arm

Arm?® Streamline

Version 8.2

Performance Advisor User Guide

Non-Confidential Issue 00
Copyright © 2021-2022 Arm Limited (or its affiliates). 102009_0802_00_en
All rights reserved.

Arm" Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

Arm® Streamline
Performance Advisor User Guide

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0709-00 24 November 2021 Non-Confidential New document for v7.9
0800-00 22 February 2022 Non-Confidential New document for v8.0
0801-00 24 May 2022 Non-Confidential New document for v8.1
0802-00 24 August 2022 Non-Confidential New document for v8.2

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 51

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 51

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm" Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00

Contents
Contents
L. INEFOAUCEION. ..ttt see e se e e e e e s ssssssasssssssasssasssssssssssssssssssnsssnenssnssensnsnsnanes 7
LT COMVENEIONS ettt 7
1.2 Other INfOrMAtION. ..ottt 8
2. USING PerformManCe AQViSOr......uuuieeeereiereiereesteeetessssesssessssesessssessssessesessesessssessesessesessssesssesssessssesssesenes 9
2.1 Overview of PerformanCe AQVISOT ...t 9
2.2 Performance report EXaAMPIC. ... o e e e 10
2.3 Performance AdVIiSOr WOIKFIOWS.........c.ouiiiiiieiieieii et 13
2 AP SUDDOIM e et 15
2D L CBNSES ettt 15
3. BEFOIE YOU DEEIN....coeeeeeeeteeeeeetete ettt e s s s ss st ese e s asesesessssesssesessssesssesesessnsssesessnsnsesensnens 16
3.1 Set UP YOUr NOSE MACHING ... 16
3.2 SEE UP YOUI AOVICE ... oo e et 16
3.3 Integrate Performance Advisor with your application. ... 17
4, QUICK STAIt SUILE.....eceeeeeeeeeeeeeeerteeeteteseeetetese e eesesese e sssesesesessessesssssssssesssssssssesssessnssesesenersrsesssesensane 19
4.1 Connect Streamliing t0 YOUI AEVICE......oviiiieoe e 19
4.2 ChooSe @ COUNEEr TEMIPIATE ... oo, 21
4.3 Capture a Streamling Profle.. . .o 22
4.4 Generate a PerforManCe FEPOIM.o et 23
4.5 Setting performanCe DUABETS., 25
4.5.1 Generating a report with per-frame performance budgets.........c.ooooiooiciieeeeeeeeeee 26
4.6 Generate a CUSTOM MEPOIM e 27
5. Running Performance Advisor in continuous integration workflows............ceceeeveverenerenenerercrerenenes 30
5.1 Generate performance reports automMatiCally ..., 30
5.2 Export performance data as @ JSON fll€...o oo, 32
5.3 Generate MUIIPIE rEPOM TYPES. ..ot 35
5.4 Generate a JSON diff FEPOIM ..o e 35
6. CaAPLUIING @ SIOW FraMCu.neeeeeeeeeieeeiereieteeteetesessesestesessesessesessesessesessssessesessssessasessnsessssesensesessesensesessesens 37
6.1 Capturing slIow frame rate IMAZES....... oo 37
6.2 TABEZING SIOW FrAMIES ...t 38

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 51

Arm" Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00

Contents
7. Adding semantic iNPUL tO the rEPOILS........coeereeeeeeereeeeertee ettt esese e e sesesess e sesesese e sessesesssenen 40
7.1 Send annotations from your application COAE. ..o, 40
7.1.1 Include the Streamline annotations library in native code..........oooooiiiiiiieeeeeeeeeeee 41
7.1.2 Include the Streamline annotations library in Unity plug-in code........ccocoviviiiiiiiiiieeee 42
7.1.3 Include the Streamline annotations library in Unreal Engine code........ccooiioiiiioiccciee 43
7.2 Specify a CSV file contaiNing the rEZIONS.ccvoi oo 43
7.3 Clip unwanted data from the CaptUre. . ..o 44
8. COMMANA-IINE OPLIONS....oeieiieticecteeteceterceereeere e bbb e be e sesessessssesessesessesessesesssessesessasensasen 46
8.1 ThE PO COMMANT. ... ettt 46
8.1.1 pa command-liNe OPLIONS Tl 49
8.2 The IWi_mMe.py SCrIPt OPLIONS ... e 49

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 51

Arm" Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00
Introduction

1. Introduction

This document describes how to use Performance Advisor to generate reports from your data
captured in Arm® Streamline.

1.1 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use
italic Citations.
bold Interface elements, such as menu names.
Terms in descriptive lists, where appropriate.
monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline

A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Warning

Requirements for the system. Not following these requirements might result in system failure or damage.

Danger

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 51

https://developer.arm.com/glossary

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Introduction

Convention Use
R" An important piece of information that needs your attention.

Note

A useful tip that might make it easier, better or faster to perform a task.

Q A reminder of something important that relates to the information you are reading.

Remember

1.2 Other information

See the Arm website for other relevant information.

e Arm® Developer.
e Arm® Documentation.
e Technical Support.

e Arm® Glossary.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 51

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

2. Using Performance Advisor

This section introduces the Performance Advisor tool and the workflows that it is designed to
handle.

2.1 Overview of Performance Advisor

Performance Advisor analyzes performance data from your Arm® Streamline capture, and
generates a report that shows how your application is performing on your mobile device.

The capture summary shows whether you are achieving your target frame rate, the distribution of
time spent by each processing unit, and your CPU and GPU utilization.

Figure 2-1: Example performance summary

Capture summary @

2 You are hitting your performance target for 9% of the time within your application. For the frames below target you are predominantly
fragment bound. Read our optimization advice.

Awverage frame rate 100 Boundness distribution 100 Resource utilization
a0 90
80 T4.6% B0
70 70
60 60
50 50
40 40
30 30 2%
20 20
21.0 FPS K 2
.] o
0 30
B cPu M Fragment B vSync B Unknown B Average CPU utilization B Average GPU utilization
Frame rate analysis @
Loa... Tanks Stroet Times Square Battie
30 a "“ | @ 0 »
\
ll IM\{ — / \\ﬂ/ M
25 v] \
I /—’ \ {l, Ay III \ ,\I ;,r'a_r
20 | | A |
¢ \n | \ _/“"’J“ u'\/"\\/ \ /
& s vy | \ A \/
\ L~ :
10
5
0
0:05 0:10 0:15 0:20 025 0:30
CPU bound Non-tragment bound Fragment bound VSyne bound Time (s)

To help you further understand how your application is performing over time, you can analyze key
metrics shown on a series of charts:
Overdraw per pixel
Identify problems caused by transparency or rendering order, by monitoring the number of
times pixels are shaded before they are displayed.
Draw calls per frame
To identify CPU workload inefficiencies, check the absolute number of draw calls per frame.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

Primitives per frame
See how many input primitives are being processed per frame, and how many of them are
visible in the scene.

Pixels per frame
See the total number of pixels being rendered per frame. This metric helps you to rule out
problems caused by changes in the application render pass configuration. For example, extra
passes for new shadow casters or post-processing effects.

Shader cycles per frame
The total number of shader cycles per frame, broken down by pipeline, so that you can see
which workloads are occupying the GPU.

GPU cycles per frame
See how the GPU is processing non-fragment and fragment workloads, and whether the
shader core resources are balanced.

GPU bandwidth per frame
Monitor the distribution of GPU bandwidth, including the breakdown between reads and
writes, so that you can minimize external memory accesses to save energy.

CPU cycles per frame

See the consumption of CPU cycles per rendered frame. This metric helps you to validate
improvements and regressions, which might not be visible in the CPU utilization charts.

Running the Performance Advisor report regularly enables you to get performance feedback
throughout the development cycle. You can also integrate Performance Advisor in your
performance regression workflows, by generating machine-readable JSON reports that you can
import into other tracking systems.

Performance Advisor can identify scheduling issues that prevent you from achieving your target
frame rate, and provide advice on how to resolve it. See Generate a performance report for more
information.

Related information

Performance report example on page 10
Before you begin on page 16

Quick start guide on page 19

2.2 Performance report example

In this example, we will look at the charts in the Performance Advisor report to review the
performance of an application. See how you can use the report to investigate problems with any
scenes in your application that are not performing well.

