
Arm® Ethos™-U55 NPU
Revision: r2p0

Technical Reference Manual

Non-Confidential
Copyright © 2021–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 03
102420_0200_03_en

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Arm® Ethos™-U55 NPU
Technical Reference Manual

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0200-01 1 April 2021 Non-Confidential First EAC release for r2p0.

0200-02 12 May 2021 Non-Confidential Second EAC release for r2p0.

0200-03 19 August 2022 Non-Confidential Third EAC release for r2p0.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 127

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this
language. See D. Revisions on page 127.

To report offensive language in this document, email terms@arm.com.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 127

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03
Contents

Contents

1. Introduction.. 9
1.1 Product revision status.. 9
1.2 Intended audience.. 9
1.3 Conventions..9
1.4 Useful resources... 11

2. Neural processing unit introduction.. 13
2.1 Description of the neural processing unit..13
2.1.1 Supported application programming interfaces... 15
2.1.2 Security support.. 15
2.2 Interfaces.. 16
2.3 Documentation..17
2.4 Design process..17
2.5 Product revisions.. 18

3. Functional description...19
3.1 Control and data flow... 19
3.1.1 Supported memory formats for feature maps... 20
3.2 Security and boot flow... 21
3.3 Functional blocks.. 22
3.3.1 External interfaces.. 23
3.3.2 Central control...24
3.3.3 DMA controller..25
3.3.4 Clock and power module..26
3.3.5 Weight decoder...27
3.3.6 MAC unit...27
3.3.7 Output unit...28

4. Programmers model...31
4.1 Register characteristics..31
4.2 Register page BASE... 31
4.2.1 Register ID..32
4.2.2 Register STATUS... 34

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03
Contents

4.2.3 Register CMD.. 36
4.2.4 Register RESET.. 37
4.2.5 Register QBASE0.. 38
4.2.6 Register QBASE1.. 38
4.2.7 Register QREAD..39
4.2.8 Register QCONFIG...39
4.2.9 Register QSIZE...39
4.2.10 Register PROT... 40
4.2.11 Register CONFIG..41
4.2.12 Register LOCK...42
4.2.13 Register REGIONCFG..43
4.2.14 Register AXI_LIMIT0.. 46
4.2.15 Register AXI_LIMIT1.. 47
4.2.16 Register AXI_LIMIT2.. 48
4.2.17 Register AXI_LIMIT3.. 49
4.3 Register page BASE_POINTERS... 50
4.3.1 Register BASEP0... 50
4.3.2 Register BASEP1... 51
4.3.3 Register BASEP2... 51
4.3.4 Register BASEP3... 51
4.3.5 Register BASEP4... 52
4.3.6 Register BASEP5... 52
4.3.7 Register BASEP6... 52
4.3.8 Register BASEP7... 53
4.3.9 Register BASEP8... 53
4.3.10 Register BASEP9...53
4.3.11 Register BASEP10.. 54
4.3.12 Register BASEP11.. 54
4.3.13 Register BASEP12.. 54
4.3.14 Register BASEP13.. 55
4.3.15 Register BASEP14.. 55
4.3.16 Register BASEP15.. 55
4.4 Register page ID... 56
4.4.1 Register PID4... 56
4.4.2 Register PID5... 57
4.4.3 Register PID6... 57

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03
Contents

4.4.4 Register PID7... 57
4.4.5 Register PID0... 58
4.4.6 Register PID1... 58
4.4.7 Register PID2... 58
4.4.8 Register PID3... 59
4.4.9 Register CID0...59
4.4.10 Register CID1.. 59
4.4.11 Register CID2.. 60
4.4.12 Register CID3.. 60
4.5 Register page PMU.. 60
4.5.1 Register PMCR...61
4.5.2 Register PMCNTENSET...62
4.5.3 Register PMCNTENCLR.. 64
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3.. 66
4.5.5 PMU_EVTYPER0 ... PMU_EVTYPER3... 66
4.5.6 Register PMOVSSET.. 68
4.5.7 Register PMOVSCLR.. 70
4.5.8 Register PMINTSET.. 72
4.5.9 Register PMINTCLR..74
4.5.10 Register PMCCNTR_LO.. 76
4.5.11 Register PMCCNTR_HI... 76
4.5.12 Register PMCAXI_CHAN.. 76
4.6 Command stream... 77
4.6.1 Non-blocking command types... 80
4.6.2 Blocking command types.. 80
4.6.3 Command dependency requirements.. 81
4.6.4 cmd0 commands... 81
4.6.5 cmd1 commands... 87
4.7 Weight stream format... 89
4.7.1 Bit order convention.. 89
4.7.2 Weight stream structure and slice header syntax...89
4.7.3 Coding modes..91
4.7.4 Chunk syntax... 94
4.7.5 Weight blocks and ordering... 96
4.8 Operators and performance..100
4.8.1 Supported data types and operators...100

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03
Contents

4.8.2 Operations..101
4.8.3 Convolution performance...106
4.8.4 Elementwise performance.. 109
4.9 Block based operation.. 110
4.9.1 Shared buffer...112

A. Signal descriptions...116
A.1 Clock and reset signals...116
A.2 Interrupt signals..116
A.3 Power management signals...117

A.4 AMBA® 5 AXI manager signals..117

A.5 AMBA® 4 APB completer signals..121
A.6 DFT and MBIST signals... 121

B. General neural network concepts... 123
B.1 General neural network concepts..123

C. Boot flow information..125
C.1 Boot flow information.. 125

D. Revisions.. 127
D.1 Revisions.. 127

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Introduction

1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, r1p2, where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This manual is for system designers, system integrators, and verification engineers who are
designing a System-on-Chip (SoC) device that uses an Arm® Ethos™-U55 NPU.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 127

https://developer.arm.com/glossary

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Introduction

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Introduction

Figure 1-1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Table 1-2: Arm Publications

Document name Document ID Licensee only

AMBA® AXI and ACE Protocol Specification AXI3, AXI4, AXI5, ACE, and ACE5 IHI 0022 No

AMBA® Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces IHI 0068 No

Arm® Ethos™-U55 NPU Technical Overview 101886 No

Arm® Ethos™-U NPU Application Development Overview 101888 No

Arm® Ethos™-U55 NPU Configuration and Integration Manual 101887 Yes

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 127

http://developer.arm.com/documentation

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Introduction

Document name Document ID Licensee only

Arm® Ethos™-U NPU Functional Model Integration Guide 101889 Yes

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 127

http://www.adobe.com

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

2. Neural processing unit introduction
This chapter introduces the processor.

2.1 Description of the neural processing unit
The Neural Processing Unit (NPU) improves the inference performance of neural networks. The NPU
targets 8-bit and 16-bit integer quantized Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). The NPU supports 8-bit weights.

Arm delivers the hardware Register Transfer Level (RTL) of the NPU with an open-source driver and
compiler. A neural network must be compiled offline using the open-source compiler to produce a
command stream. The application invokes the driver, which communicates with the NPU to tell it
where the command stream is and initiates the network traversal. The command stream describes
the steps necessary for the NPU to execute the operators compiled into the command stream
autonomously. When complete, the NPU raises an IRQ to the driver.

The driver programs the memory location of the command stream and other payloads into registers
in the NPU. The Central Control (CC) processes the command stream.

The NPU includes a Direct Memory Access (DMA) controller that can read and write to external
memory. When the NPU performs inferences, the DMA controller reads the neural network
description. This description contains:

• The command stream

• Network weights

• Bias information

• Scale information

The DMA controller also transfers the Input Feature Maps (IFMs) and Output Feature Maps (OFMs)
and NPU-private intermediate data that is also held in system memory.

During runtime, TensorFlow Lite (TFL) loads the the flatbuf file, in which the Offline Compiler has
created an Ethos™-U55 command stream for each custom operator. The driver gives a pointer to
this command stream so that the NPU hardware can execute it. This means that the entire network
can be a single operator that is run fully on the Ethos™-U55. The NPU reads the data (weights,
commands, IFMs, OFMs, bias and scale) autonomously using the DMA.

The NPU uses a working buffer in SRAM for IFMs and OFMs in flight. The Offline Compiler
decides the scheduling of this buffer and codes it into the command stream. The NPU uses the
DMA to read and write autonomously to this work buffer. The location of the buffer is set at
runtime through registers, meaning the coding in the command stream is relative, not absolute.

The external interfaces that the NPU implements are:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

• Two Arm® AMBA® 5 AXI Manager interfaces that provide the DMA controller with access to
external memory. One read/write manager, M0, and one read-only manager, M1. This means
the NPU can present two sets of transactions at the same time. The command, weight, bias,
and scale channels can be mapped to either AXI Manager.

The manager interfaces are also AMBA® 4 AXI compatible.

• An Arm® AMBA® 4 APB completer interface with wake up signaling that allows the application
processor to program the NPU.

The following figure shows a typical system configuration block diagram for the NPU.

Figure 2-1: Typical system configuration block diagram

Interrupt

System bus

System memory Additional product
logic

Host application
processor NPU

Interrupt
controller

AXI APB

AXI AXIAXI

Flash memory

AXI

APB

Where the system has only SRAM and no flash memory, then the read-only
manager interface, M1, can be tied off.

The following figure shows the main components of the NPU.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

Figure 2-2: Functional blocks diagram

NPU

Clock and
power

module

Central
control

DMA
controller

Output unit

Shared
buffer

MAC unit

Weight
decoderPower Q-Channel

APB

IRQ

AXI

AXI

Clock Q-Channel

2.1.1 Supported application programming interfaces

To program, test, and monitor the NPU, Arm deploys the open-source TensorFlow Lite for
Microcontrollers (TFLμ) tool, which runs on an external host application processor. It uses the
compiler offline to compile and optimize the neural network graph for the NPU. Its API generates a
command stream for the NPU to process.

The compiler decides which parts of a network graph can be optimized and executed on the NPU.
The NPU drivers manage the workloads that execute inferences on the NPU.

If the network maps exclusively to the NPU, then the power required by the external host
application processor is negligible. If there is a requirement to process layers on the Cortex®-M
core, then more performance is required.

2.1.2 Security support

The NPU supports TrustZone using security and privilege status on APB and AXI bus transactions.

The NPU also has a strict reset policy, where at any reset, all registers and memories in the NPU
are cleared to prevent leakage between Secure and Non-secure processing.

The NPU security and privilege status can only be changed by software during soft reset and the
host application processor cannot set the NPU to a higher security or privilege level than its own
level. Also, the host application processor must have equal or higher security and privilege than the
NPU for access through the APB.

To protect against illegal transactions, the AXI provides access permission signals.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

The term AxPROT refers collectively to the ARPROT and AWPROT AXI signals. AxPROT contains
both a security (AxPROT[1]) and a privilege (AxPROT[0]) level on the AXI manager M1 and M2.

AxPROT also has an extra bit AxPROT[2] that is always LOW on the NPU.
For further information about AxPROT, see the AMBA® AXI and ACE Protocol
Specification AXI3, AXI4, AXI5, ACE, and ACE5.

Protection against unsecure access by the NPU on a system level is provided by more TrustZone
components. The following figure shows the NPU integrated in a simplified example subsystem
using the Manager Security Controller (MSC) component. The MSC uses the NPU security and
privilege level with a look-up table to determine if each bus transaction is allowed. When acting
as an AXI manager on allowed transaction, the configuration of each MSC determines the security
and privilege status of that MSC.

The MSC is only one example of a TrustZone component that interfaces with the
NPU.

Figure 2-3: Simplified example subsystem

NPU

MSC

M1 M2

MSC

AXI Interconnect

2.2 Interfaces
The NPU has several external interfaces.

The external interfaces are:

• Arm® AMBA® 4 APB completer with wake-up signaling.

• Two Arm® AMBA® 5 AXI managers:

◦ A read/write manager, M0.

◦ A read-only manager, M1.

• An interrupt.

• Two Q-Channels:

◦ A Q-Channel for clock.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

◦ A Q-Channel for power.

