
Learn the architecture - Introducing AMBA CHI
1.0

Non-Confidential
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102407_0100_01_en

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Learn the architecture - Introducing AMBA CHI

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 15 June 2021 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 82

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 82

mailto:terms@arm.com

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Contents

Contents

1. Introducing the AMBA Coherent Hub Interface...6

2. Introduction to CHI..7

3. CHI protocol fundamentals..12

4. Transaction flows..18

5. DVM operations... 39

6. Cache stashing.. 42

7. I/O Deallocation... 52

8. Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt...57

9. Atomic operations..70

10. RAS features..71

11. Other protocol changes and extensions.. 74

12. Related information...81

13. Next steps..82

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introducing the AMBA Coherent Hub Interface

1. Introducing the AMBA Coherent Hub
Interface

Coherent Hub Interface (CHI) is an evolution of the AXI Coherency Extensions (ACE) protocol. It is
part of the Advanced Microcontroller Bus Architecture (AMBA) that Arm provides. AMBA is a freely
available, globally adopted, open standard for the connection and management of functional blocks
in a system-on-chip (SoC). It facilitates right-first-time development of multi-processor designs,
with large numbers of controllers and peripherals.

CHI is appropriate for a wide range of applications that require coherency including mobile,
networking, automotive, and data centers. AMBA CHI has been designed to maintain performance
in systems with a growing number of components and traffic.

This guide introduces the first three issues of the CHI protocol, provides a general overview of CHI,
and explores several features in-depth.

Diversity and inclusion are important values to Arm. Because of this, we
are reevaluating the terminology we use in our documentation. Older Arm
documentation, including the AMBA AXI and ACE protocol specification, uses the
terms master and slave. This guide uses replacement terminology, as follows:

• The new term Requester is synonymous with master in older documentation

• The new term Subordinate is synonymous with slave in older documentation

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introduction to CHI

2. Introduction to CHI
CHI is designed for scalability, allowing you to build small, medium, or large systems. These
systems use multiple components ranging from processor clusters, graphic processors, and memory
controllers to I/O bridges, PCI express (PCIe) subsystems, and the interconnect itself.

In this section, we introduce the basic concepts of the first three issues of CHI.

CHI network topologies
CHI defines the different components in a CHI network but does not define which topology is used
to connect these components. This topology flexibility allows you to drive component connection
by performance, power, and area requirements.

The topologies are:

• A ring topology. In the ring, each component connects directly to two other components,
forming a ring where all the components can communicate with each other. The disadvantage
of this topology is that latency increases linearly with the number of components in the ring.
This is because a transaction must traverse the ring until it reaches its destination. For this
reason, the ring topology is best suited for medium-sized systems.

• The mesh topology. Compared to the ring, the mesh contains more paths for a transaction to
reach its destination and therefore reduces the travel time of a transaction. This provides higher
bandwidth in the system, at the cost of more area. The mesh topology is best suited for large
scale systems.

• A crossbar interconnect. This topology allows every node to connect to every possible node.
This design offers the best performance, because every component has a direct connection to
the component with which it needs to communicate. The drawback of this topology is the cost
of connecting all the components. This is because the number of wires needed in the system
can grow significantly with each additional component. For this reason, the crossbar topology is
best suited for small-sized systems.

The following figure shows different types of topologies that can implement the CHI protocol:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introduction to CHI

Figure 2-1: Possible topologies for CHI implementation

Ring

Mesh

Crossbar

In this diagram, the circles represent requester and subordinate components in the network.
The squares represent intermediary components to route transactions between requester and
subordinate.

CHI protocol iterations
There are currently five issues of the CHI protocol: A to E. This guide describes issues A to C and
the main differences between these three issues.

The CHI-A issue is the first release of the CHI protocol. It provides a transport layer with features
to reduce congestion.

The CHI-A specification describes the fundamental behaviors of CHI. This specification includes:

• Definitions for new channels, CHI terminology, and component naming

• Examples of requests, snoop filters, and cache state transitions

• Rules for transaction ordering, exclusive accesses, and Distributed Virtual Memory (DVM)
operations

The CHI-B issue extends CHI-A but is not directly backwards compatible with CHI-A. It adds
features to support Armv8.1 and Armv8.2 system extensions such as:

• Larger physical address width

• Atomic Transactions

• VMID extension for DVMs

• Descriptions of channel fields, transaction structure, and Reliability, Availability, and
Serviceability (RAS) features

• The Direct Memory Transfer and Direct Cache Transfer features, which decrease memory and
Snoop access latencies

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introduction to CHI

The CHI-C issue is a minor extension of CHI-B. This extension primarily adds features that reduce
request hazard lifetimes. CHI-C also adds two opcodes that decrease the time of completion
acknowledge, with protocol changes to support these opcodes.

CHI cache line states
CHI uses a similar coherency model to ACE, adding support for snoop filters and directory-based
systems for snoop scaling.

CHI also uses the same terms as ACE to define cache states and adds partial and empty cache line
states. The cache line states terms are:

• Valid and Invalid to describe whether a cache line is present in a local cache or not.

• If a cache line is Valid, it must be either Unique or Shared:

◦ Unique means that the cache line is present in this cache only and is not present in any
other requester local cache. A store to a local cache line can only happen when it is held in
a Unique state.

◦ Shared means that the cache line is present in this cache and may or may not be present in
other requester local caches.

• If a cache line is Valid, it must be either Clean or Dirty:

◦ Clean means that the cache is not responsible for updating Main Memory. The cache line
can still hold a different value to Main Memory as a result of a previous update in another
cache.

◦ Dirty means that the cache line has been modified with respect to Main Memory. When
this line is evicted from this cache, the requester must ensure either that Main Memory is
updated, or that the Dirty responsibility is passed to another component in the system.

• A line can be in a Partial and Empty state:

◦ An Empty cache line has no Valid bytes of data, but the ownership of the line still belongs
to a requester.

◦ A Partial cache line can have some bytes valid, which includes none or all bytes. This is
because the state is updated but valid bytes have not been written yet, or because all bytes
have been written but the state has not been updated. There are additional restrictions to
the responses that can be given when a line in this state is snooped.

These terms are then combined to describe seven cache line states as shown in the following
figure:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introduction to CHI

Figure 2-2: A diagram showing cache line states

Unique
Dirty

Unique
Dirty Partial

Unique
Clean

Shared
Dirty

Unique Shared

InvalidValid

or (I)

D
irt

y
Cl

ea
n

The figure contains the following cache line states:

Invalid
The cache line is not present in the cache.

Unique Dirty
This cache line only exists in this cache only and is modified with respect to Main Memory. In
this state the requester can perform a write to the cache line, because the line is already in a
Unique state. If a snoop instructs it, the cache line must be forwarded to the Requester.

Unique Dirty Partial
This cache line exists in this cache only and is considered modified with respect to Main
Memory. It can have some bytes valid, where some includes none or all bytes. In this state,
the requester can perform a write to the cache line because the line is already in a Unique
state. In response to a snoop, the cache line cannot be forwarded directly to the original
requester, even when instructed to by the snoop.

Shared Dirty
This cache line has been modified with respect to main memory, and this particular cache has
the responsibility to update main memory. Because the cache line is Shared, it might exist in
one or more local caches, but this is not guaranteed. If the line is present in multiple caches,
these caches will have this line in Shared Clean.

Unique Clean
The cache line has not been modified with respect to Main Memory, and only exists in a
single local cache. It can be modified without notifying other caches.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Introduction to CHI

Unique Clean Empty
The cache line is present only in this cache, but none of the bytes are valid. The cache line
can be modified without notifying other caches. If a snoop requests the line, the line must
not be returned to Home or forwarded directly to the original requester.

Shared Clean
The cache line might be held in one or more local caches. The line might have been modified
with respect to Main Memory, but this cache is not responsible for writing the line back to
memory on eviction.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

3. CHI protocol fundamentals
The CHI protocol classifies different components in a system by node type and provides a means
for communication between nodes. This section of the guide reviews the node types and their
communication means, then looks more closely at the protocol messages, which are sent as Flits.

Nodes
The three types of main node types are Request Nodes (RNs), Home Nodes (HNs), and subordinate
Nodes (SNs). Additionally, there is the Miscellaneous Node (MN), which will also be covered in this
section.

RNs generate transactions, like read and write requests, and these transactions are sent to a HNs.
HNs are responsible for ordering Requests, generating transactions to SNs, and can issue snoops or
handle DVM operations.

Each of these node types can be further categorized as the following:

• RNs can be Fully Coherent, I/O Coherent, or I/O Coherent with DVM support:

◦ Fully Coherent Request Nodes (RN-Fs), contain coherent caches and will accept and
respond to snoops

◦ I/O Coherent Request Nodes (RN-Is), do not have coherent caches, and cannot accept
snoops

◦ I/O Coherent Request Node with DVM support (RN-Ds), have the same functionality as
RN-Is and can also accept DVM messages

• Home Nodes can be Fully Coherent, Non-coherent, or Miscellaneous:

◦ Fully Coherent Home Nodes (HN-Fs) order all requests to coherent memory and issue
snoops to RN-Fs

◦ Non-coherent Home Nodes (HN-Is) order requests that target the I/O subsystem

◦ Miscellaneous Nodes (MNs) handle DVM transactions sent by request nodes. These are
sometimes implemented as HN-D nodes

• Subordinate Nodes (SN-Fs) for normal memory or for peripheral and normal memory:

◦ SN-Fs connect to memory devices that back the coherent memory space. For example, a
memory controller would connect to an SN-F node.

◦ SN-Fs for peripheral or normal memory connect to I/O peripherals or non-coherent
memory

The following table summarizes the behavior of each node category:

- RN-F, HN-F, SN-F RN-I, HN-I, SN-I I/O Coherent DVM
support

MN

RN Coherent caches No coherent caches Accepts DVM
messages

-

RN Accepts and responds to snoops Does not accept or respond to
snoops

Same as RN-I in all
other respects

-

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

- RN-F, HN-F, SN-F RN-I, HN-I, SN-I I/O Coherent DVM
support

MN

HN Orders requests to coherent memory Orders requests that target the I/O
subsystem

- Handles DVM
transactions sent by RNs

HN Issues snoops to RN-Fs - - -

SN Connects to memory devices that back the
coherent memory space

Connects to I/O peripherals or
non-coherent memory

- -

Some components in the system can also be classified as a requester or completer, as described in
the following list:

• A requester is a component that starts a transaction by issuing a request message. The term
requester can be used for a component that independently initiates transactions. The term
requester can also be used for an interconnect component that issues a downstream request
message independently or as a side-effect of other transactions that are occurring in the
system.