We have generated a Performance Advisor report from an Arm® Streamline capture file.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 51

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

Report summary

First look at the charts at the top of the report. These three charts provide a summary of how
your application is performing for the duration of your capture. To identify any changes to your
application throughout your development process, we recommend that you monitor these charts
regularly.

Figure 2-2: Example performance summary

Capture summary @

our spplicaticn is mainly fragment bound. Read cur optimization advice.

Aoerage lrame rae X Boundness distribution i Resource wiilizaton

23.3FPS

M cru M Fragment B vSync B Unknown

Here, we can see that the average frame rate for the capture is not achieving the configured target
of 30fps. When we check the boundness distribution, we can see that the application is fragment
bound. The utilization chart confirms that a graphical problem is causing this drop in frame rate.

Analyze frame rate

To see how the frame rate changes throughout the duration of your capture, check the FPS
analysis chart.

Figure 2-3: Analyze frame rate

Frame rate analysis @
Loa... Tanks Street Times Square Battle
30 Al s [} | 0:18.34 Frames: 378 -380 |
g | T ® FPS 224

VAN

0:05 0:10 0:15
CPU bound Non-fragment bound

In this capture, we have used the 1wi_me.py script to take a screenshot if the
frame rate goes below 20fps. We have also specified a number of frames between
captures to ensure that we do not capture too many images.

The majority background color of this chart is blue, indicating that the GPU in the device is
struggling to process fragment workloads. We can also see that the frame rate has dropped below
the target threshold of 20 in three places, so Performance Advisor has captured these frames.

To see an image of the frame, hover the cursor on the screen capture icon . In the image, you

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

might be able to see which graphical element is causing the frame rate to drop. To get a better
understanding about what is happening in the application, we continue our analysis below by
looking at the GPU behavior metrics.

Investigate GPU behavior

Scroll through the GPU behavior charts to find any strong correlation between the GPU metric
and a drop in the frame rate. Performance Advisor provides advice above a chart where it finds
a potential problem. You can also get further advice on optimizing your code by clicking the
accompanying link to our developer website.

The GPU cycles per frame chart shows that the frame rate drops when the number of fragment
cycles increases.

Figure 2-4: GPU cycles chart

GPU cycles per frame @

0:18.94 Frames: 385 - 387
@ FPs 104
GPU B86.98

BE.98
M} 1153

The Shader cycles per frame chart shows that the drop in frame rate correlates with high numbers
of execution engine cycles.

Figure 2-5: Shader cycles chart

Shader cycles per frame @

To prevent the GPU spending time processing erithmetic operations, reduce computationiny

This chart shows that the GPU is busy with arithmetic operations. We need to reduce the
complexity of the shaders, and textures that we used. From here, we can click through to read
Optimization advice about how to improve shader performance.

We annotated the capture with region names to help us identify what is happening at different
parts of the application. If we scroll down the report, we can analyze in more detail the specific
region that we are interested in.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 51

https://developer.arm.com/documentation/102643/latest

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

Figure 2-6: Example region analysis

Battle (0:17-0:31)

G This region is mainly fragment bound. Read our optimizstion sdvice.

19.2 FPS

M Fragment W Average CPU uslization B Average GPU ulization

Next steps

When you have identified a performance problem with Performance Advisor, use the other tools in
the Arm Mobile Studio suite to explore your problem in more detail.

Related information
Get started with Performance Advisor

2.3 Performance Advisor workflows

You can use Performance Advisor with Streamline in several different workflows, enabling you to
solve multiple different types of problem.

Interactive capture with Performance Advisor report

You can use Performance Advisor to assist with a manual debug session. Manually connect to a
target and capture data using Streamline. Use Performance Advisor to post-process the dataset to
provide an initial quick analysis.

Figure 2-7: Interactive workflow.

Target Device
Apoli . Events
pplication »>
¥ - -
Events Gator . Performance
Interceptor > M Streamline Capture . Report
Daemon ARC Advisor HTML
¥
Mali Graphics
Driver
¢ T PMU Counters
Operating System

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 51

https://developer.arm.com/documentation/102478/latest

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

Automated capture with Performance Advisor report

This feature is license managed and might not be available with some editions of

Arm® Mobile Studio. For more information, see Arm Mobile Studio Professional
Edition.

You can use Performance Advisor as part of a continuous integration (Cl) workflow. To capture
data from automated game tests, without using the Streamline GUI on the host, integrate the gator
daemon from Streamline into a nightly test system. Use Performance Advisor to generate a report,
which can be published automatically. This workflow enables a QA team to review the status each
morning.

Figure 2-8: Automated workflow.

Target Device
Apoli . E\.'E"ItSL
pplication >
v -
Events Gator - Performance
Interceptor > »| Capture dvi Report
Daemon APC Advisor HTML
¥
Mali Graphics
Driver
¢ ? PMU Counters
Operating System

Automated capture with Performance Advisor data export

This feature is license managed and might not be available with some editions of
Arm Mobile Studio. For more information, see Arm Mobile Studio Professional
Edition.

You can use Streamline and Performance Advisor to generate a machine-readable JSON report. You
can import data from the JSON report into other QA test reporting systems, allowing automated
regression tracking of in-depth workload metrics. See Running Performance Advisor in continuous
integration workflows for more information.

The APC data file that the Cl workflow creates is a full Streamline capture that you can import
into the Streamline GUI. Arm recommends that you store the APC data file alongside other build
artifacts. If Performance Advisor reports a problem, it is then immediately available for manual
investigation in Streamline.

For more information about using Streamline for profiling graphical applications running on Arm®
Mali™ GPUs, see the Arm Community blog Accelerating Mali GPU analysis using Arm Mobile
Studio.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 51

https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions
https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions
https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions
https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/accelerating-mali-gpu-analysis-using-arm-mobile-studio
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/accelerating-mali-gpu-analysis-using-arm-mobile-studio

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Using Performance Advisor

Using Streamline and Graphics Analyzer for further deep-dive analysis

The Performance Advisor report shows where your application is causing a problem. You can then
use the other tools in Arm Mobile Studio suite to investigate any problems in more detail.

Streamline

Capture a profile of your application running on a mobile device and see where your system
spends most of its time. Use interactive charts and comprehensive data visualizations to
identify whether CPU processing or GPU rendering are causing any performance bottlenecks.
For more information, see Streamline on the Arm Developer website.

Graphics Analyzer

Graphics Analyzer enables you to evaluate all the OpenGL ES or Vulkan API calls your

application makes, as it runs on an Android device. Explore the scenes in your game frame-
by-frame, draw call-by-draw call, to identify rendering defects, or opportunities to optimize
performance. For more information, see Graphics Analyzer on the Arm Developer website.

2.4 API support

Performance Advisor supports OpenGL ES and Vulkan APIs on different versions of Android.

Use the following list to check that your APl is supported:
e OpenGL ES: Android 8 and later
e Vulkan: Android 9 and later

2.5 Licenses

Performance Advisor contains license-managed features that are only accessible when they are
enabled by one of the available commercial licenses. Apply licenses either per-user, or per-machine:

e To activate per-user licenses, select Help > License Management in the Streamline graphical
user interface. You can also activate per-user licenses using the standalone license management
utility armim-gui, which you can find in the studio installation.

e To activate per-machine licenses, use environment variables as described in Adding a
professional license on the Arm Developer website.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 51

https://developer.arm.com/Tools%20and%20Software/Graphics%20Analyzer
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/graphics-analyzer
https://developer.arm.com/documentation/102526/latest/Adding-a-professional-license
https://developer.arm.com/documentation/102526/latest/Adding-a-professional-license

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Before you begin

3. Before you begin

Set up Arm® Mobile Studio and integrate Performance Advisor with your application by following
the steps in this section.

3.1 Set up your host machine

To use Performance Advisor, download and install the Arm® Mobile Studio suite, then install the
necessary software and set up environment variables on your host machine.

Procedure
1. Download Arm Mobile Studio from Downloads.
2. Install Arm Mobile Studio using the instructions at Installation.

