB NEST, bit [21]

When this bit is set it signifies that the maximum transactional nesting depth was exceeded.

The prescribed RTRY value is 0.

RRVBK SIZE, bit [20]

When this bit is set it signifies that the transaction failed because the transactional read set limit or the
transactional write set limit was exceeded.

The prescribed RTRY value is 0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

RSZFF ERR, bit [19]

When this bit is set it signifies that an operation was attempted which is not architecturally permitted
in Transactional state. This includes but is not limited to attempting to raise a synchronous exception,
attempting to execute an instruction not permitted in Transactional state, or attempting to change
Exception level.

The prescribed RTRY value is 0.

RXZDB IMP, bit [18]

When this bit is set it signifies a failure cause that does not fall under any of the other cases.

The expected RTRY value is 1 if the transaction may commit on retrying and 0 otherwise.

RTRY must not systematically be set to 1 with IMP cause. This is because it could prevent the forward
progress in finite time of at least one the threads that is accessing a location within the transactional
read or write sets.

RRMJK MEM, bit [17]

When this bit is set it signifies that the transaction failed because a transactional memory conflict was
detected.

The expected RTRY value is 1.

RKWHH CNCL, bit [16]

When this bit is set it signifies that the transaction was canceled by a TCANCEL instruction.

The RTRY value is the most significant bit of the TCANCEL immediate operand.

C1.2.2 Transaction checkpoint

RPJGV The transaction checkpoint defines the following subset of the AArch64 state:

• Registers in AArch64 execution state: R0-R30, SP, ICC_PMR_EL1.

• AArch64 process state: NZCV, DAIF.

• If both floating-point and SVE are enabled: Z0-Z31, P0-P15, FFR, FPCR, FPSR.

• If floating-point is enabled and SVE is disabled or trapped: V0-V31, FPCR, FPSR.

RGKRW It is IMPLEMENTATION DEFINED if any of the System registers encoded with op0==0b11 and CRn==0b1x11 are
included in the transaction checkpoint.

RQJYL No other System registers are included in the transaction checkpoint.

RBFYL When a transaction fails or is canceled, the subset of the AArch64 state defined by the transaction checkpoint is
reverted to a state that is consistent with the PE having executed all of the instructions up to but not including the
point in the instruction stream where Transactional state was entered, and none afterwards, with the following
exceptions:

• The destination register of the TSTART instruction of the outer transaction is updated to encode the transaction
failure cause.

• When executing at an Exception level that is constrained to use a vector length that is less than the maximum
implemented vector length, the bits beyond the constrained length of Z0-Z31, P0-P15, and FFR are restored
to a value of either zero or the value they had when Transactional state was entered. The choice between
these options is IMPLEMENTATION DEFINED and can vary dynamically.

RFFQR Writes by a failed or canceled transaction do not generate write Memory effects. For the definition of Memory
effects, see Arm® Architecture Reference Manual, for A-profile architecture [1] Basic definitions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

RKBBS If SVE is disabled or trapped, the current vector length is considered to be constrained to 128 bits (see Arm®
Architecture Reference Manual, for A-profile architecture [1] SVE Configurable vector length).

RVQGT SPSel cannot be modified in Transactional state. For more information, see Section C1.8 A64 instruction behavior
in Transactional state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter C1. Transactional Memory Extension
C1.3. Memory model

C1.3 Memory model

Transactional Memory Extension (TME) proposes the following additions to the memory ordering and observability
rules described in the Arm® Architecture Reference Manual, for A-profile architecture [1] Definition of the Armv8
memory model.

C1.3.1 External visibility

Adding the following definitions:

RTCXC Locally-ordered-before

A read or a write RW1 is Locally-ordered-before a read or a write RW2 from the same Observer if and
only if any of the following cases apply:

• RW1 is Dependency-ordered-before RW2.

• RW1 is Atomic-ordered-before RW2.

• RW1 is Barrier-ordered-before RW2.

• RW1 is Locally-ordered-before a read or a write that is Locally-ordered-before RW2.

RKDFQ Transactionally-observed-by

A read or a write RW1 from an Observer is Transactionally-observed-by a read or a write RW2 from a
different Observer if and only if any of the following cases apply:

• There is a read or a write RW3 in the same transaction as RW1, and RW3 is Observed-by RW2.

• There is a read or a write RW3 in the same transaction as RW2, and RW1 is Observed-by RW3.

Changing the definition of Barrier-ordered-before to the following:

RRBRW Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same
Observer if and only if RW1 appears in program order before RW2 and any of the following cases
apply:

• RW1 appears in program order before a DMB FULL that appears in program order before RW2.

• RW1 is a write W1 generated by an instruction with Release semantics and RW2 is a read R2 generated by
an instruction with Acquire semantics.

• RW1 is generated by an instruction with Acquire semantics.

• RW2 is generated by an instruction with Release semantics.

• RW1 is a read R1 appearing in program order before a DMB LD that appears in program order before RW2.

• RW2 is a write W2 and either:

– RW1 is a write W1 appearing in program order before a DMB ST that appears in program order before W2.

– RW1 appears in program order before a write W3 generated by an instruction with Release semantics
and W2 is Coherence-after W3.

• RW1 and RW2 are not in the same transaction, and at least one of RW1 or RW2 is in the read or write set of
a committed transaction.

• RW1 appears in program order before a committed transaction that appears in program order before RW2.

Changing the definition of Ordered-before to the following:

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter C1. Transactional Memory Extension
C1.3. Memory model

RBXFQ Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A read or a write RW1 is Ordered-before a read or a write RW2 if
and only if any of the following cases apply:

• RW1 is Observed-by RW2.

• RW1 is Transactionally-observed-by RW2.

• RW1 is Locally-ordered-before RW2.

• RW1 is Ordered-before a read or a write that is Ordered-before RW2.

IFMHN Conflicts are a natural consequence of the pre-existing External visibility requirement. For more information, see
Arm® Architecture Reference Manual, for A-profile architecture [1] Ordering constraint. A cycle in Ordered-before
that involves a Transactionally-observed-by relation indicates a conflict.

RZRBP A transaction is said to be conflicting if and only if committing the transaction would violate the external visibility
requirement, in which case the transaction fails with MEM cause.

SJCSK In the event of repeated transactional conflicts the architecture does not guarantee forward progress for any
transactions involved, and the software must take appropriate measures for example by setting a threshold after
which the software takes a specific fallback path.

C1.3.2 Atomicity

ILWMY This section documents the behavior of the A64 Load-Exclusive and Store-Exclusive instructions, and all A64
atomic instructions (CAS, CASP, LD<OP>, and SWP) in Transactional state.

RLJDF Transactional writes generated as side-effects from the above instructions follow the ordering and observability
rules described in the previous section.

RPNXP A transactional store to an address marked for exclusive access in the global monitor for any other PE:

• Clears the marking if the transaction commits.

• May clear the marking if the transaction fails or is canceled.

RJFLH When entering Transactional state or exiting Transactional state by committing, canceling or failing a transaction:

• The local monitor state of the executing PE transitions to the Open access state.

• The final state of the global monitor state machine for the executing PE is IMPLEMENTATION DEFINED.

• The global monitor state machine for any other PE is not affected.

RNBWK If the global monitor state for a PE changes from Exclusive access to Open access because of entering or exiting
Transactional state, an event is generated and held in the Event register for that PE.

SHBSY Inserting any of the A64 atomic primitive instructions inside a transaction does not provide any extra functionality
to software. Sharing code among the transaction and its fallback path may lead to such instructions being executed
in transactional state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter C1. Transactional Memory Extension
C1.4. Transactions and memory attributes

C1.4 Transactions and memory attributes

ICBHX Some system implementations might not support transactional accesses for all regions of the memory. This can
apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Device memory, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation
that does support hardware cache coherency.

RFVGF In such implementations, it is defined by the system which address ranges or memory types support transactional
accesses.

RNZRZ The memory types for which it is architecturally guaranteed that transactional accesses are supported are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

RLMVV If transactional accesses are not supported for an address range or memory type, then performing a transactional
load or a transactional store to such a location fails the transaction with IMP cause.

IJXXM Memory accesses generated by different instructions inside a transaction can have different shareability attributes.

RLSXT When accesses to any two Locations generated by the same instruction inside a transaction have different
shareability attributes then the results are CONSTRAINED UNPREDICTABLE. For more information, see Arm®
Architecture Reference Manual, for A-profile architecture [1] Memory access restrictions.

RDCWP Accesses, including transactional accesses, by multiple PEs to a Location with mismatched attributes leads to
CONSTRAINED UNPREDICTABLE behavior. For more information, see Arm® Architecture Reference Manual, for
A-profile architecture [1] Mismatched memory attributes.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter C1. Transactional Memory Extension
C1.5. Address translation

C1.5 Address translation

C1.5.1 Transactional translation table walks

RYCTD Transactional memory accesses to a given address are permitted to perform translation table walks, except when
the transactional memory access originates from EL0 and either of the following cases holds:

• The address is translated using TTBR0_EL1, and TCR_EL1.NFD0==1.

• The address is translated using TTBR1_EL1, and TCR_EL1.NFD1==1.

• The address is translated using TTBR0_EL2, and TCR_EL2.NFD0==1.

• The address is translated using TTBR1_EL2, and TCR_EL2.NFD1==1.

RMZBV A transactional memory access that is not permitted to perform a translation table walk and would otherwise
generate an exception in Non-transactional state fails the transaction with ERR cause without generating an
exception.

XWRWD This scheme addresses timing attacks on Kernel Address Space Layout Randomization. If TCR_EL1.NFD1 is set,
an EL0 transaction that attempts to probe the kernel address space will always fail with the same timing and the
same failure cause because either there is a TLB miss and the transaction fails with ERR cause, or there is a TLB
hit and a suppressed MMU permission fault (assuming TTBR1_EL1 address range is protecting itself from EL0
accesses) fails the transaction with ERR cause. This way the malicious software should not be able to distinguish
between the two cases.

C1.5.2 Hardware management of the Access flag and dirty state

RZNNY TME requires that the implementation supports hardware management of the Access flag and dirty state. For more
information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Hardware management of the
Access flag and dirty state.

RKGPQ Transactional memory accesses follow the rules for updating the Access flag and dirty state as described in Arm®
Architecture Reference Manual, for A-profile architecture [1] Hardware management of the Access flag and dirty
state and Arm® Architecture Reference Manual, for A-profile architecture [1] Ordering of hardware updates to the
translation tables.

RNCHW When hardware updating of the Access flag is enabled, updates to the stage 1 and stage 2 Access flag generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

RSSNZ When hardware updating of the dirty state is enabled, updates to the stage 1 and stage 2 dirty state generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

ILZDF Arm requires hardware management of the Access flag and dirty state for performance reasons.

SJKDY Software management of the Access flag would mean that when a page is accessed for the first time inside a
transaction, the transaction fails and is re-executed in Non-transactional state.

ITMBP Arm requires allowing transactional dirty state updates to become observable even if the responsible transaction
fails or is canceled for performance reasons. Otherwise, every time a page is written for the first time inside a
transaction, then either the transaction fails which is bad for performance, or the hardware must manage the dirty
state updates until the PE exits Transactional state which increases implementation complexity.

C1.5.3 TLB shoot-down

RXVMC A TLBI by another PE that applies to a Location in the transactional read set or the transactional write set of the
currently executing transaction causes that transaction to fail.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter C1. Transactional Memory Extension
C1.5. Address translation

IYJQH In order to provide this functionality, an implementation needs to either track the Virtual to Physical Address
mappings for the Locations in the transactional read or write sets of the transaction that is currently executing, or fail
the transaction on any invalidation by another PE. In the former case, if a transaction exceeds the IMPLEMENTATION
DEFINED tracking limit of Virtual to Physical Address mappings, then the transaction fails.

IRFLJ For performance reasons, Arm recommends that the implementation does not fail the transaction if the ASID and
VMID of an invalidation by another PE, does not match the one of the currently executing transaction.

C1.5.4 Translation table modifications inside transactions

IKXRF The required break-before-make sequence described in theArm® Architecture Reference Manual, for A-profile
architecture [1] General TLB maintenance requirements for updating translation table entries cannot be executed
inside a transaction, since the required TLBI and DSB instructions lead to transaction failure (see Table C1.4 and Table
C1.6).

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter C1. Transactional Memory Extension
C1.6. Modification of instructions in Transactional state

C1.6 Modification of instructions in Transactional state

IZMVM The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for shared memory locations. For more information, see Arm® Architecture Reference Manual, for A-profile
architecture [1] Implication of caches for the application programmer.

RRLTS TME follows the rules for concurrent modification and execution of instructions as explained in Arm® Architecture
Reference Manual, for A-profile architecture [1] Concurrent modification and execution of instructions.

RCLBS TME does not guarantee that a transactional thread of execution T is isolated from a non-transactional thread of
execution making modifications to the instruction stream of T.

See also Table C1.6 for the behavior of ISB and DSB instructions in Transactional state.

ICVKD This implies that a transactional thread of execution cannot modify its own instruction stream, or other instruction
streams using the mechanism suggested in Arm® Architecture Reference Manual, for A-profile architecture
[1] Concurrent modification and execution of instructions, since transactional writes are not observable until a
transaction commits and the DSB instruction required for synchronization of the modifications fails the transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter C1. Transactional Memory Extension
C1.7. Interrupt masking

C1.7 Interrupt masking

RTTSQ In Transactional state, interrupts are pended, and unmasked interrupts are taken when Transactional state is exited.

RCHZK In the absence of a specific requirement to take an interrupt, it is IMPLEMENTATION DEFINED if the delivery of
an unmasked interrupt fails the transaction, but the architecture requires that the interrupt is taken in finite time.
For more information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Prioritization and
recognition of interrupts.

RBFMS If the delivery of an unmasked interrupt fails the transaction, the failure cause reported is IMP.

ILHSC Transactional code with sufficient privileges can change the value of DAIF or ICC_PMR_EL1 to mask or unmask
interrupts.

RNXXN A transaction fails with IMP cause and INT set if both of the following happen:

• an unmasked interrupt delivered to a PE leads to the currently executing transaction on the PE to fail, and
• upon restoring DAIF and ICC_PMR_EL1 the interrupt becomes masked again and will not be taken.

XMLVZ If the transaction fails or is canceled the DAIF and ICC_PMR_EL1 registers are restored to the values they held
before entering Transactional state. This action will affect the masking or unmasking of interrupts before the first
non-transactional instruction executes. If the implementation decides to fail the transaction when the interrupt
is delivered, then after the values of DAIF and ICC_PMR_EL1 are restored to their pre-transactional state, the
interrupt will be masked and will not be taken. But if the transaction restarts then, as soon as interrupts are
transactionally re-enabled, the transaction will fail because there is a pending interrupt. To avoid a livelock this is
reported as a non-restartable failure. For more information, see Section C1.2.2 Transaction checkpoint.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

C1.8 A64 instruction behavior in Transactional state

RNHND Transactional state changes the execution of some A64 instructions.

This section includes the affected instructions and their expected behavior in Transactional state.

RQHYS Any instruction not included in this section behaves the same in Transactional state as in Non-transactional state.

RSHQC • Exception level changes cannot occur. Executing an instruction that would otherwise generate an Exception
level change fails the transaction with ERR cause as described in this document.

RLXPV • Synchronous exceptions are suppressed and fail the transaction with ERR cause. See Sections C2.1.1
Breakpoint Instruction exceptions, C2.1.2 Breakpoint exceptions, and C2.1.3 Watchpoint exceptions for
details.

Table C1.1: Exception generating instructions

Mnemonic Instruction Behavior

BRK Breakpoint Instruction See Section C2.1.1 Breakpoint Instruction exceptions

HLT Halt Instruction See Section C2.2.2 Halting Instruction debug event

HVC Generate exception targeting EL2 Transaction fails with ERR cause

SMC Generate exception targeting EL3 Transaction fails with ERR cause

SVC Generate exception targeting EL1 Transaction fails with ERR cause

Table C1.2: Exception return instructions

Mnemonic Instruction Behavior

ERET Exception return using current ELR and SPSR Transaction fails with ERR cause

ERETAA, ERETAB Exception return with pointer authentication Transaction fails with ERR cause

Table C1.3: System register instructions

Mnemonic Instruction Behavior

MRS Move System register to general-purpose register See Section C1.8.1 MRS

MSR (register) Move general-purpose register to System register See Section C1.8.2 MSR (register)

MSR (immediate) Move immediate to PSTATE field See Section C1.8.3 MSR (immediate)

Table C1.4: System instructions

Mnemonic Instruction Behavior

SYS System instruction See Section C1.8.4 SYS and SYSL

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

Mnemonic Instruction Behavior

SYSL System instruction with result See Section C1.8.4 SYS and SYSL

IC Instruction cache maintenance Transaction fails with ERR cause

DC except DC ZVA Data cache maintenance Transaction fails with ERR cause

DC ZVA Data cache zero Same as in Non-transactional state

AT Address translation Transaction fails with ERR cause

TLBI TLB Invalidate Transaction fails with ERR cause

Table C1.5: Hint instructions

Mnemonic Instruction Behavior

NOP No operation Same as in Non-transactional state

YIELD Yield hint Same as in Non-transactional state

WFE Wait for event See Section C1.8.5 Wait for Event

WFI Wait for interrupt Transaction fails with ERR cause

SEV Send event Same as in Non-transactional state

SEVL Send event local Same as in Non-transactional state

HINT Unallocated hint Same as in Non-transactional state

Table C1.6: Barrier and CLREX instructions

Mnemonic Instruction Behavior

CLREX Clear exclusive monitor Same as in Non-transactional state

DSB Data synchronization barrier Transaction fails with ERR cause

DMB Data memory barrier See C1.8.6 DMB

ESB Error synchronization barrier Transaction fails with ERR cause

ISB Instruction synchronization barrier See C1.8.7 ISB

PSB CSYNC Profiling synchronization barrier Same as in Non-transactional state

TSB CSYNC Trace synchronization barrier Same as in Non-transactional state

C1.8.1 MRS

RKTMD Registers encoded with op0==0b10 are not accessible at any Exception level.

RZTYF Registers encoded with op0==0b11 and CRn==12, except ICC_HPPIR0_EL1, ICC_HPPIR1_EL1, ICC_RPR_EL1,
are not accessible at any Exception level.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

RVJST If enhanced nested virtualization is enabled and the read of a permitted System register is transformed to a read
from memory, then the generated read is considered transactional.

RMCFP Attempting to read a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

RKPDH If a read from memory generates any exception, the exception is suppressed and the transaction fails with ERR
cause without trapping.

C1.8.2 MSR (register)

RCKFL Registers FPCR, FPSR, NZCV, DAIF, ICC_PMR_EL1, and PMSWINC_EL0 are accessible at the same Exception
levels as in Non-transactional state.

RSTQJ All other registers are not accessible at any Exception level.

RXZGW Attempting to write a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

C1.8.3 MSR (immediate)

RMNFL Only the instruction forms that select the MSR DAIFSet and MSR DAIFClr instructions are defined.

RSGNZ All other encodings are reserved, and the corresponding instructions are UNDEFINED.

RDNMG Attempting to execute an UNDEFINED instruction fails the transaction with ERR cause without trapping.

C1.8.4 SYS and SYSL

RLKNM The accessibility of the instructions encoded with op0=0b01 and CRn=0b1x11 is IMPLEMENTATION DEFINED.

RGKLF Attempting to execute an undefined instruction fails the transaction with ERR cause without trapping.

C1.8.5 Wait for Event

RBXPX If executing a WFE instruction in Non-transactional state would trap to a higher Exception level, then the transaction
fails with ERR cause without trapping.

Otherwise, the WFE instruction behaves the same as in Non-transactional state.

RGPGL A transaction that has entered low-power state due to the execution of a WFE instruction is called a waiting
transaction.

RFCPL A PE that enters a low-power state continues to track and respond to transactional conflicts with memory accesses
from other PEs.

RGFJL It is IMPLEMENTATION DEFINED whether a waiting transaction that receives a WFE wake-up event resumes
execution without failing. For more information, see Arm® Architecture Reference Manual, for A-profile architec-
ture [1] Wait for Event mechanism and Send event.

RKYSZ A waiting transaction is permitted to fail for any IMPLEMENTATION DEFINED reason before a wake-up event is
received.

IPMZF Arm recommends that a waiting transaction fails on a transactional conflict with another PE, for performance
reasons.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

IFFTN Arm recommends that waiting transactions do not fail upon receiving a wake-up event that is not an interrupt that
must be taken, for performance reasons.

The following is a non-exhaustive list of wake-up events that could safely resume a transaction:

RZVBJ • The execution of an SEV instruction on any other PE in the multiprocessor system.

RZRNN • An event sent by the timer event stream for the PE. For more information, see Arm® Architecture Reference
Manual, for A-profile architecture [1] Event streams.

RFDMK • An event caused by the clearing of the global monitor for the PE.

RLPBD • A masked interrupt.

C1.8.6 DMB

RSHWX Transactional accesses to Device or Normal Non-cacheable memory that appear before the DMB in program order
are merged with transactional accesses to Device or Normal Non-cacheable memory of the same type (read or
write) to the same Location that appear in program order after the DMB, if they are executed in the same transaction.

RXMCB If transactional accesses, executing in the same transaction containing the DMB, access the same memory-mapped
peripheral of arbitrary system-defined size, then it is not guaranteed that accesses in program order before the
DMB that are accessing Device or Normal Non-cacheable memory will arrive at the peripheral before accesses in
program order after the DMB that are accessing Device or Normal Non-cacheable memory.

C1.8.7 ISB

RNLMZ Executing an ISB instruction in Transactional state is a Context synchronization event, with the same effects of a
Context synchronization event in Non-transactional state except that unmasked interrupts that are pending at the
time of the Context synchronization event are not required to be taken.

RYHLW If halting is allowed, any Halting debug event that is pending before the ISB instruction is executed fails the
transaction with DBG cause.

RJVGJ It is IMPLEMENTATION DEFINED whether or not the transaction fails if there are pending unmasked interrupts
when the ISB instruction is executed.

INMWC If the first instruction after exiting Transactional state generates a synchronous exception, then the architecture
does not define whether the PE takes the interrupt or the synchronous exception first.

See also Section C1.7 Interrupt masking.

C1.8.8 First-fault and Non-fault load instructions

IHMFW SVE provides a First-fault option for some SVE vector load instructions. For more information, see Arm®
Architecture Reference Manual, for A-profile architecture [1] Glossary.

RNMXZ In Transactional state, SVE’s First-fault option causes memory access faults to be suppressed without causing the
transaction to fail if they do not occur as a result of the First active element of the vector.

Instead, the FFR is updated to indicate which of the active vector elements were not successfully loaded (see Arm®
Architecture Reference Manual, for A-profile architecture [1] FFR, First Fault Register).

IGHCR SVE provides a Non-fault option for some SVE vector load instructions. For more information, see Arm®
Architecture Reference Manual, for A-profile architecture [1] Glossary.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

RQVYD In Transactional state, SVE’s Non-fault option causes all memory access faults to be suppressed without causing
the transaction to fail.

Instead, the FFR is updated to indicate which of the active Vector elements were not successfully loaded (see
Arm® Architecture Reference Manual, for A-profile architecture [1] FFR, First Fault Register).

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter C1. Transactional Memory Extension
C1.9. Reset

C1.9 Reset

RKFBV All the rules described in the Arm® Architecture Reference Manual, for A-profile architecture [1] Reset section
apply whether or not the PE is in Transactional state when a Cold or a Warm reset is asserted.

RZGNK If the PE resets to AArch64 state using either a Cold or a Warm reset, the PE resets to Non-transactional state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter C1. Transactional Memory Extension
C1.10. Identification mechanism

C1.10 Identification mechanism

RXXMT The implementation of TME is identified by ID_AA64ISAR0_EL1.TME.

IWFVR Although TME defines no instruction enables and disables, or trap controls, Arm recommends the addition of
an instruction disable control in ACTLR_ELx for the highest implemented Exception level which if set has the
following effect:

• The bits in ID_AA64ISAR0_EL1.TME are RES0.

• The TME instructions are UNDEFINED at EL0 and above.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter C2
Debug, PMU, Trace

C2.1 Self-hosted debug

C2.1.1 Breakpoint Instruction exceptions

RBTRM In Transactional state, executing a breakpoint instruction fails the transaction with a DBG cause, without raising
a Breakpoint Instruction exception. For more information on breakpoint instructions, see Arm® Architecture
Reference Manual, for A-profile architecture [1] Breakpoint Instruction exceptions.

IFDMB A transaction with a breakpoint instruction cannot make forward progress; it will always fail. The software is
responsible for reading the failure information returned by TSTART and acting accordingly.

C2.1.2 Breakpoint exceptions

RHLHZ In Transactional state, Breakpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on breakpoint exceptions, see Arm® Architecture Reference Manual, for A-profile architecture [1]
Breakpoint exceptions.

IVMWG A hardware breakpoint will continuously fail a restarting transaction until either the breakpoint conditions are
not met (e.g., the transactional code follows a different execution path), or the breakpoint is disabled. It is the
responsibility of the software to detect this situation and act accordingly.

C2.1.3 Watchpoint exceptions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter C2. Debug, PMU, Trace
C2.1. Self-hosted debug

RWSMX In Transactional state, Watchpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on watchpoint exceptions, see Arm® Architecture Reference Manual, for A-profile architecture [1]
Watchpoint exceptions.

IQHCS A hardware watchpoint will continuously fail a restarting transaction until either the watchpoint conditions are not
met (e.g., the transactional code accesses different Locations), or the watchpoint is disabled. It is the responsibility
of the software to detect this situation and act accordingly.

C2.1.4 Software Step exceptions

RTCSR In Non-transactional state, executing a TSTART instruction when software step is active-not-pending fails the
transaction with DBG cause. For more information on active-not-pending, see Arm® Architecture Reference
Manual, for A-profile architecture [1] Software Step exceptions.

IVYYF Enabling or disabling software step is not possible in Transactional state because attempting to update
MDSCR_EL1.SS fails the transaction. For more information, see Section C1.8.2 MSR (register).

RJNVJ If PSTATE.D is cleared inside a transaction and MDSCR_EL1.SS is 1 when entering Transactional state, the
transaction fails with DBG cause.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter C2. Debug, PMU, Trace
C2.2. External debug

C2.2 External debug

For the definitions of the various Halting debug events, see Arm® Architecture Reference Manual, for A-profile
architecture [1] Halting Debug Events.

C2.2.1 Breakpoint and Watchpoint debug events

RCLHP In Transactional state, a Breakpoint debug event or a Watchpoint debug event that would otherwise cause entry to
Debug state, fails the transaction with DBG cause without entering Debug state.

For more information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Breakpoint and
Watchpoint debug events.

C2.2.2 Halting Instruction debug event

RCVJX If EDSCR.HDE == 0 or if halting is prohibited, then executing a HLT instruction in Transactional state fails the
transaction with ERR cause.

RXHFX If EDSCR.HDE == 1 and halting is allowed, then executing a HLT instruction in Transactional state fails the
transaction with a DBG cause without entering Debug state.

For more information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Halt Instruction
debug event.

C2.2.3 Halting Step debug events

RBWLB In Non-transactional state, executing a TSTART instruction when Halting step is active-not-pending fails the
transaction with DBG cause. For more information on Halting step, see Arm® Architecture Reference Manual, for
A-profile architecture [1] Halting Step debug events.

IGTHQ Enabling or disabling Halting step is not possible in Transactional state because attempting to update EDECR.SS
fails the transaction as per Section C1.8.2 MSR (register).

For more information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Halting Step debug
events.

C2.2.4 External Debug Request debug event

RBWYJ If halting is allowed, all of the following applies:

• External Debug Request debug events asserted in Transactional state are pended.
• Unmasked External Debug Request debug events are taken when the Processing Element (PE) exits

Transactional state.
• In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of an

unmasked External Debug Request debug event fails the transaction, but the architecture requires that the
External Debug Request debug event is taken in finite time as per Arm® Architecture Reference Manual, for
A-profile architecture [1] Synchronization and External Debug Request debug events.

• If the delivery of an unmasked External Debug Request debug event fails the transaction, the failure cause
reported is DBG.

See also:

• External Debug Request debug event in the Arm® Architecture Reference Manual, for A-profile architecture
[1].

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter C2. Debug, PMU, Trace
C2.2. External debug

• C1.8.7 ISB.

C2.2.5 Reset Catch debug event

RBJTP If halting is allowed, all of the following applies:

• Reset Catch debug events asserted in Transactional state are pended and are taken when the PE exits
Transactional state.

• In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of a Reset
Catch debug event fails the transaction, but the architecture requires that the Reset Catch debug event is taken
in finite time as per Arm® Architecture Reference Manual, for A-profile architecture [1] Synchronization and
Halting debug events.

• If the delivery of a Reset Catch debug event fails the transaction, the failure cause reported is DBG.

See also:

• Reset Catch debug events in the Arm® Architecture Reference Manual, for A-profile architecture [1].
• C1.8.7 ISB.

C2.2.6 Other Halting debug events

IWTFX Exception Catch debug events cannot occur inside a transaction because an exception entry or exception return
cannot occur inside a transaction. For more information on Exception Catch, see Arm® Architecture Reference
Manual, for A-profile architecture [1] Exception Catch debug event.

IJYVR OS Unlock Catch debug events, and Software Access debug events cannot occur inside a transaction because they
are generated by accesses to System registers that cannot occur inside a transaction.

See also:

• OS Unlock Catch debug event in the Arm® Architecture Reference Manual, for A-profile architecture [1].
• Software Access debug event in the Arm® Architecture Reference Manual, for A-profile architecture [1].

C2.2.7 Behavior in Debug state

RFKXF The TCOMMIT instruction is unchanged in Debug state.

IFDRG TCOMMIT follows the rules described in the Any instruction that is UNDEFINED in Non-debug state topic of the
Arm® Architecture Reference Manual, for A-profile architecture [1] since the PE cannot enter Transactional state
in Debug state and TCOMMIT is UNDEFINED in Non-transactional state.

RRVKB TCANCEL and TTEST are CONSTRAINED UNPREDICTABLE in Debug state.

IZKFG TCANCEL and TTEST follow the rules described in the Arm® Architecture Reference Manual, for A-profile architecture
[1] All other instructions.

RNQSW TSTART is CONSTRAINED UNPREDICTABLE in Debug state.

RXYLB TSTART behaves in one of the following ways:

• It is UNDEFINED.

• It executes as a NOP.

• It does not enter Transactional state and it returns an UNKNOWN value.

C2.2.8 The PC Sample-based Profiling Extension

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter C2. Debug, PMU, Trace
C2.2. External debug

RNPQB All the rules described in Arm® Architecture Reference Manual, for A-profile architecture [1] The PC Sample-based
Profiling Extension chapter apply to a PE in Transactional state too.

RQCCR Additionally, Transactional Memory Extension (TME) extends PPMPCSR to indicate if a sample references an
instruction executed in Transactional state or Non-transactional state.

ISHHH Like in Non-transaction state, only reference instructions that were committed for execution are sampled in
Transactional state.

IVYCF Samples can reference instructions from failed or canceled transactions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter C2. Debug, PMU, Trace
C2.3. The Statistical Profiling Extension

C2.3 The Statistical Profiling Extension

C2.3.1 Memory accesses by profiling operations

RTYGM The profiling operation executes independently of the instructions that are executed on the PE and acts as a separate
memory observer from the PE in the system. For more information, see Arm® Architecture Reference Manual, for
A-profile architecture [1] Synchronization and Statistical Profiling.

RXXLF If a profiling write operation overlaps with the read-set or write-set of a transaction, it is constraint UNPREDICTABLE
whether:

• The write has the same effect on the transaction as a store by any other Observer to that address.
• The write has no effect on this transaction.

RZVWK A profiling operation executes independently of the instruction or instructions that are executed on the PE and acts
as a separate memory observer from the PE in the system.

RTSLS Writes to the Profiling Buffer generated by profiling operations in Transactional state are considered
non-transactional and as such:

• They are not part of the transactional write set.

• They are observable even if the transaction fails or is canceled.

RGJXT For a sampled operation, if the operation is executed in Transactional state then Events packet.E[16] (Transactional)
is set to 1.

SPHDN Software can use PMSEVFR_EL1[16] to filter recording of sampled operations based on the Transactional flag.

C2.3.2 Events packet payload

TME extends existing the Statistical Profiling Extension (SPE) protocol with the following events packet payload:

RQPZV E[16], byte 2 bit [0]

If TME is not implemented, this bit reads-as-zero. The possible values of this bit are:

0 Operation executed in Non-transactional state.

1 Operation executed in Transactional state.

C2.3.3 Profile Buffer management interrupts

INTMY See Section C1.7 Interrupt masking for the treatment of interrupts in Transactional state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter C2. Debug, PMU, Trace
C2.4. The Embedded Trace Extension

C2.4 The Embedded Trace Extension

For all information, see Chapter D1 Embedded Trace Extension.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

C2.5 The Performance Monitors Extension

C2.5.1 Event filtering

IWKDW TME extends the filtering capabilities of the PMU to enable filtering by Transactional state.

RNDRV For each Attributable event, if the value of PMEVTYPER<n>_EL0.T is 1, then the event is counted only if the PE
is in Transactional state.

Otherwise, for each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

RLFKP TME adds new events that count transitions between Transactional and Non-transactional states. It is IMPLE-
MENTATION DEFINED if these events are considered to occur in Transactional or Non-transactional state. See the
description of the individual events in Table C2.2 for more details.

ILNQD For the definition of Attributable and Unattributable, see Arm® Architecture Reference Manual, for A-profile
architecture [1] Attributability.

C2.5.2 Accuracy of event filtering

RQJQP TME does not require filtering by Transactional state to be accurate. For more information, see Arm® Architecture
Reference Manual, for A-profile architecture [1] Accuracy of event filtering.

IWXMC For many events, during a transition between Transactional and Non-transactional states, events generated by
instructions executed in one state can be counted in the other state.

RVTYX It is not permitted for the following events to be counted in the wrong state:

• Any event classified as Instruction architecturally executed.

• Any event classified as Instruction architecturally executed, Condition code check pass.

• EXC_TAKEN, Exception taken.

IVMRV For the definition of Instruction architecturally executed, and Instruction architecturally executed, Condition
code check pass, see Arm® Architecture Reference Manual, for A-profile architecture [1] PMU events and event
numbers.

RFWHG TME adds the following required events.

Table C2.2: TME related events

Number Type Mnemonic Description

0x4030 Arch TSTART_RETIRED See C2.5.3 TSTART_RETIRED

0x4031 Arch TCOMMIT_RETIRED See C2.5.4 TCOMMIT_RETIRED

0x4032 Arch TME_TRANSACTION_FAILED See C2.5.5
TME_TRANSACTION_FAILED

0x4034 Arch TME_INST_RETIRED_COMMITTED See C2.5.6
TME_INST_RETIRED_COMMITTED

0x4035 Microarch TME_CPU_CYCLES_COMMITTED See C2.5.7
TME_CPU_CYCLES_COMMITTED

0x4038 Microarch TME_FAILURE_CNCL See C2.5.8 TME_FAILURE_CNCL

0x403A Microarch TME_FAILURE_ERR See C2.5.9 TME_FAILURE_ERR

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

Number Type Mnemonic Description

0x403B Microarch TME_FAILURE_IMP See C2.5.10 TME_FAILURE_IMP

0x403C Microarch TME_FAILURE_MEM See C2.5.11 TME_FAILURE_MEM

0x4039 Microarch TME_FAILURE_NEST See C2.5.12 TME_FAILURE_NEST

0x403D Microarch TME_FAILURE_SIZE See C2.5.13 TME_FAILURE_SIZE

0x403E Microarch TME_FAILURE_TLBI See C2.5.14 TME_FAILURE_TLBI

0x403F Microarch TME_FAILURE_WSET See C2.5.15 TME_FAILURE_WSET

C2.5.3 TSTART_RETIRED

RNRPB The counter increments for every architecturally executed TSTART instruction that starts an outer
transaction.

RHKGP If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not TSTART_RETIRED
increments the counter.

C2.5.4 TCOMMIT_RETIRED

RCKYT The counter increments for every architecturally executed TCOMMIT instruction that commits an outer
transaction.

RXCGL If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TCOMMIT_RETIRED increments the counter.

C2.5.5 TME_TRANSACTION_FAILED

RYVWS The counter increments for every transaction that fails or is canceled.

RJKPJ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_TRANSACTION_FAILED increments the counter.

C2.5.6 TME_INST_RETIRED_COMMITTED

RLPZF The counter increments for every architecturally executed instruction in Transactional state if the
currently executing transaction commits.

IWBGV It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 232-1.

ICJMQ Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored
to the value it had when the transaction started.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value.

C2.5.7 TME_CPU_CYCLES_COMMITTED

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

RRMSG The counter increments on every cycle the PE is in Transactional state if the currently executing
transaction commits.

RDSFD All counters are subject to changes in clock frequency, including when a WFI or WFE
instruction stops the clock. This means that it is CONSTRAINED UNPREDICTABLE whether or not
TME_CPU_CYCLES_COMMITTED continues to increment when the clocks are stopped by WFI and
WFE instructions.

RJBQT In a multithreaded implementation, TME_CPU_CYCLES_COMMITTED counts each cycle for the
processor for which this PE thread was active and could issue an instruction. For more information,
see Arm® Architecture Reference Manual, for A-profile architecture [1] Cycle event counting on
multithreaded implementations.

IWMBD It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 232-1.

ICFNH Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored
to the value it had when the transaction started.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value.

C2.5.8 TME_FAILURE_CNCL

RBTWV The counter increments for every transaction that fails with CNCL cause.

RLVHX If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_CNCL increments the counter.

C2.5.9 TME_FAILURE_ERR

RNJXX The counter increments for every transaction that fails with ERR cause.

RXDTJ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_ERR increments the counter.

C2.5.10 TME_FAILURE_IMP

RTCHY The counter increments for every transaction that fails with IMP cause.

RSFBT If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_IMP increments the counter.

C2.5.11 TME_FAILURE_MEM

RFFTX The counter increments for every transaction that fails with MEM cause.

RZTDY If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_MEM increments the counter.

C2.5.12 TME_FAILURE_NEST

RLRJQ The counter increments for every transaction that fails with NEST cause.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

RQWVR If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_NEST increments the counter.

C2.5.13 TME_FAILURE_SIZE

RLDPC The counter increments for every transaction that fails with SIZE cause.

RBZTQ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_SIZE increments the counter.

C2.5.14 TME_FAILURE_TLBI

RMXRY The counter increments for every transaction that fails with IMP cause due to the execution of a TLBI
instruction by another PE.

RFFTW If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_TLBI increments the counter.

C2.5.15 TME_FAILURE_WSET

RBSJR The counter increments for every transaction that fails with SIZE cause due to a memory access that
causes an eviction of an entry from the transactional write set.

RQZHV If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_WSET increments the counter.

C2.5.16 Behavior on overflow

RRGWF A Performance Monitors counter overflow while in Transactional state behaves the same as in Non-transactional
state. For more information, see Arm® Architecture Reference Manual, for A-profile architecture [1] Behavior on
overflow.

RDGMD A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not set the overflow status bit in PMOVSCLR if the currently
executing transaction fails.

RPPFR A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not generate an overflow interrupt request in Transactional
state.

IKHXN Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly and sets the overflow status bit when the
counter overflows. If the system is programmed to generate an interrupt on overflow, the interrupt is not
generated until the transaction commits. If the transaction fails, both the counter and the overflow status bit
are restored to the value they had when the transaction started, and no interrupt is generated.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value. If the counter update overflows the counter value, then the overflow
status bit is set, and if the system is programmed to generate an interrupt on overflow, then an interrupt is
generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter C3
System registers

Transactional Memory Extension (TME) extends existing AArch64 registers with the following fields.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter C3. System registers
C3.1. General system control registers

C3.1 General system control registers

C3.1.1 CTR_EL0

RLCCW ERG, bits [23:20]

Exclusives reservation granule, and, if TME is implemented, transactional reservation granule. Log2
of the number of words of the maximum size of the reservation granule for the Load-Exclusive and
Store-Exclusive instructions, and, if TME is implemented, for detecting transactional conflicts.

A value of 0b0000 indicates that this register does not provide granule information and the architectural
maximum of 512 words (2KB) must be assumed.

Value 0b0001 and values greater than 0b1001 are reserved.

C3.1.2 ID_AA64ISAR0_EL1

RVJLM TME, bits [27:24]

Indicates whether TME instructions are implemented. Defined values are:

0000 No TME instructions are implemented.

0001 TCANCEL, TCOMMIT, TSTART, and TTEST instructions are implemented.

C3.1.3 TCR_EL1

RNJGX NFD1, bit [54]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL1.

1 A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter C3. System registers
C3.1. General system control registers

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

RXNRP NFD0, bit [53]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR0_EL1.

1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C3.1.4 TCR_EL2

RQWCK NFD1, bit [54]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL2.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter C3. System registers
C3.1. General system control registers

1 A TLB miss on a virtual address that is translated using TTBR1_EL2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

RMWBR NFD0, bit [53]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR0_EL2.

1 A TLB miss on a virtual address that is translated using TTBR0_EL2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C3.1.5 ISS encoding for an exception from a TSTART instruction

RJKTZ Bits [24:10] Reserved, RES0

Rd, Bits [9:5] The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0] Reserved, RES0

C3.1.6 SCTLR_EL1

RNBFV TMT0, bit [50]

Forces a trivial implementation of TME at EL0.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter C3. System registers
C3.1. General system control registers

0b1 When the AArch64 TSTART instruction is executed at EL0,

the transaction fails with TRIVIAL cause.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

In a system where the Processing Element (PE) resets into EL1, this field resets to a value that is
architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RQHHT TMT, bit [51]

Forces a trivial implementation of TME at EL1.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

0b1 When the AArch64 TSTART instruction is executed at EL1,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RYCNC TME0, bit [52]

Enables the AArch64 TSTART instruction at EL0, otherwise traps to EL1.

The defined values are:

0b0 Any attempt at EL0 to execute the AArch64 TSTART instruction is trapped to EL1, (reported with ESR_ELx.EC
value 0b011011), subject to the exception prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause TSTART instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RNQPY TME, bit [53]

Enables the AArch64 TSTART instruction at EL1.

The defined values are:

0b0 Any attempt at EL1 to execute the AArch64 TSTART instruction is trapped

to EL1, (reported with ESR_ELx.EC value 0b011011), subject to the exception

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter C3. System registers
C3.1. General system control registers

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL1.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

C3.1.7 SCTLR_EL2

RHYJD TMT0, bit [50]

When HCR_EL2.{E2H,TGE} is {1,1}, forces a trivial implementation of TME at EL0.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

0b1 When the AArch64 TSTART instruction is executed at EL0,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RTXJP TMT, bit [51]

Forces a trivial implementation of TME at EL2.

The defined values are:

0 This control does not cause TSTART instructions to fail.

1 When the AArch64 TSTART instruction is executed at EL2,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RQZST TME0, bit [52]

When HCR_EL2.{E2H,TGE} is {1,1}, enables the AArch64 TSTART instruction at EL0, otherwise traps
to EL2.

The defined values are:

0b0 Any attempt at EL0 to execute the AArch64 TSTART instruction is trapped to EL2,

(reported with ESR_ELx.EC value 0b011011), subject to the exception prioritization rules,

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter C3. System registers
C3.1. General system control registers

unless HCR_EL2.TME or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RHHMY TME, bit [53]

Enables the AArch64 TSTART instruction at EL2.

The defined values are:

0b0 Any attempt at EL2 to execute the AArch64 TSTART instruction is trapped

to EL2, (reported with ESR_ELx.EC value 0b011011), subject to the exception

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL2.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

C3.1.8 SCTLR_EL3

RYDGG TMT, bit [51]

Forces a trivial implementation of TME at EL3.

The defined values are:

0 This control does not cause TSTART instructions to fail.

1 When the AArch64 TSTART instruction is executed at EL3,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RZRLR TME, bit [53]

Enables the AArch64 TSTART instruction at EL3.

The defined values are:

0b0 Any attempt at EL3 to execute the AArch64 TSTART instruction is trapped

to EL3, (reported with ESR_ELx.EC value 0b011011), subject to the exception

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter C3. System registers
C3.1. General system control registers

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL0, EL1 and EL2.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

C3.1.9 HCR_EL2

RWBJM TME, bit [39]

Enables the AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL{0,1}.

The defined values are:

0b0 The AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions are UNDEFINED

at EL{0,1}, and EL1 reads from ID_AA64ISAR0_EL1.TME return 0, when EL2 is

enabled in the current Security state.

0b1 This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

If EL2 is not implemented or is disabled in the current Security state, the system behaves as if this bit is
1.

Otherwise:

Reserved, RES0.

C3.1.10 SCR_EL3

RXYXB TME, bit [34]

Enables the AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL{0,1,2}.

The defined values are:

0b0 The AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions are

UNDEFINED at EL{0,1,2}, and EL{1,2} reads from ID_AA64ISAR0_EL1.TME return 0.

0b1 This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RES0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter C3. System registers
C3.2. Performance Monitors registers

C3.2 Performance Monitors registers

C3.2.1 PMEVTYPER<n>_EL0

RDQWK T, bit [23]

Transactional state filtering bit. Controls counting in Transactional state. If TME is not implemented,
this bit is RES0. The possible values of this bit are:

0 Count events in Non-transactional state and in Transactional state.

1 Count events in Transactional state only.

C3.2.2 PMCCFILTR_EL0

RKCZZ T, bit [23]

Non-transactional state filtering bit. Controls counting in Non-transactional state. If TME or PMUv3
are not implemented, this bit is RES0. The possible values of this bit are:

0 Count cycles in Non-transactional state and in Transactional state.

1 Count cycles in Transactional state only.

This bit resets to an architecturally UNKNOWN value on a reset.

C3.2.3 PMSEVFR_EL1

RRHWX E, bit [16]

Transactional. The possible values of this bit are:

0 Transactional event is ignored.

1 Do not record samples that have event 16 (Transactional) == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

This bit resets to an architecturally UNKNOWN value on a reset.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter C3. System registers
C3.3. Performance Monitors external registers

C3.3 Performance Monitors external registers

C3.3.1 PMPCSR

RRCJT T, bit [60]

Transactional state of the sample. Indicates the Transactional state that is associated with the most
recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

0 Sample is from Non-transactional state.

1 Sample is from Transactional state.

This field resets to a value that is architecturally UNKNOWN.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter C4
Instructions

Transactional Memory Extension (TME) adds the following instructions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter C4. Instructions
C4.1. TCANCEL

C4.1 TCANCEL

RVPTY The TCANCEL instruction exits Transactional state and discards all state modifications that are due to instructions that
were executed transactionally.

RDSCF Execution continues at the instruction that follows the TSTART instruction of the outer transaction.

RYFDC The destination register of the TSTART instruction of the outer transaction is written with the immediate operand of
TCANCEL.

TCANCEL #<imm>

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter C4. Instructions
C4.2. TCOMMIT

C4.2 TCOMMIT

RVVNT The TCOMMIT instruction commits the current transaction.

RYHKK If the current transaction is an outer transaction, then Transactional state is exited, and all state modifications due
to instructions that were executed transactionally are committed to the architectural state.

RXJVQ TCOMMIT takes no inputs and returns no value.

RSJJW Execution of TCOMMIT is UNDEFINED in Non-transactional state.

TCOMMIT

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter C4. Instructions
C4.3. TSTART

C4.3 TSTART

RWBJV This instruction starts a new transaction.

RNXXP If the transaction started successfully, the destination register is set to zero.

RVNLM If the transaction failed or was canceled, then all state modifications that are due to instructions that were executed
transactionally are discarded and the destination registers is written with a non-zero value that encodes the cause of
the failure.

TSTART <Xd>

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter C4. Instructions
C4.4. TTEST

C4.4 TTEST

RFZLN The TTEST instruction takes no inputs.

RVLYG The TTEST instruction writes the depth of the transaction to the destination register, or the value 0 otherwise.

TTEST <Xd>

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter C5
Interaction with Memory Tagging Extension

This section describes the interaction of Transactional Memory Extension (TME) with the Memory Tagging
Extension introduced in v8.5.

RSKRL The MTE instructions for Tag generation, Tag setting and getting, are allowed within a transaction. This means in
particular that the accesses to GCR_EL1 and RGSR_EL1 stemming from the MTE instructions are allowed within
a transaction, but it is IMPLEMENTATION DEFINED whether they are checkpointed.

RMYGP In the case of an asynchronous Tag Check Failure within a Transaction:

• Tag check failures configured to asynchronously accumulate failure status should not expect transaction
failure with ERR cause.

• If the transaction succeeds then reading TFSR_ELx.TFy status determines if there are any errors.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter C6
Transactional Memory Extension additional reading

For more information about the Transactional Memory Extension and litmus tests, elision locks and implementation
recommendations, see the appendixes of this document.

• Chapter G4 Transactional Memory Extension (TME) Litmus tests
• Chapter G5 Transactional Memory Extension (TME) Transactional Lock Elision
• Chapter G6 Transactional Memory Extension (TME) Implementation recommendations

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Part D
The Embedded Trace Extension

Chapter D1
Embedded Trace Extension

D1.1 Introduction

IJTPNL The FEAT_ETE describes the operation of a trace unit. The trace unit provides details about software control flow
running on a Processing Element (PE) which can be used to aid debugging or optimizing. The trace unit provides
filtering functionality to allow the targeting of the information to specific code regions or periods of operation.

ILVKQS The FEAT_ETE overlaps with the ETMv4 architecture Arm® Embedded Trace Macrocell Architecture Specification
ETMv4 [3]. The FEAT_ETE has additions to support new architecture features, and does not support all the
features of ETMv4. Readers familiar with ETMv4 should refer to Chapter D16 Functional Differences from
ETMv4.

D1.1.1 Mathematical notation

To aid the understanding of some of the functions defined by the ETE architecture are described in mathematical
notation. This table provides a description and examples of the symbols used within this document.

Symbol Function Example

A ∧ B AND 0 ∧ 0 = 0

1 ∧ 0 = 0

0 ∧ 1 = 0

1 ∧ 1 = 1

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter D1. Embedded Trace Extension
D1.1. Introduction

Symbol Function Example

A ∨ B OR 0 ∨ 0 = 0

1 ∨ 0 = 1

0 ∨ 1 = 1

1 ∨ 1 = 1

¬A NOT(A) ¬0 = 1

¬1 = 0∏
n

f(n) Product f(0)× f(1) × · · · × f(N) ≡ f(0) ∧ f(1)
∧ · · · ∧ f(N)∑

n

f(n) Sum f(0) + f(1) + · · ·+ f(N) ≡ f(0) ∨ f(1)
∨ · · · ∨ f(N)

x mod q modular 5 mod 4 = 1

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter D1. Embedded Trace Extension
D1.2. Attributes of tracing

D1.2 Attributes of tracing

XRGLSR The attributes of PE tracing are:

Trace is generated in real time Trace provides a means of observing the PE operation while the PE is running.
For diagnostic purposes, this is useful as some types of erroneous behavior are only solvable by observing
the system during runtime. In addition, because the PE trace can include cycle counts, trace can be used for
PE profiling purposes.

Trace has a minimal effect on functional performance of the PE Usually, trace has no effect on the functional
performance of the PE. This attribute does depend on the market use of the PE being debugged, however,
and on the trace requirements for the PE and the trace solution that is adopted to meet those requirements.
For some markets, some impact on PE performance is acceptable but for others, most notably in real-time
systems, an impact on PE performance might be unacceptable.

Trace is available for self-hosted analysis The trace from a PE or process is available for analysis by software
running on the target. See D1.3 Self-hosted Trace.

Trace is deeply embedded in an SoC Trace provides a method of debugging software executing on PEs that are
deeply embedded within an SoC.

Trace is available for external analysis The trace from a PE or process can be exported off chip for analysis by
external tools.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter D1. Embedded Trace Extension
D1.3. Self-hosted Trace

D1.3 Self-hosted Trace

XFNMRL Self-hosted trace is used for various purposes, including:

Non-invasive single stepping The trace provides a history of execution similar to that obtained by single-stepping
through code.

Failure logging This is similar to a stack trace dump when a failure occurs.

Performance analysis The trace might be used with other trace sources or performance analysis units to analyze
program performance.

Capturing the trace on-chip involves either:

Use of system memory The trace output from the trace unit is directed to a buffer in main system memory via
the Trace Buffer Unit defined by FEAT_TRBE.

Use of existing shared system memory, where some main system memory is reserved for trace capture
The trace output from the trace unit is directed to the reserved memory over the main system bus, typically
using CoreSight technology such as a CoreSight Embedded Trace Router (ETR).

Use of a dedicated on-chip buffer The trace output from the trace unit is directed to the dedicated memory,
typically using CoreSight technology such as a CoreSight Embedded Trace Buffer (ETB). A dedicated bus
such as AMBA ATB is also usually implemented between the trace unit and the dedicated memory. Use of
dedicated memory means that PE tracing can be performed with zero or minimal effect on system behavior.

AMBA ATB is defined by the AMBA ATB Protocol Specification [4].

See also:

• Chapter E1 Trace Buffer Extension

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter D1. Embedded Trace Extension
D1.4. External Debug

D1.4 External Debug

XTQGBH External debug is commonly used in trace applications that require long-term logging of behavior. In addition,
external debug is more likely to be used when the impact of PE tracing on system performance must be minimized.

For example, external debug might be used:

• For debugging real-time systems.
• When analyzing programs that do not frequently vary their behavior.
• For debugging software, where a history of execution is required up to the point of failure.

Exporting the trace off-chip usually involves one of the following methodologies:

Real-time continuous export

XVJBMM This can be done using either:

• A dedicated trace port capable of sustaining the bandwidth of the trace.
• An existing interface on the SoC, such as a USB or other high-speed port.

Use of a dedicated trace port means that the trace can be exported off-chip with zero or minimum effect on system
behavior. An existing interface is usually used when system constraints, such as cost or package size, mean that a
dedicated trace port is not possible. However, use of an existing interface might affect system behavior, because
both trace and normal interface traffic use the same port.

Short-term on-chip capture with subsequent low speed export

XPXSSB This option is used when a low-cost method of exporting the trace is required, or when system constraints prevent
real-time continuous export. The trace output from the trace unit is stored temporarily on-chip, and then exported
using either:

• An existing debug port on the SoC, such as a JTAG-DP or SW-DP.
• Another existing interface on the SoC, such as USB.

Typically, the temporary storage is a circular buffer. If the buffer is full, newer trace overwrites older trace, which
means that the buffer always contains the most recent trace. In SoCs that employ Arm CoreSight technology, a
dedicated Embedded Trace Buffer (ETB) is provided for the on-chip capture of trace.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter D1. Embedded Trace Extension
D1.5. Trace output

D1.5 Trace output

RSVDBD The trace unit outputs the trace byte stream to one or more of the following:

• The Trace Buffer Extension.
• A CoreSight subsystem, via an AMBA ATB interface.
• One or more IMPLEMENTATION DEFINED interfaces.

RLGVCX If the Trace Buffer Unit is enabled, the trace byte stream is only output to the Trace Buffer Unit.

RFJFNS If the Trace Buffer Unit is disabled, the trace byte stream is output to one or more of the other interfaces.

ITVDMT If the trace output is captured by a single capture point dedicated to a PE, and does not mix with any other trace
streams, then the value programmed in to TRCTRACEIDR.TRACEID does not need to be unique among all values
programmed in to all trace units in the system. For example, the value 0x01 could be programmed in to all trace
units that have their own dedicated capture point.

• An example of a dedicated trace capture point is the Trace Buffer Extension, and when the Trace Buffer
Extension is enabled is the value of TRCTRACEIDR.TRACEID can be the same for all PEs that are using
the Trace Buffer Extension.

• Another example of a dedicated trace capture point is a CoreSight ETR connected via an AMBA ATB
interface and dedicated to a PE. If the AMBA ATB interface connects to the ETR without mixing with any
other trace streams, then when using the ETR and when ensuring the trace does not go to any other trace
capture points, TRCTRACEIDR.TRACEID does not need to be unique.

RRWPFG If an AMBA ATB interface is implemented, the trace unit must support all of the following:

• ATB triggers, as defined in TRCIDR5.ATBTRIG.
• A 7-bit trace ID, as defined in TRCIDR5.TRACEIDSIZE.

IQJKVW If the trace unit implements an AMBA ATB interface, or an IMPLEMENTATION DEFINED interface for trace output,
Arm recommends that this path is not affected by a Warm reset of the PE. This ensures tracing is possible through
a Warm reset of the PE, which is useful for low level debugging scenarios.

RNLSSL While all trace outputs are disabled, the trace unit considers any generated trace data as having been output.

See also:

• Chapter E1 Trace Buffer Extension

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter D1. Embedded Trace Extension
D1.6. Trace Sessions

D1.6 Trace Sessions

RGLTKQ At any one time, the trace unit is either enabled or disabled. See D8.3 Trace unit programming states for more
details on the states of the trace unit.

RXBPSQ A trace session is the period between the trace unit becoming enabled, and when the trace unit next becomes
disabled.

RMTLFH While the trace unit is enabled, the ViewInst function is either active or inactive. While ViewInst is active, the
trace unit generates trace for instructions that are executed, unless trace generation is inoperative.

RZVNKV Trace generation is operative while neither of the following conditions exist:

• The trace unit is disabled.
• The trace unit is recovering from a trace unit buffer overflow.

RMFNWB Whether ViewInst is active or inactive is independent of whether trace generation is operative or inoperative.

RRDPSW Trace generation becomes operative when trace generation transitions from being inoperative to operative, and
occurs:

• When the trace unit transitions from being disabled to being enabled.
• When the trace unit recovers from a trace unit buffer overflow.

RBDRKW Trace generation becomes inoperative when trace generation transitions from being operative to inoperative, and
occurs:

• When the trace unit transitions from being enabled to being disabled.
• When the trace unit encounters a trace unit buffer overflow.

RLDDLP When the trace unit is unable to generate at least one trace packet which is required by the architecture, a trace unit
buffer overflow occurs.

IHDJWW A trace unit buffer overflow is usually caused when any buffering in the trace unit is unable to receive any more
trace packets. Such inability to receive more trace packets is often caused by being unable to sustain output of
trace packets to any trace capture infrastructure.

Note

A trace unit buffer overflow is independent of the Trace Buffer Unit filling or wrapping a trace buffer in memory.
However a trace unit buffer overflow might be caused by the Trace Buffer Unit rejecting trace data due to
insufficient capacity, and the limit of any trace unit internal buffers is subsequently reached.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter D1. Embedded Trace Extension
D1.7. Elements

D1.7 Elements

IFNFWZ The elements form an Abstract Syntax Tree (AST) which is used to describe the control flow of program execution.
Different sequences of the elements can be used to imply the same operation. In this way the FEAT_ETE can be
used by different micro-architectures. This is similar to the approach used in previous trace protocols, see Arm®
Embedded Trace Macrocell Architecture Specification ETMv4 [3].

IXXBMZ A trace unit compresses the information on the execution of the PE and outputs a trace byte stream that comprises
multiple packets of encoded data. Compression techniques that are used include:

The instruction trace element stream does not contain an element for every executed instruction Instead,
the trace unit generates P0 elements in the trace element stream when certain types of instruction are
executed. These certain types of instructions are known as P0 instructions. A P0 element acts as a signpost
in the program flow, indicating that execution is proceeding along a given path.

Consequently, the stream of P0 elements implies the execution of a greater number of instructions, and a
trace analyzer can reconstruct the stream of instructions that are executed between P0 elements by using the
P0 element stream and the program image.

Multiple elements can be encoded into a single packet Common sequences of elements are encoded into single
packets.

The trace unit can remove program addresses from the trace element stream The trace analyzer can infer
the addresses from the program image and previous history. This includes the targets of direct branch
instructions, where the target address is encoded in the instruction itself.

Removal of predictable elements Some elements can be removed from the AST representation if the contents
of the element can be predicted by previous control flow choices in the software flow. For example the Target
Address element for returning from a subroutine might not be required if the branch to the subroutine has
been traced.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter D1. Embedded Trace Extension
D1.8. Layer Model

D1.8 Layer Model

IXMFJT The FEAT_ETE is based on a layer model. Each layer deals with a unique aspect of tracing the PE.

Layer 3

Layer 2

Layer 1

Elements

Speculat ion

Packet Layer

Transport Layer

Figure D1.1: Layer model for compression and decompression

Transport Layer

IGLPQZ The transport layer either provides a path off chip or a path to a memory buffer for trace to be stored.

Layer 1

Layer 1 provides compression by:

• Grouping elements together to form packets.
• Removing elements that can be implied.
• Compression against previous values.
• Leading zero compression.
• Reordering of elements.

Layer 2

Layer 2 provides:

• Speculation resolution.
• Transactional Memory resolution.

Layer 3

At layer 3:

• PE behavior is converted into elements.
• Compression is achieved by removing elements which can be predicted using the program image:

– Direct branch target addresses.
– Return stack optimization.

• Requires knowledge of the application to decompress:
– Processes that modify the instruction opcodes require additional information to allow debugging.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

D1.9 Trace protocol synchronization

ICLTCM The trace byte stream of a trace unit is typically stored in a circular buffer where, if the buffer is full, newer trace
overwrites older trace. To ensure that a trace stream can be analyzed when the trace has been stored in a circular
buffer, a trace unit must periodically generate trace protocol synchronization points in the trace byte stream.

IBPNSY To understand the different levels the following elements or packets are used to provide synchronization information
in the different layers.

Table D1.2: Control of each layer.

Layer Control

Layer 3 Context element and Target Address element

Layer 2 Trace Info element

Layer 1 Trace Info packet

Transport Layer Alignment Synchronization packet

ISFXXD Whenever a trace analyzer receives a Trace Info packet, the trace analyzer receives information about the current
state of the trace. However, the trace analyzer cannot begin analysis of program execution until it knows the
context in which instructions are being executed and it has an instruction address to start analysis from.

RPGHPW When a Trace Info element is generated, the trace unit generates a Context element and a Target Address element
soon after the Trace Info element.

Note

There are common use cases where the ratio between the number of bytes associated with trace protocol
synchronization and other trace bytes increases significantly, resulting in a degradation of the usability of the
trace. Therefore Arm recommends that trace protocol synchronization only occurs when required.

D1.9.1 Non-periodic trace protocol synchronization

RQZRMQ When the trace unit becomes operative, non-periodic trace protocol synchronization occurs.

RTTLJC When non-periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet in the trace byte stream before any other trace packets are generated.

RHMDGL When non-periodic trace protocol synchronization occurs, the trace unit generates a Trace Info element in the trace
element stream before any other trace elements are generated, except Event elements.

IMQNBT Arm recommends that if a trace protocol synchronization request occurs while ViewInst is inactive, the Alignment
Synchronization packet is not output in the trace byte stream until just before either:

• ViewInst becomes active.
• An Event packet is output.

D1.9.2 Periodic trace protocol synchronization

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

IYPRYM The trace unit can be programmed to generate trace protocol synchronization requests on a periodic basis, so
that the trace element streams and the trace byte streams can be analyzed when stored in a circular trace buffer.
TRCSYNCPR.PERIOD controls periodic trace protocol synchronization requests.

INTFYC Periodic trace protocol synchronization can also be requested by the trace capture infrastructure, for example
if a trace protocol synchronization request is received on an Arm AMBA ATB interface AMBA ATB Protocol
Specification [4].

RQHHSY When periodic trace protocol synchronization is requested, either by TRCSYNCPR.PERIOD or by other sources,
the trace unit performs periodic trace protocol synchronization.

RVMPYW When periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet and then generates a Trace Info element.

IQYQRY Arm recommends that an Alignment Synchronization packet is only output in the trace byte stream if other trace
packets have been output since the previous Alignment Synchronization packet. This strategy reduces the risk of a
circular buffer filling and overwriting trace.

INQYXW If two or more periodic trace protocol synchronization requests occur, and no trace is generated between these two
requests, then Arm recommends that a non-periodic trace protocol synchronization occurs before any further trace
is generated. This ensures that when tracing has been inactive for a long period of time, the trace stream is fully
synchronized when tracing is re-activated.

D1.9.3 Synchronization of instruction trace

RKKQGK When non-periodic trace protocol synchronization occurs, the trace unit generates a Context element and a Target
Address element before any P0 elements are generated, to provide the trace analyzer with Context information and
Address information.

RSVGNN When periodic trace protocol synchronization occurs, and ViewInst is active when the corresponding Trace Info
element is generated, the trace unit generates a Context element and a Target Address element which provide the
Context information and Address information for the target of the most recent non-canceled P0 element.

Note

If the trace unit generates the Context element and Target Address element immediately after the Trace Info
element, then the most recent non-canceled P0 element might have occurred before the Trace Info element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

Program
flow

P0

P0

Trace
Info

Target
Address

 target of

P0

Figure D1.2: Example of Target Address element after Trace Info element.

RDLPYX When periodic trace protocol synchronization occurs, and ViewInst is inactive when the corresponding Trace Info
element is generated, when ViewInst becomes active and a Trace On element is generated, the trace unit generates
a Context element and a Target Address element before any Atom elements, Q elements, or Exception elements are
generated, to provide the trace analyzer with Context information and Address information.

Program
flow

Trace
Info

Trace
On

Target
Address

P0

Figure D1.3: Example of Target Address element after Trace Info element in a filtered region.

IYZPCB If a Cancel element cancels any P0 elements before a Trace Info element, then the trace analyzer discards all of the
following:

• The canceled P0 elements.
• The Trace Info element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

• All elements after the Trace Info element, up to and including the Cancel element. This includes any Context
elements or Target Address elements.

Note

In this scenario, information from the canceled Trace Info element can still be used.

Program
flow

P0

P0

Trace
Info

Target
Address

 target of

P0

cancel (2)

Target
Address

 target of

Figure D1.4: Example of Target Address element after Trace Info element in a mispredicted region.

RKGPTB When a Cancel element is generated which cancels any P0 elements before a Trace Info element, the trace unit
generates a new Context element and a new Target Address element, which indicate the target of the most recent
P0 element that has not been canceled.

ICHTFM The Target Address element and Context element might indicate the target of a P0 element from before the Trace
Info element, or might be delayed until after the next P0 element, and therefore indicate the target of that P0
element.

Note

If the trace unit generates the new Context element and Target Address element prior to the next new P0 element,
then this might prevent the indication of execution of some instructions before the Trace Info element.

INSWTK If the Cancel element cancels all P0 elements after a Trace Info element but no P0 elements prior to the Trace Info
element, then it might be necessary for the trace unit to immediately generate a Context element and Target Address

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

element. This is because a Context element and Target Address element might have been present in the element
stream after the Trace Info element, and those Context elements and Target Address elements are now discarded.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter D1. Embedded Trace Extension
D1.10. Speculation in the trace element stream

D1.10 Speculation in the trace element stream

INVBWS The FEAT_ETE architecture supports the correction of trace. This might be because of:

• Tracing of speculative execution of instructions by a PE.
• For some implementations, the tracing of the Transactional Memory Extension.

IRTJNK An FEAT_ETE trace unit traces speculatively-executed instructions in the same way as all other instructions, so
that both speculatively-executed instructions and architecturally-executed instructions appear in the instruction
trace element stream. This means that some of the program execution information that is shown in the trace element
stream might be incorrect, because some of the speculatively executed instructions might be mis-speculated.

Note

The level of speculation that is revealed in the trace is IMPLEMENTATION SPECIFIC.

IXLLKT The trace unit resolves this speculation by generating elements to confirm the status of each instruction in the
instruction trace element stream. That is, the trace unit generates elements to show whether each instruction has
been committed for execution, or canceled because of mis-speculation. This means that a trace analyzer does
not know the status of a traced instruction until the trace analyzer receives an element that indicates whether the
instruction has been committed for execution, or canceled because the instruction was mis-speculated.

RZJJKY When speculatively-executed instructions are traced, the trace unit subsequently generates elements that indicate
whether the instructions have been committed for execution, or have been canceled.

IKYXKZ A trace analyzer takes the appropriate action, which might involve canceling some trace elements, to determine the
actual program execution.

IGGFML Elements that resolve the status of a traced instruction are called speculation resolution elements. See D2.5
Speculation Resolution Elements.

RKYGRF When trace is generated for speculative execution, for mis-speculated execution, the trace unit does not trace any
information that cannot be accessed by software executing at the same or at a lower level of privilege than the
mis-speculated execution.

RQHQLY When a Context synchronization event is speculated as being taken or executed, the trace unit does not generate
trace for any speculative execution after the Context synchronization event until the Context synchronization event
is resolved.

RLWJCQ When a speculated Context synchronization event is resolved as being not taken or not executed, the trace unit
does not generate trace for mis-speculated execution that occurred after the Context synchronization event.

RYGSGJ When an exit from a Trace Prohibited region is speculated as being taken, the trace unit does not generate trace for
any speculative execution after the exit from the Trace Prohibited region, until the exit from the Trace Prohibited
region is resolved.

RSRLCG When a speculated exit from a Trace Prohibited region is resolved as being not taken, the trace unit does not
generate trace for mis-speculated execution that occurred after the exit from a Trace Prohibited region.

D1.10.1 Tracing Transactions

IKBTHL The Transactional Memory Extension defines the Transactional state. For instructions executed in Transactional
state, the trace stream indicates which instructions are executed in Transactional state, and provides indicators for a
trace analyzer to determine whether the transaction was successful or failed.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter D1. Embedded Trace Extension
D1.10. Speculation in the trace element stream

IFWGBM If the instruction is executed in Transactional state then the result of the instruction is not known until the transaction
succeeds or fails. Transactions can be of an arbitrary length and can be nested, so the ETE architecture does not
guarantee an entire transaction is traced, if any of the transaction is traced.

IVJTLG The execution of transactions is represented in the trace element stream by 3 elements:

• Transaction Start element.
• Transaction Commit element.
• Transaction Failure element.

These provide markers in the trace element stream to indicate the sections which represent transactions. The
Transaction Start element indicates that any following instructions are executed in Transactional state. When the
PE leaves Transactional state, either the Transaction Commit element or Transaction Failure element are traced to
indicate the resolution of the transaction.

IQZNBZ An entry to Transactional state might be traced using a Transaction Start element and the subsequent exit from
Transactional state might be traced, without tracing any execution in Transactional state. There might have been
no execution in Transactional state, or the trace unit might have been programmed to not trace such execution.

See also:

• Chapter C1 Transactional Memory Extension

D1.10.1.1 Implementation flexibility

RVVFQZ If no speculation in the trace element stream is implemented, TRCIDR8.MAXSPEC == 0x0 and
TRCIDR0.COMMTRANS indicates that the Transaction Start element is a P0 element.

D1.10.1.2 Filtering of trace

IZYNHF The ETE architecture supports filtering of the trace within a transaction.

IBRWSS Filtering of a transaction can be due to any of the following:

• The ViewInst function.
• Prohibited regions.
• Asynchronous events.

IZNYSY Due to filtering the start of the transaction might not necessarily be traced. See the Transaction Start element for
details.

IVXTQS Due to filtering the end of a transaction might not necessarily be traced. See the Transaction Commit element and
Transaction Failure element for details.

XPCSKD If an instruction is traced which was executed in Transactional state, then the trace analyzer must be aware, so that
the effect of the instructions executed in the Transactional state can be determined.

RNMWFJ When an instruction is traced and the PE is in Transactional state, the trace unit traces the result of the transaction
unless any of the following occur:

• The trace unit becomes disabled.
• A trace unit buffer overflow occurs.
• The PE enters a Trace Prohibited region.

In the above scenarios, the trace unit generates a Transaction Failure element, and the resolution of the transaction
is UNKNOWN.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter D2
Trace Element Model

This chapter provides details on the different elements used to create an Abstract Syntax Tree (AST) for describing
the software control sequence.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter D2. Trace Element Model
D2.1. Trace Info element

D2.1 Trace Info element

ILBSZF A Trace Info element provides a point in the trace element stream where analysis of the trace element stream can
begin.

Trace Info elements include setup information about:

• The static trace programming that does not change during a trace session, including:

– Whether cycle counting is enabled, and if enabled, the cycle count threshold.

• Dynamic information that might change during a trace session, such as:

– The speculation depth. This indicates how many unresolved P0 elements were traced before the Trace
Info element.

– Whether the Processing Element (PE) trace unit has traced that the PE is executing in Transactional
state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter D2. Trace Element Model
D2.2. P0 element

D2.2 P0 element

ILLDBJ P0 elements imply the execution of instructions.

IXPZXL P0 elements are generated speculatively and must be either committed or canceled (see D2.5 Speculation Resolution
Elements).

RXVHWG P0 elements must be generated in simple sequential execution order.

D2.2.1 Atom Element

IXPFJG An Atom element implies that one or more instructions have been executed, up to and including the next P0
instruction. Only certain instructions generate an Atom element. See Chapter D3 Instruction and Exception
classifications for details of these instructions.

RPRNZH The Atom element is one of the following types:

• E Atom.
• N Atom.

ICYMYM The meaning of the type of an Atom element is dependent on the instruction it is encoding. For example, branch
instructions are represented as an E Atom element if the branch was taken and an N Atom element if not taken.

D2.2.2 Exception Element

IYVMSC An Exception element indicates a change in program flow which cannot be calculated by the analysis of the
program image, or which is caused by an instruction which is not a P0 instruction. Such a change in program flow
is described as an Exceptional occurrence.

RMKPFJ An Exceptional occurrence consists of the following:

• PE Architectural exceptions.
• ETE defined exceptions.
• IMPLEMENTATION DEFINED exceptions.

Note

Transaction failure is not classified as an Exceptional occurrence, although it is traced using an Exception
packet.

IJLZPY An Exception element indicates:

• That an Exceptional occurrence has occurred.
• The type of Exceptional occurrence.
• The virtual address where the Exceptional occurrence was taken from, also known as the preferred exception

return address.

RDXJBQ The instruction set for the preferred exception return address for a Exception element is one of the following:

• AArch64 A64.
• AArch32 A32.
• AArch32 T32.

RYPPRH An Exception element is a P0 element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter D2. Trace Element Model
D2.2. P0 element

D2.2.2.1 PE Architectural exceptions

RPZRFL The following exception types are used to indicate PE Architectural exceptions:

• IRQ.
• FIQ.
• Trap.
• Call.
• Inst fault.
• Data fault.
• Inst debug.
• Data debug.
• Alignment.
• System Error.
• Debug halt.

See Chapter D3 Instruction and Exception classifications for details of the mapping between the PE Architectural
exceptions and these exception types.

RSFYMW Table D2.1 defines the preferred exception return address for each exception type for PE Architectural exceptions.

Table D2.1: Preferred exception return address for PE Architectural exceptions

Exception type Preferred exception return address

IRQ Instruction after the last executed instruction

FIQ Instruction after the last executed instruction

Trap For a trapped instruction or UNDEFINED instruction, the preferred exception return address
is the address of the instruction. For a trapped exception, the preferred exception return
address is the address of the instruction that caused the exception.

Call Instruction after the call instruction

Inst fault Instruction that caused the exception

Data fault Instruction that caused the exception

Inst debug Instruction that caused the exception

Data debug Instruction that caused the exception

Alignment Instruction that caused the alignment exception

System Error Instruction after the last executed instruction

Debug halt The instruction after the last executed instruction, that is, the value loaded into the DLR
register.

IGZKGC The nature of System Error means that execution might not complete up to the preferred exception return address, or
it might perform some operations after the preferred exception return address. This behavior is IMPLEMENTATION
DEFINED and might vary depending on the cause of the exception.

RGFJZF When an imprecise System Error exception occurs, the preferred exception return address is the address stored in
the relevant ELR when the exception is taken.

SGKMTH When a System Error exception occurs, the trace analyzer must be aware that the preferred exception return address
might not indicate the exact point at which program execution was interrupted. The trace analyzer should not rely
on the preferred exception return address for inferring exactly which instructions were executed. This behavior
only occurs for imprecise System Error exceptions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter D2. Trace Element Model
D2.2. P0 element

RLBLWT When an imprecise Debug halt exception occurs, the preferred exception return address is the address stored in
DLR or DLR_EL0 when the exception is taken.

SRDJXM When an imprecise Debug halt exception occurs, the trace analyzer must be aware that the preferred exception
return address might not indicate the exact point at which program execution was interrupted. The trace analyzer
should not rely on the preferred exception return address for inferring exactly which instructions were executed.
An imprecise Debug halt exception can only occur under direct control of a debugger, usually by controlling
EDRCR.CBRRQ.

D2.2.2.2 ETE defined exceptions

RMZJTJ In addition to the Arm Architectural exceptions, the ETE specifies the following Exceptional occurrences that are
traced using Exception elements:

• PE Reset, which indicates that a PE Warm reset has occurred.

RNRJGC Table D2.2 defines the preferred exception return address for each exception type for ETE defined exceptions.

Table D2.2: Preferred exception return address for ETE defined exceptions

Exception type Preferred exception return address

PE Reset UNKNOWN

RJRNYF When a PE Reset occurs, the preferred exception return address and context are UNKNOWN. Therefore for an
Exception element indicating a PE Reset the preferred exception return address and context are UNKNOWN. No
instruction execution is indicated between the previous P0 element and the Exception element.

IQJYYZ When an Exception element indicating a PE Reset occurs:

• The target address and target context of the previous P0 element might be UNKNOWN.
• If there are no P0 elements between a Trace On element and the Exception element, then the initial address

and context after the previous Trace On element might be UNKNOWN.

D2.2.2.3 IMPLEMENTATION DEFINED exceptions

RZVYQW ETE defines some exception types which are IMPLEMENTATION DEFINED, including but not limited to:

• Error Correction Code (ECC) error correction.
• Generic replay of program execution.

IXHFLL The use of the IMPLEMENTATION DEFINED exceptions is optional and IMPLEMENTATION DEFINED. IMPLEMEN-
TATION DEFINED exceptions are not required to be traced but are intended to be used to simplify tracing of certain
micro-architectural situations.

IDFLDJ In general, the preferred exception return address is the address of the instruction after the last executed instruction,
before the exception occurs.

D2.2.3 Source Address Element

IDJTGL The Source Address element indicates execution up to and including a provided P0 instruction address, and
indicates the P0 instruction is taken. All P0 instructions except the final P0 instruction are not taken, which means
that explicit N Atom elements are not required to be traced for those P0 instructions. A Source Address element
indicates both of the following for the final P0 instruction:

• The instruction set.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter D2. Trace Element Model
D2.2. P0 element

• The virtual address of the instruction.

RHVVRK The instruction set for a Source Address element is one of the following:

• AArch64 A64.
• AArch32 A32.
• AArch32 T32.

RWTRBB A Source Address element is a P0 element.

D2.2.4 Q Element

RJRFYT A Q element belongs to the P0 element group in the instruction trace element stream, and must be explicitly
resolved or canceled.

IXPNWS A Q element can optionally include a number, M. The number is a count of the instructions that are executed since
the most recent P0 element, which might be a Q element. If it does not include a count of instructions, then the
number of instructions that are executed since the most recent P0 element is UNKNOWN.

RXWBMW The trace unit generates Q elements in the program order in which they occur, and the trace protocol encode and
decode process maintains this order.

RJBYXC A Q element does not imply Exceptional occurrences.

RKPNGG When a Q element implies an Exception Return instruction which is taken, that instruction is the last instruction
that is implied by the Q element.

RYRLJR When a Q element implies an executed ISB instruction, this is the last instruction implied by the Q element if
execution continues from a new context after the ISB.

RLZLDH When execution continues from a new context after a Q element is generated, the trace unit generates a Context
element after the Q element.

IBTNZC The Context element might be generated before or after the Target Address element that is also required after the Q
element.

If a context change occurs at a point that is not a Context synchronization event, then the last instruction that is
implied by a Q element must be the last instruction that is executed with the old context. The trace unit can then
generate a Context element after the Q element to indicate the new context.

D2.2.5 Transaction Start Element

RCTLXL TRCIDR0.COMMTRANS indicates whether the Transaction Start element is a P0 element. See D2.7.1 Transac-
tion Start element for more details about the Transaction Start element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter D2. Trace Element Model
D2.3. Virtual Address Space Elements

D2.3 Virtual Address Space Elements

D2.3.1 Trace On Element

RNHDCF A Trace On element indicates a discontinuity in the trace element stream. The trace unit inserts a Trace On element
after a gap in the generation of the trace element stream:

• When the trace generation becomes operative and before any P0 elements.
• If some instructions are filtered out of the trace.
• The first traced instructions after:

– A Trace Prohibited region.
– The PE leaves Debug state.

• When instruction trace is lost because a trace unit buffer overflow occurs.

RKMFKP When a Trace On element is generated, the trace unit generates a Target Address element before the next P0
element.

RTJLYH When a Trace On element is generated, the trace unit generates a Context element before the next Atom element,
Exception element or Q element, to indicate where tracing starts, unless the context has not changed since the
previous Context element was output.

RJKFBS When the first Trace On element is generated, the trace unit outputs the corresponding Context element before the
first P0 element.

D2.3.2 Target Address Element

RQWBLT A Target Address element indicates both of the following for the next instruction to be executed:

• The instruction set.
• The virtual address of the instruction.

RJYKHH The instruction set for a Target Address element is one of the following:

• AArch64 A64.
• AArch32 A32.
• AArch32 T32.

RHMWHY The trace unit generates Target Address elements in program order relative to other P0 elements.

IXCKNM Target Address element values can be corrected by another Target Address element if both Target Address elements
are generated before the next P0 element or Trace On element.

D2.3.3 Context Element

IKQKFF The Context element indicates the execution context for the next instruction to be executed.

RVHQYV The Context element provides the following Context information:

• The Security state, either Secure or Non-secure.
• The Exception level, EL0 to EL3.
• Whether the PE is executing in AArch64 state or AArch32 state.

RWSVRL The Context element can optionally provide the following Context information:

• The Context identifier.
• The Virtual context identifier.

RWJDWF The trace unit generates Context elements in program order relative to P0 elements.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter D2. Trace Element Model
D2.4. Temporal Elements

D2.4 Temporal Elements

IHHXND Temporal elements provide information about the passage of time within the trace element stream. The following
temporal elements are supported by ETE:

The Cycle Count element. Indicates the passage of PE clock cycles within the trace element stream.

The Timestamp element. Indicates the passage of time within the trace element stream.

The Timestamp Marker element. Indicates the most recent P0 element or Event element has been timestamped,
and that a Timestamp element will follow containing the timestamp value.

D2.4.1 Cycle Count Element

INVGJP Each Cycle Count element is associated with a Commit element, and when a Commit element is generated, a Cycle
Count element might also be generated.

RBZQWX Each Cycle Count element is associated with the most recent Commit element.

RVZXNN A Cycle Count element indicates the number of PE clock cycles between the two most recent Commit elements
that both have an associated Cycle Count element.

IFHGKM Not every Commit element is required to have an associated Cycle Count element.

RVNYMN Cycle Count elements are generated in order relative to Commit elements.

D2.4.2 Timestamp Element

ILKDJM The Timestamp element inserts a global timestamp value into the trace element stream.

IBLBJX The source for timestamp reported in the timestamp element is controlled by:

• TRFCR_EL1.TS
• TRFCR_EL2.TS

RBRJJF A timestamp value of zero indicates that the timestamp value is UNKNOWN.