• A completer is a component that responds to a transaction it receives from another
component. A completer can either be an interconnect component, such as a HN or an MN, or
a component, such as a subordinate, that is outside of the interconnect.

System Address Map
Every component in the system is assigned a Unique Node ID. CHI uses the System Address Map
(SAM) to convert physical addresses to a target Node ID.

To be able to determine the target Node ID of outgoing requests, each RN and HN must have a
SAM.

The following figure demonstrates the RN SAM mapping physical addresses to HN Node IDs, and
the HN SAM mapping physical addresses to SN Node IDs:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

Figure 3-1: The RN SAM maps physical addresses to HN Node IDs, and the HN SAM maps
physical addresses to SN Node IDs

HN 5 SN 2RN 0

0x8000_000 0x8000_000SAM SAMNode 5 Node 2

In this figure, the order of events is as follows:

1. The transaction with address 0x8000_0000 passes through the RN SAM in Node 0.

2. The RN SAM determines the destination as Node 5.

3. The transaction is routed to the HN with Node 5.

4. The HN receives the transaction.

5. The HN passes the address through its HN SAM and determines the destination as Node 2.

6. The transaction gets routed to the SN with Node 2.

The RN SAM must meet the following requirements:

• It must fully describe the entire system address space

• Any physical addresses that do not correspond to a physical component must map to a node
that can provide an appropriate error response

• All RNs must have a consistent view of the RN SAM. For example, address 0xFF00_0000
must always go to the same HN, regardless of which RN issued it.

The exact format and structure of a SAM is entirely implementation defined. The
CHI specification does not provide guidance on how to map addresses to Node IDs.

Node channels
CHI uses different channels to ACE for:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

• Requests and Labeled REQ, and sends Read and Write requests, Cache Maintenance requests,
and DVM Requests

• Responses and Labeled RSP, and sends completion responses for various types of messages,
ranging from write and cache management responses to data less snoop responses and
operation completion acknowledgments.

• Snoops and Labeled SNP, and issues snoops or sends DVM operations Data transfer messages
and Labeled DAT, and sends write and read data, and snoop responses with data

Channels prefixed with the letters TX are used to transmit messages, and channels
prefixed with the letters RX are used to receive messages.

The following diagram shows the channels present on the CHI Requester Interface of an RN-F:

Figure 3-2: RN-F and the CHI Master Interface

When the RN-F issues a read request, it sends the request out on its TXREQ channel. When the
read data returns, the RN-F receives the data on its RXDAT channel. The TX signals on each
node connect to the RX signals on the Target nodes. The following constraints occur on the SNP
channel:

• Only the HN-F and MN issue messages on the SNP channel

• The RN-F accepts only snoops on the SNP channel

• The MN accepts only DVM message snoops on the SNP channel

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

Flits
All protocol messages are sent in the form of a Flit. Flits are a packetized collection of control fields
and identifiers that communicate a protocol message.

Some of the control fields sent in a Flit include opcodes, memory attributes, address, data, and
error responses. Each channel needs different Flit control fields. For example, a Flit to read or write
on the Request channel needs an Address field, and a Flit on the Data channel needs the Data and
Byte Enable fields.

The fields in a Flit are not serialized over multiple packets like fields in the PCIe or Ethernet
protocols. Instead, they are sent in parallel.

The following diagram shows a Request Flit, and the details of the Flit Opcode:

Figure 3-3: Rectangles containing, identifiers, bytes and a CPU cluster example

Field

00000

00001

00010

00011

Width

Example Request Flit

Example CPU Cluster

Bit Range*

QoS 4 3 : 0

TgtID 11 14 : 4

Opcode Request Command

0x02 ReadClean

0x04 ReadNoSnp

0x03 ReadOnce

0x08 CleanShared

0x09 CleanInvalid

SrcID 11 25 : 15

0x1B WriteBackFull

0x1D WriteNoSnpFull

0x1C WriteNoSnpPtl

TxnID 8 33 : 26

Opcode 6 59 : 54

Size 3 62 : 60

Addr 48 110 : 63

NS 1 111 : 111

MemAttr 4 123 : 120

SnpAttr 1 124 : 124

LPID 5

*Bit Ranges will vary based on configured NodeID,
Address and RSVDC widths

129 : 125

Excl/SnoopMe 1 130 : 130

Identifiers

Bytes

Non-secure

Memory Type

Shareability

CPU0

CPU1

CPU2

CPU3

The handshake mechanism for communicating a Flit in CHI is different to that in ACE. Each channel
is associated with a FLITV signal, and this signal is set to high by the transmitter to indicate that the
Flit is valid. The transfer then takes place on the next rising CLK edge. Flits can only be sent by a
transmitter when it has previously received a credit from the receiver. A credit signaled by LCRDV
asserted and qualified with a rising CLK edge.

To provide additional information in a Flit, CHI defines multiple identifier fields. For example:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

CHI protocol fundamentals

• The Source ID field (SrcID) is used to route Flits across a CHI network. The field identifies the
sender of the Flit, and every Flit has the SrcID field. The value used for the Source ID is the
Node ID of the component sending a message.

• The Target ID field (TgtID), is also used to route Flits in the network. The Target ID value is
the Node ID of the node receiving the message. Every Flit, except the snoop Flit, contains
the Target ID field. The reason that the snoop channel does not contain a Target ID is that
CHI uses the implementation to identify which nodes receive a snoop. An HN-F can use any
mechanism to route snoops, for example to broadcast snoops to all RN-Fs, or using a Snoop
filter to target only a subset of RN-Fs. Whatever mechanism is used, when a snoop Flit leaves
the interconnect, it is already targeting a specific node.

• The Transaction ID field (TxnID), is present in every Flit. This field is an 8-bit field that identifies
every transaction between a Source Node and a Target Node. Each outstanding request from
an RN must have a unique TxnID. An RN can have up to 256 outstanding transactions at any
point in time.

• The Request opcode (Opcode), is present in the REQ flit. This specifies the transaction type and
is the primary field that determines the transaction structure. For example, different types of
read request, write request or dataless request.

• The Data Buffer ID (DBID), is present only in the Response and Data Flits. The Target Node uses
this identifier to signal availability to receive Write Data, and to deallocate transactions that
require Completion Acknowledgement.

◦ For Writes, a requester cannot send Write Data until it receives a DBID value in the
Response from the completer

◦ Some read transactions complete with a Completion Acknowledgment, which is where a
requester indicates that it has received the read data. For more information, see Transaction
flows. When read data is sent back to the requester, the data flit includes a DBID value for
the requester to use when sending the Completion Acknowledge message.

The following table summarizes which Flit type can use each Identifier:

Identifier Request Flit (REQ) Response Flit (RSP) Data Flit (DAT) Snoop Flit (SNP)

SrcID Yes Yes Yes Yes

TgtID Yes Yes Yes -

TxnID Yes Yes Yes Yes

DBID - Yes Yes -

For an example of how these identifier fields change for an entire transaction, see Transaction
flows.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

4. Transaction flows
A transaction is the set of messages that the system needs to complete a Request by a node. This
section includes examples for:

• Using Identifiers in a Write Request between a requester and a completer

• The sequence of messages needed to complete a ReadNoSnp Transaction

• The flow of a WriteNoSnp Transaction from a Request Node through to a completer Node

Write Requests and identifiers
In the following example, we show the use of Identifiers in a Write Request between a requester
and a completer. The requester is assigned Node ID 1, and the completer is assigned Node ID 2.
The following describes the sequence of events:

1. The requester sends a Write Request to the completer with transaction ID (TxnID) 3. The
Source ID (SrcID) field in the requester is populated with the Node ID of the requester. The
Target ID (TgtID) field is populated with the Node ID of the completer. This step is shown in the
following diagram:

Figure 4-1: A diagram showing a requester sending a write request

2. The completer assigns the transaction ID and Source ID of the Request to an available Data
Buffer slot. In this example, the Request is assigned the Data Buffer ID (DBID) 0.

3. The completer sends a DBIDResp message back to the requester with TxnID 3 and the DBID
value 0, as shown in the following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-2: A diagram showing a completer sending a DBIDResp message

4. The Requester sends the write data to the Completer using the DBID received as the
Transaction ID.

5. The buffer slot corresponding to DBID 0 gets deallocated when the transaction completes.

ReadNoSnp Transaction flow
The following example shows the sequence of messages needed to complete a ReadNoSnp
transaction. Requester node 0 issues the ReadNoSnp request and completer node 5 provides the
read data. The following describes the sequence of events:

1. Requester node 0 issues a ReadNoSnp to the CHI Interconnect, targeting Home node 3. The
transaction is sent on the TXREQ channel of the requester node. This step is shown in the
following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-3: A requester issuing a ReadNoSnp

2. Home node 3 issues a ReadNoSnp to completer node 5 on its TXREQ channel to retrieve the
data, as shown in the following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-4: A home node issuing a ReadNoSnpon

3. Completer node 5 returns data to Home node 3 by issuing a CompData response on its TXDAT
channel, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-5: A completer node returning data

4. Home node 3 sends the CompData response to requester node 0. Requester node 0 receives
the data on its RXDAT channel, shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-6: A home node sending a CompData response

WriteNoSnp Transaction flow
This section explains the flow of a WriteNoSnp Transaction from Request Node 0 to completer
Node 5.

The following describes the sequence of events:

1. Request node 0 issues a WriteNoSnp message to Home node 3 on the TXREQ channel, as
shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-7: The request node issuing a WriteNoSnp

2. Home node 3 responds with a CompDBIDResp message to request node 0. This response
indicates that it can accept write data and the WriteNoSnp is observable by other requesters.
This message gets sent over the Home node TXRSP channel. This step is shown in the
following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-8: Home node response

3. The following two steps can happen in any order:

a. Home node 3 issues the WriteNoSnp message to completer node 5 and receives a
CompDBIDResp response, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-9: Home node issuing a WriteNoSnp

b. Alternatively, Request Node 0 could send the write data for the WriteNoSnp over its TXDAT
channel to Home node 3, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-10: Request note sending write data

4. After receiving the CompDBIDResp from the completer node and the write data from the
requester node, Home node 3 sends the write data to completer node 5 on the TXDAT
channel, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-11: Home node sending write data to the completer

Completion Acknowledgment
CHI uses a Completion Acknowledgement response to maintain the order of the following
transactions:

• Transactions issued by a Fully Coherent Request Node (RN-F)

• Snoop transactions caused by these RN-F transactions

Completion Acknowledgment ensures that a snoop transaction that is ordered after a Coherent
Transaction from the RN-F is received only after that Coherent Transaction completes.