3. Install Python 3.6 (or higher). Arm Mobile Studio uses Python to run the provided 1wi me.py
and gator me.py script, which uses the gatord agent to connect Streamline to your Android
target.

4. Install Android Debug Bridge (adb). Arm Mobile Studio uses the adb utility to connect to the
target device. Download the latest version of adb from the Android SDK platform tools (https:/
developer.android.com/studio/releases/platform-tools).

5. Edit your patu environment variable to add the path to the Performance Advisor directory.

Next steps
See Set up your device for information about preparing your device for profiling your application.

3.2 Set up your device

To use Performance Advisor, set up your device with the application you want to profile.

About this task

A list of the recommended devices that support Arm® Mobile Studio is available
from Supported Devices.

Procedure
1. Set your device to Developer Mode.
2. Select Settings > Developer options and enable USB debugging.

3. Connect the device to the host machine through USB. If the connection is successful, running
the adb devices command on the host returns your device ID:

adb devices

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 51

https://developer.arm.com/downloads/-/arm-mobile-studio-downloads
https://developer.arm.com/documentation/102526/latest/
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/releases/platform-tools
https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Supported-Devices
https://developer.android.com/studio/debug/dev-options

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Before you begin

List of devices attached
cel2345abcdflal234 device

4. For OpenGL ES applications on devices running Android @ or earlier, you must add a library
file to your application. The library file enables Performance Advisor to collect frame rate
and graphics API call counts. See Integrate Performance Advisor with your application for
instructions on how to do this.

5. Install a debuggable build of your application on the device. Enable the android:debuggable
setting in the application manifest file, as described in https:/developer.android.com/guide/
topics/manifest/application-element.

Next steps
Connect Streamline to your device

3.3 Integrate Performance Advisor with your application
For OpenGL ES applications on devices running Android 9 or earlier, you must package the
LightWeight Interceptor (LWI) library with your application. Performance Advisor uses the LWI to
collect performance data, such as frame rate and API call counts, from your application.

Before you begin

e Locate the required library file in your Arm® Mobile Studio package:
<install directory>/performance advisor/bin/android/<arm|arm64>

About this task

e You do not need to package the library file with your application for Vulkan
applications on devices running on Android 9 or later, or OpenGL ES
applications on devices running Android 10 or later.

e To avoid conflict with the Graphics Analyzer interceptor, remove the LWI library
from your application before you capture a trace in Graphics Analyzer.

The LWI is a lighter version of the Graphics Analyzer interceptor, which enables you to
automatically capture data in the following situations:

e To automatically detect frame boundaries, or other API statistics, instead of manually
embedding frame markers into the application.

o Toidentify slow parts of your application, you can capture a screenshot when your application
goes below a threshold value that you configure.

Procedure

1. Package the required library file 1ibrw1. so with your OpenGL ES application. Two versions of
the library are provided:

o For 64-bit targets, use the library file in the 64-bit directory.
Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 17 of 51

https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/guide/topics/manifest/application-element

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Before you begin

o For 32-bit targets, use the library file in the 32-bit directory.

e You can package one or both interceptor libraries depending on the
requirements of your application.

2. Add the path to the LW!I library files in your application's gradle file.

android {
sourceSets {
main {
jnilibs.srcDirs += '<install directory>/performance advisor/bin/
android/<arm|arm64>"'

}
}

3. Load the library in a static block in your code:

static
{
try
{
System.loadLibrary ("LWI") ;

catch (UnsatisfiedLinkError e)
{ ... 1}
}

4. Build your APK and install it on your device.

Next steps
Perform an interactive capture, see Connect Streamline to your device.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 51

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

4. Quick start guide

Performance Advisor runs on a capture file generated from Streamline. Follow the steps in this
section when you are ready to perform an interactive capture.

If you already have the capture files, you can go straight to Generate a performance
report.

You can also watch a demonstration of the steps on the Android profiling with Performance Advisor
video on YouTube or Youku.

4.1 Connect Streamline to your device

Arm® provides a Python script, 1wi_me.py, that makes connecting to your device easy. Run the
script so that Streamline can connect to your device, and collect data.

Procedure
1. Open a command terminal on your host machine and navigate to the Performance Advisor
installation d”ectory,<installidirectory>/performanceiadvisor/bin/android.
2. Runthe 1wi_me.py Python script:
python3 lwi me.py

The 1wi me.py script defaults to capturing a 64-bit OpenGL ES application. To capture a 32-bit
application, use the --32bit option. To capture a Vulkan application, use the --1wi-api vulkan
option.

The 1wi_me.py script expects to run from the installation directory. To create a
directory containing the minimum set of files that is needed to make a capture,
copy the following files from the Arm Mobile Studio installation directory to a
working directory:

® <Jinstall directory>/performance advisor/bin/android/lwi me.py

® <install directory>/performance advisor/bin/android/gator me.py
® <install directory>/streamline/bin/android/armé4/gatord

® <install-directory>/performance advisor/bin/android/<arm|arm64>/

1ibGLES layer lwi.so

Note that the 1wi_me.py script requires that the accompanying gator me.py
script is in the same directory, so ensure you copy both files.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 19 of 51

https://www.youtube.com/watch?v=9_mdAzAx39w
https://v.youku.com/v_show/id_XNDYxNDUwNTA2NA==.html

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00
Quick start guide

3. The script returns a numbered list of the Android package names for the debuggable

applications that are installed on your device. Enter the number of the package you want to
profile.

The script identifies the GPU in the device, installs the daemon application, and waits for you to
complete the capture in Streamline. Leave the terminal window open, as you must come back
to it later to terminate the script.

4. Launch Streamline:
e On Windows, from the Start menu, navigate to the Arm Mobile Studio folder and select the
Streamline shortcut.
e On macOS, go to the <install directory>/streamline folder, and double-click the
Streamline.app file.
e On Linux, go to the <install directory>/streamline folder, and run the streamline file:
cd <install directory>/streamline
./Streamline
To launch Streamline with an Arm Mobile Studio professional license, you
must open this file from within a Terminal shell that has the correct licensing
environment variables set. For example:
cd /streamline/
open Streamline.app
See Adding a professional license for instructions.
5. In the Start view, select your target device type. Then select your device from the list of
detected targets, or enter the address of your target.
6. Android users only, select the package you want to profile from the list of packages available on
the selected device.
7. TCP users only, optionally enter the details for any command you want to run on the
application.
Next steps

Choose a counter template. For more information about how to find and select a counter template,
see Choose a counter template.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 20 of 51

https://developer.arm.com/documentation/102526/latest/Adding-a-professional-license

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

4.2 Choose a counter template

Counter templates are pre-defined sets of counters that enable you to review the performance of

both Arm® CPU and Arm GPU behavior. Choose the most appropriate template for the GPU in
your target device.

Before you begin

Follow the instructions detailed in Connect Streamline to your device before you choose your
counter template.

Procedure
1. Inthe Start view, click Configure Counters.

2. Click Add counters from a template = to see a list of available templates.

Figure 4-1: Templates available from the Counter Configuration dialog box.

L oK] ‘Counder Configuration
Choose the target counters to collect
Connected 10 locahortH0ND.

Hesdatin Lvarty Evartn o Collect

mie - B
3 [2 o1 6 svallable] [Built-in] CPU Branching (4/4)
—_— -

[Buit-in] CPU Cache (2/6)
[Built-in) Mali Bifrost - G31 (2/93)
[Buit-in] Mali Bifrost - G51 (2/93)
[Buit-in] Mall Bifrost - G52 (2/95)
[Buit-in] Mali Bifrost - G71 (2/84)
(Buit-in] Mal Birost - 672 (2/04) R
[Built-in] Mall Bifrost - G76 (2/95)
[Buit-in) Mali Midgard (34/38)
[Buit-in] Mali Utgard (0/9)
[Buit-in] Mali Valhall - GT7 (2/102)

| @ cnce (ETNE |

3. Select a counter template appropriate for the GPU in your target device, then Save your
changes.
The number of counters in the template that your target device supports is shown next to each
template. Choose the template with the highest number of supported counters. For example,
here, 34 of the 38 available counters in the Mali™ Midgard template are supported in the
connected device.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 21 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00
Quick start guide

Figure 4-2: Choose a counter template appropriate to the target GPU in your device.