IVTLTF An UNKNOWN timestamp value might occur if the system does not support timestamping or if the timestamp is
temporarily unavailable.

IYQJDR The source for the payload of Timestamp elements is controlled by the TRFCR registers and the virtual timers. It is
expected that these registers will be changed by context switch software. As a result it is possible that payloads of
Timestamp elements might appear to have discontinuities, and even go backwards, if the source of the timestamp
changes, or any context switching changes the system registers which control the timestamp value.

RMCSGX If FEAT_ETEv1p1 is implemented, when there has been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent P0 element or Event element
before the Timestamp Marker element.

RDGTJZ If FEAT_ETEv1p1 is not implemented or if there has not been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent P0 element or Event element
before the Timestamp element.

IPXZVX If TRCIDR0.TSMARK is 0b1 and there is no previous Timestamp Marker element, the Timestamp element is for a
P0 element or Event element which is before the start of the trace. This scenario might occur when trace analysis
starts at a Trace Info element which is not the first Trace Info element, and the Timestamp Marker element was
generated before the Trace Info element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter D2. Trace Element Model
D2.4. Temporal Elements

XCSZYW The requirement for a Timestamp Marker element for every Timestamp element is to avoid needing to indicate if
there’s been a Timestamp Marker element at a Trace Info point. This allows a trace analyzer to assume there’s one
(or not) before the Trace Info, based on a static piece of information.

D2.4.3 Timestamp Marker element

RRFYPT The Timestamp Marker element indicates the most recent P0 element or Event element has been timestamped, and
that a Timestamp element will follow containing the timestamp value.

RSZRHP Timestamp Marker elements are generated in order with respect to P0 elements and Event elements.

RDCRVK Timestamp Marker elements are not canceled by Cancel elements.

IDLCLX A Cancel element might cause a P0 element to be canceled and if there is a Timestamp Marker element that is
associated with that P0 element then the Timestamp Marker element is not associated with any P0 element. The
Timestamp element which is associated with the Timestamp Marker element is unaffected, and is still useable for
timestamping the approximate position in the trace stream.

RVWJVC If 2 Timestamp Marker elements occur without a Timestamp element between them, the oldest Timestamp Marker
element is ignored.

RJNWJY If an Overflow element or Discard element occurs after a Timestamp Marker element and before a Timestamp
element, the Timestamp Marker element is ignored.

RLWZXK If Timestamp Marker elements are generated by the trace unit, every Timestamp element must have a corresponding
Timestamp Marker element generated before the Timestamp element.

IJGKZJ The generation of Timestamp Marker elements is indicated in TRCIDR0.TSMARK.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter D2. Trace Element Model
D2.5. Speculation Resolution Elements

D2.5 Speculation Resolution Elements

IYYMXT The ETE architecture allows trace to be generated speculatively and then later committed or removed by the
decompression process. Each P0 element is traced and is is considered speculative until either committed by a
Commit element or canceled by a Cancel element. This method of generating speculative trace allows for the
tracing of speculative execution, including the tracing of transactions when the Transactional Memory Extension is
implemented in the PE.

ISRRZZ Speculation resolution elements provide a trace analyzer with information about which trace elements were
correctly or incorrectly generated, and ensure the trace analyzer can reconstruct the program execution. The
following speculation resolution elements are supported by ETE:

The Mispredict element. Corrects the most recent Atom element.

The Cancel element. Indicates that one or more P0 elements are canceled.

The Commit element. Indicates that one or more P0 elements are resolved for execution.

The Discard element. Removes all speculative P0 elements.

IXLHWT TRCIDR8.MAXSPEC specifies the maximum number of uncommitted P0 elements which can be discarded at a
later stage using Cancel elements.

D2.5.1 Commit Element

IKQQML A Commit element indicates that a number of unresolved P0 elements have been resolved for execution. The
resolved P0 elements are the oldest P0 elements.

RPNBGQ The Commit element resolves all types of P0 element.

IKHYLN Commit elements might be merged if the total number of P0 elements resolved is less than TRCIDR8.MAXSPEC.
Commit elements are merged by adding their respective commit count values together.

P0

F

E

D

C

B

A

P0

Commit 2

F

Figure D2.1: Commit Operation Example

D2.5.2 Cancel Element

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter D2. Trace Element Model
D2.5. Speculation Resolution Elements

IMRGLC The Cancel element indicates the number of youngest unresolved and un-canceled P0 elements that are canceled
from execution. A trace unit might cancel elements because of many reasons, including but not limited to:

• A P0 instruction is mis-speculated.

• An exception occurs.

RWLTNX The Cancel element cancels all types of P0 element.

INDQKN Cancel elements might be merged if no P0 elements have been generated in between. Cancel elements are merged
by adding their respective cancel numbers together.

P0

F

E

D

C

B

A

P0

Cancel 2

A

Figure D2.2: Cancel Operation Example

D2.5.3 Discard Element

ITCWCN A Discard element is generated if uncommitted P0 elements remain when trace generation becomes inoperative or
if the resolution of uncommitted P0 elements cannot be output by the trace unit.

ISTXQZ If trace generation remains inoperative, the outcomes of instructions that are traced by P0 elements, such as
conditional P0 instructions, cannot be resolved, and therefore a Discard element indicates that all uncommitted P0
elements must be discarded.

D2.5.4 Mispredict Element

IGBKKQ The Mispredict element indicates that the most recent non-canceled Atom element has the incorrect E or N status.

IRGVGL For example, if a branch instruction is predicted as taken, it is traced with an E Atom element. If the prediction
becomes incorrect then a Mispredict element is traced to indicate to a trace analyzer that the E Atom element
changes to an N Atom element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter D2. Trace Element Model
D2.6. Others

D2.6 Others

D2.6.1 Event Element

IRBKYZ The Event element indicates when a programmed ETEEvent occurs and its payload contains a number to identify
the ETEEvent number. See TRCEVENTCTL0R, and TRCEVENTCTL1R, for information about the programming
of arbitrary ETEEvents.

RSMLVB Event elements maintain order relative to other Event elements.

D2.6.2 Overflow Element

IRFQKZ The Overflow element indicates that the trace unit buffer has overflowed, and at least one trace element might have
been lost.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter D2. Trace Element Model
D2.7. Transactional Memory

D2.7 Transactional Memory

RLLCQG The TSTART instruction is a P0 instruction.

D2.7.1 Transaction Start element

IQNFVH The Transaction Start element indicates that subsequent elements are within a transaction, until any of the following
are traced:

• A Transaction Failure element.
• A Transaction Commit element.
• A Cancel element which cancels the Transaction Start element.

RKMNXW When the PE enters Transactional state, a Transaction Start element is generated before any instructions are traced.
This indicates to the trace analyzer that subsequent elements have been executed in Transactional state.

RMMCQD Only a single Transaction Start element is generated for each outer transaction, unless the trace unit indicated the
transaction had finished by generating a Transaction Failure element.

IMQZZY An example of when the trace unit generates a Transaction Failure element without the PE leaving Transactional
state is when a trace unit buffer overflow occurs. In this example, tracing might resume after the trace unit buffer
overflow, and if the PE is still in the same outer transaction then a new Transaction Start element would be
generated.

RDPNGP The Transaction Start element appears in program order relative to other P0 elements.

RCYHKB When a TSTART instruction for an outer transaction is traced and tracing continues in Transactional state, the trace
unit generates a Transaction Start element after the P0 element that is generated by the TSTART instruction, and
before any subsequent P0 element.

RRKGLY When a TSTART instruction for an outer transaction is not traced and tracing becomes active while the PE is in
Transactional state, the trace unit generates a Transaction Start element after the Trace On element and before any
P0 elements.

D2.7.2 Transaction Commit element

IXTXHN The Transaction Commit element indicates that the PE has exited Transactional state, that the transaction has
completed successfully, and that all execution since the most recent Transaction Start element has been executed.

D2.7.3 Transaction Failure element

IXHLPG The Transaction Failure element indicates that the transaction did not complete successfully and the trace analyzer
discards all the execution since the most recent Transaction Start element, including any P0 elements which have
been committed by Commit elements.

IHLQGS A sophisticated trace analyzer might be able to use the discarded elements to create a heuristic on why the
transaction failed.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter D3
Instruction and Exception classifications

INMJBZ This chapter defines all of the P0 instructions.

RPBVZM P0 instructions comprise all of the following:

• All direct P0 instructions.
• All indirect P0 instructions.

RGFNRJ Direct P0 instructions comprise all of the following:

• All direct branch instructions.
• ISB instructions.
• TSTART instructions.
• WFE, WFET, WFI, and WFIT instructions, when indicated by TRCIDR2.WFXMODE.

RDJMQM Indirect P0 instructions comprise all of the following:

• All indirect branch instructions.

RKJTCL All uses of ISB in this specification apply to all variants of the ISB instruction, including the CP15ISB instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter D3. Instruction and Exception classifications
D3.1. AArch64 A64

D3.1 AArch64 A64

D3.1.1 Direct P0 instructions

Table D3.1: A64 direct P0 instructions

Instruction Description

B Unconditional Branch.

B.cond Conditional Branch.

BC.cond Branch Consistent conditionally.

BL Branch with link.

CBZ or CBNZ Compare with zero and branch.

ISB Instruction Synchronization Barrier.

TBZ or TBNZ Test and branch.

TSTART Initiates a new transaction.

WFE, WFET Wait For Event

WFI, WFIT Wait For Interrupt

D3.1.2 Indirect P0 instructions

Table D3.2: A64 indirect P0 instructions

Instruction Description

BLR Branch with link to register.

BLRAA Authenticate and branch with link.

BLRAAZ Authenticate and branch with link.

BLRAB Authenticate and branch with link.

BLRABZ Authenticate and branch with link.

BR Branch to register.

BRAA Authenticate and branch.

BRAAZ Authenticate and branch.

BRAB Authenticate and branch.

BRABZ Authenticate and branch.

ERET Return From Exception.

ERETAA Authenticate and Exception return.

ERETAB Authenticate and Exception return.

RET Return From subroutine.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter D3. Instruction and Exception classifications
D3.1. AArch64 A64

Instruction Description

RETAA Authenticate and function return.

RETAB Authenticate and function return.

D3.1.3 Branch with link instructions

Table D3.3: A64 branch with link instructions

Instruction Description

BL Branch with link.

BLR Branch with link to register.

BLRAA Authenticate and branch with link.

BLRAAZ Authenticate and branch with link.

BLRAB Authenticate and branch with link.

BLRABZ Authenticate and branch with link.

D3.1.4 Meaning of Atom elements

Table D3.4: Meaning of Atom elements in AArch64 A64

Instruction E N

B The branch was taken. RESERVED.

B.cond The branch was taken. The branch was not taken.

BC.cond The branch was taken. The branch was not taken.

BL The branch was taken. RESERVED.

BLR The branch was taken. RESERVED.

BLRAA The branch was taken. RESERVED.

BLRAAZ The branch was taken. RESERVED.

BLRAB The branch was taken. RESERVED.

BLRABZ The branch was taken. RESERVED.

BR The branch was taken. RESERVED.

BRAA The branch was taken. RESERVED.

BRAAZ The branch was taken. RESERVED.

BRAB The branch was taken. RESERVED.

BRABZ The branch was taken. RESERVED.

CBZ or CBNZ The branch was taken. The branch was not taken.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter D3. Instruction and Exception classifications
D3.2. AArch32 A32

Instruction E N

ERET The branch was taken and the PE
returned from the Exception.

RESERVED.

ERETAA The branch was taken and the PE
returned from Exception.

RESERVED.

ERETAB The branch was taken and the PE
returned from Exception.

RESERVED.

ISB The ISB performed a Context
synchronization event and is
considered as taken.

RESERVED.

RET The branch was taken and the PE
returned from the subroutine.

RESERVED.

RETAA The branch was taken and the PE
returned from the subroutine.

RESERVED.

RETAB The branch was taken and the PE
returned from the subroutine.

RESERVED.

TBZ or TBNZ The branch was taken. The branch was not taken.

TSTART Transaction started and the instruction
is considered as taken.

RESERVED.

WFE, WFET The instruction was executed and is
considered as taken.

RESERVED.

WFI, WFIT The instruction was executed and is
considered as taken.

RESERVED.

D3.2 AArch32 A32

D3.2.1 Direct P0 instructions

Table D3.5: A32 direct P0 instructions

Instruction Description

B Unconditional Branch.

B.cond Conditional Branch.

BL Branch with link

BLX <immed> Branch with link and exchange.

ISB Instruction Synchronization Barrier.

WFE Wait For Event

WFI Wait For Interrupt

D3.2.2 Indirect P0 instructions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter D3. Instruction and Exception classifications
D3.2. AArch32 A32

Table D3.6: A32 indirect P0 instructions

Instruction Description

BLX <reg>. Branch with Link and Exchange.

BX Branch and Exchange.

BXJ Branch and Exchange.

Data processing
instructions that modify
the PC.

-

ERET Exception Return.

LDM including the PC. Load Multiple to the PC.

LDR PC Load a word to the PC.

RFE Return From Exception.

D3.2.3 Branch with link instructions

Table D3.7: A32 branch with link instructions

Instruction Description

BL Branch with link

BLX <immed> Branch with link and exchange.

BLX <reg>. Branch with Link and Exchange.

D3.2.4 Meaning of Atom elements

Table D3.8: Meaning of Atom elements in AArch32 A32

Instruction E N

B The branch was taken. The branch was not taken.

B.cond The branch was taken. The branch was not taken.

BL The branch was taken. The branch was not taken.

BLX <immed> The branch was taken. The branch was not taken.

BLX <reg>. The branch was taken. The branch was not taken.

BX The branch was taken. The branch was not taken.

BXJ The branch was taken. The branch was not taken.

Data processing instructions that
modify the PC.

The branch was taken. The branch was not taken.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter D3. Instruction and Exception classifications
D3.3. AArch32 T32

Instruction E N

ERET The branch was taken and the PE
returned from an Exception.

The branch was not taken and the PE
did not return from an Exception.

ISB The ISB performed a Context
synchronization event and is
considered as taken

The ISB did not perform a Context
synchronization event and is
considered as not taken.

LDM including the PC. The branch was taken. The branch was not taken.

LDR PC The branch was taken. The branch was not taken.

RFE The branch was taken and the PE
returned from the Exception.

RESERVED.

WFE The instruction either passed its
condition code check or failed its
condition code check, but it is
considered as taken.

The instruction failed its condition
code check and is considered as not
taken.

WFI The instruction either passed its
condition code check or failed its
condition code check, but it is
considered as taken.

The instruction failed its condition
code check and is considered as not
taken.

D3.3 AArch32 T32

D3.3.1 Direct P0 instructions

Table D3.9: T32 direct P0 instructions

Instruction Description

B Unconditional Branch.

B<cc> Conditional Branch.

BL Branch with Link.

BLX <immed> Branch with Link and Exchange.

CBNZ Compare and Branch on Nonzero.

CBZ Compare and Branch on Zero.

ISB Instruction Synchronization Barrier, including CP15
encodings.

WFE Wait For Event

WFI Wait For Interrupt

D3.3.2 Indirect P0 instructions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter D3. Instruction and Exception classifications
D3.3. AArch32 T32

Table D3.10: T32 indirect P0 instructions

Instruction Description

BLX <reg> Branch with Link and Exchange.

BX Branch and Exchange.

BXJ Branch and Exchange.

Data processing
instructions that modify
the PC.

-

LDM including the PC. Load Multiple including to the PC.

LDR to the PC. Load to the PC.

POP {..,PC} Load the PC from the stack.

RFE Return From Exception.

TBB Table Branch.

TBH Table Branch.

D3.3.3 Branch with link instructions

Table D3.11: T32 branch with link instructions

Instruction Description

BL Branch with Link.

BLX <immed> Branch with Link and Exchange.

BLX <reg> Branch with Link and Exchange.

D3.3.4 Meaning of Atom elements

Table D3.12: Meaning of Atom elements in AArch32 T32

Instruction E N

B The branch was taken. The branch was not taken.

B<cc> The branch was taken. The branch was not taken.

BL The branch was taken. The branch was not taken.

BLX <immed> The branch was taken. The branch was not taken.

BLX <reg> The branch was taken. The branch was not taken.

BX The branch was taken. The branch was not taken.

BXJ The branch was taken. The branch was not taken.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter D3. Instruction and Exception classifications
D3.4. WFI and WFE Instructions

Instruction E N

CBNZ The branch was taken. The branch was not taken.

CBZ The branch was taken. The branch was not taken.

Data processing instructions that
modify the PC.

The branch was taken. The branch was not taken.

ISB The ISB performed a Context
synchronization event and is
considered as taken.

The ISB did not perform a Context
synchronization event and is
considered as not taken.

LDM including the PC. The branch was taken. The branch was not taken.

LDR to the PC. The branch was taken. The branch was not taken.

POP {..,PC} The branch was taken. The branch was not taken.

RFE The branch was taken and the PE
returned from the Exception.

The branch was not taken and the PE
did not return from the Exception.

TBB The branch was taken. The branch was not taken.

TBH The branch was taken. The branch was not taken.

WFE The instruction either passed its
condition code check or failed its
condition code check, but it is
considered as taken.

The instruction failed its condition
code check and is considered as not
taken.

WFI The instruction either passed its
condition code check or failed its
condition code check, but it is
considered as taken.

The instruction failed its condition
code check and is considered as not
taken.

D3.4 WFI and WFE Instructions

WFE, WFET, WFI, and WFIT instructions, when indicated by TRCIDR2.WFXMODE, are P0 instructions.

D3.4.1 WFxT

RBBQHN If FEAT_WFxT is implemented and TRCIDR2.WFXMODE is 0b1, WFE, WFET, WFI, and WFIT instructions are
classified as direct branch instructions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter D3. Instruction and Exception classifications
D3.5. Exceptions to Exception element encodings

D3.5 Exceptions to Exception element encodings

Table D3.13: Exception mapping for exceptions taken to AArch64 state

Reason Type

Branch Target exception Inst fault

Breakpoint Inst debug

FIQ FIQ

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction Abort Inst fault

Instruction or event trapped by a
control bit

Trap

MemCopy or MemSet Trap

Misaligned PC Alignment

PAC Fail Data fault

SError interrupt System Error

SMC Call

SVC Call

Software Breakpoint Instruction Inst debug

Software Step Inst debug

Stack Pointer Misalignment Alignment

Synchronous Data Abort Data fault

UNDEFINED instruction Trap

Watchpoint Data debug

Table D3.14: Exception mapping for exceptions taken to AArch32 state

Reason Type

Breakpoint Inst fault

FIQ FIQ

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter D3. Instruction and Exception classifications
D3.5. Exceptions to Exception element encodings

Reason Type

Instruction or event trapped by a
control bit

Trap

Prefetch Abort Inst fault

SError interrupt System Error

SMC Call

SVC Call

Software Breakpoint Instruction Inst fault

Synchronous Data Abort Data fault

UNDEFINED instruction Trap

Vector Catch exception Inst fault

Watchpoint Data fault

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter D4
Recommended Configurations

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter D4. Recommended Configurations
D4.1. Configurations

D4.1 Configurations

IYCKVP This section describes which ETE features Arm recommends are implemented. For optional features not described
here, it is IMPLEMENTATION DEFINED whether the feature is implemented. For features which have an IM-
PLEMENTATION DEFINED size or number, and are not described here, the size or number of that feature is
IMPLEMENTATION DEFINED.

Parameter Description Configuration

ATBTRIG ATB Trigger Support Yes, if ATB is implemented

NUMACPAIRS Address Comparator pairs 4

NUMCIDC Context Identifier Comparators >= 1

NUMVMIDC Virtual Context Identifier Comparators >= 1, if EL2 is implemented

NUMCNTR Number of Counters 2

NUMEVENT Number of ETEEvents 4

NUMEXTINSEL Number of External Input Selectors 4

NUMRSPAIR Number of Resource selection pairs >= 8

NUMSEQSTATE Number of Sequencer states 4

NUMSSCC Number of Single-shot Comparator Controls >= 1

RETSTACK Return stack Yes

STALLCTL Processing Element (PE) stalling capability Yes

TRACEIDSIZE Trace ID size 7-bits, if ATB is implemented

CCITMIN Cycle count minimum threshold 4

CCSIZE Cycle counter size >= 12

WFXMODE WFI, WFIT, WFE, and WFET instruction classification WFI, WFIT, WFE, and WFET instructions are
classified as P0 instructions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter D5
Protocol Description

D5.1 Introduction

IXCCWQ An ETE trace unit generates a trace byte stream. The protocol is a byte-based packet protocol, which means that
the trace byte stream is constructed of multiple packets, where each packet contains one or more bytes of data.

RBVTNX A packet consists of a single header byte, followed by zero or more payload bytes.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter D5. Protocol Description
D5.2. Summary

D5.2 Summary

Header
byte Name Purpose

00000000 Alignment Synchronization Packet Identifies a packet boundary.

00000000 Discard Packet Indicates a Discard element.

00000000 Overflow Packet Indicates that a trace unit buffer overflow has occurred.

00000001 Trace Info Packet Resets trace compression to a known architectural state.

0000001x Timestamp Packet Indicates a Timestamp element.

00000100 Trace On Packet Indicates that there has been a discontinuity in the trace
element stream.

00000110 PE Reset Packet Indicates that a PE Reset has occurred.

00000110 Transaction Failure Packet Indicates that a Transaction Failure has occurred.

00000110 Exception 32-bit Address IS0 with Context
Packet

Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS1 with Context
Packet

Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS0 with Context
Packet

Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS1 with Context
Packet

Indicates that an exception has occurred.

00000110 Exception Exact Match Address Packet Indicates that an exception has occurred.

00000110 Exception Short Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception Short Address IS1 Packet Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception 32-bit Address IS1 Packet Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS0 Packet Indicates that an exception has occurred.

00000110 Exception 64-bit Address IS1 Packet Indicates that an exception has occurred.

00001010 Transaction Start Packet Indicates that the PE has started to execute in Transactional
state.

00001011 Transaction Commit Packet Indicates that the PE has successfully finished an outer
transaction and is leaving Transactional state.

00001100 Cycle Count Format 2_0 small commit Packet Indicates a Commit element and a Cycle Count element.

00001101 Cycle Count Format 2_1 Packet Indicates a Cycle Count element.

00001101 Cycle Count Format 2_0 large commit Packet Indicates a Commit element and a Cycle Count element.

00001110 Cycle Count Format 1_1 with count Packet Indicates a Cycle Count element.

00001110 Cycle Count Format 1_0 with count Packet Indicates zero or one Commit elements followed by a Cycle
Count element.

00001111 Cycle Count Format 1_1 unknown count Packet Indicates a Cycle Count element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter D5. Protocol Description
D5.2. Summary

Header
byte Name Purpose

00001111 Cycle Count Format 1_0 unknown count Packet Indicates zero or one Commit elements followed by a Cycle
Count element with an UNKNOWN cycle count value.

000100xx Cycle Count Format 3_1 Packet Indicates a Cycle Count element.

0001xxxx Cycle Count Format 3_0 Packet Indicates a Commit element and a Cycle Count element.

00101101 Commit Packet Indicates a Commit element.

0010111x Cancel Format 1 Packet Indicates a Cancel element optionally followed by a
Mispredict element.

001100xx Mispredict Packet Indicates 0-2 E or N Atom elements followed by one
Mispredict element.

001101xx Cancel Format 2 Packet Indicates zero or more E or N Atom elements followed by a
Cancel element and a Mispredict element.

00111xxx Cancel Format 3 Packet Indicates zero or one E Atom element followed by a Cancel
element with a payload of 2-5 and one Mispredict element.

01110000 Ignore Packet To align packet boundary to memory boundary.

0111xxxx Event Packet Indicates 1-4 Event elements.

10000000 Context Same Packet Indicates a Context element.

10000001 Context Packet Indicates a Context element.

10000010 Target Address with Context 32-bit IS0 Packet Indicates a Target Address element and a Context element.

10000011 Target Address with Context 32-bit IS1 Packet Indicates a Target Address element and a Context element.

10000101 Target Address with Context 64-bit IS0 Packet Indicates a Target Address element and a Context element.

10000110 Target Address with Context 64-bit IS1 Packet Indicates a Target Address element and a Context element.

10001000 Timestamp Marker Packet Indicates a Timestamp Marker element.

100100xx Target Address Exact Match Packet Indicates a Target Address element.

10010101 Target Address Short IS0 Packet Indicates a Target Address element.

10010110 Target Address Short IS1 Packet Indicates a Target Address element.

10011010 Target Address 32-bit IS0 Packet Indicates a Target Address element.

10011011 Target Address 32-bit IS1 Packet Indicates a Target Address element.

10011101 Target Address 64-bit IS0 Packet Indicates a Target Address element.

10011110 Target Address 64-bit IS1 Packet Indicates a Target Address element.

101000xx Q with Exact match address Packet Indicates that some instructions have executed with an
address of the next instruction.

10100101 Q short address IS0 Packet Indicates that some instructions have executed with an
address of the next instruction.

10100110 Q short address IS1 Packet Indicates that some instructions have executed with an
address of the next instruction.

10101010 Q 32-bit address IS0 Packet Indicates that some instructions have executed with an
address of the next instruction.

10101011 Q 32-bit address IS1 Packet Indicates that some instructions have executed with an
address of the next instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter D5. Protocol Description
D5.2. Summary

Header
byte Name Purpose

10101100 Q with count Packet Indicates that some instructions have executed.

10101111 Q Packet Indicates that some instructions have executed, without a
count of the number of instructions.

101100xx Source Address Exact Match Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10110100 Source Address Short IS0 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10110101 Source Address Short IS1 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10110110 Source Address 32-bit IS0 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10110111 Source Address 32-bit IS1 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10111000 Source Address 64-bit IS0 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

10111001 Source Address 64-bit IS1 Packet Indicates the source address of a P0 instruction, and that
the instruction was taken.

110101xx Atom Format 5.2 Packet Indicates five Atom elements.

110110xx Atom Format 2 Packet Indicates two Atom elements.

110111xx Atom Format 4 Packet Indicates four Atom elements.

11110101 Atom Format 5.1 Packet Indicates five Atom elements.

1111011x Atom Format 1 Packet Indicates one Atom element.

11111xxx Atom Format 3 Packet Indicates three Atom elements.

11xxxxxx Atom Format 6 Packet Indicates 3-23 E Atom elements, plus a subsequent E Atom
or N Atom element.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter D5. Protocol Description
D5.3. Encoding Schemes

D5.3 Encoding Schemes

D5.3.1 Field encodings

ITGRRZ Bit Replacement The packet outputs bits which update a piece of state. Bits output by the packet replace only
those bits in the piece of state. Bits not output by the packet remain unchanged in the piece of state.

INKPMZ Unsigned LE128n The data is encoded as an unsigned number. The least significant bits of the number are output
in the least significant bits of the packet. Bits not output by the packet are 0.

IWYBBG POD The encoding is specific to the packet.

IQXHHT Unary code The sequence for this variable is one of the following:

• A 0.
• A number of 1 followed by a 0.
• All 1 for the size of the variable, as defined by the packet.

For example the permitted values for a 4-bit variable are:

• 0.
• 10.
• 110.
• 1110.
• 1111.

D5.3.2 Instruction set encoding

RFXNDF For any virtual instruction address, the instruction set is output as a combination of the following two pieces of
information:

• The SF bit encoded in Context packets.
• The sub_isa encoded by the type of the following groups of packets:

– Target Address packets.
– Exception packets.
– Q packets.
– Source Address packets.

The sub_isa indicates either:

• IS0.
• IS1.

Table D5.2 indicates how the combination of the SF bit and sub_isa indicate the instruction set.

Table D5.2: Instruction set encodings

SF Bit sub_isa Instruction Set

0b0 IS0 AArch32 A32

0b0 IS1 AArch32 T32

0b1 IS0 AArch64 A64

IWKMNL The sub_isa also indicates the alignment of the virtual instruction addresses. Table D5.3 indicates the alignment of
each sub_isa.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter D5. Protocol Description
D5.3. Encoding Schemes

Table D5.3: Virtual instruction address alignment

sub_isa Alignment

IS0 Word-Aligned

IS1 Halfword-Aligned

INSZMB The following packets encode the sub_isa:

• Exception Short Address IS0 Packet.
• Exception Short Address IS1 Packet.
• Exception 32-bit Address IS0 Packet.
• Exception 32-bit Address IS1 Packet.
• Exception 64-bit Address IS0 Packet.
• Exception 64-bit Address IS1 Packet.
• Exception 32-bit Address IS0 with Context Packet.
• Exception 32-bit Address IS1 with Context Packet.
• Exception 64-bit Address IS0 with Context Packet.
• Exception 64-bit Address IS1 with Context Packet.
• Target Address Short IS0 Packet.
• Target Address Short IS1 Packet.
• Target Address 32-bit IS0 Packet.
• Target Address 32-bit IS1 Packet.
• Target Address 64-bit IS0 Packet.
• Target Address 64-bit IS1 Packet.
• Target Address with Context 32-bit IS0 Packet.
• Target Address with Context 32-bit IS1 Packet.
• Target Address with Context 64-bit IS0 Packet.
• Target Address with Context 64-bit IS1 Packet.
• Source Address Short IS0 Packet.
• Source Address Short IS1 Packet.
• Source Address 32-bit IS0 Packet.
• Source Address 32-bit IS1 Packet.
• Source Address 64-bit IS0 Packet.
• Source Address 64-bit IS1 Packet.
• Q short address IS0 Packet.
• Q short address IS1 Packet.
• Q 32-bit address IS0 Packet.
• Q 32-bit address IS1 Packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter D5. Protocol Description
D5.4. Alignment Synchronization Packet

D5.4 Alignment Synchronization Packet

Purpose Identifies a packet boundary.

Configurations All.

This packet forms a unique bit and byte pattern. Searching for this pattern allows the trace analyzer to identify
packet boundaries.

Packet Layout

01234567

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001

Figure D5.1: Alignment Synchronization Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

RBXZZJ Any byte that follows this unique sequence of bits is the header byte of a new packet.

RVRKLP This packet must be output before the first Trace Info packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter D5. Protocol Description
D5.5. Discard Packet

D5.5 Discard Packet

Purpose Indicates a Discard element.

Configurations All.

Indicates a Discard element.

Packet Layout

01234567

00000000

11000000

Figure D5.2: Discard Packet

Element sequence

This packet encodes the following sequence:

1. Discard element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

IRTFPP This packet is used to discard any speculative trace that the trace analyzer might still be holding onto.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter D5. Protocol Description
D5.6. Overflow Packet

D5.6 Overflow Packet

Purpose Indicates that a trace unit buffer overflow has occurred.

Configurations All.

Indicates that a trace unit buffer overflow has occurred and data might have been lost.

Packet Layout

01234567

00000000

10100000

Figure D5.3: Overflow Packet

Element sequence

This packet encodes the following sequence:

1. Overflow element.
2. Discard element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter D5. Protocol Description
D5.7. Trace Info Packet

D5.7 Trace Info Packet

Purpose Resets trace compression to a known architectural state.

Configurations All.

The trace info packet resets the trace compression to a known state.

Any fields which are not output are treated as if the value is zero.

Packet Layout - Variant 1

01234567

10000000

00000000

Figure D5.4: Trace Info Packet (1)

Packet Layout - Variant 2

01234567

10000000

10000000

CC(0) (0) (0) (0) (0) T(0)

Figure D5.5: Trace Info Packet (2)

Packet Layout - Variant 3

01234567

10000000

00100000

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

Figure D5.6: Trace Info Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter D5. Protocol Description
D5.7. Trace Info Packet

Packet Layout - Variant 4

01234567

10000000

10100000

CC(0) (0) (0) (0) (0) T(0)

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

Figure D5.7: Trace Info Packet (4)

Packet Layout - Variant 5

01234567

10000000

00010000

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

Figure D5.8: Trace Info Packet (5)

Packet Layout - Variant 6

01234567

10000000

10010000

CC(0) (0) (0) (0) (0) T(0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

Figure D5.9: Trace Info Packet (6)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter D5. Protocol Description
D5.7. Trace Info Packet

Packet Layout - Variant 7

01234567

10000000

00110000

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

Figure D5.10: Trace Info Packet (7)

Packet Layout - Variant 8

01234567

10000000

10110000

CC(0) (0) (0) (0) (0) T(0)

SPEC[6:0]C0

SPEC[13:7]C0

SPEC[20:14]C0

SPEC[27:21]C0

SPEC[31:28](0) (0) (0) (0)

CYCT[6:0]C1

CYCT[11:7](0) (0) (0)

Figure D5.11: Trace Info Packet (8)

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter D5. Protocol Description
D5.7. Trace Info Packet

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

CC Cycle count enable indicator.

When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

0b0 Cycle counting is not enabled.

0b1 Cycle counting is enabled.

CYCT The cycle count threshold.

When this field is not output, it is treated as if it is zero.

The encoding for this field is unsigned LE128n.

SPEC The number of uncommitted P0 elements in the trace.

When this field is not output, it is treated as if it is zero.

The encoding for this field is unsigned LE128n.

T Transactional state indicator.

When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

0b0 The PE is not currently executing in Transactional state.

0b1 The PE is currently executing in Transactional state.

Element sequence

This packet encodes the following sequence:

1. Trace Info element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter D5. Protocol Description
D5.8. Trace On Packet

D5.8 Trace On Packet

Purpose Indicates that there has been a discontinuity in the trace element stream.

Configurations All.

A Trace On packet indicates to a trace analyzer that the trace unit has generated a Trace On element.

Packet Layout

01234567

00100000

Figure D5.12: Trace On Packet

Element sequence

This packet encodes the following sequence:

1. Trace On element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter D5. Protocol Description
D5.9. Timestamp Packet

D5.9 Timestamp Packet

Purpose Indicates a Timestamp element.

Configurations TRCIDR0.TSSIZE != 0b00000.

Packet Layout - Variant 1

01234567

1000000 0

TS[6:0]C0

TS[13:7]C0

TS[20:14]C0

TS[27:21]C0

TS[34:28]C0

TS[41:35]C0

TS[48:42]C0

TS[55:49]C0

TS[63:56]

Figure D5.13: Timestamp Packet (1)

Packet Layout - Variant 2

01234567

1000000 1

TS[6:0]C0

TS[13:7]C0

TS[20:14]C0

TS[27:21]C0

TS[34:28]C0

TS[41:35]C0

TS[48:42]C0

TS[55:49]C0

TS[63:56]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[19:14](0) (0)

Figure D5.14: Timestamp Packet (2)

Field descriptions

C0 Continuation Bit.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter D5. Protocol Description
D5.9. Timestamp Packet

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of PE clock cycles between the most recent Cycle Count element and the element related to
the Timestamp.

The encoding for this field is unsigned LE128n.

TS Timestamp Value.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Timestamp element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter D5. Protocol Description
D5.10. Timestamp Marker Packet

D5.10 Timestamp Marker Packet

Purpose Indicates a Timestamp Marker element.

Configurations TRCIDR0.TSSIZE != 0b00000 and TRCIDR0.TSMARK == 0b1

Packet Layout

01234567

00010001

Figure D5.15: Timestamp Marker Packet

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter D5. Protocol Description
D5.11. Transaction Start Packet

D5.11 Transaction Start Packet

Purpose Indicates that the PE has started to execute in Transactional state.

Configurations All.

Packet Layout

01234567

01010000

Figure D5.16: Transaction Start Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Start element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter D5. Protocol Description
D5.12. Transaction Commit Packet

D5.12 Transaction Commit Packet

Purpose Indicates that the PE has successfully finished an outer transaction and is leaving Transactional state.

Configurations All.

Packet Layout

01234567

11010000

Figure D5.17: Transaction Commit Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Commit element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter D5. Protocol Description
D5.13. Exception Exact Match Address Packet

D5.13 Exception Exact Match Address Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

001001 A

Figure D5.18: Exception Exact Match Address Packet

Field descriptions

A Preferred Exception Return address.

The encoding for this field is POD.

0b00 The Preferred Exception Return is the same as address
history buffer entry 0.

0b01 The Preferred Exception Return is the same as address
history buffer entry 1.

0b10 The Preferred Exception Return is the same as address
history buffer entry 2.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter D5. Protocol Description
D5.13. Exception Exact Match Address Packet

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter D5. Protocol Description
D5.14. Exception Short Address IS0 Packet

D5.14 Exception Short Address IS0 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

10101001

A[8:2]C0

A[16:9]

Figure D5.19: Exception Short Address IS0 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter D5. Protocol Description
D5.14. Exception Short Address IS0 Packet

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter D5. Protocol Description
D5.15. Exception Short Address IS1 Packet

D5.15 Exception Short Address IS1 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

01101001

A[7:1]C0

A[15:8]

Figure D5.20: Exception Short Address IS1 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter D5. Protocol Description
D5.15. Exception Short Address IS1 Packet

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter D5. Protocol Description
D5.16. Exception 32-bit Address IS0 Packet

D5.16 Exception 32-bit Address IS0 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

01011001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

Figure D5.21: Exception 32-bit Address IS0 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter D5. Protocol Description
D5.16. Exception 32-bit Address IS0 Packet

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter D5. Protocol Description
D5.17. Exception 32-bit Address IS1 Packet

D5.17 Exception 32-bit Address IS1 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

11011001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

Figure D5.22: Exception 32-bit Address IS1 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter D5. Protocol Description
D5.17. Exception 32-bit Address IS1 Packet

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter D5. Protocol Description
D5.18. Exception 64-bit Address IS0 Packet

D5.18 Exception 64-bit Address IS0 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

10111001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.23: Exception 64-bit Address IS0 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter D5. Protocol Description
D5.18. Exception 64-bit Address IS0 Packet

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter D5. Protocol Description
D5.19. Exception 64-bit Address IS1 Packet

D5.19 Exception 64-bit Address IS1 Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout

01234567

01100000

0 E[0]E[1] TYPE

01111001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.24: Exception 64-bit Address IS1 Packet

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE The exception type.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter D5. Protocol Description
D5.19. Exception 64-bit Address IS1 Packet

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

D5.20 Exception 32-bit Address IS0 with Context Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout - Variant 1

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS00

Figure D5.25: Exception 32-bit Address IS0 with Context Packet (1)

Packet Layout - Variant 2

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.26: Exception 32-bit Address IS0 with Context Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

Packet Layout - Variant 3

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.27: Exception 32-bit Address IS0 with Context Packet (3)

Packet Layout - Variant 4

01234567

01100000

0 E[0]E[1] TYPE

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.28: Exception 32-bit Address IS0 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Context element.
2. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

NS Security state

When this field is not output, the Security state is the same as the most recently output Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

D5.21 Exception 32-bit Address IS1 with Context Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout - Variant 1

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS00

Figure D5.29: Exception 32-bit Address IS1 with Context Packet (1)

Packet Layout - Variant 2

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.30: Exception 32-bit Address IS1 with Context Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

Packet Layout - Variant 3

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.31: Exception 32-bit Address IS1 with Context Packet (3)

Packet Layout - Variant 4

01234567

01100000

0 E[0]E[1] TYPE

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.32: Exception 32-bit Address IS1 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Context element.
2. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

D5.22 Exception 64-bit Address IS0 with Context Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout - Variant 1

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS00

Figure D5.33: Exception 64-bit Address IS0 with Context Packet (1)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 2

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.34: Exception 64-bit Address IS0 with Context Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 3

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.35: Exception 64-bit Address IS0 with Context Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 4

01234567

01100000

0 E[0]E[1] TYPE

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.36: Exception 64-bit Address IS0 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

0b01
1. Context element.
2. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

NS Security state

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

D5.23 Exception 64-bit Address IS1 with Context Packet

Purpose Indicates that an exception has occurred.

Configurations All.

Packet Layout - Variant 1

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS00

Figure D5.37: Exception 64-bit Address IS1 with Context Packet (1)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

Packet Layout - Variant 2

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.38: Exception 64-bit Address IS1 with Context Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

Packet Layout - Variant 3

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.39: Exception 64-bit Address IS1 with Context Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

Packet Layout - Variant 4

01234567

01100000

0 E[0]E[1] TYPE

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.40: Exception 64-bit Address IS1 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

Preferred Exception Return address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

0b01
1. Context element.
2. Exception element (TYPE, ADDRESS).

0b10
1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00 EL0.

0b01 EL1.

0b10 EL2.

0b11 EL3.

NS Security state

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

TYPE The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

0b00001 Debug halt.

0b00010 Call.

0b00011 Trap.

0b00100 System Error.

0b00110 Inst debug.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

0b00111 Data debug.

0b01010 Alignment.

0b01011 Inst Fault.

0b01100 Data Fault.

0b01110 IRQ.

0b01111 FIQ.

0b10000 IMPLEMENTATION DEFINED 0.

0b10001 IMPLEMENTATION DEFINED 1.

0b10010 IMPLEMENTATION DEFINED 2.

0b10011 IMPLEMENTATION DEFINED 3.

0b10100 IMPLEMENTATION DEFINED 4.

0b10101 IMPLEMENTATION DEFINED 5.

0b10110 IMPLEMENTATION DEFINED 6.

0b10111 IMPLEMENTATION DEFINED 7.

0b11000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter D5. Protocol Description
D5.24. Transaction Failure Packet

D5.24 Transaction Failure Packet

Purpose Indicates that a Transaction Failure has occurred.

Configurations All.

Packet Layout

01234567

01100000

E[0]E[1] 000110

00001110

Figure D5.41: Transaction Failure Packet

Field descriptions

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Transaction Failure element.

0b10
1. Target Address element (UNKNOWN).
2. Transaction Failure element.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter D5. Protocol Description
D5.25. PE Reset Packet

D5.25 PE Reset Packet

Purpose Indicates that a PE Reset has occurred.

Configurations All.

Packet Layout

01234567

01100000

E[0]E[1] 000000

00001110

Figure D5.42: PE Reset Packet

Field descriptions

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01
1. Exception element (PE_Reset, UNKNOWN).

0b10
1. Target Address element (UNKNOWN).
2. Exception element (PE_Reset, UNKNOWN).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter D5. Protocol Description
D5.26. Cycle Count Format 1_0 unknown count Packet

D5.26 Cycle Count Format 1_0 unknown count Packet

Purpose Indicates zero or one Commit elements followed by a Cycle Count element with an UNKNOWN cycle
count value.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

11110000

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

Figure D5.43: Cycle Count Format 1_0 unknown count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COMMIT If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the
Cycle Count element and this field indicates the number of P0 elements committed by the Commit element.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter D5. Protocol Description
D5.27. Cycle Count Format 1_1 unknown count Packet

D5.27 Cycle Count Format 1_1 unknown count Packet

Purpose Indicates a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

11110000

Figure D5.44: Cycle Count Format 1_1 unknown count Packet

Element sequence

This packet encodes the following sequence:

1. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter D5. Protocol Description
D5.28. Cycle Count Format 1_0 with count Packet

D5.28 Cycle Count Format 1_0 with count Packet

Purpose Indicates zero or one Commit elements followed by a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

01110000

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[19:14](0) (0)

Figure D5.45: Cycle Count Format 1_0 with count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COMMIT If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the
Cycle Count element and this field indicates the number of P0 elements committed by the Commit element.

The encoding for this field is unsigned LE128n.

COUNT Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit elements
that both had a Cycle Count element associated with them. The cycle count is COUNT+cc_threshold.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter D5. Protocol Description
D5.28. Cycle Count Format 1_0 with count Packet

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter D5. Protocol Description
D5.29. Cycle Count Format 1_1 with count Packet

D5.29 Cycle Count Format 1_1 with count Packet

Purpose Indicates a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

01110000

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[19:14](0) (0)

Figure D5.46: Cycle Count Format 1_1 with count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit elements
that both had a Cycle Count element associated with them. The cycle count is COUNT+cc_threshold.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter D5. Protocol Description
D5.30. Cycle Count Format 2_0 small commit Packet

D5.30 Cycle Count Format 2_0 small commit Packet

Purpose Indicates a Commit element and a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

00110000

BBBBAAAA

Figure D5.47: Cycle Count Format 2_0 small commit Packet

Field descriptions

AAAA Indicates the number of P0 elements to be resolved indicated by this field + 1.

The encoding for this field is POD.

BBBB Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter D5. Protocol Description
D5.31. Cycle Count Format 2_0 large commit Packet

D5.31 Cycle Count Format 2_0 large commit Packet

Purpose Indicates a Commit element and a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

10110000

BBBBAAAA

Figure D5.48: Cycle Count Format 2_0 large commit Packet

Field descriptions

AAAA Indicates the number of P0 elements to be resolved indicated by TRCIDR8.MAXSPEC + field - 15.

The number of P0 elements to be resolved must be greater than 0.

If the number of P0 elements to be resolved is less than 17 then it is preferred that a Cycle Count Format 2_0
small commit Packet is used.

The encoding for this field is POD.

BBBB Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter D5. Protocol Description
D5.32. Cycle Count Format 2_1 Packet

D5.32 Cycle Count Format 2_1 Packet

Purpose Indicates a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

10110000

BBBB1111

Figure D5.49: Cycle Count Format 2_1 Packet

Field descriptions

BBBB Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter D5. Protocol Description
D5.33. Cycle Count Format 3_0 Packet

D5.33 Cycle Count Format 3_0 Packet

Purpose Indicates a Commit element and a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b0.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

1000 BBAA

Figure D5.50: Cycle Count Format 3_0 Packet

Field descriptions

AA The number of P0 elements to be resolved indicated by this field + 1.

The encoding for this field is POD.

BB Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter D5. Protocol Description
D5.34. Cycle Count Format 3_1 Packet

D5.34 Cycle Count Format 3_1 Packet

Purpose Indicates a Cycle Count element.

Configurations All the following conditions must be met:

• TRCIDR0.COMMOPT == 0b1.

• TRCIDR0.TRCCCI == 0b1.

Packet Layout

01234567

001000 BB

Figure D5.51: Cycle Count Format 3_1 Packet

Field descriptions

BB Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter D5. Protocol Description
D5.35. Commit Packet

D5.35 Commit Packet

Purpose Indicates a Commit element.

Configurations TRCIDR8.MAXSPEC > 0.

Packet Layout

01234567

10110100

COMMIT[6:0]C0

COMMIT[13:7]C0

COMMIT[20:14]C0

COMMIT[27:21]C0

COMMIT[31:28](0) (0) (0) (0)

Figure D5.52: Commit Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COMMIT The number of P0 elements to be resolved.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter D5. Protocol Description
D5.36. Cancel Format 1 Packet

D5.36 Cancel Format 1 Packet

Purpose Indicates a Cancel element optionally followed by a Mispredict element.

Configurations TRCIDR8.MAXSPEC > 0.

Packet Layout

01234567

1110100 M

CANCEL[6:0]C0

CANCEL[13:7]C0

CANCEL[20:14]C0

CANCEL[27:21]C0

CANCEL[31:28](0) (0) (0) (0)

Figure D5.53: Cancel Format 1 Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

CANCEL The number of P0 elements to be canceled.

The encoding for this field is unsigned LE128n.

0b0 Reserved

M Mispredict element included in the packet.

The encoding for this field is POD.

0b0 No Mispredict element occurred

0b1 A Mispredict element occurred after the Cancel element

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter D5. Protocol Description
D5.37. Cancel Format 2 Packet

D5.37 Cancel Format 2 Packet

Purpose Indicates zero or more E or N Atom elements followed by a Cancel element and a Mispredict element.

Configurations TRCIDR8.MAXSPEC > 0.

Packet Layout

01234567

101100 A

Figure D5.54: Cancel Format 2 Packet

Field descriptions

A Indicates the number of Atom elements that occurred before the Cancel element.

The encoding for this field is POD.

0b00
1. Cancel element.
2. Mispredict element.

0b01
1. E Atom element.
2. Cancel element.
3. Mispredict element.

0b10
1. E Atom element.
2. E Atom element.
3. Cancel element.
4. Mispredict element.

0b11
1. N Atom element.
2. Cancel element.
3. Mispredict element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter D5. Protocol Description
D5.38. Cancel Format 3 Packet

D5.38 Cancel Format 3 Packet

Purpose Indicates zero or one E Atom element followed by a Cancel element with a payload of 2-5 and one
Mispredict element.

Configurations TRCIDR8.MAXSPEC > 0.

Packet Layout

01234567

11100 CC A

Figure D5.55: Cancel Format 3 Packet

Field descriptions

A Indicates the number of Atom elements that occurred before the Cancel element.

The encoding for this field is POD.

0b0
1. Cancel element.

0b1
1. E Atom element.
2. Cancel element.

CC The number of P0 elements to be canceled.

The encoding for this field is POD.

0b00 Cancel 2 P0 elements

0b01 Cancel 3 P0 elements

0b10 Cancel 4 P0 elements

0b11 Cancel 5 P0 elements

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter D5. Protocol Description
D5.39. Mispredict Packet

D5.39 Mispredict Packet

Purpose Indicates 0-2 E or N Atom elements followed by one Mispredict element.

Configurations All.

Packet Layout

01234567

001100 A

Figure D5.56: Mispredict Packet

Field descriptions

A Indicates the number of Atom elements that occurred before the Mispredict element.

The encoding for this field is POD.

0b00
1. Mispredict element.

0b01
1. E Atom element.
2. Mispredict element.

0b10
1. E Atom element.
2. E Atom element.
3. Mispredict element.

0b11
1. N Atom element.
2. Mispredict element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter D5. Protocol Description
D5.40. Atom Format 1 Packet

D5.40 Atom Format 1 Packet

Purpose Indicates one Atom element.

Configurations All.

Packet Layout

01234567

1101111 A

Figure D5.57: Atom Format 1 Packet

Field descriptions

A Indicates a single Atom element.

The encoding for this field is POD.

0b0 One N Atom element

0b1 One E Atom element

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter D5. Protocol Description
D5.41. Atom Format 2 Packet

D5.41 Atom Format 2 Packet

Purpose Indicates two Atom elements.

Configurations All.

Packet Layout

01234567

011011 A

Figure D5.58: Atom Format 2 Packet

Field descriptions

A Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

0b00
1. N Atom element.
2. N Atom element.

0b01
1. E Atom element.
2. N Atom element.

0b10
1. N Atom element.
2. E Atom element.

0b11
1. E Atom element.
2. E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter D5. Protocol Description
D5.42. Atom Format 3 Packet

D5.42 Atom Format 3 Packet

Purpose Indicates three Atom elements.

Configurations All.

Packet Layout

01234567

11111 A

Figure D5.59: Atom Format 3 Packet

Field descriptions

A Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

0b000
1. N Atom element.
2. N Atom element.
3. N Atom element.

0b001
1. E Atom element.
2. N Atom element.
3. N Atom element.

0b010
1. N Atom element.
2. E Atom element.
3. N Atom element.

0b011
1. E Atom element.
2. E Atom element.
3. N Atom element.

0b100
1. N Atom element.
2. N Atom element.
3. E Atom element.

0b101
1. E Atom element.
2. N Atom element.
3. E Atom element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter D5. Protocol Description
D5.42. Atom Format 3 Packet

0b110
1. N Atom element.
2. E Atom element.
3. E Atom element.

0b111
1. E Atom element.
2. E Atom element.
3. E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter D5. Protocol Description
D5.43. Atom Format 4 Packet

D5.43 Atom Format 4 Packet

Purpose Indicates four Atom elements.

Configurations All.

Packet Layout

01234567

111011 A

Figure D5.60: Atom Format 4 Packet

Field descriptions

A Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

0b00
1. N Atom element.
2. E Atom element.
3. E Atom element.
4. E Atom element.

0b01
1. N Atom element.
2. N Atom element.
3. N Atom element.
4. N Atom element.

0b10
1. N Atom element.
2. E Atom element.
3. N Atom element.
4. E Atom element.

0b11
1. E Atom element.
2. N Atom element.
3. E Atom element.
4. N Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter D5. Protocol Description
D5.44. Atom Format 5.1 Packet

D5.44 Atom Format 5.1 Packet

Purpose Indicates five Atom elements.

Configurations All.

Packet Layout

01234567

10101111

Figure D5.61: Atom Format 5.1 Packet

Element sequence

This packet encodes the following sequence:

1. N Atom element.
2. E Atom element.
3. E Atom element.
4. E Atom element.
5. E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter D5. Protocol Description
D5.45. Atom Format 5.2 Packet

D5.45 Atom Format 5.2 Packet

Purpose Indicates five Atom elements.

Configurations All.

Packet Layout

01234567

101011 A

Figure D5.62: Atom Format 5.2 Packet

Field descriptions

A Indicates a specific sequence of Atom elements.

The encoding for this field is POD.

0b01
1. N Atom element.
2. N Atom element.
3. N Atom element.
4. N Atom element.
5. N Atom element.

0b10
1. N Atom element.
2. E Atom element.
3. N Atom element.
4. E Atom element.
5. N Atom element.

0b11
1. E Atom element.
2. N Atom element.
3. E Atom element.
4. N Atom element.
5. E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter D5. Protocol Description
D5.46. Atom Format 6 Packet

D5.46 Atom Format 6 Packet

Purpose Indicates 3-23 E Atom elements, plus a subsequent E Atom or N Atom element.

Configurations All.

Packet Layout

01234567

11 A COUNT

Figure D5.63: Atom Format 6 Packet

Field descriptions

A Indicates an E Atom element or N Atom element, after the E Atom elements indicated by COUNT.

The encoding for this field is POD.

0b0 One E Atom element

0b1 One N Atom element

COUNT Indicates a number of E Atom elements. The number is 3 + COUNT. Permitted values of COUNT are
0b00000 to 0b10100.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter D5. Protocol Description
D5.47. Target Address Short IS0 Packet

D5.47 Target Address Short IS0 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

10101001

A[8:2]C0

A[16:9]

Figure D5.64: Target Address Short IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter D5. Protocol Description
D5.48. Target Address Short IS1 Packet

D5.48 Target Address Short IS1 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

01101001

A[7:1]C0

A[15:8]

Figure D5.65: Target Address Short IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter D5. Protocol Description
D5.49. Target Address 32-bit IS0 Packet

D5.49 Target Address 32-bit IS0 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

01011001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

Figure D5.66: Target Address 32-bit IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter D5. Protocol Description
D5.50. Target Address 32-bit IS1 Packet

D5.50 Target Address 32-bit IS1 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

11011001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

Figure D5.67: Target Address 32-bit IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter D5. Protocol Description
D5.51. Target Address 64-bit IS0 Packet

D5.51 Target Address 64-bit IS0 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

10111001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.68: Target Address 64-bit IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter D5. Protocol Description
D5.52. Target Address 64-bit IS1 Packet

D5.52 Target Address 64-bit IS1 Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

01111001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.69: Target Address 64-bit IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter D5. Protocol Description
D5.53. Target Address Exact Match Packet

D5.53 Target Address Exact Match Packet

Purpose Indicates a Target Address element.

Configurations All.

Packet Layout

01234567

001001 QE

Figure D5.70: Target Address Exact Match Packet

Field descriptions

QE Instruction virtual address.

The encoding for this field is POD.

0b00 The address is the same as address history buffer entry 0.

0b01 The address is the same as address history buffer entry 1.

0b10 The address is the same as address history buffer entry 2.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter D5. Protocol Description
D5.54. Context Same Packet

D5.54 Context Same Packet

Purpose Indicates a Context element.

Configurations All.

Packet Layout

01234567

00000001

Figure D5.71: Context Same Packet

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter D5. Protocol Description
D5.55. Context Packet

D5.55 Context Packet

Purpose Indicates a Context element.

Configurations All.

Packet Layout - Variant 1

01234567

10000001

EL(0) (0) SFNS00

Figure D5.72: Context Packet (1)

Packet Layout - Variant 2

01234567

10000001

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.73: Context Packet (2)

Packet Layout - Variant 3

01234567

10000001

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.74: Context Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter D5. Protocol Description
D5.55. Context Packet

Packet Layout - Variant 4

01234567

10000001

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.75: Context Packet (4)

Field descriptions

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL Exception level.

The encoding for this field is POD.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter D5. Protocol Description
D5.55. Context Packet

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit IS0 Packet

D5.56 Target Address with Context 32-bit IS0 Packet

Purpose Indicates a Target Address element and a Context element.

Configurations All.

Packet Layout - Variant 1

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS00

Figure D5.76: Target Address with Context 32-bit IS0 Packet (1)

Packet Layout - Variant 2

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.77: Target Address with Context 32-bit IS0 Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit IS0 Packet

Packet Layout - Variant 3

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.78: Target Address with Context 32-bit IS0 Packet (3)

Packet Layout - Variant 4

01234567

01000001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.79: Target Address with Context 32-bit IS0 Packet (4)

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit IS0 Packet

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL Exception level at this address.

The encoding for this field is POD.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit IS0 Packet

2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

D5.57 Target Address with Context 32-bit IS1 Packet

Purpose Indicates a Target Address element and a Context element.

Configurations All.

Packet Layout - Variant 1

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS00

Figure D5.80: Target Address with Context 32-bit IS1 Packet (1)

Packet Layout - Variant 2

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.81: Target Address with Context 32-bit IS1 Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

Packet Layout - Variant 3

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.82: Target Address with Context 32-bit IS1 Packet (3)

Packet Layout - Variant 4

01234567

11000001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.83: Target Address with Context 32-bit IS1 Packet (4)

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL Exception level at this address.

The encoding for this field is POD.

0b00 EL0

0b01 EL1

0b10 EL2

0b11 EL3

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit IS0 Packet

D5.58 Target Address with Context 64-bit IS0 Packet

Purpose Indicates a Target Address element and a Context element.

Configurations All.

Packet Layout - Variant 1

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS00

Figure D5.84: Target Address with Context 64-bit IS0 Packet (1)

Packet Layout - Variant 2

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.85: Target Address with Context 64-bit IS0 Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit IS0 Packet

Packet Layout - Variant 3

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.86: Target Address with Context 64-bit IS0 Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit IS0 Packet

Packet Layout - Variant 4

01234567

10100001

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.87: Target Address with Context 64-bit IS0 Packet (4)

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL Exception level at this address.

The encoding for this field is POD.

0b00 EL0

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit IS0 Packet

0b01 EL1

0b10 EL2

0b11 EL3

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.
2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

D5.59 Target Address with Context 64-bit IS1 Packet

Purpose Indicates a Target Address element and a Context element.

Configurations All.

Packet Layout - Variant 1

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS00

Figure D5.88: Target Address with Context 64-bit IS1 Packet (1)

Packet Layout - Variant 2

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS01

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.89: Target Address with Context 64-bit IS1 Packet (2)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

Packet Layout - Variant 3

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS10

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.90: Target Address with Context 64-bit IS1 Packet (3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

Packet Layout - Variant 4

01234567

01100001

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

EL(0) (0) SFNS11

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.91: Target Address with Context 64-bit IS1 Packet (4)

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

EL Exception level at this address.

The encoding for this field is POD.

0b00 EL0

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

0b01 EL1

0b10 EL2

0b11 EL3

NS Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.

0b1 The PE is in Non-secure state.

SF AArch64 state.

The encoding for this field is POD.

0b0 The PE is in AArch32 state.

0b1 The PE is in AArch64 state.

VMID Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

• This field is not traced.
• This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.
2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter D5. Protocol Description
D5.60. Source Address Short IS0 Packet

D5.60 Source Address Short IS0 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

00101101

A[8:2]C0

A[16:9]

Figure D5.92: Source Address Short IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter D5. Protocol Description
D5.61. Source Address Short IS1 Packet

D5.61 Source Address Short IS1 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

10101101

A[7:1]C0

A[15:8]

Figure D5.93: Source Address Short IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter D5. Protocol Description
D5.62. Source Address 32-bit IS0 Packet

D5.62 Source Address 32-bit IS0 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

01101101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

Figure D5.94: Source Address 32-bit IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter D5. Protocol Description
D5.63. Source Address 32-bit IS1 Packet

D5.63 Source Address 32-bit IS1 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

11101101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

Figure D5.95: Source Address 32-bit IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter D5. Protocol Description
D5.64. Source Address 64-bit IS0 Packet

D5.64 Source Address 64-bit IS0 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

00011101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.96: Source Address 64-bit IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter D5. Protocol Description
D5.65. Source Address 64-bit IS1 Packet

D5.65 Source Address 64-bit IS1 Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

10011101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.97: Source Address 64-bit IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter D5. Protocol Description
D5.66. Source Address Exact Match Packet

D5.66 Source Address Exact Match Packet

Purpose Indicates the source address of a P0 instruction, and that the instruction was taken.

Configurations All.

Packet Layout

01234567

001101 QE

Figure D5.98: Source Address Exact Match Packet

Field descriptions

QE Instruction virtual address.

The encoding for this field is POD.

0b00 The address is the same as address history buffer entry 0.

0b01 The address is the same as address history buffer entry 1.

0b10 The address is the same as address history buffer entry 2.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter D5. Protocol Description
D5.67. Ignore Packet

D5.67 Ignore Packet

Purpose To align packet boundary to memory boundary.

Configurations All.

Packet Layout

01234567

00001110

Figure D5.99: Ignore Packet

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter D5. Protocol Description
D5.68. Event Packet

D5.68 Event Packet

Purpose Indicates 1-4 Event elements.

Configurations All.

Packet Layout

01234567

1110 V3 V2 V1 V0

Figure D5.100: Event Packet

Field descriptions

V0 Event 0 indicator.

The encoding for this field is POD.

0b0 ETEEvent 0 did not occur

0b1 ETEEvent 0 occurred

V1 Event 1 indicator.

The encoding for this field is POD.

0b0 ETEEvent 1 did not occur

0b1 ETEEvent 1 occurred

V2 Event 2 indicator.

The encoding for this field is POD.

0b0 ETEEvent 2 did not occur

0b1 ETEEvent 2 occurred

V3 Event 3 indicator.

The encoding for this field is POD.

0b0 ETEEvent 3 did not occur

0b1 ETEEvent 3 occurred

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter D5. Protocol Description
D5.68. Event Packet

Additional information

For more information about the decoding of this packet see decode.

Note

[V3, V2, V1, V0] != 0b0000 as this is decoded as an Ignore Packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter D5. Protocol Description
D5.69. Q Packet

D5.69 Q Packet

Purpose Indicates that some instructions have executed, without a count of the number of instructions.

Configurations All.

Packet Layout

01234567

11110101

Figure D5.101: Q Packet

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter D5. Protocol Description
D5.70. Q with count Packet

D5.70 Q with count Packet

Purpose Indicates that some instructions have executed.

Configurations All.

Packet Layout

01234567

00110101

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

Figure D5.102: Q with count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter D5. Protocol Description
D5.71. Q with Exact match address Packet

D5.71 Q with Exact match address Packet

Purpose Indicates that some instructions have executed with an address of the next instruction.

Configurations All.

Packet Layout

01234567

000101 TYPE

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

Figure D5.103: Q with Exact match address Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

TYPE The TYPE field indicates what form the rest of the Packet takes.

The encoding for this field is POD.

0b00 A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry 0.

0b01 A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry 1.

0b10 A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry 2.

0b11 RESERVED

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter D5. Protocol Description
D5.71. Q with Exact match address Packet

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter D5. Protocol Description
D5.72. Q short address IS0 Packet

D5.72 Q short address IS0 Packet

Purpose Indicates that some instructions have executed with an address of the next instruction.

Configurations All.

Packet Layout

01234567

10100101

A[8:2]C0

A[16:9]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[20:14]C1

COUNT[27:21]C1

COUNT[31:28](0) (0) (0) (0)

Figure D5.104: Q short address IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter D5. Protocol Description
D5.72. Q short address IS0 Packet

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter D5. Protocol Description
D5.73. Q short address IS1 Packet

D5.73 Q short address IS1 Packet

Purpose Indicates that some instructions have executed with an address of the next instruction.

Configurations All.

Packet Layout

01234567

01100101

A[7:1]C0

A[15:8]

COUNT[6:0]C1

COUNT[13:7]C1

COUNT[20:14]C1

COUNT[27:21]C1

COUNT[31:28](0) (0) (0) (0)

Figure D5.105: Q short address IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter D5. Protocol Description
D5.73. Q short address IS1 Packet

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter D5. Protocol Description
D5.74. Q 32-bit address IS0 Packet

D5.74 Q 32-bit address IS0 Packet

Purpose Indicates that some instructions have executed with an address of the next instruction.

Configurations All.

Packet Layout

01234567

01010101

A[8:2](0)

A[15:9](0)

A[23:16]

A[31:24]

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

Figure D5.106: Q 32-bit address IS0 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bits[1:0] always have the value 0b00.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter D5. Protocol Description
D5.74. Q 32-bit address IS0 Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter D5. Protocol Description
D5.75. Q 32-bit address IS1 Packet

D5.75 Q 32-bit address IS1 Packet

Purpose Indicates that some instructions have executed with an address of the next instruction.

Configurations All.

Packet Layout

01234567

11010101

A[7:1](0)

A[15:8]

A[23:16]

A[31:24]

COUNT[6:0]C0

COUNT[13:7]C0

COUNT[20:14]C0

COUNT[27:21]C0

COUNT[31:28](0) (0) (0) (0)

Figure D5.107: Q 32-bit address IS1 Packet

Field descriptions

A Instruction virtual address.

Instruction virtual address bit[0] always has the value 0b0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter D5. Protocol Description
D5.75. Q 32-bit address IS1 Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the encoding of this packet see encoding.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter D6
Trace Unit

This chapter describes the behavior of a ETE trace unit.

Trace byte st reamPE Resources Filtering Element
Generat ion

Packet
Generat ion

Figure D6.1: Stages of trace generation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter D6. Trace Unit
D6.1. Resetting the trace unit

D6.1 Resetting the trace unit

D6.1.1 Trace unit reset

RPCXJC A trace unit has a trace unit reset, that resets all trace unit trace registers and trace unit management registers.

RPTZDH When the trace unit Core power domain is powered up, a trace unit reset is applied.

IZXRHG It is IMPLEMENTATION DEFINED whether the system has a mechanism to initiate a trace unit reset on demand.

SWVMHS In a Processing Element (PE) with FEAT_TRF, a PE Cold reset causes EDSCR.TFO to be reset to ‘0b0’ which
means that tracing is prohibited after the Cold reset until explicitly permitted by software. If tracing from a Cold
reset is required, the debugger needs to ensure any relevant controls, including EDSCR.TFO, are programmed
to permit tracing. Programming such registers might involve causing the PE to enter Debug state to ensure the
registers can be programmed before the PE starts executing instructions.

Behavior on a trace unit reset

RWKLGX When a trace unit reset is applied, the trace unit resets the values of all trace unit registers to the values described
in the individual register descriptions.

Note

Some previous trace architectures from Arm supported multiple types of reset for the trace unit.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter D6. Trace Unit
D6.2. System Behaviors

D6.2 System Behaviors

RGFMRH The trace unit outputs all of the trace byte stream, without external stimulus, within finite time.

D6.2.1 Behavior on enabling

RVBMLV While both of the following are true, the trace unit is enabled:

• TRCPRGCTLR.EN is set to 0b1.
• The OS Lock is unlocked.

Note

Previous trace architectures from Arm had a dedicated trace unit OS Lock, whereas ETE is dependent on the PE
OS Lock.

RKBFFQ While the trace unit is enabled, the trace unit can trace all PE execution, except when any of the following are true:

• A trace unit buffer overflow occurs.
• The authentication interface prohibits the tracing of certain pieces of code.
• FEAT_TRF or FEAT_TRBE prohibit the tracing of certain pieces of code.

IKCDMH No sequences of code or PE operations are exempt from this requirement. However, while the trace unit is
transitioning from an enabled to a disabled state, or from a disabled to an enabled state, some loss of trace is
permitted.

IGDNWY While the trace unit is enabled, writes to most trace unit trace registers might be ignored. It is UNKNOWN whether
writes to these registers succeed. When the writes are successful, the behavior of the trace unit is UNPREDICTABLE.

SBXQJH Trace analyzers must not write to most trace unit trace registers while the trace unit is enabled or TRCSTATR.IDLE
indicates that the trace unit is not idle.

ITPTRW While the trace unit is enabled or idle, all resources that are visible in the programmers’ model might have unstable
values. Therefore, a trace analysis tool must be aware that the following values might be dynamically changing as
they are being read:

• The Counter values. These are indicated by the TRCCNTVR<n>.
• The Sequencer state. This is indicated by TRCSEQSTR.
• The ViewInst start/stop function. This is indicated by TRCVICTLR.
• The Single-shot Comparator Control status. This is indicated by the TRCSSCSR<n>.

RVNGFG When the trace unit becomes enabled, the trace unit does not reset the state of any of the resources in the trace unit,
including the Counters, the Sequencer, and the ViewInst start/stop function.

SLMPNV While the trace unit is disabled, and before it is enabled, a trace analyzer ensures the trace unit resources are
programmed with a valid initial state.

D6.2.2 Behavior on disabling

IGZPBM While the trace unit is disabled, the trace unit is not enabled to generate trace and the trace unit resources are
disabled.

RTMLTF While either of the following is true, the trace unit is disabled:

• TRCPRGCTLR.EN is set to 0b0.
• The OS Lock is locked.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter D6. Trace Unit
D6.2. System Behaviors

Note

Previous trace architectures from Arm had a dedicated trace unit OS Lock, whereas ETE is dependent on the PE
OS Lock.

RZDTLK When the trace unit becomes disabled, the trace unit stops generating trace and empties the trace buffers by
outputting any data in them.

RTNYDD When the trace buffers are empty, after the trace unit has become idle after becoming disabled, TRCSTATR.IDLE
indicates that the trace unit is idle.

RTMVLW When the trace unit becomes disabled, all resources that are visible in the programmers’ model retain their values
and become stable at those values.

RQVYMJ When the trace unit becomes disabled, when the resources are stable, TRCSTATR.PMSTABLE indicates that the
programmers’ model is stable.

For more information, see D7.1.2 Behavior of the resources while in the Pausing state.

RGLBHL When the trace unit becomes disabled after the trace unit has generated Event elements, the trace unit outputs the
Event elements before TRCSTATR.IDLE indicates that the trace unit is idle.

RYFLJT While the trace unit is disabled, the following are true:

• No trace is generated.
• All trace unit resources and ETEEvents are disabled.

D6.2.3 Behavior on flushing

IXRMWS The trace unit is allowed to buffer the trace byte stream to make efficient use of system infrastructure.

IWHZBD As the trace unit is allowed to delay the output of the trace byte stream to the system infrastructure, there are
system events that require all of the trace byte stream to be observable to other observers in the system.

ICXLCR Making the trace byte stream visible to other observers is known as a trace unit flush.

RJLRQH When any of the following occur, a trace unit flush is requested:

• The trace unit transitions from an enabled to a disabled state.
• The trace capture infrastructure requests a trace unit flush.
• A TSB CSYNC instruction is executed in a Trace Prohibited region while the Trace Buffer Extension is

implemented and enabled.

IKGJRL A trace unit flush might be requested for IMPLEMENTATION DEFINED reasons. For example:

• Before the trace unit enters either:
– The low-power state.
– A powerdown state.

• The PE enters Debug state.

IZWHKM An example of a trace unit flush is one requested on an Arm AMBA ATB interface AMBA ATB Protocol
Specification [4].

RHGYLG When a trace unit flush is requested, the trace unit performs the following tasks before responding to the flush
request:

1. Encode any remaining elements into trace packets.
2. Complete any packets that are in the process of being generated.
3. Output all trace packets for all PE execution that occurred before the flush request was received.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter D6. Trace Unit
D6.2. System Behaviors

ILMVMT An example of when the trace unit might need to encode remaining elements into trace packets before a trace unit
flush is when there are Commit elements that are not yet encoded.

RTWBVY When a trace unit flush occurs while the trace unit is recovering from a trace unit buffer overflow, the trace unit
outputs the corresponding Overflow element before responding to the flush request.

IGHKFH When a trace unit flush occurs, the trace unit either continues to generate trace or stops generating trace, depending
on what condition caused the trace flush. For example, if a flush occurs because the trace unit is entering a disabled
state, then tracing becomes inactive after the trace flush.

RTTDBB When a condition causes both a trace unit flush and the trace unit to stop generating trace, the trace unit stops
generating trace before responding to the flush request, and before indicating that the trace unit is idle.

INHBMZ On entry to Debug state, Arm recommends that the Exception element indicating entry to Debug state is included
in the flushed trace data if tracing is active.

RPFHWW When a trace unit flush is requested, the trace unit outputs the data within a finite period.

RDKFRL When a trace unit flush is requested and the cause of the flush request requires an acknowledgement, the trace unit
generates the acknowledgement within a finite period.

ISCBMG The flush request mechanism on AMBA ATB is an example of a cause of a flush request that also requires an
acknowledgement.

D6.2.4 Low-power state

XGHHNW The low-power state in the trace unit is a mechanism to improve energy efficiency during periods where trace
generation is limited.

Scenarios where the trace unit might be in the low-power state are any of the following:

• The PE is in a low-power state.
• The PE is in Debug state.

RLHDSS The trace unit is only permitted to be in the low-power state when any of the following are true:

• The PE is in a low-power state due to the Wait for Event mechanism.
• The PE is in a low-power state due to the Wait for Interrupt mechanism.
• The PE is in Debug state.
• The trace unit is Disabled.

D6.2.5 Trace unit behavior when the PE is in a low-power state

IMSTWP The PE that is being traced might support a low-power state where no execution occurs. This low-power state
might be invoked, for example, when the PE executes a WFI, WFIT, WFE, or WFET instruction.

RWMPTL While the trace unit is in the Disabled state, the trace unit does not stop the PE from entering a low-power state.

RYLDDV While the trace unit is in Low-power Override Mode, the trace unit does not affect the operation of the PE.

D6.2.6 Trace unit behavior in the low-power state

RFMXFM While the trace unit is enabled, when the trace unit enters the low-power state, the trace unit continues to appear
enabled throughout the time it is in the low-power state.

RKQVNN When the trace unit enters or leaves the low-power state, the trace unit does not lose resource events that are in
transition through the trace unit, except those permitted when moving through the Pausing state of the resources.
See D7.1.2 Behavior of the resources while in the Pausing state for details on the resource events that are permitted
to be lost when in the Pausing state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter D6. Trace Unit
D6.2. System Behaviors

IRVKHK Observation of resource events that are in transition through the trace unit when it enters the low-power state might
not occur until after the trace unit leaves the low-power state.

RRGFJY While the trace unit is not in the low-power state, and before it enters the low-power state, the resources enter the
Paused state. See D7.1.3 Behavior of the resources while in the Paused state.

IMXHHN If WFI and WFE instructions are classified as P0 instructions, see TRCIDR2.WFXMODE, and the trace unit enters
the low-power state as a result of a WFI or WFE instruction, Arm strongly recommends that the following elements
are generated before the trace unit enters the low-power state:

• The Atom element that represents the a WFI, WFIT, WFE, or WFET instruction.
• Any pending Commit elements.

RLBDSM While the trace unit is in the low-power state, the trace unit does not generate trace, including ETEEvent trace.

RMFBDT While the trace unit is in the low-power state, the resources remain in the state that they were in before the trace
unit entered the low-power state.

IQXBYK The resources are:

• The Counters.
• The Sequencer.
• The ViewInst start/stop function.
• The Single-shot Comparator Controls.

RFHYHC While the trace unit is in the low-power state, the trace unit drives all External Outputs low.

RDNKDV While the trace-unit is in the low-power state, the PE and external debugger are able to access the trace unit trace
registers and trace unit management registers unaffected.

RXTBQX While the trace unit is in the low-power state, when a trace protocol synchronization request occurs, the trace
unit handles the trace protocol synchronization request correctly. See D1.9 Trace protocol synchronization for
information on how the trace unit handles trace protocol synchronization requests.

RTWQJT While the trace unit is a retention state, external debugger accesses to the trace unit behave as if there is no power
to the trace unit Core power domain.

IRCXZX While the trace unit is in the low-power state, the trace unit might not recognize external events, such as the
assertion of any External Inputs.

IBPQTL While the trace unit is in the low-power state, it is IMPLEMENTATION DEFINED whether the cycle counter continues
to count or not.

IVTRBC While the trace unit is in the low-power state, timestamp requests might be ignored.

IZTDMB It is possible that the trace unit might intermittently leave and re-enter the low-power state while the PE is in a
low-power state. If this happens, the trace unit resources might become intermittently active during this time. In
addition, trace generation might also become intermittently active, and this means that the trace unit might output
some packets. This behavior is IMPLEMENTATION DEFINED.

IZVDSF There is no additional requirement for the trace unit to generate a Trace Info element or Trace On element when
leaving the low-power state. However, if the trace unit entered the low-power state because the PE was in Debug
state, the normal requirements for restarting trace after leaving Debug state apply, including generation of a Trace
On element. See D6.3 Trace unit behavior while the PE is in Debug state.

ILQFRD The trace unit can be programmed so that it does not enter the low-power state, by enabling Low-power Override
Mode. Low-power Override Mode is selected using TRCEVENTCTL1R.LPOVERRIDE.

RVHSFL When Low-power Override Mode is enabled, the resources continue operating and the trace unit can generate trace.

IFRMMP Low-power Override Mode does not affect the operation of the PE, however it is not required to prevent the PE
from entering a low-power state. This means that even though the trace unit can generate trace, it might only
generate Event elements.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter D6. Trace Unit
D6.3. Trace unit behavior while the PE is in Debug state

D6.3 Trace unit behavior while the PE is in Debug state

RXJXQS While ViewInst is active, when the PE enters Debug state, the trace unit generates an Exception element which
indicates that the PE has entered Debug state.

RYMJFJ When the PE enters Debug state, ViewInst becomes inactive, and remains inactive throughout the time the PE is in
Debug state.

RDPKSC While the PE is in Debug state, the trace unit does not trace instructions that are executed.

RHBNFJ When the PE exits Debug state and ViewInst becomes active, the trace unit generates a Trace On element.

RTGFHM While the PE is in Debug state, the ViewInst start/stop function maintains its state.

IWFYLQ If an Exceptional occurrence occurs between the PE exiting Debug state and the PE executing the first instruction,
the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced. In general, if the entry to
Debug state was traced then TRCRSR.TA will be set to 0b1, and therefore this Exceptional occurrence on exit
from Debug state is traced.

INPQLT If a PE Reset occurs when the PE is in Debug state this is treated as leaving Debug state. This means that a Trace
On element and an Exception element indicating a PE Reset are traced if tracing is not prohibited and either of the
following are true:

• TRCRSR.TA is 0b1.
• Forced tracing of PE Resets is active.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter D6. Trace Unit
D6.4. Trace unit behavior on a trace unit buffer overflow

D6.4 Trace unit behavior on a trace unit buffer overflow

RPQGXB When a trace unit buffer overflow occurs, trace generation becomes inoperative until the trace unit can recover
from the overflow.

RRQHFH When a trace unit buffer overflow occurs, the trace unit does not output a partial trace packet, that is, the trace unit
can only output complete packets.

ITDCNT The Overflow element indicates to a trace analyzer that a trace unit buffer overflow has occurred. See D6.9.15
Overflow Element for details on the generation of an Overflow element.

IFQVRZ See D6.9.6 Event Element for details of the effect of a trace unit buffer overflow on Event element generation.

RDQBDH When the trace unit recovers from a trace unit buffer overflow, the following occur:

• Trace protocol synchronization is requested.
• Trace protocol synchronization occurs before the trace unit outputs any packets.

IVQYYH When an Overflow packet is generated, the trace unit might output any of the following packets before it outputs
an Alignment Synchronization packet:

• Event packet.
• Overflow packet.
• Discard packet.
• Ignore packet.

IYYNRQ Arm recommends that the Alignment Synchronization packet is the first packet output after the Overflow packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter D6. Trace Unit
D6.5. Trace unit power states

D6.5 Trace unit power states

IGNFXM The Arm architecture Arm® Architecture Reference Manual, for A-profile architecture [1] defines the following
power-states:

Normal The trace unit Core power domain is fully powered up and the trace unit registers are accessible.

Standby The trace unit Core power domain is on, but there are measures to reduce energy consumption. Standby
is transparent, meaning that to software and to an external debugger it is indistinguishable from normal
operation.

Retention The OS takes some measures, including IMPLEMENTATION DEFINED code sequences and registers, to
reduce energy consumption. Trace unit registers cannot be accessed. A trace unit reset does not occur on
leaving Retention.

Powerdown The OS takes some measures to reduce energy consumption by turning the trace unit Core power
domain off. Trace registers cannot be accessed. A trace unit reset occurs on leaving Powerdown.

IMNDVQ A trace unit might support a low-power state, which is equivalent to the Standby state.

IBMSVN A trace unit might support a Retention state or a Powerdown state, and both of these states are considered to be a
state where the trace unit Core power domain is powered down.

IZVBZF If the trace unit is implemented in a power domain which is separate from the PE power domain, all of the following
are true:

• The trace unit Core power domain might be able to be powered down without powering down the PE power
domain.

• The trace unit Core power domain is always powered down when the PE power domain is powered down.

ICNZJH A read of TRCPDSR returns information about the current state of the trace unit and Table D6.1 shows the
meanings of the returned value.

Table D6.1: Meaning of TRCPDSR values

STICKYPD POWER Meaning

0b0 0b1 The trace unit Core power domain is powered and the trace unit registers are accessible.

0b1 0b1 The trace unit Core power domain is powered and the trace unit registers are accessible.
A trace unit reset or power interruption has occurred so the trace unit register state
might not be valid.

RCMKXK When the trace unit Core power domain transitions from powered down to powered up, if the trace unit register
state has been preserved over the power down then TRCPDSR.STICKYPD is restored to the value before power
down.

RFQMXQ When the trace unit Core power domain transitions from powered down to powered up, if the trace unit register
state has not been preserved over the power down then TRCPDSR.STICKYPD is set to 0b1.

Note

Previous trace architectures from Arm supported multiple power domains in the trace unit. ETE only supports a
single power domain and therefore TRCPDSR.POWER is always 0b1.

IFRMBB A system might support a Debug power domain that contains the interface between the trace unit and the external
debugger. The Debug power domain usually needs to be powered up when the external debugger needs to connect

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter D6. Trace Unit
D6.5. Trace unit power states

to the system. Such a Debug power domain is described in the Arm® Architecture Reference Manual, for A-profile
architecture [1].

RGYLKD If the trace unit Core power domain can be powered down independently of the Debug power domain, Arm
recommends the system implements an external debug component with a Power-up request mechanism which can
request the trace unit Core power domain to be powered up.

RZNSNS Arm strongly recommends the Power-up request mechanism is a CoreSight Class 0x9 ROM Table containing a
parent entry for the trace unit. A parent entry of a component is one of:

• An entry in the ROM table that locates the component.
• An entry in a first ROM table that locates a second ROM table that includes a parent entry for the component.

The second ROM table is a descendant of the first ROM table.

ITLYXG This definition of a parent entry is recursive, and therefore the Power-up request mechanism might be high up in a
hierarchy of ROM tables. The ROM table and any descendants might describe other debug components, including
debug components for other PEs. The ROM table might have parent entries in other ROM tables, and those parent
entries might also have a Power-up request mechanism in those ROM tables.