HN-Fs can maintain transaction order by stalling transactions. For example, an RN-F may already
have an outstanding transaction that is making progress for a particular cache line. If another
requester in the system issues a transaction that results in a snoop to that same line, the HN-F can
stall this later transaction. When the original RN-F completes the Coherent Transaction, the RN-
F uses its TXRSP channel to send a Completion Acknowledgment (CompAck) message to the HN-F.
The HN-F then unblocks the snoops that were waiting for Completion Acknowledgement.

This mechanism has similar functionality to RACK/WACK in ACE.

Not every transaction in CHI requires Completion Acknowledgement. Request Flits contain
an ExpCompAck field to signal when Completion Acknowledgment is needed. If Completion
Acknowledgment is required, the RN-F sets ExpCompAck to 1 in the Request and issues a CompAck
Response when the Request completes.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

The procedure is as follows:

1. The Request Node (RN-F) issues a Request with ExpCompAck = 1.

2. The Home Node completes the Request.

3. The Home Node sends Comp or CompData to the RN-F.

4. The RN-F sends a CompAck to the Home Node.

5. The Home Node can now send a waiting Snoop to the RN-F.

The following example shows the messages that are sent when you require Completion
Acknowledgement in a Read Request:

1. The requester sends a Read Request for address 0x8000 to the completer with the ExpCompAck
field set to 1, as shown in the diagram:

Figure 4-12: Requester sending a read request

2. The completer assigns an arbitrary DBID location for the read address, blocking the
interconnect from issuing snoops for future Coherent Requests to it. This location is shown in
the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-13: The DBID location

3. The completer responds to the requester with a CompData response, signaling the completion
of the transaction and sending the read data simultaneously. The DBID field in the response
is populated with the DBID of the location that is used to store the read address. This step is
shown in the following diagram:

Figure 4-14: The completer responding to the requester

4. The requester sends a CompAck message. The CompAck uses the DBID value it received from
the completer as the transaction ID, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-15: The requester sending a CompAck message

5. The completer clears the DBID location for address 0x8000, allowing the interconnect to issue
future snoops to this location.

CompAck with Snoops
This example shows the messages sent when you require a Completion Acknowledgement with
multiple request nodes accessing the same cacheable memory location. In this example, the CHI
Interconnect broadcasts snoops to all caching requesters. Alternatively, it can utilize a snoop
filter and target only requesters that had the line present locally. The following list describes the
sequence of events:

1. Requester node 0 issues a MakeUnique message for address A to Home node 3. This transaction
completes when requester node 0 issues a Completion Acknowledge to Home node 3. This
step is shown in the following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-16: The requester sending a MakeUnique message

2. Home node 3 issues SnpMakeInvalid snoops for address A to requester nodes 1 and 2, as
shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-17: The home node issuing SnpMakeInvalid snoops

3. Requester nodes 1 and 2 respond with SnpResp_1 responses. These responses mean that
address A has been invalidated. Home node 3 can receive SnpResp_I in any order. This step is
shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-18: The requester response

4. Requester node 2 sends a ReadShared request for address A to Home node 3. Note that Home
node 3 still has not responded to the MakeUnique message from requester node 0. Any Snoops
generated from the ReadShared Request are now blocked until requester node 0 sends the
Completion Acknowledge message for the MakeUnique. This step is shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-19: The requester sending a ReadShared request

5. Home Node 3 responds with a Comp_UC message to Request Node 0 because of the Snoop
responses it had received in step 3.

6. Request Node 0 sends the CompAck message and unblocks Snoops to address A.

7. Home Node 3 generates SnpShared Snoops to Request Node 0 and 1 for address A.

8. Request Node 1 responds with SnpResp, indicating it does not have the data.

9. Request Node 0 responds with SnpRespData, sending the most recent Data for address A.
Home Node 3 can receive these two responses in any order.

10. After receiving both Snoop Responses, Home Node 3 returns the Snoop data to Request Node
2.

11. Request Node 2 sends Completion Acknowledge to Home Node 3. Home Node 3 can generate
future Snoops to address A.

Endpoint Order and Request Order
Transactions in CHI can be ordered by Endpoint Order and Request Order, and are described as
follows:

• Endpoint Order maintains the order of transactions from a single requester to a single
subordinate address range. For example in Endpoint Order, multiple device accesses are issued
to the programmable register bank of a subordinate.

• Request Order maintains the order of transactions from a single requester to the same address.
For example, ordering is required when multiple requests are issued to an overlapping non-
cacheable address such as Normal NC, Device-GRE and Device-nGRE. CHI does not require an

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

exact granularity for address matching when Request Order is set, and the granularity is defined
by the implementation.

If you set Endpoint Order, Request Order is implied.

The type of ordering is controlled by the Order field in the Request Flit.

Only some Request types can use Request Order and Endpoint Order. These Request types are:

• ReadNoSnp and any of the ReadOnce type requests:

◦ The requester issues a ReadNoSnp or ReadOnce type request that requires ordering

◦ The subordinate accepts the request and responds with a ReadReceipt message. The
ReadReceipt signals that the next ordered request can be issued

◦ By issuing the ReadReceipt response, the subordinate guarantees that it will maintain
requests in the order in which they were received

• WriteNoSnp and WriteUnique type requests:

◦ A requester issues a WriteNoSnp or WriteUnique type request that requires ordering

◦ The subordinate responds with a DBIDResp message to signal that it can accept the
message. The DBIDResp response signals that a Data Buffer slot is available to accept the
write data, and the requester can issue the next ordered request.

◦ By issuing the DBIDResp, the subordinate guarantees that it maintains requests in the order
they are received

For more information about request types, see CHI specification.

The order of events is as follows:

1. The requester initiates Read Request 1 to the subordinate with ReqOrder set.

2. The requester issues Read Request 2 to the subordinate also with ReqOrder set, but the
requester is blocked from sending the request because Request 1 is still outstanding.

3. The subordinate responds with a ReadReceipt message for Read Request 1, signaling that the
request has been accepted.

4. In any order:

a. The requester sends Read Request 2 to the subordinate.

b. The subordinate returns the read data for Read Request 1 to the requester.

Request retry
Sometimes a target node might not have enough resources to accept a request.

To prevent blocking the Request channel when resources are not available, CHI provides a Request
Retry mechanism. The Request Retry mechanism uses Protocol Credits to indicate resource

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 82

https://developer.arm.com/documentation/ihi0050/latest/

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

availability. It is the responsibility of the subordinate to determine and record the type of Protocol
Credit (PCrd) that is required to process the request.

The mechanism can use different types of Protocol Credit to track different resources. For example,
Read Requests and Write Requests can use separate Data Buffers, so each buffer can use a
different type of Protocol Credit to indicate availability. The values for different types of Protocol
Credit are defined by the implementation.

The following example describes the sequence of messages sent with a Request Retry. In this
example, requester node 1 issues a request because the completer is unable to accept the request.

The following describes the sequence of events:

1. Every request is initially issued without a Protocol Credit. The Request Flit has a control field
called AllowRetry. Setting this field to YES the first time that the request is sent indicates that
the request is not using a Protocol Credit. When AllowRetry is YES, the PCrdType field in the
request must be 0. The following diagram shows the request settings:

Figure 4-20: Request settings

2. The target in this example is unable to accept the Request because the requester buffer is full,
so it responds with a RetryAck message.

3. The RetryAck Response Flit sets a PCrdType field with a value indicating the type of credit that
is required to retry the Request. In this example the value of PCrdType is 2, as shown in the
diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Transaction flows

Figure 4-21: The PCrdType value

4. When the target can accept the Request, it sends a PCrdGrant message on the RSP channel.
The PCrdGrant Response Flit uses the PCrdType field to indicate the type of Protocol credit that
has become available. The requester must only retry a Request if the Protocol credit types in
the PCrdGrant messages and the RetryAck response match. In this example, both fields must be
set to 2. If the protocol credit types match, the target node has guaranteed it can now accept
the Request.

5. The requester reissues the Request with the AllowRetry field set to 0. Setting the AllowRetry
field to 0 indicates to the target node that the Request is using a granted Protocol Credit.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

DVM operations

5. DVM operations
Like ACE, CHI supports Distributed Virtual Memory (DVM) operations. DVM Requests pass
operations to support the maintenance of a virtual memory system.

DVM operation transactions
CHI uses DVM operations to manage virtual memory.

The DVM operations conduct the following transactions:

• Transaction Lookaside Buffer (TLB) Invalidation

• Instruction Cache Invalidation

• Branch Predictor Invalidation

• DVM Synchronization

In CHI, all DVM operations are sent to the MN in two parts. This is different from ACE, where
some DVM operations require two parts, and others require just one.

The following list describes the parts order in CHI:

• The first part of the DVM operation is sent as a Request to the MN, with the Opcode field set
to DVMOp. The Request Flit uses the Address field to encode the attributes of the operation.

• The second part of the DVM gets sent as a Data Flit, only after the Request Node has received
a DBID response from the MN. This second part carries the address that is targeted by the
DVM operation.

When the MN receives both parts of the DVM operation, the MN generates DVM Snoops to the
Request Nodes that are participating in the coherency domain. The MN sends the DVM Snoops in
two parts on the Node Snoop channel.

Both parts of the DVM Snoop must use the same TxnID and the Opcode SnpDVMOp and use the
following parameters:

• The first part uses the Address field to encode the operation attributes and the upper address
bits of the target address

• The second part uses the Address field to send the remaining bits of the address

To differentiate the two parts, CHI requires that bit[3] of the Address field is set to 0 to indicate
the first part and 1 for the second part.

The second part of the DVM snoop can arrive at the RN before the first part.

DVM operation types
CHI defines two types of DVM operations: Non-Synchronization DVMs (DVM Non-Sync) and
Synchronization DVMs (DVM Sync). The attributes of a DVM operation dictate whether an RN
must wait for an operation to complete before responding to a DVM Snoop.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

DVM operations

Synchronization DVMs perform only synchronization, with no other operation.

Non-Synchronization DVMs are the Invalidation operations for TLB, Instruction Cache, and Branch
Predictor. Non-Synchronization DVMs do not require the DVM operation to finish executing
before more DVM operations are issued. This allows multiple Non-Synchronization DVMs to be
outstanding.

In the following example, an RN-F can issue multiple Branch Predictor or Instruction Cache
Invalidations, and the receiving RN-F or RN-D does not have to execute the operation immediately:

1. An RN-F or RN-D receives a DVM Snoop indicating a DVM Non-Sync.

2. The RN-F or RN-D issues a Snoop Response to the MN. The Snoop Response acknowledges
receipt of the DVM message but does not indicate that the Request Node has executed the
DVM operation.