[Built-in] CPU Branching (4/4)
1 [Built-in] CPU Cache (2/6)
| [Built-in] Mali Bifrost - G31 (2/93)
| [Built-in] Mali Bifrost - G51 (2/93)
I [Built-in] Mali Bifrost - G52 (2/95)
! [Built-in] Mali Bifrost - G71 (2/94)
! [Built-in] Mali Bifrost - 672 (2/04) NN

[Built-in] Mali Bifrost - G76 (2/95)

: [Built-in] Mali Midgard (34/38)

| [Built-in] Mali Utgard (0/9)
{ [Built-in] Mali Valhall - G77 (2/102) [

li Arithmatic Dina: & inctrictinne

4. Optionally, in the Start view, click Advanced Settings to set more capture options, including the
sample rate and the capture duration (by default unlimited). See Set capture options in the Arm
Streamline User Guide.

Next steps

Capture a profile using Streamline. For more information about how to capture the behavior of
your CPU and GPU performance using Streamline, see Capture a Streamline profile.

4.3 Capture a Streamline profile

Start a capture session to profile data from your application in real time. When the capture session
ends, Streamline automatically opens a report for you to analyze later.

Before you begin
Before you capture a profile in Streamline, you must Connect Streamline to your device and
Choose a counter template.

Procedure

1.

In the Start view, click Start Capture to start capturing data from the target device.

Specify the name and location on the host for the capture file that Streamline creates when
the capture is complete. Streamline then switches to Live view and waits for you to start the
application on the device.

Start the application that you want to profile.

The Live view shows charts for each counter that you selected. Below the charts is a list of
running processes in your application with their CPU usage. The charts now start updating in
real time to show the data that gatord captures from your running application.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 22 of 51

https://developer.arm.com/documentation/101816/0802/Capture-a-Streamline-profile/Set-capture-options
https://developer.arm.com/documentation/101816/0802
https://developer.arm.com/documentation/101816/0802

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

Figure 4-3: Live view shows charts capturing data from your running application.

& .
Broes = N e T
Iy : T 2t 5

Firamiead percmss g o g

3. Unless you specified a capture duration, in the Capture Control view, click Stop capture and

analyze @ to end the capture.
Streamline stores the capture file in the location that you specified previously, and then
prepares the capture for analysis. When complete, the capture appears in the Timeline view.

4. IMPORTANT: Switch back to the terminal running the 1wi me.py script and press any key to
terminate it. The script kills all processes that it started and removes gatord from the target.

Next steps

o Generate a performance report

e To analyze performance with Streamline, see Analyze your capture in the Arm Streamline User
Guide.

4.4 Generate a performance report

Generate an HTML performance report from an existing Streamline capture.

Before you begin

To generate a report, you must first Connect Streamline to your device, Choose a counter template,

and Capture a Streamline profile.

Procedure
1. Open a terminal in the directory containing your APC file.

The APC file can be a zip file or an uncompressed .apc directory.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 23 of 51

https://developer.arm.com/documentation/101816/0802/Analyze-your-capture
https://developer.arm.com/documentation/101816/0802
https://developer.arm.com/documentation/101816/0802

Arm" Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: 00
Quick start guide

2. Run Performance Advisor using the following command:

pa <filename>.apc [options]

To control how the pa command runs, you can pass various options to it. See The pa command
for detailed descriptions of all the available options. You can also add multiple command-line
options to a file that you pass to the pa command, see pa command-line options file for details.

e For example, to include build and device information in the report summary,
include the --build-name, --build-timestamp, and --device-name
command-line options.

e To show any CPU and GPU scheduling issues with your application, include
the --main-thread option and specify the thread that you want to analyze:

--main-thread=<thread-name>

If any scheduling issues are detected, Performance Advisor shows an
indicator at the top of the report.

Figure 4-4: Scheduling indicators on the Performance Advisor report.

Capture summary @

2 You are hitting your performance target for 47% of the time within your application.
Your application may contain CPU-GPU scheduling issues. Read our optimization advice.
Your application may contain GPU queue scheduling issues. Read our optimization advice

Avorage frame rate R Boursinoss distribution

- 100 Rosource akzabon
%0
2 e
@ ™ LT
50 45.5%45.0% &0
0 50
3}3 40
0 1.8% 0.8% 55% ?C‘
0 _ 10
0
54.3 FPS ;
o 80 W cPu Mon-fragment B Fragment B VSync

B Urincwn W Average CPU utiization [l Average GPU utikzation

o To check whether your application exceeds certain threshold values, include
options for setting a per-frame budget.

Results

Performance Advisor saves an HTML file to the current directory. Alternatively, you can specify a
different directory using the --directory option. The file contains the results of the performance
analysis, and links to advice on how to improve the performance.

Next steps

e The summary section shown at the top of the report is based on the duration of your capture.

To take a closer look at a specific area of interest, click and drag the cursor over the region to
select it.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

Figure 4-5: Zoom in to a region of interest.

Frame rate analysis @
Loa

Tasics Saront Times Squane Battio

30

005 10 15 020 025 0:30
CPUbcund Mon-tragmeit bound Fragment bound WEyne bound Time ()

e Click anywhere on the chart when you are ready to go back to the original capture duration.

e You can zoom in to any line chart in the report in the same way, by clicking and dragging over
the area of interest. When you zoom in on one chart, all other charts in the same section zoom
in to the same point so you can easily compare them.

e If you set any per-frame budgets, a solid line appears on the relevant charts so you can check
whether your application remains below it.

e To get help on overcoming graphics problems and optimizing your application, click the
Optimization advice links on the report.

Related information

The pa command on page 46

Export performance data as a JSON file on page 31
Generate multiple report types on page 34
Optimization advice

4.5 Setting performance budgets

As different target devices have different performance expectations, it is a good idea to set your
own performance budgets based on the expected GPU performance.

If you know the top frequency for the GPU, and you have a target frame rate, you can calculate the
maximum GPU cost per frame:

GPU maximum frequency / frame rate = maximum GPU cycles per frame

For example, if you want a minimum frame rate of 30fps on a device with a GPU with a maximum
frequency of 240MHz, you can assume that the device can handle 31 million GPU cycles per
frame.

940MHz / 30fps = 31.3M

When you generate Performance Advisor reports for this device, you can specify a maximum
budget for GPU cycles per frame with the --gpu-cycles-budget=<value> command-line option to
the pa command. This budget is then shown on the GPU cycles per frame chart, making it easy to
see when the application has broken the budget. Here, we set a budget of 28 million GPU cycles

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 25 of 51

https://developer.arm.com/documentation/102643/latest
https://developer.arm.com/documentation/102643/latest

Arm” Streamline Performance Advisor User Guide

Document ID: 102009 0802 00 en
Issue: 00
Quick start guide

per frame but the number of fragment cycles is significantly higher than 28 million. This difference

means the application is fragment bound.

Figure 4-6: GPU cycles per frame with budget.

GPU cycles per frame @

0:47.21 Frames: 663 - 665 100
60 |
55 ® FPS 15.0 | EY
50 (y ® GPU cycles (M) 63.22 80

M Cycles

@ Fragment cycles (M) 63.22 60
® Non-fragment cycles (M) 6.39 50 g
o @ Cycles budget (M) 28.00 | 40

0:15 0:25

0:45 0:55 1:05

Time (s)

B FPS M GPUcycles M Fragment cycles M Non-fragment cycles B Cycles budget

All the per-frame charts in a Performance Advisor report can display a budget in this way.

4.5.1 Generating a report with per-frame performance budgets

To generate a Performance Advisor report where the charts show your own performance budgets
for a device, use the relevant command-line options with the pa command.

Table 4-1: Relevant pa command options for reporting

Command-line option

--bandwidth-budget=<value>

Budget
Threshold for read/write bytes.

—-—-cpu-cycles-budget=<value>

Threshold for CPU cycles.

--draw-calls-budget=<value>

Threshold for draw calls.

--gpu-cycles-budget=<value>

Threshold for GPU cycles.