RZPCZC If the Power-up request mechanism is implemented, in the Class 0x9 ROM Table containing the Power-up request
mechanism for the trace unit:

• The POWERIDVALID bit in the parent entry must be 0b1.
• The POWERID field in the parent entry has an IMPLEMENTATION DEFINED value.

IDXHPS It is IMPLEMENTATION DEFINED whether the trace unit Core power domain is the PE Core power domain or
some other power domain. For more information on the CoreSight Class 0x9 ROM Table, see the ARM CoreSight
Architecture Specification [5].

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

D6.6 Visibility of the PE operation

IBMPFH This section describes the ability of the trace unit to trace the execution of the operation of the PE.

RQCFMC When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with Context synchronization events.

RQHTYC When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with the TSB CSYNC instruction as defined in Chapter E1 Trace Buffer Extension.

RQCFSS When instructions are executed outside of any Trace Prohibited region, the trace unit observes the execution.

RCDNKX When observable instructions are executed, the trace unit observes all execution before a PE Context
synchronization event occurs, as defined in Chapter E1 Trace Buffer Extension.

RQMBKJ When an Exceptional occurrence occurs outside of any Trace Prohibited region, the trace unit observes the
Exceptional occurrence.

IXBJFP Executing a TSB CSYNC instruction generates a Trace synchronization event as defined in Chapter E1 Trace Buffer
Extension.

RFCBLJ When a TSB CSYNC instruction is executed in a Trace Prohibited region, the TSB CSYNC instruction does not become
Microarchitecturally-finished until the resources are in the Paused state or the trace unit is in the Idle or Stable
state.

IJYJDZ While the PE is outside a transaction, after a TSB CSYNC instruction executed inside a Trace Prohibited region
generates a Trace synchronization event, the Trace synchronization event is microarchitecturally-finished when the
trace operation has microarchitecturally-finished for every instruction before the Context synchronization event
before the TSB CSYNC instruction that generated the Trace synchronization event.

For more details on the TSB CSYNC instruction, see RMRVPT.

RTSLRT While the PE is inside a transaction, when a Trace synchronization event occurs, the Trace synchronization event
becomes Microarchitecturally-finished within a finite period.

IHNSGS While the PE is inside a transaction, the completion of a Trace synchronization event is not dependent on the
resolution of the transaction. It might still be dependent on other aspects of the trace operation.

RXLVQM When a TSB CSYNC instruction executed in a Trace Prohibited region becomes Microarchitecturally-finished, the
trace unit generates no more trace until the PE leaves the Trace Prohibited region.

ICZLXW When a TSB CSYNC is executed in a Trace Prohibited region, the rules around generation of a trace flush and requiring
no more trace to be generated in the Trace Prohibited region mean that only whole trace packets are output, and
the last byte output is the end of a packet.

XGSXJJ These rules ensure that no new trace is generated and allows various system registers to be changed, such as those
controlling the Trace Buffer Extension, without the risk of any trace being generated while those registers are
being changed.

RXRWPV When the trace unit becomes enabled in a Trace Prohibited region, the trace unit generates no trace until the PE
leaves the Trace Prohibited region.

XTGNBT The above rule ensures that no trace is generated until the PE leaves the Trace Prohibited region, and therefore
allows various system registers to be changed, such as those controlling the Trace Buffer Extension, without the
risk of any trace being generated while those registers are being changed.

IKXDDS The trace operation as defined in Chapter E1 Trace Buffer Extension can be split into operations that are performed
by one of the following:

• The PE.
• The ETE trace unit.
• The trace buffer.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

The operation of the trace unit is defined by the ETE trace operation.

RRFJQN If the Trace Buffer Unit is implemented and enabled, when a Trace synchronization event occurs, and after all
of the trace byte stream generated by the trace unit is flushed to the trace buffer, the Trace synchronization event
completes.

Table D6.2: Labels for ordering diagrams

Notation Name Description

po program-order head is in program order after tail.

rf Reads-from tail Reads-from head.

co Coherence-after head is Coherence-after tail.

fr from-read As co, except that the operation at head is a read.

ob Observed-by tail is Observed-by head. Only applies for different Observers.

tb traced-by head is the trace operation for the instruction at tail.

gb generated by head is an operation generated by the instruction at tail.

seo speculative
execution-order

The PE speculated that the instruction at head was executed after tail, but
the instruction was later Canceled or was part of a Transaction that Failed
or was Canceled. An seo arrow might be paired with a can arrow that
shows this.

can canceled The instruction at tail was Canceled when the instruction at head was
resolved, or the Transaction containing tail Failed or was Canceled.

D6.6.1 ETE trace operation

RYCJXC Each instruction has all of the following state information:

• PC.
• PSTATE.T.
• PSTATE.EL.
• The Security state.
• CONTEXTIDR_EL1.PROCID.
• CONTEXTIDR_EL2.PROCID.
• TRFCR_EL1.
• TRFCR_EL2.
• MDCR_EL3.STE.
• TxNestingLevel.

IGCLMS The trace information generated contains Address information in Target Address elements, Source Address elements,
Exception elements, and Q elements. The Address information contains:

• The virtual address of an instruction.
• The instruction set, known as the sub_isa.

IJTLPL The trace information generated contains Context information in Context elements. The Context information
contains:

• The current Security state.
• The current Exception level.
• The current Execution state, which is AArch32 or AArch64.
• The current Context identifier, as stored in CONTEXTIDR_EL1.PROCID.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

• The current Virtual context identifier, as stored in CONTEXTIDR_EL2.PROCID.

RWBCRN When an instruction is executed and all the trace elements for the instruction have been generated, the trace
operation for the instruction is complete.

IWXNXB Trace elements generated for an instruction might include:

• Global timestamp elements.
• Cycle count elements.
• Speculation resolution elements.
• Transaction resolution elements.

IFKTKY For example, the tracing of PE execution is where:

• Resolved instruction A is executed in program order before a Resolved instruction B.
• tA is all the trace elements that are generated due to the tracing of instruction A.
• tB is all the trace elements that are generated due to the tracing of instruction B.
• The trace elements for tA must be observed before tB.

Figure D6.2 shows this.

A Bpo

t A

tb

t B

tb

ob

Figure D6.2: Trace operation

D6.6.2 Impact on PE Behavior

ILLKFT The ETE architecture places no requirements on the impact that trace generation has on the functional performance
of a PE. Arm expects that trace unit implementations are designed according to the market requirements of the PEs
being traced, and according to the trace requirements for those PEs. For some markets and trace requirements, the
trace solution might always have some performance impact on the PE and the ETE architecture does not prohibit
this.

D6.6.3 Behavior on a PE Warm reset

RYYHBF A PE Warm reset does not cause a Trace unit reset.

XZRQTC This ensures that tracing is possible through a PE Warm reset.

IQBSCX A PE Warm reset might occur at the same time as a Trace unit reset, however, these are asynchronous and unrelated
events.

D6.6.4 Instruction Block

XTYXHR How instructions are executed can vary significantly between PE designs. To allow for these variations the ETE
architecture allows some flexibility within the filtering model. Rather than applying the filtering model to individual
instructions it is applied to blocks of instructions.

RBQTBL An instruction block contains one or more instructions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

RGDZBX An instruction block can contain zero or one P0 instructions.

RCVJQH When an instruction block is generated which contains a P0 instruction, the instruction block has the P0 instruction
as the last instruction in the block.

RHPJTP Exceptional occurrences do not occur between instructions in an instruction block.

RLDJXZ The addresses of the instructions within an instruction block are sequential.

IJCQHC The number of instructions in a block can vary from block to block and can vary each time the same sequence of
instructions are executed.

IHRBJG For example, the tracing of an instruction block is where:

• Resolved instruction A is executed in program order before a Resolved instruction B.
• tA is all the trace elements that are generated due to the tracing of instruction A.
• tA is all the trace elements that are generated due to the tracing of instruction B.

Figure D6.3 shows this.

A Bpo

t A
tb

tb

Figure D6.3: Instruction block trace operation

D6.6.5 Exposing Speculation

IDCDNQ For some PE microarchitectures the tracing of execution-order only might not be achievable. The ETE architecture
provides the ability to trace speculatively executed instructions.

RTRVLX When speculative instructions are observed, the trace unit indicates whether each instruction is resolved or canceled
with a resolve operation or a cancel operation.

RPPJSK A resolve operation indicates that one or more instructions have, or will be, architecturally executed.

RWZBLY A cancel operation indicates that one or more instructions, although observed by the trace unit, did not
architecturally execute.

IKQYZB There is no requirement to expose any speculation to the trace unit.

IDKDHD For example, the tracing of speculation execution is where:

• S is executed in speculative execution-order after a Resolved instruction A.

• A is executed in program order before a Resolved instruction B.

• S is not in speculative execution-order after B.

• Q is executed in speculative execution-order after a Resolved instruction B.

Figure D6.4 shows this.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

A Bpo

S

seo

Q

seo

can

t S

tb

t Q

tb

ob

Figure D6.4: Observation of Speculative Trace operation

D6.6.6 Trace Prohibited regions

XTHCBC Trace Prohibited regions are instruction address regions or periods of execution by the PE that are not to be traced.
Instructions and Exceptional occurrences which are not prohibited are not necessarily traced because the trace unit
has a number of trace filtering functions to limit the amount of trace generated to the sections or periods of interest.

IRJYNL An executable program might contain regions of code that are prohibited to trace. These regions might be associated
with a higher Security state, or with the PE entering a privileged mode so that it can execute the instructions that
are contained within them.

Tracing might be prohibited while the PE is operating in certain states or modes. For example:

• Non-invasive debug might be prohibited while the PE is in Secure state.
• FEAT_TRF might prohibit tracing.
• FEAT_TRBE might prohibit tracing.

Trace might also become prohibited if, while tracing program execution, an authentication interface changes the
currently permitted level of non-invasive debug. For example, if trace is permitted and active while the PE is
operating in Secure state, and then the permitted level of non-invasive debug changes from being permitted for
Secure state, to not permitted, then trace becomes prohibited.

IFKMSC The Arm® Architecture Reference Manual, for A-profile architecture [1] describes when FEAT_TRF prohibits
tracing.

Chapter E1 Trace Buffer Extension describes when FEAT_TRBE prohibits tracing.

RHYZLQ If an optional authentication interface is implemented, while Secure non-invasive debug is disabled according
to the optional authentication interface and while SelfHostedTraceEnabled() returns FALSE, then for execution in
Secure state, the PE executes in a Trace Prohibited region.

INVSDD An example of an optional authentication interface is the CoreSight Authentication interface ARM CoreSight
Architecture Specification [5].

RFFVYM While the PE is executing code from a Trace Prohibited region, the trace unit does not trace instructions or
Exceptional occurrences, including PE Resets.

RKTMLZ While the PE is executing code from a Trace Prohibited region, instruction Address Comparators do not match on
any instructions in the Trace Prohibited region.

RSZRZR While cycle counting is enabled and the PE is executing code from a Trace Prohibited region, the cycle counter
continues to count.

IMCCBH When the PE leaves a Trace Prohibited region and tracing restarts, the cycle counter includes cycles spent in the
Trace Prohibited region in the cycle count.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

ISDSGK The behavior of the resources when entering a Trace Prohibited region is defined in D7.1.3 Behavior of the
resources while in the Paused state.

RVHRGM While the PE is executing code from a Trace Prohibited region, the trace unit does not output any trace that might
provide information about the execution in the Trace Prohibited region.

IJSKLD Examples of information about execution in a Trace Prohibited region that trace might provide are the context of
execution, instruction addresses, and the address of the first instruction in the Trace Prohibited region.

IMKQWS The most common cause of an entry into a Trace Prohibited region is an Exceptional occurrence or Context
synchronization event.

RTHBVD When an Exceptional occurrence that must be traced causes the PE to enter a Trace Prohibited region, the trace
unit generates an Exception element that indicates the exception type.

RCKZMR When the PE enters a Trace Prohibited region and there are unresolved speculative P0 elements remaining in the
trace byte stream, when the resolution of the speculative elements is known the trace unit generates the appropriate
Commit elements or Cancel elements.

RRXMJF When the PE leaves a Trace Prohibited region and ViewInst is active, that is, any filtering applied dictates that
ViewInst is active, the trace unit generates a Trace On element.

IQGFJF The purpose of the trace unit generating a Trace On element when the PE exits a Trace Prohibited region and
ViewInst is active is to indicate to the trace analyzer that there has been a discontinuity in the trace element stream.

IJBFTB If the PE leaves a Trace Prohibited region other than when a Context synchronization event occurs, the Trace
Prohibited region is permitted to extend up to the next Context synchronization event. Typically, a PE leaves a
Trace Prohibited region via a Context synchronization event, but a PE might leave a Trace Prohibited region when
the authentication interface changes, or when moving from Secure to Non-secure state without an exception return.

IDMXPF If an Exceptional occurrence occurs between the PE exiting a Trace Prohibited region and the PE executing the
first instruction, the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced.

D6.6.7 Multi-threaded processor

RKBZTZ Processors with multiple threads or PEs have a trace unit for each thread or PE.

IKHSWQ The processor might support enabling and disabling of threads, either at PE Reset time or dynamically. The trace
units for the threads that are disabled might behave in one of the following ways:

• The trace unit Core power domain is powered down.
• The trace unit Core power domain is held in the trace unit reset state.

IRFSNL Arm recommends that the trace units for threads that are permanently disabled are not visible: either they are not
included, or they are marked as not present in any ROM tables that describe the system.

D6.6.8 Sharing between multiple PEs

Note

Previous Trace architectures have allowed the trace unit to be shared between multiple PEs.

RTLJSQ A trace unit only traces a single PE, that is, it cannot be shared between multiple PEs.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter D6. Trace Unit
D6.7. Speculation resolution

D6.7 Speculation resolution

IRKYCD The trace unit implements a maximum speculation depth, that is, the maximum permitted number of P0 elements
that can be speculative at any instance. TRCIDR8.MAXSPEC indicates the IMPLEMENTATION DEFINED maximum
speculation depth.

RGLQPL The trace unit never outputs more speculative P0 elements than the maximum speculation depth.

IKCFGW If a trace unit is not exposed to any speculative execution, then Arm recommends that the trace unit implements a
maximum speculation depth of zero, and in this case:

• Cancel elements are not generated.
• Commit elements are generated after each P0 element, causing each P0 element to be immediately resolved

when it is generated. The instruction trace protocol implicitly generates these Commit elements for each P0
element, meaning that explicit Commit packets are not required.

• Mispredict elements are not generated.

IQLKDL ETE defines Commit element and Cancel elements to allow the speculation of the P0 elements to be resolved
by the trace analyzer. The trace unit is required to calculate the number of P0 elements which are committed or
canceled. There are many methods by which these numbers can be calculated, but in the generic case the trace unit
can use the following mathematical procedure.

The PE can speculatively indicate blocks of instructions to the trace unit. Each block of instructions is given a tag
where tag ∈ 0, . . . ,m and m = “Number of rewind points supported by the PE”.

The number of instructions per block can be random from the set N and there is a maximum of one P0 instruction
per block. The order in which the tags are used can be random, but a tag cannot be reused until the previous block
with that tag has been resolved, canceled or merged.

This procedure generates a transform from the potentially random sequence of core tags to a more useable space.
The transform T evolves over time as the tags are reused and provides the mapping onto the new space,

Tt = [c0, . . . , cm] (D6.1)

and ci is the mapping for core tag i.

ci ∈ 0, . . . , q , where q > m

D6.7.1 Initialization

IHRDQL To perform the necessary calculations, the trace unit tracks the transform of the last resolved block. γt = “last
committed indicator”. The algorithm is initialized at t = 0 to

∀i ∈ 0, . . . ,m : T0[i] = γ0 (D6.2)
x0 = γ0 (D6.3)

D6.7.2 New block operation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter D6. Trace Unit
D6.7. Speculation resolution

ISMGSG The sequence of the numbers in the transformed space, xt, is defined by the following equation:

xt+1 =

{
|(xt + 1) mod q| If a traced *P0 instruction*
xt Otherwise

(D6.4)

Tt+1[tagt] =

{
|(xt + 1) mod q| If a traced *P0 instruction*
Tt[tagt] Otherwise

(D6.5)

D6.7.3 Resolved operation

IBJFLR The PE can resolve one or more blocks in an atomic operation. This is performed by indicating the youngest
block’s tag to be resolved, and by inference all older blocks. l = youngest block’s tag

The number required by the Commit element is calculated by

n+ = |(Tt[l]− γt) mod q| (D6.6)

The state of the transform is updated by

γt+1 = Tt[l] (D6.7)

D6.7.4 Cancel operation

IHJYQH The PE can cancel one or more blocks in an atomic operation. This is performed by indicating the oldest block to
be canceled. r = oldest block’s tag

The number required by the Cancel element is calculated by

n− = |(xt − Tt[r]) mod q| (D6.8)

The state of the transform is updated by

xt+1 = Tt[r] (D6.9)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter D6. Trace Unit
D6.8. Filtering trace generation

D6.8 Filtering trace generation

XCCWZG The amount of trace that can be generated by the trace unit can be significant. Not all the operations of the PE are
always relevant. The amount of trace generated can be reduced by the use of the trace unit filter functions.

D6.8.1 ViewInst function

RGQFSB The filtering function of the instruction trace is expressed as a calculation evaluated for each instruction.

ViewInsti =


0 When Prohibited
0 When in Debug state
Si ∧ Ii ∧ Ei ∧Ni Otherwise

(D6.10)

Si = ViewInst start/stop function (D6.11)
Ii = ViewInst include/exclude function (D6.12)
Ei = Exception level filtering (D6.13)
Ni = Resource event based filtering (D6.14)

RBZXFH While ViewInsti is high, the trace unit traces all instructions.

IMJMCV Instructions for which ViewInsti is low might be traced. This might be as a result of tracing the next P0 element or
optimizations in the trace unit.

RXPNZL When ViewInsti is high for an instruction in an instruction block, the trace unit traces the entire instruction block.

RKHDNX When ViewInsti becomes high, the trace unit traces the next P0 instruction or Exceptional occurrence.

XNSMSV Some instruction types cause the trace unit to generate P0 elements, so that they are explicitly traced. Other
instruction types however are not explicitly traced. The execution of these other instruction types can be inferred
from the P0 elements. This means that the following scenario is possible:

• While ViewInst is high, some instructions are executed. This means that ViewInst is indicating that those
instructions must be traced. However, none of the executed instructions cause the trace unit to generate a P0
element, therefore none of the instructions are traced.

• ViewInst then goes low.
• The PE then executes an instruction that, whenever ViewInst is high, causes the trace unit to generate a P0

element.

In this scenario, although ViewInst is low when the instruction in step 3 is executed, indicating that the instruction
is not traced, tracing of the instruction is permitted because this is the only way that the preceding instructions can
be traced.

IFGSBW There is no requirement for the target address of a P0 instruction or Exceptional occurrence to be traced if ViewInst
has transitioned to a low state by the time program execution has moved to the target.

ILCXHX Unless the target instruction block is traced, any Target Address elements indicating the target address of a P0
instruction or Exceptional occurrence cannot be relied upon.

Resource event based filtering

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter D6. Trace Unit
D6.8. Filtering trace generation

RBQNWP The resource event based filtering part of the ViewInst function is expressed as the following equation:

Ni = Fn(TRCVICTLR.EVENT.SEL,TRCVICTLR.EVENT.TYPE) (D6.15)

Where Fn(TRCVICTLR.EVENT.SEL,TRCVICTLR.EVENT.TYPE) selects the combination of Resource
Selectors used for resource event based filtering.

IKMXNS The timing of the resource event based filtering is IMPLEMENTATION SPECIFIC.

IDWWVR Resource event based filtering can be used to make ViewInst active based on system conditions or on trace unit
resources. For example:

• Sampling based on instruction counts.
• Activating tracing on the nth function call.
• Performance Monitoring Unit events.

RNBYKR When an instruction block is processed by the trace unit during a cycle, the trace unit samples the ViewInst function
resource event input during that cycle.

RSRMMD When no instruction blocks are processed by the trace unit during a cycle, the trace unit does not sample the
ViewInst function resource event input during that cycle.

Exception level filtering

IHNPYV This function provides a simple method of filtering out information about different Exception levels without the
need to use of additional resources.

RLWYJR The Exception level based filtering part of the ViewInst function is expressed as the following equation:

Ei =



¬TRCVICTLR.EXLEVEL_S_EL0 Secure EL0
¬TRCVICTLR.EXLEVEL_S_EL1 Secure EL1
¬TRCVICTLR.EXLEVEL_S_EL2 Secure EL2
¬TRCVICTLR.EXLEVEL_S_EL3 EL3
¬TRCVICTLR.EXLEVEL_NS_EL0 Non-Secure EL0
¬TRCVICTLR.EXLEVEL_NS_EL1 Non-Secure EL1
¬TRCVICTLR.EXLEVEL_NS_EL2 Non-Secure EL2

(D6.16)

D6.8.2 ViewInst start/stop function filtering

IPJQSC The ViewInst start/stop function is useful when the requirement is to trace a particular piece of code with all the
functions that the piece of code calls.

The ViewInst start/stop function uses the Single Address Comparators and the PE Comparator Inputs to define
start points and stop points.

A start point is any of the following:

• The instruction address which matches a Single Address Comparator selected for the ViewInst start/stop
function using TRCVISSCTLR.START.

• The instruction address which matches a PE Comparator selected for the ViewInst start/stop function using
TRCVIPCSSCTLR.START.

A stop point is any of the following:

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter D6. Trace Unit
D6.8. Filtering trace generation

• The instruction address which matches a Single Address Comparator selected for the ViewInst start/stop
function using TRCVISSCTLR.STOP.

• The instruction address which matches a PE Comparator selected for the ViewInst start/stop function using
TRCVIPCSSCTLR.STOP.

Multiple start points can be selected. Multiple stop points can be selected.

RMVDJT When a start point is encountered, the ViewInst start/stop function becomes active for the instruction at the start
point.

RCDFBP When a stop point is encountered, the ViewInst start/stop function becomes inactive immediately after the
instruction at the stop point.

RLMQPR When the ViewInst start/stop function causes ViewInst to become active, the trace unit traces the instruction at the
start address.

RBWXLS When the ViewInst start/stop function causes ViewInst to become inactive, the trace unit traces up to and including
the instruction at the stop address.

RXHFYQ While a ViewInst start/stop function start address is the same as a stop address, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

RKCYTR The ViewInst start/stop function part of the ViewInst function is expressed as the following equations:

TRCVICTLR.SSSTATUSi+1 = Si ∧ ¬Stopi (D6.17)
Si = TRCVICTLR.SSSTATUSi ∨ Starti (D6.18)

(D6.19)

If TRCIDR4.NUMPC == 0b0000 then

Starti =
∑
n

(SAC[n] ∧ TRCVISSCTLR.START[n]) (D6.20)

Stopi =
∑
n

(SAC[n] ∧ TRCVISSCTLR.STOP[n]) (D6.21)

If TRCIDR4.NUMPC != 0b0000 then

Starti =
∑
n

(SAC[n] ∧ TRCVISSCTLR.START[n])

∨
∑
m

(PECMP[m] ∧ TRCVIPCSSCTLR.START[m])
(D6.22)

Stopi =
∑
n

(SAC[n] ∧ TRCVISSCTLR.STOP[n])

∨
∑
m

(PECMP[m] ∧ TRCVIPCSSCTLR.STOP[m])
(D6.23)

RMVFYN The following have no effect on the ViewInst start/stop function:

• Exceptional occurrences.
• Execution in Debug state.
• Execution in a Trace Prohibited region.
• A trace unit buffer overflow.

RGRSVY When disabling the trace unit, the ViewInst start/stop function becomes static and retains its state until the trace
unit is enabled again.

If required, the state of the ViewInst start/stop function can be changed while the trace unit is disabled.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter D6. Trace Unit
D6.8. Filtering trace generation

SXMMLP TRCVICTLR.SSSTATUS, TRCVISSCTLR and TRCVIPCSSCTLR, if implemented, must be programmed with
an initial state when the trace unit is programmed before a trace session.

RHYLDM If an implementation makes speculation visible to the trace unit, the ViewInst start/stop function behaves as if no
speculation has occurred. That is, when the instruction at a start or stop point is executed speculatively and is later
canceled, the ViewInst start/stop function behaves as if the instruction at the start or stop point was not executed.

RBZSXR When the trace unit becomes disabled and there are instructions at start points or stop points which are still
speculative, the behavior of the ViewInst start/stop function is IMPLEMENTATION DEFINED and one of the
following:

• The ViewInst start/stop function behaves as if the instructions at the start points or stop points were incorrectly
speculated. That is, the trace unit behaves as if those start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the instructions at the start points or stop points were correctly
speculated. That is, the trace unit updates the state of the ViewInst start/stop function as if those start points
and stop points occurred.

RHMKSZ When mis-speculation occurs and the PE returns to a point in execution before the trace unit was enabled, the
ViewInst start/stop function reverts to the state it was in when the trace unit became enabled.

RCYQZV When a transaction failure occurs the ViewInst start/stop function reverts back to the state to point immediately
after the TSTART instruction for the outer transaction.

This is the value of TRCVICTLR.SSSTATUSi for the instruction block that contains the TSTART instruction for the
outer transaction.

RZBTPF When a transaction failure causes the PE to return to a point in execution before the trace unit was enabled, the
ViewInst start/stop function reverts to the state it was in when the trace unit became enabled.

RLRBDC When the trace unit becomes disabled and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

• The ViewInst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the transaction was successful. That is, the trace unit updates
the state of the ViewInst start/stop function as if those start points and stop points occurred.

RFFZDC When tracing becomes prohibited and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

• The ViewInst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

• The ViewInst start/stop function behaves as if the transaction was successful. That is, the trace unit behaves
as if those start points and stop points did occur.

• The ViewInst start/stop function uses the real resolution of the transaction, when that resolution is eventually
known.

RPBFMY When the state of the ViewInst start/stop function is changed by anything other than a direct write to TRCVICTLR,
the PE considers the write to be an indirect write to TRCVICTLR.SSSTATUS.

Note

In many common usage scenarios, entry to a Trace Prohibited region or disabling of the trace unit does not
occur while in a transaction.

Instruction blocks

RPTTKL When an instruction block that contains instructions at ViewInst start points and no instructions at ViewInst stop
points is executed, the ViewInst start/stop function remains active for the entire instruction block.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter D6. Trace Unit
D6.8. Filtering trace generation

RWJLMR While the ViewInst start/stop function is active, when an instruction block is executed that contains at least one
ViewInst stop address and no ViewInst start addresses, the ViewInst start/stop function remains active for the whole
instruction block and becomes inactive for the next instruction block, unless the next instruction block contains a
ViewInst start address.

RSMGJZ When an instruction block that contains at least one instruction at a ViewInst start point and at least one instruction
at a ViewInst stop point is executed, the ViewInst start/stop function obeys the order of the start and stop points in
the block, with the following consequences:

• The ViewInst start/stop function is active for the whole of the instruction block.
• When the final instruction in the block at a ViewInst start or stop point is at a ViewInst start point, the

ViewInst start/stop function is active for the next instruction block.
• When the final instruction in the block at a ViewInst start or stop point is at a ViewInst stop point, the ViewInst

start/stop function is inactive for the next instruction block, unless the next block contains an instruction at a
new ViewInst start point.

RSFXZB The trace analyzer ensures that for all of the Single Address Comparators (SACs) selected for ViewInst start points
or stop points, any Single Address Comparator (SAC) programmed with a lower address than another SAC is a
lower-numbered SAC than the other SAC. That is, the SACs contain addresses in address order.

IRYPMM While the SACs selected for ViewInst do not contain addresses in address order, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

RZLDKC The trace analyzer ensures that for all of the PE Comparator Inputs selected for ViewInst start points or stop
points, any PE comparator programmed with a lower address than another PE comparator is a lower-numbered PE
comparator than the other PE comparator. That is, the PE comparators contain addresses in address order.

ICKTWT While the PE Comparator Inputs selected for ViewInst do not contain addresses in address order, the behavior of
the ViewInst start/stop function is UNPREDICTABLE.

Note

If more than one instruction Address Comparator is programmed with the same instruction address, then
programming one or more of those comparators as start comparators, and one or more as stop comparators,
results in the following CONSTRAINED UNPREDICTABLE behavior of the ViewInst start/stop function:

• The ViewInst start/stop function is either active or inactive for the instruction at that address.
• The ViewInst start/stop function is either active or inactive after that instruction.

D6.8.3 ViewInst include/exclude function filtering

INDYFG The ViewInst include/exclude function is useful if:

• Specific ranges of instructions are required to be included in the trace.
• Specific ranges of instructions are required to be excluded from the trace.
• A combination of including and excluding instruction ranges is required.

ILDDGL The ViewInst include/exclude function is comprised of two functions:

ViewInst include function Includes one or more instruction address
ranges

ViewInst exclude function Excludes one or more instruction address
ranges

There are between zero and eight instruction Address Range Comparators available for the ViewInst include/exclude

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter D6. Trace Unit
D6.8. Filtering trace generation

function. Some of these comparators can be selected for the ViewInst include function, and some for the ViewInst
exclude function.

SVNWYT For example, if all instructions in the address range from 0x00 to 0x2C are required, but no other instructions are
required, an Address Range Comparator can be selected for the ViewInst include function and be programmed with
these two addresses. All instructions that are in this address range, including those at the start and end addresses,
are traced.

INKLJR The ViewInst include/exclude function differs from the ViewInst start/stop function in the following ways:

• When the ViewInst start/stop function is used, the trace unit starts tracing on a specified start instruction
address and stops tracing on a specified stop instruction address. However, if execution branches or jumps
to an address between the start and stop points, without first accessing the instruction at the start address,
then the instruction that it has branched or jumped to is not traced. Instructions in the start/stop range are
only traced if the instruction at the start address is accessed, so that the trace unit is triggered to start tracing.
When triggered, and as execution continues sequentially towards the stop address, all functions that the piece
of code calls are traced.

• When the ViewInst include/exclude function is used, for example by programming an Address Range
Comparator with an include address range, then if execution branches or jumps to any instruction address
anywhere in that range, that instruction is always traced. This is true regardless of whether the instruction at
the start address has been accessed or not.

In addition, unlike the ViewInst start/stop function, as program execution continues through the address range
towards the end address, no functions that the piece of code calls are traced.

RSKZHH The ViewInst include/exclude function part of the ViewInst function is expressed as the following equations:

Ii = Includei ∧ ¬Excludei (D6.24)

Includei =
∑
n

(ARC[n] ∧ TRCVIIECTLR.INCLUDE[n]) ∨
∏
n

¬TRCVIIECTLR.INCLUDE[n] (D6.25)

Excludei =
∑
n

(ARC[n] ∧ TRCVIIECTLR.EXCLUDE[n]) (D6.26)

D6.8.3.1 Instruction blocks

RRNPWD When an instruction in an instruction block is included to be traced by the ViewInst include/exclude function, the
ViewInst include/exclude function includes all of the instruction block.

RPLCQJ When an instruction block contains at least one instruction excluded by the ViewInst include/exclude function,
and only when all the instructions in the instruction block are excluded, the ViewInst include/exclude function
excludes the instruction block.

ILBNVM If a block of instructions is not entirely covered by at least one individual Address Range Comparator (ARC)
selected by TRCVIIECTLR.EXCLUDE, it is CONSTRAINED UNPREDICTABLE whether the block is excluded or
not. This applies even if other Address Range Comparators (ARCs) selected by TRCVIIECTLR.EXCLUDE cover
the rest of the block.

D6.8.4 Guidelines for interpreting the ViewInst function result

ITCGMV The result of the ViewInst function is either:

High Indicates that instructions being
executed must be traced

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Low It is expected that instructions being
executed are not traced

If it is expected that instructions being executed are not traced, then there are occasions when it is permitted to
trace some of those instructions. This section provides guidelines for when it is permitted to trace instructions that
ViewInst indicates are not traced.

D6.8.4.1 When ViewInst transitions from low to high

IGMYYC If execution occurs while ViewInst is low, it is permitted for a trace unit to trace instructions in certain circumstances.
See D6.8.4.2 Occasions when tracing instructions when ViewInst is low is permitted.

IRVCQT Tracing of instructions is permitted while ViewInst is low, but if no instructions or Exceptional occurrences that
occur are traced, then there is a discontinuity in the trace. When a discontinuity in the trace occurs, when ViewInst
becomes high, a Trace On element must be generated.

IYXGLK Any instructions that are executed while ViewInst is high must be traced.

D6.8.4.2 Occasions when tracing instructions when ViewInst is low is permitted

IVFYXG ETE permits tracing of instructions when ViewInst is low, in the following scenarios:

• When the instruction that ViewInst indicates is not to be traced is in the same instruction block as an
instruction that ViewInst indicates must be traced. This is because the only way to trace the instruction that
must be traced is to trace the whole instruction block.

• When the instruction that ViewInst indicates is not to be traced is in an instruction block that precedes or
follows an instruction block containing an instruction that ViewInst indicates must be traced.

An implementation always traces the instruction block that contains an instruction that must be traced. However,
additional blocks of instructions might also be traced. This is more likely to occur when many instructions are
executed in close proximity.

ICDLHB Except for the scenarios that are mentioned, if the ViewInst function indicates that an instruction is not to be traced,
then in general it is expected that it is not traced.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Instruction

Instruction

Instruction

ViewInst

Traced

Instruction

Instruction

P0	inst.

ViewInst

Traced

c

a

b

B
lo
ck
	1

B
lo
ck
	2

Figure D6.5: Example of close proximity

IFJMHL In the above diagram the instruction block 1 is in execution order before instruction block 2. The ViewInst
calculation for the second block returns true, as indicated by the transition labeled (a). As ViewInst is true for this
instruction block then all the instructions in this block must be traced, as indicated by the transition labeled (b).
Instruction block 1 might be traced as it is in the same PE cycle as block 2, as indicated by the transition labeled
(c).

D6.8.5 Rules for tracing Exceptional occurrences

RCGVJD When an Exceptional occurrence occurs, the Exceptional occurrence does not affect the comparators used by the
ViewInst function, and none of the comparators used by the ViewInst function match.

IVFDMQ The comparators used by the ViewInst function include the following:

• Single Address Comparators.
• Address Range Comparators.
• Context Identifier Comparators.
• Virtual Context Identifier Comparators.

IVFNZR When an Exception element is traced, it might indicate execution of instructions up to a specified address. These
instructions might have an impact on the comparators, but the Exceptional occurrence itself does not.

This means that when an Exceptional occurrence occurs, the ViewInst function does not indicate whether the
Exceptional occurrence must be traced. However, it is useful to trace Exceptional occurrences, to determine why
execution has departed from the normal program flow.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter D6. Trace Unit
D6.8. Filtering trace generation

IBVGXZ When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region, the trace unit
remembers whether the instruction or Exceptional occurrence was traced. The trace unit performs indirect writes
to TRCRSR.TA to store this state. When an Exceptional occurrence occurs, the trace unit uses TRCRSR.TA to
determine whether to trace the Exceptional occurrence.

RBFSWZ When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region and the instruction
or Exceptional occurrence is traced, TRCRSR.TA is set to 0b1.

RMLTTK When an instruction executes or Exceptional occurrence occurs outside a Trace Prohibited region and the instruction
or Exceptional occurrence is not traced, TRCRSR.TA is set to 0b0.

RCJTJM When an instruction or Exceptional occurrence is canceled, TRCRSR.TA is set to the value of TRCRSR.TA
immediately before the canceled instruction or Exceptional occurrence.

RDPMBQ When an Exceptional occurrence occurs and TRCRSR.TA is 0b1, the Exceptional occurrence is traced.

RBJQDP While any of the following are true, TRCRSR.TA is unchanged by any execution:

• The PE is in Debug state.
• The PE is in a Trace Prohibited region.

RQZPJD When a trace unit buffer overflow occurs, the behavior of TRCRSR.TA is IMPLEMENTATION DEFINED and is one
of the following:

• TRCRSR.TA is set to 0b0.
• TRCRSR.TA is set to the value of TRCRSR.TA for the most recent instruction or Exceptional occurrence

before the trace unit buffer overflow occurred.

D6.8.6 Forced tracing of Exceptional occurrences

IMFQND The trace unit can be programmed so that it always traces certain Exceptional occurrences, regardless of whether
the instruction or Exceptional occurrence immediately before the Exceptional occurrence must be traced. This
option is enabled by setting either or both:

• TRCVICTLR.TRCERR to 0b1. This forces the trace unit to trace System Error exceptions regardless of the
value of ViewInst.

• TRCVICTLR.TRCRESET to 0b1. This forces the trace unit to trace PE Resets regardless of the value of
ViewInst.

RSJXYS While the PE is executing in a Trace Prohibited region, forced tracing of System Error exceptions is inactive.

RVLNMN While the PE is not executing a Trace Prohibited region and forced tracing of System Error exceptions is enabled,
forced tracing of System Error exceptions is active.

RLTLBB While forced tracing of System Error exceptions is active, when a System Error exception occurs, the trace unit
generates an Exception element indicating a System Error exception, regardless of the value of ViewInst.

RNCXJN While the PE is executing in a Trace Prohibited region, forced tracing of PE Resets is inactive, regardless of
whether the PE Reset causes the PE to leave a Trace Prohibited region or not.

RNQJNL While the PE is not executing in a Trace Prohibited region, while forced tracing of PE Resets is enabled, forced
tracing of PE Resets is active.

RGPKSH While forced tracing of PE Resets is active, when a PE Reset occurs, the trace unit generates an Exception element
indicating a PE Reset, regardless of the value of ViewInst.

RBBBBT While tracing is inactive, before an Exception element is generated due to forced tracing of either a PE Reset of a
System Error exception, the trace unit generates a Trace On element and then a Target Address element.

ILXLKS When an Exception element is generated as a result of forced tracing, the Trace On element generated before the
Exception element indicates that tracing becomes active, and the Target Address element indicates where tracing
becomes active.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter D6. Trace Unit
D6.8. Filtering trace generation

RNZNDM When a System Error exception occurs and TRCRSR.TA is 0b0 and the exception is traced because forced tracing
of System Error exceptions is enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to 0b1 or
remains at 0b0.

RYFKGM When a PE Reset occurs and TRCRSR.TA is 0b0 and the PE Reset is traced because forced tracing of PE Resets is
enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to 0b1 or remains at 0b0.

IGWHRM In scenarios where a System Error exception occurs at approximately the same time as an exit from a Trace
Prohibited region, after all execution inside the Trace Prohibited region and before any instruction execution
outside the Trace Prohibited region, it is UNPREDICTABLE whether the System Error exception is considered to
have occurred inside or outside the Trace Prohibited region. It is also UNPREDICTABLE whether the forced tracing
of System Error exceptions is active for this exception.

These scenarios do not include scenarios where the System Error exception caused the exit from a Trace Prohibited
region, because the System Error exception occurred inside the Trace Prohibited region.

IJGVSY In scenarios where a System Error exception occurs at approximately the same time as an entry to a Trace
Prohibited region, after all execution before the Trace Prohibited region and before any instruction execution inside
the Trace Prohibited region, it is UNPREDICTABLE whether the System Error exception is considered to have
occurred inside or outside the Trace Prohibited region. It is also UNPREDICTABLE whether the forced tracing of
System Error exceptions is active for this exception.

These scenarios do not include scenarios where the System Error exception caused the entry to a Trace Prohibited
region, because the System Error exception occurred outside the Trace Prohibited region.

RTSVKN When a System Error exception occurs immediately after the PE exits a Trace Prohibited region and the System
Error exception is traced, the preferred exception return address in the Exception element indicating the System
Error exception does not include information about the Trace Prohibited region.

IPXJWM In scenarios where a PE Reset occurs at approximately the same time as an exit from a Trace Prohibited region,
after all execution inside the Trace Prohibited region and before any instruction execution outside the Trace
Prohibited region, it is UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the
Trace Prohibited region. It is UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the exit from a Trace Prohibited region,
because the PE Reset occurred inside the Trace Prohibited region.

IJKQHF In scenarios where a PE Reset occurs at approximately the same time as an entry to a Trace Prohibited region, after
all execution before the Trace Prohibited region and before any instruction execution inside the Trace Prohibited
region, it is UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the Trace
Prohibited region. It is UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the entry to a Trace Prohibited region, because
the PE Reset occurred outside the Trace Prohibited region.

RNRNFS When a PE Reset occurs immediately after the PE exits a Trace Prohibited region and the PE Reset is traced, the
preferred exception return address in the Exception element indicating the PE Reset does not include information
about the Trace Prohibited region.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter D6. Trace Unit
D6.9. Element Generation

D6.9 Element Generation

D6.9.1 Trace Info Element Generation

RTFQRM When a trace protocol synchronization request is serviced, the trace unit generates a Trace Info element.

Note

There is no requirement to generate a new Trace Info element every time that ViewInst becomes active. This
is because, despite the discontinuity in the trace that is caused by the filtering, the programming of the trace
remains the same.

RWJJNK While the PE is in Transactional state and the trace unit has previously generated a Transaction Start element for
this transaction, when a Trace Info element is generated, the trace unit sets the Transactional state indicator in the
Trace Info element to 0b1.

RWMXVM While the PE is not in Transactional state, or the PE is in Transactional state but the trace unit has not generated
a Transaction Start element for this transaction, when a Trace Info element is generated, the trace unit sets the
Transactional state indicator in the Trace Info element to 0b0.

RQMTSR When the trace unit generates the first Trace Info element after an Overflow element, the Transactional state
indicator is set to 0b0.

RCRPJZ When an Overflow element is generated, before any subsequent P0 elements indicating execution in Transactional
state are traced, the trace unit generates a new Transaction Start element, even if a Transaction Start element has
previously been traced for this transaction prior to the Overflow element.

D6.9.2 Atom Element

RXCJGD When a P0 instruction is taken, the trace unit generates one of the following:

• An E Atom element.
• A Source Address element.

RSRYKV When a P0 instruction is not taken, the trace unit generates one of the following:

• An N Atom element.
• Nothing.

RTZZRH When a P0 instruction is not taken and the trace unit does not generate an N Atom element, for all future not taken
P0 instructions until the next taken P0 instruction or Exceptional occurrence, the trace unit does not generate an N
Atom element.

RNZTGQ When a P0 instruction is not taken and the trace unit does not generate an N Atom element, when an Exceptional
occurrence occurs before the next taken P0 instruction, the trace unit generates an Exception element.

RFWCQR When a P0 instruction is not taken and the trace unit does not generate an N Atom element, when no Exceptional
occurrence occurs before the next taken P0 instruction, the trace unit generates a Source Address element for the
next taken P0 instruction.

RNTMMM When a P0 instruction is not taken and the trace unit does not generate an N Atom element, and the P0 instruction
is subsequently mispredicted, the trace unit generates a Source Address element and does not generate a Mispredict
element.

RZRYPK The trace unit generates Atom elements in the program order in which they occur, and the trace protocol encode
and decode process maintains this order.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter D6. Trace Unit
D6.9. Element Generation

ITGQNB For conditional branch instructions, an E Atom element indicates that the instruction passed its condition code
check, and an N Atom element indicates that the instruction failed its condition code check, although a trace unit
might use a Mispredict element to modify the Atom element.

IBXBNQ The trace unit might trace unconditional P0 instructions using an E Atom element or an N Atom element.

RRNYNV When an unconditional P0 instruction is traced using an N Atom element, the trace unit generates either a Mispredict
element or a Cancel element to correct the N Atom element.

RLMDZV When an ISB instruction does not pass the condition code check, and the ISB instruction does not perform a Context
synchronization event, the trace unit treats the ISB instruction as a not taken instruction.

RNZPLB When an ISB instruction does not pass the condition code check, and the ISB instruction performs a Context
synchronization event, the trace unit treats the ISB instruction as a taken instruction.

RCPFBS When an ISB instruction passes the condition code check, the trace unit treats the ISB instruction as a taken
instruction.

Note

For an ISB instruction, a trace analyzer must not infer the value of the PSTATE condition flags from an Atom
element.

RQBGXJ It is IMPLEMENTATION DEFINED whether the trace unit classifies WFI, WFIT, WFE, and WFET instructions as P0
instructions. When WFI, WFIT, WFE, and WFET are classified as P0 instructions, execution of these instructions
generates an Atom element. See D6.2.4 Low-power state and TRCIDR2.WFXMODE.

RHJHHV When WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions and a conditional WFE or WFI instruction
is executed, if the instruction passes its condition code check then an E Atom element is generated.

RBMXDT When WFI, WFIT, WFE, and WFET instructions are classified as P0 instructions and a conditional WFE or WFI instruction
is executed, if the instruction fails its condition code check then either an E Atom element or an N Atom element is
generated.

Note

For a WFI, WFIT, WFE, or WFET instruction which is classified as a P0 instruction, a trace analyzer must not infer the
value of the PSTATE condition flags from an E Atom element.

IPZRCT P0 instructions that fail or are predicted to fail their condition code check either generate an Undefined Instruction
exception or are executed as a NOP, if the instruction is also UNDEFINED.

RYCRVD When a P0 instruction fails or is predicted to fail its condition code check, and the P0 instruction is executed as a
NOP, the trace unit generates an N Atom element for the P0 instruction.

RTSQGH When a P0 instruction fails or is predicted to fail its condition code check, and the P0 instruction generates an
Undefined Instruction exception, the trace unit does not generate an Atom element for the instruction and generates
an Exception element instead. The preferred exception return address for the generated Exception element is the
undefined instruction, which indicates that the instruction did not execute.

RNQPPX The trace unit generates all Atom elements speculatively, and explicitly resolves or cancels each Atom element by
generating Commit elements or Cancel elements.

INGJYB A trace analyzer can infer execution from an Atom element, but only after the Atom element has been resolved by a
Commit element.

SMFDNZ For taken direct P0 instructions, a trace analyzer must infer the target address and instruction set of the instruction
from the opcode in the program image.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter D6. Trace Unit
D6.9. Element Generation

STJSRY If a taken direct P0 instruction is from a branch broadcasting region, the trace analyzer does not need to infer the
target address and instruction set because this is explicitly traced using a Target Address element.

D6.9.3 Exception Element

RQHRVX When an Exceptional occurrence occurs, if the Exceptional occurrence is required to be traced, the trace unit
generates an Exception element.

RLYYMG The trace unit generates Exception elements in program order relative to other P0 elements.

IPCMYT To be consistent with the rules for generating Target Address elements, under the following scenarios the trace unit
must generate a Target Address element before an Exception element, unless the Target Address element would be
removed due to a return stack match:

• The Exceptional occurrence is taken from the target of a taken indirect P0 instruction.
• The Exceptional occurrence is taken from the target of a taken direct P0 instruction in a branch broadcasting

region.
• The Exceptional occurrence is taken from the target of another Exception element.

RXGXKK When an Exceptional occurrence occurs, if the Context information changes at the target of the P0 element
preceding the Exceptional occurrence, then the trace unit generates a Context element before the Exception element.
The Context element provides Context information about the address and context where the Exceptional occurrence
was taken from.

ICMRCN An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as the maximum virtual
address size supported by the PE.

RRJCBT When the PE attempts to execute an instruction at an invalid address and the trace unit generates an Exception
element, the preferred exception return address in the Exception element indicates one of the following:

• The full 64-bit invalid address.
• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

IGYJKB Arm recommends that when the PE attempts to execute an instruction at an invalid address and the trace unit
generates an Exception element, the preferred exception return address in the Exception element indicates the full
64-bit invalid address.

D6.9.4 Source Address Element

RDCHPQ When a P0 instruction which must be traced is not taken and the trace unit does not generate an N Atom element,
then when a subsequent P0 instruction is taken, the trace unit generates a Source Address element.

IKDTRV A trace unit can generate a Source Address element to imply that at least one instruction has been executed,
including a taken P0 instruction.

RWVBQW When the trace unit generates a Source Address element to imply that a taken P0 instruction has been executed, the
address associated with the Source Address element is the virtual address of the taken P0 instruction.

D6.9.5 Q Element

RFZTZP A trace unit can generate a Q element to imply that at least one instruction has been executed, possibly including
P0 instructions.

RWHLPS When a Q element is generated, the trace unit generates a Target Address element that indicates where execution is
to continue after all the instructions that are implied by the Q element have been executed.

RMNWCK When a Q element is generated and the last instruction implied by the Q element is a P0 instruction, the trace unit
generates a Target Address element that indicates the target of the P0 instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter D6. Trace Unit
D6.9. Element Generation

RBJLRS When a Q element is generated and the last instruction implied by the Q element is not a P0 instruction, the
trace unit generates a Target Address element that indicates the instruction address immediately following the last
instruction that is implied by the Q element.

RFPHFM When the PE leaves a region where Q elements are permitted, either by a P0 instruction or by sequential execution
out of the region, and a Q element implies the execution of the last instruction in the region, the Q element does
not imply any more instructions after the last instruction in the region.

RDTWYZ When the PE enters a region where Q elements are permitted, either by a P0 instruction or by an Exceptional
occurrence, the trace unit traces the P0 instruction or Exceptional occurrence using elements other than Q elements.

Note

Although the trace unit does not trace with Q elements a P0 instruction or Exceptional occurrence that causes
the PE to enter a region where Q elements are permitted, any subsequent instructions in the region where Q
elements are permitted might be traced using Q elements.

IYRZWY When the PE enters by sequential execution a region where Q elements are permitted, any instructions that
are executed since the last P0 element outside the permitted region might be traced using a Q element. These
instructions can always be inferred unambiguously from the Q element.

RSJSGX When the PE enters by sequential execution a region where Q elements are permitted, and P0 instructions executed
since the last P0 element outside the permitted region are traced by a Q element, the Q element does not indicate
execution of any P0 instructions outside the permitted region.

D6.9.6 Event Element

RWJPTB The trace unit generates Event elements independently of ViewInst.

RKKLYB While TRCEVENTCTL1R.INSTEN<n> is 0b1 and the resource event selected by TRCEVENTCTL0R.EVENT<n>
is active, while trace generation is operative, the trace unit generates an Event element <n> on each PE clock cycle.

RSPYTT When an Event element is generated between two P0 elements or at the same time as a P0 element that follows
another, the trace unit inserts the Event element after the first P0 element but before the P0 element that is an
IMPLEMENTATION DEFINED number of P0 elements after the first P0 element.

IXLJKP Arm recommends that the IMPLEMENTATION DEFINED number of P0 elements is less than or equal to the number
of P0 elements the PE can process simultaneously.

RSHYMY While trace generation is inoperative due to a trace unit buffer overflow, when a programmed ETEEvent <n> occurs,
the trace unit generates at least one Event element <n> before it generates the Overflow element corresponding to
the trace unit buffer overflow.

D6.9.7 Cancel Element Generation

RHYCXR When one or more P0 elements are canceled, the trace unit generates a Cancel element.

RGKDYR The trace unit generates Cancel elements in execution order relative to P0 elements.

RKDTVX When a Cancel element causes execution to return to a point in the program flow that is not adjacent to a P0
instruction, the trace unit generates an Exception element that indicates which instructions were executed up to
that point in the program flow before it generates any P0 elements.

D6.9.8 Commit Element Generation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter D6. Trace Unit
D6.9. Element Generation

RQNLYJ When one or more traced P0 elements are resolved for execution, the trace unit generates a Commit element.

IMDSCN An Atom element might be be corrected using a Mispredict element after it has been resolved.

RMNXTW The trace unit never generates more speculative P0 elements than the maximum speculation depth of the trace unit.

RXXFBC When trace generation becomes inoperative due to the trace unit being disabled, the trace unit outputs any Commit
elements which have not been output.

IBNLZT If cycle counting is enabled some Commit elements have Cycle Count elements associated with them, that provide
counts of processor clock cycles. The cycle count values given in Cycle Count elements can be used to obtain a
cumulative count.

RZHWDD Commit elements with associated Cycle Count elements cannot be merged with later Commit elements.

IPSFTD For more information, see D2.4.1 Cycle Count Element.

D6.9.9 Transaction Start

RDGRTZ When the PE enters an outer transaction, before the first instruction is traced, the trace unit generates a Transaction
Start element.

IQLXNC A Transaction Start element is not required for each Trace On element if the instructions are all part of the same
outer transaction.

RTWNQP When the PE leaves Transactional state and a Transaction Start element was generated for the transaction, the trace
unit traces the result of the transaction using one of the following:

• A Transaction Commit element, if the transaction was successful.
• A Transaction Failure element, if the transaction failed.
• A Cancel element which cancels the Transaction Start element.

IGWZDH The trace element stream only indicates that the PE is in Transactional state. It does not indicate the transactional
nesting depth.

D6.9.10 Transaction Commit

RBGMKL When the PE exits Transactional state successfully, and a Transaction Start element was generated for the
transaction, the trace unit generates a Transaction Commit element.

RPCKKS When a Transaction Commit element is generated, the trace unit traces the Transaction Commit element after the
P0 element which is generated before the TCOMMIT instruction, and before the next Transaction Start element is
traced.

ICQLFV Arm recommends that the Transaction Commit element is generated and output as soon as possible after the PE
leaves Transactional state.

Note

These rules mean that a Transaction Commit element is permitted to be output later than the P0 element which
implies execution of the TCOMMIT instruction.

The TCOMMIT instruction is not a P0 instruction. This means that the Transaction Commit element might be traced
before the P0 element which implies execution of the TCOMMIT instruction.

D6.9.11 Transaction Failure

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter D6. Trace Unit
D6.9. Element Generation

RMHBCG When a transaction failure occurs, and a Transaction Start element was generated for the transaction, the trace unit
generates a Transaction Failure element.

RXQSPC When the PE enters a Trace Prohibited region and is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

RZJXHP When the trace unit becomes disabled and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

RYTKLN When a trace unit buffer overflow occurs and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

IDLKJR A Transaction Failure element is encoded as an Exception packet with a type of Transaction Failure.

IFBFDB When a Transaction Failure element is generated, the following behavior applies:

• The target address and target context of the previous P0 element might be UNKNOWN.
• If there are no P0 elements between a Trace On element and the Transaction Failure element, the initial

address and context after the previous Trace On element might be UNKNOWN.

RQWGXL When a PE Reset occurs and the PE is in Transactional state, and a Transaction Start element was generated for
the transaction, the trace unit generates a Transaction Failure element.

Note

A Transaction Failure element caused by a PE Reset might be traced using any of the following:

• 1. A single Exception packet with TYPE indicating PE Reset. This packet can imply the Transaction
Failure element.

• 1. An Exception packet with TYPE indicating Transaction Failure.
2. An Exception packet with TYPE indicating PE Reset, if the PE Reset is required to be traced.

D6.9.12 Context Element

RBDFDQ The trace unit generates a Context element in the following situations:

• While tracing is active, when any of the Context information changes, prior to any P0 element which indicates
execution from the new context.

• After a Trace Info element is generated due to a non-periodic trace protocol synchronization request, and
prior to any P0 element.

• After a Trace Info element is generated due to a periodic trace protocol synchronization request.
• When mis-speculation results in an incorrect Context element being output, prior to any P0 element which

indicates execution from the correct context.

RJNXJT While Virtual context identifier tracing is enabled and TRFCR_EL2.CX disallows the tracing of the Virtual context
identifier, when the trace unit generates a Context element, the Virtual context identifier in the Context element has
the value 0x0.

ITBJPL A Context element might also be output at other points, which might include after all Context synchronization
events, or at any other point at which the Context information changes.

RMKKZN If the highest implemented Exception level is using AArch64, the Context identifier value is the value of
CONTEXTIDR_EL1.

IWXVHT Some of the Context information might change at points other than at Context synchronization events. These
changes occur when system instructions are used to change a piece of Context information, including:

• Writes to the current CONTEXTIDR_EL1.
• Writes to the CONTEXTIDR_EL2.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter D6. Trace Unit
D6.9. Element Generation

• Changes from Secure to Non-secure state without using an exception return.
• Changes in Exception level other than via an exception or an exception return.

RHXNXF When a system instruction writes to a system register and the Context information changes, the trace unit generates
a Context element containing the new context value, after the P0 element prior to the system instruction but before
the P0 element following a Context synchronization event after the system instruction.

Note

If the Context element is output before the first P0 element after the system instruction, this might imply that
some instructions before the system instruction were executed with the new context. This is acceptable because
the code which changes the context is usually executed in a state where it does not matter whether the old or
new context values are used.

IWTSTB If the PE takes an exception after performing a write to a system register that changes the context, but a P0 element
has not been generated since the write, then a Context element indicating the new context is not required to be
output before the Exception element. This is because no instructions or Exceptional occurrences are indicated
to have been executed from the new context. A Context element indicating the new context must be generated
after the Exception element if the Exceptional occurrence is a Context synchronization event. If the Exceptional
occurrence changes the context, then the Context element must indicate the new context. This might happen if, for
example, the Security state changes.

RHTYGF When a PE Reset occurs, until the relevant PE registers are updated, the trace unit traces the Context identifier and
Virtual context identifier as zero.

IKTPVJ A trace unit is not required to generate a Context element if tracing becomes inactive before any instructions are
executed in the new context.

IQWSVJ Additional Context elements might be output by a trace unit in some scenarios, but these must only be output
where they do no affect the analysis of the trace element stream. Such a scenario might include when a change in
the Context information is incorrectly speculated and a subsequent Context element corrects the value of a previous
incorrect Context element. Arm recommends that the generation of additional unnecessary Context elements is
minimized to ensure trace bandwidth is minimized.

D6.9.13 Target Address Element

RHLRZJ When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates a Target
Address element.

IFRTGM Occasions when the trace analyzer might not be able to infer the address or instruction set from previous trace
include:

• At the target of an indirect P0 instruction which is taken.
• At the target of a direct P0 instruction which is taken in a branch broadcasting region, see TRCBBCTLR for

more information.
• At the target of an Exceptional occurrence.
• At the target of an Transaction Failure element.
• When mis-speculation occurs and the address cannot be inferred.
• After a Q element is generated.

RZRYSN When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates the
resulting Target Address element before the next P0 element, unless any of the following are true:

• The Target Address element can be omitted because of a return stack match.
• Tracing is inactive at the target of the P0 instruction or Exceptional occurrence.
• A transaction failure occurs and tracing is inactive at the target of the transaction failure.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter D6. Trace Unit
D6.9. Element Generation

RRGPTK When non-periodic trace protocol synchronization occurs, the trace unit generates a Target Address element after
the Trace Info element and Trace On element corresponding to the non-periodic trace protocol synchronization,
and before the next P0 element is generated.

RMDTYL When periodic trace protocol synchronization occurs, after the corresponding Trace Info element has been generated,
the trace unit generates a Target Address element containing the address of the target of the most recent P0 element
before the Target Address element.

IYMLXQ When non-periodic trace protocol synchronization occurs, the Target Address element does not need to indicate the
target of the most recent P0 element, since tracing might not become active at the target of a P0 element.

IGBMWG When periodic trace protocol synchronization occurs, the Target Address element needs to indicate the target of the
most recent P0 element, since tracing is continuing from that P0 element. Furthermore, the Target Address element
might indicate the target of a P0 element from before the Trace Info element.

RQCSJJ When a Trace On element is generated, the trace unit generates a Target Address element before the next P0
element.

IDTQDH Typically, a Target Address element is required after an Exception element to indicate the target of the Exceptional
occurrence, since a trace analyzer is not usually able to infer the target of an Exceptional occurrence.

IYHQGL In some scenarios, an Exception element might be generated in the trace where the Exceptional occurrence target
address is the next sequential instruction from the last instruction before the Exceptional occurrence. This behavior
depends on many factors and might only occur for IMPLEMENTATION DEFINED Exceptional occurrences. If an
Exceptional occurrence is taken to the next sequential instruction, the trace unit is not required to output a Target
Address element indicating the target address of the Exceptional occurrence because this can be inferred from the
previous execution.

IGVZJZ A trace analyzer needs both a Target Address element and a Context element before it can determine the instruction
set in use, because the Target Address element provides the instruction set and the Context element provides
information on whether the PE is in AArch32 or AArch64 state.

RRHDMW When a change of instruction set occurs that switches between AArch32 state and AArch64 state, the trace unit
generates a Context element indicating the new state.

IKZXQW An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as the maximum virtual
address size supported by the PE.

RVWVWR When the PE attempts to execute an instruction at an invalid address and the trace unit generates a Target Address
element, the Target Address element indicates one of the following:

• The full 64-bit invalid address.
• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

IYJYFM Arm recommends that when the PE attempts to execute an instruction at an invalid address and the trace unit
generates a Target Address element, the Target Address element indicates the full 64-bit invalid address.

RSBCPK While tagged addresses are in use, the virtual address in the trace element stream does not include the tag and is
the PC value, that is, depending on the state of the PE at the address, bits[63:56] are one of the following:

• The sign-extension of bit[55].
• Zero.

IYGGGK The Translation Control Registers, TCR_ELx, contain the TBI field for controlling whether to ignore the top byte
of an address. If the current TBI field is changed from 0b0 to 0b1, and before the next Context synchronization event
the PE takes an exception because of an invalid top address byte, the branch target address to the invalid address
or the preferred exception return address of the Exception element might not contain the full invalid address and
might contain the address with the top byte masked. Furthermore, the branch target address might be the invalid
address and therefore might be different from the preferred exception return address. Trace analysis tools must
be aware that if a branch target address is substantially different from a preferred exception return address which
follows, then there might have been a change in the TBI field which caused this large change in address.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter D6. Trace Unit
D6.9. Element Generation

RHHKGB When a pointer authentication check fails and an exception is taken from the resulting invalid address, the preferred
exception return address is one of the following:

• The full 64-bit invalid address.
• Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

ICRSTX Arm recommends that when a pointer authentication check fails and an exception is taken from the resulting invalid
address, the preferred exception return address is the full 64-bit invalid address.

RFSWRC The bottom bits of an address are ignored, in the following way:

• Bits[1:0] of addresses that are used in A64 or A32 instructions are always traced as zero.

• Bit[0] of addresses that are used in T32 instructions is always traced as zero.

IMDZJL Additional Target Address elements might be output by a trace unit in some scenarios, but these must only be
output where they do not affect the analysis of the trace element stream. These scenarios include, but are not
limited to:

• When an instruction address is incorrectly speculated, and a subsequent Target Address element corrects the
value of a previous incorrect Target Address element.

• When an instruction address can be inferred by the trace analyzer, for example for the target of a direct P0
instruction, but a Target Address element is output anyway with the same address.

Arm recommends that the generation of additional unnecessary Target Address elements is minimized to ensure
trace bandwidth is minimized.

D6.9.14 Mispredict Element

RYJCNT When the status of the last non-canceled Atom element has been changed by the PE, the trace unit generates a
Mispredict element.

RSCKBZ The trace unit only generates a Mispredict element to change the status of an Atom element.

IXYDNP A trace unit might generate multiple Mispredict elements for the same Atom element. A trace analyzer must use
each Mispredict element to determine the final status of the Atom element. For example, if an E Atom element has
two Mispredict elements, the first Mispredict element indicates the Atom element is an N Atom element and the
second Mispredict element indicates it is an E Atom element.

IHVWCN If a PE mispredicts only the target address of a P0 element then it does not generate a Mispredict element.

The trace unit uses a Target Address element to correct the mispredicted target address. When analyzing a
Mispredict element, any Target Address elements between the mispredicted Atom element and the Mispredict
element must be discarded.

D6.9.15 Overflow Element

RHRYKY When a trace unit buffer overflow occurs, after all trace elements that were generated prior to the trace unit buffer
overflow are output, the trace unit outputs an Overflow element.

RRPSPH When a trace unit buffer overflow occurs, and the trace unit is disabled after recovering from the trace unit buffer
overflow, the trace unit outputs the corresponding Overflow element before the trace unit becomes idle.

D6.9.16 Timestamp Element

RYYWTR While TRCCONFIGR.TS is 0b1 and any of the following occur, a timestamp request occurs:

• The timestamp resource event occurs, as controlled by TRCTSCTLR.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter D6. Trace Unit
D6.9. Element Generation

• The trace unit generates a Trace Info element.

• The trace unit recovers from a trace unit buffer overflow.

• When not in a Trace Prohibited region and a Context synchronization event is caused by any of the following:

– The PE takes an exception.

– The PE returns from an exception.

– An ISB instruction is executed.

• A trace unit flush is requested.

RCKNFV While TRCCONFIGR.TS is 0b1 and when not in a Trace Prohibited region, a timestamp request might occur when
any of the following occur but do not cause a Context synchronization event:

• The PE takes an exception.

• The PE returns from an exception.

• An ISB instruction is executed.

RNGXNQ The state of the ViewInst function does not affect whether a timestamp request occurs.

RHZSYP When a timestamp request occurs and ViewInst is inactive, the timestamp request is permitted to be delayed until
the first of the following occurs:

• ViewInst becomes active.
• An Event element is generated.

IWFXVV There is no requirement for a Timestamp element to be generated in the trace element stream on each occasion that
ViewInst becomes active.

RRMSVV When a timestamp request occurs and is not ignored, the trace unit generates a Timestamp element.

RDWCYP When a timestamp request occurs but the trace unit does not have the capacity to generate the Timestamp element
immediately, then the generation of the Timestamp element is delayed until there is capacity.

ITQDHQ A trace unit might not have the capacity to generate a Timestamp element for multiple reasons, including avoiding
a trace unit buffer overflow. A delayed Timestamp element means that a timestamp value might not be the exact
time of the incident that resulted in the timestamp request. A timestamp is only a time indicator inserted in the
trace element stream somewhere near the time of the request.

RXMJGY When a timestamp request occurs while in a Trace Prohibited region, then the generation of the Timestamp element
is delayed until the PE leaves the Trace Prohibited region.

RCWHHW When the first timestamp request occurs after trace generation becomes operative, the trace unit delays generation
of the corresponding Timestamp element until after the trace unit has generated either a P0 element or an Event
element.

ISDPZZ This is so that the timestamp value can correspond to the most recent of these elements.

RSZNMB A timestamp request is permitted to be ignored if a previous timestamp request has not yet generated a Timestamp
element, due to a delay in the generation.

RDWFTT A trace unit might ignore the second request of two successive timestamp requests if all of the following are true:

• The second request is not caused as a result of a trace protocol synchronization request.
• No P0 elements or Event elements have been generated between the two requests.
• The timestamp value would be the same in both Timestamp elements.

RZMQLT While TRCCONFIGR.CCI is 0b1, each Timestamp element contains a cycle count that indicates the number of
cycles between the previous Cycle Count element and the element with which the Timestamp is associated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter D6. Trace Unit
D6.9. Element Generation

RMWJHD The cycle count associated with a Timestamp element is different from the Cycle Count element in the following
ways:

• The cycle count does not affect the cumulative cycle count.
• The cycle count value can be zero.

IHTGCM When the cycle count associated with a Timestamp element is zero, this indicates that no cycles passed between the
previous Cycle Count element and the element with which the Timestamp element is associated.

Note

The cycle count associated with a Timestamp element is not a Cycle Count element, and therefore has no effect
on the cycle counter.

RJNSWW When the trace unit is first enabled, while cycle counting is enabled, when a Timestamp element is generated before
any Cycle Count elements, the Timestamp element reports the cycle count as UNKNOWN.

RNPYKS When a Timestamp element is generated and the cycle counter has exceeded the maximum supported value, the
Timestamp element reports the cycle count as UNKNOWN.

D6.9.17 Trace On Element

RLMLSN When an instruction block is traced immediately after an instruction block was not traced or a trace unit buffer
overflow occurred, the trace unit generates a Trace On element.

IGPQZW When an Exception element indicating a PE Reset is traced, the preferred exception return address is UNKNOWN.
Any instructions since the most recent unresolved P0 element are not traced. If ViewInst was active for these
instructions, this is not considered a gap in the trace element stream and a Trace On element is not required.

In some scenarios where mis-speculation occurs or instructions are canceled, after Cancel elements have been
processed there might be Trace On elements in the trace element stream even though no trace discontinuity occurred
in the architecturally-executed instruction trace. This typically only occurs when the trace is filtered using the
ViewInst function, which causes the Trace On element to be inserted.

IMHFJB Trace analyzers must be aware that these additional Trace On elements might be traced.

D6.9.18 Cycle Count Element

RTYNZR The cycle counter has an IMPLEMENTATION DEFINED size of between 12 and 20 bits, as indicated by
TRCIDR2.CCSIZE. The cycle counter therefore supports values from 1 to 220-1.

RGWQGS While TRCCONFIGR.CCI is 0b1 and the cycle count is equal to or greater than the value of
TRCCCCTLR.THRESHOLD, when a Commit element is generated, a Cycle Count element request occurs.

RKJXDK While TRCCCCTLR.THRESHOLD is programmed with a value less than TRCIDR3.CCITMIN, the generation of
Cycle Count elements is CONSTRAINED UNPREDICTABLE.

RGDTBW When a request for a Cycle Count element occurs, one of the following occurs:

• The trace unit generates a Cycle Count element immediately and before any future Commit element.

• The trace unit delays generation of the Cycle Count element until after one or more further Commit elements
have been generated.

ITCFRL Arm recommends that when a request for a Cycle Count element occurs, the Cycle Count element is generated
immediately, and that Cycle Count element generation is only delayed in rare and non-repetitive circumstances.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter D6. Trace Unit
D6.9. Element Generation

RBMVKB When a Cycle Count element is generated, the Cycle Count element contains the value of the cycle counter at the
time the most recent Commit element was generated, and the cycle counter is reset to the number of cycles since
the most recent Commit element was generated.

RPFZXK A value of 0 indicates that the cycle count value is UNKNOWN.

RYVWJW When the cycle counter exceeds the maximum supported value, the cycle count value is UNKNOWN.

RYFMWB When the trace unit becomes enabled, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

RHQKWH When a trace unit buffer overflow occurs, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

IPDBDY The first Cycle Count element after the PE clock has been restarted should have an UNKNOWN cycle count.

D6.9.19 Discard Element

RWDWGV When trace generation becomes inoperative and any of the following are true, the trace unit generates a Discard
element:

• P0 elements have been generated but the trace unit is unable to output the resolution of those P0 elements.

• A Transaction Start element has been generated and trace generation becomes inoperative before the
transaction either succeeds or fails.

RFHQDX When trace generation becomes inoperative due to the trace unit becoming disabled, and a Discard element is
generated, the trace unit outputs the Discard element after all other elements.

RNSMJF When a PE Reset occurs and any of the following are true, the trace unit generates a Discard element:

• P0 elements have been generated but the trace unit is unable to output the resolution of those P0 elements.

• A Transaction Start element has been generated and the PE Reset occurs before the transaction either
succeeds or fails.

ISKJSP A trace unit might not generate a Discard element if no P0 elements are speculative.

ITGXKV A trace unit might generate a Discard element even if no P0 elements are speculative.

RCTYFK When a Discard element is generated, all uncommitted P0 elements are discarded, that is, the current speculation
depth is set to zero.

ITYXLL When a Discard element is generated, and a Transaction Start element has been traced but the transaction has not
succeeded or failed, the trace unit does not indicate the resolution of the transaction.

RWXTQS When a Discard element is generated and tracing subsequently becomes operative for the same transaction, the
trace unit generates a new Transaction Start element before any P0 elements are generated for the transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter D6. Trace Unit
D6.10. Trace unit features

D6.10 Trace unit features

IBFHRC The architecture defines a number of optional and mandatory features that are provided to modify the trace element
stream to provide additional information to aid debugging. These features include the following:

• *Q element* regions.
• Branch broadcasting.
• Context identifier tracing.
• Cycle counting.
• Event trace.
• No overflow.
• PE Stalling and overflow avoidance.
• Timestamping.
• Virtual context identifier tracing.

For the optional features, the inclusion of these optional features is indicated in TRCIDR0-TRCIDR13.

D6.10.1 Branch broadcasting

IWLPLZ The branch broadcasting feature forces the trace unit to explicitly trace the target addresses of taken direct P0
instructions.

The target addresses are traced using Target Address elements in the instruction trace stream.

IDCYQT Branch broadcasting is enabled by performing both of the following actions:

• Setting TRCCONFIGR.BB to 0b1.

• Programming TRCBBCTLR to specify how branch broadcasting behaves. TRCBBCTLR selects Address
Range Comparators to define when branch broadcasting is active, and selects the operating mode of branch
broadcasting:

– Branch broadcasting is active for all instructions inside the selected ranges. This is known as include
mode.

– Branch broadcasting is active for all instructions outside the selected ranges. This is known as exclude
mode.

RMHYFV When a direct P0 instruction for which branch broadcasting is active is taken, the trace unit generates a Target
Address element to explicitly trace the target of the instruction, regardless of whether the P0 instruction is
mispredicted.

RVQTVR While branch broadcasting is enabled, while the return stack is enabled, the trace unit prioritizes branch broadcasting
over the return stack, that is, the return stack does not match on the target of any instruction for which branch
broadcasting is active.

RXSVSX If TRCBBCTLR is not implemented, while branch broadcasting is enabled, branch broadcasting is active for all
instructions.

D6.10.2 Q Regions

IXFPKH Q elements are a optional feature, as indicated by TRCIDR0.QSUPP.

IFSXRY The use of Q elements must be explicitly enabled if the trace unit is to use them.

ICGQZJ While Q elements are enabled, the trace element stream might not contain enough information to determine the
complete program flow, because some changes in flow might not be explicitly indicated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter D6. Trace Unit
D6.10. Trace unit features

IQLVSG Arm recommends that Q elements are only used in cases where generating the full ETE instruction trace element
stream might cause the performance of the PE being traced to degrade significantly.

ITNPWC The use of Q elements degrades the information that can be extracted from the trace element stream. Arm
recommends that Q element filtering, as indicated by TRCIDR0.QFILT, is also implemented.

ICBKXZ If TRCQCTLR is implemented, the trace unit supports the ability to control when Q elements are permitted in
the trace element stream using ARCs. The Q element filtering operates in either Exclude mode, or Include mode,
selected by TRCQCTLR.MODE.

RDSFJZ If Q elements are enabled and Q element filtering is in Include mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are permitted.

RWXRDY If Q elements are enabled and Q element filtering is in Exclude mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are not permitted.

RRBPJF When an instruction block contains at least one instruction where Q elements are permitted, the entire instruction
block is permitted to generate Q elements.

RNQSLS The following equation is calculated for each instruction block and defines when Q elements are permitted.

Q_PERMITTEDi =


∑
n

ARCi[n] ∧ TRCQCTLR.RANGE[n] Include mode

¬
∑
n

ARCi[n] ∧ TRCQCTLR.RANGE[n] Exclude mode
(D6.27)

RSGFHP While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit does not generate any Q elements.

RCGHSK While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit is able to generate all of the
elements required to trace the instruction sequence.

D6.10.3 Cycle Counting

IMKQVC The use of the cycle counting feature introduces Cycle Count elements into the trace element stream to indicate the
passage of PE clock cycles.

IBMCMB Counting the number of clock cycles the PE uses to perform a certain function can be useful as a way of measuring
program performance, or for profiling the PE.

RJMLLY While cycle counting is enabled, the trace unit outputs Cycle Count packets that contain processor clock cycle
count values.

ITVCCV Cycle Count elements are associated with Commit elements, so that when a Commit element is generated,
a Cycle Count element might also be generated. Whether a Cycle Count element is generated when a
Commit element is generated depends on what cycle count threshold has been specified when programming
TRCCCCTLR.THRESHOLD.

When a Commit element is generated and the cycle count value is equal to or more than the threshold value, then a
Cycle Count element is generated and a Cycle Count packet is output. The cycle count value that is contained in
that packet is associated with the Commit element that triggered it.

RBHYWB While cycle counting is enabled, and when a Commit element is generated and the cycle count value is greater than
or equal to the threshold value that is programmed in TRCCCCTLR.THRESHOLD, the trace unit generates a
Cycle Count element.

ILFLCZ Also, because cycle counting is associated with Commit elements, a Cycle Count packet might imply the generation
of Commit elements, and so in addition to the cycle count value, some Cycle Count packets also contain a value for
the number of Commit elements that the trace unit has generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter D6. Trace Unit
D6.10. Trace unit features

IMWQNZ The value of cycle count that is given in a new Cycle Count packet indicates the number of processor clock cycles
between the new Commit element that the packet is associated with, and the most recent Commit element prior to
the new Commit element that had a Cycle Count element associated with it.

This means that if there is a requirement for a cumulative cycle count total, the cycle count values from the
successive Cycle Count packets can be added together to obtain this.

D6.10.4 Timestamping

IYVBBW The trace unit supports Timestamping, where a common global time value is inserted in to the trace stream. These
timestamps may be used to correlate between multiple trace streams, including those from other PEs or other
sources of trace. These timestamps may be used to determine the passage of time, for analysing performance.

IVFWQS When timestamping is enabled, the trace unit inserts Timestamp elements in to the trace stream. Each Timestamping
element indicates the time that a recent P0 element or Event element occurred, and can be used to accurately
determine when that element occurred.

IYFPDZ The time value included in Timestamp elements is selected by TRFCR_EL1 and TRFCR_EL2 and is one of:

• Physical time, as seen by the generic timers in the PE.
• Virtual time, as seen by the generic timers in the PE.
• An IMPLEMENTATION DEFINED time value, often supplied by a CoreSight system.

ICLZKR The insertion of Timestamp elements is controlled by TRCCONFIGR.TS and TRCTSCTLR.

D6.10.5 Stalling the execution of the PE

IMPBVQ The trace unit can be programmed to reduce the likelihood of a trace unit buffer overflow. If the trace unit
is configured to support PE stalling, TRCIDR3.STALLCTL indicates that PE stalling is implemented and
TRCIDR3.SYSSTALL indicates that PE stalling is permitted, then the execution of the PE can be slowed.

IHPFQP It is permissible that the operation of the PE can be affected by the programming of the trace unit. The amount of
intrusion and when stalling occurs is IMPLEMENTATION DEFINED. Additional stalling of the PE execution can be
achieved by enabling this feature.

IVZSVK Trace unit stalling of the PE is independent of the operation of the PE.

RNVBGS PE operations which explicitly interact with the trace unit complete independently of the programming of the
ability of the trace unit to stall the PE.

RSCLVV The trace unit does not stall the PE while any of the following are true:

• The trace unit is in the Disabled state.
• The PE is executing in a Trace Prohibited region (see D6.6.6 Trace Prohibited regions).
• The PE is in Debug State.
• The PE does not allow stalling, that is, TRCIDR3.SYSSTALL == 0b0.
• SelfHostedTraceEnabled()== FALSE and ExternalInvasiveDebugEnabled()== FALSE.
• When TRCSTALLCTLR.ISTALL == 0b0 and TRCSTALLCTLR.NOOVERFLOW == 0b0.
• Trace output is disabled.

RRWTYJ When all of the following are true, the trace unit is permitted to stall the PE:

• Stalling of the PE is not prohibited by RSCLVV.
• TRCSTALLCTLR.ISTALL == 0b1.
• Any of the following are true:

– TRCSTALLCTLR.NOOVERFLOW == 0b1.
– The available space in the internal storage of the trace unit is below the level indicated in

TRCSTALLCTLR.LEVEL.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter D6. Trace Unit
D6.10. Trace unit features

Otherwise, the trace unit does not stall the PE due to the stalling feature or no overflow feature.

RNVKXX The trace unit does not indefinitely stall the operation of the PE.

IXPRQJ In a multi-threaded processor, if the trace unit stalls a PE, Arm recommends that stalling or disruption of the
processing of other PEs is minimized. In particular, if tracing of one or more PEs in a multi-threaded processor
is enabled but tracing of other PEs in the multi-threaded processor is disabled, Arm recommends that if the PEs
being traced are stalled by their respective trace units then the stall has minimal effect on the PEs which are not
being traced.

IKBXXH The levels indicated in TRCSTALLCTLR.LEVEL are the levels of intrusion allowed.

IZRQBK A summary of the stalling and no overflow scenarios is shown in Table D6.5, when TRCIDR3.STALLCTL == 0b1

and TRCIDR3.SYSSTALL == 0b1.

Table D6.5: Summary of TRCSTALLCTLR stalling and no overflow features

ISTALL NOOVERFLOW LEVEL Description

0 0 X Stalling is disabled

0 1 X It is CONSTRAINED
UNPREDICTABLE whether
the no overflow feature is
enabled or stalling is
disabled

1 0 zero Stalling is enabled at the
minimum level

1 0 non-zero Stalling is enabled and is
based on the value in
TRCSTALLCTLR.LEVEL

1 1 zero The no overflow feature is
enabled, preventing
overflows

1 1 non-zero The no overflow feature is
enabled, preventing
overflows, and
TRCSTALLCTLR.LEVEL
might cause stalling earlier
than necessary to prevent
overflows

D6.10.6 No overflow

IDJCLX A trace unit might include an optional feature to prevent overflows, which is indicated by
TRCIDR3.NOOVERFLOW.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter D6. Trace Unit
D6.10. Trace unit features

RYSPHL TRCSTALLCTLR.NOOVERFLOW controls the no overflow feature.

SBSPDF Enabling the no overflow feature might have a significant impact on PE performance.

RLCGZJ While the no overflow feature is enabled, and while the number or frequency of ETEEvents is below an IMPLE-
MENTATION DEFINED threshold, the trace unit does not overflow.

RVHMZX The threshold is greater than or equal to one of each numbered ETEEvent, for each trace session.

RMYMKW When TRCIDR3.SYSSTALL is 0b0 the effective value of TRCSTALLCTLR.NOOVERFLOW is 0b0 which means
the no overflow feature is disabled.

RJYYLV When TRCSTALLCTLR.ISTALL == 0b0 and TRCSTALLCTLR.NOOVERFLOW is 0b1, it is CONSTRAINED
UNPREDICTABLE whether any stalling is disabled or whether the no overflow feature is enabled.

D6.10.7 Event Trace

IGGMQT The ETE architecture supports the tracing of additional information in the trace stream. These are known as
ETEEvents, also known as Event trace. The trace unit supports up to 4 ETEEvents. The generation of ETEEvents
is controlled by selecting resources selectors. The occurrence of ETEEvents can be communicated in the following
ways:

• To the system by D7.10 External Outputs.
• To the trace analyzer by D5.68 Event Packet.

D6.10.8 Context identifier tracing

IRJJZW The trace unit can be programmed to include information about the current execution context of the program being
executed on the PE, including:

• The current process identifier, stored in CONTEXTIDR_EL1. This is known as the Context identifier.
• The current virtual machine identifier, stored in CONTEXTIDR_EL2. This is known as the Virtual context

identifier.

RGVMFG The trace unit supports tracing of the Context identifier, with TRCIDR2.CIDSIZE indicating a 32-bit Context
identifier size.

D6.10.9 Virtual context identifier tracing

IVMGBJ Whether an implementation supports Virtual context identifier tracing is IMPLEMENTATION DEFINED. If it does,
the trace unit can be programmed to output the identifier of a virtual machine that the PE is executing.

IFDDXM This option is enabled by setting TRCCONFIGR.VMID to 0b1.

RPTVYD If the PE implements EL2, the trace unit supports a 32-bit Virtual context identifier, with TRCIDR2.VMIDSIZE
indicating a 32-bit Virtual context identifier size. The source of the Virtual context identifier is
CONTEXTIDR_EL2.PROCID.

RBRDYF If the PE does not implement EL2, the trace unit does not support a Virtual context identifier, with
TRCIDR2.VMIDSIZE indicating Virtual context identifier tracing is not supported.