• System configuration signals that determine the security level after boot.

• Clock.

• Reset.

2.3 Documentation
Arm Limited publishes documentation that describes the NPU, including this document.

Technical Overview
The Technical Overview (TO) describes the functionality of the NPU.

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the processor. It is required at all stages of the design flow. Design
flow choices can mean that some behavior that the TRM describes is not relevant. If you are
programming the processor, obtain additional information from:

• The implementer to determine the build configuration of the implementation.

• The integrator to determine the pin configuration of the device that you are using.

Application Development Overview
The Application Development Overview (ADO) describes the flow of data between an
application and the NPU.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes the configuration and
implementation of the NPU.

Functional Model Integration Guide
The Functional Model Integration Guide (FMIG) describes how to integrate the NPU functional
model.

The CIM and FMIG are confidential books only available to licensees.

2.4 Design process
The NPU is delivered as synthesizable RTL. Before it can be used in a product, it must go through
the design process.

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell.

Integration
The integrator connects the configured design into an SoC, including a memory system and
peripherals.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Neural processing unit introduction

Programming
The system programmer uses the following to develop the SoC:

• The software to configure and initialize the NPU.

• The application software and the SoC tests.

2.5 Product revisions
Successive product revisions have differences in functionality.

r0p0
First release.

r0p1
No functional changes. Updates to the Q-Channel and internal reset to create glitch-free
signals.

r1p0
Power improvements to the MAC unit focusing on glitch reduction and added support for the
Power Q-Channel and ECC memories.

r2p0
Adds a new configuration option to allow the use of a custom DMA instance. This allows you
to instantiate your own DMA and control up to four different internal data channels, Input
Feature Maps (IFMs), Output Feature Maps (OFMs), weights, and bias and scale.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

3. Functional description
This chapter describes the function and structure of the processor.

3.1 Control and data flow
The software stack manages the control and data flows between the application software running
on an external host application processor and individual subcomponents of the NPU.

The components of the software stack communicate with each other to handle the control and
data flow between the neural network application and the NPU.

The following figure shows the software stack for the NPU.

Figure 3-1: The software stack of the NPU

NPU

DriverQuantization
tool

Compiler

Optimized quantized
trained model

Offline tooling Runtime

Trained
model

Quantized
trained model

The NPU uses offline tools to optimize the code. At runtime, the application processor passes this
optimized trained model to the NPU.

Quantization is managed through the TensorFlow workflows and is not a specific
component delivered with the Ethos™-U55 software. The compiler runs offline on
the TFL flatbuffer; the compiler has knowledge about which operators the NPU
supports.

The following steps describe the offline tooling flow:

1. Pass your trained model through the quantization tool. This tool quantizes weights to 8-bit and
activations to 8-bit or 16-bit values.

2. Pass the quantized model to the compiler. This tool optimizes the model for this NPU and
outputs an optimized model that contains a command stream for the NPU.

The following steps describe the runtime control and data flow:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

1. The optimized model is placed in system memory, which is accessible by the NPU.

2. At runtime, the TFLμ tool reads the model and dispatches the operators.

3. The NPU reads the optimized model and runs the command stream that is included in it. The
application processor runs any parts that the NPU cannot execute.

4. When the inference is complete, the result is placed in the memory location that the driver
specifies.

The following figure shows the control and data flow.

Figure 3-2: Control and data flow

Application

Software libraries and driver

Command stream and
model data

Input data External host
application
processor

External
memory

NPUCentral control

Buffers

Results

DMA Controller Engines and
shared buffer

3.1.1 Supported memory formats for feature maps

The NPU supports the industry-standard NHWC format of feature-map data.

NHWC is used as an input and output format by the NPU for communication with TensorFlow
light.

When the NPU processes multiple layers, it reformats NHWC-formatted feature maps into
an internal NHCWB16 format when reading in data. The NPU also performs the reverse
transformation on the final output layer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

NHWC format
The NHWC format has the following properties:

• H (height), W (width), and C (channels) data.

• The size of each element (ElemSize) is 1-byte or 2-bytes.

• Only a single batch is supported (N=1).

• The address of an element y, x, c is (BASE+y*STRIDE_Y+x*STRIDE_X+c*ElemSize).

• The values BASE, STRIDE_Y, and STRIDE_X must be aligned in element size.

• Only tile 0 can be used, the address of tile 0 is BASE.

NHCWB16 format
The NHCWB16 format has the following properties:

• A block format consisting of 16 channels per block.

• Only a single batch is supported (N=1).

• The address of an element y, x, c is (BASE+y*STRIDE_Y+(c/16)*STRIDE_C + (x*16 + (c
%16))*ElemSize).

• The values BASE, STRIDE_Y, and STRIDE_C must be 16-byte aligned.

• Tiles can be used.

3.2 Security and boot flow
The NPU can be set to different security and privilege modes during a reset. The host application
processor cannot reset the NPU to a higher security level than its current level.

At any reset, all registers and memories in the NPU are cleared to prevent leakage between states.

When a soft reset is requested, the NPU ensures that all AMBA® 5 AXI transactions are complete
before issuing the reset.

When the NPU is powered up after a hard reset, it reads the PORPL signal to set its privilege level:

• LOW indicates user mode.

• HIGH indicates privileged mode.

When the NPU is powered up after a hard reset, it reads the PORSL signal to set its security level:

• LOW indicates Secure mode.

• HIGH indicates Non-secure mode.

When the NPU is accessed, it uses the PPROT signal to check if the access is permitted. The NPU
security and privilege level that is used on the AXI ports are the ARPROT/AWPROT signals. The
ARPROT/AWPROT signals may be used for memory protection at system-level.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

The NPU assumes that the software on the host that has permission to access it is
trusted. You must ensure that the system provides suitable protection from memory
tampering (for example, by protecting the flash).

3.3 Functional blocks
The NPU consists of the Central Control (CC), a DMA controller, a MAC unit, an Output unit, and
the interconnect fabric.

The following are descriptions of the units of the NPU:

• The CC receives tasks from the external host application processor. The CC queues and
dispatches units of work to the DMA and engines.

• The DMA controller uses its two Arm® AMBA® 5 AXI manager interfaces to move data
between external memory and shared buffer.

The read-only AXI manager, M1, can also be connected to SRAM, provided it has
sufficient bandwidth, otherwise RAM stalls can occur. See also 2.1 Description of
the neural processing unit on page 13.

• The MAC unit has various internal units for reading IFMs, performing dot products and
accumulations.

The following figure shows the main components of the NPU.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

Figure 3-3: Functional blocks diagram

NPU

Clock and
power

module

Central
control

DMA
controller

Output unit

Shared
buffer

MAC unit

Weight
decoderPower Q-Channel

APB

IRQ

AXI

AXI

Clock Q-Channel

3.3.1 External interfaces

The NPU uses two AMBA® 5 AXI manager interfaces, an AMBA® 4 APB completer interface with
wake-up signaling, an interrupt interface, two Q-Channel interfaces, clock, and reset to enable
access to and from external components.

Two AMBA® 5 AXI manager interfaces
These interfaces enable read- and write-access to external memory for the DMA controller.

The NPU has one read/write manager, M0, and one read-only manager, M1.

AMBA® 4 APB completer interface with wake-up signaling
Enables the device driver that runs on the external host application processor to access the
control registers of the NPU.

Interrupt interface
Sends interrupt requests to the external host application processor, usually to signal a
completed job.

Two Q-Channel interfaces
These interfaces enable communication with an external clock controller and power
controller. This communication enables the system to automatically disable the clock of the
NPU or disable the power to it. The clock is otherwise free-running. The NPU does not
quiesce while executing a task and usually does not quiesce if there are any tasks in a job
queue.

The NPU software stack partly manages the activity the Q-Channel reports on.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

You can configure the NPU to request underclocking or powering down when it is idle. This
underclocking can be when the Command queue is empty or when the NPU is waiting to be
restarted after being stopped.

Clock and reset
The NPU has one clock and one reset signal.

Arm® recommends that the AXI and NPU clock be the same; however, a different clock ratio
can be supported using the CLKEN signals.

3.3.2 Central control

The Central Control (CC) is the main control unit inside the NPU. The CC controls how the NPU
processes neural networks, maintains synchronization, and handles data dependencies.

The CC receives tasks from the external host application processor. The CC queues and dispatches
units of work to the DMA controller, weight decoder, MAC unit, and Output unit. The DMA
controller and MAC unit send events to the CC to signal the completion of work.

The CC contains multiple sets of operation settings to increase efficiency. This enables the CC to
set up the next piece of work while the current one is being processed.

After completing scheduling, dispatching, or processing work, the CC checks for any events that
have been triggered. If there are no new events, the CC requests underclocking or powerdown,
depending on the configuration.

The CC comprises a Traversal unit. The CC instructs this unit to handle commands that require
traversal. This unit breaks commands down into smaller commands, performs synchronization as
they execute, and implements the different data flows the NPU requires.

The CC comprises a Command unit. This unit receives commands and parses them. Traversal tasks
are passed to the traversal unit. Data dependencies can be coded into the NPU command stream
by the Offline Compiler, so that data dependencies between commands are not broken. Measuring
the data dependency is an NPU internal process.

Other commands can:

• Trigger interrupts.

• Cause the NPU to wait for a data dependency to be cleared.

• Set up internal registers with information relating to the next execution step.

The CC implements an Arm® AMBA® 4 APB completer interface. This interface enables the
application processor to control the NPU. This interface also enables performance measurements.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

3.3.3 DMA controller

The DMA controller manages all transactions that use the Arm® AMBA® 5 AXI interfaces. It is also
possible to add a custom DMA instance to drive a subset of the DMAs channels.

The channels that the DMA controller uses are:

Command channel
The NPU uses this channel to read the command stream, normally from external flash. The
NPU moves the commands into CC. The application processor activates the command
channel when it sets up the location and size of the Command queue. It sets up the
Command queue by using the registers that are mapped to the AMBA® 4 APB.

IFM channel
The NPU uses the IFM channel to read input feature maps and stores them in its shared
RAM. Because the shared buffer must store activations from different x,y coordinates in
different words, the DMA controller unpacks data which is stored in NHWC format. This
might require extra internal buffering, but only for the initial layer of a job. Internal layers can
use a more efficient format.

The DMA controller considers the kernel stride, because this affects which bank or address
the DMA controller requires to store activations.

When the DMA controller is in vector-product mode, it supports fetching multiple batches.

The IFM channel is triggered once per block for blocks that require input feature maps.

OFM channel
The NPU uses the OFM channel to write output feature maps from shared RAM to external
RAM. Because the output is double-buffered in the shared RAM, the DMA requires an
interface to synchronize with the output module to notify the DMA which buffer is empty or
full.

For the last layer of a job, the output must be written out in NHWC format. This may require
the DMA to pack the data, depending on the depth of the layer. Since this process reduces
the bandwidth, this process is possible in a small register bank inside the DMA.

The traversal unit triggers the OFM channel once per output block for blocks that require
transfer to external memory.

Weight channel
The weight channel transfers compressed weights from external memory to the weight
decoder. The DMA controller uses a read buffer to hide bus latency from the weight decoder
and to enable the DMA to handle data arriving out of order.

The traversal unit triggers the weight channel for blocks that require the transfer of weights.

The weight stream must be quantized to 8 bits or less by an offline tool. When passed
through the offline compiler, weights are compressed losslessly and reordered into an NPU-
specific weight stream. This process is effective, if the quantizer uses less than 8 bits or if it

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

uses clustering and pruning techniques, it may also employ all three methods. Using lossless
compression, an average of ~2 bits is possible in the final weight stream, especially if the
weight stream has many zeros.

mem2mem channel
The NPU uses this channel to stream general data from memory to memory. The main
purpose of this channel is to read weights from slow, non-volatile memory and store them
in the SRAM. This might be performed in preparation for a layer which reads the weights
multiple times. Having the weights in SRAM saves power and improves performance
compared to reads to non-volatile memory.