--overdraw-budget=<value>

Threshold for overdraw.

--pixels-budget=<value>

Threshold for pixels.

--primitives-budget=<value>

Threshold for primitives.

—--shader-cycles-budget=<value>

Threshold for shader cycles.

--vertices-budget=<value>

Threshold for vertices.

For example:

pa mycapture.apc -gpu-cycles-budget=28000000

To make it easy to pass in several budgets, you can create a file containing your budget options.
Pass this file directly to the pa command when generating the report. See pa command-line options

file for detailed instructions.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

4.6 Generate a custom report

To focus on the metrics that are most important to you, define which charts are included, and
where they are shown, on the Performance Advisor report.

Before you begin

e You must have a Streamline capture file. For help on creating a capture, see Capture a
Streamline profile.

e The charts available for you to include in your report are based on a subset of Streamline charts
that are suitable for processing as "per-frame" data.

Procedure
1. Specify which charts you want to include in the report:

e Use the --chart-list-output option to generate a JSON custom report definition file,
containing all possible charts that you can plot on the report. Remove the charts that you
do not want to appear on the report. Fixed format charts, from the standard report, appear
at the top of report definition generated by the --chart-1ist-output option.

o Alternatively, create your own JSON custom report definition file containing the names of
the charts that you want to see on the report.

Some sample report definition files are available in the examp1es folder.

Example custom report definition file:

{

"groups": [
"title": "Memory Usage",
"description": "This group shows the system memory usage charts.",
"charts": [
{

"chart": "Mali Memory Bandwidth",

"title": "Memory bandwidth per frame",

"description": "This chart shows the distribution of GPU bandwidth.

Minimize external memory access to reduce energy consumption.",
"threshold": 100000000
by
{

"chart": "Mali Core External Memory Reads",
"title": "External memory reads per frame"
}
]
}y
{
"title": "Texture usage",
"charts": [
{
"chart": "Mali Core Texture Cycles"

}
]
}

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 27 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Quick start guide

]
}

2. Enter the Streamline chart name exactly as it is shown in the -—chart-1ist-output . The chart
name is the only required field.

3. Enter information for the following fields:
e The charts in your report must be contained within at least one group. The groups field
enables you to group the charts in your report into different sections. If required, you can

add a heading for each section using title. You can also add an introduction that appears
on the report, and a description, which you reveal on the report using the drop-down icon.

e To add information about the charts in your custom report, you can add a title and
description.

e To show how you are performing against your set per-frame budget, add a thresho1d value.

The title, description and threshold fields are ignored for fixed-format
charts, because the standard report format is used.

4. Run Performance Advisor using the following command:

pa <filename>.apc --custom-report <path to configuration file> [options]

Performance Advisor generates a custom report containing the charts specified in the custom
report definition file, and any The pa command options specified. For example:

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 28 of 51

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

Quick start guide

Figure 4-7: Custom report displaying a group that contains two charts and a group that
contains one chart.

Memory Usage @
Memory bandwidth per frame @

0 100
110 &0
100 80
a0 70
. o ®
w
E 60 N | II s &
= g | |
40 .5 - A e . e e B
30 | -
20 (-
10 |
0 . Acw | i}
0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40
Time (s}
B FPs M Read bytes B Write bytes I byfes budget
External memory reads per frame
100
13 50
16 I 20
14 " o
g 12 | | [&0
£ 10 : . A " Tl o
= & LIS LIRS | WL 40
| I .)
6 | | {30
| [
4 p p i 20
Il - o I lepn
2 | Ay R Y -] 10
fis A] v r [i]
0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40
Time (s)
B FPS W Loadistore bytes B Texture bytes
Texture usage
Mali core texture cycles per frame
100
20 | a0
18 A || 80
16 |
- |I ; |II \ i | 70
s R e e e N e el e,
| 1 !
B 10 | | R
= : | [40
Ei] | V
. . . | (—T
4 | T
2 | |10
O o, A 1 0
0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40

Time (3)
B Frs M Texturing active

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 29 of 51

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

5. Running Performance Advisor in
continuous integration workflows

Regular performance reports enable you to get instant feedback throughout your development
cycle. With an Arm® Mobile Studio Professional license, you can integrate Performance Advisor
into your continuous integration workflow. This workflow enables you to automatically generate
daily reports that help your team monitor how changes during the development cycle impact
performance. Also, you can automatically generate machine-readable JSON reports that you can
import into your existing performance regression tracking systems.

5.1 Generate performance reports automatically

If your development team uses a Cl (continuous integration) system to merge daily code changes,
you can run nightly automated on-device performance testing across multiple devices.

Before you begin

Generate a configuration.xml file by Connect Streamline to your device, Choose a counter
template, and then export your counter configuration file (see Importing and exporting counter
configuration files).

Cl functionality is only available with Arm Mobile Studio Professional Edition.

Use a Cl tool such as Jenkins, TeamCity, or Buildbot to send the following instructions to the host
machines for each device in your device farm.

Procedure

1. Change to the <install directory>/performance advisor/bin/android directory, or copy the
following files to your working directory:
® <install directory>/performance advisor/bin/android/lwi me.py
® <install directory>/performance advisor/bin/android/gator me.py

¢ <install directory>/streamline/bin/android/armé64/gatord

® <install directory>/performance advisor/bin/android/<arm|arm64>/
1ibGLES layer lwi.so

e configuration.xml

2. Runthe 1wi_me.py script with the --head1ess option, and specify the path to the configuration
file:

python3 lwi me.py --package <app.package.name> \
--headless <path to directory>/<filename>.apc \
--daemon <install directory>/streamline/bin/android/armé64/gatord \

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 30 of 51

https://developer.arm.com/documentation/101816/0802/Capture-a-Streamline-profile/Counter-Configuration/Importing-and-exporting-counter-configuration-files
https://developer.arm.com/documentation/101816/0802/Capture-a-Streamline-profile/Counter-Configuration/Importing-and-exporting-counter-configuration-files
https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

Running Performance Advisor in continuous integration workflows

--config <path to config file>/configuration.xml

The 1wi_me.py script defaults to capturing a 64-bit OpenGL ES application. To capture a 32-bit
application, use the --32bit option. To capture a Vulkan application, use the --1wi-api vulkan
option. Add any other options you require, see The Iwi_me.py script options for information.

com.arm.mygame/com.unity3d.player.UnityPlayerActivity

3. Add a wait period of at least one minute, to allow the script to prepare the device for profiling.
4. Start the application on the target device. For example:
adb shell am start -n <app.package.name>
5. To stop profiling, exit the application in one of the following ways:
e Set your application test case to exit after a certain length of time.

o Forcefully kill the application using:

adb shell am force-stop <app.package.name>

The Streamline capture file is saved to the location you specified with the --nheadless
command-line option.

Instead of exiting the application, you can specify a --headless-timeout
<seconds> value. This method is not ideal for test scenarios with variable
performance.

6. Generate Performance Advisor reports in HTML and JSON formats:

pa <capture filename.apc> -p <app.package.name> -d <output directory> /
-t html:<file name>.html, json:<file name>.json

For the full list of available command-line options, see The pa command.

Next steps
Push the HTML reports to a centrally visible location for your team to analyze each day. Push the
JSON reports to any JSON-compatible database and visualization tool, such as ELK Stack.

For more information, see Integrate Arm Mobile Studio into a Cl workflow on the Arm Developer
website.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 31 of 51

https://www.elastic.co/what-is/elk-stack
https://developer.arm.com/documentation/102543/latest

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

5.2 Export performance data as a JSON file

Generate a JSON report that you can import into other tools. Use reports from multiple test runs
to track performance over time.

About this task

JSON reports are only available with Arm Mobile Studio Professional Edition.

JSON reports provide a raw data export that you can import into other tools, such as a NoSQL
database, to compare different test runs. For example, you can track the average number of visible
primitives per frame between builds.

Procedure
1. Open a terminal in the directory containing your APC file.

The APC file can be a Streamline archive (.zip) or an uncompressed .apc
directory.