Note

Previous trace architectures from Arm supported the ability to select the source of the Virtual context
identifier. This specification does not support Virtual context identifier selection, and only permits
CONTEXTIDR_EL2.PROCID as the source of the Virtual context identifier. See TRCIDR2.VMIDOPT

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter D6. Trace Unit
D6.10. Trace unit features

for more details.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter D6. Trace Unit
D6.11. Compression

D6.11 Compression

IWVBMT Additional compression of the trace byte stream is achieved by the following methods:

• Removing elements that can be implied by the trace analyzer:

– Implying the existence of Commit elements based on the tracing of other elements.
– Removing Target Address elements that can calculated by the trace analyzer by analysis of previous

traced PE execution.

• Combining multiple elements together into a single packet:

– Combining Atom elements into a single packet.
– Combining Cancel elements and Mispredict elements into a single packet.

D6.11.1 Implied commits

IBTGGX The ETE trace protocol provides mechanisms to minimize the amount of Commit elements which need to be
explicitly output in the trace byte stream. When a P0 element is output in the trace byte stream, if the number of
speculative P0 elements output exceeds TRCIDR8.MAXSPEC, then a Commit element is implied which resolves
the oldest speculative P0 element. For more details on the packets which imply Commit elements, see Chapter D5
Protocol Description.

RYKLRM The trace unit does not generate commit packets for Commit elements that have been implied by the trace protocol.

D6.11.2 Atom packing

IQMVNP The ETE trace protocol provides packets which allow groups of consecutive Atom elements to be packed into
a single trace packet. The diagram below shows the decision tree for generating the different formats of Atom
packets.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter D6. Trace Unit
D6.11. Compression

FMT1

FMT2

E

EE

 E

EN

 N

N

NE

 E

NN

 N

FMT3 EEE

 E

EEN

 N

ENE

 E

ENN

 N

NEE

 E

NEN

 N

NNE

 E

NNN

 N

FMT4

EEE...E

 E

ENEN

 N

NEEE

 E

NENE

 E

NNNN

 N

FMT5 ENENE

 E

NEEEE

 E

NENEN

 N

NNNNN

 N

FMT6 E

EEEE...N

 N

-

 E N

Figure D6.6: Atom packing

IXXSGS Cancel Packets can indicate a number of Atom elements as well as the Cancel element.

IKWWHP The Mispredict Packets can indicate a number of Atom elements as well as the Mispredict element.

D6.11.3 Address Compression

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter D6. Trace Unit
D6.11. Compression

ILFFCR The trace unit can remove program addresses from the trace stream. The trace analyzer can infer the addresses
from the program image and previous history.

This includes the targets of direct P0 instructions, where the target address is encoded in the instruction itself.

RSJPYH The trace unit retains the Address information of up to the last three addresses that were explicitly output in the
trace protocol, as contained in:

• Target Address packets.
• Source Address packets.
• Exception packets.
• Transaction Failure packets.
• PE Reset packets.
• Q packets.

ISXNYK The explicitly output addresses that the trace unit retains are known as the address history buffer.

ILPYRK For optimized trace protocol efficiency, Arm recommends that the address history buffer is three entries deep.

RLMHFW When any of the following packets are generated, the trace unit pushes the address value and sub_isa to the address
history buffer:

• Target Address packet.
• Source Address packet.
• Q packet that implies a Target Address element.

RCMCRT When an Exception packet is generated, the trace unit pushes the preferred exception return address value and
sub_isa to the address history buffer.

RFPDFJ When one of the following packets is generated with an UNKNOWN address, the trace unit pushes an address value
of 0x0 and sub_isa of IS0 to the address history buffer.

• Transaction Failure packet.
• PE Reset packet.

RBPRDC When a Target Address packet is generated, the trace unit uses the address history buffer to identify when a Target
Address Exact Match packet can be used. When a Target Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Target Address packet selection.

RGWKFD When a Source Address packet is generated, the trace unit uses the address history buffer to identify when a Source
Address Exact Match packet can be used. When a Source Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Source Address packet selection.

RYLXFK When an Exception packet is generated, the trace unit uses the address history buffer to identify when an Exception
Exact Match Address packet can be used. When an Exception Exact Match Address packet cannot be used, the
most recent entry in the address history buffer is used for the Exception Address packet selection.

RYCMCG When a Q packet is generated which implies a Target Address element, the trace unit uses the address history buffer
to identify when a Q with Exact Match Address packet can be used. When a Q with Exact Match Address packet
cannot be used, the most recent entry in the address history buffer is used for the Q Address packet selection.

RBTWGD When a Trace Info packet is generated, the trace unit sets all entries of the address history buffer to have an address
value of 0x0 and sub_isa of IS0.

D6.11.4 Return Stack Address Matching

INHWVZ The trace unit might contain the optional return stack function. The return stack operates when Branch with Link
instructions or indirect P0 instructions are taken, and provides a mechanism to allow the trace unit to remove
certain Target Address elements from the trace element stream. The trace analyzer maintains an independent copy
of the return stack which is used to determine when Target Address elements have been removed and then infer the
target of indirect P0 instructions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter D6. Trace Unit
D6.11. Compression

RHNDJJ The depth of the return stack is IMPLEMENTATION DEFINED from 0 to 15 entries.

IBLYHW For optimized trace protocol efficiency, Arm recommends the trace unit implements the return stack with at least 3
entries.

RHFCTC While TRCCONFIGR.RS is 0b1, when a Branch with Link instruction is predicted as taken and is traced, the trace
unit pushes the following Address information to the return stack:

• The instruction address + the instruction size, that is, the return address for the Branch with Link instruction.
• The sub_isa from the instruction set encoding (see D5.3.2 Instruction set encoding).

RZKTHK When a return stack push occurs, all existing entries are shifted down one place on the return stack and the new
entry is pushed to the top entry of the return stack.

RZSVDQ While the return stack is full, when a return stack push occurs, the oldest entry on the return stack is discarded.

RFFXPW When a Branch with Link instruction is predicted as taken and traced with an E Atom element, when a return
stack push occurs, the trace unit pushes to the return stack, even if the prediction is incorrect and is subsequently
corrected to an N Atom element.

RNYHFH When a Branch with Link instruction is predicted as not taken and traced with an N Atom element, the trace unit
does not push to the return stack, even if the prediction is incorrect and is subsequently corrected to an E Atom
element.

RGVLKJ When a Branch with Link instruction is implied by a Q element, the trace unit does not push to the return stack.

RWRXCW When a Branch with Link instruction is executed in a branch broadcasting region, the trace unit does not push to
the return stack.

RQHSBN When an indirect P0 instruction is taken and traced, and the Address information in the resultant Target Address
element matches the address and sub_isa on the top of the return stack, the trace unit performs a return stack pop.

RHTKJS When a return stack pop occurs, both of the following occur:

• The trace unit discards the Target Address element that matches the address and sub_isa on the top of the
return stack.

• The trace unit removes the top entry of the return stack, and shifts each older entry up one position.

RWBCJG When an indirect P0 instruction is implied by a Q element, the trace unit does not perform a return stack pop.

IBCWSQ When an indirect P0 instruction is taken, it is possible that the target address is predicted incorrectly by the PE.

RYMRGB When the target address of a taken indirect P0 instruction is incorrectly predicted, and the incorrect target address
is traced with a Target Address element, the trace unit corrects the incorrect address by generating a new Target
Address element with the correct target address, and neither of the target addresses cause a return stack pop.

RGBHNP When the target address of a taken indirect P0 instruction is incorrectly predicted, and the incorrect target address
matches the top entry of the return stack, the trace unit subsequently generates a Target Address element with the
correct target address, and neither of the target addresses cause a return stack pop.

RZCCBS When the final status of the Atom element corresponding to an indirect P0 instruction is E, including when one or
more Mispredict elements change the status of the Atom element, the trace unit performs a return stack pop.

Note

A return stack push only occurs if the initial Atom element state for the Branch with Link instruction is E.
Conversely, a return stack pop only occurs if the final Atom element state for the indirect P0 instruction is E.

RSLDXR When an instruction that is both a Branch with Link instruction and an indirect P0 instruction is executed, the trace
unit performs the following actions on the return stack, in order:

1. Determine whether a return stack push is possible and push if required.
2. Determine whether a return stack pop is possible and pop if required.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter D6. Trace Unit
D6.11. Compression

Note

Some previous trace architectures from Arm use a different order of operations.

RSBZJB When any of the following occur, the trace unit discards the contents of the return stack:

• The trace unit generates a Trace Info element.
• The trace unit generates a Trace On element.
• The PE enters a branch broadcasting region.

IXRQHQ A trace unit might discard the contents of the return stack at any time.

IDCNGF When the return stack contents are discarded, there is no requirement for the trace analyzer to be aware that this
discard operation has occurred. This is because even though the contents of the trace unit return stack are discarded,
there are no adverse consequences if the contents of the trace analyzer return stack are retained, but never used.

RGZSSX After a Trace Info element, a Target Address element and a Context element are required but might not be generated
immediately. If the Target Address element and the Context element are not generated before the next P0 element,
then any Branch with Link instructions must not push on to the return stack until both the Target Address element
and the Context element have been generated.

Note

This restriction prevents the trace unit from performing return stack pushes for instructions that the trace analyzer
cannot analyze, because it is not yet fully synchronized.

D6.11.5 Timestamp Value Compression

IGYYNG The trace analyzer maintains a copy of the last Timestamp element value broadcast. The Timestamp element value
might be compressed relative to the last value and only the bits that have changed need to be encoded.

RGPGQQ When a Trace Info packet is generated, the trace unit sets its maintained value of the last Timestamp element to
zero, and when the trace unit generates a subsequent Timestamp packet the value is compressed relative to this
new zero value. This means that the first Timestamp packet after a Trace Info packet contains all non-zero bits of
the Timestamp value.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter D7
Resources

IPKCDG The ETE architecture has a number of resources that can be used to be provide advanced filtering functionality.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter D7. Resources
D7.1. Resource operation

D7.1 Resource operation

RPWBZK The resources operate in one of the following states:

Running All the resources are active.

Pausing The resources are progressing to the Paused state.

Paused All the resources are static and inactive except for External Input Selectors.

Running

Pausing

Paused

Figure D7.1: Resources operation

IHWYYK As described in D6.2 System Behaviors, the trace unit can be disabled by either:

• Setting TRCPRGCTLR.EN to 0b0.
• Locking the OS Lock, by setting OSLAR_EL1.OSLK to 0b1.

RJLLVN While the resources are in the Running state, and when any of the following are occur, the resources enter the
Pausing state:

• The trace unit becomes disabled.
• The trace unit enters the low-power state.
• The Processing Element (PE) begins executing in a Trace Prohibited region.

RYWDVJ While the resources are in the Pausing state, the resources enter the Paused state in finite time.

RLYFDT While the trace unit is in the Paused state, when all of the following are true, the resources enter the Running state:

• The trace unit is enabled.
• The trace unit is not in the low-power state.
• The PE is not executing in a Trace Prohibited region.

RTMPZZ A trace unit buffer overflow has no impact on the behavior of the resources.

D7.1.1 Behavior of the resources while in the Running state

SJVYQP The time taken for the resources to operate might vary between different trace unit implementations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter D7. Resources
D7.1. Resource operation

D7.1.2 Behavior of the resources while in the Pausing state

RRDCGC When the resources enter the Pausing state, the resources perform the following procedure:

1. All resources, except for the Sequencer and any Counters, are driven low as inputs to the Resource Selector
logic. The Counters and the Sequencer behave as normal.

2. The states that the inputs were at before they were driven low are propagated through the Resource Selector
logic.

3. The states of the Counters and the Sequencer are propagated through the Resource Selector logic one more
time. That is, the states of the Counters and the Sequencer are propagated through the Resource Selector
logic for the length of time that it takes for the state of a resource to be propagated through the Resource
Selector logic.

4. The resources enter the Paused state.

ILGWRK The procedure that the resources perform when the resources are in the Pausing state has the result that, for resource
events that are activated by a resource that is not a Counter or a Sequencer, no activity is lost, because all those
resource events are updated.

ICQNGN When Counter and Sequencer states are propagated back as resources, so that a loop is created, then the following
are true:

• If a Counter at zero resource is being used to activate either the Sequencer or a Counter, then that Counter at
zero resource might be propagating through the Resource Selector logic at the time when the procedure ends.
In this case, the Sequencer state resource or other Counter at zero resource that is activated by that Counter at
zero resource might be lost.

• If a Sequencer state resource is being used to activate a Counter, then that Sequencer state resource might
be propagating through the Resource Selector logic at the time when the procedure ends. In this case, the
Counter at zero resource that is activated by that Sequencer state resource might be lost.

IBRZXY When the trace unit becomes disabled, the behavior of the resources in the Pausing state ensures that the
programmers model provides a consistent view of the state of the trace unit resources. That is, with regard
to the Counters and the Sequencer, the following are true:

• If the state of the Sequencer is selected to be propagated back as a resource, then the view of the Sequencer
as a resource event and the view of the Sequencer resource state each show the same Sequencer state.

• If the state of a Counter is propagated back as a resource, then the view of the Counter as a resource event
and the view of the Counter resource state each show the same Counter state. The Counter state might be
either of the following:

– The Counter is at zero.
– The Counter is not at zero.

D7.1.3 Behavior of the resources while in the Paused state

IYXKSQ The behavior of the resources when the PE enters the low-power state or a Trace Prohibited region differs from
other trace architectures defined by Arm.

RFHYQW While the resources are in the Paused state and the trace unit is not disabled, the resources do not lose resource
events that are in transition, except those permitted when moving through the Pausing state of the resources. See
D7.1.2 Behavior of the resources while in the Pausing state for details on the resource events that are permitted to
be lost when in the Pausing state.

IHZRSS While the resources are in the Paused state, the resources might not observe resource events that are in transition
until after the resources leave the Paused state.

RYWQNQ While the resources are in the Paused state, the resources remain in the state they are in.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter D7. Resources
D7.1. Resource operation

RBQSMN While the resources are in the Paused state, the trace unit drives all External Outputs low.

RMVZYP When the trace unit becomes disabled and the resources enter the Paused state, and not before, the trace unit might
set TRCSTATR.PMSTABLE to 0b1.

RRWNTS While TRCSTATR.PMSTABLE is set to 0b1, all resources and resource events remain in a quiescent state.

Note

The behavior of the External Input Selectors is detailed in D7.11.1 Operation while in Paused state.

D7.1.4 Behavior of resources on a Trace synchronization event

RRFSRY When the following resources have finished calculations for all instructions prior to the previous Context
synchronization event, a Trace synchronization event completes:

• Address Comparators.
• Context Identifier Comparators.
• Virtual Context Identifier Comparators.
• Single-shot Comparator Controls.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter D7. Resources
D7.2. Resource organization

D7.2 Resource organization

INJLRF There are 2 types of resources:

• Precise resources.
• Imprecise resources.

IJCKLL Each resources has a current state, which is output as a Resource state. The Resource state is selected by Resource
Selectors, and then used by various trace unit functions as a Resource event, see Figure D7.2.

Resources Resource state Resource
Selector Resource event Trace unit

features

Figure D7.2: Resources organization

D7.2.1 Precise Resources

IQSPKY The precise resources are used in the evaluation of the ViewInst include/exclude function and the ViewInst start/stop
function.

RWNGDH The trace unit evaluates the precise resources for each instruction block. See D6.6.4 Instruction Block for more
details.

RNFDCZ The trace unit maintains execution order of the precise resources.

ViewInst include/exclude
function

ViewInst start/stop
function

ViewInstAddress
Comparators

Virtual
Context

Identifier
Comparators

Context Identifier
Comparators

PE Comparator
Inputs

Figure D7.3: Precise Resource Path

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

D7.2.2 Imprecise Resources

Address
Comparators

Resource
Selectors

Context
Identifier

Comparators

Virtual
Context

Identifier
Comparators

Single-shot
Comparator

Controls

Counters

Sequencer

PMU Events
External Input

Selectors

PE Comparator
Inputs

Resource
Event Bus

Counters

Sequencer

ViewInst

Timestamp
Control

ETEEvents

Figure D7.4: Resources organization

D7.3 Selecting a resource or a pair of resources

IBRQFW A resource is selected by using a Resource Selector.

RQDJVV Each Resource Selector uses one of the 30 TRCRSCTLR<n> registers. The trace unit implements Resource
Selectors in pairs, so that a maximum of 15 programmable pairs can be implemented.

RNRSGN Resource Selector 0 always provides a FALSE result.

RSXSQT While the resources are in the Running state, Resource Selector 1 provides a TRUE result.

ITQVKS TRCIDR4.NUMRSPAIR indicates how many pairs of Resource Selectors are implemented.

SMSHWC Resource Selectors can be used in pairs or used individually. When a pair of Resource Selectors is used, a Boolean
function can be applied to the outputs of the combination of selected resources. See Figure D7.6.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

RWZVDQ While TRCRSCTLR<n>.SELECT[m] is 0b1, the Resource Selector selects the Resource Number m of the group
selected by TRCRSCTLR<n>.GROUP as described in Table D7.1.

Table D7.1: Resource grouping

Group Resource Number Resource

0b0000 0-3 External Input Selectors 0-3

4-15 RESERVED

0b0001 0-7 PE Comparator Inputs 0-7

8-15 RESERVED

0b0010 0 Counter 0 at zero

1 Counter 1 at zero

2 Counter 2 at zero

3 Counter 3 at zero

4 Sequencer state 0

5 Sequencer state 1

6 Sequencer state 2

7 Sequencer state 3

8-15 RESERVED

0b0011 0-7 Single-shot Comparator Control 0-7

8-15 RESERVED

0b0100 0-15 Single Address Comparator 0-15

0b0101 0-7 Address Range Comparator 0-7

8-15 RESERVED

0b0110 0-7 Context Identifier Comparator 0-7

8-15 RESERVED

0b0111 0-7 Virtual Context Identifier Comparator 0-7

8-15 RESERVED

0b1xxx 0-15 RESERVED

RHVNQG While TRCRSCTLR<n>.INV is set to 0b0 and one or more resources in a group are selected, when any of the
outputs of the selected resources are high, the Resource Selector fires.

RWFGMY While TRCRSCTLR<n>.INV is set to 0b1, when none of the outputs of the selected resources are high, the
Resource Selector fires.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

N Resources

Apply mask to
 select one or more
 resources from N

Resource Selector

INV GROUP SELECT

 16 4

XOR

OR

 N

Resource output

Figure D7.5: A Resource Selector

D7.3.1 A Resource Selector pair

IDLRMJ The Resource Selectors are arranged in pairs, and the result of each of a pair of Resource Selectors can be combined
using a boolean function and used to drive other resources and events in the trace unit.

RKTNJM For each TRCRSCTLR<n> register which is the lower register for a pair of Resource Selectors, the
TRCRSCTLR<n> register has the TRCRSCTLR<n>.PAIRINV field.

IQKTSJ For example:

• TRCRSCTLR2 and TRCRSCTLR3 constitute a Resource Selector pair. In this case:
– TRCRSCTLR2 is the lower register.
– TRCRSCTLR2.PAIRINV optionally inverts the result of the Boolean function that is applied to the

outputs of the combination of selected resources.
– TRCRSCTLR3 is the upper register.
– TRCRSCTLR3.PAIRINV is RES0.

This means that, when a Resource Selector pair is used, the following scenario is possible:

• One TRCRSCTLR<n> might select only one resource within the group.
• The other TRCRSCTLR<n> might select more than one resource from the group, so that the result is a

logical OR of the selected resources.
• A Boolean function, for example a logical AND, might be applied to the outputs of the combination of

selected resources.
• The result of that Boolean function might be inverted by using PAIRINV. Figure D7.6 shows this.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

ILPJXK In Figure D7.6, the Boolean function is selected by using the INV field for each Resource Selector, with the
PAIRINV field for each Resource Selector pair, see Table D7.2.

N Resources

Apply mask to
 select one or more
 resources from N

Lower Resource Selector

PAIRINV INV GROUP SELECT

Apply mask to
 select one or more
 resources from N

 16 4

XOR

OR

 N

Resource A

AND

Combined Resource

Upper Resource Selector

INV GROUP SELECT

 16 4

XOR

OR

 N

Resource B

XOR

Figure D7.6: A Resource Selector pair

Table D7.2: Selecting a boolean function

Function Resource A INV Resource B INV PAIRINV

A ∧ B 0b0 0b0 0b0

¬A ∨ ¬B 0b0 0b0 0b1

RESERVED 0b0 0b1 0b0

¬A ∨ B 0b0 0b1 0b1

¬A ∧ B 0b1 0b0 0b0

RESERVED 0b1 0b0 0b1

¬A ∧ ¬B 0b1 0b1 0b0

A ∨ B 0b1 0b1 0b1

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter D7. Resources
D7.4. Address comparators

D7.4 Address comparators

ILGGVG An ETE trace unit provides between 0 and 16 Single Address Comparators (SACs) that each compare the instruction
address with a user-programmed value.

RYCRNP The trace unit implements SACs in pairs, so that a trace unit implementation contains an even number of SACs.

IMNTCY TRCIDR4.NUMACPAIRS indicates how many pairs of SACs are implemented.

RYMVDZ When the PE executes instructions in Debug state, Address Comparators do not match.

RYPWLR When the PE executes instructions in a Trace Prohibited region, Address Comparators do not match.

IRFTWJ Address Comparators might match in failed transactions.

IWDJPG Address Comparators might match on speculative execution.

D7.4.1 Single Address Comparators

ISSHHT A Single Address Comparator (SAC) can be used in the following ways:

• As inputs to the ViewInst start/stop function in the ViewInst function (see D6.8.2 ViewInst start/stop function
filtering).

• As an individual resource.
• The comparator can be programmed so that, whenever the PE is in Non-secure state, the comparator only

matches in certain Exception levels.
• The comparator can be programmed so that, whenever the PE is in Secure state, the comparator only matches

in certain Exception levels.

RDKCFF An SAC only matches on Exception levels and Security states as indicated by TRCACATR<n>.

SAC_ELi[n] =



¬TRCACATRn.EXLEVEL_S_EL0 Secure EL0
¬TRCACATRn.EXLEVEL_S_EL1 Secure EL1
¬TRCACATRn.EXLEVEL_S_EL2 Secure EL2
¬TRCACATRn.EXLEVEL_S_EL3 EL3
¬TRCACATRn.EXLEVEL_NS_EL0 Non-Secure EL0
¬TRCACATRn.EXLEVEL_NS_EL1 Non-Secure EL1
¬TRCACATRn.EXLEVEL_NS_EL2 Non-Secure EL2

(D7.1)

RQFNSK An SAC only matches on the context indicated by TRCACATR<n>.CONTEXT and
TRCACATR<n>.CONTEXTTYPE.

m = TRCACATRn.CONTEXT (D7.2)
type = TRCACATRn.CONTEXTTYPE (D7.3)

SAC_CONTEXTi[n] =



1 type is 0
CIDCOMP[m] type is 1
VMIDCOMP[m] type is 2
CIDCOMP[m]∧
VMIDCOMP[m] type is 3

(D7.4)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter D7. Resources
D7.4. Address comparators

RPYMZV When an instruction is executed, and the address of the lowest byte of the instruction exactly matches the
programmed address of an SAC, the SAC matches.

SAC_ADDRi[n] = (ThisInstrAddr()i ≡ TRCACVRn.ADDRESS) (D7.5)

ISPFXX For example, for a 4-byte instruction at address 0x1000:

• The lowest byte of the instruction is at 0x1000.
• The second byte of the instruction is at 0x1001.
• The third byte of the instruction is at 0x1002.
• The highest byte of the instruction is at 0x1003.

If an SAC is programmed with 0x1000, then it always matches on that instruction at address 0x1000.

IJZXFJ It is IMPLEMENTATION DEFINED whether an SAC matches when its programmed address matches any byte of an
instruction which is not the lowest byte of the instruction.

IVSFSS The Arm architecture supports disabling IT instructions on more than one subsequent instruction, using the ITD
bits in the SCTLR, HSCTLR, and SCTLR_EL1 System registers. If any of the ITD bits are set to 0b1 and are
affecting IT operation, and a SAC is programmed to match on the address of the instruction that is immediately
after an IT instruction, when the instruction immediately after the IT instruction is executed it is CONSTRAINED
UNPREDICTABLE whether that comparator matches.

STFYFT If any of the ITD bits are set to 0b1, Arm recommends that a SAC is programmed to match on the address of the IT

instruction, instead of the instruction immediately after the IT instruction.

SMLDYK To avoid unexpected behavior from an SAC, Arm recommends that the SAC is always programmed with an address
that is for the lowest byte of an instruction.

IMCKFH When the instruction immediately after a MOVPRFX instruction is executed, if a SAC is programmed to match on the
address of this instruction, then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

SFPTHL Arm recommends that a SAC is programmed to match on the address of the MOVPRFX instruction, instead of the
instruction immediately after the MOVPRFX instruction.

ITBNTJ The operation of a SAC is as follows:

SACi[n] =


0 When Prohibited
0 When in Debug State
SAC_ADDRi[n] ∧ SAC_ELi[n] ∧ SAC_CONTEXTi[n] Otherwise

(D7.6)

D7.4.2 Address Range Comparators

IHDFQM Pairs of SACs are arranged to form one Address Range Comparator (ARC). An ARC is programmed with an
address range, so that whenever any address in that range is accessed, the ARC matches. A trace unit contains
between zero and eight Address Range Comparators (ARCs). ARCs can be used in the following ways:

• Selected for the ViewInst include/exclude function in the ViewInst function (see D6.8.3 ViewInst include/ex-
clude function filtering).

• As individual resources.

An ARC is programmed by programming the SACs as follows:

• The first SAC is programmed with the start address of the instruction range.
• The second SAC is programmed with the end address of the instruction range.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter D7. Resources
D7.4. Address comparators

SWFSPV The address that the second SAC is programmed with must be greater than or equal to the address that the first
SAC is programmed with, that is, the end address must be greater than or equal to the start address.

RMXCGD While the start address of an ARC is greater than the end address, the behavior of the ARC is CONSTRAINED
UNPREDICTABLE, that is, at any time the ARC might do either of the following:

• Match.
• Not match.

RXYJLC While the TRCACATR<n> registers for the SACs in an ARC are programmed to different values, the behavior of
the ARC is CONSTRAINED UNPREDICTABLE.

RLLQPL While an ARC is programmed with an instruction address range, when the PE executes an instruction at an address
in the following range, the ARC matches:

start_address = TRCACVRn.ADDRESS (D7.7)
end_address = TRCACVR(n+1).ADDRESS (D7.8)

ARC_ADDRi[n/2] = (ThisInstrAddr()i > start_address) ∧ (ThisInstrAddr()i 6 end_address) (D7.9)

RYYXSQ When an instruction is executed, and the address of the lowest byte of the instruction is within the programmed
address range of an ARC, the ARC matches.

IRPFWZ When an instruction is executed and the programmed address range of an ARC contains addresses for one
or more bytes of the instruction, but does not contain the address for the lowest byte of the instruction, it is
IMPLEMENTATION SPECIFIC whether the ARC matches.

IRZFPT For example, for a 4-byte instruction at address 0x1000:

• The lowest byte of the instruction is at 0x1000.
• The second byte of the instruction is at 0x1001.
• The third byte of the instruction is at 0x1002.
• The highest byte of the instruction is at 0x1003.

If the programmed address range contains 0x1000, then the ARC always matches. However, if the programmed
address range starts at either 0x1001, 0x1002, or 0x1003, then it is IMPLEMENTATION SPECIFIC whether the ARC
matches.

SHSFTQ To avoid unexpected behavior from an ARC, Arm recommends that the ARC is always programmed with an
address range that starts with an address for the lowest byte of an instruction.

IVRRHS The Arm architecture supports disabling IT instructions on more than one subsequent instruction, using the ITD
bits in the SCTLR, HSCTLR, and SCTLR_EL1 System registers. If any of the ITD bits are set to 0b1 and are
affecting IT operation, and an ARC is programmed to include the address of the instruction that is immediately
after an IT instruction but not include the IT instruction, when the instruction immediately after the IT instruction is
executed then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

SDMHQH If any of the ITD bits are set to 0b1, Arm recommends that an ARC is programmed to include both the IT instruction
and the instruction immediately after the IT instruction.

IPBKPJ When the instruction immediately after a MOVPRFX instruction is executed, if an ARC is programmed to include the
address of the instruction that is after the MOVPRFX instruction but not the MOVPRFX instruction, then it is CONSTRAINED
UNPREDICTABLE whether that comparator matches.

SHVTHL Arm recommends that an ARC is programmed to include both the MOVPRFX instruction and the instruction
immediately after the MOVPRFX instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter D7. Resources
D7.4. Address comparators

IHTXLT It might be possible for multiple matches to occur simultaneously. The definition of when matches occur
simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions. However, an
example of when multiple matches might occur simultaneously is when multiple instructions are observed in the
same processor clock cycle, so that multiple comparisons take place with each address in the programmed range.
In this case, either or both of the following might occur:

• An address in the range is matched more than once.
• More than one address in the range is matched simultaneously.

RHMYMX When multiple ARC matches occur simultaneously for one ARC, both of the following are true:

• The ARC signals a match at least once.
• The ARC does not signal more matches than the number of instructions that are executed with an address

that matches an address in the programmed range.

ICTBDN Each ARC can be used with one, or a combination of, the following:

• A Context Identifier Comparator.
• A Virtual Context Identifier Comparator.

RTMCJX An ARC only matches on Exception levels and Security states as indicated by TRCACATR<2n>.

ARC_ELi[n] =



¬TRCACATR<2n>.EXLEVEL_S_EL0 Secure EL0
¬TRCACATR<2n>.EXLEVEL_S_EL1 Secure EL1
¬TRCACATR<2n>.EXLEVEL_S_EL2 Secure EL2
¬TRCACATR<2n>.EXLEVEL_S_EL3 EL3
¬TRCACATR<2n>.EXLEVEL_NS_EL0 Non-Secure EL0
¬TRCACATR<2n>.EXLEVEL_NS_EL1 Non-Secure EL1
¬TRCACATR<2n>.EXLEVEL_NS_EL2 Non-Secure EL2

(D7.10)

RVSBJF An ARC only matches on the context indicated by TRCACATR<2n>.CONTEXT and
TRCACATR<2n>.CONTEXTTYPE.

m = TRCACATR<2n>.CONTEXT (D7.11)
type = TRCACATR<2n>.CONTEXTTYPE (D7.12)

ARC_CONTEXTi[n] =



1 type is 0
CIDCOMP[m] type is 1
VMIDCOMP[m] type is 2
CIDCOMP[m]∧
VMIDCOMP[m] type is 3

(D7.13)

RRTXJN The operation of an ARC is as follows:

ARCi[n] =


0 When Prohibited
0 When in Debug State
ARC_ADDRi[n] ∧ ARC_ELi[n] ∧ ARC_CONTEXTi[n] Otherwise

(D7.14)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter D7. Resources
D7.5. Context Identifier Comparator

D7.5 Context Identifier Comparator

IKDSNY An ETE trace unit provides between zero and eight Context Identifier Comparators. Each Context Identifier
Comparator can be used in any of the following ways:

• Associated with a SAC.
• Associated with an ARC.
• As an individual resource.

RDCCBY While a Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is executing
with the Context identifier that the Context Identifier Comparator is programmed with and when an address is
accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

RBKQKQ While a Context Identifier Comparator is used as an individual resource, when an instruction block is executed
with the Context identifier that the Context Identifier Comparator is programmed with, the Context Identifier
Comparator matches.

IPBXRH When using a Context Identifier Comparator as an independent resource to activate a resource event, the time that
the resource event is activated relative to the time that the Context Identifier Comparator becomes active might be
imprecise.

IRBLYL It might be possible for multiple matches of a Context Identifier Comparator to occur simultaneously. The
definition of when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of
runtime conditions. However, an example of when multiple matches might occur simultaneously is when multiple
instructions are observed in the same processor clock cycle, so that multiple comparisons take place.

RMPJBW When multiple Context Identifier Comparator matches occur simultaneously for one Context Identifier Comparator,
both of the following are true:

• The Context Identifier Comparator signals a match at least once.
• The Context Identifier Comparator does not signal more matches than the number of instructions that are

executed with the Context identifier that the Context Identifier Comparator is programmed with.

IHDCJK A Context Identifier Comparator might match on speculative execution, that is, a Context Identifier Comparator
might match if the PE speculatively changes the Context identifier.

RMCYYC When the PE executes instructions in Debug state, Context Identifier Comparators do not match.

RSRZGJ When the PE executes instructions in a Trace Prohibited region, Context Identifier Comparators do not match.

IGKDRL The Context identifier might change at points that are not Context synchronization events, for example when
a system instruction is used to write to the current Context identifier register. In these scenarios, the Context
Identifier Comparator might compare against the old or new Context identifier value for any instruction after the
P0 element before the system instruction, up to the Context synchronization event after the system instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter D7. Resources
D7.5. Context Identifier Comparator

m =



TRCCIDCCTLR0.COMP0 n ≡ 0

TRCCIDCCTLR0.COMP1 n ≡ 1

TRCCIDCCTLR0.COMP2 n ≡ 2

TRCCIDCCTLR0.COMP3 n ≡ 3

TRCCIDCCTLR1.COMP4 n ≡ 4

TRCCIDCCTLR1.COMP5 n ≡ 5

TRCCIDCCTLR1.COMP6 n ≡ 6

TRCCIDCCTLR1.COMP7 n ≡ 7

(D7.15)

v = TRCCIDCVRn.VALUE (D7.16)
cid = CONTEXTIDR_EL1.PROCID (D7.17)

CIDCOMP[n] =


0 When Prohibited
0 When in Debug State
7∏

j=0

(
v[8j + 7 : 8j] ≡ cid[8j + 7 : 8j]) ∨m[j]

)
Otherwise

(D7.18)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter D7. Resources
D7.6. Virtual Context Identifier Comparators

D7.6 Virtual Context Identifier Comparators

IBXVPG An ETE trace unit provides between zero and eight Virtual Context Identifier Comparators. Each Virtual Context
Identifier Comparator can be used in any of the following ways:

• Associated with a SAC.
• Associated with an ARC.
• As an individual resource.

RRTRBM While a Virtual Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is
executing with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed with and
when an address is accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

RVWYMY While a Virtual Context Identifier Comparator is used as an individual resource, when an instruction block is
executed with the Virtual context identifier that matches the Virtual Context Identifier Comparator value, the
Virtual Context Identifier Comparator matches.

RFLXQL While TRFCR_EL2.CX indicates that Virtual Context Identifier Comparators cannot match, Virtual Context
Identifier Comparators do not match.

RLPKBR When the PE executes instructions in Debug state, Virtual Context Identifier Comparators do not match.

RWZWLT When the PE executes instructions in a Trace Prohibited region, Virtual Context Identifier Comparators do not
match.

ISCPJP When using a Virtual Context Identifier Comparator as an independent resource to activate a resource event, the
time at which the resource event is activated relative to the time at which the Virtual Context Identifier Comparator
becomes active might be imprecise.

RLJRPW A Virtual Context Identifier Comparator is associated with an SAC by programming TRCACATR<n>.CONTEXT
for the SAC.

IGJCRG It might be possible for multiple matches of a Virtual context identifier to occur simultaneously. The definition of
when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions.
However, an example of when multiple matches might occur simultaneously is when multiple instructions are
observed in the same processor clock cycle, so that multiple comparisons take place.

RJNNDL When multiple Virtual Context Identifier Comparator matches occur simultaneously for one Virtual Context
Identifier Comparator, both of the following are true:

• The Virtual Context Identifier Comparator signals a match at least once.
• The Virtual Context Identifier Comparator does not signal more matches than the number of instructions that

are executed with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed
with.

INPPCF A Virtual Context Identifier Comparator might signal a match on speculative execution, that is, a Virtual Context
Identifier Comparator might signal a match when the PE speculatively changes the Virtual context identifier.

IPPWXT The Virtual context identifier might change at points which are not Context synchronization events, for example
when a system instruction is used to write to CONTEXTIDR_EL2. In these scenarios, the Virtual Context Identifier
Comparator might compare against the old or new Virtual context identifier value for any instruction after the P0
element before the system instruction, up to the Context synchronization event after the system instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter D7. Resources
D7.6. Virtual Context Identifier Comparators

m =



TRCVMIDCCTLR0.COMP0 n ≡ 0

TRCVMIDCCTLR0.COMP1 n ≡ 1

TRCVMIDCCTLR0.COMP2 n ≡ 2

TRCVMIDCCTLR0.COMP3 n ≡ 3

TRCVMIDCCTLR1.COMP4 n ≡ 4

TRCVMIDCCTLR1.COMP5 n ≡ 5

TRCVMIDCCTLR1.COMP6 n ≡ 6

TRCVMIDCCTLR1.COMP7 n ≡ 7

(D7.19)

VMID = CONTEXTIDR_EL2.PROCID (D7.20)
v = TRCVMIDCVRn.VALUE (D7.21)

VMIDCOMP[n] =


0 When Prohibited
0 When in Debug State
7∏

j=0

(
v[8j + 7 : 8j] ≡ VMID[8j + 7 : 8j]) ∨m[j]

)
Otherwise

(D7.22)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter D7. Resources
D7.7. Counters

D7.7 Counters

INCCBM The Counters that are employed by the ETE architecture are all decrement counters.

The ETE architecture enables a trace unit to connect Counter outputs to resource events, so that a Counter at zero
state can be used as a resource to activate a resource event. For example, a Counter at zero state might be used to
assert an External Output or to make ViewInst active.

An ETE trace unit provides up to four 16-bit Counters. TRCIDR5.NUMCNTR indicates how many Counters are
implemented. For each Counter, the following can be specified:

• The initial counter value. This can be programmed using TRCCNTVR<n>.
• The reload value. This can be programmed using TRCCNTRLDVR<n>.
• The resource event that causes the Counter to reload with the reload value. This resource event is called

RLDEVENT. In addition, if required, the Counter can be programmed so that it automatically reloads
whenever it reaches zero.

• The resource event that enables the Counter to decrement. This resource event is called CNTEVENT. The
Counter decrements whenever CNTEVENT is active.

RRBMQM The processor clock clocks the Counters in the trace unit.

RPZQGV While the PE is stalled, the Counters continue to count.

RFHFMP While the resources are in the Paused state, the Counters do not count.

RLFVYH When a Counter value is changed by anything other than a direct write to TRCCNTVR<n>, the trace unit considers
the change to be an indirect write to TRCCNTVR<n>.VALUE.

IMLDXC Each Counter operates in one of the two following possible modes:

• Normal mode.
• Self-reload mode.

RSBQPN While the Counter is in Normal Mode, when the Counter reaches zero, the Counter remains at zero until the reload
resource event, RLDEVENT, occurs.

RHYLGG While the Counter is in Normal Mode, the Counter-at-zero resource is active for the whole of the time that the
Counter is at zero.

RYLYPH While the Counter is in Self-reload Mode, when the Counter reaches zero, when the decrement resource event is
next active, the trace unit reloads the Counter with the reload value.

RVGJNL While the Counter is in Self-reload Mode, when the Counter value is zero, the decrement resource event is active
and the reload resource event is not active, the Counter-at-zero resource is active for one cycle.

IKTRXV The following examples show various operating scenarios for a single Counter. Each Counter is programmed with
a reload value of 0x3.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter D7. Resources
D7.7. Counters

CLK

Counter	Value 0x3 0x2 0x1 0x0 0x3 0x2 0x1 0x0

Counter	CNTEVENT

Counter	RLDEVENT

Counter	at	zero

E
ve
nt
s

R
es
ou

rc
es

Figure D7.7: Counter Example 1, Normal mode

CLK

Counter	Value 0x3 0x2 0x1 0x0 0x3 0x2

Counter	CNTEVENT

Counter	RLDEVENT

Counter	at	zero

E
ve
nt
s

R
es
ou

rc
es

Figure D7.8: Counter Example 2, Normal mode

CLK

Counter	Value 0x3 0x2 0x1 0x0 0x3 0x2 0x1 0x3 0x2 0x1 0x0

Counter	CNTEVENT

Counter	RLDEVENT

Counter	at	zero

E
ve
nt
s

R
es
ou

rc
es

Figure D7.9: Counter Example 3, Self-reload mode

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter D7. Resources
D7.7. Counters

CLK

Counter	Value 0x3 0x2 0x1 0x0 0x3 0x2 0x1 0x0

Counter	CNTEVENT

Counter	RLDEVENT

Counter	at	zero

E
ve
nt
s

R
es
ou

rc
es

Figure D7.10: Counter Example 4, Self-reload mode

CLK

Counter	Value 0x3 0x2 0x1 0x0 0x3 0x2 0x1

Counter	CNTEVENT

Counter	RLDEVENT

Counter	at	zero

E
ve
nt
s

R
es
ou

rc
es

Figure D7.11: Counter Example 5, Self-reload mode

RKXLKC While the decrement resource event is inactive, the Counters do not decrement.

RDDCDK The trace unit prioritizes the reload resource event over the count decrement resource event.

D7.7.1 Forming a larger Counter from two separate Counters

ITYLSH Some Counters can be chained together to form a larger counter, so that every time one Counter reloads, another
Counter decrements.

IMMDRW The following example shows an operating scenarios for 2 Counters chained together. Counter 0 is programmed
with a reload value of 0x2.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter D7. Resources
D7.7. Counters

0 1 2 3 4 5 6 7 8 9 10 11 12 13
CLK

Counter	0	Value 0x2 0x1 0x0 0x2 0x1 0x0 0x2 0x1 0x0 0x2

Counter	1	Value 0x3 0x2 0x1 0x0

Counter	0	CNTEVENT

Counter	0	RLDEVENT

Counter	1	CNTEVENT

Counter	1	RLDEVENT

Counter	0	at	zero

Counter	1	at	zero

E
ve

nt
s

R
es

ou
rc

es

Figure D7.12: Chained Counter Example 1

Only certain Counters can be programmed to do this, as follows:

RWPWQD Counter 1 can be programmed to decrement when Counter 0 reloads.

RGYKGZ Counter 3 can be programmed to decrement when Counter 2 reloads.

RQHZFW The decrement resource event for the higher Counter n is active when either of the following occurs:

• The lower Counter reloads due to one of the following:
– The reload resource event that is selected by TRCCNTCTLR<n-1>.RLDEVENT.
– The self-reload mechanism that is controlled by TRCCNTCTLR<n-1>.RLDSELF.

• The decrement resource event that is selected by TRCCNTCTLR<n>.CNTEVENT is active.

RBDPDN While two Counters are chained together to form a larger counter, the larger counter appears as a 32-bit counter
without any tearing of the values between the two Counters.

IFTDHL For example, if Counter 0 is in Self-reload mode and has a value of 0x0000 and a reload value of 0xFFFF, and
Counter 1 is in Normal mode and has a value of 0x1234, then when a decrement resource event occurs on Counter
0, Counter 0 reloads to 0xFFFF. The reload of Counter 0 causes Counter 1 to decrement, resulting in a value of
0x1233. Therefore the sequence on the Counters on consecutive cycles is 0x12340000 and 0x1233FFFF.

IBCMGM For Counters 1 and 3, TRCCNTCTLR<n>.CNTCHAIN is a RW field that determines whether the Counter is
chained. For Counters 0 and 2, TRCCNTCTLR<n>.CNTCHAIN is RES0.

Note

The CounterAtZero resource might not be asserted at the same time that the Counter is at zero. For example,
this could happen if the trace unit implementation pipelines some logic.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter D7. Resources
D7.7. Counters

RLDEVENT dec_action Counter value Action
Resource
Active Notes

Inactive X 0 Stable Yes Resource is active while
Counter is at zero and
remains at zero

Inactive 0 > 0 Stable No No activity

Inactive 1 > 0 Decrement No Decrement when not zero

Active X 0 Reload Yes Reload, but resource is
active because Counter is
at zero

Active X > 0 Reload No Reload

D7.7.2 Counter Operation in Self-reload mode

RLDEVENT dec_action Counter value Action
Resource
Active Notes

Inactive 0 X Stable No No activity, resource is not
active even if the Counter
is at zero

Inactive 1 0 Reload Yes Reload because dec_action
is active and the Counter is
at zero,
resource is active only in
this cycle

Inactive 1 > 0 Decrement No Decrement when not zero

Active X X Reload No Reload regardless of
decrement action and the
value of the Counter,
resource is never active

// The counter-at-zero resources

array boolean CounterAtZero[0..3];

//

// EvalAllCounters() is called each clock cycle

//

EvalAllCounters()

array boolean reload[0..3];

reload[0] = EvalCounter(0, FALSE);

reload[1] = EvalCounter(1, reload[0]);

reload[2] = EvalCounter(2, FALSE);

reload[3] = EvalCounter(3, reload[2]);

//

// EvalCounter() is called for each counter

//

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter D7. Resources
D7.7. Counters

boolean EvalCounter(integer index, boolean lower_reloads)

boolean dec_action;

boolean resource_active;

bits(16) next_value;

boolean reload;

boolean decrement;

// A dec_action signal is constructed which indicates whether the counter

// decrements. This is based on TRCCNTCTLR[n].CNTEVENT and, for counters

// which support chaining, on TRCCNTCTLR[n].CNTCHAIN and on whether or not

// the lower counter is reloading.

dec_action = IsEventActive(TRCCNTCTLR[index].CNTEVENT) ||

(TRCCNTCTLR[index].CNTCHAIN && lower_reloads);

// The counter-at-zero resource is active if the counter is

// currently at zero and is either in Normal mode or in

// Self-Reload mode and dec_action is active and the reload

// event is not active.

resource_active = (TRCCNTVR[index] == 0) &&

(!TRCCNTCTLR[index].RLDSELF ||

(dec_action && !IsEventActive(TRCCNTCTLR[index].RLDEVENT)

)

);

// The counter reloads if the reload event is active or the self-reload

// mechanism causes a reload.

reload = IsEventActive(TRCCNTCTLR[index].RLDEVENT) ||

(TRCCNTCTLR[index].RLDSELF && dec_action && TRCCNTVR[index] == 0);

// The counter only decrements if it is non-zero and does not reload and

// dec_action is active.

decrement = !reload && (TRCCNTVR[index] != 0) && dec_action;

// Determine the next value of the counter

if reload then

TRCCNTVR[index] = TRCCNTRLDVR[index].VALUE;

else if decrement then

TRCCNTVR[index] = TRCCNTVR[index] - 1;

else

TRCCNTVR[index] = TRCCNTVR[index];

CounterAtZero[index] = resource_active;

return reload;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter D7. Resources
D7.8. Sequencer

D7.8 Sequencer

IBGGRG An ETE trace unit can contain a Sequencer state machine that has four states.

State 0 State 1F0

B0
State 2F1

B1

State 3

F2

B2RST

Figure D7.13: Sequencer state machine

IPTVBH TRCIDR5.NUMSEQSTATE indicates whether the state machine is implemented.

RQYNJH If the Sequencer state machine is implemented, it has 4 states, numbered 0 to 3.

RTQWHX When the trace unit leaves the Disabled state, the Sequencer state machine starts in the state programmed in
TRCSEQSTR.STATE.

ISYCBV The Sequencer can be connected to resource events, so that the Sequencer transitions from one state to another
when certain resource events occur. The TRCSEQEVR<n> registers can be used to specify which resource events
cause the state machine to transition.

Each register can be used to specify the following:

• A resource event that causes the state machine to progress to the next state.
• A resource event that causes the state machine to transition backwards to the previous state.

Different resource events can be chosen to cause the Sequencer to transition between different states. For example,
a particular resource event might cause an F0 transition from state 0 to state 1 on one processor clock cycle,
whereas a different resource event might cause an F1 transition from state 1 to state 2 on the next processor clock
cycle. A third independent resource event might cause a B1 transition backwards from state 2 to state 1 on the
third clock cycle.

RNPVRQ The trace unit prioritizes forward transitions over backward transitions in the Sequencer state machine. That is,
when two resource events occur that result in a forward transition conflicting with a backward transition in the same
processor clock cycle, the trace unit gives priority to the forward transition and ignores the backward transition.

IQNFJZ The Sequencer can progress through multiple states in a single processor clock cycle. For example, if the Sequencer
is in state 0 and the resource events that cause an F0 and F1 transition to take place both become active in one
clock cycle, then the Sequencer progresses from state 0 to state 2.

IDMZGJ The Sequencer can be reset to state 0 from any other state. TRCSEQRSTEVR can be used to specify a resource
event to reset the Sequencer.

RHQBBF When a resource event that causes an RST transition occurs, the Sequencer finishes the clock cycle in state 0 and
does not progress to another state until the next clock cycle.

RKVSXC The trace unit prioritizes RST transitions over all other transitions. That is, when a resource event that causes an
RST transition is active in the same clock cycle as resource events that cause other transitions, the trace unit gives
priority to the RST transition and ignores all other transitions.

RJDPYL The table below defines all of the possible state transitions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter D7. Resources
D7.8. Sequencer

To

From 0 1 2 3

0 RST | !F0 F0 & !F1 F0 & F1 & !F2 F0 & F1 & F2

1 RST | (B0 & !F1 & !F0) (!B0 | F0) & !F1 F1 & !F2 F1 & F2

2 RST | (B0 & B1 & !F2 & !F1
& !F0)

B1 & (!B0 | F0) & !F1
& !F2

(!B1 | F1) & !F2 F2

3 RST | (B0 & B1 & B2 & !F2
& !F1 & !F0)

B2 & B1 & (!B0 | F0) &
!F2 & !F1

B2 & (!B1 | F1) &
!F2

!B2 | F2

IYQZGV If multiple resource events that cause transitions become active in one processor clock cycle, there is no guarantee
that the order of these resource events becoming active is observed. For example, you might program:

• F0 to be active on an instruction Address Comparator at address 0x1000.
• F1 to be active on an instruction Address Comparator at address 0x1004.

If the instruction at 0x1000 and the instruction at 0x1004 are executed in the same processor clock cycle, then the
transition from state 0 to state 2 occurs regardless of the program order of the two instructions.

RVDTDP When the Sequencer state is changed by anything other than a direct write to TRCSEQSTR, the trace unit considers
the change to be an indirect write to TRCSEQSTR.STATE.

IWYFZH The ETE architecture provides each Sequencer state as a resource, so that states can be used to trigger other
resource events in the trace unit.

A resource event

A t ransit ion

results in

A change of
 Sequencer state

results in

A resource event

results in

Figure D7.14: Sequencer operation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter D7. Resources
D7.8. Sequencer

RHQHFT When the Sequencer progresses through multiple states in a single processor clock cycle, for each state that it
passes through, the resource state that the Sequencer triggers is active for that cycle.

IDCFMF For example, if the Sequencer is in state 0, and in one processor clock cycle it moves to state 3, then the resource
events that state 1 and state 2 are connected to must be active for that clock cycle. The same rule applies if the
Sequencer is transitioning backwards, so that if it is in state 3, and in one processor clock cycle B2 and B1 cause it
move to state 1, then the resource event that state 2 is connected to must be active for that clock cycle.

The exception to this is when a RST transition causes the Sequencer to return to state 0. For example, if the
Sequencer is in state 3, and in one processor clock cycle it moves to state 0, then the resource events that state 2
and 1 are connected to must not become active.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
CLK

State 0x0 0x3 0x1 0x0 0x2 0x1 0x0

RST

F

B

F

B

F

B

State	0

State	1

State	2

State	3

0
1

2
Tr
an

si
ti
on

	e
ve
nt
s

R
es
ou

rc
es

Figure D7.15: Example of State Transitions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter D7. Resources
D7.8. Sequencer

D7.8.1 Pseudocode

D7.8.1.1 Sequencer Operation

// The sequencer state resources

array boolean SequencerState[0..3];

// EvalSequencer()

// ===============

EvalSequencer()

(rst, txn0, txn1, txn2, txn3) = SequencerTransitions();

// Sequencer State resources

SequencerState[0] = FALSE;

SequencerState[1] = FALSE;

SequencerState[2] = FALSE;

SequencerState[3] = FALSE;

SequencerResource(rst, txn0, txn1, txn2, txn3);

SequencerNextState(rst, txn0, txn1, txn2, txn3);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter D7. Resources
D7.8. Sequencer

D7.8.1.2 Sequencer Transitions

// SequencerTransitions()

// ======================

(boolean rst,

array boolean txn0[0..3],

array boolean txn1[0..3],

array boolean txn2[0..3],

array boolean txn3[0..3]) SequencerTransitions()

boolean F0 = IsEventActive(TRCSEQEVR0.F);

boolean B0 = IsEventActive(TRCSEQEVR0.B);

boolean F1 = IsEventActive(TRCSEQEVR1.F);

boolean B1 = IsEventActive(TRCSEQEVR1.B);

boolean F2 = IsEventActive(TRCSEQEVR2.F);

boolean B2 = IsEventActive(TRCSEQEVR2.B);

boolean rst = IsEventActive(TRCSEQRSTEVR);

array boolean txn0[0..3];

array boolean txn1[0..3];

array boolean txn2[0..3];

array boolean txn3[0..3];

txn0[1] = F0 && !F1;

txn0[2] = F0 && F1 && !F2;

txn0[3] = F0 && F1 && F2;

txn1[0] = B0 && !F0 && !F1;

txn1[1] = (!B0 || F0) && !F1;

txn1[2] = F1 && !F2;

txn1[3] = F1 && F2;

txn2[0] = B0 && !F0 && B1 && !F1 && !F2;

txn2[1] = (!B0 || F0) && B1 && !F1 && !F2;

txn2[2] = (!B1 || F1) && !F2;

txn2[3] = F2;

txn3[0] = B0 && !F0 && B1 && !F1 && B2 && !F2;

txn3[1] = (!B0 || F0) && B1 && !F1 && B2 && !F2;

txn3[2] = (!B1 || F1) && B2 && !F2;

txn3[3] = (!B2 || F2);

return (rst, txn0, txn1, txn2, txn3)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter D7. Resources
D7.8. Sequencer

D7.8.1.3 Sequencer Resource

// SequencerResource()

// ===================

SequencerResource(boolean rst,

array boolean txn0[0..3],

array boolean txn1[0..3],

array boolean txn2[0..3],

array boolean txn3[0..3])

case TRCSEQSTR.STATE of

0 then SequencerState[0] = TRUE;

1 then SequencerState[1] = TRUE;

2 then SequencerState[2] = TRUE;

3 then SequencerState[3] = TRUE;

// If the statemachine passes through

// several states in one iteration then

// set the SequencerState as appropriate.

if !rst then

case TRCSEQSTR.STATE of

0 then

if txn0[2] then

SequencerState[1] = TRUE;

if txn0[3] then

SequencerState[1] = TRUE;

SequencerState[2] = TRUE;

1 then

if txn1[3] then

SequencerState[1] = TRUE;

SequencerState[2] = TRUE;

2 then

if txn2[0] then

SequencerState[1] = TRUE;

3 then

if txn3[0] then

SequencerState[1] = TRUE;

SequencerState[2] = TRUE;

if txn3[1] then

SequencerState[2] = TRUE;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter D7. Resources
D7.8. Sequencer

D7.8.1.4 Sequencer Next State

// SequencerNextState()

// ====================

SequencerNextState(boolean rst,

array boolean txn0[0..3],

array boolean txn1[0..3],

array boolean txn2[0..3],

array boolean txn3[0..3])

if rst then

TRCSEQSTR.STATE = 0;

else

case TRCSEQSTR.STATE of

0 then

if txn0[1] then

TRCSEQSTR.STATE = 1;

if txn0[2] then

TRCSEQSTR.STATE = 2;

if txn0[3] then

TRCSEQSTR.STATE = 3;

1 then

if txn1[0] then

TRCSEQSTR.STATE = 0;

if txn1[1] then

TRCSEQSTR.STATE = 1;

if txn1[2] then

TRCSEQSTR.STATE = 2;

if txn1[3] then

TRCSEQSTR.STATE = 3;

2 then

if txn2[0] then

TRCSEQSTR.STATE = 0;

if txn2[1] then

TRCSEQSTR.STATE = 1;

if txn2[2] then

TRCSEQSTR.STATE = 2;

if txn2[3] then

TRCSEQSTR.STATE = 3;

3 then

if txn3[0] then

TRCSEQSTR.STATE = 0;

if txn3[1] then

TRCSEQSTR.STATE = 1;

if txn3[2] then

TRCSEQSTR.STATE = 2;

if txn3[3] then

TRCSEQSTR.STATE = 3;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter D7. Resources
D7.9. Single-shot Comparator Controls

D7.9 Single-shot Comparator Controls

IQSKXC If a trace unit is exposed to speculative execution or execution in Transactional state, when Address Comparators
are used to activate resource events in the trace unit, then those resource events might be activated when speculative
execution occurs:

• A Single Address Comparator might signal a match on speculative execution or within a transaction.
• An Address Range Comparator might signal a match on speculative execution or within a transaction.

For example, this means that if an Address Comparator is used to activate a Counter or assert an External Output,
then that Counter might decrement, or that External Output might become asserted, as a result of speculative
execution. The Single-shot Comparator Controls for Address Comparators make it possible for resource events in
the trace unit to be activated based only on non-speculative execution, that is, only on architectural execution.

A trace unit can provide up to eight Single-shot Comparator Controls. Each Single-shot Comparator Control can
be used with one or more Address Comparators.

ITLFLF Single-shot Comparator Controls can be used as a trace unit resource, to activate trace unit resource events. For
example, a Single-shot Comparator Control can be selected to:

• Enable or reload a trace unit Counter.
• Initiate a transition in the trace unit Sequencer state machine.
• Assert an External Output.

A Single-shot Comparator Control can therefore, if programmed to assert an External Output, be used to indicate
to a trace analyzer that a particular instruction has been resolved for execution. This means that a trace analyzer
can start or stop trace capture that is based on the architectural execution of that instruction.

IRBMXW If a trace unit contains one or more Address Comparators, Arm recommends that at least one Single-shot
Comparator Control is implemented.

IVNBPG A Single-shot Comparator Control works in the following way:

1. One or more Address Comparators are selected by using the TRCSSCCR<n> for the Single-shot Comparator
Control. The selected Address Comparators can be all Single Address Comparators, all Address Range
Comparators, or a combination of both.

2. When one of the selected Address Comparators matches, then when the instruction is confirmed to have
architecturally executed, the Single-shot Comparator Control fires.

When a selected Address Comparator matches, but the instruction is confirmed to have not architecturally executed,
the Single-shot Comparator Control does not fire.

RXVVYX When an instruction which matches an Address Comparator is confirmed to have architecturally executed, and the
Address Comparator is selected by TRCSSCCR<n>, and TRCSSCSR<n>.STATUS is 0b0 or TRCSSCCR<n>.RST
is 0b1, the Single-shot Comparator Control <n> fires.

RXFJGB When a TSB CSYNC instruction is executed while a Single-shot Comparator Control is programmed to fire due
to the TSB CSYNC instruction, only when the related Trace synchronization event has completed, the Single-shot
Comparator fires.

RSWNFV When a Single-shot Comparator Control fires, the trace unit considers this an indirect write to set
TRCSSCSR<n>.STATUS to 0b1.

RGBDCK While the resources are in the Paused state, when the conditions for a Single-shot Comparator Control to fire are
met:

• If TRCSSCCR<n>.RST == 0b1 or TRCSSCSR<n>.STATUS == 0b0 then TRCSSCSR<n>.PENDING is
indirectly written to 0b1.

• If TRCSSCCR<n>.RST == 0b0 and TRCSSCSR<n>.STATUS == 0b1 then TRCSSCSR<n>.PENDING is
either indirectly written to 0b1 or is unchanged.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter D7. Resources
D7.9. Single-shot Comparator Controls

RSDDWY When one of the Address Comparators selected for a Single-shot Comparator Control matches, when the instruction
that it matches on is in a Transaction which fails or is canceled, the Single-shot Comparator Control does not fire.

RNKKSN When the trace unit becomes disabled and an Address Comparator selected by a Single-shot Comparator Control
has matched on an instruction that is still speculative, the Single-shot Comparator Control does not fire.

RKFMKS While the PE is executing in Transactional state, when the trace unit becomes disabled and an Address Comparator
selected by a Single-shot Comparator Control has matched on an instruction in Transactional state, the Single-shot
Comparator Control does not fire.

RDQZSD When tracing becomes prohibited and an Address Comparator selected by a Single-shot Comparator Control has
matched on an instruction that is still speculative, the Single-shot Comparator Control waits until the instruction
speculation is resolved and fires if the instruction is architecturally executed.

RXRSYH While the PE is executing in Transactional state, when tracing becomes prohibited and an Address Comparator
selected by a Single-shot Comparator Control has matched on an instruction in Transactional state, the behavior of
the Single-shot Comparator Control is IMPLEMENTATION DEFINED and is one of the following:

• The Single-shot Comparator Control does not fire.
• The Single-shot Comparator Control waits for the transaction to be resolved and fires if the transaction

completes successfully.

RVTWXJ While a Single-shot Comparator Control is used for instruction address comparisons, when the conditions for the
Single-shot Comparator Control to fire are met, the Single-shot Comparator Control fires, regardless of whether
either of the following are true:

• The instruction fails its condition code check.
• The instruction is a failed store-exclusive operation.

IXZKFW When a Single-shot Comparator Control is used to activate a resource event, the resource event might not become
activated until some time after the trace unit has traced the instruction. This is because although the trace unit
traces the instruction it is executed, the PE might not confirm whether the instruction was architecturally executed
or canceled because of mis-speculation until some time later, and therefore the Single-shot Comparator Control
might not fire until some time later.

D7.9.1 Single-shot Comparator Control modes

IXZJSV Each Single-shot Comparator Control operates in one of the following modes:

• Single-shot mode: The Single-shot Comparator Control only fires once. That is, after it has fired, it never
fires again.

• Multi-shot mode: The Single-shot Comparator Control resets after each time it fires. That is, it can fire
again when a selected Address Comparator next signals an address match for an instruction is architecturally
executed.

TRCSSCCR<n>.RST selects the mode.

RKJBCH While a Single-shot Comparator Control is in multi-shot mode, when the Single-shot Comparator Control fires, it
fires for a maximum of one processor clock cycle.

RSNDBZ While a Single-shot Comparator Control is in multi-shot mode, when multiple of the comparators selected for
the Single-shot Comparator Control match in close succession, only the first match is guaranteed to cause the
Single-shot Comparator Control to fire.

IHSGTY Examples of multiple comparator matches in close succession include:

• More than one of the Address Comparators that are selected signal an address match simultaneously.
• One Address Comparator matches multiple times while a first match is still waiting to be resolved.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter D7. Resources
D7.9. Single-shot Comparator Controls

D7.9.2 Operation while in Paused state

ISPQLS The resolution of a speculative instruction might occur after the PE has entered a Trace Prohibited region and the
resources have entered the Paused state. If the conditions for the Single-shot Comparator Control to fire are met
while the resources are in the Paused state then the Single-shot Comparator Control resource event is delayed to
ensure that the Single-shot Comparator Control resource event is seen.

RTQHNK While the resources are in the Paused state, the Single-shot Comparator Controls do not fire.

RPVRGR When the resources enter the Running state while TRCSSCSR<n>.PENDING is 0b1, the following occur:

• If TRCSSCCR<n>.RST == 0b1 or TRCSSCSR<n>.STATUS == 0b0, the Single-shot Comparator Control
fires.

• TRCSSCSR<n>.PENDING is indirectly written to 0b0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter D7. Resources
D7.10. External Outputs

D7.10 External Outputs

IBZHDF The ETE architecture supports between one and four External Outputs. The number of outputs that a trace unit has
is IMPLEMENTATION DEFINED, but at least one output is always implemented.

IQPQFJ External Outputs are used to indicate ETEEvents to a trace analyzer.

ETEEvents are controlled by resources events. For example, an instruction Address Comparator can be used to
drive one of the resource events.

If an External Output is programmed to be asserted based on program execution, such as an Address Comparator,
the External Output might not be asserted at the same time as any trace generated by that program execution is
output by the trace unit.

IPNVWQ Typically, the generated trace might be buffered in a trace unit which means that the External Output would be
asserted before the trace is output.

SMFTNW To program an External Output, use TRCEVENTCTL0R to select a resource.

SRBKWB The TRCIDR0.NUMEVENT field shows how many ETEEvents are supported for the particular implementation.

IRFLGF The External Outputs are connected to the Cross Trigger Interface (CTI) for the PE, as defined in Arm® Architecture
Reference Manual, for A-profile architecture [1].

RRFGJD In a PE where the Trace Unit reset is independent of the PE Warm reset and the Cross-trigger Interface (CTI) reset
is independent of the PE Warm reset, transmission of External Outputs to the CTI is unaffected by a PE Warm
reset.

D7.10.1 Operation while in Paused state

XNXCSB While the resources are in the Paused state an ETEEvent might occur, but any associated trace packets might not
be generated. TRCRSR.EVENT provides a mechanism for recording this occurrence so that the trace unit state
can be saved and restored.

RBCMYM While the resources are in the Paused state, the ETEEvent selector retains that one or more ETEEvents have been
generated but not traced.

RSNKFL When an ETEEvent has been generated and the associated External Output has been asserted, any associated Event
packets are generated.

RFVCMB When an ETEEvent has been generated but the associated External Output has not been asserted, any associated
Event packets are not generated.

RGYWLS When an ETEEvent occurs while the resources are in the Paused state and the Event packet is not output, the trace
unit sets the associated TRCRSR.EVENT[n] to 0b1.

RDCLHJ When an ETEEvent occurs while the resources are in the Paused state, this is considered an indirect write to
TRCRSR.

RSWBRL When the trace unit enters the Running state while TRCRSR.EVENT[n] is 0b1, the associated ETEEvent resource
is active for a single PE clock cycle, and the trace unit clears TRCRSR.EVENT[n] to 0b0 and considers the action
an indirect write to TRCRSR.

IKZYKM When the trace unit enters the Running state while TRCRSR.EVENT[n] is 0b1, the resource event selected by
TRCEVENTCTL0R.EVENT<n> might also be active on the same PE clock cycle. If this happens, the associated
ETEEvent resource is active for the single PE clock cycle and might not generate 2 separate ETEEvents for these 2
causes of the ETEEvent.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter D7. Resources
D7.11. External Inputs

D7.11 External Inputs

ITPPSC The trace unit uses the PMU events as External Inputs.

RMTGKB If a PMU event number that is selected is not implemented, then the External Input resource event is inactive.

RYCNCR Unless otherwise specified by the PMU event, the following PMU events are selectable by the trace unit:

• All PMU events required by the Performance Monitors Extension.
• If FEAT_PMUv3 is implemented, all Common architectural and microarchitectural events implemented by

the Performance Monitors Extension.

Note

This includes Common events defined by other extensions, such as SVE and Statistical Profiling Extension
(SPE).

IXJBHV Additional ASIC-specific events can be selected by using a number in the IMPLEMENTATION DEFINED region.

IVWHTZ There is no requirement that all IMPLEMENTATION DEFINED events are visible by the trace unit, PMU counters
and the PMUEVENT bus.

RPHDQT For ETE, export of PMU events to the trace unit is not affected by PMCR.X or PMCR_EL0.X.

RRFWZB When SelfHostedTraceEnabled() == TRUE and tracing is prohibited, only the PMU events defined by rules VBCBZ
and KRSMY are exported to the trace unit.

RWSXTC When SelfHostedTraceEnabled() == FALSE and the PE is in Secure state and counting in Secure state is prohibited,
only the PMU events defined by rules VBCBZ and KRSMY are exported to the trace unit.

RVBCBZ The following PMU events are always exported to the trace unit:

• CTI_TRIGOUT4.
• CTI_TRIGOUT5.
• CTI_TRIGOUT6.
• CTI_TRIGOUT7.
• PMU_OVFS.
• TRB_WRAP.
• TRB_TRIG.

RKRSMY The following PMU events are always exported to the trace unit, unless SelfHostedTraceEnabled() == TRUE and
TRFCR_EL2.E2TRE is 0b0:

• PMU_HOVFS.

RQPDHK When multiple occurrences of the same PMU event occur during the same cycle, the trace unit only observes a
single occurrence of the PMU event.

IMHHNV The operation of the PMU events and the generation of trace within the trace unit are not tightly coupled, and there
is no guarantee that enabling ViewInst due to a PMU event will cause the instruction that caused the PMU event to
be traced.

RXGMPN When the PMU event SW_INCR is selected as an External Input and PMSWINC_EL0 is written from EL2 or
EL3, the External Input is asserted if any bit [n] written has the value 0b1 and the relevant PMU counter <n> is
implemented.

RBXPZK When the PMU event SW_INCR is selected as an External Input and PMSWINC_EL0 is written from EL1 or
EL0, the External Input is asserted if any bit [n] written has the value 0b1 and the relevant PMU counter <n> is
implemented and any of the following are true:

• EL2 is implemented and enabled in the current Security state and <n> is less than MDCR_EL2.HPMN.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter D7. Resources
D7.11. External Inputs

• EL2 is implemented and disabled in the current Security state.
• EL2 is not implemented.

RTTPPY In a PE where the Trace Unit reset is independent of the PE Warm reset and the CTI reset is independent of the
PE Warm reset, transmission of the CTI_TRIGOUTn events from the CTI to the trace unit is unaffected by a PE
Warm reset.

D7.11.1 Operation while in Paused state

XHZLDV The External Input Selectors are guaranteed to be active while in the Paused state. This is so that while the
resources are Paused any cross trigger event is not lost but will occur when the resources resume running.

TRCRSR.EXTIN provides a mechanism to capture the sticky state of the External Input Selectors while in the
Paused state so that the ETE state can be saved and restored.

IZQFND When one or more selected External Inputs have been asserted, while the resources are in the Paused state, the
trace unit retains the knowledge that one or more selected External Inputs have been asserted.

RKCXLF While the resources are in the Pausing or Paused states and the trace unit is not disabled and is not in the low-power
state, when an External Input Selector n detects the selected External Input is asserted, the trace unit performs an
indirect write to set TRCRSR.EXTIN[n] to 0b1.

RQWYSK When the resources enter the Running state while TRCRSR.EXTIN[n] is 0b1, the External Input Selector resource
is active for a single PE clock cycle, and the trace unit clears TRCRSR.EXTIN[n] and considers the action an
indirect write to TRCRSR.

D7.11.2 Operation while in the Low-power state

RKVFVS While the trace unit is in the low-power state, the External Input Selectors are inactive.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter D7. Resources
D7.12. PE Comparator Inputs

D7.12 PE Comparator Inputs

ICXBPR The ETE architecture provides up to eight PE Comparator Inputs, that is, inputs that can be driven from comparators
within the PE. For example, a PE might contain IMPLEMENTATION DEFINED comparators.

RCNVSS The number of PE Comparator Inputs is indicated by TRCIDR4.NUMPC.

RBDWHM While the PE is executing in a Trace Prohibited region, the PE Comparator Inputs are inactive.

RTNHHY The PE Comparator Inputs are only used in IMPLEMENTATION SPECIFIC code.

IDDXFB Each PE Comparator Input can be used in any of the following ways:

• To control the ViewInst start/stop function.
• To control the Single-shot Comparator Controls.
• As an independent resource.

ISKDCW The behavior of the PE Comparator Inputs on the resources and the filtering of the trace unit is IMPLEMENTATION
DEFINED.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter D8
Register Description

D8.1 Accessing ETE registers

IVYNRB The ETE architecture provides registers for programming the trace unit and reading back the programmed settings.
These registers can be accessed by using one or more of the following access mechanisms:

• System instructions, for use by self-hosted software running on the Processing Element (PE) being traced.
• An external debugger interface, for use by an external debugger.

RNBPML When register accesses occur simultaneously from multiple access mechanisms, the trace unit behaves as if all
accesses occur atomically in any order.

D8.1.1 External debugger interface

IKPYGY The external debugger interface defines an address-mapped peripheral that occupies 4KB of address space.

Note

The PE does not have to be in Debug state to program the trace unit registers.

IKFRVP The memory access sizes that are supported by any peripheral are IMPLEMENTATION DEFINED by the peripheral.

RVQWLY The trace unit supports the following access sizes:

• Word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a
doubleword-aligned pair of adjacent 32-bit locations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter D8. Register Description
D8.1. Accessing ETE registers

• Doubleword-aligned 64-bit accesses to access 64-bit registers mapped to a doubleword-aligned pair of
adjacent 32-bit locations. The order in which the two halves are accessed is not specified.

Note

This means that a system implementing the debug registers using a 32-bit bus, such as AMBA APB in CoreSight
systems, with a wider system interconnect must implement a bridge between the system and the debug bus that
can split 64-bit accesses.

RVNNPF All registers are only single-copy atomic at word granularity.

RKYDTQ The trace unit does not support the following accesses:

• Byte.
• Halfword.
• Unaligned word. These accesses are not single-copy atomic at word granularity.
• Unaligned doubleword. These accesses are not single-copy atomic at doubleword granularity.
• Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair forming a 64-bit

register.
• Quadword or higher.
• Exclusives.

RYFRMG The behavior of the accesses that are unsupported by the trace unit is CONSTRAINED UNPREDICTABLE and is one
of the following:

• Accesses generate an External Abort, and writes set the accessed register or registers to an UNKNOWN value
or values.

• Reads return UNKNOWN data and writes are ignored.
• Reads return UNKNOWN data and writes set the accessed register or registers to an UNKNOWN value. This is

the Arm preferred behavior.

Note

For accesses from the external debugger interface, the size of an access is determined by the interface. In an Arm
Debug Interface compliant Memory Access Port, MEM-AP, this is specified by the MEM-AP CSW register.

Note

The CoreSight APB-AP supports only word accesses.

RYSHRS For accesses from the external debugger interface which return an error response when AllowExternalTraceAccess()

returns FALSE, EDPRSR.STAD is only set to 0b1 when this is the highest priority cause of the error. The following
causes are higher priority than AllowExternalTraceAccess():

• The trace unit core power domain is powered down.
• The OS Lock is locked and the register is defined to return an error response due to the OS Lock being

locked.

RKQMKX Accesses from the external debugger interface to Unimplemented or Reserved registers behave as follows:

• For accesses in the range of offsets 0xF00 to 0xFFC, the access behaves as RES0H.
• For accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is locked, the access behaves as RES0H

or returns an error.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter D8. Register Description
D8.1. Accessing ETE registers

• For accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is unlocked and MDCR_EL3.ETAD ==
0b0, the access behaves as RES0H.

• For Secure accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is unlocked and
MDCR_EL3.ETAD == 0b1, the access behaves as RES0H.

• For Non-secure accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is unlocked and
MDCR_EL3.ETAD == 0b1, the access behaves as RES0H or returns an error.

RWXKDP Reads of write-only registers are Reserved.

RSVSNR Writes to read-only registers are Reserved.

IWTJFD For accesses that return an error, see Arm® Architecture Reference Manual, for A-profile architecture [1] for more
details on how this error is handled.

D8.1.2 System instructions

D8.1.2.1 AArch64

RJVLBN MRS instructions with op0 == 0b10 and op1 == 0b001 read from trace unit registers.

RFYRRX MSR instructions with op0 == 0b10 and op1 == 0b001 write to trace unit registers.

RVGVTS Instructions with CRn >= 0b1000 are UNDEFINED.

RSGPQB While the PE is in EL0, all accesses are UNDEFINED.

IWCXDT For consistency with the Arm architecture, system instruction accesses to registers which are not implemented
generate an Undefined instruction exception. These accesses include:

• Writes to read-only registers.
• Reads from write-only registers.
• Accesses to registers which are not present due to the configuration of the trace unit.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter D8. Register Description
D8.2. Synchronization of register updates

D8.2 Synchronization of register updates

D8.2.1 AArch64 system registers

IKWCGH As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], direct writes to trace unit
registers are only guaranteed to be visible to execution after a subsequent Context synchronization event, which
consists of one of the following:

• Taking an exception.
• Returning from an exception.
• Performing an Instruction Synchronization Barrier operation.
• Exit from Debug state.
• Executing a DCPS instruction in Debug state.
• Executing a DRPS instruction in Debug state.

IPNZZH Direct reads of trace unit registers while the trace unit is not in the Stable or Idle states are not guaranteed to
contain the results of the trace operation of execution previous to the direct read operation.

IQPVJQ As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], a direct write to a register using
the same register number that was used by a previous system instruction to write it, the final result is the value of
the second write, without requiring any context synchronization between the two write instructions.

IWLGQK As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], a direct read of a register using
the same register number that was used by an earlier direct write is guaranteed to observe the value that was written,
without requiring any context synchronization between the write and read instructions.

SHSXGZ Context synchronization events are important when changing the value of TRCPRGCTLR.EN or when changing
the OS Lock. After writing to TRCPRGCTLR to change the value of TRCPRGCTLR.EN, one read of TRCSTATR
is required before programming any other registers. A Context synchronization event is required between writing to
TRCPRGCTLR and reading TRCSTATR. If multiple reads of TRCSTATR are required, a Context synchronization
event is required between each read of TRCSTATR to ensure any change to the trace unit state is observed.

RWPWWS When indirect writes or external writes to the registers in Table D8.1 occur, both of the following can observe the
writes:

• Direct reads in finite time without explicit synchronization.
• Subsequent indirect reads without explicit synchronization.

Table D8.1: Registers with a guarantee of observability

Register Notes

TRCCLAIMSET Claim Tag Set Register

TRCCLAIMCLR Claim Tag Clear Register

TRCCNTVR<n> Counter Value Register <n>

TRCSEQSTR Sequencer State Register

TRCSSCSR<n> Single-shot Comparator Control Status Register

RJQTMC When the trace unit becomes enabled or disabled as a result of a direct write, for any instruction in program order
before the direct write, the new state of the trace unit does not affect trace operations.

RKNQWS When the trace unit becomes enabled or disabled as a result of a direct write, for any instruction after a Context
synchronization event in program order after the direct write, the new state of the trace unit takes effect for any
trace operations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter D8. Register Description
D8.2. Synchronization of register updates

Note

The registers which control whether the trace unit is enabled or disabled are:

• TRCPRGCTLR.
• OSLAR_EL1.

SYKGMP Arm recommends that a Context synchronization event is executed after programming the trace unit registers, to
ensure that all updates are synchronized to the trace unit before normal code execution resumes.

RWZQWC When a Context synchronization event occurs while the trace unit is in the Idle or Stable states, and at no other
time, indirect writes to the trace unit registers are guaranteed to be visible to direct reads.

RGQKGX When either of the following events occurs, and at no other time, indirect writes to the trace unit registers are
guaranteed to be visible to indirect reads or external reads:

• The trace unit transitions into the Stable state.
• The trace unit transitions into the Idle state.

RXLXQL The trace unit functions perform indirect writes to the registers and indirect reads from the registers in architectural
order.

See D8.3 Trace unit programming states for more details on programming the trace unit.

D8.2.2 External Debugger registers

IKNWDX As defined in the “Synchronization of changes to the external debug registers” chapter of Arm® Architecture
Reference Manual, for A-profile architecture [1], this section refers to accesses from the external debug interface as
external reads and external writes.

IHMNWB As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], explicit synchronization is not
required for an external read or an external write by an external agent to be observable to a following external read
or external write by that agent to the same register using the same address, so explicit synchronization is never
required for registers that are accessible only in the external debug interface.

IYXWFD As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], when an external write to a
register using the same register number that was used by a previous external write is performed, the final result is
the value of the second write, without requiring any context synchronization between the two write accesses.

RPGTLX The trace unit does not require explicit synchronization for an external write to be visible to indirect reads.

RDYRZC The trace unit does not require explicit synchronization for an external write to be visible to subsequent external
reads.

IRDFSX As defined in Arm® Architecture Reference Manual, for A-profile architecture [1], explicit synchronization is
required for an external write to be visible to direct reads.

RMMYRJ While the trace unit is in the Stable or Idle states, the trace unit does not require explicit synchronization for
indirect writes to be visible to external reads.

D8.2.3 Synchronization and the authentication interface

RWYWMJ Changes to the authentication interface are indirect writes to TRCAUTHSTATUS by the controller of the
authentication interface. It is IMPLEMENTATION DEFINED whether a change on the authentication interface
is guaranteed to be observable to an external read of the register only after a Context synchronization event or in
finite time.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter D8. Register Description
D8.3. Trace unit programming states

D8.3 Trace unit programming states

RWMGGP The trace unit is always in one of the states shown in Figure D8.1 and Table D8.2.

RDXFFN When the trace unit becomes enabled, the trace unit transitions from the Idle state to the Enabling state.

RZFPHC The trace unit transitions from the Enabling state to the Running state in a finite amount of time.

RTZSRP When the trace unit becomes disabled, the trace unit transitions from the Running state to the Unstable state.

RCZHWF The trace unit transitions from the Unstable state to the Stable state in a finite amount of time.

RBPTKT While the trace unit is in the Stable and Idle states, the states of the following fields do not change other than via
direct writes or external writes:

• TRCVICTLR.SSSTATUS.
• TRCSEQSTR.STATE.
• TRCCNTVR<n>.VALUE.
• TRCSSCSR<n>.STATUS.
• TRCRSR.EVENT.
• TRCRSR.EXTIN.
• TRCRSR.TA.

ITDLZL The trace unit programmers’ model state can be safely read when in any of the Stable or Idle states.

RTRZCP When the trace unit becomes fully idle and both of the following are true, the trace unit transitions from the Stable
state to the Idle state:

• The trace unit is drained of any trace.
• With the exception of the programming interfaces, all external interfaces on the trace unit are quiescent.

Idle

Enabling

Unstable

Stable

Disabled

Enabled

Running

Figure D8.1: Trace unit programming states

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter D8. Register Description
D8.3. Trace unit programming states

Table D8.2: Trace unit programming states

State TRCSTATR.IDLE TRCSTATR.PMSTABLE Trace unit enabled

Idle 0b1 0b1 No

Enabling 0b1 UNKNOWN Yes

Running 0b0 UNKNOWN Yes

Unstable 0b0 0b0 No

Stable 0b0 0b1 No

RRWYQD While the trace unit is not in the Idle state, direct writes and external writes to the trace unit registers are
CONSTRAINED UNPREDICTABLE, except for the following registers:

• TRCPRGCTLR.
• TRCCLAIMSET.
• TRCCLAIMCLR.

This CONSTRAINED UNPREDICTABLE behavior is one of the following:

• The write is ignored.
• The register takes an UNKNOWN value.

The trace byte stream might also be corrupted and analysis of the byte stream might be impossible.

RMDZDN While the trace unit is not in the Idle or Running states, changing the value of TRCPRGCTLR.EN is CONSTRAINED
UNPREDICTABLE.

This CONSTRAINED UNPREDICTABLE behavior is one of the following:

• The write is ignored.
• The register takes an UNKNOWN value.

IPRQRD For more information, see:

• D6.2.1 Behavior on enabling.
• D6.2.2 Behavior on disabling.
• Access permissions on the corresponding register page.

IFJPCN Figure D8.2 shows the procedure that must be used when programming the trace unit registers using the External
Debugger interface.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter D8. Register Description
D8.3. Trace unit programming states

start

Set TRCPRGCTLR.EN to 0b0

Read TRCSTATR

Is
 TRCSTATR.IDLE

 set to 0b1 ?