The traversal unit triggers mem2mem operations on specific API commands.

Bias and scale channel
This channel streams data to the Output unit. The data that it transmits is the scale and bias
necessary for the block that the NPU is processing. Layers that pass through the Output
unit are written to the external SRAM. As the layers pass through the Output unit, activation
functions can be fused.

Only the mem2mem DMA channel is controllable directly by the command
stream. The other channels are used to load or store data required by NPU
operations. Write DMA channels must always use AXI port 0. Read DMA
channels can use AXI port 0 or 1 according to which region is configured for
the memory.

3.3.4 Clock and power module

The Clock and Power Module (CPM) handles hard and soft resets, contains registers for the current
security settings, the main clock gate, and the QLPI interface.

3.3.4.1 Clock and power module controlling reset

The nRESET input signal triggers a hard reset. When the APB RESET register is written to, a soft
reset is triggered, as long as Write-Access is permitted. The APB-PPROT and CPL, CSL register
values determine whether a write is permitted.

Register access to APB RESET is permitted, if (PPROT[0]>=CPL && PPROT[1]<=CNS). Otherwise
the register access is not permitted.

At any reset, all registers and memories in the NPU are cleared to prevent leakage between
Security states. The CPM triggers all soft resets. Hard resets must come from an external reset
controller.

Both hard and soft resets use a similar procedure, which is:

1. If the reset is a soft reset:

a. With the DMA controller clock on, signal to the DMA that a soft reset is initiated.
Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 26 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

b. Wait for the DMA to acknowledge the reset request.

2. With the internal NPU clock off, activate the system reset within two clock cycles.

3. Deactivate the system reset.

4. With the shared buffer and DMA controller clock on, the CPM signals to the shared buffer and
the DMA that the RAMs must be cleared.

5. Update the setting in the CPL, CSL register.

3.3.4.2 QLPI for clock

To enable high-level clock gating, the NPU exposes a Q-Channel completer port. This completer
port enables the system to automatically disable the clock of the NPU, that is free-running except
during reset.

If the entire NPU is in stopped state, it indicates when the clock can be turned off. You can
configure the NPU registers using the AMBA® 4 APB, so that it keeps requesting a clock in stopped
state.

3.3.4.3 QLPI for power

For high-level power gating, the NPU exposes a Q-Channel completer port. This completer port
permits the system to automatically disable the power of the NPU.

If the entire NPU is in stopped state, it indicates when power can be turned off. You can configure
the NPU using the AMBA® 4 APB, so that it keeps requesting power in stopped state.

3.3.4.4 Clock and power module clock gates

The CPM contains one main clock gate. Other clock gating is performed inside each of the blocks,
which the CPM can override. These clock gates are explicitly instantiated, with the CPM clock gate
preceding the block level clock gates.

3.3.5 Weight decoder

The Weight Decoder (WD) reads the weight stream from the DMA controller. The decoder
decompresses and stores this stream in a double-buffered register, ready for the MAC unit to
consume it.

3.3.6 MAC unit

The MAC unit performs multiply-accumulate operations that are required for convolution, depth-
wise pooling, vector products, and the max operation required for max pooling.

The MAC unit comprises:

• An IFM unit

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

• Dot product units

• An adder array.

3.3.6.1 IFM unit

The IFM unit inside the MAC unit reads the input feature maps from the shared SRAM and stores
them in register slices. These slices are fed into the multipliers in the dot product units. The IFM
unit also performs some extra services as part of other operations.

The IFM unit handles zero-padding around the outside edge of feature maps and the upscaling that
deconvolution requires. Deconvolution upscaling uses nearest neighbor or zero insertion.

3.3.6.2 Dot product units

The MAC unit contains several dot product units. These dot product units perform the multiply-
accumulate operations that are required for convolutions.

The dot product units contain a max operator that they use for max pooling.

3.3.6.3 Adder array

The adder array reads a set of accumulators from the shared RAM buffer and updates them with
partial accumulations from the dot product units. The adder array then writes the result back.

Accuracy is maintained throughout this process. The internal accumulators retain precision so that
the output is bit-exact to the software reference, in this case TFL.

The compiler selects the accumulator format in the shared buffer. This format can be:

• 32-bit two's complement

• 40-bit two's complement

You can also configure the compiler to use 16-bit floating-point format, which improves
performance but impacts accuracy.

These formats are only used internally.

3.3.7 Output unit

The Output unit reads finished accumulators from the shared RAM and converts them into output
activations. This process includes performing scaling for each OFM, adding the bias to values, and
applying the activation function to each point.

Every layer is written to external SRAM, but the activation function and scaling are normally fused.
There is no forwarding path from output to input inside the NPU. Although layers can be split
into horizontal stripes and run in “cascade” to minimize the SRAM footprint. This means that the
external SRAM footprint can be smaller than the largest layer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

The activation functions that the Output unit supports are:

• ReLU, ReLU1, ReLU6, and Leaky ReLU

• tanh

• sigmoid

• Configurable Lookup Table (LUT)

• None or bypass

The elementwise operations that the Output unit supports are:

• Elementwise ADD and SUB

• Elementwise Multiplication (MUL)

• Elementwise Min and Max

• Elementwise ABS

• Elementwise Shift Left (SHL) and Elementwise Shift Right (SHR)

• Elementwise Count-leading Zero (CLZ)

When the Output unit has computed output activations, it writes them back into the shared RAM.
The output activations are buffered in the shared RAM where they wait for the DMA controller to
send them to external memory.

3.3.7.1 Scaling unit

The Scaling unit in the Output unit performs scaling in convolutions and division in average pooling.

The number of scaling operations that are performed per clock depends on the configuration. The
number of outputs per clock varies, depending on the operation.

3.3.7.2 ReLU and Leaky ReLU

Rectified Linear Unit (ReLU) operations are typically performed after scaling and bias addition.

The number of ReLU operations that are done in parallel is the same as the number of parallel
operations that the Scaling unit performs.

Leaky ReLU (LReLU) is a variant, a nonzero ReLU with a small positive gradient that targets negative
values, unlike standard ReLU functions. Leaky ReLU implements Leaky ReLU as long as the
input and output quantization scale are the same. The most recent TensorFlow Lite allows the
quantization scale to differ. In that case, we recommend using the LUT for 8-bit activations and
element wise operators for 16-bit activations.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Functional description

3.3.7.3 tanh, sigmoid, and LUT

The Output unit supports tanh and sigmoid functions using a hardwired table combined with
bilinear interpolation. The same table is used for both functions, because they are mathematically
related.

The Output unit can perform one tanh or sigmoid function per cycle.

There is also a Configurable Lookup Table (LUT) that can be used for any point-wise activation or
function. For 8-bit activations, the LUT holds up to 256 8-bit values that are directly mapped
from IFM to OFM. The LUT size increases to 512 for 16-bit values; however, the outputs are
interpolated, bilinear values.

The LUT can be configured by setting up a mem2mem transfer. For more information, refer to
3.3.3 DMA controller on page 24.

3.3.7.4 Elementwise operations

The Output unit supports a number of elementwise operations on activations.

CLZ
For 32-bit input it is possible to elementwise count the number of leading zeros.

SHR and SHL
Activations can elementwise be shifted left or right. The operation uses two input, one for
the operand to shift and a second for the shift amount.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4. Programmers model
This chapter describes a register and register map of the NPU.

4.1 Register characteristics
The registers in the NPU have common characteristics.

The following are the characteristics of the registers in the NPU:

• Register addresses are shown as offsets from the base address.

• Registers are 32-bit wide words.

• Register reads and writes use word accesses only.

• Register halfword and byte reads are UNDEFINED.

• Register halfword and byte writes are UNPREDICTABLE.

• Every access to the registers is compared with the Current active Privilege Level (CPL) and the
active Current Non-Secure level (CNS) of the PROT register:

◦ Register access is permitted if (PPROT[0]>=CPL && PPROT[1]<=CNS). Otherwise the
register access is not permitted.

◦ A read access that is not permitted, either due to privilege or being a write-only register,
returns the value zero.

◦ A write-access that is not permitted, either due to privilege or being a read-only register, is
ignored.

Only use the registers that are documented in this Technical Reference Manual.
Do not use random read/write accesses to reserved register pages. Accessing
undocumented addresses can result in UNDEFINED behavior.

4.2 Register page BASE
The NPU control registers bank.

Table 4-1: BASE registers

Address Link Usage Access Default

0x00000000 4.2.1 Register ID on page
32

ID register Read-
only

0x10104201

0x00000004 4.2.2 Register STATUS on
page 34

Register describes the current operating status of the NPU Read-
only

0x00000008

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Address Link Usage Access Default
0x00000008 4.2.3 Register CMD on page

36
Command register, reads as last written command Read/

write
0x0000000C

0x0000000C 4.2.4 Register RESET on page
37

Request Reset and new security mode Read/
write

0x00000000

0x00000010 4.2.5 Register QBASE0 on
page 38

Base address of Command-queue bits[31:0]. The address is 4-
byte-aligned

Read/
write

0x00000000

0x00000014 4.2.6 Register QBASE1 on
page 38

Address extension bits[47:32] for queue base Read/
write

0x00000000

0x00000018 4.2.7 Register QREAD on
page 39

Read offset in the command stream in bytes. Multiples of 4 in
the range 0-16 MB

Read-
only

0x00000000

0x0000001C 4.2.8 Register QCONFIG on
page 39

AXI configuration for the command stream in the range 0-3.
Same encoding as for REGIONCFG

Read/
write

0x00000000

0x00000020 4.2.9 Register QSIZE on page
39

Size of the command stream in bytes. Multiples of 4 in the range
0-16 MB

Read/
write

0x00000000

0x00000024 4.2.10 Register PROT on
page 39

Protection level configured for the NPU when acting as an AXI
manager

Read-
only

0x00000000

0x00000028 4.2.11 Register CONFIG on
page 41

RTL configuration Read-
only

Implementation
defined

0x0000002C 4.2.12 Register LOCK on
page 42

Lock register. This register is designed for driver use and does
not affect NPU functionality

Read/
write

0x00000000

0x0000003C 4.2.13 Register REGIONCFG
on page 43

Base pointer configuration. Bits[2*k+1:2*k] give the memory type
for REGION[k]

Read/
write

0x00000000

0x00000040 4.2.14 Register AXI_LIMIT0
on page 46

AXI limits for port 0 counter 0 Read/
write

0x00000000

0x00000044 4.2.15 Register AXI_LIMIT1
on page 47

AXI limits for port 0 counter 1 Read/
write

0x00000000

0x00000048 4.2.16 Register AXI_LIMIT2
on page 48

AXI limits for port 1 counter 2 Read/
write

0x00000000

0x0000004C 4.2.17 Register AXI_LIMIT3
on page 49

AXI limits for port 1 counter 3 Read/
write

0x00000000

4.2.1 Register ID

The ID register.

The default value of this RO register describes the product version. Please refer to the individual
fields for information.

Table 4-2: Register BASE.ID layout

Bits Link Name Usage Default

[31:28] arch_major_rev arch_major_rev This is the major architecture version number, a in the architecture
version a.b

1 (implementation
defined)

[27:20] arch_minor_rev arch_minor_rev This is the minor architecture version number, b in the architecture
version a.b

1 (implementation
defined)

[19:16] arch_patch_rev arch_patch_rev This is the patch number of the architecture version a.b 0 (implementation
defined)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Bits Link Name Usage Default
[15:12] product_major product_major This is the X-part of the ML00X product number 4 (implementation

defined)

[11:8] version_major version_major This is the n for the R-part of an RnPn release number 0x2

[7:4] version_minor version_minor This is the n for the P-part of an RnPn release number 0x0

[3:0] version_status version_status This is the version of the product 1 (implementation
defined)

Field arch_major_rev
This is the major architecture version number, a in the architecture version a.b.

arch_major_rev is stored in bits[31:28] and is a 4-bit unsigned integer. Its default value is 1
(implementation defined).