2. Run Performance Advisor using the following command:

pa <capture.apc.zip> -p <app.package.name> -d <optional output dir> -t json

To change the output file name, append it to the -t argument using a colon:
-t Jjson:your file name.json

Example 5-1: Example JSON report

The JSON report output is packed by default, to make it compatible with most third-party database
and visualization tools. If you want to view the data in a more human-readable format, use the --
pretty-print ODtiOﬂ.

The following example shows part of a JSON report that was output with the --pretty-print
option:

{

"deviceInfo": {
"build": null,
"device": "Example board",
"processors": "Cortex-A55 MP4, Mali-G72"
}y
"allCapture": {
"averageFrameRateFps": 19.4,
"boundnessSplitPercentage": ({

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 32 of 51

https://developer.arm.com/Tools%20and%20Software/Arm%20Mobile%20Studio#Editions

Arm"” Streamline Performance Advisor User Guide Document ID: 102009 _0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 51

Arm"” Streamline Performance Advisor User Guide Document ID: 102009 _0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

o
* To aid writing parsers, JSON Schema definitions are provided in the

performance advisor/json_schemas directory.

Note

Related information

The pa command on page 46

Generate a performance report on page 23
Generate multiple report types on page 34

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 34 of 51

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

5.3 Generate multiple report types

Generate an HTML performance report and a JSON performance report from an existing
Streamline capture.

Before you begin
Before you can generate a report, you must have a Streamline capture file. For help on creating a
capture, see Capture a Streamline profile.

Procedure
1. Open a terminal in the directory containing your APC file.

The APC file can be a zip file or an uncompressed .apc directory.

2. Run Performance Advisor using the following command:

pa <capture.apc.zip> -p <app.package.name> -d <optional output dir> -t html, json

To change the output file names, append each file name to the corresponding type argument
using a colon:

-t html:your file name.html, json:your file name.json

Related information

The pa command on page 46

Generate a performance report on page 23

Export performance data as a JSON file on page 31

5.4 Generate a JSON diff report

To see how changes in your application affect performance, generate a diff report between two
JSON reports to compare differences in performance metrics.

Before you begin
You must have already generated two JSON reports. For help on exporting data as a JSON file, see
Export performance data as a JSON file.

Procedure
Generate a JSON diff report using the following command:

./pa --diff-report path/to/previous json report.json path/to/
current json report.json

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 35 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Running Performance Advisor in continuous integration workflows

This command subtracts the values in previous json_report.json from the values in

current json report.json.

Results

Performance Advisor generates a file called performance advisor diff-<timestamp>.Jjson, for
example performance advisor diff-210128-105937.3son. 10 specify a location for this file, use the
--directory OptiOﬂ.

Alternatively, to specify the filename of the JSON diff report, use the following command:

./pa --diff-report-output mydiffreport.json path/to/previous json report.json \
path/to/current json report.json

To specify a location for the report, include the path in the filename or use the --directory option
(see example).

JSON diff reports can be validated against the JSON schema in

performance advisor/json schemas/pa json diff report schema.json.

Example 5-2: Example diff report locations
There are two ways to specify the location of the diff report that --diff-report-output generates.

e Include the path to the output directory with the filename:

./pa —-diff-report-output myoutputdir/mydiffreport.json previous.json
current.json

e Specify the output directory with the --directory option:

./pa —-diff-report-output mydiffreport.json previous.json current.json \
--directory myoutputdir

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 36 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Capturing a slow frame

6. Capturing a slow frame

Identify slow frames by using the LightWeight Interceptor (LWI) in different modes. Before you can
use the LWI, you must first integrate it with your application.

6.1 Capturing slow frame rate images

Use Performance Advisor to continuously monitor frame rate and trigger frame captures when a
slow part is detected.

About this task
Arm® provides the Python script 1wi_me.py to enable you to capture data from your device using
the lightweight interceptor. This script is located in <install directory>/performance advisor/

bin/android.

Frame captures might not have completed writing at the point of application exit,
which can lead to incomplete frame captures. Performance Advisor ignores these
incomplete frame captures, and only shows complete frame captures in the report.

Procedure

1. Inaterminal, navigate to <install directory>/performance advisor/bin/android, where the
Python script 1wi_me.py is located.

2. Runthe 1wi_me.py script with the options you need for your frame capture.
The script configures your device so that Performance Advisor can collect data from it.

For example, to capture a frame when the frame rate goes below 30fps, and allow at least 100
frames between captures:

python3 lwi me.py --daemon <path to gatord> --lwi-fps-threshold 30 \
——-lwi-frame-gap 100 --lwi-mode capture \
--lwi-out-dir <path to frame captures directory>

The script defaults to configuring a capture of a 64-bit application. To capture a 32-bit
application, use the --32bit option. Also, the script defaults to capturing OpenGL ES
applications. To capture a Vulkan application, use the --1wi-api wvulkan option. See The
lwi_me.py script options for details of all the available command-line options.

o Capturing frames can affect performance. If you notice a decrease in
performance when capturing images, tag the slow frames instead. See
Tagging slow frames for more information.

e If you experience problems capturing slow frames on Vulkan applications,
see the FAQ Slow PA capture on Vulkan apps.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 37 of 51

https://developer.arm.com/documentation/102718/latest/Slow-capture-with-lwi-me-py-on-Vulkan-applications

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Capturing a slow frame

3. If there are multiple debuggable packages on your device, the script lists them. Enter the
number of the package you want to analyze and follow the instructions to take a Streamline
capture, as described in Capture a Streamline profile.

You do not need to run the gator me script as it is called by the 1wi_me script.

When Streamline prompts you to save the capture file, do not save it to the
frame captures directory that you specified in step 1. The contents of this
directory are replaced when the frame capture images are written there.

4. Use the pa command to generate an HTML report, specifying the location where you saved
the frame capture images in step 1. Optionally specify a directory in which to save the HTML
report, otherwise the HTML report is saved to the current directory.

pa <my capture.apc> --frame-capture=<path to frame captures directory> \
[--directory=<path to output directory>]

You can use other options to specify metadata for your report, such as the build name, device
name, and application name. See The pa command for all the available command-line options.

For more information about generating an HTML report, see Generate multiple report types.

5. Open the HTML report in a browser.
To see the captured frame, hover the cursor over the screen capture icon s .

Figure 6-1: Captured frame in HTML report.

Times Square Battle

15 | 0:18.34 Frames: 378 - 380 |

i —

® FPS

0:15
MNon-fragment bound Fragmg

6.2 Tagging slow frames

If capturing frames directly impacts the performance of your application by reducing the frame rate,
run the 1wi me.py command to capture the frame numbers in tag mode. Then run the 1wi me.py
command to capture the frames in replay mode.

Procedure
1. Trace your application and output the capture to a specified folder.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 38 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

Capturing a slow frame

For example, use the following command to trace an OpenGL ES application, tagging a frame
when the frame rate goes below 50fps:

python3 lwi me.py --package <app.package.name> \
--lwi-fps-threshold 50 --lwi-mode tag --lwi-out-dir /some/folder

Run the file with tagged frame numbers using --1wi-mode replay to capture the tagged
frames.

python3 lwi me.py --package <app.package.name> --lwi-fps-threshold 50 \
--lwi-mode replay --lwi-slow-frames /some/folder/slow-frames \
--lwi-out-dir /some/folder

2. Manually capture a Streamline profile, as described in Capture a Streamline profile.

During the Streamline capture, the captured resources are written in the target
when the trace reaches the end frame. The default is to end the capture at
frame 500. You can adjust the end frame by specifying an alternative value for
the FramMEEND parameter of the 1wi me.py script.

3. To export the capture to the HTML report, send the frame capture path to the output directory:

pa [capture.apc] --package <app.package.name> —--frame-capture=path \
[frame capture folder]

For more information about generating an HTML report, see Generate multiple report types.
To see the captured frame, hover the cursor over the screen capture icon wa .

Figure 6-2: Captured frame in HTML report.

Times Square Battle
- “l% | 0:18.34 Frames: 378 - 380 |
A ® FPS 224

w

0:15
Non-fragment bound Fragmg

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 39 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Adding semantic input to the reports

7. Adding semantic input to the reports

Performance Advisor can use semantic information that the application provides as key input data
when generating the analysis reports.