 No

Program all t race unit
 t race registers required

 Yes

Set TRCPRGCTLR.EN to 0b1

Read TRCSTATR

Is
 TRCSTATR.IDLE

 set to 0b0 ?

 No

end

 Yes

Figure D8.2: External Debugger Interface programming procedure

IZGJRF Figure D8.3 shows the procedure that is used when programming the trace unit registers using the System
instruction interface.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter D8. Register Description
D8.3. Trace unit programming states

start

Set TRCPRGCTLR.EN to 0b0

ISB

Read TRCSTATR

Is
 TRCSTATR.IDLE

 set to 0b1 ?

 No

Program all t race unit
 t race registers required

 Yes

Set TRCPRGCTLR.EN to 0b1

ISB

Read TRCSTATR

Is
 TRCSTATR.IDLE

 set to 0b0 ?

 No

end

 Yes

Figure D8.3: System instruction programming procedure

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter D8. Register Description
D8.4. External debug registers

D8.4 External debug registers

D8.4.1 Trace registers, external debug register map

Offset Access Register Description

0x004 R/W TRCPRGCTLR Programming Control Register

0x00C RO TRCSTATR Trace Status Register

0x010 R/W TRCCONFIGR Trace Configuration Register

0x018 R/W TRCAUXCTLR Auxiliary Control Register

0x020 R/W TRCEVENTCTL0R Event Control 0 Register

0x024 R/W TRCEVENTCTL1R Event Control 1 Register

0x028 R/W TRCRSR Resources Status Register

0x02C R/W TRCSTALLCTLR Stall Control Register

0x030 R/W TRCTSCTLR Timestamp Control Register

0x034 R/W TRCSYNCPR Synchronization Period Register

0x038 R/W TRCCCCTLR Cycle Count Control Register

0x03C R/W TRCBBCTLR Branch Broadcast Control Register

0x040 R/W TRCTRACEIDR Trace ID Register

0x044 R/W TRCQCTLR Q Element Control Register

0x080 R/W TRCVICTLR ViewInst Main Control Register

0x084 R/W TRCVIIECTLR ViewInst Include/Exclude Control Register

0x088 R/W TRCVISSCTLR ViewInst Start/Stop Control Register

0x08C R/W TRCVIPCSSCTLR ViewInst Start/Stop PE Comparator Control Register

0x100+4×n R/W TRCSEQEVR Sequencer State Transition Control Register

0x118 R/W TRCSEQRSTEVR Sequencer Reset Control Register

0x11C R/W TRCSEQSTR Sequencer State Register

0x120+4×n R/W TRCEXTINSELR External Input Select Register

0x140+4×n R/W TRCCNTRLDVR Counter Reload Value Register

0x150+4×n R/W TRCCNTCTLR Counter Control Register

0x160+4×n R/W TRCCNTVR Counter Value Register

0x180 RO TRCIDR8 ID Register 8

0x184 RO TRCIDR9 ID Register 9

0x188 RO TRCIDR10 ID Register 10

0x18C RO TRCIDR11 ID Register 11

0x190 RO TRCIDR12 ID Register 12

0x194 RO TRCIDR13 ID Register 13

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter D8. Register Description
D8.4. External debug registers

Offset Access Register Description

0x1C0 R/W TRCIMSPEC0 IMP DEF Register 0

0x1C0+4×n R/W TRCIMSPEC IMP DEF Register

0x1E0 RO TRCIDR0 ID Register 0

0x1E4 RO TRCIDR1 ID Register 1

0x1E8 RO TRCIDR2 ID Register 2

0x1EC RO TRCIDR3 ID Register 3

0x1F0 RO TRCIDR4 ID Register 4

0x1F4 RO TRCIDR5 ID Register 5

0x1F8 RO TRCIDR6 ID Register 6

0x1FC RO TRCIDR7 ID Register 7

0x200+4×n R/W TRCRSCTLR Resource Selection Control Register

0x280+4×n R/W TRCSSCCR Single-shot Comparator Control Register

0x2A0+4×n R/W TRCSSCSR Single-shot Comparator Control Status Register

0x2C0+4×n R/W TRCSSPCICR Single-shot Processing Element Comparator Input Control Register

0x400+8×n R/W TRCACVR[31:0] Address Comparator Value Register , bits[31:0]

0x404+8×n R/W TRCACVR[63:32] Address Comparator Value Register , bits[63:32]

0x480+8×n R/W TRCACATR[31:0] Address Comparator Access Type Register , bits[31:0]

0x484+8×n R/W TRCACATR[63:32] Address Comparator Access Type Register , bits[63:32]

0x600+8×n R/W TRCCIDCVR[31:0] Context Identifier Comparator Value Registers , bits[31:0]

0x604+8×n R/W TRCCIDCVR[63:32] Context Identifier Comparator Value Registers , bits[63:32]

0x640+8×n R/W TRCVMIDCVR[31:0] Virtual Context Identifier Comparator Value Register , bits[31:0]

0x644+8×n R/W TRCVMIDCVR[63:32] Virtual Context Identifier Comparator Value Register , bits[63:32]

0x680 R/W TRCCIDCCTLR0 Context Identifier Comparator Control Register 0

0x684 R/W TRCCIDCCTLR1 Context Identifier Comparator Control Register 1

0x688 R/W TRCVMIDCCTLR0 Virtual Context Identifier Comparator Control Register 0

0x68C R/W TRCVMIDCCTLR1 Virtual Context Identifier Comparator Control Register 1

0xFA0 R/W TRCCLAIMSET Claim Tag Set Register

0xFA4 R/W TRCCLAIMCLR Claim Tag Clear Register

D8.4.2 Management registers, external debug register map

Offset Access Register Description

0x304 RO TRCOSLSR Trace OS Lock Status Register

0x310 R/W TRCPDCR PowerDown Control Register

0x314 RO TRCPDSR PowerDown Status Register

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter D8. Register Description
D8.4. External debug registers

Offset Access Register Description

0xF00 R/W TRCITCTRL Integration Mode Control Register

0xFA8 RO TRCDEVAFF[31:0] Device Affinity Register, bits[31:0]

0xFAC RO TRCDEVAFF[63:32] Device Affinity Register, bits[63:32]

0xFB0 WO TRCLAR Lock Access Register

0xFB4 RO TRCLSR Lock Status Register

0xFB8 RO TRCAUTHSTATUS Authentication Status Register

0xFBC RO TRCDEVARCH Device Architecture Register

0xFC0 RO TRCDEVID2 Device Configuration Register 2

0xFC4 RO TRCDEVID1 Device Configuration Register 1

0xFC8 RO TRCDEVID Device Configuration Register

0xFCC RO TRCDEVTYPE Device Type Register

0xFD0 RO TRCPIDR4 Peripheral Identification Register 4

0xFD4 RO TRCPIDR5 Peripheral Identification Register 5

0xFD8 RO TRCPIDR6 Peripheral Identification Register 6

0xFDC RO TRCPIDR7 Peripheral Identification Register 7

0xFE0 RO TRCPIDR0 Peripheral Identification Register 0

0xFE4 RO TRCPIDR1 Peripheral Identification Register 1

0xFE8 RO TRCPIDR2 Peripheral Identification Register 2

0xFEC RO TRCPIDR3 Peripheral Identification Register 3

0xFF0 RO TRCCIDR0 Component Identification Register 0

0xFF4 RO TRCCIDR1 Component Identification Register 1

0xFF8 RO TRCCIDR2 Component Identification Register 2

0xFFC RO TRCCIDR3 Component Identification Register 3

D8.4.3 Integration registers

Table D8.5: Integration registers, external debug register map

Offset Access Register Description

0xE80 to
0xEFC

R/W - Reserved for IMPLEMENTATION DEFINED integration and topology
detection registers.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter D9
Trace Analyzer

This chapter describes a simple trace decompressor.

Trace
Stream

Stage 1

Parsing

Image

Stage 3

Analysis

Stage 2

Speculat ion Transact ion Mispredict

Figure D9.1: Stages of trace decompression

Rules-based writing

Rules within this section refer only to the trace analyzer and are not requirements for the trace unit. The rules
in this section ensure that trace the analyzer works with all possible ETE trace units, but trace analyzers can be
tailored for specific implementations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter D9. Trace Analyzer
D9.1. Introduction

D9.1 Introduction

D9.1.1 Using Trace Info elements to start trace analysis

After the trace analyzer has located an Alignment Synchronization packet and synchronized with the trace byte
stream, it must search for the following elements to begin to analyze the trace byte stream:

1. A Trace Info element.
2. A Context element and a Target Address element.

IFCGKX The trace unit might not generate a Context element and Target Address element immediately after it generates a
Trace Info element.

IBWQGD If a Cancel element cancels a Trace Info element then the trace analyzer can still use the information from the
discarded Trace Info element, but if the Context element and Target Address element are also discarded, then the
trace analyzer must wait for the trace unit to generate a new Context element and Target Address element.

D9.1.2 Encountering Trace Info elements after trace analysis has started

The trace unit might generate Trace Info elements periodically, as a result of trace protocol synchronization requests.
This is useful if trace is stored in a circular buffer, because it provides multiple points where trace analysis can
start.

After a trace analyzer observes the first Trace Info element, it can ignore subsequent Trace Info elements in the
same trace session because the static trace programming cannot change and the speculation depth is updated by
other element types during the trace session.

D9.1.3 Decompression information

To decompress a trace byte stream, the trace analyzer requires a number of values which differ between
implementations. All the information required by the decompressor to analyze the trace byte stream is provided in
the TRCIDR0 to TRCIDR13 registers.

Table D9.1 lists the static variables required by the decompressing stages and the fields that provide this
information.

Table D9.1: Static trace unit information

Variable ID Field Stage

Commit Mode TRCIDR0.COMMOPT 1

Virtual context identifier size TRCIDR2.VMIDSIZE 1

Maximum speculation depth TRCIDR8.MAXSPEC 1

Transactional Memory support TRCIDR0.COMMTRANS 1 & 2

WFx Instructions TRCIDR2.WFXMODE 3

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2 Stage 1 - Parsing the byte stream

The first stage of analyzing the trace is to convert from the bits of the trace byte stream to the elements that are
encoded in that trace byte stream.

The ETE architecture enables a trace unit to use techniques that can reduce the trace bandwidth and trace storage
requirements. Some of these techniques require the trace analyzer to retain some information between packets so
that it can successfully analyze future packets.

D9.2.1 Retained state

RZPQMY The trace analyzer maintains an independent copy of the address history buffer of the last three Target Address
elements.

IHDKHN The address history buffer in the trace analyzer is required to reconstruct the Target Address elements from the
trace byte stream.

RJBGCR The trace analyzer must maintain the current speculation depth of the parsed trace byte stream.

RHDJJV The trace analyzer must have the maximum speculation depth supported by the trace unit.

RRZNPD The trace analyzer maintains a copy of the last Timestamp element value decompressed.

INPCCX The last Timestamp element value in the trace analyzer is required to reconstruct the full timestamp value for a
Timestamp Packet.

RZPNYS The trace analyzer must maintain a copy of the context:

• Context identifier.
• Virtual context identifier.
• AArch64 or AArch32 state
• Exception level
• Security state

RMWFSN The trace analyzer must maintain a copy of the cycle count threshold.

D9.2.1.1 InstructionParserState

// InstructionParserState

// ======================

// State of the instruction parser.

type InstructionParserState is (

bits(64) timestamp, // The most recently broadcast timestamp value.

// The Address History Buffer.

array [0..2] of AddressHistoryBufferEntry address_history_buffer,

// Context parameters.

bits(32) context_id, // Most recently broadcast Context ID.

bits(32) vmid, // Most recently broadcast VMID.

bits(2) exception_level, // Most recently broadcast Exception level.

SecurityLevel security, // Most recently broadcast Security state.

boolean sixty_four_bit, // Most recently broadcast AArch state

// (32 or 64?).

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

// Speculation

integer current_spec_depth, // The current speculation depth.

boolean T, // The current transactional state.

// Trace Session static

integer cc_threshold, // Cycle count threshold value.

// Static state

integer max_spec_depth, // The maximum speculation depth.

boolean commit_mode, // Commit mode.

boolean comm_trans // How transactions traced.

)

D9.2.2 Parsing

The first stage of the decompressor is to convert from the trace byte stream to trace element stream. The trace byte
stream can start at the an Alignment Sync packet boundary.

D9.2.2.1 Parse_Trace()

// Parse_Trace()

// =============

// Parses a trace bytestream generated by an ETE trace unit.

Parse_Trace(bits(S) stream)

repeat

header = ReadAndConsume(8, stream);

LogDecompressor(PARSE, DSTATE.stream_ptr ++ " Header " ++ header);

case header of

when ’00000000’ Parse_ExtensionPacket(header, stream);

when ’00000001’ Parse_TraceInfoPacket(header, stream);

when ’0000001x’ Parse_TimestampPacket(header, stream);

when ’00000100’ TraceOnPacket();

when ’00000110’ Parse_ExceptionPacket(header, stream);

when ’00001010’ TransactionStartPacket();

when ’00001011’ TransactionCommitPacket();

when ’0000110x’ Parse_CycleCountPackets(header, stream);

when ’0000111x’ Parse_CycleCountPackets(header, stream);

when ’0001xxxx’ Parse_CycleCountPackets(header, stream);

when ’00101101’ Parse_CommitPacket(header, stream);

when ’0010111x’ Parse_CancelPackets(header, stream);

when ’001100xx’ Parse_MispredictPacket(header, stream);

when ’001101xx’ Parse_CancelPackets(header, stream);

when ’00111xxx’ Parse_CancelPackets(header, stream);

when ’01110000’ // Ignore packet

when ’0111xxxx’ Parse_EventTracingPacket(header, stream);

when ’1000000x’ Parse_ContextPacket(header, stream);

when ’1000001x’ Parse_AddressWithContextPacket(header, stream);

when ’10000101’ Parse_AddressWithContextPacket(header, stream);

when ’10000110’ Parse_AddressWithContextPacket(header, stream);

when ’1001000x’ Parse_TargetAddressPacket(header, stream);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

when ’10010010’ Parse_TargetAddressPacket(header, stream);

when ’100101xx’ Parse_TargetAddressPacket(header, stream);

when ’1001100x’ Parse_TargetAddressPacket(header, stream);

when ’1001101x’ Parse_TargetAddressPacket(header, stream);

when ’10011101’ Parse_TargetAddressPacket(header, stream);

when ’10011110’ Parse_TargetAddressPacket(header, stream);

when ’1010xxxx’ Parse_QPacket(header, stream);

when ’101100xx’ Parse_SourceAddressPacket(header,stream);

when ’1011010x’ Parse_SourceAddressPacket(header,stream);

when ’1011011x’ Parse_SourceAddressPacket(header,stream);

when ’1011100x’ Parse_SourceAddressPacket(header,stream);

when ’11xxxxxx’ Parse_AtomPackets(header, stream);

otherwise ReservedEncoding();

until EndOfStream(stream);

return;

D9.2.3 Alignment Sync packet

The Alignment Sync packet is a unique sequence of bits that identifies the boundary of another packet. The unique
sequence is a header byte, 0b00000000, followed by a minimum of ten payload bytes of 0b00000000 and one final
payload byte of 0b10000000.

D9.2.3.1 Parse_ExtensionPacket()

// Parse_ExtensionPacket()

// =======================

// Parses Alignment Synchronization, Discard and Overflow packets.

Parse_ExtensionPacket(bits(8) header, bits(S) stream)

extension = ReadAndConsume(8, stream);

case extension of

when ’00000000’ // A-sync

while extension == ’00000000’ do

extension = ReadAndConsume(8, stream);

if extension != ’10000000’ then

ReservedEncoding();

LogDecompressor(PARSE, "ASYNC");

when ’00000011’ // Discard

LogDecompressor(PARSE, "DISCARD");

DiscardPacket();

when ’00000101’ // Overflow

LogDecompressor(PARSE, "OVERFLOW");

OverflowPacket();

otherwise

ReservedEncoding();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

return;

D9.2.4 Discard

RRVFVY The current speculation depth must be reset to 0.

D9.2.4.1 DiscardPacket()

// DiscardPacket()

// ===============

// Processes a Discard packet.

DiscardPacket()

Emit(DiscardElement());

if DSTATE.IA.T then

Emit(TransactionFailureElement());

DSTATE.IA.current_spec_depth = 0;

DSTATE.IA.T = FALSE;

return;

D9.2.5 Overflow

An Overflow instruction trace packet is output whenever a trace unit buffer overflow occurs, which means that
some of the trace might be lost, and that tracing is inactive until the overflow condition clears.

D9.2.5.1 OverflowPacket()

// OverflowPacket()

// ================

// Processes an Overflow packet.

OverflowPacket()

Emit(DiscardElement());

Emit(OverflowElement());

if DSTATE.IA.T then

Emit(TransactionFailureElement());

DSTATE.IA.T = FALSE;

DSTATE.IA.current_spec_depth = 0;

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.6 Trace Info

IJMXMP A Trace Info packet indicates where the compression algorithms used by the trace unit have been set to a known
architectural state. As the architectural state of the compression algorithms is known a trace analyzer can start
decompression of the trace byte stream at this point.

If the trace unit exposes some trace speculation to the trace analyzer then the trace info packet indicates the trace
speculation depth at this point in the trace element stream.

If the trace analyzer starts analysis where the trace speculation depth is nonzero then the analyzer should ignore
speculation depth of Commit elements.

RPKZKZ A Trace Info Packet sets all entries of the address history buffer to have an address of 0x0 and to sub_isa of IS0.

RLPYLR The current_spec_depth is set to the speculation depth indicated in the trace info element.

D9.2.6.1 Parse_TraceInfoPacket()

// Parse_TraceInfoPacket()

// =======================

// Parses a Trace Info packet.

Parse_TraceInfoPacket(bits(8) header, bits(S) stream)

bits(8) INFO = Zeros();

bits(96) SPEC = Zeros();

bits(96) CYCT = Zeros();

bits(8) PLCTL = ReadAndConsume(8, stream);

// Extract the INFO section if present

if PLCTL<0> == ’1’ then

INFO = ReadAndConsume(8, stream);

// Extract the SPEC section if present

if PLCTL<2> == ’1’ then

SPEC = ULEB128(stream);

// Extract the CYCT section if present

if PLCTL<3> == ’1’ then

CYCT = ULEB128(stream);

TraceInfoPacket(PLCTL, INFO, SPEC, CYCT);

return;

D9.2.6.2 TraceInfoPacket()

// TraceInfoPacket()

// =================

// Processes a Trace Info packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

TraceInfoPacket(bits(8) PLCTL,

bits(8) INFO,

bits(SN) SPEC,

bits(CN) CYCT)

DSTATE.IA.timestamp = Zeros();

DSTATE.IA.context_id = Zeros();

DSTATE.IA.vmid = Zeros();

DSTATE.IA.exception_level = EL0;

DSTATE.IA.security = SecurityLevel_SECURE;

DSTATE.IA.sixty_four_bit = FALSE;

AddressHistoryBuffer.Reset();

cc_threshold = if INFO<0> == ’1’ then UInt(CYCT) else 0;

DSTATE.IA.current_spec_depth = UInt(SPEC);

Emit(TraceInfoElement(INFO<0> == ’1’, // cc_enabled

cc_threshold,

DSTATE.IA.current_spec_depth,

INFO<6> == ’1’));

return;

D9.2.7 Trace On

The Trace On packet indicates that there has been a discontinuity in the instruction trace element stream. It is
output whenever a gap occurs, after the gap occurs. This means that a Trace On packet is output:

• When trace generation becomes operative, after the first A-Sync and Trace Info packets but before any packet
types that indicate any P0 elements.

• After a trace unit buffer overflow. Again, the Trace On packet is output after the A-Sync and Trace Info
packets but before any packet types that indicate any P0 elements.

• After gaps caused by filtering. For example, if filtering is applied to the generation of the trace element
stream, so that the trace unit only generates trace for a particular program code sequence, the trace unit might
spend much of its time in an inactive state, only generating trace periodically. In this case, a Trace On packet
is output after each discontinuity in the trace element stream. The Trace On packet must be output before any
packet types that indicate any P0 elements.

D9.2.7.1 TraceOnPacket()

// TraceOnPacket()

// ===============

// Processes a Trace On packet.

TraceOnPacket()

Emit(TraceOnElement());

return;

D9.2.8 Speculation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

RPSHDJ The Commit element must modify the current speculation depth.

D9.2.8.1 Parse_CommitPacket()

// Parse_CommitPacket()

// ====================

// Parses a Commit packet.

Parse_CommitPacket(bits(8) header, bits(S) stream)

bits(32) COMMIT = ULEB128(stream);

LogDecompressor(PARSE, "COMMIT");

CommitPacket(COMMIT);

return;

D9.2.8.2 CommitPacket()

// CommitPacket()

// ==============

// Processes a Commit packet.

CommitPacket(bits(N) COMMIT)

Emit(CommitElement(UInt(COMMIT)));

UpdateSpecDepth(-UInt(COMMIT));

return;

RNQHYR The Cancel element must modify the current speculation depth.

D9.2.8.3 Parse_CancelPackets()

// Parse_CancelFormatPackets()

// ===========================

// Parses all the various Cancel packets.

Parse_CancelPackets(bits(8) header, bits(S) stream)

LogDecompressor(PARSE, "CANCEL");

case header of

when ’0010111x’ // Cancel Format 1

M = header<0>;

bits(32) CANCEL = ULEB128(stream);

CancelFormat1Packet(M, CANCEL);

when ’001101xx’ // Cancel Format 2

A2 = header<1:0>;

CancelFormat2Packet(A2);

when ’00111xxx’ // Cancel Format 3

A = header<0>;

CC = header<2:1>;

CancelFormat3Packet(CC, A);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

return;

D9.2.8.4 CancelFormat1Packet()

// CancelFormat1Packet()

// =====================

// Processes a Cancel packet, format 1.

CancelFormat1Packet(bit M, bits(N) CANCEL)

count = UInt(CANCEL);

Emit(CancelElement(count));

UpdateSpecDepth(-count);

if M == ’1’ then

Emit(MispredictElement());

return;

D9.2.8.5 CancelFormat2Packet()

// CancelFormat2Packet()

// =====================

// Processes a Cancel packet, format 2.

CancelFormat2Packet(bits(2) A)

case A of

when ’01’

HandleAtom(Atom_E);

when ’10’

HandleAtom(Atom_E);

HandleAtom(Atom_E);

when ’11’

HandleAtom(Atom_N);

count = 1;

Emit(CancelElement(count));

UpdateSpecDepth(-count);

Emit(MispredictElement());

return;

D9.2.8.6 CancelFormat3Packet()

// CancelFormat3Packet()

// =====================

// Processes a Cancel packet, format 3.

CancelFormat3Packet(bits(2) CC, bit A)

if A == ’1’ then

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

HandleAtom(Atom_E);

count = UInt(CC) + 2;

Emit(CancelElement(count));

UpdateSpecDepth(-count);

Emit(MispredictElement());

return;

D9.2.9 Mispredict

D9.2.9.1 Parse_MispredictPacket()

// Parse_MispredictPacket()

// ========================

// Parses a Mispredict packet.

Parse_MispredictPacket(bits(8) header, bits(S) stream)

A = header<1:0>;

LogDecompressor(PARSE, "MISPREDICT");

MispredictPacket(A);

return;

D9.2.9.2 MispredictPacket()

// MispredictPacket()

// ==================

// Processes a Mispredict packet.

MispredictPacket(bits(2) A)

case A of

when ’01’

HandleAtom(Atom_E);

when ’10’

HandleAtom(Atom_E);

HandleAtom(Atom_E);

when ’11’

HandleAtom(Atom_N);

otherwise

Emit(MispredictElement());

return;

D9.2.10 Atom Packets

RRVVFW Each Atom element decoded from an Atom packet must increment the current speculation depth of this stage of the
decompressor

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.10.1 Parse_AtomPackets()

// Parse_AtomPackets()

// ===================

// Parses all the various Atom packets.

Parse_AtomPackets(bits(8) header, bits(S) stream)

LogDecompressor(PARSE, "ATOM");

case header of

when ’1111011x’ // Atom Format 1

bit A = header<0>;

AtomFormat1Packet(A);

when ’110110xx’ // Atom Format 2

bits(2) A = header<1:0>;

AtomFormat2Packet(A);

when ’11111xxx’ // Atom Format 3

bits(3) A = header<2:0>;

AtomFormat3Packet(A);

when ’110111xx’ // Atom Format 4

bits(2) A = header<1:0>;

AtomFormat4Packet(A);

when ’11110101’ // Atom Format 5.1

AtomFormat5_1Packet();

when ’11010101’, ’11010110’, ’11010111’ // Atom Format 5.2

bits(2) A = header<1:0>;

AtomFormat5_2Packet(A);

when ’11xxxxxx’ // Atom Format 6

bit A = header<5>;

bits(5) COUNT = header<4:0>;

AtomFormat6Packet(A, COUNT);

return;

D9.2.10.2 AtomFormat1Packet()

// AtomFormat1Packet()

// ===================

// Processes an Atom packet, format 1.

AtomFormat1Packet(bit A)

if A == ’1’ then

HandleAtom(Atom_E);

else

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

HandleAtom(Atom_N);

return;

D9.2.10.3 AtomFormat2Packet()

// AtomFormat2Packet()

// ===================

// Processes an Atom packet, format 2.

AtomFormat2Packet(bits(2) A)

for I = 0 to 1

if A<I> == ’1’ then

HandleAtom(Atom_E);

else

HandleAtom(Atom_N);

return;

D9.2.10.4 AtomFormat3Packet()

// AtomFormat3Packet()

// ===================

// Processes an Atom packet, format 3.

AtomFormat3Packet(bits(3) A)

for I = 0 to 2

if A<I> == ’1’ then

HandleAtom(Atom_E);

else

HandleAtom(Atom_N);

return;

D9.2.10.5 AtomFormat4Packet()

// AtomFormat4Packet()

// ===================

// Processes an Atom packet, format 4.

AtomFormat4Packet(bits(2) A)

case A of

when ’00’

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_E);

HandleAtom(Atom_E);

when ’01’

HandleAtom(Atom_N);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

HandleAtom(Atom_N);

HandleAtom(Atom_N);

HandleAtom(Atom_N);

when ’10’

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_N);

HandleAtom(Atom_E);

when ’11’

HandleAtom(Atom_E);

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_N);

return;

D9.2.10.6 AtomFormat5_1Packet()

// AtomFormat5_1Packet()

// =====================

// Processes an Atom packet, format 5.1.

AtomFormat5_1Packet()

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_E);

HandleAtom(Atom_E);

HandleAtom(Atom_E);

return;

D9.2.10.7 AtomFormat5_2Packet()

// AtomFormat5_2Packet()

// =====================

// Processes an Atom packet, format 5.2.

AtomFormat5_2Packet(bits(2) A)

case A of

when ’01’

HandleAtom(Atom_N);

HandleAtom(Atom_N);

HandleAtom(Atom_N);

HandleAtom(Atom_N);

HandleAtom(Atom_N);

when ’10’

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_N);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

when ’11’

HandleAtom(Atom_E);

HandleAtom(Atom_N);

HandleAtom(Atom_E);

HandleAtom(Atom_N);

HandleAtom(Atom_E);

return;

D9.2.10.8 AtomFormat6Packet()

// AtomFormat6Packet()

// ===================

// Processes an Atom packet, format 6.

AtomFormat6Packet(bit A, bits(5) COUNT)

for I = 0 to UInt(COUNT) + 2

HandleAtom(Atom_E);

if A == ’1’ then

HandleAtom(Atom_N);

else

HandleAtom(Atom_E);

return;

D9.2.11 Q Packets

RRZFZW The Q element must increment the current speculation depth at this stage of the decompressor.

D9.2.11.1 Parse_QPacket()

// Parse_QPacket()

// ===============

// Parses a Q packet.

Parse_QPacket(bits(8) header, bits(S) stream)

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

bits(32) count;

TYPE = header<3:0>;

LogDecompressor(PARSE, "Q");

case TYPE of

when ’0000’, ’0001’, ’0010’

ExactMatchBytes(header, stream);

count = ULEB128(stream);

QPacket(TYPE, entry, count);

when ’0101’

ShortAddressBytes(IS0, stream);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

count = ULEB128(stream);

QPacket(TYPE, entry, count);

when ’0110’

ShortAddressBytes(IS1, stream);

count = ULEB128(stream);

QPacket(TYPE, entry, count);

when ’1010’, ’1011’

LongAddressBytes(header, stream);

count = ULEB128(stream);

QPacket(TYPE, entry, count);

when ’1100’

count = ULEB128(stream);

QPacket(TYPE, UNKNOWN_ADDRESS, count);

when ’1111’

QPacket(TYPE, UNKNOWN_ADDRESS, UNKNOWN_COUNT);

otherwise

ReservedEncoding();

return;

D9.2.11.2 QPacket()

// QPacket()

// =========

// Processes a Q packet.

QPacket(bits(4) TYPE, AddressHistoryBufferEntry A, bits(CN) COUNT)

Emit(QElement(UInt(COUNT)));

UpdateSpecDepth(1);

// The decoding of the Address field is done by the AddressPacket function,

// but this did not Emit the address element.

if (TYPE != ’11xx’ && TYPE != ’00xx’) then

Emit(TargetAddressElement(A));

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.12 Source Address Packets

D9.2.12.1 Parse_SourceAddressPacket()

// Parse_SourceAddressPacket()

// ===========================

// Parses a Source Address packet.

Parse_SourceAddressPacket(bits(8) header, bits(S) stream)

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

case header of

when ’10111000’

data1 = ReadAndConsume(8, stream);

data2 = ReadAndConsume(8, stream);

data3 = ReadAndConsume(48, stream);

entry.sub_isa = IS0;

entry.address<63:0> = data3:data2<6:0>:data1<6:0>:’00’;

AddressHistoryBuffer.Add(entry);

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

when ’10111001’

data11 = ReadAndConsume(8, stream);

data21 = ReadAndConsume(56, stream);

a = entry;

entry.sub_isa = IS1;

entry.address<63:0> = data21:data11<6:0>:’0’;

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

when ’10110110’

data12 = ReadAndConsume(8, stream);

data22 = ReadAndConsume(8, stream);

data32 = ReadAndConsume(16, stream);

a = entry;

entry.sub_isa = IS0;

entry.address<31:0> = data32:data22<6:0>:data12<6:0>:’00’;

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

when ’10110111’

data13 = ReadAndConsume(8, stream);

data23 = ReadAndConsume(24, stream);

a = entry;

entry.sub_isa = IS1;

entry.address<31:0> = data23:data13<6:0>:’0’;

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

Emit(SourceAddressElement(entry));

when ’10110100’

data14 = ReadAndConsume(8, stream);

a = entry;

entry.sub_isa = IS0;

if data14<7> == ’1’ then

data24 = ReadAndConsume(8, stream);

entry.address<16:0> = data24<7:0>:data14<6:0>:’00’;

else

entry.address<8:0> = data14<6:0>:’00’;

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

when ’10011101’

data15 = ReadAndConsume(8, stream);

a = entry;

entry.sub_isa = IS0;

if data15<7> == ’1’ then

data25 = ReadAndConsume(8, stream);

entry.address<15:0> = data25<7:0>:data15<6:0>:’0’;

else

entry.address<7:0> = data15<6:0>:’0’;

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

when ’101100xx’ // Exact match

q = UInt(header<1:0>);

entry = AddressHistoryBuffer.Get(q);

AddressHistoryBuffer.Add(entry);

UpdateSpecDepth(1);

Emit(SourceAddressElement(entry));

return;

D9.2.13 Exceptions

RSRPFR The Exception element must increment the current speculation depth at this stage of the decompressor.

D9.2.13.1 Parse_ExceptionPacket()

// Parse_ExceptionPacket()

// =======================

// Parses an exception packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

Parse_ExceptionPacket(bits(8) header, bits(S) stream)

payload = ReadAndConsume(8, stream);

bits(2) E;

E<0> = payload<0>;

E<1> = payload<6>;

bits(5) TYPE = payload<5:1>;

bits(8) AH;

LogDecompressor(PARSE, "EXCEPTION");

if E == ’01’ || E == ’10’ then

// Treat the ADDRESS bytes as an Address packet, including

// updating the address registers.

AH = ReadAndConsume(8, stream);

case AH of

when ’1001000x’, ’10010010’ // Exact Match.

ExactMatchBytes(AH, stream);

when ’10010101’ // Short Address IS0.

ShortAddressBytes(IS0, stream);

when ’10010110’ // Short Address IS1.

ShortAddressBytes(IS1, stream);

when ’1001101x’, ’10011101’, ’10011110’ // Long Address.

LongAddressBytes(AH, stream);

when ’1000001x’, ’10000101’, ’10000110’ // Long Address with

LongAddressBytes(AH, stream); // Context.

ContextBytes(stream);

when ’01110000’ // Unknown address

UnknownAddressHistoryBuffer();

ExceptionPacket(E, TYPE, AH);

else

ReservedEncoding();

return;

D9.2.13.2 ExceptionPacket()

// ExceptionPacket()

// =================

// Processes an Exception packet.

ExceptionPacket(bits(2) E, bits(5) TYPE, bits(8) AH)

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

case E of

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

when ’01’

if TYPE == ’11000’ then

Emit(TransactionFailureElement());

else

Emit(ExceptionElement(UInt(TYPE), entry.address));

when ’10’

// The new context and address must now be Emitted.

if AH<7:4> == ’1000’ then // Long Address with Context

Emit(ContextElement(DSTATE.IA.context_id,

DSTATE.IA.vmid,

DSTATE.IA.exception_level,

DSTATE.IA.security,

DSTATE.IA.sixty_four_bit));

Emit(TargetAddressElement(entry));

if TYPE == ’00000’ && DSTATE.IA.T then

Emit(TransactionFailureElement());

Emit(ExceptionElement(UInt(TYPE), entry.address));

elsif TYPE == ’11000’ then

Emit(TransactionFailureElement());

else

Emit(ExceptionElement(UInt(TYPE), entry.address));

otherwise

ReservedEncoding();

UpdateSpecDepth(1);

return;

D9.2.14 Address and context

D9.2.14.1 Parse_TargetAddressPacket()

// Parse_TargetAddressPacket()

// ===========================

// Parses a Target Address packet.

Parse_TargetAddressPacket(bits(8) header, bits(S) stream)

case header of

when ’1001101x’, ’10011101’, ’10011110’ // Long Address

LogDecompressor(PARSE, "LONG_ADDRESS");

LongAddressBytes(header, stream);

when ’10010101’ // Short Address IS0

LogDecompressor(PARSE, "SHORT_ADDRESS");

ShortAddressBytes(IS0, stream);

when ’10010110’ // Short Address IS1

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

LogDecompressor(PARSE, "SHORT_ADDRESS");

ShortAddressBytes(IS1, stream);

when ’1001000x’, ’10010010’ // Exact match

LogDecompressor(PARSE, "EXACT_MATCH");

ExactMatchBytes(header, stream);

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

Emit(TargetAddressElement(entry));

return;

D9.2.14.2 LongAddressBytes()

// LongAddressBytes()

// ==================

// Reads and parses the long address form used in some packets.

LongAddressBytes(bits(8) header, bits(S) stream)

case header<2:0> of

when ’010’ // 32-bit IS0

data32_is0 = ReadAndConsume(16, stream);

A8_2 = data32_is0<6:0>; SBZ(data32_is0<7>);

A15_9 = data32_is0<14:8>; SBZ(data32_is0<15>);

bits(16) A31_16;

A31_16 = POD(16, stream);

LongAddressPacket(header, A31_16:A15_9:A8_2);

when ’011’ // 32-bit IS1

data32_is1 = ReadAndConsume(8, stream);

A7_1 = data32_is1<6:0>; SBZ(data32_is1<7>);

A31_8 = POD(24, stream);

LongAddressPacket(header, A31_8:A7_1);

when ’101’ // 64-bit IS0

data64_is0 = ReadAndConsume(16, stream);

A8_2 = data64_is0<6:0>;

SBZ(data64_is0<7>);

A15_9 = data64_is0<14:8>;

SBZ(data64_is0<15>);

A63_16 = POD(48, stream);

LongAddressPacket(header, A63_16:A15_9:A8_2);

when ’110’ // 64-bit IS1

data64_is1 = ReadAndConsume(8, stream);

A7_1 = data64_is1<6:0>; SBZ(data64_is1<7>);

A63_8 = POD(56, stream);

LongAddressPacket(header, A63_8:A7_1);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.14.3 LongAddressPacket()

// LongAddressPacket()

// ===================

// Parses the long form address used in some packets.

LongAddressPacket(bits(8) header, bits(AN) A)

a = AddressHistoryBuffer.Get(0);

// Called from a variety of packet types, so only look at bits <2:0> of

// the header.

case header<2:0> of

when ’010’ // 32-bit address, IS0

assert(AN == 30);

a.sub_isa = IS0;

// address<63:32> unchanged

a.address<31:2> = A<29:0>;

a.address<1:0> = ’00’;

when ’011’ // 32-bit address, IS1

assert(AN == 31);

a.sub_isa = IS1;

// address<63:32> unchanged

a.address<31:1> = A<30:0>;

a.address<0> = ’0’;

when ’101’ // 64-bit address, IS0

assert(AN == 62);

a.sub_isa = IS0;

a.address<63:2> = A<61:0>;

a.address<1:0> = ’00’;

when ’110’ // 64-bit address, IS1

assert(AN == 63);

a.sub_isa = IS1;

a.address<63:1> = A<62:0>;

a.address<0> = ’0’;

UpdateAddressHistoryBuffer(a.address, a.sub_isa);

return;

D9.2.14.4 ShortAddressBytes()

// ShortAddressBytes()

// ===================

// Reads and parses the short form address used in some packets.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

ShortAddressBytes(SubISA sub_isa, bits(S) stream)

bits(15) data;

if sub_isa == IS0 then

data = BitReplacement(stream,

AddressHistoryBuffer.Get(0).address<16:2>);

else

data = BitReplacement(stream,

AddressHistoryBuffer.Get(0).address<15:1>);

ShortAddressPacket(sub_isa, data);

return;

D9.2.14.5 ShortAddressPacket()

// ShortAddressPacket()

// ====================

// Parses the short form address used in some packets.

ShortAddressPacket(SubISA sub_isa, bits(AN) A)

a = AddressHistoryBuffer.Get(0);

assert (AN == 7 || AN == 15);

case sub_isa of

when IS0 // IS0

a.sub_isa = IS0;

// address<63:AN+2> unchanged

a.address<AN+1:0> = A:’00’;

when IS1 // IS1

a.sub_isa = IS1;

// address<63:AN+1> unchanged

a.address<AN:0> = A:’0’;

UpdateAddressHistoryBuffer(a.address, a.sub_isa);

return;

D9.2.14.6 ExactMatchBytes()

// ExactMatchBytes()

// =================

// Reads and parses an exact address match used in some packets.

ExactMatchBytes(bits(8) header, bits(S) stream)

QE = header<1:0>;

ExactMatchPacket(QE);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.14.7 ExactMatchPacket()

// ExactMatchPacket()

// ==================

// Parses an exact address match.

ExactMatchPacket(bits(2) QE)

q = UInt(QE);

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(q);

AddressHistoryBuffer.Add(entry);

return;

RTKBWR The Context element value is created by combining the value encoded in a Context Packet and the last Context
element value.

D9.2.14.8 Parse_AddressWithContextPacket()

// Parse_AddressWithContextPacket()

// ================================

// Parses a Target Address with Context packet.

Parse_AddressWithContextPacket(bits(8) header, bits(S) stream)

LongAddressBytes(header, stream);

ContextBytes(stream);

LogDecompressor(PARSE, "ADDR_W_CONTEXT");

AddressHistoryBufferEntry entry = AddressHistoryBuffer.Get(0);

Emit(ContextElement(DSTATE.IA.context_id,

DSTATE.IA.vmid,

DSTATE.IA.exception_level,

DSTATE.IA.security,

DSTATE.IA.sixty_four_bit));

Emit(TargetAddressElement(entry));

return;

D9.2.14.9 ContextBytes()

// ContextBytes()

// ==============

// Generates a Context packet from the stream.

ContextBytes(bits(S) stream)

payload = ReadAndConsume(8, stream);

EL = payload<1:0>;

SBZ(payload<3:2>);

SF = payload<4>;

NS = payload<5>;

V = payload<6>;

C = payload<7>;

case C:V of

when ’00’

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

ContextPacket(’1’, C, V, NS, SF, EL,

DSTATE.IA.vmid,

DSTATE.IA.context_id);

when ’01’

bits(32) VMID;

VMID = POD(32, stream);

ContextPacket(’1’, C, V, NS, SF, EL,

VMID,

DSTATE.IA.context_id);

when ’10’

context_id = POD(32, stream);

ContextPacket(’1’, C, V, NS, SF, EL,

DSTATE.IA.vmid,

context_id);

when ’11’

bits(32) VMID;

VMID = POD(32, stream);

context_id = POD(32, stream);

ContextPacket(’1’, C, V, NS, SF, EL,

VMID,

context_id);

return;

// Parse_ContextPacket()

// =====================

// Parses a Context packet.

Parse_ContextPacket(bits(8) header, bits(S) stream)

LogDecompressor(PARSE, "CONTEXT");

P = header<0>;

if P == ’0’ then

ContextPacket(P, ’0’, ’0’, ’0’, ’0’, ’00’,

DSTATE.IA.vmid,

DSTATE.IA.context_id);

else

ContextBytes(stream);

Emit(ContextElement(DSTATE.IA.context_id,

DSTATE.IA.vmid,

DSTATE.IA.exception_level,

DSTATE.IA.security,

DSTATE.IA.sixty_four_bit));

return;

D9.2.14.10 ContextPacket()

// ContextPacket()

// ===============

// Processes a Context packet.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

ContextPacket(bit P,

bit C,

bit V,

bit NS,

bit SF,

bits(2) EL,

bits(32) VMID,

bits(32) context_id)

if P == ’1’ then

if C == ’1’ then

DSTATE.IA.context_id = context_id;

if V == ’1’ then

DSTATE.IA.vmid = VMID;

LogDecompressor(PACKET,

"set context_id " ++ DSTATE.IA.context_id ++

", vmid " ++ DSTATE.IA.vmid);

DSTATE.IA.exception_level<1:0> = EL<1:0>;

if NS == ’1’ then

DSTATE.IA.security = SecurityLevel_NONSECURE;

else

DSTATE.IA.security = SecurityLevel_SECURE;

DSTATE.IA.sixty_four_bit = (SF == ’1’);

return;

D9.2.15 Transactions

D9.2.15.1 TransactionStartPacket()

// Transaction Start Packet()

// ==========================

// Processes a Transaction Start packet.

TransactionStartPacket()

Emit(TransactionStartElement());

DSTATE.IA.T = TRUE;

if DSTATE.IA.comm_trans then

UpdateSpecDepth(1);

return;

D9.2.15.2 TransactionCommitPacket()

// TransactionCommitPacket()

// =========================

// Processes a Transacition Commit packet.

TransactionCommitPacket()

Emit(TransactionCommitElement());

DSTATE.IA.T = FALSE;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

return;

D9.2.16 Timestamps

RKJNMB The Timestamp element value is created by combining the value encoded in a Timestamp Packet and the last
Timestamp element value.

D9.2.16.1 Parse_TimestampPacket()

// Parse_TimestampPacket()

// =======================

// Parses a Timestamp packet.

Parse_TimestampPacket(bits(8) header, bits(S) stream)

bit N;

bits(64) TS = BitReplacement(stream, DSTATE.IA.timestamp);

bits(20) COUNT = Zeros();

N = header<0>;

LogDecompressor(PARSE, "TIMESTAMP");

if N == ’1’ then

COUNT = ULEB128(stream);

TimestampPacket(N, TS, COUNT);

else

TimestampPacket(N, TS, COUNT);

return;

D9.2.16.2 Parse_CycleCountPackets()

// Parse_CycleCountPackets()

// =========================

// Parses all the various Cycle Count packets.

Parse_CycleCountPackets(bits(8) header, bits(S) stream)

LogDecompressor(PARSE, "CYCLE_COUNT");

case header of

when ’0000111x’ // Cycle Count format 1

bit U = header<0>;

bits(32) COMMIT = Zeros();

bits(20) COUNT = Zeros();

if TRCIDR0.COMMOPT == ’0’ then

COMMIT = ULEB128(stream);

if U == ’0’ then

COUNT = ULEB128(stream);

CycleCountFormat1Packet(U, COMMIT, COUNT);

when ’0000110x’ // Cycle Count format 2

bits(8) payload = POD(8, stream);

bits(4) BBBB = payload<3:0>;

if TRCIDR0.COMMOPT == ’0’ then

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

bit F = header<0>;

bits(4) AAAA = payload<7:4>;

CycleCountFormat2Packet(F, AAAA, BBBB);

else

CycleCountFormat2Packet(’1’, ’1111’, BBBB);

when ’0001xxxx’ // Cycle Count format 3

bits(2) BB = header<1:0>;

if TRCIDR0.COMMOPT == ’0’ then

bits(2) AA = header<3:2>;

CycleCountFormat3Packet(AA, BB);

else

CycleCountFormat3Packet(’00’, BB);

return;

D9.2.16.3 TimestampPacket()

// TimestampPacket()

// =================

// Processes a Timestamp packet.

TimestampPacket(bit N, bits(64) TS, bits(CN) COUNT)

DSTATE.IA.timestamp = TS;

if N == ’1’ then

Emit(TimestampElement(UInt(DSTATE.IA.timestamp), UInt(COUNT)));

else

Emit(TimestampElement(UInt(DSTATE.IA.timestamp), integer UNKNOWN));

return;

D9.2.16.4 CycleCountFormat1Packet()

// CycleCountFormat1Packet()

// =========================

// Processes a Cycle Count packet, format 1.

CycleCountFormat1Packet(bit U, bits(N) COMMIT, bits(20) COUNT)

if UInt(COMMIT) > 0 then

Emit(CommitElement(UInt(COMMIT)));

UpdateSpecDepth(-UInt(COMMIT));

if U == ’1’ then

Emit(CycleCountElement(integer UNKNOWN));

else

Emit(CycleCountElement(UInt(COUNT) + DSTATE.IA.cc_threshold));

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.16.5 CycleCountFormat2Packet()

// CycleCountFormat2Packet()

// =========================

// Processes a Cycle Count packet, format 2.

CycleCountFormat2Packet(bit F, bits(4) AAAA, bits(4) BBBB)

if F == ’1’ then

commit_count = DSTATE.IA.max_spec_depth + UInt(AAAA) - 15;

else

commit_count = UInt(AAAA) + 1;

if commit_count > 0 then

Emit(CommitElement(commit_count));

UpdateSpecDepth(-commit_count);

Emit(CycleCountElement(DSTATE.IA.cc_threshold + UInt(BBBB)));

return;

D9.2.16.6 CycleCountFormat3Packet()

// CycleCountFormat3Packet()

// =========================

// Processes a Cycle Count packet, format 3.

CycleCountFormat3Packet(bits(2) AA, bits(2) BB)

if !DSTATE.IA.commit_mode then

Emit(CommitElement(UInt(AA) + 1));

UpdateSpecDepth(-(UInt(AA) + 1));

Emit(CycleCountElement(DSTATE.IA.cc_threshold + UInt(BB)));

return;

D9.2.17 Event Tracing

D9.2.17.1 Parse_EventTracingPacket()

// Parse_EventTracingPacket()

// ==========================

// Parses an Event packet.

Parse_EventTracingPacket(bits(8) header, bits(S) stream)

LogDecompressor(PARSE, "EVENT_TRACE");

EventTracingPacket(header<3:0>);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

D9.2.17.2 EventTracingPacket()

// EventTracingPacket()

// ====================

// Processes an Event packet.

EventTracingPacket(bits(4) EVENT)

for I = 0 to 3

if EVENT<I> == ’1’ then

Emit(EventElement(I));

return;

D9.2.18 Functions

D9.2.18.1 ReadAndConsume()

// ReadAndConsume()

// ================

// Reads the next N bits from the trace byte stream and returns them, also

// updating the trace byte stream pointer.

bits(N) ReadAndConsume(integer N, bits(S) stream);

D9.2.18.2 HandleAtom()

// HandleAtom()

// =============

// Logs and emits an atom, and updates the speculation depth.

HandleAtom(Atom t)

LogDecompressor(PACKET, if t == Atom_E then "E" else "N");

Emit(AtomElement(t));

UpdateSpecDepth(1);

return;

D9.2.18.3 UpdateSpecDepth()

// UpdateSpecDepth()

// ===================

// Update the speculation depth by a number of elements.

UpdateSpecDepth(integer count)

DSTATE.IA.current_spec_depth = DSTATE.IA.current_spec_depth + count;

if DSTATE.IA.current_spec_depth > DSTATE.IA.max_spec_depth then

commit_number = DSTATE.IA.current_spec_depth - DSTATE.IA.max_spec_depth;

Emit(CommitElement(commit_number));

DSTATE.IA.current_spec_depth = DSTATE.IA.max_spec_depth;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter D9. Trace Analyzer
D9.2. Stage 1 - Parsing the byte stream

return;

D9.2.18.4 UpdateAddressHistoryBuffer()

// UpdateAddressHistoryBuffer()

// ============================

// Adds the given address and sub_isa to the AHB.

UpdateAddressHistoryBuffer(bits(64) address, SubISA sub_isa)

AddressHistoryBuffer.Add(address, sub_isa);

return;

D9.2.18.5 UnknownAddressHistoryBuffer()

// UnknownAddressHistoryBuffer()

// =============================

// Adds an unknown address and sub_isa to the AHB.

UnknownAddressHistoryBuffer()

AddressHistoryBuffer.Add(Zeros(), IS0);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter D9. Trace Analyzer
D9.3. Stage 2 - Speculation Resolution

D9.3 Stage 2 - Speculation Resolution

The resolution stage operates on the Elements in turn. The Elements are buffered until their resolution is determined.

D9.3.1 Emit()

// Emit()

// ======

Emit(Element e)

e.committed = FALSE;

case e.kind of

when ELEM_TRACE_INFO ProcessTraceInfo(e);

// Speculation Support

when ELEM_CANCEL ProcessCancel(e);

when ELEM_COMMIT ProcessCommit(e);

when ELEM_DISCARD ProcessDiscard(e);

// Transactional Support

when ELEM_TRANS_START ProcessTransactionStart(e);

when ELEM_TRANS_COMMIT ProcessTransactionCommit(e);

when ELEM_TRANS_FAILURE ProcessTransactionFailure(e);

// Others

otherwise Stack(e);

D9.3.2 Trace Info element

IRJDHD The Trace Info element can be used as a point to start decompression of the trace element stream. When the
Trace Info element is generated there might still be some speculative P0 elements. The number of speculative P0
elements is indicated by the current speculation depth member of the Trace Info element.

RJKLZY If the analysis of the trace starts with a Trace Info element with a non-zero current speculation depth the
decompressor must ignore the Commit element or Cancel elements for these P0 elements as they will not have
been observed by the decompressor.

D9.3.2.1 ProcessTraceInfo()

// ProcessTraceInfo()

// ==================

// Processes a Trace Info element, resetting the analyzer to a known state.

ProcessTraceInfo(Element e)

if ResolutionQueue.Uninitialized() then

ResolutionQueue.Initialize(e.payload.current_spec_depth);

if e.payload.in_transaction then

TransactionQueue.StartTransaction();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter D9. Trace Analyzer
D9.3. Stage 2 - Speculation Resolution

Stack(e);

return;

D9.3.3 Commit element

RWGSCJ The Commit element marks a number of P0 elements as resolved, and if at the head of the queue pass these
elements onto the next stage of the decompressor.

D9.3.3.1 ProcessCommit()

// ProcessCommit()

// ===============

// Processes a Commit element, committing the given number of speculative

// elements.

ProcessCommit(Element e)

integer I = 0;

LogDecompressor(SPEC, "committing " ++ e.payload.count ++ " elements");

repeat

if !ResolutionQueue.Aligned() then

I = I + 1;

ResolutionQueue.Align();

else

case ResolutionQueue.Front().kind of

when ELEM_EXCEPTION, ELEM_ATOM, ELEM_Q, ELEM_SOURCE_ADDRESS

if !ResolutionQueue.Front().committed then

I = I + 1;

ProcessTransaction(ResolutionQueue.Front());

ResolutionQueue.PopFront();

when ELEM_TRANS_START

if (TRCIDR0.COMMTRANS == ’0’ &&

!ResolutionQueue.Front().committed) then

I = I + 1;

ProcessTransaction(ResolutionQueue.Front());

ResolutionQueue.PopFront();

otherwise

ProcessTransaction(ResolutionQueue.Front());

ResolutionQueue.PopFront();

LogDecompressor(SPEC, "new spec depth " ++ ResolutionQueue.Length());

until I == e.payload.count;

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter D9. Trace Analyzer
D9.3. Stage 2 - Speculation Resolution

D9.3.4 Cancel element

INYYFS For example, if a Cancel element indicates that the three most recent P0 elements are canceled, then the trace
analyzer must discard:

• The Cancel element.
• All elements back to, and including, the third most recent P0 element.
• Any Trace On elements encountered in that section of the element stream.

RSPBCG When discarding P0 elements that have been canceled, a trace analyzer must also discard many other element types
that occur in the element stream between the Cancel element and the oldest P0 element that the Cancel element
cancels. Table D9.2 shows which elements must be discarded.

Table D9.2: Cancel Element Operation

Element Behavior on cancelation

Atom Remove

Commit Illegal

Context Remove

Cycle Count Process

Discard Illegal

Exception Remove

Event Keep

Mispredict Remove

Overflow Illegal

Target Address Remove

Source Address Remove

Timestamp Process

Trace Info Keep

Trace On Remove

Transaction Start Remove

Transaction Failure Remove

RCBYHC When a Cancel element occurs, a trace analyzer must not discard Cycle Count elements.

RGZWHY When a Cancel element occurs, a trace analyzer must not discard ETEEvents.

RZLVXG When a Cancel element occurs, a trace analyzer must discard Mispredict elements.

D9.3.4.1 ProcessCancel()

// ProcessCancel()

// ===============

// Processes a Cancel element, canceling the given number of speculative

// elements.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter D9. Trace Analyzer
D9.3. Stage 2 - Speculation Resolution

ProcessCancel(Element e)

integer I = 0;

LogDecompressor(SPEC, "canceling " ++ e.payload.count ++ " elements");

repeat

if !ResolutionQueue.Aligned() then

I = I + 1;

ResolutionQueue.Align();

else

case ResolutionQueue.Back().kind of

when ELEM_ATOM, ELEM_EXCEPTION, ELEM_Q, ELEM_SOURCE_ADDRESS

if !ResolutionQueue.Back().committed then

I = I + 1;

when ELEM_TRANS_START

if (TRCIDR0.COMMTRANS == ’0’ &&

!ResolutionQueue.Back().committed) then

I = I + 1;

TransactionQueue.EndTransaction();

when ELEM_CYCLE_COUNT, ELEM_EVENT, ELEM_TRACE_INFO

AnalyzeElement(ResolutionQueue.Back());

when ELEM_TIMESTAMP

AnalyzeElement(ResolutionQueue.Back());

ResolutionQueue.PopBack();

until I == e.payload.count;

return;

D9.3.5 Discard element

ILYPKS A Discard element indicates that tracing has become inactive while uncommitted P0 elements remain.

RYHRPG The trace analyzer must cancel all speculative P0 elements.

D9.3.5.1 ProcessDiscard()

// ProcessDiscard()

// ================

// Processes a Discard element, discarding all speculative elements.

ProcessDiscard(Element e)

for i = 0 to ResolutionQueue.Length()

print(i);

PrintElement(DSTATE.resolution_queue.queue[i]);

print("

n");

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter D9. Trace Analyzer
D9.3. Stage 2 - Speculation Resolution

while !ResolutionQueue.Aligned() do

ResolutionQueue.Align();

while ResolutionQueue.Length() > 0 do

case ResolutionQueue.Back().kind of

when ELEM_EVENT, ELEM_TRACE_INFO, ELEM_TIMESTAMP

AnalyzeElement(ResolutionQueue.Back());

ResolutionQueue.PopBack();

otherwise

ResolutionQueue.PopBack();

TransactionQueue.EndTransaction();

return;

D9.3.6 Stack

The Elements processed by this stage of the decompressor must be stored temporarily until the speculation has
been resolved.

D9.3.6.1 Stack()

// Stack()

// =======

// Pushes an element onto the resolution queue.

// TODO: Move to ResolutionQueue.asl and rename to Enqueue

Stack(Element e)

LogElem(SPEC, e,

"stacked element, new current depth " ++

ResolutionQueue.Length());

ResolutionQueue.Push(e);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter D9. Trace Analyzer
D9.4. Stage 2 - Transaction Resolution

D9.4 Stage 2 - Transaction Resolution

D9.4.1 ProcessTransaction()

// ProcessTransaction()

// ====================

// Push the element into the transaction queue if we are in a transaction,

// else analyze it immediately.

ProcessTransaction(Element e)

if TransactionQueue.InTransaction() then

TransactionQueue.Push(e);

else

AnalyzeElement(e);

D9.4.2 Transaction Start element

D9.4.2.1 ProcessTransactionStart()

// ProcessTransactionStart()

// =========================

// Processes a Transaction Start element, marking we are now in a transaction.

ProcessTransactionStart(Element e)

TransactionQueue.StartTransaction();

Stack(e);

return;

D9.4.3 Transaction Commit element

D9.4.3.1 ProcessTransactionCommit()

// ProcessTransactionCommit()

// ==========================

// Processes a Transaction Commit element, committing all elements in the

// transaction queue and ending the current transaction.

ProcessTransactionCommit(Element e)

while TransactionQueue.Length() > 0 do

AnalyzeElement(TransactionQueue.Front());

TransactionQueue.FrontPop();

TransactionQueue.EndTransaction();

D9.4.4 Transaction Failure element

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter D9. Trace Analyzer
D9.4. Stage 2 - Transaction Resolution

RXZBFV When a Transaction Failure element occurs, the trace analyzer must process the Cycle Count elements if it is
maintaining a cumulative cycle count. Otherwise it must discard the Cycle Count elements that are associated with
P0 elements within the transaction.

RKPKFL When a Transaction Failure element occurs, a trace analyzer must not discard the ETEEvents.

D9.4.4.1 ProcessTransactionFailure()

// ProcessTransactionFailure()

// ===========================

// Processes a Transaction Failure element, discarding all elements in

// the transaction queue and ending the transaction.

ProcessTransactionFailure(Element e)

TransactionQueue.EndTransaction();

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

D9.5 Stage 3 - Analysis

D9.5.1 AnalyzeElement()

// AnalyzeElement()

// ================

// Analyzes any element.

AnalyzeElement(Element e)

case e.kind of

when ELEM_TARGET_ADDRESS AnalyzeTargetAddress(e);

when ELEM_CONTEXT AnalyzeContext(e);

when ELEM_MISPREDICT AnalyzeMispredict(e);

when ELEM_TRACE_ON AnalyzeTraceOn(e);

when ELEM_ATOM AnalyzeAtom(e);

when ELEM_EXCEPTION AnalyzeException(e);

when ELEM_Q AnalyzeQ(e);

when ELEM_CANCEL ERROR("cancel element reached analysis stage");

when ELEM_COMMIT ERROR("commit element reached analysis stage");

when ELEM_DISCARD AnalyzeDiscard(e);

when ELEM_OVERFLOW AnalyzeOverflow(e);

when ELEM_EVENT AnalyzeEvent(e);

when ELEM_TRACE_INFO AnalyzeTraceInfo(e);

when ELEM_TIMESTAMP AnalyzeTimestamp(e);

when ELEM_CYCLE_COUNT AnalyzeCycleCount(e);

when ELEM_SOURCE_ADDRESS AnalyzeSourceAddress(e);

otherwise

ERROR("Unrecognised element kind in analysis stage");

return;

D9.5.2 Retained state

RGWFMZ The trace analyzer must maintain a copy of the context:

• Context identifier.
• Virtual context identifier.
• AArch64 or AArch32 state
• Exception level
• Security state

D9.5.2.1 ReconstructState

// ReconstructState

// ================

// Temporary storage of reconstructor state, can change after resolution.

type ReconstructState is (

bits(64) address, // Current address

bits(32) context_id, // Current context ID

bits(32) vmid, // Current VMID

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

bits(2) exception_level, // Current Exception level

SecurityLevel security, // Current Security state

boolean sixty_four_bit, // Are we in AArch64?

SubISA sub_isa // Current sub_isa

)

D9.5.3 Operation of the return stack

ISZYZF The trace analyzer maintains an independent copy of the return stack which is used to determine when Target
Address elements have been removed and then infer the target of indirect P0 instructions.

ILGKYD The trace analyzer return stack only operates after a certain point in the tracing flow, that is after the trace analyzer
has decoded the trace packets and after all the elements that indicate speculative execution, except for Mispredict
elements, have been removed from the trace element stream.

RHYMQH Whenever a Branch with Link instruction is initially traced with an E Atom element, the link return address and
sub_isa are pushed onto the trace analyzer return stack. This means that the trace unit return stack grows with each
new entry, until its maximum depth is reached and the oldest entries start being discarded.

RMGHSB Whenever an indirect P0 instruction is traced with a final E Atom element, and no Target Address element is traced
before the next P0 element, the top entry of the trace analyzer return stack is removed and the value of that entry is
the target of the indirect P0 instruction.

RXSVZC A trace analyzer is not required to be aware of the depth of the trace unit return stack, and implements a return
stack depth of 15 entries.

IGBVND A trace analyzer return stack push always occurs whenever a Branch with Link instruction is traced with an E
Atom element, even if the status of the E Atom element later changes to be an N Atom element as a result of a
subsequent Mispredict element.

For example, the following sequence might occur:

1. The Processing Element (PE) speculatively executes a Branch with Link instruction that the trace unit traces
with an E Atom element. The trace unit pushes the target address of the Branch with Link instruction onto the
trace unit return stack.

2. The trace analyzer receives the E Atom element and pushes the target address of the Branch with Link
instruction onto the trace analyzer return stack.

3. The PE then cancels the speculative execution. The trace unit generates a Mispredict element.

4. The trace analyzer receives the Mispredict element and changes the status of the E Atom element so that it
becomes an N Atom element. The trace analyzer then knows which direction the program flow has taken, and
also knows that the target address stored at the top of the trace analyzer return stack is mispredicted.

Note

Whenever the trace unit generates a Mispredict element to correct a Branch with Link instruction to an N Atom
element, the mispredicted address remains in the return stack because there is no reason to remove it. There are
no adverse consequences of leaving such a mispredicted address in the stack.

RGMTBD If more than one Mispredict element is output corresponding to a particular Atom element, the status of the Atom
element alternates between E and N until it settles in its final E or N state. If the final state of the Atom element is
E, then when the PE executes an indirect P0 instruction and the trace unit compares the target address with the top
entry in its return stack, an address match might occur. An address match can only occur if the final status of the
Atom element is E.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

IMPGDD The trace analyzer never needs to discard the entries in its copy of the return stack. If the trace unit discards the
entries in its return stack then the entries in the trace analyzer return stack remain. As more entries are pushed on
to the return stack, the old entries are discarded when they are pushed off the end of the stack.

IWJLDR The trace analyzer does not need to prevent the return stack from being modified while in a branch broadcasting
region. The fact that the trace unit discards the entries in its return stack when entering the branch broadcasting
region ensures that the return stack in the trace unit and the return stack in the trace analyzer remain synchronized.

D9.5.3.1 UpdateReturnStack()

// UpdateReturnStack()

// ===================

// Push the given instruction to the return stack if necessary.

UpdateReturnStack(DecodedInst inst)

if inst.is_link then

LogDecompressor(ANALYZE,

"pushing to return stack inst " ++

DSTATE.current_analyzer_state.address ++

": " ++ inst.instruction);

nxt_state = DSTATE.current_analyzer_state;

nxt_state.address = nxt_state.address + inst.size;

if !nxt_state.sixty_four_bit then

nxt_state.address<63:32> = Zeros();

ReturnStack.Push(nxt_state.address, nxt_state.sub_isa);

LogReturnStack();

return;

D9.5.4 Atom element

RSKGMZ An Atom element implies that one or more instructions have been traced, up to and including the next P0 instruction.

IVHHGW A trace analyzer must analyze each instruction in the program image from the current address until it observes a
P0 instruction. This indicates that the PE has executed each instruction between the current address and the P0
instruction.

D9.5.4.1 AnalyzeAtom()

// AnalyzeAtom()

// =============

// Analyzes an atom element.

AnalyzeAtom(Element e)

if e.payload.atom_type == Atom_E then

LogElem(ANALYZE, e, "ATOM E");

DSTATE.most_recent_branch_was_taken = TRUE;

else

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

LogElem(ANALYZE, e, "ATOM N");

DSTATE.most_recent_branch_was_taken = FALSE;

CheckForReturnStackMatch();

if DSTATE.sync_state == ADDRESS_STATE then

DSTATE.sync_state = NOT_SYNC_STATE;

if DSTATE.sync_state != FULL_SYNC_STATE then

// If we are unsure of context or address then we cannot meaningfully

// analyze the atom.

return;

boolean cur_inst_is_branch = FALSE;

// Continue logging instructions until we hit a P0 instruction.

while !cur_inst_is_branch do

if !ProgramImage.DecodeAvailable() then

DSTATE.sync_state = CONTEXT_STATE;

LogDecompressor(FINAL_OUTPUT,

"unprocessed_execution " ++

"due to no program image available");

if DSTATE.return_stack_clear_pending then

ReturnStack.Reset();

return;

decoded_inst = ProgramImage.DecodeNextInst();

case decoded_inst.branchtype of

when InstType_BRANCH_DIR, InstType_BRANCH_INDIR

ProcessBranchInstruction(decoded_inst,

DSTATE.most_recent_branch_was_taken);

cur_inst_is_branch = TRUE;

UpdateReturnStack(decoded_inst);

when InstType_WFX, InstType_ISB

ProcessBranchInstruction(decoded_inst,

DSTATE.most_recent_branch_was_taken);

cur_inst_is_branch = TRUE;

when InstType_OTHER

ReconstructState nxt_state = DSTATE.current_analyzer_state;

nxt_state.address = nxt_state.address + decoded_inst.size;

if !nxt_state.sixty_four_bit then

// mask off the left-most bits

nxt_state.address<63:32> = Replicate(’0’, 32);

DSTATE.next_analyzer_state = nxt_state;

OutputInstruction(decoded_inst);

DSTATE.current_analyzer_state = DSTATE.next_analyzer_state;

if DSTATE.return_stack_clear_pending then

ReturnStack.Reset();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

return;

D9.5.5 Context element

D9.5.5.1 AnalyzeContext()

// AnalyzeContext()

// ================

// Analyzes a context element.

AnalyzeContext(Element e)

DSTATE.current_analyzer_state.context_id = e.payload.context_id;

DSTATE.current_analyzer_state.vmid = e.payload.vmid;

DSTATE.current_analyzer_state.security = e.payload.security;

DSTATE.current_analyzer_state.exception_level = e.payload.exception_level;

DSTATE.current_analyzer_state.sixty_four_bit = e.payload.sixty_four_bit;

case DSTATE.sync_state of

when NOT_SYNC_STATE

DSTATE.sync_state = CONTEXT_STATE;

when ADDRESS_STATE

DSTATE.sync_state = FULL_SYNC_STATE;

otherwise

LogElem(ANALYZE, e, "CONTEXT");

return;

D9.5.6 Exception element

RPJFBL For an Exception element, a trace analyzer must analyze each instruction from the current address, up to but not
including the exception return address that the element provides. The PE has executed each instruction in that
address range. The number of instructions that are executed can be zero.

Note

Trace analysis tools must be aware, that if PE execution is at the top of memory space, the address that the
Exception element provides might be lower than the target address of the most recent P0 element.

D9.5.6.1 AnalyzeException()

// AnalyzeException()

// ==================

// Analyzes an exception element.

AnalyzeException(Element e)

CheckForReturnStackMatch();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

if DSTATE.sync_state == CONTEXT_STATE then

DSTATE.sync_state = NOT_SYNC_STATE;

if DSTATE.sync_state != FULL_SYNC_STATE then

LogDecompressor(ANALYZE,

"Entered exception while expecting address or context");

return;

integer PER = UInt(e.payload.address);

if (ExceptionWithUnknownAddress(e)) then

continue_forward = FALSE;

elsif UInt(DSTATE.current_analyzer_state.address) < PER then

continue_forward = TRUE;

else

continue_forward = FALSE;

// Continue logging instructions until we reach the specified address.

while continue_forward do

if !ProgramImage.DecodeAvailable() then

LogDecompressor(FINAL_OUTPUT,

"unprocessed_execution due to no decode available");

DSTATE.sync_state = CONTEXT_STATE;

if DSTATE.return_stack_clear_pending then

ReturnStack.Reset();

return;

decoded_inst = ProgramImage.DecodeNextInst();

if decoded_inst.branchtype == InstType_OTHER then

ReconstructState nxt_state = DSTATE.current_analyzer_state;

nxt_state.address = nxt_state.address + decoded_inst.size;

DSTATE.next_analyzer_state = nxt_state;

if !DSTATE.next_analyzer_state.sixty_four_bit then

// mask off the left-most bits

DSTATE.next_analyzer_state.address<63:32> = Replicate(’0’, 32);

else

ProcessBranchInstruction(decoded_inst, FALSE);

UpdateReturnStack(decoded_inst);

OutputInstruction(decoded_inst);

bits(64) next_addr = DSTATE.current_analyzer_state.address +

decoded_inst.size;

DSTATE.current_analyzer_state.address = next_addr;

if !DSTATE.current_analyzer_state.sixty_four_bit then

// mask off the left-most bits

DSTATE.current_analyzer_state.address<63:32> = Replicate(’0’, 32);

if UInt(DSTATE.current_analyzer_state.address) >= PER then

continue_forward = FALSE;

if DSTATE.return_stack_clear_pending then

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

ReturnStack.Reset();

LogElem(ANALYZE, e,

"EXC, type: " ++ ExcepTypeToStr(e.payload.exception_type) ++

" traced upto address " ++ DSTATE.current_analyzer_state.address);

return;

D9.5.7 Source Address element

RVDRPP A Source Address element indicates that one or more instructions have been traced, up to and including the
instruction at the address associated with the element.

RYJHMV A Source Address element indicates that the instruction at the address associated with the element was taken.

IGWZMF A trace analyzer must analyze each instruction in the program image from the current address until it analyzes the
instruction at the address associated with the Source Address element. This indicates that the PE has executed each
instruction between the current address and that instruction, and each P0 instruction except the final instruction
was not taken.

D9.5.7.1 AnalyzeSourceAddress()

// AnalyzeSourceAddress()

// ======================

// Analyzes a source address element.

AnalyzeSourceAddress(Element e)

LogElem(ANALYZE, e, "SOURCE ADDR " ++ e.payload.address);

CheckForReturnStackMatch();

if DSTATE.sync_state == ADDRESS_STATE then

DSTATE.sync_state = NOT_SYNC_STATE;

if DSTATE.sync_state != FULL_SYNC_STATE then

// If we are unsure of context or address then we cannot meaningfully

// analyze the source address.

return;

DSTATE.most_recent_branch_was_taken = FALSE;

integer address = UInt(e.payload.address);

// Continue logging instructions until we hit the specified address.

while (UInt(DSTATE.current_analyzer_state.address) <= address) do

if !ProgramImage.DecodeAvailable() then

DSTATE.sync_state = CONTEXT_STATE;

LogDecompressor(FINAL_OUTPUT,

"unprocessed_execution due to no decode available");

if DSTATE.return_stack_clear_pending then

ReturnStack.Reset();

return;

decoded_inst = ProgramImage.DecodeNextInst();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

if decoded_inst.branchtype == InstType_OTHER then

ReconstructState nxt_state = DSTATE.current_analyzer_state;

nxt_state.address = nxt_state.address + decoded_inst.size;

DSTATE.next_analyzer_state = nxt_state;

if !DSTATE.next_analyzer_state.sixty_four_bit then

DSTATE.next_analyzer_state.address<63:32> = Replicate(’0’, 32);

else

if DSTATE.current_analyzer_state.address == e.payload.address then

DSTATE.most_recent_branch_was_taken = TRUE;

ProcessBranchInstruction(decoded_inst,

DSTATE.most_recent_branch_was_taken);

cur_inst_is_branch = TRUE;

UpdateReturnStack(decoded_inst);

OutputInstruction(decoded_inst);

DSTATE.current_analyzer_state = DSTATE.next_analyzer_state;

if DSTATE.return_stack_clear_pending then

ReturnStack.Reset();

return;

D9.5.8 Target Address element

D9.5.8.1 AnalyzeTargetAddress()

// AnalyzeTargetAddress()

// ======================

// Analyzes a target address element.

AnalyzeTargetAddress(Element e)

DSTATE.current_analyzer_state.address = e.payload.address;

DSTATE.current_analyzer_state.sub_isa = e.payload.sub_isa;

case DSTATE.sync_state of

when NOT_SYNC_STATE

DSTATE.sync_state = ADDRESS_STATE;

when CONTEXT_STATE

DSTATE.sync_state = FULL_SYNC_STATE;

otherwise

LogElem(ANALYZE, e, "ADDR " ++ e.payload.address);

return;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

D9.5.9 Trace Info element

D9.5.9.1 AnalyzeTraceInfo()

// AnalyzeTraceInfo()

// ==================

// Analyzes a trace info element.

AnalyzeTraceInfo(Element e)

CheckForReturnStackMatch();

return_stack_clear_pending = TRUE;

LogElem(ANALYZE, e, "TRACE_INFO");

return;

D9.5.10 Trace On element

D9.5.10.1 AnalyzeTraceOn()

// AnalyzeTraceOn()

// ================

// Analyzes a trace on element.

AnalyzeTraceOn(Element e)

return_stack_clear_pending = TRUE;

DSTATE.sync_state = NOT_SYNC_STATE;

LogElem(ANALYZE, e, "TRACE_ON");

return;

D9.5.11 Mispredict element

RZRVMZ When a Mispredict element corresponds to an Atom element for a direct P0 instruction, before the trace analyzer
can calculate the target of the direct P0 instruction, it must apply any applicable Mispredict elements so that it can
determine whether it is an E Atom element or an N Atom element.

D9.5.11.1 AnalyzeMispredict()

// AnalyzeMispredict()

// ===================

// Analyzes a mispredict element.

AnalyzeMispredict(Element e)

DSTATE.most_recent_branch_was_taken = !DSTATE.most_recent_branch_was_taken;

ReconstructState nxt_state;

nxt_state = UpdateBranchState(DSTATE.most_recent_branch_decoded_inst,

DSTATE.most_recent_branch_state,

DSTATE.most_recent_branch_was_taken);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

DSTATE.current_analyzer_state = nxt_state;

LogDecompressor(ANALYZE, "MISPREDICT");

return;

D9.5.12 ETEEvent element

D9.5.12.1 AnalyzeEvent()

// AnalyzeEvent()

// ==============

// Analyzes an event element.

AnalyzeEvent(Element e)

LogElem(ANALYZE, e, "EVENT, id: " ++ e.payload.event_id);

LogDecompressor(FINAL_OUTPUT,

"Event " ++ e.payload.event_id ++ " occurred");

return;

D9.5.13 Discard element

IJYPQC When a trace analyzer encounters a Discard element it must be aware that if the last committed P0 element is a
conditional P0 instruction, the E or N status of that Atom element might not be correct. This is because the trace
unit might be unable to generate any Mispredict elements that the conditional P0 instruction might require.

IHPQFK If the last P0 instruction is an indirect P0 instruction then the target address indicated in the trace stream might be
incorrect. This is because the trace unit might be unable to generate any Target Address elements that the indirect
P0 instruction might require.

D9.5.13.1 AnalyzeDiscard()

// AnalyzeDiscard()

// ================

// Analyzes a discard element.

AnalyzeDiscard(Element e)

DSTATE.sync_state = NOT_SYNC_STATE;

LogElem(ANALYZE, e, "Discard has occurred");

return;

D9.5.14 Overflow element

An Overflow element indicates that some of the trace might be lost.

D9.5.14.1 AnalyzeOverflow()

// AnalyzeOverflow()

// =================

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

// Analyzes an overflow element.

AnalyzeOverflow(Element e)

DSTATE.sync_state = NOT_SYNC_STATE;

LogElem(ANALYZE, e, "OVERFLOW has occurred");

return;

D9.5.15 Q element

When a trace analyzer encounters a Q element which has a count of M executed instructions, it must proceed
through the program image, analyzing each instruction until it has analyzed M instructions. If it encounters a
conditional P0 instruction, the status of the condition code check for that instruction is UNKNOWN. The status of
these P0 instructions is not explicitly given in the trace element stream but it might be possible to infer the status
of a given P0 instruction that is based on other trace that is generated. After the trace analyzer has analyzed M
instructions, the following Target Address element indicates where PE execution continues.

D9.5.15.1 AnalyzeQ()

// AnalyzeQ()

// ==========

// Analyzes a Q element.

AnalyzeQ(Element e)

CheckForReturnStackMatch();

q_with_count = e.payload.count > 0;

if q_with_count then

further_analysis_possible = TRUE;

else

LogDecompressor(FINAL_OUTPUT, "Unprocessed execution due to Q element");

further_analysis_possible = FALSE;

DSTATE.sync_state = CONTEXT_STATE;

// If we have no count then just wait to resync, it is not safe to guess

i = 0;

while further_analysis_possible do

if ProgramImage.DecodeAvailable() then

decoded_inst = ProgramImage.DecodeNextInst();

addr = DSTATE.current_analyzer_state.address + decoded_inst.size;

DSTATE.current_analyzer_state.address = addr;

else

DSTATE.sync_state = CONTEXT_STATE;

LogDecompressor(FINAL_OUTPUT,

"Unprocessed execution due to no decode available");

return;

i = i + 1;

further_analysis_possible = (i < e.payload.count);

OutputInstruction(decoded_inst);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

LogElem(ANALYZE, e, "Q");

return;

D9.5.16 Timestamp element

D9.5.16.1 AnalyzeTimestamp()

// AnalyzeTimestamp()

// ==================

// Analyzes a timestamp element.

AnalyzeTimestamp(Element e)

LogElem(ANALYZE, e, "TIMESTAMP " ++ e.payload.timestamp);

return;

D9.5.17 Cycle Count element

IHTQDP To produce a total cycle count, a trace analyzer can cumulatively add the values from all Cycle Count elements.

RTVWLZ A trace analyzer must not use the cycle count values in Timestamp elements to produce a total cycle count. Such
cycle count values are not a Cycle Count element.

D9.5.17.1 AnalyzeCycleCount()

// AnalyzeCycleCount()

// ===================

// Analyzes a cycle count element.

AnalyzeCycleCount(Element e)

LogDecompressor(ANALYZE,

"CYCLE_CNT: " ++ e.payload.cycle_count ++

" cycles since last CC");

return;

D9.5.18 Functions

D9.5.18.1 OutputInstruction()

// OutputInstruction()

// ===================

// Output the traced instruction to the software that is consuming the output

// of the trace analyzer.

OutputInstruction(DecodedInst inst);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

D9.5.18.2 CheckForReturnStackMatch()

// CheckForReturnStackMatch()

// ==========================

// Check if there is a return stack match, and log the result.

CheckForReturnStackMatch()

if DSTATE.sync_state == CONTEXT_STATE then

if ReturnStack.IsEmpty() then

LogDecompressor(ANALYZE, "No return stack entries available");

else

ReturnStackEntry top = ReturnStack.Pop();

DSTATE.current_analyzer_state.address = top.address;

DSTATE.current_analyzer_state.sub_isa = top.sub_isa;

DSTATE.sync_state = FULL_SYNC_STATE;

LogDecompressor(ANALYZE, "Popping match from return stack");

LogReturnStack();

return;

D9.5.18.3 UpdateBranchState()

// UpdateBranchState()

// ===================

// Returns an updated state based on what was executed.

ReconstructState UpdateBranchState(DecodedInst inst,

ReconstructState in_state,

boolean branch_was_taken)

out_state = DSTATE.current_analyzer_state;

out_state.address = in_state.address;

out_state.sixty_four_bit = in_state.sixty_four_bit;

out_state.sub_isa = in_state.sub_isa;

if branch_was_taken then

if inst.branchtype == InstType_BRANCH_INDIR then

DSTATE.sync_state = CONTEXT_STATE;

LogDecompressor(ANALYZE,

"Indirect branch - " ++

"waiting for address element or " ++

"return stack match...");

else

if inst.branchtype == InstType_BRANCH_DIR then

out_state.address = out_state.address + inst.addressoffset;

else

out_state.address = out_state.address + inst.size;

if !in_state.sixty_four_bit then

out_state.address<63:32> = Zeros();

out_state.sub_isa = inst.next_sub_isa;

else

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter D9. Trace Analyzer
D9.5. Stage 3 - Analysis

out_state.address = out_state.address + inst.size;

if !out_state.sixty_four_bit then

out_state.address<63:32> = Zeros();

return out_state;

D9.5.18.4 ProcessBranchInstruction()

// ProcessBranchInstruction()

// ==========================

// Store current state before a branch instruction, as it could change if there

// is a misprediction.

ProcessBranchInstruction(DecodedInst inst, boolean branch_was_taken)

DSTATE.most_recent_branch_state = DSTATE.current_analyzer_state;

DSTATE.most_recent_branch_decoded_inst = inst;

DSTATE.most_recent_branch_was_taken = branch_was_taken;

DSTATE.next_analyzer_state = UpdateBranchState(inst,

DSTATE.current_analyzer_state,

branch_was_taken);

return;

D9.5.18.5 DecodedInst

// DecodedInst

// ===========

// Data extracted from an instruction.

type DecodedInst is (

bits(32) instruction, // The instruction itself

InstType branchtype, // Type of P0 instruction

boolean is_link, // Is it a linking branch?

integer size, // Size (32 or 16)

SubISA next_sub_isa, // sub_isa of the following instruction to be

// executed

bits(64) addressoffset

)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter D10
Programming

D10.1 Example code sequences

SPWXHJ The enabling sequence should be from the trace sink, such as the trace buffer, to the trace unit. This is to ensure
the trace sink is ready to capture trace before the trace unit generates any trace.

SWPVBX The disabling sequence should be from the trace unit to the trace sink. This is to ensure that any buffered trace
reaches the trace sink while the trace sink is still enabled.