3. The MN sends a Completion message to the initiating RN-F to indicate that the DVM operation
has been accepted.

To ensure that all outstanding DVM Requests have executed, the following steps occur:

1. An RN-F issues a Synchronization DVM operation, also known as a DVM Sync, to the MN. Any
DVM requests that need to be completed by the DVM Sync must receive their Completion
response before issuing the DVM Sync.

2. The MN issues the DVM Sync to all the RN-Fs and RN-Ds on the snoop channel.

3. Each target RN ensures all its outstanding DVM operations have been executed.

4. Each RN issues one snoop response to the MN, indicating that all operations have been
executed.

5. The MN sends a Completion response for the DVM Sync to the RN-F that originally issued the
Synchronization DVM operation.

CHI DVM Syncs are similar to those in ACE. Both check that previously issued DVM operations
have been completed. The difference is that CHI does not require a DVM Complete message.

Arm cores generate DVM Syncs as a result of a DSB instruction. However,
implementations may choose to issue DVM Syncs as a result of a DSB only if there
are DVM Ops that have not already been synced.

DVM operation flow
This section describes a TLB Invalidation DVM Request followed by a Synchronization DVM
operation and shows the following events:

• The different parts of a DVM Request

• The Snoops generated by the MN

• How a DVM sync ensures that prior DVM operations have been executed

The order of events is as follows:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

DVM operations

1. Request Node 0 issues a TLB Invalidation DVM Request to the MN.

2. The MN responds with a DBIDResp message indicating that it can accept the second part of
the DVM Request.

3. Request Node 0 issues a Write Data message to the MN. This is the second part of the DVM
message.

4. The MN issues both DVM Request parts to Request Node 1.

5. Request Node 1 acknowledges the DVM Request by sending a Snoop Response to the MN.

6. The MN receives the Snoop Response.

7. The MN issues a Completion message to Request Node 0.

8. Request Node 0 issues a DVM Sync operation to the MN.

9. The MN responds with a DBIDResp message to Request Node 0.

10. Request Node 0 sends the Write Data message to the MN. This is the second part of the DVM
Sync message.

11. The MN issues the DVM Sync Snoops to Request Node 1.

12. Request Node 1 completes all outstanding DVM operations.

13. Request Node 1 sends a Snoop Response to the MN, indicating it has completed all operations.

14. The MN issues a Completion message to Request Node 0. This is the response to the DVM
Sync Request.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

6. Cache stashing
Cache stashing is a mechanism to install data within specific caches in a system. CHI-B introduced
this feature to improve system performance. The Cache Stashing mechanism improves system
performance by allocating a cache line near its future point of use. This results in lower memory
access latency when the data is used.

Typically, Cache Stash Requests are initiated by RN-I and RN-D Nodes. A Cache Stash Request
is a suggestion, not a mandatory action, that a particular cache line should be installed within
a particular cache in the system. The Device receiving the Cache Stash Request can ignore the
Request.

CHI supports two main forms of Cache Stashing: Stash Transac tions that contain write data, and
Stash Transactions that are dataless. Both forms of cache stashing can target different cache levels
as the stash target.

Cache Stashing support was added to the ACE5-Lite protocol. The CHI protocol is very flexible
regarding Cache Stashing and allows a Stash Request to take multiple forms.

This section of the guide describes the different forms of Stash Requests and the flow of messages
for these Requests.

Transaction flow
The basic transaction flow of cache stashing is as follows:

1. An RN issues a Cache Stash Request on the Request Channel.

2. The Cache Stash Request is forwarded to an HN-F.

3. The HN-F can either:

• Ignore the Cache Stash Request. The RN-F treats the Stashing Snoop as the non-stash
version and responds accordingly. Or,

• Accept the request and generate snoops to RN-Fs. The RN-F responds fetches the cache
line into its cache.

4. The RN-F targeted for the stash receives a particular type of noop Request called a Stashing
Snoop.

The RN-F can:

• Provide a snoop response that acts as a read request for the associated cache line using the
DataPull mechanism

• Provide a snoop response without DataPull then issue a separate read request for that cache
line

• Provide a snoop response without fetching the line, ignoring the cache stash hint

Stashing Snoop Requests
All cache stash requests get sent to HN-F nodes. When an HN-F processes a cache stash request,
it generates stashing snoops to the target RN-F.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

CHI defines four different stashing snoop requests, each corresponding to the initial cache stash
transaction. These requests are detailed in the following table:

Cache Stash Transaction Snoop Request by HN-F Action by RN-F

WriteUniquePtlStash SnpUniqueStash Invalidate cache line and return the data if it is Dirty (with write data)

WriteUniqueFullStassh SnpMakeInvalidStash Invalidate cache line if present (with write data)

StashOnceShared SnpStashShared Make a Shared Request for the cache line (dataless)

StashOnceUnique SnpStashUnique Make a Unique Request for the cache line in preparation for a future write
(dataless)

Cache stashing control fields
CHI adds control fields to the request, snoop, response, and data flits for cache stashing. These
fields indicate:

• The NodeID of the stash target

• A specific logical processor cache inside an RN-F, like the L2 cache

• Whether the DataPull mechanism will be used

The Request Flit uses the following fields for a Cache Stash Request:

• StashNID holds the Node ID of the stash target. If an RN-F is chosen as the target for a stash,
the StashNID field is populated with the Node ID of the RN-F.

• StashNIDValid. If the StashNID field should be used when stashing, StashNIDValid will be 1.

• StashLPID specifies the Logical Processor ID within an RN-F. This field allows specifying a
lower-level cache, like an L2 cache, as a stash target.

• StashLPIDValid. If the StashLPID field should be used when stashing, StashLPIDValid will be
1.

The Snoop Flit also contains the following fields:

• StashLPID and StashLPIDValid. If the Cache Stash Request indicated that StashLPID was Valid
(StashLPIDValid = 1), the Snoop will use the StashLPID value from the Cache State Request.
If no StashLPID is specified (StashLPIDValid = 0), then the Stashed data may be placed in a
shared cache within the RN-F.

• DoNotDataPull: If this field is set to 1, the stash target cannot request DataPull, and therefore
cannot use the DataPull mechanism.

Transactions with write data
The requester issues a WriteUniqueStash Transaction if it is writing new data and requires a target
to stash that data. The data written can be a full or partial cache line.

CHI uses one of the following opcodes to indicate a write with a stash hint:

• WriteUniquePtlStash for partial cache line write

• WriteUniqueFullStash for a full cache line write

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

This section describes how an I/O requester issues a stash hint with write data. The target of the
Stash Transaction is the RN-F in the system.

The order of events is as follows:

1. The RN-I issues a WriteUniqueFullStash request with write data. For simplicity, this example
does not describe the DBIDResp from the HN-F. This request is shown in the following
diagram:

Figure 6-1: The RN-I request

2. The HN-F accepts the stash request then issues an SnpMakeInvalidStash request to the RN-F,
as shown in the following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

Figure 6-2: The HN-F request

3. The RN-F receives the Snoop from the NH-F.

4. The RN-F accepts the stash hint and issues a Snoop Response, as shown in the diagram:

Figure 6-3: The RN-F issuing a snoop response

5. If the DataPull mechanism is used, the RN-F issues either a Snoop Response with an implicit
Read Request, or a Snoop Response and a separate Read Request. For simplicity, an implicit
Snoop Response and Read Request are used in this example, but not the full DataPull flow.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

6. The HN-F sends the write data that it received from the RN-I to the RN-F.

Transactions without write data
Requesters use dataless Stash Transactions when they use a cache as a stash target without writing
data. CHI uses the following opcodes for dataless stash requests:

• StashOnceShared is issued if the cache line is expected to be read by the stash target. This
opcode indicates that the cache line should be held in the Shared state after allocation.

• StashOnceUnique is issued if the cache line is expected to be written to by the stash target.
This opcode indicates that the cache line should be held in the Unique state, allowing the stash
target to immediately write to the cache line when it needs to in the future.

The following example describes a stash hint without write data. The RN-I sends the Stash Request
with the RN-F as the stash target, and both the HN-F and RN-F accept the stash hint.

The sequence of events is as follows:

1. The RN-I issues a StashOnceUnique Request to the HN-F, indicating that the RN-F is the target
and no write data is present. The following diagram shows this step:

Figure 6-4: The RN-I request

2. The HN-F accepts the Stash Request.

3. The HN-F issues a ReadNoSnp Request to Main Memory to fetch the cache line and an
SnpStashUnique Snoop to the RN-F, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

Figure 6-5: The HN-F request

4. Main Memory returns the cache line to the HN-F, as shown in the diagram:

Figure 6-6: The main memory returning the cache line

5. The RN-F responds to the Snoop, requesting the cache line.

6. The HN-F forwards the cache line to the RN-F.

A Stash Request does not require a valid stash target. If the stash target is not specified, the HN-F
targeted in the Request becomes the stash target. The HN-F then chooses whether to allocate the
cache line into its cache or not.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

The following steps describe a stash hint without write data targeting the system cache. The order
of events is as follows:

1. The RN-I issues a StashOnceShared Request to the HN-F. The StashNIDValid field is set to 0 to
target the HN-F.

2. The HN-F issues a ReadNoSnp Request to Main Memory to get the specified cache line.

3. Main Memory returns the cache line to the HN-F.

4. The HN-F allocates the cache line into its cache.

The DataPull mechanism
The DataPull mechanism is a way to imply a Read Request through a Snoop Response so that
a separate Read Request is not needed to fetch the cache line being stashed. DataPull is only
applicable to Stashing Snoop Requests, not to any other snoop.

An RN-F receiving a Request asking for DataPull can choose whether to use DataPull or send a
separate Read Request. If the RN-F chooses not to Request DataPull, it responds to the snoop and
can send the Read Request later to obtain the cache line.

For information on all the permitted Snoop Responses with a DataPull refer to the AMBA 5 CHI
Architecture Specification.

In this section, we describe the process of a RF-F utilizing the DataPull mechanism to receive the
data as part of the Stashing transaction. The full transaction flow for the DataPull is as follows:

1. The HN-F issues a Stashing Snoop and sets the DoNotDataPull field in the Snoop Flit to 0. This
indicates that the RN-F stash target can request DataPull.

2. The RN-F that received DoNotDataPull = 0 can choose to request DataPull in its Snoop
Response. In this example, the RN-F chooses to request DataPull.