The analysis reports support the use of region annotations to give context to the different frame
ranges in a test scenario. Manually add these annotations into the application code. Alternatively,
if manually adding annotations is not possible, or for quick debugging and extra analysis, specify

a CSV file containing the regions. Give Performance Advisor the path to the CSV file using the --
regions argument.

7.1 Send annotations from your application code

You can send annotations from your application code using the Arm® Streamline annotations
library.

Procedure
1. Add frame or region boundaries depending on your use case:

You want to avoid adding the lightweight interceptor to your application.

The lightweight interceptor adds annotations to your Streamline capture that identify
when frames begin and end. These annotations are then used by Performance Advisor to
generate its analysis. If you avoid using the lightweight interceptor, Performance Advisor
no longer knows when frames begin and end, and is not able to generate a report. Add
frame boundaries yourself from your application code by calling:

ANNOTATE MARKER STR (FRAME STR);

Where rraME_sTr takes the form of a monotonically incrementing frame number in the
following regular expression format:

F(/d+)

For example:

F10
F11
F12

If you are using 1wi_me to generate your capture, use the 1wi=off option
to disable the lightweight interceptor.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 40 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Adding semantic input to the reports

You want to specify a region from your application code.

Performance Advisor supports regions, which are subsets of time within the capture
that represent a particular portion of the game. For example, a region can be a loading
screen or a fight level scene within the capture. You can send this information from your
application code by calling:

ANNOTATE MARKER STR (REGION STR) ;

Where recION sTR takes the form of:

Region Start <region name>
Region End <region name>

For example:

ANNOTATE MARKER STR("Region Start Loading Screen");

ANNOTATE MARKER STR("Region End Loading Screen");

Performance Advisor creates a region in the report named "Loading Screen" for the time
between the two markers.

2. To enable the use of aNNOTATE MARKER STR, include the Streamline annotations library in your
application using the relevant steps for your code:

e Native code
e Unity plug-in code

e Unreal Engine code

7.1.1 Include the Streamline annotations library in native code

Copy the necessary files into your project and include in the source files where you want
annotations.

Before you begin
The native C code for generating annotations in <mobile studio install>/streamline/gator/

annotate.

Procedure
1. Include the code in your project by completing one of the following sets of steps.
o Copy the Streamline annotate file:
a. Copy streamline annotate.c and streamline annotate.h into your project directory.

b. Add the following line to any source file where you want to create annotations:

#include "streamline annotate.h"

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 41 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00

Adding semantic input to the reports

e Use a makefile:

a. Use make to compile a 1ibstreamline annotate library build using the makefile within
the annotate directory.

b. Copy libstreamline annotate iNto your projects directory.

c. Add the following line to any source file where you want to create annotations:

#include "libstreamline annotate"

2. To start a thread to allow annotation for your program, add this line to one of your C files:
ANNOTATE SETUP;

7.1.2 Include the Streamline annotations library in Unity plug-in code

Import the Arm® Mobile Studio plug-in and set up a define so you can easily remove the plug-in
from release builds.

Procedure

1. Open the package manager in Unity.

2. Click + in the toolbar and select Add package from git URL.

3. Import the Arm Mobile Studio plug-in from GitHub into your project.

See Mobile Studio integration for Unity for more information. Arm recommends
that you set up a define so you can easily remove the plug-in from release builds
without leaving errors in your code from plug-in usage. To set up the define,
follow these steps:

If you do not have an asmdert file for scripts that reference the Mobile Studio API, create one.

oA

In the asmdef file, under aAssembly Definition References, add MobileStudio.Runtime.

6. In the asmdef file, under version Defines, add a rule:
a) Set Resource tO com.arm.mobile-studio.
b) Set pefine to MOBILE SsTUDIO.
C) Set Expression 10 1.0.0.

This rule makes Unity define MmoB1LE sTupTO if the com.arm.mobile-studio package is present
in the project and its version is greater than 1.0.0.

7. Inyour code, wrap moBTLE_sTupIo around the Mobile Studio API:

#1if MOBILE STUDIO
// Plug-in usage
#endif

Results
You can now easily add and remove the plug-in without breaking your project, which avoids errors
in release builds.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 42 of 51

https://github.com/ARM-software/mobile-studio-integration-for-unity

Arm” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Adding semantic input to the reports

7.1.3 Include the Streamline annotations library in Unreal Engine code

Copy the necessary files into your project and include in the source files where you want
annotations. You might require some additional libraries to compile the code.

Before you begin
You must have a C++ based project. Blueprint-based projects do not allow you to include external
code.

Procedure
1. Follow the instructions in Include the Streamline annotations library in native code.

Some libraries that are required to compile the given code are not included with
many compilers for Windows or within Microsoft Visual Studio. To download
these packages within Visual Studio, complete the following steps:

2. Right-click on your project name within the Solution Explorer and select Manage NuGet
Packages for <project_name>....

3. Click Browse.

4. Select the pthreads package.

5. Select all the checkboxes.

6. Click Install.

7.2 Specify a CSV file containing the regions

If manually adding annotations is not possible, or for quick debugging and extra analysis, specify a
CSV file containing the regions and use the --regions argument.

Create a CSV file using the following format, where each region is on a new line:
Region Name,Start,End

start and End are a timestamp in milliseconds or a frame number followed by f.

For example, specify a region that starts at 500ms and ends at 15000ms with:

Test Region, 500,15000

Specify a region that starts at the 500th frame and ends at the 15000th frame with:

Test Region,500f,15000f

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 43 of 51

Arm"” Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Adding semantic input to the reports

To set the start to the start of the capture, or the end to the end of the capture, use a *. For
example:

Test Region,*, 15000

Test Region,5000f, *

Performance Advisor ignores the region if you use = for both the start and the end,
as this region is the whole capture.

Give Performance Advisor the path to the CSV file using the --regions argument.

7.3 Clip unwanted data from the capture

Specify the part of the capture that you want to include in the analysis report and discard the
remaining data. For example, remove the loading and ending screens so they are not included in
the report.

About this task
You can specify the start and end time with one of the following:

e Atimestamp in milliseconds.

e Aregion name with :start or :end appended to it.

Procedure
1. Specify the start of the report with —-clip-start=<clipStartStr>.

If you do not specify a start, the report starts from the beginning of the capture.

2. Specify the end of the report with --clip-end=<clipEndstr>.

If you do not specify an end, the report ends at the end of the capture.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 44 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Adding semantic input to the reports

Example 7-1: Examples

e Clip the capture so the report starts at two seconds and ends at 15 seconds:

--clip-start=2000 --clip-end=15000

e Clip the capture so the report starts at the end of the region named "loading screen":

--clip-start="1loading screen:end"

e Clip the capture so the report starts at the end of the region "level one loading screen" and
ends at the start of the region "level two loading screen":

--clip-start="1level one loading screen:end" --clip-end="level two loading
screen:start"

Related information
The pa command on page 46

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 45 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Command-line options

8. Command-line options

This appendix explains the command-line options that are available for the pa command and the
lwi_me.py SCript.

8.1 The pa command
The pa command runs Performance Advisor on a capture.

Syntax

pa [OPTIONS] <capture.apc>

You can pass options to pa in a configuration file. See pa command-line options file
for details.

Options
<capture.apc>
The path to the capture APC directory or zip file.

--centiles=int[,int...]

Comma-separated integer values specifying the percentiles to calculate for each data series.
Default = 80,90,95.

--clip-end=clipEndStr

Specify the time that you want the report to end at. c1ipEndstr is the timestamp in
milliseconds or the frame number followed by £ . For example, --clip-end=7000 ends the clip
at 7000ms, or --clip-end=7000f ends the clip at the 7000th frame. Alternatively you can
use the format <region-name>:start Or <region-name>:end to use the start or end time of a
region.

--clip-start=clipStartStr
Specify the time that you want the report to start from. c1ipstartstr is the timestamp in
milliseconds or the frame number followed by £ . For example, --clip-start=500 starts the
clip at 500ms, or --c1ip-start=500f starts the clip at the 500th frame. Alternatively you can
use the format <region-name>:start Or <region-name>:end to use the start or end time of a
region.