D10.1.1 Enabling the trace unit

Listing D10.1: Example code sequence to enable the trace unit
1 ;; Program the trace unit registers, except TRCPRGCTLR
2 ISB ;; Synchronize the System Register updates.
3 MOV x0, #0x1
4 MSR TRCPRGCTLR, x0 ;; Enable the ETE.
5 ;; Wait for TRCSTATR.IDLE==0
6 poll_idle
7 ISB ;; Synchronize the write to TRCPRGCTLR
8 MRS x1, TRCSTATR
9 TBNZ x1, #1, poll_idle

D10.1.2 Disabling the trace unit

Listing D10.2: Example code sequence to disable the trace unit
1 STP x0, x1, [sp, #-16]!
2
3 MRS x0, TRFCR_EL1 ;; Save the current programming of TRFCR_EL1.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter D10. Programming
D10.1. Example code sequences

4 MOV x1, #0x3
5 BIC x1, x0, x1
6 MSR TRFCR_EL1, x1 ;; Clear the values of TRFCR_EL1.ExTRE.
7 ;; to put the PE in to a Trace Prohibited region
8 ISB ;; Synchronize the entry to the Trace Prohibited region
9 TSB CSYNC ;; Ensure that all trace has reached the

10 ;; trace buffer and address translations have
11 ;; taken place.
12 MOV x1, #0x0
13 MSR TRCPRGCTLR, x1 ;; Disable the trace unit
14 ;; Wait for TRCSTATR.IDLE==1 and TRCSTATR.PMSTABLE==1
15 poll_idle
16 ISB
17 MRS x1, TRCSTATR
18 AND x1, x1, #3
19 CMP x1, #3
20 B.NE poll_idle
21
22 MSR TRFCR_EL1, x0 ;; Restore the programming of TRFCR_EL1.
23
24 LDP x0, x1, [sp], #16

D10.1.3 Example save restore routine

The following example sequences are for saving the trace unit state over a power down, and restoring the trace unit
state when power is restored.

Listing D10.3: Example code sequence to save the trace unit state
1 STP x0, x1, [sp, #-16]!
2 ;; Enter a Trace Prohibited region
3 MRS x0, TRFCR_EL1 ;; Save the current programming of TRFCR_EL1.
4 MOV x1, #0x3
5 BIC x1, x0, x1
6 MSR TRFCR_EL1, x1 ;; Clear the values of TRFCR_EL1.ExTRE.
7 ISB ;; Synchronizes the entry to the Trace Prohibited region
8 TSB CSYNC ;; Ensure the trace unit is synchronized
9 MOV x1, #1

10 MSR OSLAR_EL1, x1 ;; Lock the OS lock
11 ;; Wait for TRCSTATR.PMSTABLE==1
12 poll_pmstable
13 ISB
14 MRS x1, TRCSTATR
15 TST x1, #2
16 B.EQ poll_pmstable
17
18 MSR TRFCR_EL1, x0 ;; Restore the programming of TRFCR_EL1.
19
20 <save the trace unit registers, including TRCPRGCTLR>
21
22 ;; Wait for TRCSTATR.IDLE==1
23 poll_idle
24 ISB
25 MRS x1, TRCSTATR
26 TST x1, #1
27 B.EQ poll_idle
28
29 LDP x0, x1, [sp], #16

Listing D10.4: Example code sequence to restore the trace unit state
1
2 <restore the trace unit registers, including TRCPRGCTLR>
3
4 STP x0, x1, [sp, #-16]!
5 MOV x0, #0
6 MSR OSLAR_EL1, x0 ;; Clear the OS lock
7 LDP x0, x1, [sp], #16
8 ISB

IDHQGM When programming the trace unit, it is important to be aware that the loops that poll TRCSTATR in Figure D8.2
might never complete. Arm recommends that such scenarios are avoided except in rare conditions. However, some
system conditions might prevent a trace unit from either leaving the idle state or becoming idle. In particular, a
trace unit might never become idle if the trace unit is unable to output all trace due to a system condition.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter D10. Programming
D10.1. Example code sequences

STTPKR If multiple reads of TRCSTATR are required, a Context synchronization event is required between each read of
TRCSTATR to ensure any change to the trace unit state is observed.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter D10. Programming
D10.2. Minimal programming

D10.2 Minimal programming

The table Table D10.1 gives the values for programming the trace unit to enable trace for tracing of a single process
at EL0.

Table D10.1: Minimal programming values

Register Value Description

TRCCONFIGR 0x000018C1 Enable:
• The return stack.
• Global timestamping.
• Context identifier tracing.
• Virtual context identifier tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of
trace

TRCTRACEIDR Nonzero Set a value for the trace ID

TRCTSCTLR 0x00000000 Disable the timestamp event
The trace unit still generates timestamps due to other
reasons such as trace protocol synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic
started
Disable:

• EL1 in Non-secure state.
• EL2 in Non-secure state.
• EL3-EL0 in Secure state.

TRCVIIECTLR 0x00000000 No address range filtering for logic started

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst

SHBZVM Disabling tracing of Secure state might not be strictly necessary as secure tracing might be disabled by
MDCR_EL3.STE, but Arm recommends not enabling trace for un-required Exception levels, to limit the amount
of trace.

SQCWTJ Disabling tracing of EL1 and EL2 of Non-secure state might not be strictly necessary as non-secure tracing might
be disabled by TRFCR_EL2.E2TRE and TRFCR_EL1.E1TRE, but Arm recommends not enabling trace for
un-required Exception levels to limit the amount of trace.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter D10. Programming
D10.3. Filtering models

D10.3 Filtering models

Different trace applications require different usage models of a trace unit. For example, one trace application might
only require basic program flow trace, whereas another might require tracing of a specific program function.

The ETE architecture provides for each of these usage models. A trace unit can be implemented with a particular
set of implementation options, so that a trade-off between functionality and cost can be achieved in meeting the
requirements of a trace application. Discovery of the particular set of implementation is achieved by reading
TRCIDR0 to TRCIDR13.

In a trace unit that includes all implementation options, the simplest way to use the trace unit is to turn on tracing
of all aspects of Processing Element (PE) operation and let the trace analyzer pick out the required information.
However, full trace comes at a high cost in terms of port bandwidth and trace storage. These costs have an impact
on the design of a system, so that a higher pin count and larger buffers might be required.

A trace unit provides on-chip filtering, that facilitates a reduction of the trace bandwidth and therefore provides for
a lower system cost. By suspending and enabling trace during a trace that is run to suit the particular requirements
of the trace run, the best use of both port bandwidth and trace storage can be made.

The ETE architecture provides the following basic filtering models:

Continuous tracing This is where no filtering is applied. The following modes can be used:

• Continuous instruction tracing only, where only the instruction trace stream is output.

Instruction-based filtering This is where instruction tracing, and data tracing if it is implemented and enabled,
is active only for certain code sequences, such as for a particular process or function.

For all the possible filtering modes, the trace unit can be programmed before a trace run to enable various options,
including:

• Context identifier tracing, if implemented, to indicate to a trace analyzer the Context identifier value.
• Virtual context identifier tracing, if implemented, to distinguish between different virtual machines.
• Cycle counting, to enable a trace analyzer to analyze program performance.
• Global timestamping, if implemented, to enable correlation of the two trace streams with other trace sources

in the system.
• Branch broadcasting, if implemented, to force all taken P0 instruction targets to be traced with an explicit

target address.

A trace unit is programmed for continuous instruction tracing when no filtering is applied to the instruction trace
stream.

When a trace unit is programmed for continuous instruction tracing, ViewInst is always active during a trace run.
See D6.8 Filtering trace generation.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter D10. Programming
D10.5. Filtering used the include function

D10.4 Filtering used the exclude function

Register Value Description

TRCCONFIGR 0x000018C1 Enable:
• the return stack,
• global timestamping,
• Context identifier,
• Virtual context identifier

tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing.

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented.

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of
trace.

TRCTRACEIDR Nonzero Set a value for the trace ID.

TRCTSCTLR 0x00000000 Disable the timestamp event.
The trace unit still generates timestamps due to other
reasons such as trace protocol synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic
started.
Disable:

• EL1 in Non-secure state.
• EL2 in Non-secure state.
• EL3-EL0 in Secure state.

tracing.

TRCVIIECTLR 0x00010000 Use ARC0 for the exclude logic.

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst.

TRCACATR0 0x00000000 The comparator status to match on all instructions at this
Virtual address

TRCACVR0 Start Address

TRCACATR1 0x00000000 The comparator status to match on all instructions at this
Virtual address

TRCACVR1 End Address

D10.5 Filtering used the include function

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter D10. Programming
D10.6. OS Save and Restore routines

Register Value Description

TRCCONFIGR 0x000018C1 Enable:
• the return stack,
• global timestamping,
• Context identifier,
• Virtual context identifier

tracing.

TRCEVENTCTL0R 0x00000000 Disable all event tracing.

TRCEVENTCTL1R 0x00000000

TRCSTALLCTLR 0x00000000 Disable stalling, if implemented.

TRCSYNCPR 0x0000000C Enable trace protocol synchronization every 4096 bytes of
trace.

TRCTRACEIDR Nonzero Set a value for the trace ID.

TRCTSCTLR 0x00000000 Disable the timestamp event.
The trace unit still generates timestamps due to other
reasons such as trace protocol synchronization.

TRCVICTLR 0x006F0201 Enable ViewInst to trace everything, with the start/stop logic
started.
Disable:

• EL1 in Non-secure state.
• EL2 in Non-secure state.
• EL3-EL0 in Secure state.

tracing.

TRCVIIECTLR 0x00000001 Use ARC0 for the include logic.

TRCVISSCTLR 0x00000000 No start or stop points for ViewInst.

TRCACATR0 0x00000000 The comparator status to match on all instructions at this
Virtual address

TRCACVR0 Start Address

TRCACATR1 0x00000000 The comparator status to match on all instructions at this
Virtual address

TRCACVR1 End Address

D10.6 OS Save and Restore routines

When the PE is context switching of trace unit the following registers need to save and restored. Not all these
registers are necessarily implemented for all implementations. Please refer to the register description page for
information on if the register is implemented.

• TRCPRGCTLR
• TRCCONFIGR
• TRCAUXCTLR
• TRCEVENTCTL0R
• TRCEVENTCTL1R
• TRCRSR
• TRCSTALLCTLR
• TRCTSCTLR

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter D10. Programming
D10.6. OS Save and Restore routines

• TRCSYNCPR
• TRCCCCTLR
• TRCBBCTLR
• TRCTRACEIDR
• TRCQCTLR
• TRCVICTLR
• TRCVIIECTLR
• TRCVISSCTLR
• TRCVIPCSSCTLR
• TRCSEQEVR<n>
• TRCSEQRSTEVR
• TRCSEQSTR
• TRCEXTINSELR<n>
• TRCCNTRLDVR<n>
• TRCCNTCTLR<n>
• TRCCNTVR<n>
• TRCIMSPEC<n>
• TRCRSCTLR<n>
• TRCSSCCR<n>
• TRCSSCSR<n>
• TRCSSPCICR<n>
• TRCACVR<n>[31:0]
• TRCACVR<n>[63:32]
• TRCACATR<n>[31:0]
• TRCACATR<n>[63:32]
• TRCCIDCVR<n>[31:0]
• TRCCIDCVR<n>[63:32]
• TRCVMIDCVR<n>[31:0]
• TRCVMIDCVR<n>[63:32]
• TRCCIDCCTLR0
• TRCCIDCCTLR1
• TRCVMIDCCTLR0
• TRCVMIDCCTLR1

SHYDYT If the trace unit has not been programmed since the last context switch then there is no requirement to save and
restore the registers.

If the programming of the trace unit is known and has not changed only the following registers are required to
saved.

• TRCRSR
• TRCVICTLR
• TRCSEQSTR
• TRCCNTVR<n>
• TRCIMSPEC<n>, if implemented and has dynamic state.
• TRCSSCSR<n>

If the trace unit is to powered down then the following registers must also be saved and restored.

• TRCCLAIMCLR on saving.
• TRCCLAIMSET on restoring.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter D11
Trace Examples

D11.1 Basic Examples

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter D11. Trace Examples
D11.1. Basic Examples

D11.1.1 Simple example of basic program trace

Table D11.1: Example of program trace

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info(. . .)
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• A Context element.
• A Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000 atom(N) This branch is not taken, so the trace unit generates an N
Atom element. The N Atom element implies the execution of
the three previous instructions and the BEQ instruction.

0x2010 STR

IRQ exception (IRQ,0x2014) An IRQ occurs. The Exception element indicates the STR

instruction was executed.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter D11. Trace Examples
D11.1. Basic Examples

D11.1.2 Simple example of basic program trace filtering applied

The example below shows basic program trace when filtering is applied. In this example, the trace unit is
programmed to exclude all instructions in the address range 0x2000 to 0x200F inclusive, and the trace unit is
programmed to start tracing when the instruction at 0x1000 is accessed.

Table D11.2: Example of program trace with filtering

Execution Trace elements Notes

0x1000 B -> 0x2000 Y trace_info(. . .)
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• A Context element.
• An Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV N

0x2004 LDR N

0x2008 CMP N

0x200C BEQ -> 0x3000 N

0x2010 STR Y trace_on()
address(0x2010)

IRQ exception
(IRQ,0x2014)

An IRQ occurs. The Exception element indicates the STR

instruction was executed.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter D12
Examples of basic program trace when exceptions occur

This section contains three examples:

• Basic program trace when an exception occurs, example one.
• Basic program trace when an exception occurs, example two.
• Example of basic program trace when two consecutive exceptions occur.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter D12. Examples of basic program trace when exceptions occur
D12.1. Basic program trace when an exception occurs, example one

D12.1 Basic program trace when an exception occurs, example one

The example in Table D12.1 shows basic program trace and demonstrates the canceling of some speculative
execution because of an exception. In this example the trace unit is programmed to start tracing when the instruction
at 0x1000 is accessed.

Table D12.1: Example of basic program trace when an exception occurs, example one

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• Context element.
• Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000

(not taken)
atom(N) This branch is not taken, so the trace unit generates an N

Atom element. The N Atom element implies the execution of
the three previous instructions and the BEQ instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore no
trace element is generated.

Cancel back to
and including
0x2000

cancel(1) This cancels the N Atom element that was generated for the
branch at 0x200C. The trace analyzer must discard the N
Atom element, plus the three instructions that it implied.
Note
Although Processing Element (PE) execution has also
canceled execution of the STR instruction, the trace analyzer
is unaware of this, because the STR instruction was never
traced. This is because no P0 elements were generated that
would indicate execution of the STR instruction.

IRQ exception(IRQ,0x2000) The trace unit generates an Exception element with the
address 0x2000, which indicates no instructions have
executed since the target of the branch at 0x1000.

commit all
execution

commit(2) This commits the E Atom element that was generated for the
Branch instruction at 0x1000, plus the Exception element that
was generated for the IRQ exception.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter D12. Examples of basic program trace when exceptions occur
D12.2. Basic program trace when an exception occurs, example two

D12.2 Basic program trace when an exception occurs, example two

The example in Table D12.2 shows basic program trace, and shows the trace generated when a synchronous
Data Abort occurs. In this example the trace unit is programmed to start tracing when the instruction at 0x1000 is
accessed.

Table D12.2: Example of basic program trace when an exception occurs, example two

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• Context element.
• Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000

(not taken)
atom(N) This branch is not taken, so the trace unit generates an N

Atom element. The N Atom element implies the execution of
the three previous instructions and the BEQ instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore no
trace element is generated.

LDR aborts
Cancel back to
and including
0x2004

cancel(1)
exception_(data fault,
0x2004)

This cancels the N Atom element that was generated for the
branch at 0x200C. The trace analyzer must discard the N
Atom element, plus the four instructions that it implied.
Note
Although PE execution has also canceled execution of the
STR instruction, the trace analyzer is unaware of this, because
the STR instruction was never traced. This is because no P0
elements were generated that would indicate execution of
the STR instruction.
The data fault exception occurred at 0x2004. The Exception
element indicates the MOV instruction at 0x2000 was executed.
In summary:

1. The MOV instruction was first implied by the N Atom
element at 0x200C. However, the trace analyzer
canceled this because of the Cancel element.

2. The MOV instruction is now implied by the Exception
element.

commit all
execution

commit(2) This commits the E Atom element that was generated for the
Branch instruction at 0x1000, plus the Exception element that
was generated for the IRQ exception.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter D12. Examples of basic program trace when exceptions occur
D12.3. Example of basic program trace when two consecutive exceptions occur

D12.3 Example of basic program trace when two consecutive exceptions oc-
cur

The example in Table D12.3 extends the example shown in Table D12.2, and shows how exceptions are traced
when two exceptions occur without any execution between them. In this example the trace unit is programmed to
start tracing when the instruction at 0x1000 is accessed.

Table D12.3: Example of basic program trace when two consecutive exceptions occur

Execution Trace elements Notes

0x1000 B -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• Context element.
• Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

0x200C BEQ -> 0x3000

(not taken)
atom(N) This branch is not taken, so the trace unit generates an N

Atom element. The N Atom element implies the execution of
the three previous instructions and the BEQ instruction.

0x2010 STR This instruction is not traced as a P0 element, therefore no
trace element is generated.

LDR aborts
Cancel back to
and including
0x2004

cancel(1)
exception_(data fault,
0x2004)

This cancels the N Atom element that was generated for the
branch at 0x200C. The trace analyzer must discard the N
Atom element, plus the four instructions that it implied.
Note
Although PE execution has also canceled execution of the
STR instruction, the trace analyzer is unaware of this, because
the STR instruction was never traced. This is because no P0
elements were generated that would indicate execution of
the STR instruction.
The data fault exception occurred at 0x2004. The Exception
element indicates the MOV instruction at 0x2000 was executed.
In summary:

1. The MOV instruction was first implied by the N Atom
element at 0x200C. However, the trace analyzer
canceled this because of the Cancel element.

2. The MOV instruction is now implied by the Exception
element.

IRQ address(0x4000)
exception(IRQ,0x4000)

This Exception element contains the address of the exception
vector of the DataFault exception. This implies that no
instructions have executed since the DataFault exception.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter D12. Examples of basic program trace when exceptions occur
D12.3. Example of basic program trace when two consecutive exceptions occur

Execution Trace elements Notes

commit all
execution

commit(3) This commits the E Atom element that was generated for the
Branch instruction at 0x1000, plus the Exception element
generated for the Data fault exception and the Exception
element that was generated for the IRQ exception.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter D13
Examples of changes in Context

When the Processing Element (PE) executes an instruction that changes the execution context, the exact time at
which the new element is traced depends on the PE operation after the write. An example of an instruction that
changes the execution context is an instruction that writes a value to the CONTEXTIDR_EL1. See D2.3.3 Context
Element for more information about the rules controlling the generation of Context elements. This section provides
examples of PE trace that contain changes of execution context to illustrate these rules. This section is split into
the following:

• Exception in software executed after context synchronization.
• Exception immediately after ISB.
• Exception immediately before ISB.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter D13. Examples of changes in Context
D13.1. Exception in software executed after context synchronization

D13.1 Exception in software executed after context synchronization

Table D13.1 shows a write to the CONTEXTIDR_EL1 register, followed by an ISB to synchronize that write,
followed by an exception that changes the context again.

Table D13.1: Program trace containing a context changing operation

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must
generate both:

• A Context element.
• A Target Address element.

The instruction executed is a taken branch, so in
addition, the trace unit must generate an E Atom
element.

0x2000 MSR

CONTEXTIDR

0xAA None of these instructions are traced as P0
elements, therefore no trace elements are
generated. The instructions might be executed
from context 0xAA or 0xBB but they are always
traced as occurring from context 0xAA.

0x2004 ADD 0xAA or 0xBB

0x2008 ISB 0xAA or 0xBB atom(E) The trace unit generates an E Atom element,
because the ISB is a Context synchronization
event. All execution is traced as executing in
context 0xAA.

0x200C SUB 0xBB context(0xBB) A Context element is traced to indicate the new
context.

IRQ 0xBB exception(IRQ,0x2010) An IRQ exception occurs. The trace unit
generates an Exception element.

0x3000 B -> 0x4000 0xCC context(0xCC)
address(0x3000)
atom(E)

A Context element is traced to indicate the new
context.
A Target Address element is also traced, because
an Exception element is always followed by an
Target Address element to indicate the address that
the exception has been taken to.
Finally, the instruction executed is a taken branch,
so the trace unit must generate an E Atom element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter D13. Examples of changes in Context
D13.2. Exception immediately after ISB

D13.2 Exception immediately after ISB

Table D13.2 shows the same execution as Table D13.1 but the exception occurs one instruction earlier. This means
that no execution takes place between the ISB and the exception.

Table D13.2: Program trace containing a context changing operation (exception immediately after
ISB)

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must
generate both:

• A Context element.
• A Target Address element.

The instruction executed is a taken branch, so in
addition, the trace unit must generate an E Atom
element.

0x2000 MSR

CONTEXTIDR

0xAA None of these instructions are traced as P0
elements, therefore no trace elements are
generated. The instructions might be executed
from context 0xAA or 0xBB but they are always
traced as occurring from context 0xAA.

0x2004 ADD 0xAA or 0xBB

0x2008 ISB 0xAA or 0xBB atom(E) The trace unit generates an E Atom element,
because the ISB is a Context synchronization
event. All execution is traced as executing in
context 0xAA.

IRQ 0xBB context(0xBB)
exception(IRQ,0x200C)

A Context element is traced to indicate the new
context. An IRQ exception occurs. The trace unit
generates an Exception element.

0x3000 B -> 0x4000 0xCC context(0xCC)
address(0x3000)
atom(E)

A Context element is traced to indicate the new
context.
A Target Address element is also traced, because
an Exception element is always followed by an
Target Address element to indicate the address that
the exception has been taken to.
Finally, the instruction executed is a taken branch,
so the trace unit must generate an E Atom element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter D13. Examples of changes in Context
D13.3. Exception immediately before ISB

D13.3 Exception immediately before ISB

Table D13.3 the same as Table D13.2 but the exception occurs one instruction earlier. This means that the exception
occurs before the ISB instruction that was present in previous examples.

Table D13.3: Program trace containing a context changing operation (exception immediately before
ISB)

Execution Context Trace elements Notes

0x1000 B-> 0x2000 0xAA trace_info()
trace_on()
context(0xAA)
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must
generate both:

• A Context element.
• A Target Address element.

The instruction executed is a taken branch, so in
addition, the trace unit must generate an E Atom
element.

0x2000 MSR

CONTEXTIDR

0xAA None of these instructions are traced as P0
elements, therefore no trace elements are
generated. The instructions might be executed
from context 0xAA or 0xBB but they are always
traced as occurring from context 0xAA.

0x2004 ADD 0xAA or 0xBB

IRQ 0xAA or 0xBB exception(IRQ,0x2008) An IRQ exception occurs. The trace unit
generates an Exception element.

0x3000 B -> 0x4000 0xCC context(0xCC)
address(0x3000)
atom(E)

A Context element is traced to indicate the new
context.
A Target Address element is also traced, because
an Exception element is always followed by an
Target Address element to indicate the address that
the exception has been taken to.
Finally, the instruction executed is a taken branch,
so the trace unit must generate an E Atom element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter D14
An example of the use of the trace unit return stack

This section contains two examples of tracing the same piece of program code. However:

• In the first example the trace unit return stack is disabled.
• In the second example trace unit the return stack is enabled.

The examples demonstrate that use of the trace unit return stack can help to reduce the amount of trace generated.
Table D14.1 the first example, and Table D14.2 shows the second example. In these examples, the trace unit
is programmed for basic program flow, where only branch instructions are traced as P0 instructions, and is
programmed to start tracing when the instruction at 0x1000 is accessed.

Table D14.1: Table A-14 Basic program trace when Branch with Link instructions are executed and
the return stack is disabled

Execution Trace elements Notes

0x1000 BL -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• A Context element.
• An Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter D14. An example of the use of the trace unit return stack

Execution Trace elements Notes

0x200C BLEQ -> 0x3000

(not taken)
atom(N) This branch is not taken, so the trace unit generates an N

Atom element. The N Atom element implies the execution of
the three previous instructions and the BLEQ instruction.

0x2010 STR

0x2014 BX LR atom(E) This branch is taken, so the trace unit generates an E Atom
element. The E Atom element implies the execution of the
STR and the BX instructions.

0x1004 MOV address(0x1004) This instruction is not traced as a P0 element, therefore no
trace element is generated. However, the last instruction
executed was a taken indirect branch instruction, so the trace
unit generates an Target Address element to indicate the
target of that branch.

0x1008 B -> 0x4000 atom(E) This branch is taken, so the trace unit generates an E Atom
element. The E Atom element implies the execution of the
MOV instruction at 0x1004 and the B instruction.

commit all
execution

commit(4) This commits all four of the following:
• The E Atom element generated for the branch at

0x1000.
• The N Atom element generated for the branch at

0x200C.
• The E Atom element generated for the branch at

0x2014.
• The E Atom element generated for the branch at

0x1008.

Table D14.2: Table A-15 Basic program trace when Branch with Link instructions are executed and
the return stack is enabled

Execution Trace elements Notes

0x1000 BL -> 0x2000 trace_info()
trace_on()
context()
address(0x1000)
atom(E)

Tracing begins here, therefore the trace unit must generate
both:

• A Context element.
• An Target Address element.

The instruction executed is a taken branch, so in addition,
the trace unit must generate an E Atom element. In addition,
because the return stack is enabled, the Branch with Link
instruction causes the address 0x1004 to be pushed onto the
trace unit return stack.

0x2000 MOV None of these instructions are traced as P0 elements,
therefore no trace elements are generated.

0x2004 LDR

0x2008 CMP

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter D14. An example of the use of the trace unit return stack

Execution Trace elements Notes

0x200C BLEQ -> 0x3000

(not taken)
atom(N) This branch is not taken, so the trace unit generates an N

Atom element. The N Atom element implies the execution of
the three previous instructions and the BLEQ instruction.
Nothing is pushed onto the trace unit return stack because
the branch is not taken.

0x2010 STR

0x2014 BX LR atom(E) This branch is taken, so the trace unit generates an E Atom
element. The E Atom element implies the execution of the
STR and the BX instructions.

0x1004 MOV This instruction is not traced as a P0 element, therefore no
trace element is generated. The address of this instruction
matches the top entry on the trace unit return stack.
Therefore, the trace analyzer knows to restart program
execution here and an Target Address element is not
required. The top entry on the return stack, address 0x1004,
is popped from the return stack.

0x1008 B -> 0x4000 atom(E) This branch is taken, so the trace unit generates an E Atom
element. The E Atom element implies the execution of the
MOV instruction at 0x1004 and the B instruction.

commit all
execution

commit(4) This commits all four of the following:
• The E Atom element generated for the branch at

0x1000.
• The N Atom element generated for the branch at

0x200C.
• The E Atom element generated for the branch at

0x2014.
• The E Atom element generated for the branch at

0x1008.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter D14. An example of the use of the trace unit return stack
D14.1. Transactions

D14.1 Transactions

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter D14. An example of the use of the trace unit return stack
D14.1. Transactions

D14.1.1 Simple successful transaction

This is an example of a successful transaction traced by a trace unit with no speculation in the trace element stream.

Table D14.3: Example of trace with a successful transaction

Execution Trace elements Notes

0x1000 B -> 0x2000 Trace_info(. . .)

Trace_on()

Target_address(0x2000) Trace on

0x2000 TSTART Atom(E)

Transaction_start() The transaction starts.

0x2004 B -> 0x2400 Atom(E)

{. . . }

0x2804 B -> 0x2808 Atom(E)

0x2808 TCOMMIT Transaction_commit() Transaction finishes.

{. . . }

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter D14. An example of the use of the trace unit return stack
D14.1. Transactions

D14.1.2 Simple Failed Transaction example

This is an example of a failed transaction traced by a trace unit with no speculation in the trace element stream.

Table D14.4: Example of trace with a transaction failure

Execution Trace elements Notes

0x2000 TSTART Trace_on()
Target_address(0x2000)
Atom(E)
Transaction_start()

Trace on
The transaction starts

0x2004 TST

0x2008 BEQ Atom(N)

{. . . }

0x2804 B -> 0x3000 Atom(E)
Target_address(0x3000)

Transaction fails Transaction_failure() Transaction Fails

0x2004 TST Target_address(0x2004) This address is where execution resumes after the
transaction failure.

0x2008 BEQ Atom(E)

{. . . }

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter D14. An example of the use of the trace unit return stack
D14.1. Transactions

D14.1.3 Canceled Transaction failure example

Table D14.5: Example of trace with a failed transaction

Execution Trace elements Notes

0x2000 TSTART Trace_on()
Target_address(0x2000)
Atom(E)
Transaction_start()

Trace on
The transaction starts

0x2004 TST

0x2008 BEQ Atom(N)

{. . . }

0x2804 B -> 0x3000 Atom(E)

Transaction fails Target_address(0x3000)
Cancel(2)
Transaction_failure()

Transaction fails

0x2004 TST Target_address(0x2004)

0x2008 BEQ Atom(E)

{. . . }

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter D14. An example of the use of the trace unit return stack
D14.1. Transactions

D14.1.4 Speculated Transaction example

Table D14.6: Example of trace with a transaction failure

Execution Trace elements Notes

{. . . }

0x1000 B -> 0x2000 Atom(E) This branch is speculatively taken, but was incorrectly
speculated and will be corrected later.

0x2000 TSTART Atom(E)
Transaction_start()

The transaction starts.

0x2004 TST

0x2008 BEQ Atom(N)

{. . . }

0x2804 B -> 0x3000 Atom(E)

Cancel(4)
Mispredict

The transaction was only speculatively started. It is optional
if a Transaction Failure element is traced, because the
Cancel element cancels the Transaction Start element. The
Mispredict element corrects the incorrectly speculated first
branch.

0x1004 {. . . }

{. . . }

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter D15
Pseudocode

D15.1 ETE element ASL

D15.1.1 Atom enumeration

// Atom

// ====

// Atom enum. Atoms are either E (taken) or N (not taken).

enumeration Atom {

Atom_E,

Atom_N

};

D15.1.2 AtomElement()

// AtomElement()

// =============

// Generates an Atom element based on the given atom.

Element AtomElement(Atom t)

Element a;

a.kind = ELEM_ATOM;

a.debug_id = GetNextDebugId();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter D15. Pseudocode
D15.1. ETE element ASL

a.payload.atom_type = t;

LogElem(ELEMENT, a, if t == Atom_E then "E" else "N");

return a;

D15.1.3 QElement()

// QElement()

// ==========

// Generates a Q element based on the number of elements

// to resolve.

Element QElement(integer count)

Element a;

a.kind = ELEM_Q;

a.debug_id = GetNextDebugId();

a.payload.count = count;

LogElem(ELEMENT, a, "count " ++ a.payload.count);

return a;

D15.1.4 CancelElement()

// CancelElement()

// ===============

// Generates a Cancel element based on a given number

// of elements to cancel.

Element CancelElement(integer count)

Element a;

a.kind = ELEM_CANCEL;

a.debug_id = GetNextDebugId();

a.payload.count = count;

LogElem(ELEMENT, a, "cancel " ++ count);

return a;

D15.1.5 CommitElement()

// CommitElement()

// ===============

// Generates a commit element based on the

// number of elements to commit.

Element CommitElement(integer count)

Element a;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter D15. Pseudocode
D15.1. ETE element ASL

a.kind = ELEM_COMMIT;

a.debug_id = GetNextDebugId();

a.payload.count = count;

LogElem(ELEMENT, a, "commit " ++ count);

return a;

D15.1.6 ContextElement()

// ContextElement()

// ================

// Generates a context element based on context ID, VMID,

// Exception level, Security state and AArch32/64 state.

Element ContextElement(bits(32) context_id,

bits(32) vmid,

bits(2) exception_level,

SecurityLevel secure,

boolean sixty_four_bit)

Element a;

a.kind = ELEM_CONTEXT;

a.debug_id = GetNextDebugId();

a.payload.context_id = context_id;

a.payload.vmid = vmid;

a.payload.exception_level = exception_level;

a.payload.security = secure;

a.payload.sixty_four_bit = sixty_four_bit;

LogElem(ELEMENT, a,

"c_id " ++ context_id ++

", vmid " ++ vmid ++

", ex_lvl " ++ a.payload.exception_level ++

", secure " ++ (a.payload.security == SecurityLevel_SECURE) ++

", 64_bit " ++ a.payload.sixty_four_bit);

return a;

D15.1.7 CycleCountElement()

// CycleCountElement()

// ===================

// Generates a Cycle Count element based on a number of cycles.

Element CycleCountElement(integer count)

Element a;

a.kind = ELEM_CYCLE_COUNT;

a.debug_id = GetNextDebugId();

a.payload.count = count;

LogElem(ELEMENT, a, "count " ++ a.payload.count);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter D15. Pseudocode
D15.1. ETE element ASL

return a;

D15.1.8 DiscardElement()

// DiscardElement()

// ================

// Generates a Discard element.

Element DiscardElement()

Element a;

a.kind = ELEM_DISCARD;

a.debug_id = GetNextDebugId();

LogDecompressor(ELEMENT, " -

n");

return a;

D15.1.9 ExceptionElement()

// ExceptionElement()

// ==================

// Generates an Exception element based on the address to branch

// to and the type of exception.

Element ExceptionElement(integer exception_type, bits(64) address)

Element a;

a.kind = ELEM_EXCEPTION;

a.debug_id = GetNextDebugId();

a.payload.exception_type = exception_type;

a.payload.address = address;

LogElem(ELEMENT, a, "ex_type " ++ exception_type ++ " addr " ++ address);

return a;

D15.1.10 EventElement()

// EventElement()

// ==============

// Generates an Event element based on the number of the event that fired.

Element EventElement(integer idx)

Element a;

a.kind = ELEM_EVENT;

a.debug_id = GetNextDebugId();

a.payload.event_id = idx;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter D15. Pseudocode
D15.1. ETE element ASL

LogElem(ELEMENT, a, " id " ++ a.payload.event_id);

return a;

D15.1.11 MispredictElement()

// MispredictElement()

// ===================

// Generates a Mispredict element.

Element MispredictElement()

Element a;

a.kind = ELEM_MISPREDICT;

a.debug_id = GetNextDebugId();

LogDecompressor(ELEMENT, "MISPREDICT");

return a;

D15.1.12 OverflowElement()

// OverflowElement()

// =================

// Generates an Overflow element.

Element OverflowElement()

Element a;

a.kind = ELEM_OVERFLOW;

a.debug_id = GetNextDebugId();

LogElem(ELEMENT, a, "-");

return a;

D15.1.13 TimestampElement()

// TimestampElement()

// ==================

// Generates a Timestamp element based on a timestamp value

// and a cycle count value.

Element TimestampElement(integer timestamp, integer cycles)

Element a;

a.kind = ELEM_TIMESTAMP;

a.debug_id = GetNextDebugId();

a.payload.timestamp = timestamp;

a.payload.cycle_count = cycles;

LogElem(ELEMENT, a,

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter D15. Pseudocode
D15.1. ETE element ASL

"timestamp " ++ timestamp ++

" cycles " ++ cycles);

return a;

D15.1.14 TraceInfoElement()

// TraceInfoElement()

// ==================

// Generates a Trace Info element based on cycle counting parameters,

// speculation depth, and transaction status.

Element TraceInfoElement(boolean cc_enabled,

integer cc_threshold,

integer current_spec_depth,

boolean in_transaction)

Element a;

a.kind = ELEM_TRACE_INFO;

a.debug_id = GetNextDebugId();

a.payload.cc_enabled = cc_enabled;

a.payload.cc_threshold = cc_threshold;

a.payload.current_spec_depth = current_spec_depth;

a.payload.in_transaction = in_transaction;

LogElem(ELEMENT, a,

"cc_enabled " ++ a.payload.cc_enabled ++

" cc_threshold " ++ a.payload.cc_threshold ++

" current_spec_depth " ++ a.payload.current_spec_depth);

return a;

D15.1.15 TraceOnElement()

// TraceOnElement()

// ================

// Generates a Trace On element.

Element TraceOnElement()

Element a;

a.kind = ELEM_TRACE_ON;

a.debug_id = GetNextDebugId();

LogDecompressor(ELEMENT, "TRACE_ON");

return a;

D15.1.16 TargetAddressElement()

// TargetAddressElement()

// ======================

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter D15. Pseudocode
D15.1. ETE element ASL

// Generates a Target Address element based on a given

// address and sub_isa.

Element TargetAddressElement(AddressHistoryBufferEntry reg)

Element a;

a.kind = ELEM_TARGET_ADDRESS;

a.payload.address = reg.address;

a.payload.sub_isa = reg.sub_isa;

a.debug_id = GetNextDebugId();

LogElem(ELEMENT, a, "" ++ a.payload.address ++ " IS " ++

(if reg.sub_isa == IS0 then "IS0" else "IS1"));

return a;

D15.1.17 SourceAddressElement()

// SourceAddressElement()

// ======================

// Generates a Source Address element based on an instruction’s address

// and sub_isa.

Element SourceAddressElement(AddressHistoryBufferEntry reg)

Element a;

a.kind = ELEM_SOURCE_ADDRESS;

a.payload.address = reg.address;

a.payload.sub_isa = reg.sub_isa;

a.debug_id = GetNextDebugId();

return a;

D15.1.18 TransactionStartElement()

// TransactionStartElement()

// =========================

Element TransactionStartElement()

Element a;

a.kind = ELEM_TRANS_START;

return a;

D15.1.19 TransactionCommitElement()

// TransactionCommitElement()

// ==========================

Element TransactionCommitElement()

Element a;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter D15. Pseudocode
D15.1. ETE element ASL

a.kind = ELEM_TRANS_COMMIT;

return a;

D15.1.20 TransactionFailureElement()

// TransactionFailureElement()

// ===========================

Element TransactionFailureElement()

Element a;

a.kind = ELEM_TRANS_FAILURE;

return a;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter D15. Pseudocode
D15.2. ETE decompressor enumerations

D15.2 ETE decompressor enumerations

D15.2.1 SubISA enumeration

// SubISA

// ======

// Represents sub instruction set.

// IS0 = AArch32 or AArch64, IS1 = AArch32 Thumb

enumeration SubISA {

IS0,

IS1

};

D15.2.2 SynchronisationState enumeration

// States to represent synchronisation of the reconstructor, state

// transitions as follows:

// ___

// | Init State | Input | Final State |

// |____________|____________________|_____________|

// | NOT_SYNC | context element | CONTEXT |

// | NOT_SYNC | address element | ADDRESS |

// | ADDRESS | context element | FULL_SYNC |

// | ADDRESS | overflow element | NOT_SYNC |

// | ADDRESS | discard element | NOT_SYNC |

// | ADDRESS | trace on element | NOT_SYNC |

// | ADDRESS | atom element | NOT_SYNC |

// | ADDRESS | exception element | NOT_SYNC |

// | CONTEXT | address element | FULL_SYNC |

// | CONTEXT | overflow element | NOT_SYNC |

// | CONTEXT | discard element | NOT_SYNC |

// | CONTEXT | trace on element | NOT_SYNC |

// | FULL_SYNC | indirect branch | CONTEXT |

// | FULL_SYNC | discard element | NOT_SYNC |

// | FULL_SYNC | overflow element | NOT_SYNC |

// | FULL_SYNC | trace on element | NOT_SYNC |

// |____________|____________________|_____________|

enumeration SynchronisationState {

NOT_SYNC_STATE, // Not syncing, need sync

CONTEXT_STATE, // Have context, need address

ADDRESS_STATE, // Have address, need context

FULL_SYNC_STATE // Fully synced

};

D15.2.3 InstType enumeration

// InstType

// ========

// Instruction type. Cannot use BranchType as this does not cover other P0

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter D15. Pseudocode
D15.2. ETE decompressor enumerations

// non-branching instructions (WFE/WFI, ISB).

// WFX counts as ’Other’ if it is not a P0 element (see TRCIDR2.WFXMODE).

enumeration InstType {

InstType_BRANCH_DIR, // Direct branch

InstType_BRANCH_INDIR, // Indirect branch

InstType_WFX, // WFI/WFE instruction

InstType_ISB, // Instruction barrier

InstType_OTHER // Non-P0 instructions

};

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter D15. Pseudocode
D15.3. ETE decompressor functions

D15.3 ETE decompressor functions

D15.3.1 EndOfStream()

// EndOfStream()

// =============

// Returns TRUE iff all the data in the stream have been consumed.

boolean EndOfStream(bits(S) stream);

D15.3.2 ReservedEncoding()

// ReservedEncoding()

// ==================

// The trace byte stream is not compliant to the protocol. The trace analyzer

// has to stop.

ReservedEncoding();

D15.3.3 ReadAndConsume()

// ReadAndConsume()

// ================

// Reads the next N bits from the trace byte stream and returns them, also

// updating the trace byte stream pointer.

bits(N) ReadAndConsume(integer N, bits(S) stream);

D15.3.4 LogDecompressor()

// Instrumentation functions

// =========================

LogDecompressor(Decomp_Level lvl, string details);

LogElem(Decomp_Level lvl, Element e, string details);

integer GetNextDebugId();

ERROR(string msg);

LogReturnStack();

PrintElement(Element e);

string ExcepTypeToStr(integer type_val);

D15.3.5 SBZ()

// SBZ()

// =====

// Raise an error if the field B is not zero.

SBZ(bits(N) B);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter D15. Pseudocode
D15.3. ETE decompressor functions

D15.3.6 ResolutionQueue

// ResolutionQueue.Initialize()

// ============================

// If decompression starts at a Trace Info element that has a non-zero

// speculation depth, the trace analyzer must wait until the speculation

// of these unseen P0 elements has been resolved.

//

// Set the number of unseen P0 elements that are outstanding that need to be

// resolved.

ResolutionQueue.Initialize(integer i);

// ResolutionQueue.Uninitialized()

// ===============================

// Returns TRUE if the resolution queue is uninitialized.

boolean ResolutionQueue.Uninitialized();

// ResolutionQueue.Aligned()

// =========================

// Returns TRUE if all the unseen P0 elements have been resolved.

boolean ResolutionQueue.Aligned();

// ResolutionQueue.Align()

// =======================

// Mark the oldest oldest unseen P0 element as resolved.

ResolutionQueue.Align();

// ResolutionQueue.Length()

// ========================

// Returns the number of elements in the queue.

integer ResolutionQueue.Length();

// ResolutionQueue.PopBack()

// =========================

// Discards the element at the back (youngest) of the queue.

ResolutionQueue.PopBack();

// ResolutionQueue.Back()

// ======================

// Returns the element at the back (youngest) of the queue.

Element ResolutionQueue.Back();

// ResolutionQueue.PopFront()

// ==========================

// Removes the element at the front (oldest) from the queue.

ResolutionQueue.PopFront();

// ResolutionQueue.Front()

// =======================

// Returns the element at the front (oldest) of the queue.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter D15. Pseudocode
D15.3. ETE decompressor functions

Element ResolutionQueue.Front();

// ResolutionQueue.CommitFront()

// =============================

// Commits the element at the front of the queue.

ResolutionQueue.CommitFront()

// ResolutionQueue.Push()

// ======================

// Add element e to the back of the queue.

ResolutionQueue.Push(Element e);

D15.3.7 TransactionQueue

// TransactionQueue.Length()

// =========================

// Return the number of entries in the transaction queue.

integer TransactionQueue.Length();

// TransactionQueue.FrontPop()

// ===========================

// Remove the first entry in the transaction queue.

TransactionQueue.FrontPop();

// TransactionQueue.Front()

// ========================

// Return the element at the front of the transaction queue.

Element TransactionQueue.Front();

// TransactionQueue.Push()

// =======================

// Add an element to the back of the transaction queue.

TransactionQueue.Push(Element e);

// TransactionQueue.InTransaction()

// ================================

// Are we currently in a transaction?

boolean TransactionQueue.InTransaction();

// TransactionQueue.StartTransaction()

// ===================================

// Enter a transaction.

TransactionQueue.StartTransaction();

// TransactionQueue.EndTransaction()

// =================================

// Leave a transaction.

TransactionQueue.EndTransaction();

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter D15. Pseudocode
D15.3. ETE decompressor functions

D15.3.8 ReturnStack

// ReturnStack.Reset()

// ===================

// Resets the return stack.

ReturnStack.Reset();

// ReturnStack.Push(bits(64) addr, SubISA sub_isa)

// ===

// Pushes onto the return stack.

ReturnStack.Push(bits(64) addr, SubISA sub_isa);

// ReturnStack.Pop()

// =================

// Pops the top of the return stack.

ReturnStackEntry ReturnStack.Pop();

// ReturnStack.IsEmpty()

// =====================

// Returns TRUE iff the return stack is empty.

boolean ReturnStack.IsEmpty();

D15.3.9 AddressHistoryBufferEntry

// AddressHistoryBufferEntry

// =========================

// An entry in the address history buffer.

type AddressHistoryBufferEntry is (

bits(64) address,

SubISA sub_isa

)

AddressHistoryBufferEntry UNKNOWN_ADDRESS;

D15.3.10 AddressHistoryBuffer

// AddressHistoryBuffer.Reset()

// ============================

// Resets the address history buffer.

AddressHistoryBuffer.Reset();

// AddressHistoryBuffer.Add()

// ==========================

// Adds an address to the address history buffer.

AddressHistoryBuffer.Add(AddressHistoryBufferEntry entry);

// AddressHistoryBuffer.Add()

// ==========================

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter D15. Pseudocode
D15.3. ETE decompressor functions

// Adds an address to the address history buffer.

AddressHistoryBuffer.Add(bits(64) address, SubISA sub_isa);

// AddressHistoryBuffer.Get()

// ==========================

// Returns the given entry from the address history buffer.

AddressHistoryBufferEntry AddressHistoryBuffer.Get(integer n);

D15.3.11 ProgramImage

// ProgramImage.DecodeNextInst()

// =============================

// Returns the decoded next instruction in the program image.

DecodedInst ProgramImage.DecodeNextInst();

// ProgramImageDecodeAvilable()

// ============================

// Returns TRUE iff we are currently inside the program image.

boolean ProgramImage.DecodeAvailable();

D15.3.12 ExceptionWithUnknownAddress()

// ExceptionWithUnknownAddress()

// =============================

// Does this exception type have an unknown

// prefered exception return address.

boolean ExceptionWithUnknownAddress(Element e)

case e.payload.exception_type<4:0> of

when ’00000’, ’11001’

return TRUE;

when ’11000’

ERROR("Transation Failure Element");

otherwise

return FALSE;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter D15. Pseudocode
D15.4. ETE data encodings

D15.4 ETE data encodings

D15.4.1 POD()

// POD()

// =====

// Return data from stream in Plain Old Data Little Endian format.

bits(N) POD(integer N, bits(S) stream)

return ReadAndConsume(N, stream);

D15.4.2 ULEB128()

// ULEB128()

// =========

// Gets N bits of continuable data from the stream.

bits(N) ULEB128(bits(S) stream)

return BitReplacement(stream, Zeros(N));

D15.4.3 BitReplacement()

// BitReplacement()

// ================

// Gets N bits of continuable, bit replacement data from the stream.

bits(N) BitReplacement(bits(S) stream, bits(N) original)

R = original;

I = 0;

bits(8) BYTE;

repeat

BYTE = ReadAndConsume(8, stream);

R<I+6:I> = BYTE<6:0>;

I = I + 7;

until BYTE<7> == ’0’ || I >= N - 8;

if BYTE<7> == ’1’ then

BYTE = ReadAndConsume(8, stream);

R<I+7:I> = BYTE;

end = N MOD 7;

if end == 0 then end = 7;

if I + 8 > N then SBZ(BYTE<7:end>);

return R;

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter D15. Pseudocode
D15.5. Common functions

D15.5 Common functions

D15.5.1 Replicate()

// Replicate()

// ===========

// Replicates the bitstring x, N times.

bits(M*N) Replicate(bits(M) x, integer N);

D15.5.2 Zeros()

// Zeros()

// =======

// Returns a zero bitstring of length n.

bits(n) Zeros(integer n);

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter D16
Functional Differences from ETMv4

ETE has a considerable overlap with the ETMv4 architecture Arm® Embedded Trace Macrocell Architecture
Specification ETMv4 [3], with the intent that broadly unified software stack can program a trace unit and interpret
the trace stream from either an ETMv4 trace unit or an ETE trace unit.

This section describes the primary functional differences between ETMv4 and ETE.

• Removal of data trace documentation, since this is not permitted in A-profile.
• Removal of conditional non-branch documentation, since this is not permitted in A-profile.
• TRCDEVARCH.PRESENT == 1 is mandatory.
• TRCDEVARCH.ARCHVER and TRCDEVARCH.REVISION take new values.
• TRCIDR1.TRCARCHMAJ and TRCIDR1.TRCARCHMIN take new values.
• TRCIDR9 is fixed at zero.
• Context identifier tracing is mandatory, defined in TRCIDR2.CIDSIZE.
• Virtual context identifier tracing is mandatory when the Processing Element (PE) implements EL2, defined

in TRCIDR2.VMIDSIZE.
• The Virtual context identifier is always based on CONTEXTIDR_EL2, with support for tracing

VTTBR_EL2.VMID removed.
• 64-bit timestamp is the only supported timestamp size.
• Timestamping is mandatory in ETE.
• TRCIDR2.IASIZE is only permitted to indicate a 64-bit instruction address size.
• External Inputs are unified with the PMU event space, with new TRCEXTINSELR<n> registers introduced.
• TRCIDR5.NUMEXTIN indicates the unified External Input model.
• Added TRCRSR.EXTIN for reading and setting the External Input Selectors state.
• Added TRCRSR.EVENT for reading and setting the ETEEvent state.
• Added TRCRSR.TA for reading and setting whether tracing was active.
• Changed requirements for the tracing of Exceptions to be dependent on the new TRCRSR.TA field.
• Removal of memory-mapped accesses. This was deprecated in ETMv4.4 for Armv8-A.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter D16. Functional Differences from ETMv4

• Removal of trace unit sharing.
• Added a requirement that trace must be output within finite time.
• Added a requirement that the trace unit resources are paused when entering a Trace Prohibited region.
• Added a bit to TRCSSCSR<n> to indicate that the Single-shot Comparator Control fired while the resources

are paused.
• Added requirements for dependencies on the TSB CSYNC instruction.
• Execution of TSB CSYNC instruction requests a timestamp element.
• The Unified Power Domain Model from ETMv4.5 for Armv8-A is mandatory in ETE.
• Changes to the enable and disable code sequences.
• Addition of the tracing of Transactional state.
• Tightened the requirements for obeying the order of start point and stop points for the ViewInst start/stop

function, and tightened the rules for programming the start/stop function.
• Addition of Source Address elements.
• Added rules to require no trace to be generated in Trace Prohibited regions, under some circumstances.
• Added constraints for the effect of system instructions causing the trace unit to become enabled or disabled.
• Additional constraints for the forced tracing of exceptions around Trace Prohibited regions, to ensure trace is

not generated in Trace Prohibited regions.
• Removed the flexibility around tracing of an Exceptional occurrence immediately after a Trace Prohibited

region or when trace generation becomes operative. Such Exceptional occurrences are not traced.
• Added a requirement that the resource operations must complete before a TSB instruction completes.
• Defined the behavior of the visibility of reads and writes to trace unit registers from system instructions,

external debugger and by the trace unit.
• Changed branch broadcasting to be required in all implementations, see TRCIDR0.TRCBB.
• TRCSYNCPR is read/write in all implementations, see TRCIDR3.SYNCPR.
• Forced tracing of System Error exceptions is required in all implementations, see TRCIDR3.TRCERR.
• Changed cycle counting to be required in all implementations, see TRCIDR0.TRCCCI.
• Removed the trace unit OS Lock mechanism, and changed to require the PE OS Lock to affect the trace unit.
• Removed the Exception Return element and Exception Return packet.
• Constrained TRCCLAIMCLR and TRCCLAIMSET to not require explicit synchronization.
• Added more constraints to the operation of the Single-shot Comparator Controls when the trace unit becomes

disabled, or when entering a Trace Prohibited region.
• Added more constraints to the operation of the ViewInst start/stop function when the trace unit becomes

disabled, or when entering a Trace Prohibited region.
• Constrained the behavior of cycle counting after a trace unit buffer overflow, to require the cycle count to be

traced as UNKNOWN on the first Cycle Count element after an overflow.
• Export of PMU events to the trace unit is not affected by PMCR.X or PMCR_EL0.X.
• Event elements are permitted to be generated before the first Trace Info element.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Part E
The Trace Buffer Extension

Chapter E1
Trace Buffer Extension

E1.1 Description

E1.1.1 About the Trace Buffer Extension

ILMNBQ In an Armv8 processor with CoreSight, trace generated by a trace unit is routed over a CoreSight trace fabric
(AMBA ATB) through a series of trace funnels, replicators, and so on, to one or more trace sinks. The CoreSight
Trace Memory Controller (TMC) is an example of a trace sink that can take various forms, one of which is an
Embedded Trace Router (ETR). The ETR writes formatted trace to a buffer in memory.

IMRFPK The Trace Buffer Extension feature is identified as FEAT_TRBE.

When FEAT_TRBE is implemented, the Processing Element (PE) includes a Trace Buffer Unit. There is one
logical Trace Buffer Unit for each PE in the processor.

When the Trace Buffer Unit is enabled, program-flow trace generated by the trace unit is written directly to memory
by the Trace Buffer Unit, rather than routing it to a trace fabric. Figure E1.1 shows this.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter E1. Trace Buffer Extension
E1.1. Description

Armv9-A PE

Sink

PE
Execute Unit

Trace
Unit

EIS

PE
Load/Store

Unit

Trace
Buffer
Unit

MMU

Memory system

Trace Data

Figure E1.1: Logical organization of an Armv9-A PE including a trace unit and a Trace Buffer Unit

In this figure:

• EIS is an internal representation of the executed instruction stream.

• The trace unit converts the EIS into formatted trace data.

• Sink is described by the section E1.2.1.7 Trace Buffer Unit disabled.

XRHRGC For use by self-hosted software in a platform Operating System environment, a trace buffer manager such as a
Trace Buffer Unit or ETR must support a trace buffer that is mapped to a set of non-contigous physical blocks in
memory. The Trace Buffer Unit achieves this using the PE VMSA-based MMU, meaning it cooperates well with
other software.

This means:

• The trace buffer is normally virtually addressed.

• The trace buffer has an owning Exception level and owning Security state that define the translation regime
the trace buffer uses.

• FEAT_TRBE provides a synchronization instruction, TSB CSYNC, that is used with a DSB operation to flush
trace to the trace buffer.

• Trace is implicitly prohibited when the owning translation regime is not in context. That is, trace is prohibited
if executing at a higher Exception level than the owning Exception level, or not executing in the owning
Security state. This is an addition to the Trace Extension.

However, the Trace Buffer Extension also allows the trace buffer to be defined using physical addresses. This
allows the Trace Buffer Unit to be used for debugging software that changes the virtual address mappings. In this
configuration, the buffer must be contiguously mapped in physical memory.

The extent of the trace buffer is defined by a Base pointer and a Limit pointer. The Base pointer and Limit pointer
are at-least 4KB-aligned, meaning a buffer must be at least one full virtual page.

The Trace Buffer Unit supports two types of operational modes:

• The trace buffer mode controls how the Trace Buffer Unit uses the trace buffer.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter E1. Trace Buffer Extension
E1.1. Description

• The trigger mode controls how the Trace Buffer Unit reacts to a trigger condition signaled by the trace unit.

E1.1.2 System events

IXDSQV The trace unit can be configured to react to PE events and events from the Cross-trigger Interface (CTI). The CTI
is for use by external debuggers.

As part of the Trace Buffer Extension and FEAT_ETE, the PMU and FEAT_ETE event sources are unified into a
single event number space. Unless otherwise stated, all architecturally-defined Common events that can be counted
by the PMU are usable as an event at the trace unit.

The following additional architecturally-defined events are provided:

• The CTI_TRIGOUT<n> events are defined to map the system events from the CTI into the PMU event
number space. As well as defining these events for the trace unit, this also provides a standard mechanism for
counting external events passed to the PE, as recommended by the Arm® Architecture Reference Manual,
for A-profile architecture [1].

• The TRCEXTOUT<n> events are defined to allow the PMU to count the events that a FEAT_ETE
implementation of the trace unit might generate.

• The PMU_OVFS and PMU_HOVFS events are defined to allow the trace unit to trigger directly from a PMU
overflow without using the Performance Monitors overflow trigger for PMU counters accessible to EL1 and
EL0, and EL2, respectively.

• The TRB_WRAP event is defined to allow the trace unit to trigger when the current write pointer reaches the
end of the trace buffer and is wrapped.

See also:

• Chapter D1 Embedded Trace Extension
• E1.3 Events

E1.1.3 Interrupts

IKQXVW An interrupt request is raised on a buffer mangement event, such as an abort or the trace buffer filling. This is the
trace buffer management interrupt.

The interrupt request is passed to an interrupt controller, such as a Generic Interrupt Controller (GIC).

Arm recommends this is a Private Peripheral Interrupt (PPI).

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Chapter E1. Trace Buffer Extension
E1.2. Specification

E1.2 Specification

RKYJWX If FEAT_ETE is implemented, then FEAT_TRBE is implemented.

RKLNJV If FEAT_TRBE is implemented, then a trace unit that implements FEAT_ETE is implemented.

RLPMRM If FEAT_TRBE is implemented, then FEAT_TRF is implemented.

SQVGQX The FEAT_TRBE feature is identified to software by ID_AA64DFR0_EL1.TraceBuffer.

RPLYXP Other than where stated otherwise, this specification describes a simple sequential model of the Trace Buffer Unit.
That is, one which performs the simple loop of:

1. Collect a single byte of trace data from the trace unit.

2. If required, performs an address translation for the address of the current write pointer to the physical address
for the write pointer.

3. If permitted, write the byte of trace data to the write address.

4. If collection is not stopped, increment the current write pointer.

5. If necessary, decrement the Trigger Counter.

Trace buffer management events are processed as part of this operation loop.

Implementations compliant with the architecture conform with the described behavior of the Trace Buffer Unit.
This specification is not intended to describe how to build an implementation of the Trace Buffer Unit, nor to limit
the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with this specification is the same as a simple sequential model. Trace appears to be written sequentially
by the Trace Buffer Unit.

This specification also describes rules for software to use the Trace Buffer Unit.

E1.2.1 The trace buffer

RYCHKJ If and only if all of the following are true, then the Trace Buffer Unit is Enabled:

• SelfHostedTraceEnabled() == TRUE.

• TRBLIMITR_EL1.E is 1.

The pseudocode function TraceBufferEnabled shows this.

RJYXPM If the Trace Buffer Unit is not Enabled, then the Trace Buffer Unit is Disabled. See E1.2.1.7 Trace Buffer Unit
disabled.

The pseudocode function TraceBufferEnabled shows this.

ISJMTV SelfHostedTraceEnabled() is defined by FEAT_TRF in the Arm® Architecture Reference Manual, for A-profile
architecture [1].

RBGLHT If and only if all of the following are true, then the Trace Buffer Unit is Running:

• The Trace Buffer Unit is Enabled.

• TRBSR_EL1.S is 0.

The pseudocode function TraceBufferRunning shows this.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

450

Chapter E1. Trace Buffer Extension
E1.2. Specification

RFRHXV If and only if all of the following are true, then Collection is stopped:

• The Trace Buffer Unit is Enabled.

• TRBSR_EL1.S is 1.

The pseudocode function TraceBufferRunning shows this.

IJYSQZ While the Trace Buffer Unit is Enabled, it collects trace data from the trace unit and does one of the following:

• Accepts the trace data and writes it to the trace buffer in memory.

• Discards the trace data. The trace data is lost.

• Rejects the trace data.

RYMYQX When the Trace Buffer Unit is Enabled and Running, and the Trace Buffer Unit is able to accept the trace data, the
Trace Buffer Unit Accepts the trace data from the trace unit and writes it into the trace buffer.

RLNTVR When the Trace Buffer Unit is Enabled and Running, and the Trace Buffer Unit is not able to accept the trace data,
the Trace Buffer Unit Rejects the trace data from the trace unit. The trace data might be retained by the trace unit
until the Trace Buffer Unit Accepts the trace data.

ISQYCT For example, the Trace Buffer Unit might not be able to accept trace data while its internal buffers are full.

ITRCDR If the Trace Buffer Unit Rejects trace data and the trace unit is not able to retain the trace data, then the trace unit
discards it and enters an Overflow state. Details of Overflow state and how the trace unit recovers from Overflow
state are defined by the trace unit.

RYMVZL When the Trace Buffer Unit is Enabled and Collection is stopped, the Trace Buffer Unit Discards trace data from
the trace unit. The trace data is lost.

RPHSKP When used with a trace unit that implements FEAT_ETE, the Trace Buffer Unit ignores the value of the ETE
TRCTRACEIDR register.

E1.2.1.1 The trace buffer pointers

RWKBRT The trace buffer is defined by three trace buffer pointer addresses:

• The Base pointer.

• The Limit pointer.

• The current write pointer.

RFVPBS The trace buffer starts at the Base pointer and extends to the Limit pointer. The location at the Base pointer is
included in the trace buffer. The location at the Limit pointer is not included in the trace buffer.

RXBLPK The Base pointer and Limit pointer must be aligned by software to the smallest implemented translation granule
size.

RVHNTF For each byte of trace the Trace Buffer Unit Accepts and writes to the trace buffer at the address in the current
write pointer, one of the following applies:

• If the current write pointer is not equal to the Limit pointer minus one, then the current write pointer is
incremented by one.

• If the current write pointer is equal to the Limit pointer minus one, then all of the following occur:

– The current write pointer is wrapped by setting it to the Base pointer.
– TRBSR_EL1.WRAP is set to 1.
– The TRB_WRAP event is generated.

RBGBCJ The current write pointer is not incremented when Collection is stopped.

RVMVJH The required alignment of the current write pointer is IMPLEMENTATION DEFINED.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter E1. Trace Buffer Extension
E1.2. Specification

IBTSCF The Trace Buffer Unit can write trace data to memory in quantized units. The behavior is as if the bytes are written
sequentially.

RJMPCB The Base pointer is (TRBBASER_EL1.BASE << 12). Bits [11:0] of the Base pointer are zero.

RLLBBS The Limit pointer is (TRBLIMITR_EL1.LIMIT << 12). Bits [11:0] of the Limit pointer are zero.

RKXRTY The current write pointer is TRBPTR_EL1.PTR[63:0].

RPBGNS The Trigger Counter is TRBTRG_EL1.TRG.

E1.2.1.2 Address translation enabled

RXRNCQ If TRBLIMITR_EL1.nVM is 0 then the Base pointer, Limit pointer, and current write pointer are virtual addresses
in the stage 1 translation regime of the owning translation regime.

RCMDTG If TRBLIMITR_EL1.nVM is 0, then the stage 1 translation process for translating a virtual addresses, and checking
for MMU faults is identical to that for any other virtual address in the owning translation regime.

IGKBYK If TRBLIMITR_EL1.nVM is 0, RCMDTG means all of the following apply:

• The virtual addresses are translated to stage 1 output addresses by stage 1 translation, and checked for stage 1
MMU faults. The stage 1 output addresses are:

– Physical address in the owning Security state if the owning translation regime has no stage 2 translation.

– Intermediate physical addresses (IPAs) in the owning Security state if the owning translation regime has
stage 2 translations.

• If stage 1 translation is enabled for the owning translation regime, the memory type, and, as applicable,
Cacheability, Shareability, and Device type attributes, for stage 1 output addresses are defined by the
translation table entries for the virtual address being written to.

• If stage 1 translation is disabled for the owning translation regime, the memory type of the stage 1 output
addresses is Device-nGnRnE, unless overridden by stage 2 controls.

• If SCTLR_ELx.C is 0 for the owning translation regime and stage 1 translation is enabled then all accesses
to Normal memory are Non-cacheable.

• TRBPTR_EL1[63:56] are ignored by address translation if the respective TBI bit is 1.

RSJFRQ When the Trace Buffer Unit is Enabled, the Trace Buffer Unit might prefetch and cache address translations for the
translation regime of the owning Exception level, including when the owning Exception level is out-of-context.

IQXJZX RSJFRQ means that, when the Trace Buffer Unit is enabled and the owning Exception level is a lower Exception
level, then the Trace Buffer Unit might make memory accesses to translation table entries from the translation
regime of the owning Exception level, using the settings of the System registers associated with that translation
regime.

If the PE is not executing in the owning Security state, or the PE is executing at EL3 and SCR_EL3.NS does not
indicate the owning Security state then the translation regime of the owning Exception level might not be the
owning translation regime.

These memory accesses might be observed by other observers, to the extent that those accesses are required to be
observed as determined by the shareability and cacheability of those translation table entries.

This is an exception to the rules in the section Use of out-of-context translation regimes of the Arm® Architecture
Reference Manual, for A-profile architecture [1].

See also G3.1 Context switching.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter E1. Trace Buffer Extension
E1.2. Specification

E1.2.1.3 Address translation disabled

RPBZRZ If TRBLIMITR_EL1.nVM is 1, the Base pointer, Limit pointer, and current write pointer are:

• Physical address in the owning Security state if the owning translation regime has no stage 2 translation.

• Intermediate physical addresses (IPAs) in the owning Security state if the owning translation regime has
stage 2 translations.

These addresses are output directly by stage 1 without any address translation.

RFJKLW If TRBLIMITR_EL1.nVM is 1, TRBMAR_EL1 defines the memory type, and, as applicable, Cacheability,
Shareability, and Device type attributes, for the stage 1 output addresses.

IGLNHS If TRBLIMITR_EL1.nVM is 1, the values of SCTLR_ELx.{C,M} for the owning translation regime are ignored
for the purposes of determining the trace buffer Cacheability attributes.

SZMPXW Locations are accessed with mismatched attributes if all accesses to the location do not use a common definition of
attributes of that location. It is possible to generate mismatched attributes for a location by accessing that location
using different translations, from different Observers, and so on.

If TRBLIMITR_EL1.nVM is 1 it is possible to generate mismatched attributes for a location from within the same
stage 1 translation regime, using TRBMAR_EL1.

Software must be aware of the consequences of and permitted behaviors when accessing a memory location with
mismatched attributes. For more information, including a full definition of mismatched attributes and the permitted
behaviors, see the Arm® Architecture Reference Manual, for A-profile architecture [1].

RMXRFD If TRBLIMITR_EL1.nVM is 1 and TRBPTR_EL1[top:PAMax()] is nonzero, a stage 1 Address Size fault is
generated when the Trace Buffer Unit attempts to write to memory, where PAMax() is defined by the Arm®
Architecture Reference Manual, for A-profile architecture [1],and:

• If FEAT_LPA is implemented, top is 51.

• If FEAT_LPA is not implemented, top is 47.

RBRRRK If TRBLIMITR_EL1.nVM is 1 and TRBPTR_EL1[63:(top+1)] is nonzero when the Trace Buffer Unit attempts to
write to the trace buffer, then one of the following occurs, and it is CONSTRAINED UNPREDICTABLE which:

• A Stage 1 Address Size fault is generated.

• TRBPTR_EL1[63:(top+1)] are ignored and treated as zero.

The value of top is as defined by RMXRFD.

E1.2.1.4 Stage 2 translation

RJCMKS If the owning translation regime has stage 2 translations, the stage 2 process of translating the stage 1 output
intermediate physical addresses and attributes to a physical address and attributes, and checking for MMU faults is
identical to that for any other intermediate physical address generated by the owning translation regime.

IZSDMR For example:

• The intermediate physical addresses are translated to physical addresses by stage 2 translation, and checked
for stage 2 MMU faults.

• The attributes from stage 1 are combined with the attributes from the stage 2 translation to generate the
physical memory attributes.

• If the Effective value of HCR_EL2.DC in the owning translation regime is 1, then stage 1 translation is
disabled and the memory type produced by stage 1 is Normal Non-shareable, Inner Write-Back Cacheable
Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate Write-Allocate, regardless of the
value of SCTLR_EL1.C.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter E1. Trace Buffer Extension
E1.2. Specification

• If the Effective value of HCR_EL2.MIOCNCE in the owning translation regime is 0, then for permitted
accesses to a memory location that use a common definition of the Shareability and Cacheability of the
location, there is no loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

E1.2.1.5 Accesses to the trace buffer

RJTVDD Writes to the trace buffer by the Trace Buffer Unit are privileged writes within the owning translation regime.

ITTKZQ The memory type, and, as applicable, Cacheability, Shareability, and Device type attributes, for accesses made by
the Trace Buffer Unit are determined by the translation tables or TRBMAR_EL1.

See:

• RCMDTG and IGKBYK, if translation is enabled.
• RFJKLW, if translation is disabled.
• RJCMKS and IZSDMR, if the owning translation regime has stage 2 translations.

RFBKCC It is IMPLEMENTATION DEFINED whether address translations performed by the Trace Buffer Unit manage dirty
state and the Access flag. This is discoverable by software from TRBIDR_EL1.F.

RSHWSL If hardware management of dirty state by the Trace Buffer Unit is implemented, and hardware management
of dirty state is enabled for the owning translation regime, then the Trace Buffer Unit can speculatively update
the translation table descriptor for any Page or Block in the trace buffer before writing data to it, if the write is
otherwise permitted. This includes the case where a trace buffer management event means the Trace Buffer Unit
stops writing data before the Page or Block is written to.

RBWNRF The access granule for writes to the trace buffer by the Trace Buffer Unit is IMPLEMENTATION DEFINED, up to a
maximum of 2KB, and might vary from time to time.

RCMSNC Writes to any Device memory type by the Trace Buffer Unit occur once.

RRZTDD A memory access from the Trace Buffer Unit that crosses a Page or Block boundary to a memory location that has
a different memory type or Shareability attribute results in CONSTRAINED UNPREDICTABLE behavior. In this case,
the implementation performs one of the following behaviors:

• Each memory access generated by the Trace Buffer Unit uses the memory type and Shareability attribute
associated with its own address.

• The access generates an Alignment fault caused by the memory type:

– If only the stage 1 translation generated the mismatch, or there is only one stage of translation in the
owning translation regime, the resulting trace buffer management event is a stage 1 Data Abort.

– If only the stage 2 translation generated the mismatch, the resulting trace buffer management event is a
stage 2 Data Abort.

– If both stages of translation generate the mismatch, the resulting trace buffer management event is either
a stage 1 Data Abort or a stage 2 Data Abort.

• The trace data is discarded and the current write pointer might not be updated.

RXRQTN A memory access from the Trace Buffer Unit to Device memory that crosses a boundary corresponding to the
smallest translation granule size of the implementation causes CONSTRAINED UNPREDICTABLE behavior. In this
case, the implementation performs one of the following behaviors:

• Each memory accesses generated by the Trace Buffer Unit is performed as if the boundary has no effect on
the memory accesses.

• Each memory accesses generated by the Trace Buffer Unit is performed as if the boundary has no effect on
the memory accesses except that there is no guarantee of ordering between it and other memory accesses.

• The access generates an Alignment fault caused by the memory type:

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter E1. Trace Buffer Extension
E1.2. Specification

– If only the stage 1 translation causes the boundary to be crossed, or there is only one stage of translation
in the owning translation regime, the resulting trace buffer management event is a stage 1 Data Abort.

– If only the stage 2 translation causes the boundary to be crossed, the resulting trace buffer management
event is a stage 2 Data Abort.

– If both stages of translation cause the boundary to be crossed, the resulting trace buffer management
event is either a stage 1 Data Abort or a stage 2 Data Abort.

• The trace data is discarded and the current write pointer might not be updated.

Note

The boundary referred by RXRQTN is between two Device memory regions that are both:

• Of the size of the smallest implemented translation granule.
• Aligned to the size of the smallest implemented translation granule.

IVKQBR Although the Trace Buffer Unit behaves as if trace data is written a byte at a time, it is not required to do so.

For example, RBWNRF and RCMSNC mean that if the memory type for the trace buffer is Device-nGnRnE, then all
of the following apply:

• Writes are not repeated and not re-ordered.

• A write Completes only after it reaches its endpoint in the memory system.

• The access granule size at the endpoint in the memory system is not defined by the architecture. However, a
specific implementation might define the granule to permit interoperability with specific devices.

The access granule is not required to be fixed. For example, the Trace Buffer Unit might output a smaller granule
when flushing trace data to the trace buffer.

See also IQQKZF.

E1.2.1.6 The owning translation regime

RDPGJG The owning translation regime is defined by the owning Security state and the owning Exception level.

RHBZNT When the Trace Buffer Unit is Enabled, the owning Security state is:

• Non-secure state if and only if at least one of the following is true:
– EL3 is not implemented and the PE executes in Non-secure state.
– MDCR_EL3.NSTB is either 0b10 or 0b11.

• Secure state if and only if at least one of the following is true:
– EL3 is not implemented and the PE executes in Secure state.
– MDCR_EL3.NSTB is either 0b00 or 0b01.

RSKVWG When the Trace Buffer Unit is Enabled, the owning Exception level is:

• EL1 if and only if at least one of the following is true:
– EL2 is not implemented in the owning Security state.
– EL2 is disabled in the owning Security state.
– MDCR_EL2.E2TB is either 0b10 or 0b11.

• EL2 if and only if all of the following is true:
– EL2 is implemented and enabled in the owning Security state.
– MDCR_EL2.E2TB is 0b00.

RXWDZV When the Trace Buffer Unit is Enabled and the owning Exception level is EL1, all of the following apply:

• The owning translation regime is EL1&0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter E1. Trace Buffer Extension
E1.2. Specification

• If TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual addresses in the EL1&0
translation regime using the current ASID from TTBRx_EL1.

• If TRBLIMITR_EL1.nVM is 1, the trace buffer pointer addresses are intermediate physical addresses.

• Intermediate physical addresses (whether from the output of stage 1, or the pointers, as applicable) are subject
to stage 2 translation using the current VMID if EL2 is implemented and enabled and HCR_EL2.VM is 1.

• The following are prohibited trace regions:

– EL3.
– EL2.
– EL0, if EL2 is implemented and enabled and HCR_EL2.TGE is 1.

RSHXTV When the Trace Buffer Unit is Enabled and the owning Exception level is EL2, all of the following apply:

• If HCR_EL2.E2H is 0, the owning translation regime is EL2.

• If HCR_EL2.E2H is 1, the owning translation regime is EL2&0.

• If HCR_EL2.E2H is 0 and TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual
addresses in the EL2 translation regime.

• If HCR_EL2.E2H is 1 and TRBLIMITR_EL1.nVM is 0, the trace buffer pointer addresses are virtual
addresses in the EL2&0 translation regime using the current ASID from TTBRx_EL2.

• If TRBLIMITR_EL1.nVM is 1, the trace buffer pointer addresses are physical addresses.

• EL3 is a prohibited trace region.

IQCKVZ The following table summarizes the owning translation regime.

In this table:

Enabled is the value of the function TraceBufferEnabled().

NSTB is the Effective value of MDCR_EL3.NSTB.

E2TB is the Effective value of MDCR_EL2.E2TB.

EEL2 is the Effective value of SCR_EL3.EEL2.

E2H is the Effective value of HCR_EL2.E2H.

The pseudocode function TraceBufferOwner shows this.

Enabled NSTB E2TB EEL2 E2H Owning translation regime

FALSE X X X X Disabled

TRUE 0b0X X 0b0 X Secure EL1&0

TRUE 0b0X 0b00 0b1 0b0 Secure EL2

TRUE 0b0X 0b00 0b1 0b1 Secure EL2&0

TRUE 0b0X 0b1X 0b1 X Secure EL1&0

TRUE 0b1X 0b00 X 0b0 Non-secure EL2

TRUE 0b1X 0b00 X 0b1 Non-secure EL2&0

TRUE 0b1X 0b1X X X Non-secure EL1&0

RRRCNN When any of the following is true, then the translation of addresses generated by the Trace Buffer Unit is
CONSTRAINED UNPREDICTABLE:

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter E1. Trace Buffer Extension
E1.2. Specification

• The owning Security state is Secure and SCR_EL3.NS is 1.
• The owning Security state is Non-secure and SCR_EL3.NS is 0.

The PE behaves as if one of the following is true for these translations:

• The owning Security state is Secure and SCR_EL3.NS is 0.
• The owning Security state is Non-secure and SCR_EL3.NS is 1.

Note: The behavior might differ within the same translation.

IMJMWG Secure and Non-secure translation regimes have different behaviors. Non-secure translation regimes only operate
on Non-secure addresses, but a Secure stage 1 translation regime can generate both Secure and Non-secure output
addresses and a Secure stage 2 translation regime can have both Secure and Non-secure input and output addresses.

In addition, stage 2 translation is disabled when EL2 is disabled in the current Security state.

RRRCNN means that if software executing at EL3 changes the value of SCR_EL3.NS before ensuring all Trace
operations are Complete, this might cause CONSTRAINED UNPREDICTABLE behaviors, including any of the
following:

• The owning Security state is Non-secure but the PE can generate Secure output addresses at both stage 1 and,
if applicable, stage 2.

• The owning Security state is Non-secure EL1&0 but the PE behaves as if stage 2 is disabled because, in this
example, Secure EL2 is disabled.

• The owning Security state is Secure but the PE treats Secure output addresses as Non-secure addresses at
both stage 1 and, if applicable, stage 2.

• The owning Security state is Secure EL1&0 but the PE behaves as if stage 2 is enabled even if Secure EL2 is
disabled.

See also RNSFRQ and RMRVPT.

RMFFGX When the Trace Buffer Unit is Enabled and the owning Security state is Non-secure state, Secure state is a
prohibited trace region.

RVGWJN When the Trace Buffer Unit is Enabled and the owning Security state is Secure state, Non-secure state is a
prohibited trace region.

IDCRYN The Self-hosted trace extension, FEAT_TRF, provides additional controls to define Trace Prohibited regions.

FEAT_TRF is defined in the Arm® Architecture Reference Manual, for A-profile architecture [1].

The following table summarizes the Trace Prohibited regions, by Exception level and state, when all of the
following apply:

• TraceBufferEnabled() == TRUE.

• EL3, Non-secure EL2 and Secure EL2 are all implemented.

• EL3 is using AArch64.

In this table:

NS is the Effective value of SCR_EL3.NS.

STE is the Effective value of MDCR_EL3.STE.

NSTB is the Effective value of MDCR_EL3.NSTB.

E2TB is the Effective value of MDCR_EL2.E2TB.

EEL2 is the Effective value of SCR_EL3.EEL2.

TGE is the Effective value of HCR_EL2.TGE.

The EL3, EL2, EL1, EL0 columns show which control, if any, enables tracing at the Exception level. In these
columns:

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter E1. Trace Buffer Extension
E1.2. Specification

P means tracing is prohibited.

E2TRE means tracing is allowed if TRFCR_EL2.E2TRE is 1 and prohibited otherwise.

E1TRE means tracing is allowed if TRFCR_EL1.E1TRE is 1 and prohibited otherwise.

E0HTRE means tracing is allowed if TRFCR_EL2.E0HTRE is 1 and prohibited otherwise.

E0TRE means tracing is allowed if TRFCR_EL1.E0TRE is 1 and prohibited otherwise.

The pseudocode function TraceAllowed shows this.

NS STE NSTB E2TB EEL2 TGE EL3 EL2 EL1 EL0

0b1 X 0b0X X X X P P P P

0b1 X 0b1X 0b1X X 0b0 P P E1TRE E0TRE

0b1 X 0b1X 0b1X X 0b1 P P n/a P

0b1 X 0b1X 0b00 X 0b0 P E2TRE E1TRE E0TRE

0b1 X 0b1X 0b00 X 0b1 P E2TRE n/a E0HTRE

0b0 0b0 X X X X P P P P

0b0 0b1 0b1X X X X P P P P

0b0 0b1 0b0X X 0b0 X P n/a E1TRE E0TRE

0b0 0b1 0b0X 0b1X 0b1 0b0 P P E1TRE E0TRE

0b0 0b1 0b0X 0b1X 0b1 0b1 P P n/a P

0b0 0b1 0b0X 0b00 0b1 0b0 P E2TRE E1TRE E0TRE

0b0 0b1 0b0X 0b00 0b1 0b1 P E2TRE n/a E0HTRE

RMCYDC When the Trace Buffer Unit is Disabled, the owning translation regime, owning Security state, and owning
Exception level are not defined.

E1.2.1.7 Trace Buffer Unit disabled

RHNTLG When the Trace Buffer Unit is Disabled, the Trace Buffer Unit Discards trace data from the trace unit.

RBSMLW The Trace Buffer Unit does not prefetch and cache address translations when the Trace Buffer Unit is Disabled.

IYHJDQ When the Trace Buffer Unit is Disabled the trace unit might send trace data to an IMPLEMENTATION DEFINED
trace bus.

RJYTYH The trace unit does not send trace data to the IMPLEMENTATION DEFINED trace bus when the Trace Buffer Unit is
Enabled.

IFPXHD Figure E1.1 shows this IMPLEMENTATION DEFINED trace bus as a dotted line to an external trace Sink.

Details of this bus are outside the scope of this architecture, and might require further configuration. For example,
if the trace unit implements FEAT_ETE and the trace bus is AMBA ATB, the ATID value is configured through
the trace unit external trace registers.

E1.2.1.8 Restrictions on programming the Trace Buffer Unit

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter E1. Trace Buffer Extension
E1.2. Specification

RMSPSD A current write pointer value is out-of-range if any of the following are true:

• The current write pointer is less-than the Base pointer, treating both pointers as unsigned integers.

• The current write pointer is greater-than-or-equal-to the Limit pointer, treating both pointers as unsigned
integers.

• Bits [63:56] of the current write pointer are not equal to bits [63:56] of the Base pointer.

• Bits [63:56] of the current write pointer are not equal to bits [63:56] of the Limit pointer.

Note: RMSPSD means the current write pointer is out-of-range if the Base pointer is not less-than the Limit pointer
or bits [63:56] of the Base pointer are not equal to bits [63:56] of the Limit pointer.

RXXZHM A current write pointer or Trigger Counter value is misaligned if it is not a multiple of an IMPLEMENTATION
DEFINED alignment specified by TRBIDR_EL1.Align.

RHXZZM A current write pointer or Trigger Counter value is a valid restart value if it was previously initialized with a value
that was not out-of-range and not misaligned and later read from the applicable register when all of the following
are true:

• The Trace Buffer Unit is Disabled.

• All Trace operations are Complete. See RNSFRQ for the definition of Complete.

• No External Abort has been reported to the Trace Buffer Unit. TRBSR_EL1.EA is 0.

• No write by the Trace Buffer Unit has generated an Alignment fault.

• No write by the Trace Buffer Unit has generated an asynchronous SError interrupt exception.

RXZWXQ A current write pointer or Trigger Counter value is a fault value if it was previously initialized with a value that
was not out-of-range and not misaligned or a value that was a valid restart value, and later read from the applicable
register when all of the following are true:

• The Trace Buffer Unit is Disabled.

• All Trace operations are Complete. See RNSFRQ for the definition of Complete.

• One of the following is true:

– An External Abort has been reported to the Trace Buffer Unit. TRBSR_EL1.EA is 1.

– A write by the Trace Buffer Unit has generated an Alignment fault.

– A write by the Trace Buffer Unit has generated an asynchronous SError interrupt exception.

See also RXRLSC.

ICRSGP An MMU fault does not generate a fault value. If software is able to fix the fault, then the Trace Buffer Unit can
restart using the current write pointer and Trigger Counter values.

However, following an MMU fault:

• RYMVZL means the Trace Buffer Unit Discards trace because Collection is stopped. That is, trace will be lost.

• RBQTGW means that the Trigger Counter might be incorrect if a Detected Trigger has occurred.

See also SGTLCY.

ISFTPM Following a trace buffer management event, or on a context switch, the current write pointer and Trigger Counter
might be misaligned. If TRBIDR_EL1.Align is nonzero, software should treat bits [M :0] as SBZP when writing
to the applicable register, where M is (TRBIDR_EL1.Align-1) in each of the following situations:

• When first creating a trace buffer, software sets bits [M :0] to zero, meaning the registers are set to an aligned
value.