Field arch_minor_rev
This is the minor architecture version number, b in the architecture version a.b.

arch_minor_rev is stored in bits[27:20] and is an 8-bit unsigned integer. Its default value is 0
(implementation defined).

Field arch_patch_rev
This is the patch number of the architecture version a.b.

arch_patch_rev is stored in bits[19:16] and is a 4-bit unsigned integer. Its default value is 6
(implementation defined).

Field product_major
This is the X-part of the ML00X product number.

product_major is stored in bits[15:12] and is a 4-bit unsigned integer. Its default value is 4
(implementation defined).

Field version_major
This is the n for the R-part of an RnPn.

version_major is stored in bits[11:8] and is a 4-bit unsigned integer. Its default value is 0x1.

Field version_minor
This is the n for the P-part of an RnPn.

version_minor is stored in bits[7:4] and is a 4-bit unsigned integer. Its default value is 0x0.

Field version_status
VERSION_STATUS is stored in bits [3:0] and is a 4-bit enumeration.

It contains the status of the NPU release. This status starts at 0 and increases by one for each
release.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The named values indicated here are valid for one particular implementation only.

The field can contain the following values:

Table 4-3: VERSION_STATUS values

Value Name Meaning

0 BET Beta

1 EAC Early access

2 REL REL

4.2.2 Register STATUS

This register describes the current operating status of the NPU.

Table 4-4: Register BASE.STATUS layout

Bits Link Name Usage Default

[31:16] irq_history_mask irq_history_mask IRQ History mask 0x0

[15:12] faulting_channel faulting_channel Faulting channel on a bus abort. Read: 0=Cmd, 1=IFM, 2=Weights, 3=Scale
+Bias, 4=Mem2Mem; Write: 8=OFM, 9=Mem2Mem

0x0

[11] faulting_interface faulting_interface Faulting interface on bus abort. 0=AXI-M0, 1=AXI-M1 0x0

[10:9] Reserved - - -

[8] ecc_fault ecc_fault ECC state for internal RAMs: 0=no fault, 1=ECC fault signaled. Can only be
cleared by reset.

0x0

[7] wd_fault wd_fault This bit will never be set in this product. -

[6] pmu_irq_raised pmu_irq_raised 0=No PMU IRQ, 1=PMU IRQ raised. Cleared by using command register bit 1 0x0

[5] cmd_end_reached cmd_end_reached 0=Not reached, 1=Reached. Cleared by writing QBASE or QSIZE when the NPU
is in stopped state.

0x0

[4] cmd_parse_error cmd_parse_error 0=No error, 1=Command-stream parsing error detected. Can only be cleared by
a reset.

0x0

[3] reset_status reset_status Reset is ongoing and only this register can be read (other registers read as 0 and
writes are ignored). A value of 0 means the NPU is not being reset and can be
accessed as normal.

0x1

[2] bus_status bus_status 0=OK, 1=Bus abort detected and processing halted (the NPU has reached IDLE
state and does not start to process any more commands/AXI transactions). Can
only be cleared by a reset.

0x0

[1] irq_raised irq_raised Raw IRQ status: 0 = IRQ not raised, 1 = IRQ raised. IRQ is cleared using
command register bit 1.

0x0

[0] state state NPU state; 0 = Stopped, 1 = Running stopped

Field irq_history_mask
IRQ History mask.

irq_history_mask is stored in bits[31:16] and is a 16-bit unsigned integer. Its default value is 0x0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

This is used for debug purposes. Each IRQ or Event operation provides a 16-bit mask which is
logically ORed into these bits. The bits can be cleared using the command register.

Field faulting_channel
Faulting channel on a bus abort. Read: 0=Cmd, 1=IFM, 2=Weights, 3=Scale+Bias, 4=Mem2Mem;
Write: 8=OFM, 9=Mem2Mem.

faulting_channel is stored in bits[15:12] and is a 4-bit unsigned integer. Its default value is 0x0.

Field faulting_interface
Faulting interface on bus abort. 0=AXI-M0, 1=AXI-M1.

faulting_interface is stored in bit[11] and is a 1-bit unsigned integer. Its default value is 0x0.

Field ecc_fault
ECC state for internal RAMs: 0=no fault, 1=ECC fault signaled. Can only be cleared by reset.

ecc_fault is stored in bit[8] and is a 1-bit unsigned integer. Its default value is 0x0.

Field wd_fault
This bit will never be set in this product.

Field pmu_irq_raised
0=No PMU IRQ, 1=PMU IRQ raised. Cleared by using command register bit 1.

pmu_irq_raised is stored in bit[6] and is a 1-bit unsigned integer. Its default value is 0x0.

Field cmd_end_reached
0=Not reached, 1=Reached. Cleared by writing QBASE or QSIZE when the NPU is in stopped
state.

cmd_end_reached is stored in bit[5] and is a 1-bit unsigned integer. Its default value is 0x0.

Field cmd_parse_error
0=No error 1=Command stream parsing error detected. Can only be cleared by a reset.

cmd_parse_error is stored in bit[4] and is a 1-bit unsigned integer. Its default value is 0x0.

Field reset_status
Reset is ongoing and only this register can be read (other registers read as 0 and writes are
ignored). A value of 0 means the NPU is not being reset and can be accessed as normal.

reset_status is stored in bit[3] and is a 1-bit unsigned integer. Its default value is 0x1.

Field bus_status
0=OK, 1=Bus abort detected and processing halted (the NPU has reached IDLE state and does not
start to process any more commands/AXI transactions). Can only be cleared by a reset.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

bus_status is stored in bit[2] and is a 1-bit unsigned integer. Its default value is 0x0.

For more information on the bus abort conditions, see the faulting_interface and faulting_channel
fields.

Field irq_raised
Raw IRQ status: 0 = IRQ not raised, 1 = IRQ raised. IRQ is cleared using command register bit 1.

irq_raised is stored in bit[1] and is a 1-bit unsigned integer. Its default value is 0x0.

Field state
NPU state, 0 = Stopped, 1 = Running.

state is stored in bit[0] and is a 1-bit enumeration. Its default value is stopped.

The field can contain the following values:

Table 4-5: Field state values

Value Name Meaning

0 (default) stopped The NPU is in Stopped state.

1 running The NPU is in Running state.

4.2.3 Register CMD

The Command register, reads as last written command.

Table 4-6: Register BASE.CMD layout

Bits Link Name Usage Default

[31:16] clear_irq_history clear_irq_history Clears the IRQ history mask 0x0

[15:4] Reserved - - -

[3] power_q_enable power_q_enable Write 1 to this bit to enable power off using the Power Q-
interface

0x1

[2] clock_q_enable clock_q_enable Write 1 to this bit to enable clock off using the Clock Q-
interface and enable the main clock gate

0x1

[1] clear_irq clear_irq Write 1 to clear the IRQ status in the STATUS register. Writing
0 has no effect

0x0

[0] transition_to_running_state transition_to_running_state Write 1 to transition the NPU to running state. Writing 0 has
no effect

0x0

Field clear_irq_history
Clears the IRQ history mask.

clear_irq_history is stored in bits[31:16] and is a 16-bit unsigned integer. Its default value is 0x0.

When bit k is set, then the corresponding bit k of the STATUS register (IRQ history) is cleared.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Field power_q_enable
Write 1 to this bit to enable power off using the Power Q-interface.

power_q_enable is stored in bit[3] and is a 1-bit unsigned integer. Its default value is 0x1.

Field clock_q_enable
Write 1 to this bit to enable clock off using the Clock Q-interface and enable the main clock gate.

clock_q_enable is stored in bit[2] and is a 1-bit unsigned integer. Its default value is 0x1.

Field clear_irq
Write 1 to clear the IRQ status in the STATUS register. Writing 0 has no effect.

clear_irq is stored in bit[1] and is a 1-bit unsigned integer. Its default value is 0x0.

Field transition_to_running_state
Write 1 to transition the NPU to running state. Writing 0 has no effect.

transition_to_running_state is stored in bit[0] and is a 1-bit unsigned integer. Its default value is
0x0.

4.2.4 Register RESET

Request Reset and new security mode.

If this register is written to by a permitted manager, then the NPU is reset (clearing all internal
RAMs) and the reset register value is updated. (Otherwise the write to this register is ignored and
the NPU is not reset.)

The value written to this register sets the privilege level used by the NPU when the NPU acts as
an AXI manager. The host is permitted to set any level of privilege less than or equal to the host
privilege level.

Table 4-7: Register BASE.RESET layout

Bits Link Name Usage Default

[31:2] Reserved -

[1] pending_CSL pending_CSL Current security level: 0=Secure, 1=Non secure secure

[0] pending_CPL pending_CPL Current privilege level: 0=User, 1=Privileged user

Field pending_CSL
Current security level 0=Secure, 1=Non secure.

pending_CSL is stored in bit[1] and is a 1-bit enumeration. Its default value is secure.

The field can contain the following values:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-8: Field pending_CSL values

Value Name Meaning

0 (default) secure The NPU's security level is configured as Secure.

1 non_secure The NPU's security level is configured as Non-Secure.

Field pending_CPL
Current privilege level: 0=User, 1=Privileged.

pending_CPL is stored in bit[0] and is a 1-bit enumeration. Its default value is user.

The field can contain the following values:

Table 4-9: Field pending_CPL values

Value Name Meaning

0 (default) user The NPU is configured for User level access.

1 privileged The NPU is configured for Privileged level access.

4.2.5 Register QBASE0

The Base address of Command-queue bits[31:0]. The address is 4-byte aligned.

Table 4-10: Register BASE.QBASE0 layout

Bits Link Name Usage Default

[31:0] QBASE0 QBASE0 The 4-byte-aligned lower bytes of the base address value for the command stream 0x00000000

Field QBASE0
The 4-byte-aligned lower bytes of the base address value for the command stream.

QBASE0 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

4.2.6 Register QBASE1

Address extension bits[47:32] for queue base.

Table 4-11: Register BASE.QBASE1 layout

Bits Link Name Usage Default

[31:0] QBASE1 QBASE1 The 4-byte-aligned upper bytes of the base address value for the command stream 0x00000000

Field QBASE1
The 4-byte-aligned upper bytes of the base address value for the command stream.

QBASE1 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.2.7 Register QREAD

The Read offset in the command stream in bytes. Multiples of 4 in the range 0-16 MB.

Table 4-12: Register BASE.QREAD layout

Bits Link Name Usage Default

[31:0] QREAD QREAD The read offset of the current command under execution 0x00000000

Field QREAD
The read offset of the current command under execution.

QREAD is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

4.2.8 Register QCONFIG

The AXI configuration for the command stream in the range 0-3. Same encoding as for
REGIONCFG.

Table 4-13: Register BASE.QCONFIG layout

Bits Link Name Usage Default

[31:0] QCONFIG QCONFIG AXI configuration for the command stream in the range 0-3 0x00000000

Field QCONFIG
AXI configuration for the command stream in the range 0-3.

QCONFIG is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

4.2.9 Register QSIZE

Size of the command stream in bytes. Multiples of 4 in the range 0-16 MB.

Table 4-14: Register BASE.QSIZE layout

Bits Link Name Usage Default

[31:0] QSIZE QSIZE Size of the next command stream to be executed by the NPU 0x00000000

Field QSIZE
Size of the next command stream to be executed by the NPU.

QSIZE is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.2.10 Register PROT

The Protection level configured for the NPU when acting as an AXI manager.

Table 4-15: Register BASE.PROT layout

Bits Link Name Usage Default

[31:2] Reserved - - -

[1] active_CSL active_CSL Current security level: 0=Secure, 1=Non-secure Dependent on PORSL

[0] active_CPL active_CPL Current privilege level: 0=User, 1=Privileged Dependent on PORPL

Field active_CSL
Current security level 0=Secure, 1=Non-secure.

active_CSL is stored in bit[1] and is a 1-bit enumeration. Its default value is dependent on PORSL .