-d, --directory=path
The output directory path for the reports.

-f, --frame-capture=path

The path to the frame captures directory.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 46 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Command-line options

-h, --help
Show command-line arguments and descriptions, and exit.
-m, --main-thread=string
The name of the main render thread to analyze.
--mspf
Display milliseconds per frame throughout the HTML report instead of FPS.
--pretty-print
Print the JSON output with whitespace, making it human readable.
-p, --process=string

The name of the process to inspect.

--[no-]progress
Whether to display progress bars or not.
-r, --regions=file
Takes a CSV file containing custom regions to add to the report, where each line of the CSV
file is of the format regionName, start, end. start and end are a timestamp in milliseconds or
a frame number followed by £. For example, regionName, 500, 7000 starts the region at 500ms
and ends it at 7000ms. regionName, 500£, 7000£ starts the region at the 500th frame and
ends it at the 7000th frame. See Specify a CSV file containing the regions.
-t, --type=typel[:file][,type[:file]...]
A comma-separated list of report types, where the type is one of:
json
JSON Cl report
html
Interactive html report

customhtml
Interactive html report containing custom charts

You can specify an output filename for each report.
--target-fps=int
The target frame rate in frames per second. Default = 60.

-V, --version

Print version information and exit.

Options for report metadata:
--application-name=string
The human readable name of the application being analyzed. For example, "Awesome Game".
If the name contains whitespace, use quotes. This name becomes the report title. Default =
"Performance Advisor Report".
--build-name=string
The build name of your application. For example, nightly. fa34c92.
Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved

Non-Confidential
Page 47 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Command-line options

--build-timestamp=string
The timestamp of your application build. For example, Thu, 22 Aug 2019 12:47:30.
--device-name=string

The name of the device that is used to obtain the capture.

Options for setting a per-frame budget:

--bandwidth-budget=<value>
Threshold for read/write bytes.

--cpu-cycles-budget=<value>

Threshold for CPU cycles.

--draw-calls-budget=<value>
Threshold for draw calls.

--gpu-cycles-budget=<value>
Threshold for GPU cycles.

--overdraw-budget=<value>

Threshold for overdraw.

--pixels-budget=<value>
Threshold for pixels.

--primitives-budget=<value>

Threshold for primitives.

--shader-cycles-budget=<value>

Threshold for shader cycles.

--vertices-budget=<value>

Threshold for vertices.

Options for creating a custom chart:
--custom-report=path

The path to the JSON report containing the custom chart definitions.
--chart-list-output=path

Output location of the file containing chart names for the Streamline capture.

Options for creating a diff report:
--diff-report-output=path
Output location for the diff report.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 48 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Command-line options

8.1.1 pa command-line options file

You can list command-line options in a file that you pass to the pa command. Specify one option
per line and use = to assign values.

For example, you might create a file for your budget thresholds called budget that contains the
following options:

--build-name=8.2
—--build-timestamp=3rd March 2021
--application-name=My Awesome Game
—--cpu-cycles-budget=100000000
-—-gpu-cycles-budget=28000000
—--shader-cycles-budget=20000000
--draw-calls-budget=350
--vertices-budget=1000000

For options that accept a string, such as --build-name, ~-build-timestamp, Of -—application-
name, Note that the string does not need to be enclosed within quotes when it contains multiple
words.

When you run Performance Advisor, specify the file with "e<filename>", for example:

pa capture.apc "@budget"

8.2 The lwi_me.py script options

To see the possible options and their default values for the 1wi_me.py command, run python3
lwi me.py -h.

Syntax

python3 lwi me.py [OPTIONS]

Options
--device Or -E
The target device name. Default = auto detected.
--package Or -P
The application package name. Default = auto detected.
--headless O -H
Perform a headless capture, and write the result to a specified <capture path>. Default =
perform interactive capture.
--headless-timeout Or -T

Exit the headless timeout after the specified number of <seconds>. Default = wait for process
exit.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 49 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en
Issue: 00
Command-line options

--config Or -C
Specify the <filename> of the configuration XML file you want to use. Default = None for an
interactive capture, or configuration.xml for a headless capture.

--daemon OI -D

Specify the <path> to the gatord binary you want to use if it is not found automatically.
--no-clean-start
Disable pre-run device cleanup. Default = enabled.
--no-clean-end
Disable post-run device cleanup. Default = enabled.
--32bit
Specify a 32-bit application.
--overwrite
Overwrite an earlier headless output. Default = disabled.
--verbose O -v
Enable verbose logging. Default = disabled.
--lwi on | off | alone
Enable or disable the LWI. The al1one mode bypasses gator. Default = on .
--lwi-api gles | vulkan
Select the APl you want to listen to. Default = gles.
--lwi-compress-img O -X y | n
Compresses images taken when capturing frames, to reduce file size. Default = n

--lwi-gles-layer-name <name>

The OpenGL ES layer name. Default = libGLES_layer_Iwi.so.
--lwi-gles-layer-lib-path <path>

The path to the OpenGL ES layer library file.
--lwi-vk-layer-name <name>

The Vulkan layer name. Default = vk TLAYER ARM TWI.
--lwi-vk-layer-lib-path <path>

The Vulkan layer library path.
--lwi-fps-window OI -W

Specify the <number of frames> for the sliding window used for FPS calculation. Default = 5.
--lwi-fps-threshold Or -Th

Perform a capture if the FPS goes under a specified <fps_value>. Default = 30.
--lwi-frame-start Or -S

Start tracking from a specified <frame number>. Default = 1.

--lwi-frame-end Ol -N

End tracking at the specified <frame number>. Default = 500.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 50 of 51

Arm® Streamline Performance Advisor User Guide Document ID: 102009_0802_00_en

Issue: OO
Command-line options

--lwi-frame-gap OI -G
Minimum <number of frames> between two captures. Default = 200.
--lwi-mode OI -M

Specify in which mode you want the LWI to operate. Default = none (or n).

The available values are:

e none Or n to not capture images or tag frames. This value is the default.

e capture Or c to capture frame images when the fps goes below the specified --1wi-fps-

threshold <fps_value>. You must specify an output directory for the captured images
with —-1wi-out-dir.

e tagoOr t to tag frame numbers when the fps goes below the specified --1wi-fps-

threshold <fps_value>. You must specify an output directory for the tagged frames with
--lwi-out-dir.

e replay Or r to run the file of tagged frame numbers.
--lwi-out-dir OF -o

Specify the path to a directory for the captured images or tagged frames. This directory must
be empty.

--lwi-slow-frames <path>

Path to a file containing the indices of slow frames (required in r mode). Generate this file
using the LWI in £ mode.

Copyright © 2021-2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 51

	Arm® Streamline Performance Advisor User Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Using Performance Advisor
	2.1 Overview of Performance Advisor
	2.2 Performance report example
	2.3 Performance Advisor workflows
	2.4 API support
	2.5 Licenses

	3. Before you begin
	3.1 Set up your host machine
	3.2 Set up your device
	3.3 Integrate Performance Advisor with your application

	4. Quick start guide
	4.1 Connect Streamline to your device
	4.2 Choose a counter template
	4.3 Capture a Streamline profile
	4.4 Generate a performance report
	4.5 Setting performance budgets
	4.5.1 Generating a report with per-frame performance budgets

	4.6 Generate a custom report

	5. Running Performance Advisor in continuous integration workflows
	5.1 Generate performance reports automatically
	5.2 Export performance data as a JSON file
	5.3 Generate multiple report types
	5.4 Generate a JSON diff report

	6. Capturing a slow frame
	6.1 Capturing slow frame rate images
	6.2 Tagging slow frames

	7. Adding semantic input to the reports
	7.1 Send annotations from your application code
	7.1.1 Include the Streamline annotations library in native code
	7.1.2 Include the Streamline annotations library in Unity plug-in code
	7.1.3 Include the Streamline annotations library in Unreal Engine code

	7.2 Specify a CSV file containing the regions
	7.3 Clip unwanted data from the capture

	8. Command-line options
	8.1 The pa command
	8.1.1 pa command-line options file

	8.2 The lwi_me.py script options