3. The RN-F requests DataPull by setting two fields in the Response Flit:

• The DataPull field is set to 1

• The DBID field is populated with the TxnID that will be used to return the read data

4. The RN-F receives the read data.

5. The RN-F issues a CompAck message to the HN-F.

The following diagram shows the timing of the DataPull mechanism for a StashOnceUnique
Transaction:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 82

https://developer.arm.com/documentation/ihi0050/
https://developer.arm.com/documentation/ihi0050/

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

Figure 6-7: DataPull mechanism

RN-D RN-F1 HN-F SN-F

StashOnceUnique
(StashNID=RN-F1)

SnpStashUnique
ReadNoSnp

CompData_I

SnpResp XXX
(DBID=Y)

CompData_UC
(TxnID=Y, DBID=Z)

CompAck
(TxnID=Z)

Comp_I

Data Pull

In this diagram, the example system contains:

• One RN-D initiating the Request

• One RN-F as the stash target

• One HN-F

• One SN-F

The full transaction flow in the example is as follows:

1. The RN-D issues a StashOnceUnique Request to the HN-F. The value of the StashNID field
indicates that RN-F1 is the stash target.

2. The HN-F accepts the Stash Request.

3. The HN-F issues:

• A ReadNoSnp Request to the SN-F

• A SnpStashUnique Snoop to RN-F1

4. The HN-F sends a Completion response to the RN-D.

5. RN-F1 accepts the stash hint.

6. RN-F1 responds to the SnpStashUnique with a SnpResp_I_Read DataPull Request. The
SnpResp_I_Read response signals the implicit Read Request. The DBID field sets the Transaction
ID as Y.

7. The SN-F returns the cache line to the HN-F.

8. The HN-F forwards the cache line to RN-F1 with:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

• TxnID = Y

• DBID = Z

9. RN-F1 issues a Completion Acknowledge response to the HN-F with TxnID = Z.

The next example shows the timing of the DataPull mechanism for a WriteUniquePtlStash
Transaction:

Figure 6-8: DataPull timing

RN-D RN-F1 RN-F2 HN-F

WriteUniquePtlStash
(StashNID=RN-F1)

DBIDResp

SnpCleanInvalid

SnpUniqueStash

SnpRespData_I_PD

NCBWrData
Comp_I

Data Pull

In this example, the system has:

• One RN-D node

• Two RN-F nodes: RN-F1 and RN-F2. RN-F2 holds the cache line when the Stash Request is
sent.

• One HN-F node

The transaction flow in the example is as follows:

1. The RN-D issues a WriteUniquePtlStash Request to the HN-F. The stash target is RN-F1.

2. The HN-F accepts the Stash Request.

3. The HN-F returns a DBIDResp to the RN-D.

4. The HN-F generates an SnpCleanInvalid Snoop to RN-F2. This is because RN-F2 holds the
cache line and a SnpUniqueStash to the stash target RN-F1.

5. RN-F2 invalidates the cache line.

6. RN-F2 returns a Snoop Response with Dirty data to the HN-F.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Cache stashing

7. RN-F1 issues a Snoop Response with an implicit Read Request. The DBID field sets the TxnID
of the stash data as Y.

8. The HN-F receives the Snoops response.

9. The HN-F issues a completion response to the RN-D.

10. The RN-D sends the write data for the Stash Request to the HN-F. The HN-F now has both
the write data and the data from the Snoop response. The HN-F creates the new data for the
cache line.

11. The NH-F sends ownership of the cache line to RN-F1. The response fields are:

• TxnID = Y

• DBID = Z

1. The RN-F1 sends a CompAck response with TxnID = Z.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

I/O Deallocation

7. I/O Deallocation
CHI-B provides the ability for an I/O Requester to deallocate cache lines in a Fully Coherent Node.

I/O Deallocation transactions provide hints that a cache line should be invalidated, and that Dirty
data should be either written back to memory or discarded.

Because these requests are only hints, a Fully Coherent Node can choose not to invalidate a cache
line and simply return data to the I/O requester. In other words, if the invalidation hint is ignored,
the requests are treated as normal ReadOnce transactions. Because they can be ignored, I/O
deallocation requests are not a replacement for Cache Maintenance Operations.

CHI defines two types of requests for I/O deallocation: ReadOnceCleanInvalid and
ReadOnceMakeInvalid. Both Requests are useful for avoiding cache pollution with data that
will not be used again in the near future. The difference between the two request types is that
ReadOnceMakeInvalid is not required to write Dirty data to the next level of memory, which can
lead to Dirty data being discarded in the system. This means that care must be taken when using
this type of request.

I/O Deallocation transaction examples
This section describes two examples of transaction flow. The first example uses
ReadOnceCleanInvalid and writes the Dirty data back to Main Memory. The second example uses
ReadOnceMakeInvalid and discards the Dirty data.

The system in both examples has:

• A Fully Coherent Request Node (RN-F) Device. The RN-F holds the requested cache line in the
Dirty state

• An I/O Coherent Request Node (RN-I) Device

• A CHI interconnect

• Main Memory

In the first example, a ReadOnceCleanInvalid Transaction flow reads and invalidates the data and
writes it back to Main Memory.

The full transaction of this example is as follows:

1. The RN-I issues a ReadOnceCleanInvalid Transaction to the HN-F, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

I/O Deallocation

Figure 7-1: The RN-I transaction

2. The HN-F sends a SnpUnique Request to the RN-F, requesting the cache line, shown in the
following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

I/O Deallocation

Figure 7-2: The HN-F request

3. The RN-F invalidates the cache line and sends the Dirty data to the HN-F.

4. The HN-F returns the data to the RN-I and writes the data to Main Memory, leaving it in the
Clean state.

In the second example, a ReadOnceMakeInvalid transaction reads and invalidates the cache line in
the RN-F, but rather than write the Dirty data to Main Memory, it discards the data.

The full transaction flow of this example is as follows:

1. The RN-I issues a ReadOnceMakeInvalid Transaction to the HN-F, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

I/O Deallocation

Figure 7-3: The RN-I transaction

2. The HN-F sends a SnpUnique Request to the RN-F, requesting the cache line, shown in the
following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

I/O Deallocation

Figure 7-4: The HN-F request

3. The RN-F invalidates the cache line and sends the Dirty data to the HN-F.

4. The HN-F returns the data to the RN-I then discards the Dirty data.

If you invalidate a Dirty line that an agent reads before it gets overwritten, the
ReadOnceMakeInvalid Request can lead to loss of data. Only use this transaction
when you know that you will not use this data again in the future.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

8. Data Memory Transfer, Direct Cache
Transfer, and PrefetchTgt

In CHI-A, read data and Snoop data both travelled through the Home Node before the initiating
Request Node received it. Travelling through the Home Node increased access latency in these
Requests. To reduce this latency, CHI-B adds the Direct Memory Transfer (DMT) and Direct Cache
Transfer (DCT) mechanisms.

The following table summarizes the differences between CHI-A and CHI-B for data going from an
SN or RN to an RN:

- SN to RN RN to RN

CHI-
A

Read data from the SN must pass through the HN on the way
back to the RN

Snoop data from an RN must pass through the HN on the way
back to the RN

CHI-
B

Direct Memory Transfer (DMT): SN data bypasses the HN and
goes directly to the RN

Direct Cache Transfer (DCT): RN data bypasses the HN and
goes directly to the RN

To support DMT and DCT operations, additional identifiers are added to the Request, Snoop, and
Data flits. These additional fields specify the following information needed to correctly route the
data and any required responses to the correct endpoint:

• The end target for the read data

• TxnID of the original Request

• The HN that issued the request to SN-F, or the snoop to RN-F

The HN still requires a CompAck notification that the DMT or DCT completed.

The CHI-B issue also adds the Prefetch Target (PrefetchTgt) Transaction to reduce the access
latency of memory accesses. PrefetchTgt Transactions are sent directly from an RN-F to an SN-F
and do not require any data to be returned. The Memory controller can use this as a hint and buffer
the data for the PrefetchTgt Request. The buffering provides quicker access times if a normal
Request for that data is received while the data is in the buffer.

This section describes the transaction flows of DMT, DCT, and PrefetchTgt. This section also
describes the additional identifier fields in each flit and uses examples that illustrate how the
identifier fields are assigned in each message.

Direct Memory Transfer
In the following examples, you can compare the path that read data takes for a Read Request with
and without DMT.

For a read request without DMT, the transaction flow is as follows:

1. The CPU issues a Read request to the HN-F, as shown in the diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Figure 8-1: The CPU issuing a read request

2. The HN-F has a cache-miss for the address and issues a Read Request to the Memory
controller, as shown in the following diagram:

Figure 8-2: HN-F cache-miss

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

3. The Memory controller gets the data for the Read Request then sends the data back to the
HN-F.

4. The HN-F returns the read data to the CPU that requested the cache line. The read data
needed to return to the HN-F before reaching its destination.

In the second example, DMT was utilized, and the transaction flow was modified as follows:

1. The CPU issues a Read Request to the HN-F, as shown in the diagram:

Figure 8-3: The CPU issuing a read request

2. The HN-F has a cache-miss for the address and issues a Read Request to the Memory
Controller, as shown in the following diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Figure 8-4: HN-F cache-miss

3. The Memory controller obtains the data for the Read Request

4. The Memory controller sends the data to the initiating CPU instead of the HN-F

With DMT, the read data bypasses the HN-F and goes directly to the CPU that issued the Read
Request. Most Read Requests can use the DMT mechanism, including the implicit DataPull reads
resulting from cache stashing operations.

The Requests that cannot use DMT are:

• Exclusive Accesses

• ReadNoSnp Requests where ExpCompAck = 0 and Order != 0

• ReadOnce Requests where ExpCompAck = 0 and Order != 0

To support DMT, CHI contains the following identifier fields:

• The Request flit uses the Return Node ID (ReturnNID) and Return Transaction ID (ReturnTxnID)
fields

• The Data flit uses the Home Node ID (HomeNID) field

The example in the following figure shows the timing of the DMT transaction flow, focusing on the
Identifier field usage:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Figure 8-5: Arrows pointing to RN-F_NID1, HN-F_NID2, SN-F_NID3

CompAck
(TxnID=B)

CompData_UC
(TxnID=A, HomeNID=2, DBID=B)

ReadNoSnp
(TxnID=B, ReturnNID=1,

ReturnTxnID=A)

ReadOnce
(TxnID=A, ExpCompAck=1)

RN-F_NID1 HN-F_NID2 SN-F_NID3

This example system has:

• An RN-F with Node ID 1 (RN-F_NID1)

• An HN-F with Node ID 2 (HN-F_NID2)

• An SN-F with Node ID 3 (SN-F_NID3)

The DMT Transaction flow in the example uses the Identifier fields in the following ways:

• The RN-F sends a ReadOnce Request to the HN-F with TxnID = A and ExpCompAck = 1

• The HN-F does not have the requested data in its cache, so it issues a ReadNoSnp Request to
the SN-F. The ReadNoSnp Request has:

◦ TxnID = B

◦ ReturnNID = 1. This indicates that the read data should be sent to the RN-F, which has
Node ID 1

◦ ReturnTxnID = A. This matches the TxnID from the original ReadOnce Request.