This is used as AxPROT[1] when the NPU is a requester and set from Pending CSL after the reset is
complete.

• After a hard reset, this is set to Power-on-reset security level (PORSL), which allows for CPUs
that do not support TrustZone.

• After a soft reset, this is set to pending_CSL, if PPROT[1]==0, otherwise it is set to 1. For this
to be effective, there must be a memory-protection controller included in the system (not part
of Ethos™-U55).

The field can contain the following values:

Table 4-16: Field active_CSL values

Value Name Meaning

0 (default) secure The NPU security level is configured as Secure.

1 non_secure The NPU security level is configured as Non-Secure.

Field active_CPL
Current privilege level 0=User, 1=Privileged.

active_CPL is stored in bit[0] and is a 1-bit enumeration. Its default value is dependent on PORPL.

This is used as AxPROT[0] when the NPU is a requester.

• After hard reset, this is set to Power-on-reset privilege level (PORPL).

• After soft reset, this is set to pending_CPL, if PPROT[0]==1, otherwise it is set to 0. For
this to be effective, there must be a system-level MPU built for the system (not part of the
Ethos™-U55 deliverables).

The field can contain the following values:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-17: Field active_CPL values

Value Name Meaning

0 (default) user The NPU is configured for User-level access.

1 privileged The NPU is configured for Privileged-level access.

4.2.11 Register CONFIG

The RTL configuration register.

The default value of this RO register describes the NPU configuration. Please refer to the individual
fields for information.

Table 4-18: Register BASE.CONFIG layout

Bits Link Name Usage Default

[31:28] product product Product configuration 0 (implementation
defined)

[27] custom_dma custom_dma Custom DMA configuration -

[26:16] Reserved - - -

[15:8] shram_size shram_size Size in KB of shared buffer (SHRAM) in the range 8-48. -

[7:4] cmd_stream_version cmd_stream_version Command-stream version accepted by this NPU. 0x0

[3:0] macs_per_cc macs_per_cc The log2(macs/clock cycle). Valid encoding range is 5-8 for
32-256 MACs/clock cycle.

-

Field product
Product configuration.

product is stored in bits[31:28] and is a 4-bit unsigned integer. Its default value is 0
(implementation defined).

Field custom_dma
Custom DMA configuration.

custom_dma is stored in bit[27] and is a 1-bit enumeration of type config_custom_dma.

The field can contain the following values:

Table 4-19: Field custom_dma values

Value Name Meaning

0 custom_dma_not_implemented Custom DMA feature not implemented.

1 custom_dma_implemented Custom DMA feature implemented.

Field shram_size
Size in KB of shared buffer in the range 8-48.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

shram_size is stored in bits[15:8] and is an 8-bit enumeration.

The field can contain the following values:

Table 4-20: Field shram_size values

Value Name Meaning

0x30 SHRAM_48kB The available shared buffer (SHRAM) is 48 kBytes.

0x18 SHRAM_24kB The available shared buffer (SHRAM) is 24 kBytes.

0x10 SHRAM_16kB The available shared buffer (SHRAM) is 16 kBytes.

Field cmd_stream_version
Command-stream version accepted by this NPU.

cmd_stream_version is stored in bits[7:4] and is a 4-bit unsigned integer. Its default value is 0x0.

Field macs_per_cc
The log2(macs/clock cycle). Valid encoding range is 5-8 for 32-256 MACs/clock cycle (each MAC is
an 8-bit x 8-bit MAC).

macs_per_cc is stored in bits[3:0] and is a 4-bit enumeration.

The field can contain the following values:

Table 4-21: Field macs_per_cc values

Value Name Meaning

0x5 Macs_per_cc_is_5 The number of MACs per clock cycle is 25.

0x6 Macs_per_cc_is_6 The number of MACs per clock cycle is 26.

0x7 Macs_per_cc_is_7 The number of MACs per clock cycle is 27.

0x8 Macs_per_cc_is_8 The number of MACs per clock cycle is 28.

4.2.12 Register LOCK

The Lock register. This register is designed for driver use and does not affect NPU functionality.

This register holds a 32-bit value which is cleared to 0 on a reset. The register has special write
semantics. Suppose the current register value is “c” and the newly written register value is “w”:

If (c==0 or w==0), then the register is updated to the newly written value w.

Otherwise the write is ignored and the value remains unchanged.

• To try to claim the lock, write a nonzero ID value and read back to see if the value was
accepted.

• To release the lock (that contains your nonzero ID value), write the value 0 to the lock register.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-22: Register BASE.LOCK layout

Bits Link Name Usage Default

[31:0] LOCK LOCK 32-bit value for the LOCK configuration 0x00000000

Field LOCK
32-bit value for the LOCK configuration.

LOCK is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00000000.

4.2.13 Register REGIONCFG

Region memory type configuration. Bits[2*k+1:2*k] give the memory type for REGION[k].

Table 4-23: Register BASE.REGIONCFG layout

Bits Link Name Usage Default

[31:16] Reserved - - -

[15:14] region7 region7 Bits for the Region7 configuration axi0_outstanding_counter0

[13:12] region6 region6 Bits for the Region6 configuration axi0_outstanding_counter0

[11:10] region5 region5 Bits for the Region5 configuration axi0_outstanding_counter0

[9:8] region4 region4 Bits for the Region4 configuration axi0_outstanding_counter0

[7:6] region3 region3 Bits for the Region3 configuration axi0_outstanding_counter0

[5:4] region2 region2 Bits for the Region2 configuration axi0_outstanding_counter0

[3:2] region1 region1 Bits for the Region1 configuration axi0_outstanding_counter0

[1:0] region0 region0 Bits for the Region0 configuration axi0_outstanding_counter0

Field region7
Bits for the Region7 configuration.

region7 is stored in bits[15:14] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-24: Field region7 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region6
Bits for the Region6 configuration.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

region6 is stored in bits[13:12] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-25: Field region6 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region5
Bits for the Region5 configuration.

region5 is stored in bits[11:10] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-26: Field region5 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region4
Bits for the Region4 configuration.

region4 is stored in bits[9:8] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-27: Field region4 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region3
Bits for the Region3 configuration.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

region3 is stored in bits[7:6] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-28: Field region3 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region2
Bits for the Region2 configuration.

region2 is stored in bits[5:4] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-29: Field region2 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region1
Bits for the Region1 configuration.

region1 is stored in bits[3:2] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-30: Field region1 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

Field region0
Bits for the Region0 configuration.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

region0 is stored in bits[1:0] and is a 2-bit enumeration. Its default value is
axi0_outstanding_counter0.

The field can contain the following values:

Table 4-31: Field region0 values

Value Name Meaning

0 (default) axi0_outstanding_counter0 AXI0 port, outstanding counter 0. AXI limits set by the AXI_LIMIT0 register.

1 axi0_outstanding_counter1 AXI0 port, outstanding counter 1. AXI limits set by the AXI_LIMIT1 register.

2 axi1_outstanding_counter2 AXI1 port, outstanding counter 2. AXI limits set by the AXI_LIMIT2 register.

3 axi1_outstanding_counter3 AXI1 port, outstanding counter 3. AXI limits set by the AXI_LIMIT3 register.

4.2.14 Register AXI_LIMIT0

The AXI limits for port 0 counter 0.

Table 4-32: Register BASE.AXI_LIMIT0 layout

Bits Link Name Usage Default

[31:24] max_outstanding_write_m1 max_outstanding_write_m1 Maximum number of outstanding AXI write transactions - 1 in
range 0-15

0x00

[23:16] max_outstanding_read_m1 max_outstanding_read_m1 Maximum number of outstanding AXI read transactions - 1 in
range 0-31

0x00

[15:8] Reserved - - -

[7:4] memtype memtype Memtype -

[3:2] Reserved - - -

[1:0] max_beats max_beats Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes,
3=reserved

0x0

Field max_outstanding_write_m1
Maximum number of outstanding AXI write transactions - 1 in range 0-15.

max_outstanding_write_m1 is stored in bits[31:24] and is an 8-bit unsigned integer. Its default
value is 0x00.

Field max_outstanding_read_m1
Maximum number of outstanding AXI read transactions - 1 in range 0-31.

max_outstanding_read_m1 is stored in bits[23:16] and is an 8-bit unsigned integer. Its default value
is 0x00.

Field memtype
Memtype is used to encode AxCACHE signals.

BASE.AXI_LIMIT0.memtype is stored in bits[7:4] and is a 4-bit enumeration of type
axi_mem_encodign_type. Its default value is Device_Non_Bufferable.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The field can contain the following values:

Table 4-33: Field memtype values

Value Name Meaning

0x0 (default) Device_Non_Bufferable ARCACHE=0000, AWCACHE=0000

0x1 Device_Bufferable ARCACHE=0001, AWCACHE=0001

0x2 Normal_Non_cacheable_Non_bufferable ARCACHE=0010, AWCACHE=0010

0x3 Normal_Non_cacheable_Bufferable ARCACHE=0011, AWCACHE=0011

0x4 Write_through_No_allocate ARCACHE=1010, AWCACHE=0110

0x5 Write_through_Read_allocate ARCACHE=1110, AWCACHE=0110

0x6 Write_through_Write_allocate ARCACHE=1010, AWCACHE=1110

0x7 Write_through_Read_and_Write_allocate ARCACHE=1110, AWCACHE=1110

0x8 Write_back_No_allocate ARCACHE=1011, AWCACHE=0111

0x9 Write_back_Read_allocate ARCACHE=1111, AWCACHE=0111

0xA Write_back_Write_allocate ARCACHE=1011, AWCACHE=1111

0xB Write_back_Read_and_Write_allocate ARCACHE=1111, AWCACHE=1111

0xC - 0xF Reserved_12_15 Reserved

Field max_beats
Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes, 3=reserved.

max_beats is stored in bits[1:0] and is a 2-bit unsigned integer. Its default value is 0x0.

4.2.15 Register AXI_LIMIT1

The AXI limits for port 0 counter 1.

Table 4-34: Register BASE.AXI_LIMIT1 layout

Bits Link Name Usage Default

[31:24] max_outstanding_write_m1 max_outstanding_write_m1 Maximum number of outstanding AXI write transactions - 1 in
range 0-15

0x00

[23:16] max_outstanding_read_m1 max_outstanding_read_m1 Maximum number of outstanding AXI read transactions - 1 in
range 0-31

0x00

[15:8] Reserved - - -

[7:4] memtype memtype Memtype -

[3:2] Reserved - - -

[1:0] max_beats max_beats Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes,
3=reserved

0x0

Field max_outstanding_write_m1
Maximum number of outstanding AXI write transactions - 1 in range 0-15.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

max_outstanding_write_m1 is stored in bits[31:24] and is an 8-bit unsigned integer. Its default
value is 0x00.

Field max_outstanding_read_m1
Maximum number of outstanding AXI read transactions - 1 in range 0-31.

max_outstanding_read_m1 is stored in bits[23:16] and is an 8-bit unsigned integer. Its default value
is 0x00.

Field memtype
Memtype.

memtype is stored in bits[7:4] and is a 4-bit unsigned integer.

Field max_beats
Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes, 3=reserved.

max_beats is stored in bits[1:0] and is a 2-bit unsigned integer. Its default value is 0x0.

4.2.16 Register AXI_LIMIT2

The AXI limits for port 1 counter 2.

Table 4-35: Register BASE.AXI_LIMIT2 layout

Bits Link Name Usage Default

[31:24] max_outstanding_write_m1 max_outstanding_write_m1 Maximum number of outstanding AXI write transactions - 1 in
range 0-15

0x00

[23:16] max_outstanding_read_m1 max_outstanding_read_m1 Maximum number of outstanding AXI read transactions - 1 in
range 0-31

0x00

[15:8] Reserved - - -

[7:4] memtype memtype Memtype -

[3:2] Reserved - - -

[1:0] max_beats max_beats Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes,
3=reserved

0x0

Field max_outstanding_write_m1
Maximum number of outstanding AXI write transactions - 1 in range 0-15.

max_outstanding_write_m1 is stored in bits[31:24] and is an 8-bit unsigned integer. Its default
value is 0x00.