• On a context switch, the definitions of a restart value and fault value mean software does not have to validate
or modify the value read from hardware.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter E1. Trace Buffer Extension
E1.2. Specification

A current write pointer restart value or fault value will not be out-of-range.

IVRFQC A fault value is for error handling purposes only. Software must not cause the Trace Buffer Unit to become Enabled
and Running with the current write pointer having a fault value.

Software context switching the Trace Buffer Unit will avoid this issue because the trace buffer management event
sets TRBSR_EL1.S to 1, meaning the Trace Buffer Unit will not become Running following the context switch.

RJWWWM If the current write pointer is written by a direct write with a misaligned value that is not a restart value and not a
fault value, the value returned by a subsequent direct read of the current write pointer is UNKNOWN.

RMGZWR If the current write pointer has an out-of-range value, or a misaligned value that is not a restart value when the
Trace Buffer Unit attempts to write to the trace buffer, then any of the following might occur:

• If the value is out-of-range the current write pointer might be wrapped before or after the write, and the
TRB_WRAP event might be generated.

• If the value is misaligned the write might generate an Alignment fault.

• The Trace Buffer Unit might write the trace data to any address in memory that is writable by a privileged
access in the owning translation regime. These addresses are:

– Virtual addresses in the owning translation regime if TRBLIMITR_EL1.nVM is 0.

– Intermediate physical addresses in the owning Security state if TRBLIMITR_EL1.nVM is 1 and the
owning translation regime has stage 2 translations.

– Physical addresses in the owning Security state if TRBLIMITR_EL1.nVM is 1 and the owning translation
regime has no stage 2 translation.

• The write might generate a trace buffer management event with an UNKNOWN reason:

– TRBSR_EL1.S is either set to 1 or unchanged.

– TRBSR_EL1.WRAP is either set to 1 or unchanged.

– TRBSR_EL1.EC is set to an UNKNOWN value.

– TRBSR_EL1.MSS is set to an UNKNOWN value.

– The TRB_WRAP event might be generated.

RCPDDM If the Trigger Counter is written by a direct write with a misaligned value that is not a restart value, then all of the
following apply:

• If the value is not a fault value, the value returned by a subsequent direct read of the Trigger Counter register
is UNKNOWN.

• The generation of a Trigger Event while the Trace Buffer Unit remains Enabled and Running is UNPRE-
DICTABLE.

IYSXXN RXXZHM and RCPDDM mean an implementation that always keeps the current write pointer and/or Trigger
Counter aligned to the IMPLEMENTATION DEFINED alignment specified by TRBIDR_EL1.Align, where
TRBIDR_EL1.Align is greater-than-zero (byte alignment), can implement bits [M :0] of the applicable register(s)
as RAZ/WI bits, where M is (TRBIDR_EL1.Align-1).

RHXZZM allows an implementation where an External Abort is reported to the Trace Buffer Unit and handled
synchronously to implement TRBPTR_EL1[M :N] (where N is implementation-specific and typically determined
by the minimum memory access granule) as read/write bits for the purpose of reporting an External Abort fault
address, but otherwise ignore the value in these bits. (If N > 0, bits [(N − 1):0] can be implemented as RAZ/WI.)

RDJMDD When TRBLIMITR_EL1.E is 1, the PE might ignore a direct write to any of the following registers, other than a
direct write to TRBLIMITR_EL1 that modifies TRBLIMITR_EL1.E:

• The current write pointer, TRBPTR_EL1.

• The Base pointer, TRBBASER_EL1.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter E1. Trace Buffer Extension
E1.2. Specification

• The Limit pointer, TRBLIMITR_EL1.

• The Trigger Counter, TRBTRG_EL1.

• TRBSR_EL1.

• TRBMAR_EL1.

Note

This means software must use appropriate Context synchronization operations to order a direct write that
modifies TRBLIMITR_EL1.E with respect to other direct writes to Trace Buffer Unit registers. This includes a
write to enable the Trace Buffer Unit by setting TRBLIMITR_EL1.E to 1.

See also:

• E1.2.3 Synchronization and the Trace Buffer Unit.
• E1.2.3.8 UNPREDICTABLE behavior.
• G3.1 Context switching.

E1.2.1.9 Memory System Performance Resource and Monitoring Extension (MPAM)

RWXSYG If the MPAM Extension, FEAT_MPAM, is implemented then the MPAM information for accesses made by the
Trace Buffer Unit to the trace buffer use the MPAM values of the owning Exception level and owning Security
state.

FEAT_MPAM is defined by the Arm® Architecture Reference Manual Supplement; Memory System Resource
Partitioning and Monitoring (MPAM), for A-profile architecture [6].

IXLNWD For example, if the owning Exception level is EL2 the trace buffer writes use MPAM2_EL2.PARTID_D and
MPAM2_EL2.PMG_D. MPAM_NS is set for the owning Security state.

E1.2.1.10 Memory Tagging Extension

RYGMLW If FEAT_MTE is implemented then the Trace Buffer Unit generates an Unchecked access for each access to the
trace buffer.

Note: This is the case even when a Tagged Normal memory type is accessed.

See also:

• “Memory Tagging Extension” chapter of the Arm® Architecture Reference Manual, for A-profile architecture
[1]

E1.2.1.11 Cache and TLB operations

IWYVXK Translations used by the Trace Buffer Unit might be cached in a TLB.

RGQJMC TLB maintenance operations that affect the TLB of the PE also affect any TLB caching translations for the Trace
Buffer Unit of that PE.

RRNPNM The PE is permitted, but not required, to cache all translations used by the Trace Buffer Unit in TLB caching
structures that combine stage 1 and stage 2 of the translation. This includes when TRBLIMITR_EL1.nVM is 1
and the owning translation regime has stage 2 translations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter E1. Trace Buffer Extension
E1.2. Specification

SLSZDR When TRBLIMITR_EL1.nVM is 1 and the owning translation regime has stage 2 translations, the Trace Buffer
Unit uses intermediate physical addresses (IPAs). RRNPNM permits, but does not require, such translations to be
cached in a TLB in such a way that an IPAS2 TLB maintenance operation is not sufficient to invalidate the cached
copies. In this case, there is no virtual address (VA) for the translation.

If TRBLIMITR_EL1.nVM is 1 and the owning translation regime has stage 2 translations, then the following code
executed at EL2 or above is sufficient to invalidate all cached copies of the stage 2 translations used by the Trace
Buffer Unit of the IPA held in Xt for the current VMID:

1 TLBI IPAS2E1, Xt
2 DSB
3 TLBI VMALLE1

Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries that must be
invalidated by an IPAS2L instruction are those that come from the final level of the translation table lookup.

Equivalent sequences guaranteed to invalidate all entries invalidated by the above code sequence can be used, such
as TLBI ALL or TLBI VMALLS1S2.

RDNFWB Cache maintenance operations that affect the caches of the PE also affect data caching by the Trace Buffer Unit of
that PE.

IMZQPT RGQJMC and RDNFWB mean that the completion of any cache or TLB maintenance instruction includes its completion
on all Trace Buffer Units for PEs that are affected by both the instruction and the DSB operation that is required to
guarantee visibility of the maintenance instruction. See E1.2.3.7 Detailed synchronization litmus tests for more
information.

E1.2.1.12 Effect on the exclusive monitors and transactions

RDCVBN If an operation between Load-Exclusive and Store-Exclusive instructions is traced, and the the trace data is written
to an unrelated address, then the write has no effect on the exclusive monitors.

RMDJNK If an operation inside a transaction is traced, and the the trace data is written to an unrelated address, then the write
has no effect on the transaction.

RNWSKV If the Trace Buffer Unit writes to the marked address of an exclusives monitor in the Exclusive Access state, then
one of the following occurs, and it is CONSTRAINED UNPREDICTABLE which:

• The write has the same effect on the exclusives monitor as a store by the PE or any other Observer to that
address.

• The write has no effect on the exclusives monitor.

RFVRXJ If the Trace Buffer Unit writes to the working set of a transaction, then one of the following occurs, and it is
CONSTRAINED UNPREDICTABLE which:

• The write has the same effect on the transaction as a store by any other Observer to that address.

• The write has no effect on this transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter E1. Trace Buffer Extension
E1.2. Specification

E1.2.2 Trace buffer management

IGYHBH The Trace Buffer Extension supports the following trace buffer modes:

Circular Buffer mode In Circular Buffer mode, when the current write pointer reaches the Limit pointer, it is
wrapped by setting it to the Base pointer.

Wrap mode As Circular Buffer mode, except that an interrupt request is generated when the current write pointer
is wrapped.

Fill mode As Wrap mode, except that trace collection stops when the current write pointer is wrapped.

IFZXSV The trace buffer mode is controlled by TRBLIMITR_EL1.FM.

INFZKS A trace buffer management event occurs:

• On an Alignment fault, or MMU fault.

• On an External Abort.

• On a Trigger Event, if enabled.

• When the current write pointer is wrapped to the Base pointer and the trace buffer mode is not Circular Buffer
mode. This event is known as:

– A buffer wrap event, if the trace buffer mode is Wrap mode.

– A buffer full event, if the trace buffer mode is Fill mode.

• On a programming error, when permitted as an UNPREDICTABLE behavior of the PE. For more information,
see E1.2.1.8 Restrictions on programming the Trace Buffer Unit and E1.2.3.8 UNPREDICTABLE behavior.

• On an IMPLEMENTATION DEFINED event.

RHLKSG On a trace buffer management event all of the following occurs:

• The interrupt request bit, TRBSR_EL1.IRQ, is set to 1.

• The trace buffer management interrupt signal, TRBIRQ, is asserted.

• Additional syndrome for the event might be written to TRBSR_EL1.MSS.

RLRTBP TRBIRQ is a level triggered interrupt request driven by TRBSR_EL1.IRQ. This means that all of the following
apply:

• A direct write that sets TRBSR_EL1.IRQ to 1 causes the interrupt request to be asserted.

• The interrupt request remains asserted until software clears TRBSR_EL1.IRQ to 0.

RTPPCF When a GIC is implemented, TRBIRQ is configured as a PPI. TRBIRQ is signaled by the PE that implements
the Trace Buffer Unit.

IHHRLX The PPI number is not defined by the architecture. Arm recommends that the the PPI number is discoverable to an
Operating System, for example using ACPI or Device Tree interfaces.

SXLNJY Software must configure the trace buffer management interrupt to be taken to the correct Exception level.

IHJFLC Buffer full, Alignment fault, and MMU fault trace buffer management events are synchronous. This means that the
effect of these trace buffer management events setting TRBSR_EL1.S to 1, Collection is stopped, happens before
any further trace is collected by the Trace Buffer Unit from the trace unit.

IJLZDN The Trigger Event trace buffer management event initiates a trace unit flush meaning other trace might be written
to the trace buffer. This might cause a second trace buffer management event to be generated before Collection is
stopped by the Trigger Event trace buffer management event.

IZLVHR The TRBIRQ interrupt is always taken asynchronously by the PE, even if the event is reported synchronously to
the Trace Buffer Unit.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter E1. Trace Buffer Extension
E1.2. Specification

IGVGPB Following an Alignment fault, MMU fault, or External Abort trace buffer management event, TRBPTR_EL1
serves as a Fault Address Register.

For a fault or synchronous External Abort trace buffer management event, the frozen TRBPTR_EL1 is the address
that generated the fault or External Abort.

For an asynchronous External Abort trace buffer management event, the frozen TRBPTR_EL1 is not guaranteed to
be the address that generated the External Abort.

E1.2.2.1 Prioritization of a trace buffer management event

RMKCHT Where multiple synchronous trace buffer management events occur on writing trace data, the PE prioritizes them
as follows (from highest to lowest priority), reporting the highest priority event:

1. Synchronous fault.

2. Synchronous External Abort.

3. Buffer full event.

4. Buffer wrap event.

IBRLXK Do not confuse the prioritization of trace buffer management events with the prioritization of trace buffer
management interrupts by an interrupt controller.

RGTMJD Asynchronous and IMPLEMENTATION DEFINED trace buffer management events are not prioritized relative to
synchronous trace buffer management events.

E1.2.2.2 Buffer full and Buffer wrap events

RMBSHC If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Fill mode, then all of the
following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.WRAP is set to 1.

• The TRB_WRAP event is generated.

• If TRBSR_EL1.S is 0 then all of the following occur:

– TRBSR_EL1.S is set to 1, Collection is stopped.

– TRBSR_EL1.EC is set to 0x00, other buffer management event.

– TRBSR_EL1.BSC is set 0b00001, buffer filled.

• The other fields in TRBSR_EL1 are unchanged.

After the trace buffer management event, the current write pointer will point to the Base pointer.

RVBDJZ If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Wrap mode, then all of the
following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.WRAP is set to 1.

• The other fields in TRBSR_EL1 are unchanged.

• The TRB_WRAP event is generated.

Because TRBSR_EL1.S is unchanged, trace continues to be collected and written to the trace buffer.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter E1. Trace Buffer Extension
E1.2. Specification

IGDSTS If the current write pointer is wrapped to the Base pointer and the trace buffer mode is Circular Buffer mode, then
all of the following occur:

• TRBSR_EL1.WRAP is set to 1.

• The other fields in TRBSR_EL1 are unchanged.

• The TRB_WRAP event is generated.

IVCDNP If TRBSR_EL1.S is 1, the current write pointer is not updated, meaning the current write pointer is never wrapped
when TRBSR_EL1.S is already 1.

SHKNBM Software can configure the PMU to count the TRB_WRAP event and monitor how many times the current write
pointer has wrapped, particularly in Circular Buffer mode or Wrap mode.

IJSQPH See also G3.2 Controlling generation of trace buffer management events.

E1.2.2.3 Trigger Event

IHHLBM The Trace Buffer Extension supports detection of a trigger condition from the trace unit. A trigger condition is
typically used to stop trace capture to ensure trace is captured around a point of interest.

The trace unit defines how software programs the trace unit to generate trigger conditions.

A Detected Trigger is signaled to the Trace Buffer Unit by the trace unit when the trace unit detects a trigger
condition. The trace unit defines whether the Detected Trigger is signaled synchronously or asynchronously to the
trace data stream.

A Trigger Event occurs when the Trigger Counter has counted the specified number of trace bytes after a Detected
Trigger. Software can set the Trigger Counter to zero to skip this step.

The Trigger Counter is a counter used to delay a Trigger Event for a specified number of trace bytes after a
Detected Trigger.

Figure E1.2 shows this.

Trigger condit ion Detected Trigger

Counter = Counter - 1

Counter != 0
Trigger Event

Counter == 0

Counter != 0

Counter == 0

Figure E1.2: Trigger condition to Trigger Event

IYRQCN For a trace unit that implements FEAT_ETE, event 0 is the trigger condition.

SDHJTB When the trigger mode is set to Stop on trigger, software uses the Trigger Counter to control how trace is collected
around the Detected Trigger as follows:

• Set the Trigger Counter to zero to trace before the Detected Trigger.

• Set the Trigger Counter to half the size of the trace buffer to trace around the Detected Trigger.

• Set the Trigger Counter to the size of the trace buffer to trace after the Detected Trigger.

IKLRBB E1.2.1.8 Restrictions on programming the Trace Buffer Unit defines additional constraints on writing to the Trigger
Counter.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter E1. Trace Buffer Extension
E1.2. Specification

RKSQJW If a Detected Trigger occurs while the Trace Buffer Unit is Enabled, then all of the following occur:

• TRBSR_EL1.TRG is set to 1.

• The other fields in TRBSR_EL1 are unchanged.

RBQTGW If all of the following are true, then the Trace Buffer Unit decrements the Trigger Counter by 1 for each byte of
trace data written to the trace buffer by the Trace Buffer Unit:

• The Trigger Counter is nonzero.

• TRBSR_EL1.TRG is set to 1.

If the write generates an Alignment fault, MMU fault, or External Abort, it is UNPREDICTABLE whether the
Trigger Counter is decremented.

RQFGNQ If a Detected Trigger occurs when the Trigger Counter is nonzero and TRBSR_EL1.TRG is 0, the Trace Buffer
Unit might decrement the Trigger Counter by an amount up to the value specified by TRBIDR_EL1.Align without
writing any additional trace data to the trace buffer.

IQQKZF An implementation might include an internal buffer that collects bytes of trace data into more convenient units
before writing them to memory. For example, the width of the system bus or the length of a cache line.

In such an implementation, TRBIDR_EL1.Align specifies the size of this unit, and the Trigger Counter is
decremented by the size of this unit when the write occurs, meaning the Trigger Counter is always aligned to the
size specified by TRBIDR_EL1.Align.

However this means that if the Detected Trigger occurs when such an internal buffer is not empty, the Trace Buffer
Unit will over-decrement the counter when the internal buffer is written to memory. RQFGNQ permits this.

See also RBWNRF.

RDHLQG A Trigger Event is generated when the Trace Buffer Unit is Enabled and one of the following occurs:

• A Detected Trigger occurs when the Trigger Counter is zero and TRBSR_EL1.TRG is 0.

• The Trace Buffer Unit decrements the Trigger Counter to zero.

IZGFSK A Trigger Event is not generated when a Detected Trigger occurs, the Trigger Counter is set to zero and
TRBSR_EL1.TRG is already 1.

A Trigger Event is not generated when the Trace Buffer Unit is Disabled.

RRWJNN The Detected Trigger might be generated by a Trace operation tT. This might be the Trace operation generated by
an instruction that also matched the trigger condition, or might be a Trace operation generated asynchronously by
the trace unit to mark the trigger condition in the trace data. The trace unit defines this relationship for triggers.

RMLZZW A Trigger Event might be generated by a Trace operation as follows:

• If the Trigger Event is generated when a Detected Trigger occurs when the Trigger Counter is zero and
TRBSR_EL1.TRG is 0, and the Detected Trigger is generated by a Trace operation tT then the Trigger Event
is generated by the same Trace operation tT.

• If the Trigger Event is generated when the Trace Buffer Unit decrements the Trigger Counter to zero, then
Trigger Event is generated by the Trace operation that generated the trace data that caused the Trigger Counter
to decrement to zero.

A Trigger Event is not generated by a specific Trace operation if the Trigger Event is generated when a Detected
Trigger occurs when the Trigger Counter is zero and TRBSR_EL1.TRG is 0, and the Detected Trigger is not
generated by a specific Trace operation.

IGPHHS The link between a Trigger Event and a Trace operation that generated it affects when the Trace operation is
Microarchitecturally-finished and the behavior of the TSB CSYNC instruction. See RJQDJD.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter E1. Trace Buffer Extension
E1.2. Specification

INGLLQ The Trace Buffer Extension supports the following trigger modes:

Stop on trigger Trace collection is stopped and an interrupt request is generated after a Trigger Event.

IRQ on trigger An interrupt request is generated after a Trigger Event.

Ignore trigger The Trace Buffer Unit ignores the trigger condition.

In the Stop on trigger and IRQ on trigger modes, software specifies the amount of trace that is collected after the
trigger condition before the Trigger Event.

RXRRWP If a Trigger Event is generated when collection is not stopped and the trigger mode is Stop on trigger, then all of
the following occur:

• The Trace Buffer Unit initiates a trace unit flush of the trace unit.

• The TRB_TRIG event is generated.

On completion of the trace unit flush all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• If TRBSR_EL1.S is 0, then all of the following occur:

– TRBSR_EL1.S is set to 1, Collection is stopped.

– TRBSR_EL1.EC is set to 0x00, other buffer management event.

– TRBSR_EL1.BSC is set to 0b000010, Trigger Event.

• The other fields in TRBSR_EL1 are unchanged.

After the trace buffer management event, the current write pointer will point to either the first byte after the last
trace byte written to the trace buffer, or, if the last trace byte written to the trace buffer was the last byte in the trace
buffer, the Base pointer.

IMCGFL The trace unit defines the behavior and completion of a trace unit flush, including which Trace operations, if any,
are accepted by the Trace Buffer Unit before the trace unit flush completes.

If the Detected Trigger is generated by a Trace operation tT then the trace unit flush does not complete before the
Trace Buffer Unit Accepts the trace data for tT.

IVPLRF Because the Trace Buffer Unit initiates a trace unit flush before stopping this means that, before TRBSR_EL1.S is
set to 1:

• More trace might be written to the trace buffer after the Trigger Event is detected.

• This might generate other management events that set TRBSR_EL1.S to 1.

RXYPYF If a Trigger Event is generated when collection is not stopped and the trigger mode is IRQ on trigger, then all of
the following occur:

• The Trace Buffer Unit initiates a trace unit flush of the trace unit.

• The TRB_TRIG event is generated.

On completion of the trace unit flush all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• The other fields in TRBSR_EL1 are unchanged.

Because TRBSR_EL1.S is unchanged, trace continues to be collected and written to the trace buffer.

ILMQHK If a Trigger Event is generated and the trigger mode is Ignore trigger, then all of the following occur:

• TRBSR_EL1 is unchanged.

• The TRB_TRIG event is generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter E1. Trace Buffer Extension
E1.2. Specification

RMWWHM If a Trigger Event is generated when Collection is stopped, then all of the following occur:

• TRBSR_EL1 is unchanged.

• The TRB_TRIG event is generated.

INZYNN These rules mean that trace might be collected after the Trigger Event, but are included to ensure that trace for the
instructions that caused the trigger condition is not discarded in common cases.

IJDWMT The trigger mode is controlled by TRBLIMITR_EL1.TM.

ISJWBD See also G3.2 Controlling generation of trace buffer management events.

E1.2.2.4 Faults

RQKLXR A write by the Trace Buffer Unit might generate one or more of the following faults:

Alignment fault If TRBPTR_EL1 is misaligned, the behavior is UNPREDICTABLE and a write to the trace buffer
by the Trace Buffer Unit might generate an Alignment fault. See also RMGZWR.

Translation fault Any access outside the virtual address or intermediate physical address space generates a
Translation fault.

The translation of a virtual address or intermediate physical address to a physical address might generate
Translation fault.

Writes to the trace buffer are made as privileged writes in the owning translation regime, meaning they are
not affected by the TCR_ELx.E0PDy bits for the owning translation regime.

Address Size fault The translation of a virtual address or intermediate physical address to a physical address, or
use of an out-of-range physical address, might generate an Address Size fault.

Permission fault Writes to the trace buffer are made as privileged writes in the owning translation regime. If the
write does not have write permission, a Permission fault is generated. The value of PSTATE.PAN is ignored.

If the Trace Buffer Unit does not manage the dirty state in translation tables, then accesses ignore the Dirty
Bit Modifier bit in Page and Block descriptors and as a result, might generate a Permission fault.

Access Flag fault If the Trace Buffer Unit does not manage the Access flag in translation tables or hardware
management of the Access flag state is disabled for the owning translation regime, then any access to a Page
or Block with the Access flag bit set to 0 in a descriptor will generate an Access Flag fault.

TLB Conflict fault IMPLEMENTATION DEFINED.

Unsupported atomic hardware update fault If hardware update of the translation tables is not guaranteed
atomic in regard to other agents that access the memory, the translation of a virtual address to a physical
address might generate an Unsupported atomic hardware update fault.

This document uses MMU fault to mean any of these faults other than Alignment fault.

RFYBCG Writes to the trace buffer by the Trace Buffer Unit never generate watchpoints.

IDTKGB Faults do not generate an actual Data Abort exception. The ESR and FAR registers are unchanged.

SGTLCY To avoid MMU faults, Arm recommends:

• Software pins the Pages or Blocks used for the trace buffer. This includes a hypervisor pinning these Pages
or Blocks in the stage 2 translation.

• If the Trace Buffer Unit does not manage the Access Flag and dirty state, software marks the Pages or Blocks
as accessed and dirty. Software can discover whether address translations performed by the Trace Buffer
Unit manage dirty state and the Access flag from TRBIDR_EL1.F.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter E1. Trace Buffer Extension
E1.2. Specification

RFSPBK If a write by the Trace Buffer Unit generates an Alignment fault or MMU fault, and TRBSR_EL1.S is 0, then all
of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.S is set to 1, Collection is stopped.

• TRBSR_EL1.EC is set to the appropriate one of the following values:

– 0x24, stage 1 Data Abort on write to trace buffer.

– 0x25, stage 2 Data Abort on write to trace buffer.

• TRBSR_EL1.FSC is set to indicate the type of the fault.

• TRBPTR_EL1 is set to the address that generated the fault.

• The other fields in TRBSR_EL1 are unchanged.

IZNPQG In the case of a stage 2 Data Abort on a write to trace buffer, the PE does not record whether the fault was due to a
stage 2 fault on the access, or a stage 2 fault on a stage 1 translation table access.

E1.2.2.5 External aborts

RDJLWB A write to the trace buffer might generate an External Abort, including an External Abort on a translation table
walk or translation table update:

External Abort The write might generate a synchronous or asynchronous External Abort.

External Abort on translation table walk or translation table update The translation of a virtual address or
intermediate physical address to a physical address might generate an External Abort.

RGQWBF When a write to the trace buffer generates an External Abort, then one of the following occurs, and it is IMPLE-
MENTATION DEFINED which:

• The External Abort is reported to the Trace Buffer Unit and treated as a trace buffer management event.

• The External Abort is not reported to the Trace Buffer Unit and generates an asynchronous SError interrupt
exception at the PE.

RNZTKV When an External Abort is reported to the Trace Buffer Unit, then one of the following occurs, and it is IMPLE-
MENTATION DEFINED which:

• The External Abort is handled synchronously by the Trace Buffer Unit.

• The External Abort is handled asynchronously by the Trace Buffer Unit.

RTVKJR If the Trace Buffer Unit handles External Aborts asynchronously, then all of the following apply:

• The External Abort trace buffer management event might not be generated until after a first trace buffer
management event has set TRBSR_EL1.S is 1.

• Writes to the trace buffer might generate a second trace buffer management event after the External Abort
trace buffer management event has set TRBSR_EL1.S is 1.

• The Trace Buffer Unit might collect further trace data from the trace unit and write it to memory before the
External Abort trace buffer management event sets TRBSR_EL1.S to 1.

RXRLSC When a write by the Trace Buffer Unit generates an External Abort reported to the Trace Buffer Unit, all of the
following occur:

• The External Abort bit, TRBSR_EL1.EA, is set to 1.

• The Trace Buffer Unit stops writing trace data to the trace buffer.

• If the Trace Buffer Unit handles External Aborts synchronously, TRBPTR_EL1 is set to the address that
generated the External Abort.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter E1. Trace Buffer Extension
E1.2. Specification

• If the Trace Buffer Unit handles External Aborts asynchronously, TRBPTR_EL1 is not guaranteed to be set
to the address that generated the External Abort.

• If TRBSR_EL1.S is 0 then all of the following occur:

– A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

– TRBSR_EL1.S is set to 1, Collection is stopped.

– TRBSR_EL1.EC is set to the appropriate one of the following values:

* 0x24, stage 1 Data Abort on write to trace buffer.

* 0x25, stage 2 Data Abort on write to trace buffer.

– TRBSR_EL1.FSC is set to indicate the type of External Abort.

• The other TRBSR_EL1 fields are unchanged.

ITZNMV Reporting the External Abort to the Trace Buffer Unit and generating a trace buffer management event:

• Sets TRBSR_EL1.S to 1 and so Discards further trace data.

• Allows error recovery software to isolate the event to the actions of the Trace Buffer Unit.

Not reporting the External Abort to the Trace Buffer Unit and generating an asynchronous SError interrupt
exception at the PE:

• Means that, while tracing is not prohibited, the trace unit might continue generating trace data that the Trace
Buffer Unit Accepts. However, the SError interrupt might be taken to an Exception level where tracing is
prohibited.

• Might not allow error recovery software to isolate the event and error containment.

E1.2.2.6 IMPLEMENTATION DEFINED management events

RCHNSL When IMPLEMENTATION DEFINED conditions are met all of the following occur:

• A trace buffer management event is generated. This sets TRBSR_EL1.IRQ to 1.

• TRBSR_EL1.S is set to 1, Collection is stopped.

• TRBSR_EL1.EC is set to 0x1F, IMPLEMENTATION DEFINED buffer management event.

• TRBSR_EL1.MSS is set to an IMPLEMENTATION DEFINED value.

• The other fields in TRBSR_EL1 are unchanged.

ILKLHH The intent of this event is for cases such as errata workarounds to allow an implementation to report any failure to
write data to the buffer that is not covered by other codes. Arm recommends that such mechanisms are disabled on
reset.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter E1. Trace Buffer Extension
E1.2. Specification

E1.2.3 Synchronization and the Trace Buffer Unit

INMWZY Program-flow trace data is generated by traced instructions. When an instruction is executed:

1. The PE decides whether to create a Trace operation for the instruction.

2. If created, the Trace operation generates the program-flow trace data.

For some trace unit implementations, Speculative instructions might generate Trace operations, as well as
architecturally Resolved instructions.

See Chapter G2 Stages of execution for more information on these terms.

The trace unit might also generate asynchronous Trace operations, that are not causally related to an executed
instruction. If the trace unit implements the FEAT_ETE then the ETE Resources can generate Trace operations
that are not causally related to an instruction or Speculative instruction.

The architecture defines a Trace Synchronization event that synchronizes the operation of Trace operations with
the execution of instructions. Without correct use of the Trace Synchronization event, a Trace operation might for
instance read a stale value from a System register, causing trace data to be written to the wrong memory location, or
the Trace Buffer Unit to otherwise generate unpredictable software behavior. See also E1.2.3.8 UNPREDICTABLE
behavior.

RZVDST Trace operations operate independently of the instructions that are executed on the PE and make indirect reads and
indirect writes of System registers as an external agent.

ITPVQR The Arm® Architecture Reference Manual, for A-profile architecture [1] defines the synchronization requirements
for direct reads, direct writes, indirect reads and indirect writes of System registers made by instructions and
external agents.

RNRLDV The indirect reads of the TRFCR_EL1.{E1TRE, E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE} trace filter
controls when determining whether the current Execution stream is part of a prohibited trace region and an
instruction A should generate a Trace operation, are treated as indirect reads made by A.

Note: This rule is defined by FEAT_TRF.

RSXXQJ Each System register access made by the trace unit is one of the following, and the trace unit defines which:

• An indirect read or indirect write rwA made by an instruction A. For example, to determine whether to
generate a Trace operation for A.

• An indirect read or indirect write rwtA made by a Trace operation tA. This is in addition to System register
accesses defined by this manual as indirect reads or indirect writes made by the Trace Buffer Unit.

• An other indirect read or indirect write rw, not directly related to either an instruction or Trace operation.
The trace unit defines the synchronization requirements for these registers.

IDDLVC In addition to the registers listed by RNRLDV, for the ETE, the following ETE System registers are indirectly read
by an instruction A to determine whether A should generate a Trace operation:

• TRCPRGCTLR.EN, the Trace unit enable bit in the Programming Control Register.

• TRCOSLSR.OSLK, the Trace OS Lock Status Register.

This manual defines which System registers are indirectly read or indirectly written by the Trace Buffer Unit as
part of the Trace operation tA for a traced instruction A. For example:

• Trace Buffer Unit System registers.

• VMSA System registers and SCR_EL3.NS, when translating addresses generated by the Trace Buffer Unit.

Other System registers are indirectly read or indirectly written by the trace unit as part of the Trace operation tA
for a traced instruction A. For example:

• Other ETE System registers.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter E1. Trace Buffer Extension
E1.2. Specification

• If context tracing is enabled, the applicable Context ID register or registers, CONTEXTIDR_EL1 or
CONTEXTIDR_EL2.

• If trace timestamping is enabled, any applicable counter offset, CNTVOFF_EL2 or CNTPOFF_EL2.

Some ETE System registers are indirectly read or indirectly written by, for example, the ETE Resources when
generating Trace operations or updating the ETE Resources, and are made by neither a Trace operation of an
instruction nor an instruction.

The behavior of the ETE is defined by FEAT_ETE. See also E1.2.3.2 Trace synchronization and the Trace Unit.

IGVCVL The indirect reads and indirect writes to Trace Buffer Unit, VMSA and other System registers made by the Trace
Buffer Unit are made by the Trace operation tOP.

IBYSGH To synchronize Trace operations, software must use the TSB CSYNC instruction to generate a Trace Synchronization
event.

RGTCKK In the absence of any explicit synchronization, the trace unit generates the trace data for an instruction and the
Trace Buffer Unit Accepts, Discards, or Rejects the trace data in finite time. However:

• If the Trace Buffer Unit Accepts the trace data, then the write of the trace data to memory requires explicit
synchronization to Complete.

• The indirect writes to System registers made by a Trace operation require explicit synchronization to guarantee
they are observable.

E1.2.3.1 Trace Synchronization event

RVWJNN Executing a TSB CSYNC instruction generates a Trace Synchronization event.

RJQDJD A Trace operation tOP is not Microarchitecturally-finished before all of the following are true:

• All indirect reads and indirect writes of System registers made by tOP have been performed.

• If tOP generates a Trigger Event that in turn initiates a trace unit flush, then all of the following are true:

– The trace unit flush is complete.

– All Trace operations the Trace Buffer Unit Accepts before the trace unit flush completes are
Microarchitecturally-finished.

– All indirect writes to System registers made by the Trace Buffer Unit on completion of the trace unit
flush have been performed.

Indirect reads and writes include but are not limited to the following:

• All indirect reads and indirect writes of the Trace Buffer Unit, VMSA System registers, and SCR_EL3.NS
made by memory accesses performed by tOP.

• All indirect writes to System registers made by a trace buffer management event generated by tOP.

However, this does explicitly exclude any indirect writes of System registers made in response to an External
Abort by the access.

RNSFRQ A Trace operation tOP is Complete when it is Microarchitecturally-finished and all memory accesses performed by
tOP are Complete and any indirect writes of System registers made in response to an External Abort response to
the access have been performed.

RMRVPT If, following a Context synchronization event CSE the PE is executing in a Trace Prohibited region, a TSB

↪→CSYNC executed in the Trace Prohibited region and Non-debug state in program order after CSE is not
Microarchitecturally-finished before all of the following are true:

• All Trace operations tA generated by instructions A in program order before CSE are
Microarchitecturally-finished.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter E1. Trace Buffer Extension
E1.2. Specification

• All Trace operations tS generated by Speculative instructions S that are not in speculative execution order
after CSE are Microarchitecturally-finished.

• All Trace operations tR generated by the trace unit are Microarchitecturally-finished.

• The trace unit enters a state where the trace unit does not generate further Trace operations and does not signal
a Detected Trigger. The trace unit remains in this state while the PE is executing in the Trace Prohibited
region.

• If a trace unit flush is initiated by a Trigger Event before the TSB CSYNC is Microarchitecturally-finished,
the trace unit flush is complete, all Trace operations the Trace Buffer Unit Accepts before the trace unit
flush completes are Microarchitecturally-finished, and any indirect writes made by the Trace Buffer Unit on
completion of the trace unit flush have been performed.

These Trace operations are synchronized by the TSB CSYNC.

RZCDDS A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect
write rw1 of the same System register made by a Trace operation tA for a traced instruction A if all of the following
are true:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• B is executed in program order after TSB.

• After executing CSE the PE is in a Trace Prohibited region and TSB is executed in Non-debug state in the
same Trace Prohibited region.

Note

• RZCDDS emerges from the requirement in RMRVPT for the Trace operations to be
Microarchitecturally-finished by the TSB CSYNC operation.

• E1.2.3.3 Self-hosted trace extension synchronization rules and E1.2.3.6 Trace synchronization in Debug
state define further rules for the operation of TSB CSYNC.

IZKRZH The PE does not stall indefinitely (or until interrupted) waiting for a TSB CSYNC. For example, the TSB CSYNC must
not wait until there is no trace data left to write if the trace unit is capable of producing a constant stream of trace
data.

IZLDPS A PE might abandon a TSB CSYNC executed in Non-debug state before it is Microarchitecturally-finished to take an
interrupt, so long as the preferred return address is set such that the TSB CSYNC is re-executed when the interrupt
handler completes. That is, the TSB CSYNC is only Speculatively executed.

RCKVWP Absent any Context synchronization event or DSB Data synchronization barrier, a TSB CSYNC instruction is not
required to execute in program order with respect to other instructions or memory accesses. This means that
software must execute additional barriers to guarantee that the Trace operations are Microarchitecturally-finished
and/or Complete.

XFVTHX A simple description of TSB CSYNC is that it does not complete and allow other instructions to execute until the trace
unit and Trace Buffer Unit has output all trace for instructions that were executed in program order before the most
recent Context synchronization event.

An implementation might generate a trace unit flush to ensure this happens.

Furthermore, if executed in a Trace Prohibited region, the trace unit is inactive once the TSB CSYNC is
Microarchitecturally-finished.

However, the writes to memory and the effects of the operations on System registers (such as the trace buffer
pointer address registers) might require further synchronization to be observable to following instructions.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter E1. Trace Buffer Extension
E1.2. Specification

E1.2.3.2 Trace synchronization and the Trace Unit

IZYZGZ The ETE has Resources that can generate Trace operations that are not directly generated by an instruction or
Speculative instruction.

The ETE specification defines the following rules:

• The Resources do not generate Trace operations in the Paused state.

• If, following a Context synchronization event, the PE is executing in a Trace Prohibited region and the ETE
is enabled, the ETE pauses the ETE Resources.

• How software synchronizes indirect writes to System registers made by Trace operations generated by
Resources.

The behavior of the ETE is defined by FEAT_ETE.

IGFJWK For a trace unit that implements FEAT_ETE, FEAT_ETE defines further rules defining the behavior of the trace
unit when a TSB CSYNC instruction is executed.

RQVGHP A Trace operation tR generated by ETE Resources inherits the synchronization requirements for a Trace operation
generated by an instruction A, even if no Trace operation is generated by A, provided that one of of the following
applies:

• The requirement is that A is executed in program-order after CSE and tracing was prohibited before CSE
and is allowed after CSE.

• The requirement is that either A is executed in program-order before CSE or A is CSE, and tracing was
allowed before CSE and is prohibited after CSE.

RYWSDB If the trace unit becomes enabled when the PE is executing a Trace Prohibited region, it does not generate any
Trace operations, including Trace operations for Speculative instructions and other Trace operations not generated
by instructions, until the PE enters a region where tracing is allowed.

IXGQRM The trace unit defines the sequence by which software enables the trace unit.

E1.2.3.3 Self-hosted trace extension synchronization rules

ICMGRF FEAT_TRF defines further rules for the TSB CSYNC instruction. In particular, how a TSB CSYNC instruction
synchronizes direct reads and indirect writes to a System register with respect to indirect reads and indirect
writes of the same System register made by Trace operations.

These rules are repeated in this document as RNRLDV, RBFJKD, RMJQXM, RTSPXF, and RVTNCS.

RTSPXF is similar to RZCDDS and RXQVZW . However:

• RTSPXF applies whether the TSB CSYNC operation is executed in a trace prohibited or trace allowed region,
in both Non-debug state and Debug state. RZCDDS applies only when the TSB CSYNC is executed in a Trace
Prohibited region and the PE is in Non-debug state, and RXQVZW applies only when the TSB CSYNC is executed
when the trace unit is disabled and the PE is in Debug state.

• RTSPXF applies only to System registers accessed by the trace unit as part of a Trace operation. RZCDDS and
RXQVZW apply to all System register accesses made by the Trace operation and includes indirect reads and
indirect writes made by the Trace Buffer Unit.

See RSXXQJ and IDDLVC.

RNNRHD is a further rule from FEAT_TRF concerning synchronization of the trace filter controls System registers
by a Context synchronization event. This rule was not present in the original FEAT_TRF specification, and was
added as an later erratum.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter E1. Trace Buffer Extension
E1.2. Specification

RBFJKD An indirect read r1 of a System register made by a Trace operation tA for a traced instruction A Reads-from a
direct write W2 to the same System register made by an instruction B if all of the following are true:

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

See also IFVBPF.

SYPWVJ RBFJKD means that, if the PE enters a region where tracing is allowed by executing a Context synchronization event,
such as an ERET instruction when SCTLR_ELx.EOS is 1, then all indirect reads and writes of System registers
made by Trace operations generated after entering the tracing allowed region will observe the values in those
System registers written by direct writes before the Context synchonization event.

RMJQXM An indirect write w1 of a System register made by a Trace operation tA for a traced instruction A is Coherence-after
a direct write W2 of the same System register made by an instruction B if all of the following are true:

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

See also IFVBPF.

RTSPXF A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect
write rw1 of the same System register made by the trace unit as part of a Trace operation tA for a traced instruction
A if all of the following are true:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• B is executed in program order after TSB.

See also IMQTRQ.

RVTNCS A direct read R2 of a System register made by an instruction B Reads-from an indirect write w1 to the same System
register made by a Trace operation tA for a traced instruction A if all of the following are true:

• Either A is executed in program order before a first Context synchronization event CSE1, or A is CSE1.

• CSE1 is in program order before a Trace synchronization barrier TSB.

• TSB is executed in program order before a second Context synchronization event CSE2.

• B is executed in program order after CSE2.

See also ISLWRW.

RNNRHD An instruction A in program-order after a direct write W that modifies one of the trace filter controls,
TRFCR_EL1.{E1TRE, E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE}, Reads-from W when determining whether
A should generate a Trace operation, if there is no intervening direct write to the same register and any of the
following is true:

• A is in program-order after a Context synchronization event CSE and CSE is in program-order after W.
(This is the architectural rule described by Chapter G1 Synchronization requirements for System registers
and illustrated in Figure G1.3.)

• An instruction B Reads-from W when determining whether B should generate a Trace operation, and A is in
program-order after B.

IVKRGM RNNRHD means that for the instructions between a direct write to one of the trace filter controls to either enable
or disable trace at the current Exception level and a following Context synchronization event, although it is
UNPREDICTABLE whether each instruction observes the old or new values of the trace filter controls, once one
instruction has observed the new value, all subsequent instructions also observe the new value.

However this might not happen, and all instructions might observe the old values until the Context synchronization
event occurs.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter E1. Trace Buffer Extension
E1.2. Specification

This guarantees that trace switches either on and off cleanly, and is required by program-flow trace protocols.

E1.2.3.4 Trace synchronization and memory barriers

RVLWDM If, following a Context synchronization event CSE the PE is executing in a Trace Prohibited region, a DSB with
required access types of reads and write is executed in program order after a TSB CSYNC operation that is executed
in the Trace Prohibited region in program order after CSE, then in addition to the requirements in the Arm®
Architecture Reference Manual, for A-profile architecture [1], the DSB does not complete until all explicit memory
accesses of the required access type made by the Trace operations synchronized by the TSB CSYNC are Complete for
the set of observers in the required shareability domain.

See also RMPXXN.

RDFHWV An explicit read, explicit write, translation table walk, cache maintenance operation, or TLB invalidate operation
M1 will be Observed-by a read or a write RW2 of a Location made by a Trace operation tA relating to a traced
instruction A if all of the following are true:

• A is executed in program-order after a Context synchronization event CSE.

• CSE is in program order after a Data Synchronization Barrier DSB.

• DSB does not complete before M1 is complete.

INLHGN In RDFHWV, CSE is required to allow A to be traced as a Speculative instruction before it is Canceled or Resolved.
The equivalent rule for Statistical Profiling Extension (SPE) does not require CSE as SPE cannot write profiling
records to memory until the profiled operation is Canceled or Resolved. See E1.2.3.5 Trace of Speculative
execution.

RJPPZZ For the indirect writes to TRBPTR_EL1 and TRBSR_EL1 that are made as a result of an External Abort on a
write of trace data to memory, the synchronization rules apply only after the write to memory has completed.

E1.2.3.5 Trace of Speculative execution

IZGCVG In the standard model of execution for an instruction, instructions are executed as Speculative operations and then
later become one of the following:

• Resolved. These instructions will then proceed to Complete.

• Canceled.

• Transaction-failed, if FEAT_TME is implemented.

• Transaction-canceled, if FEAT_TME is implemented.

A trace unit might generate trace for Speculative instructions before they are Resolved, Canceled, Transaction-failed
or Transaction-canceled, and this trace can be written to memory. This means that, as well as indirectly reading
System registers or memory, a Trace operation tS for a Speculative instruction S might perform any of the following:

• Indirectly write to System registers.

• Write to memory.

This sets Trace operations apart from the normal operation of instructions, as the Arm architecture prohibits,
for example, a Canceled instruction from updating a System register or memory. (Performance Monitors and
Statistical Profiling can also cause speculative updates of System registers and memory.)

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter E1. Trace Buffer Extension
E1.2. Specification

IHBYGS The preceding rules deal with the ordering of Trace operations for Resolved (and ultimately Complete) instructions,
and the requirements for synchronization based on the position of those instructions in the program order of the
Execution stream.

This section extends the rules to cover Speculative instructions that are later Canceled, Transaction-canceled or
Transaction-failed, and for Trace operations generated by ETE Resources. Because these Trace operations are
not generated by instructions that Complete, they cannot be determined to be in program order with respect to
architecturally Complete instructions.

RFBFRS A Speculative instruction S is in Speculative execution-order after an instruction A if S will be in program order
after A if S is Resolved, even if S is subsequently Canceled, Transaction-failed, or Transaction-canceled.

IVFLVX For example, a Speculative instruction S is in Speculative execution-order after a Resolved instruction A if either
of the following are true:

• The branch predictor mispredicted A and, had the prediction been correct, S would be in program order
after A. Branch predictor means any structure that causes the PE to execute Speculative instructions. This
includes, for example, branch history buffers, branch target caches, and instruction trace caches. It is not
limited to structures that predict only the direction and/or target of branch instructions.

• S forms part of a Transaction T that was Transaction-canceled or Transaction-failed and A is the Resolved
TSTART operation for the outermost Transaction containing T.

IKTCMP Speculative execution-order does not provide a complete ordering. A pair of Speculative instructions A and B might
not be ordered with respect to each other. For example, if A and B are respectively the result of different incorrect
predictions by the branch predictor. However, each Speculative instruction is in Speculative execution-order after
at least one Resolved instruction.

IVBBVY The Arm® Architecture Reference Manual, for A-profile architecture [1] requires that instructions that generate
Context synchronization events do not appear to be executed speculatively.

RHCVVS A Trace operation tS generated by a Speculative instruction S that is in Speculative execution-order after a Resolved
instruction A inherits the synchronization requirements for a Trace operation generated by A, even if no Trace
operation is generated by A, provided that one of of the following applies:

• The requirement is that A is executed in program-order after CSE, and S is in Speculative execution-order
after CSE.

• The requirement is that either A is executed in program-order before CSE or A is CSE, and S is not in
Speculative execution-order after CSE.

See also IWLLQH and IJGXWM.

E1.2.3.6 Trace synchronization in Debug state

RSCRQL If FEAT_TRBE is implemented, a TSB CSYNC instruction can be executed in Debug state.

Note

FEAT_TRF does not require that TSB CSYNC can be executed in Debug state.

RWYHRT If the trace unit is disabled, then a TSB CSYNC executed in Debug state is not Microarchitecturally-finished before all
of the following are true:

• All Trace operations tA generated by instructions A in program order before the PE entered Debug state are
Microarchitecturally-finished.

• All Trace operations tS generated by Speculative instructions S that are not in speculative execution order
after the entry to Debug state are Microarchitecturally-finished.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter E1. Trace Buffer Extension
E1.2. Specification

• All Trace operations tR generated by the trace unit are Microarchitecturally-finished.

• The trace unit enters a state where the trace unit does not generate further Trace operations and does not
signal a Detected Trigger. The trace unit remains in this state while the PE is in Debug state.

• If a trace unit flush is initiated by a Trigger Event before the TSB CSYNC is Microarchitecturally-finished,
the trace unit flush is complete, all Trace operations the Trace Buffer Unit Accepts before the trace unit
flush completes are Microarchitecturally-finished, and any indirect writes made by the Trace Buffer Unit on
completion of the trace unit flush have been performed.

These Trace operations are synchronized by the TSB CSYNC.

RXQVZW A direct write W2 to a System register made by an instruction B is Coherence-after an indirect read or indirect
write rw1 of the same System register made by a Trace operation tA for a traced instruction A if all of the following
are true:

• A is executed in program order before the PE entered Debug state.

• B is executed in program order after a Trace synchronization barrier TSB.

• TSB was executed in Debug state when the trace unit was disabled.

Note

• RXQVZW emerges from the requirement in RWYHRT for the Trace operations to be
Microarchitecturally-finished by the TSB CSYNC operation.

• E1.2.3.1 Trace Synchronization event and E1.2.3.3 Self-hosted trace extension synchronization rules
define further rules for the operation of TSB CSYNC.

RMPXXN A DSB with required access types of reads and write is executed after a TSB CSYNC operation executed in Debug state,
then in addition to the requirements in the Arm® Architecture Reference Manual, for A-profile architecture [1], the
DSB does not complete until all explicit memory accesses of the required access type made by the Trace operations
synchronized by the TSB CSYNC are Complete for the set of observers in the required shareability domain.

E1.2.3.7 Detailed synchronization litmus tests

IDJJBQ This section details example synchronization scenarios and litmus tests for TSB CSYNC. These are derived from
FEAT_TRF and E1.2.3.1 Trace Synchronization event.

This section uses the terms program order, Reads-from and Coherence-after to define the ordering of System
register and memory accesses made by Trace operations. These terms are defined for memory accesses in the
Arm® Architecture Reference Manual, for A-profile architecture [1]. For the purposes of this section, these terms
are used for System registers as well as memory accesses.

See Chapter G1 Synchronization requirements for System registers for more information on how these terms are
used in this section.

The terms external agent, Observer, and Observed-by, also used in this section, are also defined in the Arm®
Architecture Reference Manual, for A-profile architecture [1].

This section does not describe the synchronization rules in Debug state defined in E1.2.3.6 Trace synchronization
in Debug state. In general, litmus tests for Debug state can be derived by applying the following modifications:

• Where a rule mentions a Context synchronization event (CSE) coming before a TSB CSYNC operation, if the
TSB CSYNC is executed in Debug state, then the entry to Debug state can replace that CSE for the rule.

• Where a rule mentions the PE executing instructions in a Trace Prohibited region following the CSE, then
executing the instructions in Debug state with the trace unit disabled is sufficient for the rule.

Exit from Debug state is a Context synchronization event.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter E1. Trace Buffer Extension
E1.2. Specification

IFVBPF Figure E1.3 shows RBFJKD and RMJQXM.

B CSEpo

W2

gb

Apo

t A

tb

r1
w1

gb
rf

co

Figure E1.3: Indirect read or indirect write by Trace operation after direct write

IMQTRQ Figure E1.4 shows RTSPXF.

A CSEpo

t A

tb

TSBpo Bpo

W2

gb

rw1

gb co

Figure E1.4: Direct write after indirect read or indirect write by Trace operation

ISLWRW In RVTNCS, the second Context synchronization event CSE2 is required to ensure the direct read B is not executed
before the synchronization barrier TSB. Figure E1.5 shows this.

A CSE1
po

t A

tb

TSBpo CSE2
po Bpo

R2

gb

w1

gb rf

Figure E1.5: Direct read after indirect write by Trace operation

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter E1. Trace Buffer Extension
E1.2. Specification

Note

If the trace is not prohibited after the Context synchronization event, further Trace operations might be generated
that are not guaranteed to be synchronized by the TSB CSYNC.

Trace is prohibited at higher Exception levels than the owning Exception level. This means that if the PE takes
an exception to a higher Exception level than the owning Exception level then trace is prohibited at by taking
the exception.

INWRPJ Figure E1.6 shows RDFHWV for an explicit read or a write M1 of a Location made by an instruction B in program
order before DSB.

B DSBpo

M1

gb

CSEpo Apo

t A

tb

RW2

gb

ob

Figure E1.6: Trace operation observing memory operation

IJBRHG If all of the following are true, RVLWDM requires that a DSB with required access types of reads and writes does not
complete until at least all reads or writes RW made by the Trace Buffer Unit for all Trace operations tA relating to
a traced instruction A are complete for the set of the observers in the required shareability domain:

• Either A is executed in program order before a Context synchronization event CSE, or A is CSE.

• The PE is executing in a Trace Prohibited region after CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

• TSB is executed in program order before the DSB.

Figure E1.7 shows a read or a write RW1 of a Location made by the Trace Buffer Unit for a Trace operation tA
relating to a traced instruction A is complete and therefore will be Observed-by a read or a write RW2 of the same
Location made by an instruction B executed in program order after a DSB ISH instruction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter E1. Trace Buffer Extension
E1.2. Specification

A CSEpo

t A

tb

TSBpo DSBpo Bpo

RW2

gb

RW1

gb

ob

Figure E1.7: Observation of Trace operation memory access

IWLLQH RHCVVS defines Trace synchronization for Speculative instructions.

For example, an indirect read r1 of a System register made by a Trace operation tS for a traced Speculative
instruction S Reads-from a direct write W2 to the same System register made by an instruction B, if all of the
following are true:

• S is executed in Speculative execution-order after a Resolved instruction A.

• A is executed in program order after a Context synchronization event CSE.

• B is executed in program order before CSE.

Figure E1.8 shows this.

B CSEpo

W2

gb

Apo Sseo

t S

tb

r1
w1

gbrf

co

Figure E1.8: Speculative indirect read or indirect write by Trace operation after direct write

IJGXWM RHCVVS defines Trace synchronization for Speculative instructions.

For example, if all of the following are true, a DSB with required access types of reads and writes does not complete
until at least all reads or writes RW made by the Trace Buffer Unit for all Trace operations tS relating to a traced
Speculative instructions S are complete for the required shareability domain:

• S is executed in Speculative execution-order after a Resolved instruction A.

• A is executed in program order before a Context synchronization event CSE.

• S is not in Speculative execution-order after CSE.

• CSE is in program order before a Trace synchronization barrier TSB.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter E1. Trace Buffer Extension
E1.2. Specification

• The PE is executing in a Trace Prohibited region after CSE.

• TSB is executed in program order before the DSB.

Figure E1.9 shows a read or a write RW1 of a Location made by the Trace Buffer Unit for a Trace operation tS
relating to a traced Speculative instruction S is Complete and therefore will be Observed-by a read or a write RW2
of the same Location made by an instruction B executed in program order after a DSB ISH instruction.

A CSEpo

S

seo

TSBpo DSBpo Bpo

RW1

gb

can

t S

tb

RW2

gb

ob

Figure E1.9: Observation of Speculative Trace operation memory access

E1.2.3.8 UNPREDICTABLE behavior

RPFJJZ In the absence of correct synchronization events, it is UNPREDICTABLE whether an indirect read made by a Trace
operation of a System register updated by a direct write will return the old or the new values. A Trace operation
might make multiple indirect reads of a System register, and each might return a different one of the old or the new
values.

IGGGPH For example, a Trace operation might read MDCR_EL2.E2TB twice, as follows:

1. When the Trace operation is first generated, to evaluate TraceAllowed() and determine whether trace is
prohibited.

2. When the Trace operation is complete and ready to be written to memory, to evaluate TraceBufferOwner() to
determine the context for TRBPTR_EL1.

If MDCR_EL2.E2TB is updated without proper synchronization between these two events, both the old and new
value might be used.

INRQQF In the absence of correct synchronization events, it is UNPREDICTABLE whether a direct read of a System register
updated by an indirect write made by a Trace operation will return the old or the new values.

ITRWFM If an instruction is traced because the Trace Buffer Unit is Enabled and Running, but a later indirect read of
a System register by the Trace operation for the instruction determines that the trace data cannot be written to
memory, because the Trace Buffer Unit now appears to be Disabled, then one of the following occurs, and it is
CONSTRAINED UNPREDICTABLE which:

• The trace data is written to memory.

• The trace data is sent to an IMPLEMENTATION DEFINED trace bus.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter E1. Trace Buffer Extension
E1.2. Specification

• The trace data is written to memory and sent to an IMPLEMENTATION DEFINED trace bus.

• The Trace Buffer Unit Discards the trace data.

This also includes any trace data that might be flushed by the trace unit, for example due to a TSB CSYNC operation.

If the Trace Buffer Unit Discards the trace data, a trace buffer management event might be generated:

• TRBSR_EL1.EC is set to a CONSTRAINED UNPREDICTABLE choice of the following values:

– 0x00, other buffer management event.
– 0x1F, IMPLEMENTATION DEFINED buffer management event.

• If TRBSR_EL1.EC is set to 0x00 then TRBSR_EL1.BSC is set to 0b000000 to indicate that the trace buffer is
not full.

It is also CONSTRAINED UNPREDICTABLE whether any of the following occur, whether or not the trace data is
written to memory:

• The current write pointer and, if TRBSR_EL1.TRG is 1, the Trigger Counter are updated for the trace data.

• A trace buffer management event that would have been generated is observed and/or generated.

• A PMU event that would have been generated is generated.

ILLCLK See also G3.1 Context switching.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter E1. Trace Buffer Extension
E1.3. Events

E1.3 Events

Number Mnemonic Type Description

0x400C TRB_WRAP Architectural Trace buffer current write pointer wrapped.

0x400D PMU_OVFS Architectural PMU overflow, counters accessible to EL1 and EL0.

0x400E TRB_TRIG Architectural Trace buffer Trigger Event.

0x400F PMU_HOVFS Architectural PMU overflow, counters reserved for use by EL2.

0x4010 TRCEXTOUT0 Microarchitectural Trace unit external output 0.

0x4011 TRCEXTOUT1 Microarchitectural Trace unit external output 1.

0x4012 TRCEXTOUT2 Microarchitectural Trace unit external output 2.

0x4013 TRCEXTOUT3 Microarchitectural Trace unit external output 3.

0x4018 CTI_TRIGOUT4 Microarchitectural Cross-trigger Interface output trigger 4.

0x4019 CTI_TRIGOUT5 Microarchitectural Cross-trigger Interface output trigger 5.

0x401A CTI_TRIGOUT6 Microarchitectural Cross-trigger Interface output trigger 6.

0x401B CTI_TRIGOUT7 Microarchitectural Cross-trigger Interface output trigger 7.

E1.3.1 Common microarchitectural events

0x4010, TRCEXTOUT0, Trace unit external output 0 The event is generated each time an event is signaled
by the trace Unit external event 0.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[48] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4011, TRCEXTOUT1, Trace unit external output 1 The event is generated each time an event is signaled
by the trace Unit external event 1.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[49] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4012, TRCEXTOUT2, Trace unit external output 2 The event is generated each time an event is signaled
by the trace unit external event 2.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[50] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4013, TRCEXTOUT3, Trace unit external output 3 The event is generated each time an event is signaled
by the trace unit external event 3.

It is IMPLEMENTATION DEFINED whether this event is available as an external input to the ETE.

PMCEID0_EL0[51] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter E1. Trace Buffer Extension
E1.3. Events

0x4018, CTI_TRIGOUT4, Cross-trigger Interface output trigger 4 The event is generated each time an event
is signaled on Cross-trigger Interface (CTI) output trigger 4.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[56] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x4019, CTI_TRIGOUT5, Cross-trigger Interface output trigger 5 The event is generated each time an event
is signaled on CTI output trigger 5.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[57] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x401A, CTI_TRIGOUT6, Cross-trigger Interface output trigger 6 The event is generated each time an
event is signaled on CTI output trigger 6.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[58] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

0x401B, CTI_TRIGOUT7, Cross-trigger Interface output trigger 7 The event is generated each time an event
is signaled on CTI output trigger 7.

Note

CTI output triggers are input events to the PMU and trace unit.

PMCEID0_EL0[59] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_ETE is implemented.

E1.3.2 Common architectural events

0x400C, TRB_WRAP, Trace buffer current write pointer wrapped The event is generated each time the
current write pointer is wrapped to the base pointer.

PMCEID0_EL0[44] reads as 0b1 if this event is implemented and 0b0 otherwise.

This event must be implemented if FEAT_TRBE is implemented.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter E1. Trace Buffer Extension
E1.3. Events

0x400D, PMU_OVFS, PMU overflow, counters accessible to EL1 and EL0 The event is generated each time
one of the following occurs:

• An event is counted by an event counter <n> and all of the following are true:
– PMINTENSET_EL1[n] is 0b1.
– One of the following is true:

* Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[31:0], and either
FEAT_PMUv3p5 is not implemented or PMCR_EL0.LP is 0b0.

* Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[63:0], FEAT_PMUv3p5
is implemented, and PMCR_EL0.LP is 0b1.

– Either EL2 is implemented and <n> is less than MDCR_EL2.HPMN, or EL2 is not implemented
and <n> is in the range [0 .. (PMCR_EL0.N-1)].

• A cycle is counted by PMCCNTR_EL0, PMINTENSET_EL1[31] is 0b1, and one of the following is
true:

– Counting the cycle causes unsigned overflow of PMCCNTR_EL0[31:0] and PMCR_EL0.LC is 0b0.
– Counting the cycle causes unsigned overflow of PMCCNTR_EL0[63:0] and PMCR_EL0.LC is 0b1.

This event cannot be counted by the PMU. PMCEID0_EL0[45] reads as 0b0. This event must be implemented
if all of the following are true:

• FEAT_PMUv3 is implemented.
• FEAT_ETE is implemented.

0x400E, TRB_TRIG, Trace buffer Trigger Event The event is generated when a Trace Buffer Extension
Trigger Event occurs.

It is IMPLEMENTATION DEFINED whether this event can be counted by the PMU.

PMCEID0_EL0[46] reads as 0b1 if this event is implemented and can be counted by the PMU, and 0b0

otherwise.

This event must be implemented if FEAT_TRBE is implemented.

0x400F, PMU_HOVFS, PMU overflow, counters reserved for use by EL2 The event is generated each time
an event is counted by an event counter <n> and all of the following are true:

• EL2 is implemented.
• PMINTENSET_EL1[n] is 0b1.
• One of the following is true:

– Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[31:0], and either
FEAT_PMUv3p5 is not implemented or MDCR_EL2.HLP is 0b0.

– Counting the event causes unsigned overflow of PMEVCNTR<n>_EL0[63:0], FEAT_PMUv3p5 is
implemented, and MDCR_EL2.HLP is 0b1.

• <n> in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

The event is not transmitted to a trace unit if SelfHostedTraceEnabled() is TRUE and TRFCR_EL2.E2TRE is
0b0.

Note

This is in addition to the rules for the export of all events to a trace unit described in “Controls to prohibit
trace at Exception levels” in Arm® Architecture Reference Manual, for A-profile architecture [1].

This event cannot be counted by the PMU. PMCEID0_EL0[47] reads as 0b0.

This event must be implemented if all of the following are true:

• FEAT_PMUv3 is implemented.
• FEAT_ETE is implemented.
• EL2 is implemented.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Part F
The Branch Record Buffer Extension

Chapter F1
Branch Record Buffer Extension

Details of control path, either at the loop level or at the function call level, is useful when compiling and optimizing
software. These directed optimizations extract information about hotspots and common control paths in the code.

FEAT_BRBE provides a mechanism for capturing control path history in a low cost manner.

FEAT_BRBEv1p1 extends FEAT_BRBE to enable branch recording at EL3.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

F1.1 Branch Record Buffer Extension specification

RVNFCR FEAT_BRBE is an OPTIONAL feature from Armv9.2.

IFKLJM ID_AA64DFR0_EL1.BRBE indicates whether FEAT_BRBE is implemented.

RVYMSG FEAT_BRBEv1p1 is an OPTIONAL feature from Armv9.3.

RKRBNR If FEAT_BRBE is implemented, an Armv9.3-compliant implementation includes the FEAT_BRBEv1p1 feature.

IGFXKY ID_AA64DFR0_EL1.BRBE indicates whether FEAT_BRBEv1p1 is implemented.

F1.1.1 Branch records

IJBTBH Each Branch record consists of 3 registers:

• BRBINF<n>_EL1.
• BRBSRC<n>_EL1.
• BRBTGT<n>_EL1.

RGBCQW Taken branch instructions, as defined by the section “Branches, Exception Generating and System instructions” in
Arm® Architecture Reference Manual, for A-profile architecture [1], generate a Branch record.

RLFVJR Exceptions generate a Branch record.

RRPVXK A Half-source Branch record has BRBINF<n>_EL1.VALID == 0b10.

RLPLYK A Half-target Branch record has BRBINF<n>_EL1.VALID == 0b01.

RGSMRH A Full Branch record has BRBINF<n>_EL1.VALID == 0b11.

RMLGCF When a Branch record is generated for any branch or exception which does not transition between a BRBE
Prohibited Region and a BRBE non-Prohibited Region, the Branch record is a Full Branch record.

See F1.1.5 Branch records for exceptions and F1.1.6 Branch records for exception returns for more details on
when a Half-source Branch record or a Half-target Branch record is generated.

IZCHRF When an exception, exception return instruction, or Instruction Synchronization Barrier instruction causes a
Context synchronization event which synchronizes an update to one or more System registers which are indirectly
read when generating a Branch record, the synchronization of those register updates occurs before the registers are
indirectly read. Such order is generally consistent with indirect reads of System registers performed by events
which cause a Context synchronization event.

RCBHRY The reason for the Branch record is captured in BRBINF<n>_EL1.TYPE.

F1.1.2 Cycle counting

IRRBFF Each Branch record contains a cycle count value which is representative of the time taken between each Branch
record being generated. The cycle count value can be used to determine the relative performance of the program
between each Branch record. For large cycle count values, the value stored in each Branch record is encoded to
use less storage, with a small loss of precision in the value.

RHQXNW The size of the cycle counter used to generate cycle count values is IMPLEMENTATION DEFINED, from one of the
sizes indicated in BRBIDR0_EL1.CC.

RKVRBB Each Branch record contains a cycle count value which indicates the number of Processing Element (PE) clock
cycles that occurred between the previous Branch record being generated and this Branch record being generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

RSBXCF In a multithreaded implementation, the cycle counter only counts cycles on which the thread was active.

Note: This is identical to how the CPU_CYCLES PMU event counts cycles when
PMEVTYPER<n>_EL0.MT==0b0. For more information, see the section Cycle event counting on mul-
tithreaded implementations in Arm® Architecture Reference Manual, for A-profile architecture [1].

RPGXMB For the purposes of the cycle count, a Branch record is generated only when the corresponding branch instruction or
exception is guaranteed to be architecturally executed and the target address has been calculated. Arm recommends
that the Branch record is generated as soon after this point as possible.

IKBDLR When a branch target address contains an address tag, the target address captured in the Branch record is the virtual
address with the address tag removed.

RMJDLC The cycle count value in a Branch record is Branch Cycle Count Unknown when any of the following are true:

• BRBCR_EL2.CC == 0b0, if EL2 is implemented.
• BRBCR_EL1.CC == 0b0.
• This is the first Branch record after the PE exited a BRBE Prohibited Region.
• This is the first Branch record after cycle counting has been enabled.
• This is the first Branch record after BRBFCR_EL1.PAUSED is cleared from 0b1 to 0b0.
• This is the first Branch record after execution of a BRB IALL instruction.

Note: This applies even when EL2 is disabled in the current Security state.

RPBJTJ When the cycle count value in a Branch record is Branch Cycle Count Unknown:

• BRBINF<n>_EL1.CCU has the value 0b1.
• BRBINF<n>_EL1.CC contains a value which is all zeros.

The number of cycles indicated by this Branch record is UNKNOWN.

RXGSSZ If the cycle count value in a Branch record would exceed the maximum value of the cycle counter, then:

• BRBINF<n>_EL1.CCU has the value 0b0.
• BRBINF<n>_EL1.CC contains a value which is all ones.

RJZWPG If the cycle count value in a Branch record is not UNKNOWN and would not exceed the maximum value of the
cycle counter, then:

• BRBINF<n>_EL1.CCU has the value 0b0.
• BRBINF<n>_EL1.CC contains the cycle count value, encoded as defined in BRBINF<n>_EL1.CC.

F1.1.3 Mispredicted branches

IQHGFW Each Branch record generated for a branch instruction contains an indication of whether the branch was correctly
or incorrectly predicted by the PE. Branch prediction behavior is IMPLEMENTATION DEFINED and this is an
indication of whether such prediction succeeded, or not.

RXHWRB For a Branch record for a branch instruction one of the following occurs:

• If EL2 is implemented and BRBCR_EL2.MPRED == 0b0 then BRBINF<n>_EL1.MPRED has the value 0b0.
• else if BRBCR_EL1.MPRED == 0b0 then BRBINF<n>_EL1.MPRED has the value 0b0.
• otherwise:

– BRBINF<n>_EL1.MPRED has the value 0b0 for a correctly predicted branch.
– BRBINF<n>_EL1.MPRED has the value 0b1 for an incorrectly predicted branch.

Note: This applies even when EL2 is disabled in the current Security state.

RDHNPJ For a Branch record for an exception BRBINF<n>_EL1.MPRED has the value 0b0.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

RLBRGV An incorrectly predicted branch is when any of the following is true:

• The direction of a conditional branch was incorrectly predicted at least once during the execution of the
instruction.

• The target of a branch was incorrectly predicted at least once during the execution of the instruction.
• The branch was not predicted by a branch predictor.

RRDLQF A correctly predicted branch is one that is not incorrectly predicted.

F1.1.4 BRBE Prohibited regions

INVWPM An executable program might contain regions of code that are prohibited to generate Branch records, and these
regions are called BRBE Prohibited Regions. These regions are usually associated with a different Security state or
Exception level.

IDMPQZ BRBE Prohibited Regions are controlled by the following:

• BRBCR_EL1.E0BRE.
• BRBCR_EL1.E1BRE.
• BRBCR_EL2.E0HBRE.
• BRBCR_EL2.E2BRE.
• MDCR_EL3.SBRBE.

IHPZWM While executing outside a BRBE Prohibited Region, Branch records might not be generated because the Branch
Record Buffer Extension has a number of filtering functions.

RFHGJN Execution in AArch32 state is a BRBE Prohibited Region.

RLPYBQ Execution in Debug state is a BRBE Prohibited Region.

RJWWFY When FEAT_BRBEv1p1 and EL3 are implemented:

• When MDCR_EL3.{E3BREC,E3BREW} == 0b01 or MDCR_EL3.{E3BREC,E3BREW} == 0b10, self-
hosted EL3 branch recording is enabled.

• When MDCR_EL3.{E3BREC,E3BREW} == 0b00 or MDCR_EL3.{E3BREC,E3BREW} == 0b11,
self-hosted EL3 branch recording is disabled.

RGLKGW Execution at EL3 is a BRBE Prohibited Region when any of the following are true:

• FEAT_BRBEv1p1 is not implemented.
• self-hosted EL3 branch recording is disabled.

RSFZQD Execution at EL2 is a BRBE Prohibited Region when any of the following are true:

• BRBCR_EL2.E2BRE == 0b0.
• MDCR_EL3.SBRBE == 0b00.
• MDCR_EL3.SBRBE == 0b01 and the PE is in Secure state.

RYPHYG Execution at EL1 is a BRBE Prohibited Region when any of the following are true:

• BRBCR_EL1.E1BRE == 0b0.
• MDCR_EL3.SBRBE == 0b00.
• MDCR_EL3.SBRBE == 0b01 and the PE is in Secure state.

RDBPCP Execution at EL0 is a BRBE Prohibited Region when any of the following are true:

• EL2 is disabled in the current security state or HCR_EL2.TGE == 0b0, and BRBCR_EL1.E0BRE == 0b0.
• EL2 is enabled in the current security state and HCR_EL2.TGE == 0b1, and BRBCR_EL2.E0HBRE == 0b0.
• MDCR_EL3.SBRBE == 0b00.
• MDCR_EL3.SBRBE == 0b01 and the PE is in Secure state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

RYGGSC While the PE is executing code from a BRBE Prohibited Region, no data is captured in Branch records that might
provide information about execution in the BRBE Prohibited Region.

F1.1.5 Branch records for exceptions

RYSKQK When an exception is taken from a BRBE Prohibited Region to a BRBE Prohibited Region, no Branch record is
generated.

RKRJQC When an exception is taken from a BRBE non-Prohibited Region, or an exception is taken to a BRBE non-Prohibited
Region:

• If the target Exception level is EL1, a Branch record is generated only if BRBCR_EL1.EXCEPTION == 0b1.
• If the target Exception level is EL2, a Branch record is generated only if BRBCR_EL2.EXCEPTION == 0b1.
• If the target Exception level is EL3, a Branch record is generated only if FEAT_BRBEv1p1 is implemented

and self-hosted EL3 branch recording is enabled.

RYBJDJ When a Branch record is generated for an exception:

• If the exception is taken from a BRBE Prohibited Region, then a Half-target Branch record is generated.
• If the exception is taken from a BRBE non-Prohibited Region to a BRBE Prohibited Region, then a

Half-source Branch record is generated.
• If the exception is taken from a BRBE non-Prohibited Region to a BRBE non-Prohibited Region, then a Full

Branch record is generated.

RLLCTG When entering Debug state:

• If the entry is from a BRBE Prohibited Region, no Branch record is generated.
• If the entry is from a BRBE non-Prohibited Region, then a Half-source Branch record is generated.

IMZNRY When a Half-source Branch record or a Full Branch record is generated for an Illegal Execution state exception,
the source information in the Branch record indicates where the exception was taken from, in the same way as all
other exceptions.

RBZCRW A Branch record for an exception which contains a valid source address has the source address set to the preferred
exception return address for the exception.

RFYLTC A Branch record for an exception which contains a valid target address has the target address set to the address of
the exception vector.

F1.1.6 Branch records for exception returns

RLMXHS When an exception return instruction is executed in a BRBE Prohibited Region and branches to a BRBE Prohibited
Region, no Branch record is generated.

RZSHDL When an exception return instruction is executed in a BRBE non-Prohibited Region, or an exception return
instruction branches to a BRBE non-Prohibited Region:

• If the exception return instruction is executed at EL3, a Branch record is generated only if FEAT_BRBEv1p1
is implemented and self-hosted EL3 branch recording is enabled.

• If the exception return instruction is executed at EL2, a Branch record is generated only if BRBCR_EL2.ERTN
== 0b1.

• If the exception return instruction is executed at EL1, a Branch record is generated only if BRBCR_EL1.ERTN
== 0b1.

RZTGMW When a Branch record is generated for an exception return instruction:

• If the exception return instruction is executed in a BRBE Prohibited Region then a Half-target Branch record
is generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

• If the exception return instruction is executed in a BRBE non-Prohibited Region and branches to a BRBE
Prohibited Region then a Half-source Branch record is generated.

• If the exception return instruction is executed in a BRBE non-Prohibited Region and branches to a BRBE
non-Prohibited Region then a Full Branch record is generated.

RRBCFP When exiting from Debug state:

• If the exit is to a BRBE Prohibited Region, no Branch record is generated.
• If the exit is to a BRBE non-Prohibited Region, then a Half-target Branch record is generated.

INGWPR When a Half-target Branch record or a Full Branch record is generated for an exception return instruction which
is an illegal return or a legal return which sets PSTATE.IL to 0b1, the target information in the Branch record
indicates the target of the branch:

• BRBTGT<n>_EL1.ADDRESS contains the target of the branch.
• BRBINF<n>_EL1.EL contains the value that is loaded in to PSTATE.EL.

IJCYHD When a Half-target Branch record or a Full Branch record is generated for an exception return instruction which is
an illegal return or a legal return which sets PSTATE.IL to 0b1, for the purposes of determining whether the target
is a BRBE Prohibited Region the value that is loaded in to PSTATE.EL is used as the target Exception level.

Note that PSTATE.EL is unchanged on an illegal return, so the current Exception level is the target of the illegal
return, regardless of where the return was attempting to return to.

F1.1.7 Transactional Memory Extension

RGVCJH When an entire transaction is executed in a BRBE non-Prohibited Region and the transaction fails or is canceled
then BRBFCR_EL1.LASTFAILED is set to 0b1.

RJMSZF When an entire transaction is executed in a BRBE Prohibited Region and the transaction fails or is canceled then
BRBFCR_EL1.LASTFAILED is unchanged.

RCBTBH When a transaction is executed partially in a BRBE Prohibited Region and partially in a BRBE non-Prohibited
Region and the transaction fails or is canceled then it is CONSTRAINED UNPREDICTABLE whether
BRBFCR_EL1.LASTFAILED is set to 0b1 or is unchanged.

RKBSZM When a Branch record is generated, other than via the injection mechanism, the value of
BRBFCR_EL1.LASTFAILED is copied to the LASTFAILED field in the Branch record and
BRBFCR_EL1.LASTFAILED is set to 0b0.

IHJZWG When a transaction fails or is canceled, a Branch record is not generated.

IJBPHS When a transaction fails or is canceled, Branch records generated in the transaction are not removed from the
Branch record buffer.

ITFKNW Attempting to execute the BRB IALL or BRB INJ instructions in Transactional state results in the transaction failing
with ERR cause.

F1.1.8 PE Speculation

RKXTKS The Branch records only contain information for a branch, exception, or exception return that is architecturally
executed.

F1.1.9 Branch record filtering

XNZWBP For Branch records generated outside a BRBE Prohibited Region it is useful to reduce the number of records that
are generated to match their use. Table F1.1 lists the some different use cases.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

Table F1.1: Example use cases for filtering

Use case Description

Control path • All branches
• Subroutine returns
• Exceptions
• Exception returns

Call path • Branch with link instructions
• Subroutine returns

Kernel Calls • Exceptions
• Exception returns

F1.1.9.1 Filtering on type

IFSNVG The Branch records can be filtered by independently enabling the generation of the following types:

• Exception.
• Exception return.
• Direct Branch with link.
• Indirect Branch with link.
• Return from subroutine.
• Indirect Branches.
• Conditional Direct Branches.
• Unconditional Direct Branches.

RLYGJZ Control of when Branch records for exceptions are generated is controlled by BRBCR_EL1.EXCEPTION and
BRBCR_EL2.EXCEPTION. See F1.1.5 Branch records for exceptions for details.

Table F1.2: Exception mapping for exceptions taken to AArch64 state

Reason Type

Branch Target exception Inst fault

Breakpoint Inst debug

FIQ FIQ

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction Abort Inst fault

Instruction or event trapped by a
control bit

Trap

MemCopy or MemSet Trap

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

Reason Type

Misaligned PC Alignment

PAC Fail Data fault

SError interrupt System Error

SMC Call

SVC Call

Software Breakpoint Instruction Inst debug

Software Step Inst debug

Stack Pointer Misalignment Alignment

Synchronous Data Abort Data fault

UNDEFINED instruction Trap

Watchpoint Data debug

RRCGVB Control of when Branch records for exception return instructions are generated is controlled by BRBCR_EL1.ERTN
and BRBCR_EL2.ERTN. See F1.1.6 Branch records for exception returns for details.

Table F1.3: A64 return from exception instructions

Instruction Description

ERET Return From Exception.

ERETAA Authenticate and Exception return.

ERETAB Authenticate and Exception return.

RRBDXK Branch records for Direct branch with link instructions are only generated when the instruction is executed in a
BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.DIRCALL == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.DIRCALL == 0b0 and BRBFCR_EL1.EnI == 0b1.

Table F1.4: A64 direct branch with link instructions

Instruction Description

BL Branch with link.

RVBGTZ Branch records for Indirect branch with link instructions are only generated when the instruction is executed in a
BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.INDCALL == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.INDCALL == 0b0 and BRBFCR_EL1.EnI == 0b1.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

Table F1.5: A64 indirect branch with link instructions

Instruction Description

BLR Branch with link to register.

BLRAA Authenticate and branch with link.

BLRAAZ Authenticate and branch with link.

BLRAB Authenticate and branch with link.

BLRABZ Authenticate and branch with link.

RCKNBH Branch records for return from subroutine instructions are only generated when the instruction is executed in a
BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.RTN == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.RTN == 0b0 and BRBFCR_EL1.EnI == 0b1.

Table F1.6: A64 return from subroutine instructions

Instruction Description

RET Return From subroutine.

RETAA Authenticate and function return.

RETAB Authenticate and function return.

RKKLDV Branch records for indirect branch instructions, unless covered by other rules, are only generated when the
instruction is executed in a BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.INDIRECT == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.INDIRECT == 0b0 and BRBFCR_EL1.EnI == 0b1.

Table F1.7: A64 indirect branch instructions

Instruction Description

BR Branch to register.

BRAA Authenticate and branch.

BRAAZ Authenticate and branch.

BRAB Authenticate and branch.

BRABZ Authenticate and branch.

RBBNSZ Branch records for conditional direct branch instructions, unless covered by other rules, are only generated when
the instruction is executed in a BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.CONDDIR == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.CONDDIR == 0b0 and BRBFCR_EL1.EnI == 0b1.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

Table F1.8: A64 conditional direct branch instructions

Instruction Description

B.cond Conditional Branch.

BC.cond Branch Consistent conditionally.

CBZ or CBNZ Compare with zero and branch.

TBZ or TBNZ Test and branch.

Note: BC.cond and B.cond instructions with the AL or NV condition code are considered conditional.

RFJYVT Branch records for unconditional direct branch instructions, unless covered by other rules, are only generated
when the instruction is executed in a BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.DIRECT == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.DIRECT == 0b0 and BRBFCR_EL1.EnI == 0b1.

Table F1.9: A64 unconditional direct branch instructions

Instruction Description

B Unconditional Branch.

RFJYDC It is IMPLEMENTATION DEFINED whether Branch records are generated for the following instructions when the
instruction is executed in a BRBE non-Prohibited Region and if any of the following are true:

• BRBFCR_EL1.DIRECT == 0b1 and BRBFCR_EL1.EnI == 0b0.
• BRBFCR_EL1.DIRECT == 0b0 and BRBFCR_EL1.EnI == 0b1.

Table F1.10: Optional A64 direct branch instructions

Instruction Description

ISB Instruction Synchronization Barrier.

SXZRTW Writing a value of 0b0000_0001 to the filter controls, BRBFCR_EL1<23:16>, ensures Branch records are generated
for all branch instructions.

F1.1.10 Branch record buffer operation

RLKWNB The Branch Record Buffer Extension operation is controlled by the BRBCR_EL1, BRBCR_EL2, and
BRBFCR_EL1 registers.

RPYBRZ Generation of Branch records is Paused when BRBFCR_EL1.PAUSED == 0b1.

RYDZNK When generation of Branch records is Paused, Branch records are not generated.

RNXCWF If EL2 is implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL1.FZP is 0b1.
• Generation of Branch records is not Paused.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

• PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0] is non-zero.
• The PE is in a BRBE non-Prohibited Region.

RGXGWY If EL2 is implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL2.FZP is 0b1.
• Generation of Branch records is not Paused.
• PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is non-zero.
• The PE is in a BRBE non-Prohibited Region.

Note: This applies even when EL2 is disabled in the current Security state.

RPKTXQ If EL2 is not implemented, a BRBE freeze event occurs when all of the following are true:

• BRBCR_EL1.FZP is 0b1.
• Generation of Branch records is not Paused.
• PMOVSCLR_EL0[(PMCR_EL0.N-1):0] is non-zero.
• The PE is in a BRBE non-Prohibited Region.

RBHYTD On a BRBE freeze event:

• BRBFCR_EL1.PAUSED is set to 0b1.
• The current timestamp is captured in BRBTS_EL1.

RQKQZL The source of value of the timestamp captured in BRBTS_EL1 is selected by the combination of programming of
BRBCR_EL2.TS and BRBCR_EL1.TS. See Table F1.11 and BRBETimeStamp().