• When the SN-F is ready to return the read data, it sends a CompData_UC message with:

◦ TxnID = A. This matches the value the SN-F received as ReturnTxnID

◦ HomeNID = 2. This is the Node ID of the HN-F

◦ DBID = B. This matches the TxnID of the ReadNoSnp sent by the HN-F

• The RN-F sends the CompAck message to the HN-F with TxnID = B. This matches the DBID
field in the CompData_UC message.

• The HN-F receives the CompAck and can stop tracking the ReadNoSnp message it had sent to the
SN-F

CHI-B contains an optimized DMT sequence for certain ReadOnce and ReadNoSnp transactions.
The sequence adds a new requirement for SN-F nodes to recognize the value 0x1 in the Request

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Order field and send a ReadReceipt response to the HN-F. This addition reduces the lifetime of a
transaction at the HN-F node, potentially freeing resources.

CHI-A, in contrast, marks the value 0x1 as reserved in the Order field and does not require a
ReadReceipt from the SN-F. The only nodes allowed to send ReadReceipt responses are HNs to
RNs and SN-Is to HN-Is.

The following diagram shows an example of the optimized DMT sequence for a ReadOnce
transaction, where the HN-F does not have the address requested in its cache:

Figure 8-6: RN-F_NID1, HN-F_NID2, and SN-F_NID3

CompData_UC
(TxnID=A, HomeNID=2, DBID=B)

ReadReceipt
(TxnID=B)

ReadNoSnp
(TxnID=B, ReturnNID=1,

ReturnTxnID=A, Order=0x01)

ReadOnce
(TxnID=A)

RN-F_NID1 HN-F_NID2 SN-F_NID3

In this example, the transaction flow is as follows:

1. The RN-F issues a ReadOnce Request to the HN-F with TxnID = A.

2. The HN-F issues a ReadNoSnp Request to the SN-F with:

• Order = 0x01

• TxnID = B

3. The ReturnNID field gets the Node ID of the RN-F.

4. The ReturnTxnID field gets the TxnID of the original ReadOnce Request.

5. The SN-F accepts the transaction.

6. The SN-F issues a ReadReceipt to the HN-F.

7. When the data is ready, the SN-F sends the read data to the RN-F using the original TxnID.

The HN-F receives the Read Receipt and immediately deallocates the Request. This deallocation
reduces the lifetime of the transaction at the HN-F and freeing up resources. If this were CHI-A,

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

the HN-F would need to wait until it received a CompAck response from the RN-F to stop tracking
the ReadNoSnp Transaction.

Prefetch Target
To enhance Direct Memory Transfer further, CHI-B provides the Prefect Target (PrefetchTgt)
Request to reduce memory access latency at the SN-F.

The PrefetchTgt message is a hint that is sent directly from an RN to an SN-F. This request does
not require a response, so it is not tracked as an outstanding request by the RN. The SN-F can
choose to ignore the request or fetch the data for the specified address.

If the SN-F decides to fetch the data, it buffers it until a normal Read Request for that address is
received. The assumption is that a separate Read Transaction will come on the normal path through
a Fully Coherent Home Node, HN-F, in the near future.

Having the Data Buffered at the SN-F reduces the latency of the memory access from a Read
Transaction and hides any additional latency with local lookups in the HN-F system cache first.

Because a response is not needed, the TxnID field in PrefetchTgt is inapplicable, and CHI-B
requires that it is set to 0 when the request is sent. For example, the RN issues the request to the
SN-F. This the only step required to complete the PrefectTgt transaction, no additional flits are
sent in either direction.

A PrefetchTgt Request can be sent so far in advance that the SN-F evicts the buffered data to
make room for other Read Requests. To avoid congestion with PrefetchTgt Requests, CHI-B uses
the DataSource field in the Data Flit to report the effectiveness of using PrefetchTgt. This field is
set by the memory controller and indicates if the read data benefited from an earlier PrefetchTgt
hint. The DataSource field possible values are:

• 0x6 to that the PrefetchTgt Request was useful

• 0x7 to indicate that the read data did not benefit from PrefetchTgt and was not useful

The RN can stop issuing PrefetchTgt Requests if enough are determined to be ineffective.

Usually, RNs only implement a RN System Address Map (RN SAM). This SAM targets HN-Fs and
will have no awareness of SN-F Node IDs. To support the PrefetchTgt Transaction, RNs need an
HN System Address Map, too. The HN SAM translates addresses to SN-F TgtIDs.

For example, the PrefetchTgt hint can optimize DMT. The CPU issues a PrefetchTgt Request
before the DMT reads miss. Following the PrefetchTgt transaction, the DDR controller has the
read data ready when it receives the Read Request. The full flow in the example is as follows:

1. The CPU issues a PrefetchTgt hint to the DDR controller.

2. The DDR controller accepts the hint and begins the process of retrieving the data

3. Two things happen in parallel:

• The CPU issues a Read Request to the HN-F for the same address the PrefetchTgt was for.

• The DDR controller starts receiving the read data and buffers it for a subsequent read.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

4. The CPU issues a Read Request which is sent to the HN-F

5. The Read Request results in a cache miss at the HN-F.

6. The HN-F issues a Read Request to DDR memory.

7. Because the data has already been buffered at the DDR controller, the DDR immediately
returns the read data to the CPU. By using the PrefetchTgt Request, the DMT Read
Transaction has almost no latency in the DDR memory access.

Direct Cache Transfer
To reduce snoop hit latency, CHI-B uses the Direct Cache Transfer mechanism (DCT). DCT is
similar to DMT for snoops and allows snoop data from an RN-F to bypass the HN-F and go directly
to the original requester. This mechanism helps improve system performance when data needs to
travel back and forth between requesters.

Use cases that benefit from DCT include semaphores and producer-consumer workloads.

For example, you can compare the path that read data takes for a Read Request with and without
DCT. Without DCT the overall system level flow is as follows:

1. CPU A issues a Read Request to the HN-F.

2. The Request results in a cache miss at the HN-F.

3. The HN-F issues a Snoop to the CPU B, which holds the cache line.

4. CPU B returns the data for the cache line to the HN-F.

5. The HN-F returns the data to CPU A, which originally requested it.

Using the same initial transaction with the addition of DCT, the overall system level flow is
optimized as follows:

1. CPU A issues a Read Request to the HN-F.

2. The Request results in a cache miss at the HN-F.

3. The HN-F issues a Snoop to CPU B, which holds the cache line.

4. CPU B bypasses the HN-F and returns the data directly to CPU A, which issued the Read
Request.

By using DCT, the access latency of a snoop hit is reduced.

Forward Snoop Requests
To support DCT, one of the elements that CHI-B added was the Forwarding Snoop Request.

Forwarding Snoop Requests tell the snooped RN-F to send the snoop data directly to the original
Requester. All snoopable reads, except Atomic Transactions and exclusive reads, can use DCT.

The Forwarding type snoops introduce new Identifier fields to the Snoop Flit as follows:

• Forward Node ID (FwdNID), which functions like ReturnNID in DMT. It holds the Node ID of the
original Requester.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

• Forward Transaction ID (FwdTxnID) which functions like ReturnTxnID in DMT. It holds the TxnID
of the original Read Request.

• Return To Source (RetToSrc) instructs the RN-F to send the snoop data to the HN-F, in addition
to the requesting RN-F. Sending the data to the RN-F allows future Requests to that address to
hit in the HN-F cache and avoid generating additional snoops.

In responses to Forwarding Snoops, both the Response and Data Flits use a new Forward State
(FwdState) field. This field tells HN-F what cache state was provided to the requesting RN-F for any
local snoop filter tracking.

The cache state in the snooped RN-F, which is the result of the Forwarding Snoop, is provided to
the Requesting RN-F in the RESP field as usual.

The original Requester receives the snoop data in a CompData message as a normal read data
response, as is shown in the following diagram:

Figure 8-7: CompData message

RN-FFwdState

Comp Data
Read Data response

CompAck response

In this diagram, the response includes the same HomeNID and DBID fields that DMT responses
include:

• The HomeNID field has the Node ID of the HN-F that was bypassed

• The DBID field has the TxnID of the Forwarding Snoop

The RN-F then uses these fields as the TgtID and TxnID for the CompAck response to the HN-F.

The following two examples show how the identifier fields are populated when RetToSrc is set to
either 0 or 1.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

The systems in these examples have:

• Two RN-Fs with Node IDs 1 and 2 (RN-F_NID1 and RN-F_NID2)

• RN-F2 holds the requested address in its cache in both instances

• One HN-F with Node ID 3

The following diagram shows the transaction flow of DCT when the RetToSrc = 0:

Figure 8-8: Transaction flow of DCT

CompAck
(TxnID=B)

CompData
(TxnID=A, HomeNID=3,

DBID=B, RESP=SC)

SnpNotSharedDirtyFwd
(TxnID=B, FwdNID=1,

FwdTxnID=A, RetToSrc=0)

ReadNotSharedDirty
(TxnID=A)

RN-F_NID1 RN-F_NID2 HN-F_NID3

UC SC

DCT with RetToSrc=0

SnpRespFwded
(Resp=SC_PD, FwdState=SC)

In this diagram, the transaction flow is as follows:

1. RN-F_NID1 issues a ReadNotSharedDirty Request to the HN-F. The Request has TxnID = A.

2. The Request results in a cache miss at the HN-F.

3. The HN-F issues an SnpNotSharedDirtyFwd Snoop to RN-F_NID2.

The Snoop has:

• TxnID = B

• FwdNID = 1. This value matches the Node ID of RN-F_NID1. This indicates that it is the
destination for the Snoop data.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

• FwdTxnID = A. This value matches the original TxnID of the Read Request.

• RetToSrc = 0

4. Because RetToSrc in the Request is set to 0, RN-F_NID2 responds to the HN-F with an
SnpRespFwded message. There are two important fields in this response:

• RESP shows that the cache line moved from the Unique Clean to the Shared Clean state

• FwdState tells the HN-F what cache state was sent to the original Requester. In this
example, that is Shared Clean.

5. RN-F_NID2 sends a CompData message to RN-F_NID1 with:

• TxnID = A.This is the FwdTxnID value in the Snoop Request.

• HomeNID = 3. This is the Node ID of the HN-F.

• DBID = B. This is the TxnID of the Snoop Request

• RESP = SC (Shared Clean). This shows the data is provided in the Shared Clean state, which
matches the value in the FwdState field of the Snoop response.