Field max_outstanding_read_m1
Maximum number of outstanding AXI read transactions - 1 in range 0-31.

max_outstanding_read_m1 is stored in bits[23:16] and is an 8-bit unsigned integer. Its default value
is 0x00.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Field memtype
Memtype.

memtype is stored in bits[7:4] and is a 4-bit unsigned integer.

Field max_beats
Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes, 3=reserved.

max_beats is stored in bits[1:0] and is a 2-bit unsigned integer. Its default value is 0x0.

4.2.17 Register AXI_LIMIT3

The AXI limits for port 1 counter 3.

Table 4-36: Register BASE.AXI_LIMIT3 layout

Bits Link Name Usage Default

[31:24] max_outstanding_write_m1 max_outstanding_write_m1 Maximum number of outstanding AXI write transactions - 1 in
range 0-15

0x00

[23:16] max_outstanding_read_m1 max_outstanding_read_m1 Maximum number of outstanding AXI read transactions - 1 in
range 0-31

0x00

[15:8] Reserved - - -

[7:4] memtype memtype Memtype -

[3:2] Reserved - - -

[1:0] max_beats max_beats Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes,
3=reserved

0x0

Field max_outstanding_write_m1
Maximum number of outstanding AXI write transactions - 1 in range 0-15.

max_outstanding_write_m1 is stored in bits[31:24] and is an 8-bit unsigned integer. Its default
value is 0x00.

Field max_outstanding_read_m1
Maximum number of outstanding AXI read transactions - 1 in range 0-31.

max_outstanding_read_m1 is stored in bits[23:16] and is an 8-bit unsigned integer. Its default value
is 0x00.

Field memtype
Memtype.

memtype is stored in bits[7:4] and is a 4-bit unsigned integer.

Field max_beats
Burst-split alignment: 0=64 bytes, 1 and 2=128 bytes, 3=reserved.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

max_beats is stored in bits[1:0] and is a 2-bit unsigned integer. Its default value is 0x0.

4.3 Register page BASE_POINTERS
The NPU base-pointer registers bank.

Table 4-37: BASE_POINTERS registers

Address Link Usage Access Default

0x00000080 4.3.1 Register BASEP0 on page 50 Lower 32 bits of the Base pointer for region index 0 Read/write 0x00000000

0x00000084 4.3.2 Register BASEP1 on page 50 Upper 32 bits of the Base pointer for region index 0 Read/write 0x00000000

0x00000088 4.3.3 Register BASEP2 on page 51 Lower 32 bits of the Base pointer for region index 1 Read/write 0x00000000

0x0000008C 4.3.4 Register BASEP3 on page 51 Upper 32 bits of the Base pointer for region index 1 Read/write 0x00000000

0x00000090 4.3.5 Register BASEP4 on page 51 Lower 32 bits of the Base pointer for region index 2 Read/write 0x00000000

0x00000094 4.3.6 Register BASEP5 on page 52 Upper 32 bits of the Base pointer for region index 2 Read/write 0x00000000

0x00000098 4.3.7 Register BASEP6 on page 52 Lower 32 bits of the Base pointer for region index 3 Read/write 0x00000000

0x0000009C 4.3.8 Register BASEP7 on page 52 Upper 32 bits of the Base pointer for region index 3 Read/write 0x00000000

0x000000A0 4.3.9 Register BASEP8 on page 53 Lower 32 bits of the Base pointer for region index 4 Read/write 0x00000000

0x000000A4 4.3.10 Register BASEP9 on page 53 Upper 32 bits of the Base pointer for region index 4 Read/write 0x00000000

0x000000A8 4.3.11 Register BASEP10 on page 53 Lower 32 bits of the Base pointer for region index 5 Read/write 0x00000000

0x000000AC 4.3.12 Register BASEP11 on page 54 Upper 32 bits of the Base pointer for region index 5 Read/write 0x00000000

0x000000B0 4.3.13 Register BASEP12 on page 54 Lower 32 bits of the Base pointer for region index 6 Read/write 0x00000000

0x000000B4 4.3.14 Register BASEP13 on page 54 Upper 32 bits of the Base pointer for region index 6 Read/write 0x00000000

0x000000B8 4.3.15 Register BASEP14 on page 55 Lower 32 bits of the Base pointer for region index 7 Read/write 0x00000000

0x000000BC 4.3.16 Register BASEP15 on page 55 Upper 32 bits of the Base pointer for region index 7 Read/write 0x00000000

4.3.1 Register BASEP0

Lower 32 bits of the Base pointer for region index 0.

Table 4-38: Register BASE_POINTERS.BASEP0 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.3.2 Register BASEP1

Upper 32 bits of the Base pointer for region index 0.

Table 4-39: Register BASE_POINTERS.BASEP1 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.3 Register BASEP2

Lower 32 bits of the Base pointer for region index 1.

Table 4-40: Register BASE_POINTERS.BASEP2 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.4 Register BASEP3

Upper 32 bits of the Base pointer for region index 1.

Table 4-41: Register BASE_POINTERS.BASEP3 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.3.5 Register BASEP4

Lower 32 bits of the Base pointer for region index 2.

Table 4-42: Register BASE_POINTERS.BASEP4 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.6 Register BASEP5

Upper 32 bits of the Base pointer for region index 2.

Table 4-43: Register BASE_POINTERS.BASEP5 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.7 Register BASEP6

Lower 32 bits of the Base pointer for region index 3.

Table 4-44: Register BASE_POINTERS.BASEP6 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.3.8 Register BASEP7

Upper 32 bits of the Base pointer for region index 3.

Table 4-45: Register BASE_POINTERS.BASEP7 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.9 Register BASEP8

Lower 32 bits of the Base pointer for region index 4.

Table 4-46: Register BASE_POINTERS.BASEP8 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.10 Register BASEP9

Upper 32 bits of the Base pointer for region index 4.

Table 4-47: Register BASE_POINTERS.BASEP9 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.3.11 Register BASEP10

Lower 32 bits of the Base pointer for region index 5.

Table 4-48: Register BASE_POINTERS.BASEP10 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.12 Register BASEP11

Upper 32 bits of the Base pointer for region index 5.

Table 4-49: Register BASE_POINTERS.BASEP11 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.13 Register BASEP12

Lower 32 bits of the Base pointer for region index 6.

Table 4-50: Register BASE_POINTERS.BASEP12 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.3.14 Register BASEP13

Upper 32 bits of the Base pointer for region index 6.

Table 4-51: Register BASE_POINTERS.BASEP13 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.15 Register BASEP14

Lower 32 bits of the Base pointer for region index 7.

Table 4-52: Register BASE_POINTERS.BASEP14 layout

Bits Link Name Usage

[31:0] addr_word addr_word The low word of the 64-bit address

Field addr_word
The low word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

4.3.16 Register BASEP15

Upper 32 bits of the Base pointer for region index 7.

Table 4-53: Register BASE_POINTERS.BASEP15 layout

Bits Link Name Usage

[31:0] addr_word addr_word The high word of the 64-bit address

Field addr_word
The high word of the 64-bit address.

addr_word is stored in bits[31:0] and is a 32-bit unsigned integer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.4 Register page ID
The NPU ID-bytes register bank.

Table 4-54: ID registers

Address Link Usage Access Default

0x00000FD0 4.4.1 Register PID4 on
page 56

Peripheral ID byte 4 (Arm®=code 4) Read-
only

0x00000004

0x00000FD4 4.4.2 Register PID5 on
page 56

Peripheral ID byte 5 (reserved) Read-
only

0x00000000

0x00000FD8 4.4.3 Register PID6 on
page 57

Peripheral ID byte 6 (reserved) Read-
only

0x00000000

0x00000FDC 4.4.4 Register PID7 on
page 57

Peripheral ID byte 7 (reserved) Read-
only

0x00000000

0x00000FE0 4.4.5 Register PID0 on
page 57

Peripheral ID byte 0. This is bits[7:0] of the part number. Read-
only

0x00000080

0x00000FE4 4.4.6 Register PID1 on
page 58

Peripheral ID byte 1. This is bits[11:8] of the part number in bits[3:0], and
bits[3:0] of the Arm® ID in bits[7:4].

Read-
only

0x000000B5

0x00000FE8 4.4.7 Register PID2 on
page 58

Peripheral ID byte 2. This is bits[6:4] of the Arm® ID in bits[2:0], and bit 3
indicates format B.

Read-
only

0x0000000B

0x00000FEC 4.4.8 Register PID3 on
page 58

Peripheral ID byte 3. Read-
only

0x00000000

0x00000FF0 4.4.9 Register CID0 on
page 59

Component ID byte 0. Read-
only

0x0000000D

0x00000FF4 4.4.10 Register CID1
on page 59

Component ID byte 1. Read-
only

0x000000F0

0x00000FF8 4.4.11 Register CID2
on page 59

Component ID byte 2. Read-
only

0x00000005

0x00000FFC 4.4.12 Register CID3
on page 60

Component ID byte 3. Read-
only

0x000000B1

4.4.1 Register PID4

Peripheral ID byte 4 (Arm®=code 4).

Table 4-55: Register ID.PID4 layout

Bits Link Name Usage Default

[31:0] PID4 PID4 Byte 4 of the Peripheral ID (Lower 8 bits valid) 0x04

Field PID4
Byte 4 of the Peripheral ID (Lower 8 bits valid).

PID4 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x04.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.4.2 Register PID5

Peripheral ID byte 5 (reserved).

Table 4-56: Register ID.PID5 layout

Bits Link Name Usage Default

[31:0] PID5 PID5 Byte 5 of the Peripheral ID (Lower 8 bits valid) 0x00

Field PID5
Byte 5 of the Peripheral ID (Lower 8 bits valid).

PID5 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00.

4.4.3 Register PID6

Peripheral ID byte 6 (reserved).

Table 4-57: Register ID.PID6 layout

Bits Link Name Usage Default

[31:0] PID6 PID6 Byte 6 of the Peripheral ID (Lower 8 bits valid) 0x00

Field PID6
Byte 6 of the Peripheral ID (Lower 8 bits valid).

PID6 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00.

4.4.4 Register PID7

Peripheral ID byte 7 (reserved).

Table 4-58: Register ID.PID7 layout

Bits Link Name Usage Default

[31:0] PID7 PID7 Byte 7 of the Peripheral ID (Lower 8 bits valid) 0x00

Field PID7
Byte 7 of the Peripheral ID (Lower 8 bits valid).

PID7 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x00.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.4.5 Register PID0

Peripheral ID byte 0. This is bits[7:0] of the part number.

Table 4-59: Register ID.PID0 layout

Bits Link Name Usage Default

[31:0] PID0 PID0 Byte 0 of the Peripheral ID (Lower 8 bits valid) 0x80

Field PID0
Byte 0 of the Peripheral ID (Lower 8 bits valid).

PID0 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x80.

4.4.6 Register PID1

Peripheral ID byte 1. This is bits[11:8] of the part number in bits[3:0] and bits[3:0] of the Arm® ID
in bits[7:4].

Table 4-60: Register ID.PID1 layout

Bits Link Name Usage Default

[31:0] PID1 PID1 Byte 1 of the Peripheral ID (Lower 8 bits valid) 0xB5

Field PID1
Byte 1 of the Peripheral ID (Lower 8 bits valid).

PID1 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0xB5.

4.4.7 Register PID2

Peripheral ID byte 2. This is bits[6:4] of the Arm® ID in bits[2:0] and bit 3 indicates format B.

Table 4-61: Register ID.PID2 layout

Bits Link Name Usage Default

[31:0] PID2 PID2 Byte 2 of the Peripheral ID (Lower 8 bits valid) 0x0B

Field PID2
Byte 2 of the Peripheral ID (Lower 8 bits valid).