Table F1.11: Captured timestamp

BRBCR_EL2.TS BRBCR_EL1.TS Captured timestamp

0b00 (delegate) 0b01 (virtual) PhysicalCountInt() -
CNTVOFF_EL2

0b10 (offset physical) PhysicalCountInt() - physical
offset

0b11 (physical) PhysicalCountInt()

0b01 (virtual) 0bxx PhysicalCountInt() -
CNTVOFF_EL2

0b10 (offset physical) 0bxx PhysicalCountInt() - physical
offset

0b11 (physical) 0bxx PhysicalCountInt()

If any of the following are true, the physical offset is zero, otherwise the physical offset is the value of
CNTVOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn == 0b0.
• EL2 is implemented and CNTHCTL_EL2.ECV == 0b0.

RGWMZV When a valid Branch record is captured in the Branch record buffer storage, the BRB_FILTRATE event is
generated.

RGMCHN When BRB_FILTRATE is generated for an exception or an exception return, it is an Exception-related event.

IWGZSC It is CONSTRAINED UNPREDICTABLE whether a BRB_FILTRATE event is generated after a BRB INJ causes a
Branch record to be injected.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

XSJDRW Branch record buffer storage injection occurs during software context switch events, which occur at a higher
Exception level than the one being profiled. It is expected that the Branch record buffer storage is in a BRBE
Prohibited Region during these events, and therefore Branch record generation is prohibited.

In the use case in which the PMU is not prohibited during software context switch events, it is expected that event
counters set to count the BRB_FILTRATE event are prohibited from counting during these events.

Additionally, preventing the generation of BRB_FILTRATE on a Branch record injection would require hardware
to suppress the event.

IPGDQV The following definition is taken from Arm® Architecture Reference Manual, for A-profile architecture [1]:

The PMU must filter [Exception-related events] according to the Exception level in which the event
occurred. . . . The PMU must not count an exception after it has been taken because this could
systematically report a result of zero exceptions at EL0.

RKSKLG If a BRB_FILTRATE event causes unsigned overflow of the event counter counting that event and this in turn
causes a BRBE freeze event then:

• The Branch record for the operation that generated the BRB_FILTRATE event will be generated and captured
in the Branch record buffer.

• It is CONSTRAINED UNPREDICTABLE whether the Branch Record Buffer Extension generates Branch records
for other operations in program order after the operation that generated the BRB_FILTRATE event that would
otherwise be generated when generation of Branch records is not Paused.

Note: Arm recommends that implementations minimize capture of additional branches.

IRMGDV The architecture does not define when PMU events are counted relative to the instructions that caused the event.
Events generated by an instruction might be counted before or after the instruction becomes architecturally
executed, and events might be counted for operations that do not become architecturally executed, meaning events
can be counted speculatively and/or out-of-order with respect to the simple sequential execution of the program.
Events might also be counted simultaneously by other event counters when the overflow occurs, including events
from different instructions. In addition, multiple instances of an event might occur simultaneously, meaning that
an event counter unsigned overflow can yield a nonzero value in the event counter.

Furthermore, the Branch records are generated only for architecturally executed operations RKXTKS.

These properties mean that, unless otherwise stated, on a BRBE freeze event, it is CONSTRAINED UNPREDICTABLE
whether the branches that define the basic block containing the instruction causing that event are captured in the
Branch record buffer.

An exception to this relaxation applies for the BRB_FILTRATE event.

SJCHLT If a direct read of PMOVSCLR_EL0 returns a non-zero value for a subset of the overflow flags, such that one of
RNXCWF, RGXGWY, or RPKTXQ means that a BRBE freeze event should occur, then a read of BRBFCR_EL1 ordered
after the read of PMOVSCLR_EL0 will return BRBFCR_EL1.PAUSED == 0b1.

Note: Direct reads of System registers require explicit synchronization for following direct reads of other System
registers to be ordered after the first direct read.

SSRJND If a direct read of BRBFCR_EL1.PAUSED returns the value 0b1, then no operations ordered after the direct
read will generate further Branch records until BRBFCR_EL1.PAUSED is cleared by software. The subsequent
operations can be ordered by a Context synchronization event.

F1.1.11 Branch record buffer

IFBHCC The Branch record buffer can contain:

• 8 Branch records.
• 16 Branch records.
• 32 Branch records.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

• 64 Branch records.

This is known as the Branch record buffer storage.

RKSLSM The Branch record buffer storage has a maximum number of Branch records as defined by
BRBIDR0_EL1.NUMREC.

IPPBZP The Branch record buffer provides System registers to access the Branch records stored in the Branch record
buffer storage. These System registers provide access to up to 32 Branch records without the need for explicit
synchronization between each System register read. When more than 32 Branch records are implemented, the
Branch record buffer provides a banking mechanism to provide access to multiple banks, each bank containing
up to 32 Branch records. BRBFCR_EL1.BANK controls which bank is currently selected, and updates to
BRBFCR_EL1.BANK require explicit synchronization before accessing the bank.

RWLSWP Accessing Branch records 0 to 31 is performed by setting BRBFCR_EL1.BANK to 0b00.

RWRJLW Accessing Branch records 32 to 63 is performed by setting BRBFCR_EL1.BANK to 0b01.

RTJGLK The Branch record with index 0 is the youngest captured branch.

RHTRNR The Branch record with index n is younger than Branch record with index n+1.

RDTPDK On the generation of a new Branch record and if the Branch record buffer storage is full then the oldest Branch
record is lost.

XQMKLH To ensure efficiency when accessing the buffer, the buffer must only contain a contiguous set of valid Branch
records, with no invalid Branch records between any two valid Branch records. A valid Branch record is one with
BRBINF<n>_EL1.VALID != 0b00, and an invalid Branch record is one with BRBINF<n>_EL1.VALID == 0b00.

RSQLCX When the buffer contains M valid Branch records, where M > 0 and M is less than the maximum number of Branch
records, all of the following are true:

• Branch records with index 0 to M-1 are all valid.
• All other Branch records are invalid.

RPGDLX The creation of a Branch record is considered an indirect write to BRBTGT<n>_EL1, BRBSRC<n>_EL1 and
BRBINF<n>_EL1, and therefore requires explicit synchronization before being read.

ISFFNF The generation of Branch records performs indirect reads and indirect writes of System registers.

IKFYTV Arm® Architecture Reference Manual, for A-profile architecture [1] defines the synchronization requirements for
direct reads, direct writes, indirect reads and indirect writes of System registers made by instructions and external
agents.

F1.1.12 Invalidating the Record Buffer

RLLHYN Execution of BRB IALL causes all Branch records to be invalidated.

RPFRNW A Branch record, R, is invalidated by the instruction BRB IALL, W, if all of the following are true:

• R is caused by a branch operation or exception, B.
• B is either:

– in program order before a Context Synchronization Event, CSE.
– is the Context Synchonization Event.

• CSE is in program order before W.

RLWPKR A Branch record R is not invalidated by the instruction BRB IALL, W, if all of the following are true:

• R is caused by a branch operation or exception, B.
• B is in program order after a Context Synchronization Event, CSE
• CSE is in program order after W.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

RWMZKF It is CONSTRAINED UNPREDICTABLE if a Branch record R is invalidated by the instruction BRB IALL, W, if all of
the following are true:

• CSE1 is in program order before W.
• R is caused by a branch operation or exception, B.
• B is in program order after a Context Synchronization Event, CSE1
• B is either:

– in program order before a Context Synchronization Event, CSE2.
– is the Context Synchonization Event, CSE2.

• CSE2 is in program order after W and there are no other CSEs between CSE1 and CSE2.

If a Branch record is invalidated, all older Branch records are invalidated.

RJSCWK When a Branch record has been invalidated, it remains invalid until it is overwritten by any of the following:

• A new Branch record is created.
• A Branch record is injected using the BRB INJ instruction.

F1.1.13 Programmers Model

RBNGTH Reads from an unimplemented Branch record return the value zero.

RPKZCF All Branch records captured while generation of Branch records is not Paused, must represent a continuous block
of execution for all BRBE non-Prohibited Regions.

IXSBPR The captured Branch records might not represent a continuous block if generation of Branch records is Paused at
any time. To avoid this non-continuous nature, the BRB IALL instruction can be used to invalidate all Branch records
while generation is Paused.

RPMRRL If a Branch record cannot be captured for a branch instruction or exception that is not prohibited and has been
selected to generate a record, then all the Branch records must be invalidated. The reasons for a PE being unable to
capture a Branch record are IMPLEMENTATION DEFINED and Arm recommends that such reasons are rare.

IQJFSV When a process is migrated to a PE with a smaller number of Branch records implemented then the information
from the older Branch records will be lost.

IBDKJJ When FEAT_BRBE is implemented, the following fields are added to System registers to control access to the
Branch record buffer functionality:

• When EL2 is implemented:

– HDFGRTR_EL2.nBRBIDR.
– HDFGRTR_EL2.nBRBCTL.
– HDFGWTR_EL2.nBRBCTL.
– HDFGRTR_EL2.nBRBDATA.
– HDFGWTR_EL2.nBRBDATA.
– HFGITR_EL2.nBRBINJ.
– HFGITR_EL2.nBRBIALL.

• When EL3 is implemented

– MDCR_EL3.SBRBE.

RXVQKS The Branch record buffer registers are:

• BRBSRCINJ_EL1.
• BRBTGTINJ_EL1.
• BRBINFINJ_EL1.
• BRBCR_EL1.
• BRBCR_EL2.
• BRBCR_EL12.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

• BRBFCR_EL1.
• BRBIDR0_EL1.
• BRBSRC<n>_EL1.
• BRBTGT<n>_EL1.
• BRBINF<n>_EL1.
• BRBTS_EL1.

SGCYTK When self-hosted EL3 branch recording is enabled, the following registers must be programmed:

• BRBCR_EL1 and BRBCR_EL2. Software must program these registers to control the following:
– Recording of exceptions taken to EL1 and EL2.
– Recording of exception returns from EL1 and EL2.
– Branch recording at EL0, EL1, and EL2.
– Occurrence of BRBE freeze events on PMU overflows.
– Timestamp source.
– Misprediction information.
– Cycle count information.

• BRBFCR_EL1. Software must program this register to control the following:
– Selection of Branch Record Buffer bank.
– Selection of branch types to record at all Exception levels.
– Pausing of Branch recording.
– If FEAT_TME is implemented, recording of transaction failure information.

Software should also consider how MDCR_EL3.SBRBE should be programmed to either allow or prohibit access
to the captured branch records from lower Exception levels. Even if self-hosted EL3 branch recording is not being
used, software should consider whether a BRB IALL instruction should be executed before executing software at
lower Exception levels.

SYLMQQ Software must invalidate the Branch records after a PE reset to ensure that details of execution before the reset
event are not leaked.

XFPJPQ MDCR_EL3.E3BREC resets to 0b0 on a Cold reset, and MDCR_EL3.E3BREW resets to 0b0 on a Warm reset.
This allows software to program MDCR_EL3.E3BREC and MDCR_EL3.E3BREW such that the BRBE continues
recording after Warm reset, or stops recording at Warm reset.

INZMWQ When FEAT_BRBEv1p1 is implemented, BRBE control fields reset to architecturally UNKNOWN values on a Cold
reset and are unchanged on a Warm reset.

RMPTNR Execution of BRB IALL is unchanged in Debug state.

RBRFKL Execution of BRB INJ is unchanged in Debug state.

F1.1.13.1 Manual injection of Branch records

IDXNLX The Branch Record Buffer Extension supports the ability to manually create Branch records and inject them
in to the Branch record buffer storage. The primary purpose of the injection functionality is to support the
restore of the Branch record buffer storage contents, particularly during software context switch events, including
migration of software between PEs. The Branch record buffer storage contents are read out using direct reads of
BRBSRC<n>_EL1, BRBTGT<n>_EL1, and BRBINF<n>_EL1.

RFYXNL The Branch record injection data registers are:

• BRBSRCINJ_EL1.
• BRBTGTINJ_EL1.
• BRBINFINJ_EL1.

IFJHMP Branch record injection consists of creating a single Branch record using direct writes to the Branch record
injection data registers, then injecting the record in to the Branch record buffer storage using BRB INJ. This process
injects a single Branch record as the youngest entry in the Branch record buffer storage. This process is repeated
for each Branch record to be added to the Branch record buffer storage.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter F1. Branch Record Buffer Extension
F1.1. Branch Record Buffer Extension specification

IBCZRK When BRB INJ is executed outside of a BRBE Prohibited Region, it is CONSTRAINED UNPREDICTABLE whether a
Branch record is injected.

RXVDNN When BRB INJ is executed inside a BRBE Prohibited Region, the contents of the Branch record injection data
registers are used to create a Branch record which is added to the Branch record buffer storage as the youngest
entry.

RPWKFJ Execution of BRB INJ does not require explicit synchronization to use the result of direct writes to the Branch record
injection data registers in program order before BRB INJ.

ITVDMK The creation of a Branch record as a result of execution of BRB INJ does not use the result of direct writes to the
Branch record injection data registers in program order after BRB INJ.

Note: Explicit synchronization is not required to ensure this ordering.

RLKDTJ After the execution of BRB INJ, the contents of the Branch record injection data registers are UNKNOWN.

ICPBKF Changes to the BRB registers are subject to the rules for synchronization for system registers (see “Synchronization
requirements for AArch64 System registers” in Arm® Architecture Reference Manual, for A-profile architecture
[1]).

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter F1. Branch Record Buffer Extension
F1.2. Events

F1.2 Events

F1.2.1 Common architectural events

0x811F, BRB_FILTRATE, Branch Record captured The counter counts each branch record captured in the
branch record buffer. Branch records that are not captured because they are removed by filtering are not
counted.

When BRB_FILTRATE is generated for an exception or an exception return, it is an Exception-related event.

This event must be implemented if FEAT_BRBE is implemented.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Part G
Appendixes

Chapter G1
Synchronization requirements for System registers

This document uses the following terms to describe the effects of a direct read, direct write, indirect read, or
indirect write of a System register:

Program order The sequence in which instructions are executed in a simple sequential execution of the program.

Reads-from A direct read or indirect read R2 Reads-from a direct write or indirect write W1 to the same System
register if and only if R2 takes its data from W1.

Coherence order A Coherence order relation for each System register in the Processing Element (PE) provides
a total order on all direct writes and indirect writes from all agents to that System register, starting with a
notional write of the reset value.

Coherence-after A direct write or indirect write W2 to a System register is Coherence-after another direct write
or indirect write W1 to the same System register if and only if W2 is sequenced after W1 in the Coherence
order of the System register.

A direct write or indirect write W2 to a System register is Coherence-after a direct read or indirect read
R1 to the same System register if and only if R1 Reads-from another direct write or indirect write W3
to the same System register and W2 is Coherence-after W3.

The rules for synchronization are described using graphs containing nodes and arcs as follows:

• Each node denotes an operation. By convention:

– When referring to a System register, R, W, and RW denote a direct read, direct write, and direct read or
direct write respectively.

– When referring to a memory access, R, W, and RW denote a read, write, and read or write respectively.

– r, w, and rw denote an indirect read, indirect write, and indirect read or indirect write of a System
register respectively.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter G1. Synchronization requirements for System registers

– CSE, TSB, and DSB denote a Context synchronization event, TSB CSYNC operation, and a Data
synchronization barrier DSB respectively.

• An edge denotes a relationship between the operation at the arrow head (the pointy end) and the operation at
the arrow tail (the other end):

– A solid arrow denotes program-order.

– A dotted arrow denotes a read/write ordering.

– A dashed arrow indicates the generation of an operation by another operation.

The label on the arrow defines the relationship as follows:

Table G1.1: Labels for ordering diagrams

Notation Name Description

po program-order head is in program order after tail.

rf Reads-from tail Reads-from head.

co Coherence-after head is Coherence-after tail.

fr from-read As co, except that the operation at head is a read.

ob Observed-by tail is Observed-by head. Only applies for different Observers.

tb traced-by head is the Trace operation for the instruction at tail.

gb generated by head is an operation generated by the instruction at tail.

seo speculative
execution-order

The PE speculated that the instruction at head was executed after tail, but the
instruction was later Canceled, Transaction-failed, or Transaction-canceled. An
seo arrow might be paired with a can arrow that shows this.

can canceled The instruction at tail was Canceled when the instruction at head was Resolved,
or the Transaction containing tail Failed or was Canceled.

For example, some of the primary synchronization requirements for System registers are described by Arm®
Architecture Reference Manual, for A-profile architecture [1] as follows:

• Direct writes to [System] registers are not allowed to affect any instructions appearing in program order
before the direct write.

• All direct writes to a register occur in program order with respect to all direct reads to the same register
using the same encoding.

• Direct writes [to System registers] require synchronization before software can rely on the effects of changes
to the System registers to affect instructions appearing in program order after the direct write.

These would be described in this document as follows:

• A direct write W2 to a System register made by an instruction B is Coherence-after a direct read, indirect
read, direct write, or indirect write RW1 of the same System register made by an instruction A (and hence A
will read the old value) if all of the following are true:

– A is executed in program order before B.

Figure G1.1 shows this.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter G1. Synchronization requirements for System registers

A Bpo

RW1

gb

W2

gb

co

Figure G1.1: Example: Any access before direct write

• An direct read R1 of a System register made by an instruction A Reads-from a direct write W2 to the same
System register made by an instruction B (and hence A will read the new value) if all of the following are
true:

– A is executed in program order after B.

– A and B use the same encoding for the System register.

Figure G1.2 shows this.

B Apo

W2

gb

R1

gb

rf

Figure G1.2: Example: Direct read after direct write

• An indirect read r1 of a System register made by an instruction A Reads-from a direct write W2 to the same
System register made by an instruction B (and hence A will read the new value) if all of the following are
true:

– A is executed in program order after a Context synchronization event CSE.

– B is executed in program order before CSE.

Figure G1.3 shows this.

B CSEpo

W2

gb

Apo

r1

gb

rf

Figure G1.3: Example: Indirect read after CSE

These rules provide the minimum requirements to guarantee order. For example, in Figure G1.3 if CSE is not
present then r1 might read either the old or the new value.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter G1. Synchronization requirements for System registers

Arm® Architecture Reference Manual, for A-profile architecture [1] places additional requirements for certain
registers, agents, etc. These are not described further here.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter G2
Stages of execution

This section shows the relationship between the stages of execution. The terms are defined in the Glossary.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter G2. Stages of execution
G2.1. Stages of execution without Transactional Memory Extension (TME)

G2.1 Stages of execution without Transactional Memory Extension (TME)

Figure G2.1 shows the stages of execution in a Processing Element (PE) that does not implement TME.

Begin Speculative
uArch-unfinished

Canceled
Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations Performed

Nonspeculative
uArch finished

Operations Performed

Cancel

Resolve

CompleteCoherent

Figure G2.1: Stages of execution without TME

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter G2. Stages of execution
G2.2. Stages of execution with TME

G2.2 Stages of execution with TME

Figure G2.2 shows the stages of execution in a PE that does implement TME.

Non-transactional

Transactional

Begin

Speculative
uArch-unfinishedOutside

transaction

Speculative
uArch-unfinished

Inside
transaction

Canceled

Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations
Performed

Nonspeculative
uArch finished

Operations
Performed

Cancel

Resolve
CompleteCoherent

Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations
Performed

Nonspeculative
uArch finished

Operations
Performed

Cancel

Resolve

TCOMMIT

Transaction-
canceled

TCANCEL

Transaction-
failed

Fail

Figure G2.2: Stages of execution with TME

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter G3
Additional Trace Buffer Extension software usage notes

G3.1 Context switching

SVKHHY When switching out a process being traced, to save the current trace context and ensure all Trace operations are
written to the correct context:

(1) Prohibit program-flow trace using TRFCR_ELx. In many cases this is done before the process is traced. For
example if all of the following are true:

• TRFCR_EL1.E0TRE is 1 to allow tracing of a process executed at EL0.

• TRFCR_EL1.E1TRE is 0 to prohibit tracing of the Operating System performing the context switch
executed at EL1.

(2) Execute a Context synchronization event to guarantee no new program-flow trace is generated. In the
common case, this Context synchronization event is an exception taken to an Exception level where tracing
is prohibited.

• If the trace unit is an ETE and the ETE is enabled, this also pauses the ETE Resources.

(3) Execute a TSB CSYNC instruction to ensure the program-flow trace is flushed.

(4) If necessary, disable the trace unit.

• For an ETE this is necessary if context is being switched. Software must set TRCPRGCTLR.EN to zero.
This is necessary as:

– The ETE must be disabled if saving the ETE state, as the ETE System registers can only be read
when the ETE is disabled.

– ETE trace compression logic is stateful, and disabling the ETE resets this compression state.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter G3. Additional Trace Buffer Extension software usage notes
G3.1. Context switching

(5) Disable the Trace Buffer Unit. Set TRBLIMITR_EL1.E to zero.

• This must be done before changing the VMSA System registers to prevent the Trace Buffer Unit from
speculatively accessing translation table entries.

(6) Execute a DSB operation.

• This is required if software will be reading the trace buffer contents, to ensure the writes to memory are
Complete.

(7) Execute a further Context synchronization event.

• This is required to synchronize the effects of any System register writes since the previous Context
synchronization event.

• This is also required if software will be reading the Trace Buffer Unit or trace unit System registers as
part of the context switch, to capture indirect writes to those registers by Trace operations synchronized
by the TSB CSYNC.

• For a subsequent direct read to capture the indirect write to TRBSR_EL1 resulting from an External
Abort on a completed write, this Context synchronization event must follow the DSB above.

(8) Save and/or change the context. For example, save the MDCR_EL3, MDCR_EL2 (if applicable), Trace
Buffer Unit, trace unit, and TRFCR_ELx System registers, and update the VMSA System registers for the
new process.

SFMBCL In other uses cases, tracing is not prohibited when software wants to save the trace context. For this case, if using
an ETE, the sequence is slightly different:

(1) Disable the ETE. Set TRCPRGCTLR.EN to zero.

(2) Execute a Context synchronization event to guarantee no new program-flow trace is generated.

(3) Execute a TSB CSYNC instruction to ensure the program-flow trace is flushed.

(4) Execute a DSB and/or Context synchronization event as required by the previous example.

(5) Save and/or change the context.

For an ETE this sequence does not guarantee that all instructions before disabling the ETE are traced. The ETE
might discard trace for preceding instructions when it is disabled.

SPKLXF To restore the state of the Trace Buffer Unit and trace unit for switching in a process being traced, while tracing is
prohibited:

(1) Restore the context. For example:

• Restore MDCR_EL3, MDCR_EL2 (if applicable), and the Trace Buffer Unit System registers, other
than TRBLIMITR_EL1.

• Restore the trace unit System registers, other than enabling the trace unit.
• Ensure the TRFCR_ELx System registers are correct for the process being traced.
• Update VMSA System registers for the process being returned to.

(2) Execute a Context synchronization event to guarantee the trace unit and Trace Buffer Unit will observe the
new values of the System registers written by the previous step.

(3) Enable the Trace Buffer Unit by setting TRBLIMITR_EL1.E to 1. This must be done after setting up the
correct VMSA System registers for the trace buffer, as the Trace Buffer Unit might now speculatively prefetch
and cache address translations. See RBSMLW and SYKCND.

(4) If necessary, enable the trace unit. If using an ETE, software must set TRCPRGCTLR.EN to one.

(5) Execute a Context synchronization event to guarantee tracing is allowed. In the common case, this is an ERET

instruction that returns to a different Exception level where tracing is allowed.

This must be done after saving the state from the previous process, if applicable.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter G3. Additional Trace Buffer Extension software usage notes
G3.1. Context switching

SYKCND Because the Trace Buffer Unit can prefetch and cache address translations when the Trace Buffer Unit is Enabled:

• Software must not enable the Trace Buffer Unit before programming the System registers for the owning
translation regime. In particular, during a context switch operation:

– If switching from a context using the Trace Buffer Unit, the Trace Buffer Unit must be disabled before
modifying the System registers for the owning translation regime being switched from.

– If switching to a context using the Trace Buffer Unit, the Trace Buffer Unit must not be enabled until
after modifying the System registers for the owning translation regime being switched to.

• The Trace Buffer Unit must not be enabled when the Processing Element (PE) is not executing in the owning
Security state or when executing at EL3 and SCR_EL3.NS does not indicate the owning Security state.

• In normal conditions, enabling the Trace Buffer Unit early before returning to the context being traced might
be advantageous if the implementation does prefetch address translations.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter G3. Additional Trace Buffer Extension software usage notes
G3.2. Controlling generation of trace buffer management events

G3.2 Controlling generation of trace buffer management events

SNFQZJ The Trace Buffer Extension does not include a direct capability to program the Trace Buffer Unit to generate a
maintenance interrupt when the trace buffer reaches a programmed level below the Limit pointer, and continue
collecting trace until either the interrupt is serviced or (possibly) the trace buffer fills (whichever comes first). This
allows an almost lossless collection of trace.

However, the Trace Buffer Unit can be programmed to give similar behavior in one of the following ways:

(1) Using Wrap mode. At the start of a trace session, configure the Base pointer and Limit pointer for the trace
buffer as normal, but set the trace buffer mode to Wrap mode the current write pointer to point part way
through the trace buffer, such that the remaining space in the trace buffer is the watermark level. When
the amount of trace collected reaches the watermark level, the current write pointer is wrapped and a trace
buffer management event is generated, but trace continues to be collected. This approach has the following
advantages and disadvantages:

• The trace buffer management event is generated and the trace unit receives the TRB_WRAP event at the
watermark level.

• The oldest trace in the trace buffer will be lost if more trace is generated than fits in the trace buffer,
because it is overwritten by newer trace. Note that some loss of trace is inevitable if more trace is
generated than fits in the trace buffer.

• The trace history does not start at the start of the trace buffer, and must be aligned by software.

(2) Use a Trigger Event. At the start of a trace session, configure the Base pointer and Limit pointer for the
trace buffer as normal, and set the trace buffer mode to Fill mode and the current write pointer to the start
of the trace buffer. Set the trigger mode to IRQ on trigger, the Trigger Counter to the watermark level, and
TRBSR_EL1.TRG to 1. When the amount of trace collected reaches the watermark level, a Trigger Event
occurs and a trace buffer management event is generated, but trace continues to be collected. This approach
has the following advantages and disadvantages:

• The trace buffer management event is generated and the trace unit receives the TRB_TRIG event at the
watermark level.

• The newest trace in the trace buffer will be discarded if more trace is generated than fits in the trace
buffer. To overwrite the oldest trace instead, set the trace buffer mode to Circular Buffer mode.

• This method cannot be used if also searching for a Detected Trigger event from the trace unit.

• The current write pointer does not have to be set to the start of the trace buffer. If the trace buffer already
contains data that software does not want to be overwritten, the current write pointer can be set to point
to after this data. In this case using Circular Buffer mode or Stop on trigger can also be used to control
when Collection is stopped and what data is overwritten.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter G4
Transactional Memory Extension (TME) Litmus tests

This appendix is to help understand, via examples, how transactions extend the Armv8 memory model.

See also Section C1.3 Memory model, Arm® Architecture Reference Manual, for A-profile architecture [1]
Definition of the Armv8 memory model, and Arm® Architecture Reference Manual, for A-profile architecture [1]
Barrier Litmus Tests.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter G4. Transactional Memory Extension (TME) Litmus tests
G4.1. Conventions

G4.1 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with
unnecessary code sequences, using the same conventions as Arm® Architecture Reference Manual, for A-profile
architecture [1] Load-Acquire Exclusive, Store-Release Exclusive and barriers. In addition, we define the following
constructs.

The construct TX{<code>} describes the following sequence:

loop:

TSTART X12 ; attempt to start a new transaction

CBNZ X12, loop ; retry forever

<code>

TCOMMIT

Note: This construct is unsafe in the general case because a transaction is permitted to never commit and should
be avoided. But, for the simple examples that are presented in this section it is expected that an implementation
will be able to commit the transaction eventually.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter G4. Transactional Memory Extension (TME) Litmus tests
G4.2. Transaction strong isolation

G4.2 Transaction strong isolation

TME transactions are strongly isolated. Strongly isolated transactions require both non-interference and contain-
ment from other transactions as well as from non-transactional code executing concurrently.

G4.2.1 Containment

The containment property of transactions means that only the last write to a Location is observable outside of the
transaction:

P1 P2

LDR W5, [X1] TX { STR W5, [X1] STR W6, [X1] }

In this example, the result of P1:W5==0x55 is not permissible.

G4.2.2 Non-interference

The non-interference property of transactions means that multiple reads to the same memory Location inside a
transaction should return the same value:

P1 P2

STR W5, [X1] TX { LDR W5, [X1] LDR W6, [X1] }

In this example, it is required for P2:W5 and P2:W6 to contain the same value.

The non-interference property of transactions also means that a read to Location following a write to the same
Location inside a transaction should return the value of the write:

P1 P2

STR W5, [X1] TX { STR W6, [X1] LDR W5, [X1] }

In this example, it is required that P2:W5==0x66.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter G4. Transactional Memory Extension (TME) Litmus tests
G4.3. Transactions and barriers

G4.3 Transactions and barriers

The following sections show that most of the examples in Arm® Architecture Reference Manual, for A-profile
architecture [1] Simple ordering and barrier cases can be achieved using transactions without the need for
additional barriers.

G4.3.1 Simple weakly consistent ordering

The simple weakly consistent ordering example in Arm® Architecture Reference Manual, for A-profile architecture
[1] Simple ordering and barrier cases can be solved by the use of transactions in various ways. In the following
examples, the result of P1:W6==0, P2:W5==0 is not permissible.

Memory accesses after the transaction cannot be observed by other observers before the transaction:

P1 P2

TX { STR W5, [X1] } LDR W6, [X2] TX { STR W6, [X2] } LDR W5, [X1]

Memory accesses before the transaction cannot be observed by other observers after the transaction:

P1 P2

STR W5, [X1] TX { LDR W6, [X2] } STR W6, [X2] TX { LDR W5, [X1] }

An empty transaction behaves like a barrier instruction:

P1 P2

STR W5, [X1] TX {} LDR W6, [X2] STR W6, [X2] TX {} LDR W5, [X1]

G4.3.2 Message passing

The weakly-ordered message passing problem in Arm® Architecture Reference Manual, for A-profile architecture
[1] Simple ordering and barrier cases can be solved by the use of transactions in various ways. In the following
examples, the result of P2:W5==0 is not permissible.

Using a transaction when accessing the data:

P1 P2

TX { STR W5, [X1] } STR W0, [X2] WAIT([X2]==1) AND X12, X12, #0

LDR W5, [X1, X12]

An empty transaction behaves like a barrier instruction:

P1 P2

STR W5, [X1] TX {} STR W0, [X2] WAIT([X2]==1) AND X12, X12, #0

LDR W5, [X1, X12]

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter G4. Transactional Memory Extension (TME) Litmus tests
G4.3. Transactions and barriers

These approaches also work with multiple observers, viz, with extra observers running the same sequence as P2.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter G5
Transactional Memory Extension (TME) Transactional Lock Eli-
sion

G5.1 Overview

Contended locks can lead to software scalability problems on multicore systems. Hardware Transactional Memory
may improve the scalability of contended locks by implementing transactional lock elision.

With transactional lock elision, critical regions are converted into transactions and multiple threads can execute
their critical regions in parallel as long as there are no transactional conflicts. When such conflicts occur, the
implementation resolves them by failing transactions as necessary.

Failed transactions must re-execute the critical region for the application to progress, but since transactions are
best effort, a fallback execution path is necessary. In the case of transactional lock elision, typically the fallback
path acquires a lock and executes the critical region non-transactionally.

The most popular implementations of transactional lock elision use the same programming model as locks, so they
can be applied to existing programs.

Arm notes however that not all locking libraries are equal with respect to lock elision. Certain existing libraries
cannot be elided soundly (see below for an example) and will need reviewing or perhaps revisiting entirely (e.g. by
adding extra barriers or using atomic operations) if they are intended to be used in this context. This is the case
both for the surrounding locks on other threads, and the lock used as the fallback path.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter G5. Transactional Memory Extension (TME) Transactional Lock Elision
G5.2. Conventions

G5.2 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples
with unnecessary code sequences, using the same conventions as the Conventions topic in the Arm® Architecture
Reference Manual, for A-profile architecture [1] Barrier Litmus Tests chapter. In addition, we define the following
constructs.

The construct LOCK(Xx) describes the following sequence from Arm® Architecture Reference Manual, for A-profile
architecture [1] Acquiring a lock:

PRFM PSTL1KEEP, [Xx] ; preload into cache in unique state

loop:

LDAXR W5, [Xx] ; read lock with acquire

CBNZ W5, loop ; check if 0

STXR W5, W0, [Xx] ; attempt to store new value

CBNZ W5, loop ; test if store succeeded and retry if not

The construct UNLOCK(Xx) describes the following sequence from Arm® Architecture Reference Manual, for A-profile
architecture [1] Releasing a lock:

STLR WZR, [Xx] ; clear the lock with release semantics

The construct CHECK(Xx) describes the following sequence:

LDR W5, [Xx] ; read lock

The construct CHECK_ACQ(Xx) describes the following sequence:

LDAR W5, [Xx] ; read lock with acquire

The construct WAIT_ACQ(Xx==0) describes the following sequence:

loop:

LDAR W5, [Xx] ; load acquire ensures it is ordered before subsequent loads/stores

CBNZ W5, loop

In the rest of this chapter, the LOCK(Xx) construct is used as one example of lock acquisition, the UNLOCK(Xx) construct
is used as one example of lock release, the CHECK(Xx) and CHECK_ACQ(Xx) constructs are used as one example of
reading the status of a lock, and the WAIT_ACQ(Xx==0) construct is used as one example of waiting until the lock
is free. Unless otherwise stated, the examples where these constructs are used would work the same if these
constructs were mapped to different locking primitives, such as but not limited to the ones presented in Arm®
Architecture Reference Manual, for A-profile architecture [1] Ticket locks and Arm® Architecture Reference
Manual, for A-profile architecture [1] Use of Wait For Event (WFE) and Send Event (SEV) with locks.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter G5. Transactional Memory Extension (TME) Transactional Lock Elision
G5.3. Acquiring a lock

G5.3 Acquiring a lock

The recommended instruction sequence for acquiring a lock using transactional lock elision is as follows (where W6

contains a retry count for the transaction):

loop:

TSTART X5 ; attempt to start a new transaction

CBNZ X5, fallback ; check if TSTART succeeded

CHECK_ACQ(X1) ; add the fallback lock to the transactional read set ; and set W5 to 0 if the fallback lock is free.

CBZ W5, enter ; if the fallback lock is free enter the critical region

TCANCEL #0xFFFF ; otherwise cancel the transaction with RTRY set to 1

fallback:

TBZ X5, #15, lock ; if RTRY is 0 take the fallback lock

SUB W6, W6, #1 ; decrement the retry count

CBZ W6, lock ; take the lock if 0

WAIT_ACQ(X1==0) ; wait until the lock is free

B loop ; retry the transaction

lock:

LOCK(X1) ; elision failed, acquire the fallback lock

DMB ISH ; block loads/stores from the critical region

enter:

G5.3.1 Checking the lock inside the transaction

When eliding a lock, it is required to check the status of the lock inside the transaction because the memory
accesses of a thread that executes the critical region non-transactionally are not tracked by hardware. In the
following example, mutual exclusion cannot be guaranteed:

P1 P2

LOCK(X1) LDR W5, [X2]

ADD W5, W5, #1 STR W5, [X2]

UNLOCK(X1)

TSTART X5 CBNZ X5, fallback

LDR W5, [X2] ADD W5, W5, #1

STR W5, [X2] TCOMMIT

To ensure mutual exclusion when the transaction by P2 commits after the load from the address in X2 by P1
and before the store to the address in X2 by P1, P2 must ensure that the lock variable is contained within the
transactional read set, which occurs as a side effect of adding the CHECK_ACQ(Xx) construct inside the transaction.

To ensure mutual exclusion when the transaction by P2 starts after the LOCK(Xx) construct by P1 and the transaction
in P2 commits before the store to the address in X2 by P1, P2 must test the value of the lock returned by the
CHECK_ACQ(Xx) construct and cancel the transaction as appropriate.

Using CHECK_ACQ(Xx) instead of CHECK(Xx) ensures that read from a critical region executing in a transaction do not
take their values from writes from a mutually excluded critical region that acquires a lock, including when the
acquisition of the lock generates a conflict that fails the transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter G5. Transactional Memory Extension (TME) Transactional Lock Elision
G5.3. Acquiring a lock

G5.3.2 Checking the lock at the fallback path

When eliding a lock, it is recommended to use the WAIT_ACQ(Xx==0) construct in the fallback handler to avoid the
Lemming effect, in which one thread acquiring the lock causes all other concurrent threads to do so too because
they retry too many times while the first thread holds the lock.

G5.3.3 Synchronization between transactions and the fallback path

When transactional lock elision fails, and the lock is acquired, it is required that loads and stores from the critical
region are not observable before the lock is acquired.

In the following example, mutual exclusion cannot be guaranteed:

P1 P2

LOCK(X1) LDR W5, [X2]

ADD W5, W5, #1 STR W5, [X2]

UNLOCK(X1)

TSTART X5 CBNZ X5, fallback

CHECK_ACQ(X1) CBNZ W5, cancel

LDR W5, [X2] ADD W5, W5, #1

STR W5, [X2] TCOMMIT

The following architecturally permissible ordering violates mutual exclusion:

• P1 performs the Load-Exclusive of the LOCK(Xx) construct.

• P1 performs the load of the shared variable from the critical region (reading 0).

• P2 enters the transaction, executes the critical region writing 1 to the shared variable, and commits the
transaction (because the lock is not acquired yet).

• P1 performs the Store-Exclusive of the LOCK(Xx) construct. The Store-Exclusive does not fail because there
are no intervening writes to the lock variable (P2 only reads the lock)

• P1 performs the store of the shared variable from the critical region (writing 1).

To ensure mutual exclusion when the fallback lock acquisition implementation permits reads or writes from the
critical region to be observable before the lock variable is updated, a DMB is added before the first load or store of
the critical region.

All the recommended locking acquisition sequences from Arm® Architecture Reference Manual, for A-profile
architecture [1] Load-Acquire Exclusive, Store-Release Exclusive and barriers that use Load-Exclusive and
Store-Exclusive to acquire the lock are affected.

Lock implementations that use an atomic operation with Acquire or Acquire-Release semantics (such as LDADDA,
SWPA, etc.) to update the lock variable are not affected.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter G5. Transactional Memory Extension (TME) Transactional Lock Elision
G5.4. Releasing a lock

G5.4 Releasing a lock

The recommended instruction sequence for releasing a lock using transactional lock elision is as follows:

CHECK(X1) ; set W5 to 0 if the fallback lock is free

CBNZ W5, unlock ; check if 0

TCOMMIT ; the lock was elided, exit the transaction

B exit

unlock:

UNLOCK(X1) ; elision failed, release the fallback lock

exit:

G5.4.1 Elision and nesting

When releasing a lock that has potentially been elided it is advisable to use the CHECK(Xx) construct to check if the
lock is acquired instead of using TTEST to check if the Processing Element (PE) is in Transactional state, because
inside a nested transaction using TTEST is not sufficient to distinguish if the lock was elided or not.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter G6
Transactional Memory Extension (TME) Implementation recom-
mendations

G6.1 Permitted architectural difference between PEs

The architecture does not support implementations where the value of ID_AA64ISAR0_EL1.TME differs between
PEs in a single system.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter G6. Transactional Memory Extension (TME) Implementation recommendations
G6.2. Individual operation latency

G6.2 Individual operation latency

In order to not affect single-thread performance when using transactional lock elision, Arm recommends that the
latency of starting and committing a transaction is not higher than the latency of the illustrative code sequence for
acquiring and releasing a spinlock.

In an application that successfully employs transactional lock elision, it is expected that most transactions will not
fail, so it acceptable that failing or canceling a transaction is a slower operation than committing a transaction.
Even so, in order to not affect single-thread performance, Arm recommends that the latency of failing or canceling
a transaction is not unreasonably high compared to the latency of committing a transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter G6. Transactional Memory Extension (TME) Implementation recommendations
G6.3. Read and write set capacity

G6.3 Read and write set capacity

Arm recommends that, for adequate performance of applications written in Java and C/C++, hardware supports a
read set size of at least 512 objects and a write set size of at least 300 objects – assuming average object size to be
128 bytes.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter G6. Transactional Memory Extension (TME) Implementation recommendations
G6.4. State tracking

G6.4 State tracking

The properties of the transactional read set and the transactional write set imply that the implementation tracks
the addresses of transactional reads and writes and buffers the data values of transactional writes throughout the
execution of a transaction.

Arm expects a typical transaction to execute between a few tens to a few thousand instructions and to access up to
several hundreds or even thousands of distinct transactional reservation granules.

Arm expects the transactional write set to contain a significantly smaller number of transactional reservation
granules compared to the transactional read set of a typical transaction.

Arm expects the capacity of a typical Level 1 data or unified cache to be enough to hold the transactional write set,
but not enough to hold the transactional read set in many cases.

Arm expects the associativity of a typical Level 1 data or unified cache to not be enough to hold the transactional
write set or the transactional read set in many cases.

Arm considers a typical Level 1 data or unified cache to have a capacity between 32KB and 64KB with an
associativity between 2 to 4.

Arm recommends that implementations take these expectations into consideration in order to avoid frequent
transactional failures due to insufficient hardware resources.

For holding the transactional write set, Arm recommends the use of hardware structures in addition to the Level 1
data or unified cache that can provide the illusion of high associativity, such as a small fully associative cache.

For holding the transactional read set, Arm recommends the use of hardware structures in addition or instead of
the Level 1 data or unified cache that are capable of holding the addresses of tens of thousands of transactional
reservation granules, such as higher-level caches, Bloom filters, Signatures, or other similar structures.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter G6. Transactional Memory Extension (TME) Implementation recommendations
G6.5. Transactional conflicts

G6.5 Transactional conflicts

Arm recommends that the hardware cache coherency facilities of the processor be used to detect transactional
conflicts. This is also known as eager conflict detection because conflicts are detected when the read or write
requests are generated. The alternative, lazy conflict detection, defers the detection of conflicts until the transaction
attempts to commit.

Arm recommends that implementations do not generate a transactional conflict when a read generated by a PRFM
instruction or by hardware prefetching accesses a Location within the transactional write set of a transaction.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Part H
Glossary

Chapter H1
Glossary

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter H1. Glossary

Active

The feature is implemented and enabled, and the trace unit is in a state in which the feature is programmed to
operate.

Analysis of the trace element stream

This term refers to the process of:

• Tracing elements that carry information that a trace analyzer requires to enable it to analyze the trace
successfully.

• Tracing elements that either directly indicate program execution, or carry information about program execution.

A trace element stream might also contain trace elements that contain timing information.

This term is distinct from analysis of program execution.

ARC

Address Range Comparator

ARCs

Address Range Comparators

AST

Abstract Syntax Tree

Atom element

P0 element to imply the execution of instructions

Bit replacement

Only bits that have changed are encoded.

Cancel

Operation to indicate that an instruction has not architecturally executed. The architecturally state of the PE is
rolled back to before the instruction.

Cancel element

Element to indicate that instructions inferred by Atom elements or Exception elements did not architecturally
execute.

Canceled

An operation on an incorrectly predicted execution path.

CATU

CoreSight Address Translation Unit

Commit element

Element to indicate that instructions implied by Atom elements or Exception elements did or will architecturally
execute.

Commit window

The Commit window defines the range of P0 elements which are committed by a Commit element. The oldest P0
element in the Commit window is the first P0 element committed when a Commit element occurs. By default,
the Commit window starts on the oldest uncommitted P0 element, and moves forward to the next uncommitted
P0 element with each P0 element committed by a Commit element. The Commit Window Move element moves
the start of the Commit window by a number of P0 elements, to allow a Commit element to commit P0 elements
which are younger than the oldest uncommitted P0 elements, leaving these older P0 elements uncommitted.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter H1. Glossary

Complete

An operation that has finished all its operational pseudocode, and the results of any memory accesses, including
translation table walks and updates, are coherent with other observers. For more information see the Arm®
Architecture Reference Manual, for A-profile architecture [1].

Context element

Element to indicate the context in which the the instructions are executing.

CoreSight Address Translation Unit

A form of System MMU for trace streams.

Cross-trigger Interface

See the ARM CoreSight Architecture Specification [5] and the Arm® Architecture Reference Manual, for A-profile
architecture [1].

CTI

Cross-trigger Interface

Cycle count element

Element to indicate passage of PE clock cycles.

Disabled

The feature is either not implemented, or is implemented but has been programmed to be disabled during the trace
session.

Discard element

Element to indicate that no more Commit element or Cancel elements will follow for the speculative P0 elements
in trace element stream.

EBBR

Embedded Base Boot Requirements

Element

Basic building block on the data model.

• Atom element
• Cancel element
• Commit element
• Context element
• Cycle Count element
• Discard element
• Exception element
• Event element
• Mispredict element
• Overflow element
• Source Address element
• Target Address element
• Timestamp element
• Transaction Start element
• Transaction Commit element
• Transaction Failure element
• Trace Info element
• Trace On element
• Q element

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter H1. Glossary

Element stream

See Trace element stream.

Embedded Trace Extension

See Chapter D1 Embedded Trace Extension.

Embedded Trace Router

See the ARM CoreSight Architecture Specification [5].

Enabled

The feature is implemented and has been programmed to operate at runtime. However, because of other trace unit
conditions, the feature might not be active.

ETB

Embedded Trace Buffer

ETE

Embedded Trace Extension

ETE trace operation

The operation that the trace unit must perform to meet the requirements of the trace operation.

ETEEvent

A feature of the trace unit that is used to generate Event elements and drive External Outputs. Each ETEEvent can
programmed to be sensitive to resource events.

ETR

Embedded Trace Router

Event element

Element to indicate that an ETEEvent occurred.

Event trace

The trace uses Event elements that indicate certain events have occurred in the program that the PE is executing.
The program events to be indicated are selected before a trace session.

Exception element

Element to indicate that an Exceptional occurrence occurred.

Exceptional occurrence

Events indicated by an Exception element by the ETE architecture, including the following:

• PE Architectural exceptions.
• ETE defined exceptions.
• IMPLEMENTATION DEFINED exceptions.

External reads

Reads of the trace unit registers via the external debugger interface.

External writes

Writes of the trace unit registers via the external debugger interface.

Filtering

The function to select what PE activity that causes trace elements to be generated.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter H1. Glossary

GIC

Generic Interrupt Controller

Implemented

The feature is included in the implementation.

Inactive

The feature is either not implemented or is disabled, or the trace unit is in a state in which the feature is programmed
not to operate.

Inoperative

The trace unit is unable to generate packets.

Instruction Block

Set of instructions that are executed atomically.

Instruction trace

PE trace that indicates program execution, such as branches taken, the execution of instructions, and Exceptional
occurrences.

Instruction trace might also contain timing information.

Instruction trace contains information that a trace analyzer requires to enable it to analyze trace.

ISA

Instruction Set Architecture.

logical AND

∧

logical NEG

¬

logical OR

∨

Memory System Performance Resource and Monitoring Extension

See Arm® Architecture Reference Manual Supplement; Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture [6].

Memory Tagging Extension

See the “Memory Tagging Extension” chapter of the Arm® Architecture Reference Manual, for A-profile architec-
ture [1].

Microarchitecturally-finished

An operation that has finished all its operational pseudocode, although the results of any memory accesses,
including translation table walks and updates, are not yet coherent with other observers.

Microarchitecturally-unfinished

An operation that has not completed all its operational pseudocode.

Mispredict element

Element to indicate that the state of an Atom element needs to be modified.

MPAM

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter H1. Glossary

Memory System Performance Resource and Monitoring Extension

MSI

Message-signaled Interrupt

Nonspeculative

An operation on a confirmed execution path.

Nonspeculative Microarchitecturally-finished

An operation that has finished all its operational pseudocode, on a confirmed execution path, although the results
of any memory accesses, including translation table walks and updates, are not yet coherent with other observers
and the operation is not Complete.

Nonspeculative Microarchitecturally-unfinished

An operation that is in progress on a confirmed execution path.

Not implemented

The feature is not included in the implementation.

Operative

The trace unit is able to generate packets.

Overflow element

Element to indicate that a trace unit buffer overflow has occurred and some trace might have been lost.

Packet stream

See Trace byte stream.

PE

Processing Element

POD

Plain Old Data. The data is packet specific.

PPI

Private Peripheral Interrupt

Reset

The trace unit has a Trace Unit reset

Resolve

Operation to indicate that an instruction has or will architecturally execute.

Resource event

The output of a Resource Selector, or a boolean combined pair of Resource Selectors. Resource events are selected
by various trace unit features to control those features.

Rewind point

A rewind point is a point in the program flow where execution can return to if all subequent execution is found to
have been incorrectly speculatively executed.

SAC

Single Address Comparator

SACs

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter H1. Glossary

Single Address Comparators

SBBR

Standard Base Boot Requirements

SBSA

Server Base System Architecture

Source Address element

Element to indicate the address of a taken P0 instruction.

SPE

Statistical Profiling Extension

Speculative

An operation on a predicted execution path. For more information see the Arm® Architecture Reference Manual,
for A-profile architecture [1].

Speculative Microarchitecturally-finished

An operation that has finished all its operational pseudocode, on a predicted execution path.

Speculative Microarchitecturally-unfinished

An operation that is in progress on a predicted execution path.

SPI

Shared Peripheral Interrupt

Statistical Profiling Extension

See the Arm® Architecture Reference Manual, for A-profile architecture [1].

Sub isa

The alignment of Virtual Address in the trace packet. When combined with the execution state, indicates the
instruction set architecture.

Target Address element

Element to indicate the instruction set and virtual address of the next instruction to be executed.

TCANCEL

The instruction which causes the PE to transition out of Transactional state, causing the transaction to fail.

TCOMMIT

The instruction which causes the PE to transition out of Transactional state, causing the transaction to succeed.

Timestamp element

Element to indicate the time the trace was captured.

TMC

Trace Memory Controller

TME

Transactional Memory Extension

Trace analyzer

A tool that takes the trace byte stream, or trace element stream, and analyzes them to determine PE execution. This
tool can be part of a self-hosted debug environment, or an external debug tool.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter H1. Glossary

Trace byte stream

The stream of trace packets which describe a sequence of trace elements.

Trace byte stream generation

The conversion of the trace elements stream into trace packets to form the trace byte stream.

Trace element stream

A sequence of trace elements which describe the operation of the PE.

Trace element stream generation

The conversion of the PE activity into trace elements.

Trace Info element

Element to indicate the state of the compression of the trace element stream.

Trace Memory Controller

See the ARM CoreSight Architecture Specification [5].

Trace On element

Element to indicate a discontinuity in the trace element stream.

Trace operation

The architectural operation that a PE, trace unit and trace buffer must perform.

Trace session

The period while the trace unit is enabled.

Trace unit

The implementation that is used to generate trace.

Trace Unit

A functional unit that generates generating program-flow trace data for use by self-hosted software. In the
Arm® Architecture Reference Manual, for A-profile architecture [1], this is described as a trace component,
trace functionality, trace logic or trace macrocell. The trace unit might be an implementation of an Arm Trace
Architecture, such as the Embedded Trace Extension (ETE), or might be some other IMPLEMENTATION DEFINED
program-flow trace functionality.

Trace unit buffer overflow

Buffering inside the trace unit is unable to capture more trace data. A trace unit buffer overflow is independent of
the Trace Buffer Extension filling or wrapping a trace buffer in memory.

Trace Unit reset

trace unit Core power domain reset

Transaction atomicity

If a transaction succeeds it must appear that all the instructions executed in Transactional state have executed
collectively as a single atomic operation.

Transaction-canceled

An operation that was part of a transaction that was canceled by a TCANCEL instruction.

Transaction-failed

An operation that was part of a transaction that failed.

Transactional

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter H1. Glossary

An operation that is part of a transaction and the transaction has not yet succeeded, failed or been canceled. The
operation can be any of:

• Speculative Microarchitecturally-unfinished.
• Speculative Microarchitecturally-finished.
• Nonspeculative Microarchitecturally-unfinished.
• Nonspeculative Microarchitecturally-finished.

Transactional execution

Instructions inside a transaction execute in Transactional state. This specification uses the term transactional
execution to refer to the execution of instructions in Transactional state.

TSTART

The instruction which initiates the transition into Transactional state.

Unsigned LE128n

Little endian leading zero compression.

ViewInst

The filtering function which defines which instructions are traced.

ViewInst active

Both of the following are true:

• The trace unit has been programmed and is enabled.

• The ViewInst instruction trace filtering function is permitting instruction tracing, therefore the trace unit is
generating instruction trace. In addition, the trace unit might also be generating Event elements in the trace.

ViewInst inactive

Both of the following are true:

• The trace unit has been programmed and is enabled.

• The trace unit is not generating any instruction trace, because the ViewInst function is filtering instruction
tracing. However, the trace unit might be generating Event elements in the trace element stream.

DDI0608
B.a

Copyright © 2021-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

	Release information
	Non-Confidential Proprietary Notice
	Contents
	A Preface
	About this Supplement
	Conventions
	Typographical conventions
	Signals

	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage

	Additional reading
	Feedback
	Feedback on this supplement
	Progressive terminology commitment

	B Armv9-A Architecture Introduction and Overview
	B1 Introduction to the Armv9-A Architecture
	B1.1 Architectural extensions added by Armv9-A
	B1.1.1 FEAT_ETE, Embedded Trace Extension
	B1.1.2 FEAT_SVE2, Scalable Vector Extension version 2
	B1.1.3 FEAT_TME, Transactional Memory Extension
	B1.1.4 FEAT_TRBE, Trace Buffer Extension
	B1.1.5 FEAT_ETEv1p1, Embedded Trace Extension
	B1.1.6 FEAT_BRBE, Branch Record Buffer Extension
	B1.1.7 FEAT_ETEv1p2, Embedded Trace Extension
	B1.1.8 FEAT_BRBEv1p1, Branch Record Buffer Extension

	C The Transactional Memory Extension
	C1 Transactional Memory Extension
	C1.1 Transactions
	C1.1.1 Transactional state
	C1.1.1.1 Entering transactional state: starting a transaction (TSTART)
	C1.1.1.2 Exiting transactional state by committing a transaction (TCOMMIT)
	C1.1.1.3 Exiting transactional state by cancelling (TCANCEL) or failing a transaction

	C1.1.2 Transactional reservation granule, read and write sets
	C1.1.2.1 Transactional read set
	C1.1.2.2 Transactional write set

	C1.2 Transaction failure
	C1.2.1 Failure causes
	C1.2.2 Transaction checkpoint

	C1.3 Memory model
	C1.3.1 External visibility
	C1.3.2 Atomicity

	C1.4 Transactions and memory attributes
	C1.5 Address translation
	C1.5.1 Transactional translation table walks
	C1.5.2 Hardware management of the Access flag and dirty state
	C1.5.3 TLB shoot-down
	C1.5.4 Translation table modifications inside transactions

	C1.6 Modification of instructions in Transactional state
	C1.7 Interrupt masking
	C1.8 A64 instruction behavior in Transactional state
	C1.8.1 MRS
	C1.8.2 MSR (register)
	C1.8.3 MSR (immediate)
	C1.8.4 SYS and SYSL
	C1.8.5 Wait for Event
	C1.8.6 DMB
	C1.8.7 ISB
	C1.8.8 First-fault and Non-fault load instructions

	C1.9 Reset
	C1.10 Identification mechanism

	C2 Debug, PMU, Trace
	C2.1 Self-hosted debug
	C2.1.1 Breakpoint Instruction exceptions
	C2.1.2 Breakpoint exceptions
	C2.1.3 Watchpoint exceptions
	C2.1.4 Software Step exceptions

	C2.2 External debug
	C2.2.1 Breakpoint and Watchpoint debug events
	C2.2.2 Halting Instruction debug event
	C2.2.3 Halting Step debug events
	C2.2.4 External Debug Request debug event
	C2.2.5 Reset Catch debug event
	C2.2.6 Other Halting debug events
	C2.2.7 Behavior in Debug state
	C2.2.8 The PC Sample-based Profiling Extension

	C2.3 The Statistical Profiling Extension
	C2.3.1 Memory accesses by profiling operations
	C2.3.2 Events packet payload
	C2.3.3 Profile Buffer management interrupts

	C2.4 The Embedded Trace Extension
	C2.5 The Performance Monitors Extension
	C2.5.1 Event filtering
	C2.5.2 Accuracy of event filtering
	C2.5.3 TSTART_RETIRED
	C2.5.4 TCOMMIT_RETIRED
	C2.5.5 TME_TRANSACTION_FAILED
	C2.5.6 TME_INST_RETIRED_COMMITTED
	C2.5.7 TME_CPU_CYCLES_COMMITTED
	C2.5.8 TME_FAILURE_CNCL
	C2.5.9 TME_FAILURE_ERR
	C2.5.10 TME_FAILURE_IMP
	C2.5.11 TME_FAILURE_MEM
	C2.5.12 TME_FAILURE_NEST
	C2.5.13 TME_FAILURE_SIZE
	C2.5.14 TME_FAILURE_TLBI
	C2.5.15 TME_FAILURE_WSET
	C2.5.16 Behavior on overflow

	C3 System registers
	C3.1 General system control registers
	C3.1.1 CTR_EL0
	C3.1.2 ID_AA64ISAR0_EL1
	C3.1.3 TCR_EL1
	C3.1.4 TCR_EL2
	C3.1.5 ISS encoding for an exception from a TSTART instruction
	C3.1.6 SCTLR_EL1
	C3.1.7 SCTLR_EL2
	C3.1.8 SCTLR_EL3
	C3.1.9 HCR_EL2
	C3.1.10 SCR_EL3

	C3.2 Performance Monitors registers
	C3.2.1 PMEVTYPER<n>_EL0
	C3.2.2 PMCCFILTR_EL0
	C3.2.3 PMSEVFR_EL1

	C3.3 Performance Monitors external registers
	C3.3.1 PMPCSR

	C4 Instructions
	C4.1 TCANCEL
	C4.2 TCOMMIT
	C4.3 TSTART
	C4.4 TTEST

	C5 Interaction with Memory Tagging Extension
	C6 Transactional Memory Extension additional reading

	D The Embedded Trace Extension
	D1 Embedded Trace Extension
	D1.1 Introduction
	D1.1.1 Mathematical notation

	D1.2 Attributes of tracing
	D1.3 Self-hosted Trace
	D1.4 External Debug
	Real-time continuous export
	Short-term on-chip capture with subsequent low speed export

	D1.5 Trace output
	D1.6 Trace Sessions
	D1.7 Elements
	D1.8 Layer Model
	D1.9 Trace protocol synchronization
	D1.9.1 Non-periodic trace protocol synchronization
	D1.9.2 Periodic trace protocol synchronization
	D1.9.3 Synchronization of instruction trace

	D1.10 Speculation in the trace element stream
	D1.10.1 Tracing Transactions
	D1.10.1.1 Implementation flexibility
	D1.10.1.2 Filtering of trace

	D2 Trace Element Model
	D2.1 Trace Info element
	D2.2 P0 element
	D2.2.1 Atom Element
	D2.2.2 Exception Element
	D2.2.2.1 PE Architectural exceptions
	D2.2.2.2 ETE defined exceptions
	D2.2.2.3 IMPLEMENTATION DEFINED exceptions

	D2.2.3 Source Address Element
	D2.2.4 Q Element
	D2.2.5 Transaction Start Element

	D2.3 Virtual Address Space Elements
	D2.3.1 Trace On Element
	D2.3.2 Target Address Element
	D2.3.3 Context Element

	D2.4 Temporal Elements
	D2.4.1 Cycle Count Element
	D2.4.2 Timestamp Element
	D2.4.3 Timestamp Marker element

	D2.5 Speculation Resolution Elements
	D2.5.1 Commit Element
	D2.5.2 Cancel Element
	D2.5.3 Discard Element
	D2.5.4 Mispredict Element

	D2.6 Others
	D2.6.1 Event Element
	D2.6.2 Overflow Element

	D2.7 Transactional Memory
	D2.7.1 Transaction Start element
	D2.7.2 Transaction Commit element
	D2.7.3 Transaction Failure element

	D3 Instruction and Exception classifications
	D3.1 AArch64 A64
	D3.1.1 Direct P0 instructions
	D3.1.2 Indirect P0 instructions
	D3.1.3 Branch with link instructions
	D3.1.4 Meaning of Atom elements

	D3.2 AArch32 A32
	D3.2.1 Direct P0 instructions
	D3.2.2 Indirect P0 instructions
	D3.2.3 Branch with link instructions
	D3.2.4 Meaning of Atom elements

	D3.3 AArch32 T32
	D3.3.1 Direct P0 instructions
	D3.3.2 Indirect P0 instructions
	D3.3.3 Branch with link instructions
	D3.3.4 Meaning of Atom elements

	D3.4 WFI and WFE Instructions
	D3.4.1 WFxT

	D3.5 Exceptions to Exception element encodings

	D4 Recommended Configurations
	D4.1 Configurations

	D5 Protocol Description
	D5.1 Introduction
	D5.2 Summary
	D5.3 Encoding Schemes
	D5.3.1 Field encodings
	D5.3.2 Instruction set encoding

	D5.4 Alignment Synchronization Packet
	Packet Layout
	Additional information

	D5.5 Discard Packet
	Packet Layout
	Element sequence
	Additional information

	D5.6 Overflow Packet
	Packet Layout
	Element sequence
	Additional information

	D5.7 Trace Info Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Packet Layout - Variant 5
	Packet Layout - Variant 6
	Packet Layout - Variant 7
	Packet Layout - Variant 8
	Field descriptions
	Element sequence
	Additional information

	D5.8 Trace On Packet
	Packet Layout
	Element sequence
	Additional information

	D5.9 Timestamp Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Field descriptions
	Element sequence
	Additional information

	D5.10 Timestamp Marker Packet
	Packet Layout

	D5.11 Transaction Start Packet
	Packet Layout
	Element sequence
	Additional information

	D5.12 Transaction Commit Packet
	Packet Layout
	Element sequence
	Additional information

	D5.13 Exception Exact Match Address Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.14 Exception Short Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.15 Exception Short Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.16 Exception 32-bit Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.17 Exception 32-bit Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.18 Exception 64-bit Address IS0 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.19 Exception 64-bit Address IS1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.20 Exception 32-bit Address IS0 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.21 Exception 32-bit Address IS1 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.22 Exception 64-bit Address IS0 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.23 Exception 64-bit Address IS1 with Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Additional information

	D5.24 Transaction Failure Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.25 PE Reset Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.26 Cycle Count Format 1_0 unknown count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.27 Cycle Count Format 1_1 unknown count Packet
	Packet Layout
	Element sequence
	Additional information

	D5.28 Cycle Count Format 1_0 with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.29 Cycle Count Format 1_1 with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.30 Cycle Count Format 2_0 small commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.31 Cycle Count Format 2_0 large commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.32 Cycle Count Format 2_1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.33 Cycle Count Format 3_0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.34 Cycle Count Format 3_1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.35 Commit Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.36 Cancel Format 1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.37 Cancel Format 2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.38 Cancel Format 3 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.39 Mispredict Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.40 Atom Format 1 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.41 Atom Format 2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.42 Atom Format 3 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.43 Atom Format 4 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.44 Atom Format 5.1 Packet
	Packet Layout
	Element sequence
	Additional information

	D5.45 Atom Format 5.2 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.46 Atom Format 6 Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.47 Target Address Short IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.48 Target Address Short IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.49 Target Address 32-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.50 Target Address 32-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.51 Target Address 64-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.52 Target Address 64-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.53 Target Address Exact Match Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.54 Context Same Packet
	Packet Layout
	Element sequence
	Additional information

	D5.55 Context Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.56 Target Address with Context 32-bit IS0 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.57 Target Address with Context 32-bit IS1 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.58 Target Address with Context 64-bit IS0 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.59 Target Address with Context 64-bit IS1 Packet
	Packet Layout - Variant 1
	Packet Layout - Variant 2
	Packet Layout - Variant 3
	Packet Layout - Variant 4
	Field descriptions
	Element sequence
	Additional information

	D5.60 Source Address Short IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.61 Source Address Short IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.62 Source Address 32-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.63 Source Address 32-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.64 Source Address 64-bit IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.65 Source Address 64-bit IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.66 Source Address Exact Match Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.67 Ignore Packet
	Packet Layout

	D5.68 Event Packet
	Packet Layout
	Field descriptions
	Additional information

	D5.69 Q Packet
	Packet Layout
	Element sequence
	Additional information

	D5.70 Q with count Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.71 Q with Exact match address Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.72 Q short address IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.73 Q short address IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.74 Q 32-bit address IS0 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D5.75 Q 32-bit address IS1 Packet
	Packet Layout
	Field descriptions
	Element sequence
	Additional information

	D6 Trace Unit
	D6.1 Resetting the trace unit
	D6.1.1 Trace unit reset
	Behavior on a trace unit reset

	D6.2 System Behaviors
	D6.2.1 Behavior on enabling
	D6.2.2 Behavior on disabling
	D6.2.3 Behavior on flushing
	D6.2.4 Low-power state
	D6.2.5 Trace unit behavior when the PE is in a low-power state
	D6.2.6 Trace unit behavior in the low-power state

	D6.3 Trace unit behavior while the PE is in Debug state
	D6.4 Trace unit behavior on a trace unit buffer overflow
	D6.5 Trace unit power states
	D6.6 Visibility of the PE operation
	D6.6.1 ETE trace operation
	D6.6.2 Impact on PE Behavior
	D6.6.3 Behavior on a PE Warm reset
	D6.6.4 Instruction Block
	D6.6.5 Exposing Speculation
	D6.6.6 Trace Prohibited regions
	D6.6.7 Multi-threaded processor
	D6.6.8 Sharing between multiple PEs

	D6.7 Speculation resolution
	D6.7.1 Initialization
	D6.7.2 New block operation
	D6.7.3 Resolved operation
	D6.7.4 Cancel operation

	D6.8 Filtering trace generation
	D6.8.1 ViewInst function
	Resource event based filtering
	Exception level filtering

	D6.8.2 ViewInst start/stop function filtering
	Instruction blocks

	D6.8.3 ViewInst include/exclude function filtering
	D6.8.3.1 Instruction blocks

	D6.8.4 Guidelines for interpreting the ViewInst function result
	D6.8.4.1 When ViewInst transitions from low to high
	D6.8.4.2 Occasions when tracing instructions when ViewInst is low is permitted

	D6.8.5 Rules for tracing Exceptional occurrences
	D6.8.6 Forced tracing of Exceptional occurrences

	D6.9 Element Generation
	D6.9.1 Trace Info Element Generation
	D6.9.2 Atom Element
	D6.9.3 Exception Element
	D6.9.4 Source Address Element
	D6.9.5 Q Element
	D6.9.6 Event Element
	D6.9.7 Cancel Element Generation
	D6.9.8 Commit Element Generation
	D6.9.9 Transaction Start
	D6.9.10 Transaction Commit
	D6.9.11 Transaction Failure
	D6.9.12 Context Element
	D6.9.13 Target Address Element
	D6.9.14 Mispredict Element
	D6.9.15 Overflow Element
	D6.9.16 Timestamp Element
	D6.9.17 Trace On Element
	D6.9.18 Cycle Count Element
	D6.9.19 Discard Element

	D6.10 Trace unit features
	D6.10.1 Branch broadcasting
	D6.10.2 Q Regions
	D6.10.3 Cycle Counting
	D6.10.4 Timestamping
	D6.10.5 Stalling the execution of the PE
	D6.10.6 No overflow
	D6.10.7 Event Trace
	D6.10.8 Context identifier tracing
	D6.10.9 Virtual context identifier tracing

	D6.11 Compression
	D6.11.1 Implied commits
	D6.11.2 Atom packing
	D6.11.3 Address Compression
	D6.11.4 Return Stack Address Matching
	D6.11.5 Timestamp Value Compression

	D7 Resources
	D7.1 Resource operation
	D7.1.1 Behavior of the resources while in the Running state
	D7.1.2 Behavior of the resources while in the Pausing state
	D7.1.3 Behavior of the resources while in the Paused state
	D7.1.4 Behavior of resources on a Trace synchronization event

	D7.2 Resource organization
	D7.2.1 Precise Resources
	D7.2.2 Imprecise Resources

	D7.3 Selecting a resource or a pair of resources
	D7.3.1 A Resource Selector pair

	D7.4 Address comparators
	D7.4.1 Single Address Comparators
	D7.4.2 Address Range Comparators

	D7.5 Context Identifier Comparator
	D7.6 Virtual Context Identifier Comparators
	D7.7 Counters
	D7.7.1 Forming a larger Counter from two separate Counters
	D7.7.2 Counter Operation in Self-reload mode

	D7.8 Sequencer
	D7.8.1 Pseudocode
	D7.8.1.1 Sequencer Operation
	D7.8.1.2 Sequencer Transitions
	D7.8.1.3 Sequencer Resource
	D7.8.1.4 Sequencer Next State

	D7.9 Single-shot Comparator Controls
	D7.9.1 Single-shot Comparator Control modes
	D7.9.2 Operation while in Paused state

	D7.10 External Outputs
	D7.10.1 Operation while in Paused state

	D7.11 External Inputs
	D7.11.1 Operation while in Paused state
	D7.11.2 Operation while in the Low-power state

	D7.12 PE Comparator Inputs

	D8 Register Description
	D8.1 Accessing ETE registers
	D8.1.1 External debugger interface
	D8.1.2 System instructions
	D8.1.2.1 AArch64

	D8.2 Synchronization of register updates
	D8.2.1 AArch64 system registers
	D8.2.2 External Debugger registers
	D8.2.3 Synchronization and the authentication interface

	D8.3 Trace unit programming states
	D8.4 External debug registers
	D8.4.1 Trace registers, external debug register map
	D8.4.2 Management registers, external debug register map
	D8.4.3 Integration registers

	D9 Trace Analyzer
	Rules-based writing
	D9.1 Introduction
	D9.1.1 Using Trace Info elements to start trace analysis
	D9.1.2 Encountering Trace Info elements after trace analysis has started
	D9.1.3 Decompression information

	D9.2 Stage 1 - Parsing the byte stream
	D9.2.1 Retained state
	D9.2.1.1 InstructionParserState

	D9.2.2 Parsing
	D9.2.2.1 Parse_Trace()

	D9.2.3 Alignment Sync packet
	D9.2.3.1 Parse_ExtensionPacket()

	D9.2.4 Discard
	D9.2.4.1 DiscardPacket()

	D9.2.5 Overflow
	D9.2.5.1 OverflowPacket()

	D9.2.6 Trace Info
	D9.2.6.1 Parse_TraceInfoPacket()
	D9.2.6.2 TraceInfoPacket()

	D9.2.7 Trace On
	D9.2.7.1 TraceOnPacket()

	D9.2.8 Speculation
	D9.2.8.1 Parse_CommitPacket()
	D9.2.8.2 CommitPacket()
	D9.2.8.3 Parse_CancelPackets()
	D9.2.8.4 CancelFormat1Packet()
	D9.2.8.5 CancelFormat2Packet()
	D9.2.8.6 CancelFormat3Packet()

	D9.2.9 Mispredict
	D9.2.9.1 Parse_MispredictPacket()
	D9.2.9.2 MispredictPacket()

	D9.2.10 Atom Packets
	D9.2.10.1 Parse_AtomPackets()
	D9.2.10.2 AtomFormat1Packet()
	D9.2.10.3 AtomFormat2Packet()
	D9.2.10.4 AtomFormat3Packet()
	D9.2.10.5 AtomFormat4Packet()
	D9.2.10.6 AtomFormat5_1Packet()
	D9.2.10.7 AtomFormat5_2Packet()
	D9.2.10.8 AtomFormat6Packet()

	D9.2.11 Q Packets
	D9.2.11.1 Parse_QPacket()
	D9.2.11.2 QPacket()

	D9.2.12 Source Address Packets
	D9.2.12.1 Parse_SourceAddressPacket()

	D9.2.13 Exceptions
	D9.2.13.1 Parse_ExceptionPacket()
	D9.2.13.2 ExceptionPacket()

	D9.2.14 Address and context
	D9.2.14.1 Parse_TargetAddressPacket()
	D9.2.14.2 LongAddressBytes()
	D9.2.14.3 LongAddressPacket()
	D9.2.14.4 ShortAddressBytes()
	D9.2.14.5 ShortAddressPacket()
	D9.2.14.6 ExactMatchBytes()
	D9.2.14.7 ExactMatchPacket()
	D9.2.14.8 Parse_AddressWithContextPacket()
	D9.2.14.9 ContextBytes()
	D9.2.14.10 ContextPacket()

	D9.2.15 Transactions
	D9.2.15.1 TransactionStartPacket()
	D9.2.15.2 TransactionCommitPacket()

	D9.2.16 Timestamps
	D9.2.16.1 Parse_TimestampPacket()
	D9.2.16.2 Parse_CycleCountPackets()
	D9.2.16.3 TimestampPacket()
	D9.2.16.4 CycleCountFormat1Packet()
	D9.2.16.5 CycleCountFormat2Packet()
	D9.2.16.6 CycleCountFormat3Packet()

	D9.2.17 Event Tracing
	D9.2.17.1 Parse_EventTracingPacket()
	D9.2.17.2 EventTracingPacket()

	D9.2.18 Functions
	D9.2.18.1 ReadAndConsume()
	D9.2.18.2 HandleAtom()
	D9.2.18.3 UpdateSpecDepth()
	D9.2.18.4 UpdateAddressHistoryBuffer()
	D9.2.18.5 UnknownAddressHistoryBuffer()

	D9.3 Stage 2 - Speculation Resolution
	D9.3.1 Emit()
	D9.3.2 Trace Info element
	D9.3.2.1 ProcessTraceInfo()

	D9.3.3 Commit element
	D9.3.3.1 ProcessCommit()

	D9.3.4 Cancel element
	D9.3.4.1 ProcessCancel()

	D9.3.5 Discard element
	D9.3.5.1 ProcessDiscard()

	D9.3.6 Stack
	D9.3.6.1 Stack()

	D9.4 Stage 2 - Transaction Resolution
	D9.4.1 ProcessTransaction()
	D9.4.2 Transaction Start element
	D9.4.2.1 ProcessTransactionStart()

	D9.4.3 Transaction Commit element
	D9.4.3.1 ProcessTransactionCommit()

	D9.4.4 Transaction Failure element
	D9.4.4.1 ProcessTransactionFailure()

	D9.5 Stage 3 - Analysis
	D9.5.1 AnalyzeElement()
	D9.5.2 Retained state
	D9.5.2.1 ReconstructState

	D9.5.3 Operation of the return stack
	D9.5.3.1 UpdateReturnStack()

	D9.5.4 Atom element
	D9.5.4.1 AnalyzeAtom()

	D9.5.5 Context element
	D9.5.5.1 AnalyzeContext()

	D9.5.6 Exception element
	D9.5.6.1 AnalyzeException()

	D9.5.7 Source Address element
	D9.5.7.1 AnalyzeSourceAddress()

	D9.5.8 Target Address element
	D9.5.8.1 AnalyzeTargetAddress()

	D9.5.9 Trace Info element
	D9.5.9.1 AnalyzeTraceInfo()

	D9.5.10 Trace On element
	D9.5.10.1 AnalyzeTraceOn()

	D9.5.11 Mispredict element
	D9.5.11.1 AnalyzeMispredict()

	D9.5.12 ETEEvent element
	D9.5.12.1 AnalyzeEvent()

	D9.5.13 Discard element
	D9.5.13.1 AnalyzeDiscard()

	D9.5.14 Overflow element
	D9.5.14.1 AnalyzeOverflow()

	D9.5.15 Q element
	D9.5.15.1 AnalyzeQ()

	D9.5.16 Timestamp element
	D9.5.16.1 AnalyzeTimestamp()

	D9.5.17 Cycle Count element
	D9.5.17.1 AnalyzeCycleCount()

	D9.5.18 Functions
	D9.5.18.1 OutputInstruction()
	D9.5.18.2 CheckForReturnStackMatch()
	D9.5.18.3 UpdateBranchState()
	D9.5.18.4 ProcessBranchInstruction()
	D9.5.18.5 DecodedInst

	D10 Programming
	D10.1 Example code sequences
	D10.1.1 Enabling the trace unit
	D10.1.2 Disabling the trace unit
	D10.1.3 Example save restore routine

	D10.2 Minimal programming
	D10.3 Filtering models
	D10.4 Filtering used the exclude function
	D10.5 Filtering used the include function
	D10.6 OS Save and Restore routines

	D11 Trace Examples
	D11.1 Basic Examples
	D11.1.1 Simple example of basic program trace
	D11.1.2 Simple example of basic program trace filtering applied

	D12 Examples of basic program trace when exceptions occur
	D12.1 Basic program trace when an exception occurs, example one
	D12.2 Basic program trace when an exception occurs, example two
	D12.3 Example of basic program trace when two consecutive exceptions occur

	D13 Examples of changes in Context
	D13.1 Exception in software executed after context synchronization
	D13.2 Exception immediately after ISB
	D13.3 Exception immediately before ISB

	D14 An example of the use of the trace unit return stack
	D14.1 Transactions
	D14.1.1 Simple successful transaction
	D14.1.2 Simple Failed Transaction example
	D14.1.3 Canceled Transaction failure example
	D14.1.4 Speculated Transaction example

	D15 Pseudocode
	D15.1 ETE element ASL
	D15.1.1 Atom enumeration
	D15.1.2 AtomElement()
	D15.1.3 QElement()
	D15.1.4 CancelElement()
	D15.1.5 CommitElement()
	D15.1.6 ContextElement()
	D15.1.7 CycleCountElement()
	D15.1.8 DiscardElement()
	D15.1.9 ExceptionElement()
	D15.1.10 EventElement()
	D15.1.11 MispredictElement()
	D15.1.12 OverflowElement()
	D15.1.13 TimestampElement()
	D15.1.14 TraceInfoElement()
	D15.1.15 TraceOnElement()
	D15.1.16 TargetAddressElement()
	D15.1.17 SourceAddressElement()
	D15.1.18 TransactionStartElement()
	D15.1.19 TransactionCommitElement()
	D15.1.20 TransactionFailureElement()

	D15.2 ETE decompressor enumerations
	D15.2.1 SubISA enumeration
	D15.2.2 SynchronisationState enumeration
	D15.2.3 InstType enumeration

	D15.3 ETE decompressor functions
	D15.3.1 EndOfStream()
	D15.3.2 ReservedEncoding()
	D15.3.3 ReadAndConsume()
	D15.3.4 LogDecompressor()
	D15.3.5 SBZ()
	D15.3.6 ResolutionQueue
	D15.3.7 TransactionQueue
	D15.3.8 ReturnStack
	D15.3.9 AddressHistoryBufferEntry
	D15.3.10 AddressHistoryBuffer
	D15.3.11 ProgramImage
	D15.3.12 ExceptionWithUnknownAddress()

	D15.4 ETE data encodings
	D15.4.1 POD()
	D15.4.2 ULEB128()
	D15.4.3 BitReplacement()

	D15.5 Common functions
	D15.5.1 Replicate()
	D15.5.2 Zeros()

	D16 Functional Differences from ETMv4

	E The Trace Buffer Extension
	E1 Trace Buffer Extension
	E1.1 Description
	E1.1.1 About the Trace Buffer Extension
	E1.1.2 System events
	E1.1.3 Interrupts

	E1.2 Specification
	E1.2.1 The trace buffer
	E1.2.1.1 The trace buffer pointers
	E1.2.1.2 Address translation enabled
	E1.2.1.3 Address translation disabled
	E1.2.1.4 Stage 2 translation
	E1.2.1.5 Accesses to the trace buffer
	E1.2.1.6 The owning translation regime
	E1.2.1.7 Trace Buffer Unit disabled
	E1.2.1.8 Restrictions on programming the Trace Buffer Unit
	E1.2.1.9 Memory System Performance Resource and Monitoring Extension (MPAM)
	E1.2.1.10 Memory Tagging Extension
	E1.2.1.11 Cache and TLB operations
	E1.2.1.12 Effect on the exclusive monitors and transactions

	E1.2.2 Trace buffer management
	E1.2.2.1 Prioritization of a trace buffer management event
	E1.2.2.2 Buffer full and Buffer wrap events
	E1.2.2.3 Trigger Event
	E1.2.2.4 Faults
	E1.2.2.5 External aborts
	E1.2.2.6 IMPLEMENTATION DEFINED management events

	E1.2.3 Synchronization and the Trace Buffer Unit
	E1.2.3.1 Trace Synchronization event
	E1.2.3.2 Trace synchronization and the Trace Unit
	E1.2.3.3 Self-hosted trace extension synchronization rules
	E1.2.3.4 Trace synchronization and memory barriers
	E1.2.3.5 Trace of Speculative execution
	E1.2.3.6 Trace synchronization in Debug state
	E1.2.3.7 Detailed synchronization litmus tests
	E1.2.3.8 UNPREDICTABLE behavior

	E1.3 Events
	E1.3.1 Common microarchitectural events
	E1.3.2 Common architectural events

	F The Branch Record Buffer Extension
	F1 Branch Record Buffer Extension
	F1.1 Branch Record Buffer Extension specification
	F1.1.1 Branch records
	F1.1.2 Cycle counting
	F1.1.3 Mispredicted branches
	F1.1.4 BRBE Prohibited regions
	F1.1.5 Branch records for exceptions
	F1.1.6 Branch records for exception returns
	F1.1.7 Transactional Memory Extension
	F1.1.8 PE Speculation
	F1.1.9 Branch record filtering
	F1.1.9.1 Filtering on type

	F1.1.10 Branch record buffer operation
	F1.1.11 Branch record buffer
	F1.1.12 Invalidating the Record Buffer
	F1.1.13 Programmers Model
	F1.1.13.1 Manual injection of Branch records

	F1.2 Events
	F1.2.1 Common architectural events

	G Appendixes
	G1 Synchronization requirements for System registers
	G2 Stages of execution
	G2.1 Stages of execution without Transactional Memory Extension (TME)
	G2.2 Stages of execution with TME

	G3 Additional Trace Buffer Extension software usage notes
	G3.1 Context switching
	G3.2 Controlling generation of trace buffer management events

	G4 Transactional Memory Extension (TME) Litmus tests
	G4.1 Conventions
	G4.2 Transaction strong isolation
	G4.2.1 Containment
	G4.2.2 Non-interference

	G4.3 Transactions and barriers
	G4.3.1 Simple weakly consistent ordering
	G4.3.2 Message passing

	G5 Transactional Memory Extension (TME) Transactional Lock Elision
	G5.1 Overview
	G5.2 Conventions
	G5.3 Acquiring a lock
	G5.3.1 Checking the lock inside the transaction
	G5.3.2 Checking the lock at the fallback path
	G5.3.3 Synchronization between transactions and the fallback path

	G5.4 Releasing a lock
	G5.4.1 Elision and nesting

	G6 Transactional Memory Extension (TME) Implementation recommendations
	G6.1 Permitted architectural difference between PEs
	G6.2 Individual operation latency
	G6.3 Read and write set capacity
	G6.4 State tracking
	G6.5 Transactional conflicts

	H Glossary
	H1 Glossary