6. RN-F_NID1 sends a CompAck message to the HN-F with TxnID = B. This completes the
ReadNotSharedDirty Request.

The second example in the following diagram shows the same ReadNotSharedDirty Request, but
with RetToSrc = 1:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Figure 8-9: DCT Transaction when RetToSrc is 1

CompAck
(TxnID=B)

CompData
(TxnID=A, HomeNID=3,

DBID=B, RESP=SC)

SnpNotSharedDirtyFwd
(TxnID=B, FwdNID=1,

FwdTxnID=A, RetToSrc=1)

ReadNotSharedDirty
(TxnID=A)

RN-F_NID1 RN-F_NID2 HN-F_NID3

UC SC

DCT with RetToSrc=1

SnpRespDataFwded
(Resp=SC_PD, FwdState=SC)

In this diagram, the transaction flow is as follows:

1. RN-F_NID1 issues a ReadNotSharedDirty Request to the HN-F with TxnID = A.

2. The Requests result in a cache miss at the HN-F.

3. The HN-F issues a SnpNotSharedDirtyFwd Snoop to RN-F_NID2. The Snoop has:

• TxnID = B

• FwdNID = 1

• FwdTxnID = A

• RetToSrc = 1

4. RN-F_NID2 forwards the cache line to RN-F_NID1 with a CompData message with the following
fields:

• TxnID sets to the value of FwdTxnID from the Snoop.

• DBID sets to the value of the TxnID from the Snoop.

• RESP shows that the cache line being returned can be cached in the Shared Clean state.

5. Because RetToSrc = 1, RN-F_NID2 sends the cache line to the HN-F. The cache line is sent in
a SnpRespDataFwded message with FwdState = SC (Shared Clean) and RESP = SC_PD (Shared

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt

Clean Pass Dirty). This value in RESP tells the HN-F that the cache line is in the Shared Clean
state at RN-F2 and that RN-F2 is passing the writeback responsibility for that cache line to the
HN-F.

6. After receiving the Snoop data, RN-F_NID1 sends a CompAck response to the HN-F with TxnID =
B.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Atomic operations

9. Atomic operations
To support the atomic instructions added in the Armv8.1 architecture, CHI-B provides Atomic
Transactions. An interconnect uses Atomic Transactions to transport an atomic operation and
its operands from one device to another. Using atomics instead of exclusive access reduces the
amount of time during which data is inaccessible to other agents.

Atomic Transactions can execute several atomic operations and can be performed internally or
externally to the processor.

This section introduces the basic concepts of Atomic Transactions. A future guide will contain more
detailed information about atomics.

An atomic operation is a read-modify-write sequence that is performed without interference from
another requester. Like exclusive accesses in AXI, Atomic Transactions allow a requester to modify
data in a particular region of memory, while ensuring that writes from other requestors do not
corrupt the data.

In AXI3 and 4 and CHI-A, a requester fetches the data, performs the operation, and then writes
the result back for the atomic access to complete. CHI-B contains the option to transport the
atomic operation to the interconnect, which allows the operation to perform closer to where the
data resides. This increases efficiency and reduces the time that data is made inaccessible to other
requesters.

To perform the atomic operation, the target needs an arithmetic logic unit (ALU). That is, to use
atomic operations an HN, SN or both need an ALU. Atomic Transactions support is optional from
CHI-B, so HNs and SNs do not always have to have an ALU. The requester has a configuration pin,
BROADCASTATOMIC, that can be used to stop the requester from generating Atomic Transactions
if the downstream system does not support them.

The full Atomic Transaction structure is:

• The requester issues an Atomic Transaction to the interconnect

• The HN or SN has an ALU, so it performs the atomic operation

• Depending on the operation, the interconnect may return the original data of the address to
the requester

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

RAS features

10. RAS features
CHI-B adds Reliability, Availability, and Serviceability (RAS) features to support the Armv8 RAS
specification. RAS features help error detection and system debug and are described in the
following list:

• Data Poisoning and DataCheck indicate corrupted data

• The Trace Tag feature is used for profiling and debug

Data poisoning and DataCheck
A typical system can only detect multi-bit errors and cannot correct them. This is why multi-bit
errors are often called Uncorrectable Errors. By contrast, many systems can correct single-bit
errors.

The Arm RAS specification allows propagating Uncorrectable Errors from producer to consumer
without immediately raising an exception. To allow passing corrupted data, CHI-B contains the
RAS features of Data Poisoning and DataCheck. Both features indicate whether Data has been
corrupted at some point in the system.

CHI-B allows interoperability between the Poison, Datacheck, and RespErr fields in the Data Flit.
For more information on converting between these RAS features, see the CHI Issue B Architecture
Specification.

Marking data as Poisoned does not immediately indicate that an error has occurred, which allows
the data to propagate through a system until the data is consumed. Deferring the error indication
means that a system does not have to raise an exception every time that an Uncorrectable Error is
detected. Instead, the Poison field can be allocated into a cache alongside the corresponding cache
line. This allows the system to access and use the uncorrupted data.

Data poisoning operates on a 64-bit granularity, which means that the Poison field in the Data Flit
sets one bit for every 64 bits of data to indicate that it has been corrupted. For example, a 256-bit
Data field would have a Poison field that is 4 bits wide.

Data poisoning must be accurate for valid portions of the data. If a 64-bit piece of data is invalid,
the poison for that piece will return a Don’t Care value.

Corrupted Data is considered consumed when one of the following occurs:

• The data is used in a computation

• The data is propagated to a component that does not support data poisoning. Because this
component cannot use the Poison field, it will stop tracking the poisoned data. To keep track of
that data, the system must get an exception.

The DataCheck feature provides odd byte parity protection for the Data field. An implementation
can test the DataCheck field for corrupted data at various points in the interconnect. DataCheck
operates at an 8-bit granularity, so every bit in the DataCheck field corresponds to a byte in the
Data field.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 82

https://developer.arm.com/documentation/ihi0050/
https://developer.arm.com/documentation/ihi0050/

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

RAS features

Trace Tag
CHI-B contains the TraceTag field to aid debugging and profiling. The width of the TraceTag is only
1 bit, and the field was added to every channel.

If the TraceTag field in a Flit is set, it indicates to the system that the Flit is marked for tracing
purposes. All subsequent Flits in the transaction must also have TraceTag set. This includes all new
transactions spawned from the original Request.

For example, a Read Request from an HN-F to an SN-F must also have the TraceTag field set, if it
was spawned from a Request from an RN-F to an HN-F that had TraceTag set.

A Request Node can set TraceTag in an initial Request, or TraceTag can be set at intermediate
points in the interconnect. For example, the watchpoint of an interconnect can be programmed
to set the TraceTag for Requests to address A at the HN-F. This programming sets TraceTag for
any Flits issued for address A at the HN-F, but the initial Request from an RN to the HN-F may not
have TraceTag set.

For example, the initial TraceTag is set in the interconnect and then is set for subsequent Flits. The
interconnect is programmed to trace MakeUnique Requests.

The transaction flow is as follows:

1. Request Node 0 issues a MakeUnique Request for address A at the Home Node, as shown in
the following diagram:

Figure 10-1: The request node issuing a MakeUnique request

2. The interconnect sets TraceTag in the snoops and snoop responses that are generated by the
MakeUnique Request.

3. Request Node 2 sends a ReadShared request for address A to Home node 3. The snoops
generated from the ReadShared do not have TraceTag set. This step is shown in the following
diagram:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

RAS features

Figure 10-2: The request node 2 request

4. The HN-F sends a completion to Request Node 0. The completion has TraceTag set.

In this example, both MakeUniqe and ReadShared target address A, but the TraceTag field was only
set after a MakeUnique Request was seen at Home Node 3. None of the Flits generated for the
ReadShared Request were marked for tracing.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

11. Other protocol changes and extensions
This section describes changes between CHI issues A to C and provides examples of some of the
added features.

Changes from CHI-A to CHI-B
The following table describes additions that were made in CHI -B

CHI-B additions Description

MESI protocol
support

CHI-B adds support for the MESI coherency protocol. This supports RN-Fs that do not use the Owned or Shared
Dirty cache state and simplified Snoop filters.
This change adds the new opcodes ReadNotSharedDirty and SnpNotSharedDirty, which guarantee that
data is not returned in the SharedDirty state. The SNP Flit also added the field DoNotGoToSD to ensure that a
snooped RN-F does not leave a cache line in the SharedDirty state.

SharedClean state
return

CHI-B adds the ability to return a cache line in the Shared Clean state.
An HN-F can request a copy of a cache line in the Shared Clean state by using the RetToSrc field in non-
forwarding type Snoops.

If multiple RN-Fs hold the cache line, the HN-F sets the RetToSrc field for only one snooped RN-F. This
encourages more Shared data to be present in the system cache, rather than only in the CPU caches. This can help
reduce the latency that would be present when having to snoop an RN-F to get a copy of the cache line.

WriteDataCancel
opcode to allow
cancelling Write
Requests

This opcode is issued on the Data Flit, and only applies to three transactions: WriteUniquePtl,
WriteUniquePtlStash, and WriteNoSnpPtl.

To avoid deadlock scenarios, CHI-A allows one RN in the system to use the Streaming Ordered WriteUniques
Optimization (WUO). With the WriteDataCancel opcode, a deadlock scenario can be broken if multiple RNs are
using WUO. When WriteDataCancel is used:

• All responses and Data Flits must still be sent to complete transactions.

• The WriteDataCancel message must be sent with the Data and BE fields zeroed out

CleanSharedPersist To clean a cache line to the Point of Persistence, the DC CVAP instruction was added in Armv8.2. For more
information on the Point of Persistence, see the Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

To support Persistent Memory Transactions, the CleanSharedPersist opcode was added. Execution of a DC
CVAP instruction generates a CleanSharedPersist Transaction.

Support for persistent memory is optional and is indicated by the configuration input pin BROADCASTPERSIST:

• If BROADCASTPERSIST = 1, a CleanSharedPersist Transaction can be issued downstream.

• If BROADCASTPERSIST = 0, a CleanSharedPersist Transaction must be converted to a CleanShared
Transaction by the requester

CMO propagation to
the SN

Cache Maintenance Operations can be propagated from the HN to SN. This allows SNs to support
caches downstream of the HN. Support for CMO propagation can be controlled by the optional
BROADCASTCACHEMAINTENANCE, BROADCASTINNER, and BROADCASTOUTER signals. When these are all present
and deasserted, CleanShared, CleanInvalid, and MakeInvalid transactions are not issued downstream.