PID2 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x0B.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.4.8 Register PID3

Peripheral ID byte 3.

Table 4-62: Register ID.PID3 layout

Bits Link Name Usage Default

[31:0] PID3 PID3 Byte 1 of the Peripheral ID (Lower 8 bits valid) 0x0

Field PID3
Byte 1 of the Peripheral ID (Lower 8 bits valid).

PID3 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x0.

4.4.9 Register CID0

Component ID byte 0.

Table 4-63: Register ID.CID0 layout

Bits Link Name Usage Default

[31:0] CID0 CID0 Byte 0 of the Component ID (Lower 8 bits valid) 0x0D

Field CID0
Byte 0 of the Component ID (Lower 8 bits valid).

CID0 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x0D.

4.4.10 Register CID1

Component ID byte 1.

Table 4-64: Register ID.CID1 layout

Bits Link Name Usage Default

[31:0] CID1 CID1 Byte 1 of the Component ID (Lower 8 bits valid) 0xF0

Field CID1
Byte 1 of the Component ID (Lower 8 bits valid).

CID1 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0xF0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.4.11 Register CID2

Component ID byte 2.

Table 4-65: Register ID.CID2 layout

Bits Link Name Usage Default

[31:0] CID2 CID2 Byte 2 of the Component ID (Lower 8 bits valid) 0x05

Field CID2
Byte 2 of the Component ID (Lower 8 bits valid).

CID2 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0x05.

4.4.12 Register CID3

Component ID byte 3.

Table 4-66: Register ID.CID3 layout

Bits Link Name Usage Default

[31:0] CID3 CID3 Byte 3 of the Component ID (Lower 8 bits valid) 0xB1

Field CID3
Byte 3 of the Component ID (Lower 8 bits valid).

CID3 is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is 0xB1.

4.5 Register page PMU
The Performance Monitoring Unit (PMU) control registers.

The PMU consists of a 48-bit cycle counter that can be enabled or disabled, reset, and read
through APB. Also, there are programmable event counters controlled through APB.

The PMU has four event counters that log AXI-related events to monitor system performance. It
can be configured to generate an interrupt on counter overflow. There is also an option to control
the PMU through a command-stream operation.

The PMU uses the NPU clock after the top-level clock gate to count cycles. To
get non-gated clock cycles, the NPU clock must be forced. To force the NPU clock
gate, set bit[2] of the CMD register to LOW to disable clock-off through the QLPI
interface and the main clock gate.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-67: PMU registers

Address Link Usage Access Default

0x0180 4.5.1 Register PMCR on page 61 PMU main control register Read/
write

0x00002000

0x0184 4.5.2 Register PMCNTENSET on page 62 Count-enable set register Read/
write

0x00000000

0x0188 4.5.3 Register PMCNTENCLR on page 64 Count-enable clear register Read/
write

0x00000000

0x018C 4.5.6 Register PMOVSSET on page 68 Overflow-flag status set register Read/
write

0x00000000

0x0190 4.5.7 Register PMOVSCLR on page 70 Overflow-flag status clear register Read/
write

0x00000000

0x0194 4.5.8 Register PMINTSET on page 71 Interrupt-enable set register Read/
write

0x00000000

0x0198 4.5.9 Register PMINTCLR on page 73 Interrupt-enable clear register Read/
write

0x00000000

0x01A0 4.5.10 Register PMCCNTR_LO on page 75 Performance-monitor cycle count low register Read/
write

0x00000000

0x01A4 4.5.11 Register PMCCNTR_HI on page 76 Performance-monitor cycle count high
register

Read/
write

0x00000000

0x01AC 4.5.12 Register PMCAXI_CHAN on page 76 Set which AXI channel monitor Read/
write

0x00000000

0x0300 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page
66

Performance-monitor event counters Read/
write

0x00000000

0x0380 4.5.5 PMU_EVTYPER0 ... PMU_EVTYPER3 on page
66

Performance-monitor event-type control
counters

Read/
write

0x00000000

4.5.1 Register PMCR

The PMCR register is the main control register of the PMU.

Table 4-68: Register PMU.PMCR layout

Bits Link Name Usage Default

[31:16] Reserved - - -

[15:11] num_event_cnt num_event_cnt Number of event counters available for performance measurement 0x04

[10:4] Reserved - - -

[3] mask_en mask_en PMU can be enabled/disabled by command stream operation NPU_OP_PMU_MASK 0x0

[2] cycle_cnt_rst cycle_cnt_rst Reset cycle counter 0

[1] event_cnt_rst event_cnt_rst Reset event counter 0

[0] cnt_en cnt_en Enable counter 0x0

Field num_event_cnt
Number of event counters available for performance management.

num_event_cnt is stored in bits[15:11] and is a 5-bit unsigned integer. Its default value is 0x04.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The number of available event counters is hard-coded to four.

Field mask_en
PMU can be enabled/disabled by command stream operation NPU_OP_PMU_MASK.

mask_en is stored in bit[3] and is a 1-bit unsigned integer. Its default value is 0x0.

Note that field cnt_en must be enabled for the PMU to be active.

Field cycle_cnt_rst
Reset cycle counter.

cycle_cnt_rst is located in bit[2] and is a 1-bit unsigned integer. Its default value is 0.

Writing a 1 to this register resets the cycle counter. If the cycle counter is active, it will continue
counting after reset. This register bit always reads a 0.

Field event_cnt_rst
Reset event counter.

event_cnt_rst is located in bit[1] and is a 1-bit unsigned integer. Its default value is 0.

Writing a 1 to this field resets all event counters. If any counter is active, it will continue counting
after reset. This register bit always reads a 0.

Field cnt_en
Enable counter.

cnt_en is stored in bit[0] and is a 1-bit unsigned integer. Its default value is 0x0.

This is the PMU main switch. When the switch is disabled, the PMU is always off.

4.5.2 Register PMCNTENSET

Count-enable set registers to activate the counters.

This register enables the dedicated cycle counter, PMCCNTR, and any implemented event counters
PMU_EVCNTRn.

4.5.2 Register PMCNTENSET on page 62 is used together with the 4.5.3 Register
PMCNTENCLR on page 64 register. It is implemented in hardware with the same underlying
state as the 4.5.3 Register PMCNTENCLR on page 64.

Writing to this register enables the counters as follows: writing 1 to bit[31] enables the cycle
counter and writing 1 to bit[0-3] enables event counter 0-3, respectively.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Reading from 4.5.2 Register PMCNTENSET on page 62 or 4.5.3 Register PMCNTENCLR on
page 64 gives the same value, which is the enable status of the counters.

Table 4-69: Register PMU.PMCNTENSET layout

Bits Link Name Usage Default

[31] CYCLE_CNT CYCLE_CNT PMCCNTR enable bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3 EVENT_CNT_3 Event-counter enable bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2 EVENT_CNT_2 Event-counter enable bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1 EVENT_CNT_1 Event-counter enable bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0 EVENT_CNT_0 Event-counter enable bit for PMU_EVCNTR0 0

Field CYCLE_CNT
PMCCNTR enable bit.

CYCLE_CNT is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Enables the dedicated cycle counter, PMCCNTR.

Table 4-70: Field CYCLE_CNT values

Value Meaning

0 (default) When read, it means the cycle counter is disabled. When written, it has no effect.

1 When read, it means the cycle counter is enabled. When written, it enables the cycle counter.

Field EVENT_CNT_3
Event-counter enable bit for PMU_EVCNTR3.

EVENT_CNT_3 is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Table 4-71: Field EVENT_CNT_3 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter is enabled. When written, it
enables 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Field EVENT_CNT_2
Event-counter enable bit for PMU_EVCNTR2.

EVENT_CNT_2 is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-72: Field EVENT_CNT_2 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Value Meaning
1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter is enabled. When written, it

enables 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Field EVENT_CNT_1
Event-counter enable bit for PMU_EVCNTR1.

EVENT_CNT_1 is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-73: Field EVENT_CNT_1 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter is enabled. When written, it
enables 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Field EVENT_CNT_0
Event-counter enable bit for PMU_EVCNTR0.

EVENT_CNT_0 is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Table 4-74: Field EVENT_CNT_0 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter is enabled. When written, it
enables 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

4.5.3 Register PMCNTENCLR

Count-enable clear registers to disable the counters.

This register disables the dedicated cycle counter, PMCCNTR, and any implemented event
counters PMU_EVCNTRn.

4.5.3 Register PMCNTENCLR on page 64 is used together with the 4.5.2 Register
PMCNTENSET on page 62 register. It is implemented in hardware with the same underlying
state as 4.5.2 Register PMCNTENSET on page 62.

Writing to this register disables the counters as follows: writing 1 to bit[31] disables the cycle
counter and writing 1 to bit[0-3] disables event counter 0-3, respectively.

Reading from 4.5.2 Register PMCNTENSET on page 62 or 4.5.3 Register PMCNTENCLR on
page 64 gives the same value, which is the enable status of the counters.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-75: Register PMU.PMCNTENCLR layout

Bits Link Name Usage Default

[31] CYCLE_CNT CYCLE_CNT PMCCNTR disable bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3 EVENT_CNT_3 Event-counter disable bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2 EVENT_CNT_2 Event-counter disable bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1 EVENT_CNT_1 Event-counter disable bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0 EVENT_CNT_0 Event-counter disable bit for PMU_EVCNTR0 0

Field CYCLE_CNT
PMCCNTR disable bit.

CYCLE_CNT is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Disables the dedicated cycle counter, PMCCNTR.

Table 4-76: Field CYCLE_CNT values

Value Meaning

0 (default) When read, it means the cycle counter is disabled. When written, it has no effect.

1 When read, it means the cycle counter is enabled. When written, it disables the cycle counter.

Field EVENT_CNT_3
Event-counter disable bit for PMU_EVCNTR3.

EVENT_CNT_3 is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Table 4-77: Field EVENT_CNT_3 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is enabled. When written, it disables 4.5.4
PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Field EVENT_CNT_2
Event-counter disable bit for PMU_EVCNTR2.

EVENT_CNT_2 is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-78: Field EVENT_CNT_2 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is enabled. When written, it disables 4.5.4
PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Field EVENT_CNT_1
Event-counter disable bit for PMU_EVCNTR1.

EVENT_CNT_1 is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-79: Field EVENT_CNT_1 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is enabled. When written, it disables 4.5.4
PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

Field EVENT_CNT_0
Event-counter disable bit for PMU_EVCNTR0.

EVENT_CNT_0 is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Table 4-80: Field EVENT_CNT_0 values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is disabled. When written, it has no effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 is enabled. When written, it disables 4.5.4
PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66.

4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3

Performance-monitor event counters.

PMU_EVCNTR[k]: these are the four 32-bit performance counters (k=0-3).

4.5.5 PMU_EVTYPER0 ... PMU_EVTYPER3

The performance-monitor event-type counters controlling the respective event counters.

PMU_EVTYPER0 ... PMU_EVTYPER3 are the events that are connected to performance counters
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66, where PMU_EVTYPER[k] controls
performance counter PMU_EVCNTR[k].

An event is selected using a 10-bit word from the following table.

Field EV_TYPE
Event type.

EV_TYPE is stored is a 10-bit enumeration. Its default value is no_event.

The field can contain the following values:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-81: Field EV_TYPE values

Value Name Meaning

0x00 (default) no_event No event counted (the event never occurs)

0x11 Cycle Event occurs every cycle.

0x20 NPU idle NPU in stopped state

0x23 NPU running NPU in running state

0x30 MAC: ACTIVE (8 or 16 bit) MAC is doing block traversal. Valid blk_cmd and not stalled.