DVM enhancements The Virtual Machine Identifier field was extended from 8 bits to 16 bits. To support this enhancement, the
VMIDExt field was added to the SNP Flit to transport the additional 8 bits (VMID[15:8]). This field is populated in
the first part of the DVM Snoops and is set to 0 in the second part. VMID[15:8] is transported in the second part
of the DVM Request, populating bits 63:56 of the Data field.

The following features are deprecated in CHI-B

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 82

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

• Barrier Transactions and the Inner and Outer shareability domains. All Barrier Transactions
that are generated by DMB or DSB instructions must terminate within the cores. CHI-B
interconnects do not support barriers, so an RN should not issue them externally.

• The Inner and Outer shareability domains. Requests are only marked as Snoopable or Non-
Snoopable. Because only two types are supported, the SnpAttr field of the Request Flit was
reduced from 2 bits to 1 bit.

Changes from CHI-B to CHI-C
The following table describes additions that were made in CHI -C

CHI-C
additions

Description

CompAck
Response
sent earlier

RNs in CHI-C can issue a CompAck message after receiving the first Data Flit. Previously, an RN was required to wait for all
read Data Flits to arrive before issuing a CompAck response.

Data Flit
Opcode
field width
increase

The size of the opcode field of the Data Flit increased from 3 bits to 4 bits. This increases the Data Flit width by 1 bit
over CHI-B. The wider opcode field is required to support the new Data message DataSepResp. Because the Data Flit
increased by 1 bit, a CHI-C device is not directly compatible with a CHI-B device

Combined
Write
Data and
CompAck

CHI-C added a new message, NCBWrDataCompAck, to allow a CompAck response to be sent with Write data as part of
WriteUnique transactions.

Separate
response
and data for
reads

A Read Transaction can receive separate responses for completion and read data. To support this, two new messages were
added:

• The RespSepData message, which is sent on the RSP channel. This message indicates that a read has reached a
Point of Serialization. The HN sends this message to the RN. The message decreases the lifetime of a Read Request at
the HN, because the RN can immediately send a CompAck response after for an unordered read.
A few restrictions apply for ordered reads from an RN to HN:

◦ An RN must wait for at least one DAT Flit before sending CompAck to the HN for an ordered read.

◦ The HN must not send a ReadReceipt response because the RespSepData message acts as the
ReadReceipt.

• The DataSepResp message sent on the Data channel. This is a data-only message to send read data. This message
can be sent by a HN or SN, depending on whether DMT is used.

Read Transaction examples
The read sequence uses the ReadNoSnpSep Request, which is designed to use with Data Memory
Transfer (DMT) and is sent from an HN to an SN. When an SN sees this request, it knows to return
the read data to the RN using the DataSepResp message

The separate response and data read sequence can be used for most read types. The exceptions
for this new sequence are

• Atomic Transactions

• Exclusive accesses

• ReadNoSnp or any ReadOnce variant requiring ordering and no completion acknowledge

The following two examples demonstrate the read sequence with separate response and data
messages.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

The first example shows the SN-F sending the data separately. The second example shows the
HN-F doing the same

In both cases, the system is made of

• One RN-F, RN-F_NID1

• One HN-F, HN-F_NID2

• One SN-F, SN-F_NID3

The following diagram shows the full transaction flow when the response is from the HN, and the
data is from the SN:

Figure 11-1: Full transaction flow when the response is from the HN and the data is from the SN

DataSepResp
(TxnID=A, HomeNID=2, DBID=B)

CompAck
(TxnID=B)

ReadReceipt
(TxnID=B)

RespSepData
(TxnID=A, DBID=B)

ReadNoSnpSep
(TxnID=B, ReturnNID=1,
ReturnTxnID=A, Order=1)

ReadNotSharedDirty
(TxnID=A)

RN-F_NID1 HN-F_NID2 SN-F_NID3

Response from HN, Data from SN

In this diagram, the transaction flow is as follows

1. The RN-F issues a ReadNotShareDirty Request to the HN-F with TxnID = A.

2. The HN-F issues a ReadNoSnpSep Request to the SN-F, indicating that it should not send a
CompData response to the RN-F. This means that SN-F needs to return the read data using
the DataSepResp message, and the Order field set to 1. This is similar to the Optimized DMT
sequence.

3. The HN-F serializes the Request.

4. The HN-F issues a RespSepData message to the RN-F. The TxnID matches the TxnID of the
original Request, and the DBID field matches the TxnID of the ReadNoSnpSep.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

5. The SN-F acknowledges the Request and responds with a ReadReceipt message to the HN-F.

6. The RN-F receives the RespSepData.

7. The RN-F issues a CompAck message to the HN-F without waiting for the Read Data.

8. When the data is available, the SN-F sends the Read Data to the RN-F with a DataSepResp
message. The TxnID, HomeNID, and DBID fields of the DataSepResp message are the same as
those for a DMT sequence.

In previous issues of CHI, an RN-F had to wait to send CompAck until it had received the data for
a ReadNotSharedDIrty Request. By using the separate response and data sequence, the lifetime of
the transaction at the HN-F was significantly reduced

In this second example, the read data is returned by the HN-F through a DataSepResp message.
The following diagram shows the full transaction flow when the response and date are both from
the HN:

Figure 11-2: Full transaction flow when the response and data are both from the HN

DataSepResp
(TxnID=A, HomeNID=2,

DBID=B)

CompData_I
(TxnID=C)

CompAck
(TxnID=B)

ReadNoSnp
(TxnID=C)

RespSepData
(TxnID=A, DBID=B)

ReadClean
(TxnID=A)

RN-F_NID1 HN-F_NID2 SN-F_NID3

Response from HN, Data from HN

In this diagram, the transaction flow is as follows

1. The RN-F issues a ReadClean Request to the HN-F.

2. The HN-F responds with a RespSepData message to RN-F.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

3. Unlike the previous example, the HN-F sends a normal ReadNoSnp to the SN-F.

4. The RN-F receives the RespSepData response.

5. The RN-F sends the CompAck message to the HNF.

6. The SN-F sends the data to the HN-F using a CompData message.

7. The HN-F sends the data to the RN-F using the DataSepResp message. The fields values are:

• TxnID matches the original Request.

• HomeNID is 2, which is the Node ID of the HN-F.

• The DBID field is B.

Like the first example, the HN-F was able to stop tracking the ReadClean Request after receiving
the CompAck message. With the Separate response and data sequence, the HN-F received the
CompAck message before the RN-F received the data

Combined write data and CompAck examples
CHI-C provides a message that combines a CompAck response and write data called
NCBWrDataCompAck, where NCBW stands for Non Copy Back Write

This new message can be used for:

• Any WriteUnique variant

• Streaming Ordered WriteUnique

Because NCBWrDataCompAck transports write Data, it has to be sent on the Data Channel

Before sending the data, an RN has to wait for:

• A DBIDResp message

• A Comp response

The Comp and DBIDResp messages can be sent as two separate responses, or as a combined
CompDBIDResp

Let’s look at two examples of how NCBWrDataCompAck works. The first example uses the combined
CompDBIDResp message, and the second example uses separate messages. The example system has
one RN-F and one HN-F

This example uses the combined CompDBIDResp:

• The RN-F sends a WriteUniqueFull Request to the HN-F with the values:

◦ TxnID = A

◦ ExpCompAck = 1

• The HN-F sends CompDBIDResp with:

◦ The same TxnID as the original Request.

◦ DBID = B

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

• The RN-F sends the combined CompAck with Write data in a NCBWCompAck message.

The following diagram shows the combined CompDBIDResp transaction flow:

Figure 11-3: Combined CompDBIDResp transaction flow

RN-F_NID1

Combined CompDBIDResp

HN-F_NID2

WriteUniqueFull
(TxnID=A, ExpCompAck=1)

CompDBIDResp
(TxnID=A, DBID=B)

NCBWrDataCompAck
(TxnID=B)

In the second example, the system remains the same, but the HN-F sends separate Comp and
DBIDResp messages

• The RN-F issues a WriteUniqueFull Request to the HN-F with the values:

◦ TxnID = A

◦ ExpCompAck = 1

• The HN-F performs two actions:

◦ Responds with a Comp message matching the TxnID of the WriteUniqueFull

◦ Sends a DBIDResp response indicating it can receive the write data. The TxnID matches the
TxnID of the Write Request, and DBID = B

• The RN-F receives both messages.

• The RN-F sends the NCBWrDataCompAck message with TxnID = B.

The following diagram shows the separate Comp and DBIDResp transaction flow

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Other protocol changes and extensions

Figure 11-4: Separate Comp and DBIDResp

RN-F_NID1

Separate Comp and DBIDResp

HN-F_NID2

WriteUniqueFull
(TxnID=A, ExpCompAck=1)

Comp (TxnID=A)
DBIDResp

(TxnID=A, DBID=B)

NCBWrDataCompAck
(TxnID=B)

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 82

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Related information

12. Related information
Here are some resources related to material in this guide:

• AMBA 5 CHI Architecture Specification

• AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and ACE-Lite

• Arm Community

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 82

https://developer.arm.com/documentation/ihi0050/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://community.arm.com/

Learn the architecture - Introducing AMBA CHI Document ID: 102407_0100_01_en
1.0

Next steps

13. Next steps
This guide introduced the fundamentals of the original AMBA CHI-A protocol and further detailed
the changes that were made in the CHI-B and CHI-C issues. It defined the concepts of requester
and completer, and the different node types. The guide has shown how these nodes can be
connected up in a system to support different topologies.

In describing some of the transaction types and their associated transaction flows, we have
demonstrated how information flows around a CHI-based system. By introducing concepts like
Cache Stashing and I/O deallocation, we have shown how the flow of information around the
system can be optimized to increase overall performance. Additionally, by describing the more
recent RAS features, we have shown how CHI can be used to improve error detection and system
debug.

This knowledge will be useful as you learn more about the AMBA CHI protocol specification. You
can put your knowledge into action to develop interfaces that implement the AMBA CHI protocol.

To learn more about the AMBA CHI protocol, you can access subscription-based technical training
at Introduction to the AMBA CHI protocol training.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 82

https://developer.arm.com/docs/ihi0050/latest/
https://arm.fuseuniversal.com/learning/plans/26603/topics/81036

	Learn the architecture - Introducing AMBA CHI
	Contents
	1. Introducing the AMBA Coherent Hub Interface
	2. Introduction to CHI
	3. CHI protocol fundamentals
	4. Transaction flows
	5. DVM operations
	6. Cache stashing
	7. I/O Deallocation
	8. Data Memory Transfer, Direct Cache Transfer, and PrefetchTgt
	9. Atomic operations
	10. RAS features
	11. Other protocol changes and extensions
	12. Related information
	13. Next steps