0x31 MAC: ACTIVE 8-bit MAC is doing 8-bit block traversal. Valid blk_cmd and not stalled

0x32 MAC: ACTIVE 16-bit MAC is doing 16-bit block traversal. Valid blk_cmd and not stalled

0x40 AO: ACTIVE (8-bit or 16-bit) AO is doing block traversal of ACC or IB. Valid blk_cmd and not stalled

0x41 AO: ACTIVE 8-bit AO is doing 8-bit block traversal of ACC or IB. Valid blk_cmd and not stalled

0x42 AO: ACTIVE 16-bit AO is doing 16-bit block traversal of ACC or IB. Valid blk_cmd and not stalled

0x50 WD: ACTIVE WD is decoding weight stream. Valid ofd_cmd and not stalled.

0x80 axi0_rd_trans_accepted AXI-0 read transfer accepted, arready & arvalid (number of read transfers)

0x81 - -

0x82 axi0_rd_data_beat_received AXI-0, rready & rvalid (read bandwidth)

0x83 axi0_rd_tran_req_stalled AXI-0, arvalid & ~arready (read stalls due memory system)

0x84 axi0_wr_trans_accepted AXI0, awready & awvalid (number write transfers)

0x85-0x86 - -

0x87 axi0_wr_data_beat_written AXI-0, wvalid wready (write bandwidth)

0x88 axi0_wr_tran_req_stalled AXI-0, awvalid & ~awready (write transfer stalls due to memory system)

0x89 axi0_wr_data_beat_stalled AXI-0, wvalid & ~wready (write beat stalls due to memory system)

0x8A-0x8B - -

0x8C axi0_enabled_cycles AXI-0, aclken_input (memory system frequency)

0x8D - -

0x8E axi0_rd_stall_limit AXI-0, check if read stalled due to AXI counter limit reached

0x8F axi0_wr_stall_limit AXI-0, check if write stalled due to AXI counter limit reached

0xA0 axi_latency_any Any latency; measures the total number of transactions for the specified ID and interface

0xA1 axi_latency_32 Latency was ≥ 32 cycles

0xA2 axi_latency_64 Latency was ≥ 64 cycles

0xA3 axi_latency_128 Latency was ≥ 128 cycles

0xA4 axi_latency_256 Latency was ≥ 256 cycles

0xA5 axi_latency_512 Latency was ≥ 512 cycles

0xA6 axi_latency_1024 Latency was ≥ 1024 cycles

0xB0 DMA ECC event DMA RAM error (corrected or uncorrected)

0xB1 SB ECC event SB RAM error (corrected or uncorrected)

0x180 axi1_rd_trans_accepted AXI-1 read transfer accepted, arready & arvalid (number of read transfers)

0x181 - -

0x182 axi1_rd_data_beat_received AXI-1, rready & rvalid (read bandwidth)

0x183 axi1_rd_tran_req_stalled AXI-1, arvalid & ~arready (read stalls due memory system)

0x184 axi1_wr_trans_accepted AXI-1, awready & awvalid (number write transfers)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Value Name Meaning
0x185-0x186 - -

0x187 axi1_wr_data_beat_written AXI-1, wvalid & wready (write bandwidth)

0x188 axi1_wr_tran_req_stalled AXI-1, awvalid & ~awready (write transfer stalls due to memory system)

0x189 axi1_wr_data_beat_stalled AXI-1, wvalid & ~wready (write beat stalls due to memory system)

0x18A-0x18B - -

0x18C axi1_enabled_cycles AXI-1, aclken_input (memory system frequency)

0x18D - -

0x18E axi1_rd_stall_limit AXI-1, check if read stalled due to AXI counter limit reached

0x18F axi1_wr_stall_limit AXI-1, check if write stalled due to AXI counter limit reached

4.5.6 Register PMOVSSET

The overflow-flag status set register.

Sets the state of the overflow bit for the dedicated cycle counter, PMCCNTR, and each of the
implemented event counters PMU_EVCNTRn.

4.5.6 Register PMOVSSET on page 68 is used together with the 4.5.7 Register PMOVSCLR on
page 70 register. It is implemented in hardware with the same underlying state as 4.5.7 Register
PMOVSCLR on page 70.

This register sets the overflow bit as follows: writing 1 to bit[31] sets the overflow bit for the cycle
counter and writing 1 to bit[0-3] sets the overflow bit for event counter[0-3]. This register is not
written to in normal operation.

Table 4-82: Register PMU.PMOVSSET layout

Bits Link Name Usage Default

[31] CYCLE_CNT_OVF CYCLE_CNT_OVF PMCCNTR overflow set bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3_OVF EVENT_CNT_3_OVF Event-counter overflow set bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2_OVF EVENT_CNT_2_OVF Event-counter overflow set bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1_OVF EVENT_CNT_1_OVF Event-counter overflow set bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0_OVF EVENT_CNT_0_OVF Event-counter overflow set bit for PMU_EVCNTR0 0

Field CYCLE_CNT_OVF
PMCCNTR overflow set bit.

CYCLE_CNT_OVF is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Table 4-83: Field CYCLE_CNT_OVF values

Value Meaning

0 (default) When read, it means the cycle counter has not overflowed. When written, it has no effect.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Value Meaning
1 When read, it means the cycle counter has overflowed. When written, it sets the overflow bit to 1.

Field EVENT_CNT_3_OVF
Event-counter overflow set bit for PMU_EVCNTR3.

EVENT_CNT_3_OVF is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Table 4-84: Field EVENT_CNT_3_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it sets the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 1.

Field EVENT_CNT_2_OVF
Event-counter overflow set bit for PMU_EVCNTR2.

EVENT_CNT_2_OVF is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-85: Field EVENT_CNT_2_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it sets the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 1.

Field EVENT_CNT_1_OVF
Event-counter overflow set bit for PMU_EVCNTR1.

EVENT_CNT_1_OVF is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-86: Field EVENT_CNT_1_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it sets the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 1.

Field EVENT_CNT_0_OVF
Event-counter overflow set bit for PMU_EVCNTR0.

EVENT_CNT_0_OVF is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-87: Field EVENT_CNT_0_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it sets the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 1.

4.5.7 Register PMOVSCLR

The overflow-flag status clear register.

Contains the status of the overflow bit for the dedicated cycle counter, PMCCNTR, and each of the
implemented event counters PMU_EVCNTRn.

4.5.7 Register PMOVSCLR on page 70 is used together with the 4.5.6 Register PMOVSSET on
page 68 register. It is implemented in hardware with the same underlying state as 4.5.6 Register
PMOVSSET on page 68.

Writing to this register clears overflows as follows: writing a 1 to bit[31] clears overflow for the
cycle counter and writing 1 to bit[0-3] clears overflow from event counter 0-3, respectively.

Reading from this register gives the overflow status.

Table 4-88: Register PMU.PMOVSCLR layout

Bits Link Name Usage Default

[31] CYCLE_CNT_OVF CYCLE_CNT_OVF PMCCNTR overflow clear bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3_OVF EVENT_CNT_3_OVF Event-counter overflow clear bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2_OVF EVENT_CNT_2_OVF Event-counter overflow clear bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1_OVF EVENT_CNT_1_OVF Event-counter overflow clear bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0_OVF EVENT_CNT_0_OVF Event-counter overflow clear bit for PMU_EVCNTR0 0

Field CYCLE_CNT_OVF
PMCCNTR overflow clear bit.

CYCLE_CNT_OVF is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Table 4-89: Field CYCLE_CNT_OVF values

Value Meaning

0 (default) When read, it means the cycle counter has not overflowed. When written, it has no effect.

1 When read, it means the cycle counter has overflowed. When written, it clears the overflow bit to 0.

Field EVENT_CNT_3_OVF
Event-counter overflow clear bit for PMU_EVCNTR3.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

EVENT_CNT_3_OVF is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Table 4-90: Field EVENT_CNT_3_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it clears the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 0.

Field EVENT_CNT_2_OVF
Event-counter overflow clear bit for PMU_EVCNTR2.

EVENT_CNT_2_OVF is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-91: Field EVENT_CNT_2_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it clears the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 0.

Field EVENT_CNT_1_OVF
Event-counter overflow clear bit for PMU_EVCNTR1.

EVENT_CNT_1_OVF is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-92: Field EVENT_CNT_1_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it clears the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 0.

Field EVENT_CNT_0_OVF
Event-counter overflow clear bit for PMU_EVCNTR0.

EVENT_CNT_0_OVF is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Table 4-93: Field EVENT_CNT_0_OVF values

Value Meaning

0
(default)

When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has not overflowed. When written, it has no
effect.

1 When read, it means that 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 has overflowed. When written, it clears the
4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 overflow bit to 0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.5.8 Register PMINTSET

The interrupt-enable set register.

Enables the generation of interrupt requests on overflows from the dedicated cycle counter,
PMCCNTR, and the event counters PMU_EVCNTRn. Reading the register shows which overflow
interrupt requests are enabled.

4.5.8 Register PMINTSET on page 71 is used together with the 4.5.9 Register PMINTCLR on
page 73 register. It is implemented in hardware with the same underlying state as 4.5.9 Register
PMINTCLR on page 73.

Writing to this register enables overflow interrupt detection as follows: writing a 1 to bit[31]
enables overflow interrupts from the cycle counter and writing a 1 to bit[0-3] enables overflow
interrupts from event counter 0-3, respectively.

Reading from 4.5.8 Register PMINTSET on page 71 or 4.5.9 Register PMINTCLR on page
73 gives the same value, which is the overflow enable status of the counters.

Table 4-94: Register PMU.PMINTSET layout

Bits Link Name Usage Default

[31] CYCLE_CNT_INT CYCLE_CNT_INT PMCCNTR overflow interrupt-request enable bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3_INT EVENT_CNT_3_INT Event-counter overflow interrupt-request enable bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2_INT EVENT_CNT_2_INT Event-counter overflow interrupt-request enable bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1_INT EVENT_CNT_1_INT Event-counter overflow interrupt-request enable bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0_INT EVENT_CNT_0_INT Event-counter overflow interrupt-request enable bit for PMU_EVCNTR0 0

Field CYCLE_CNT_INT
PMCCNTR overflow interrupt-request enable bit.

CYCLE_CNT_INT is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Table 4-95: Field CYCLE_CNT_INT values

Value Meaning

0
(default)

When read, it means the cycle-counter overflow interrupt request is disabled. When written, it has no effect.

1 When read, it means the cycle-counter overflow interrupt request is enabled. When written, it enables the cycle count overflow
interrupt request.

Field EVENT_CNT_3_INT
Event-counter overflow interrupt-request enable bit for PMU_EVCNTR3.

EVENT_CNT_3_INT is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-96: Field EVENT_CNT_3_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it enables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_2_INT
Event-counter overflow interrupt-request enable bit for PMU_EVCNTR2.

EVENT_CNT_2_INT is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-97: Field EVENT_CNT_2_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it enables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_1_INT
Event-counter overflow interrupt-request enable bit for PMU_EVCNTR1.

EVENT_CNT_1_INT is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-98: Field EVENT_CNT_1_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it enables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_0_INT
Event-counter overflow interrupt-request enable bit for PMU_EVCNTR0.

EVENT_CNT_0_INT is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Table 4-99: Field EVENT_CNT_0_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it enables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.5.9 Register PMINTCLR

The interrupt-enable clear register.

Disables the generation of interrupt requests on overflows from the dedicated cycle counter,
PMCCNTR, and the event counters PMU_EVCNTRn. Reading the register shows which overflow
interrupt requests are enabled.

4.5.9 Register PMINTCLR on page 73 is used together with the 4.5.8 Register PMINTSET on
page 71 register. It is implemented in hardware with the same underlying state as 4.5.8 Register
PMINTSET on page 71.

Writing to this register disables overflow interrupt detection as follows: writing a 1 to bit[31]
disables overflow interrupts from the cycle counter and writing a 1 to bit[0-3] disables overflow
interrupts from event counter 0-3, respectively.

Reading from 4.5.8 Register PMINTSET on page 71 or 4.5.9 Register PMINTCLR on page
73 gives the same value, which is the overflow enable status of the counters.

Table 4-100: Register PMU.PMINTCLR layout

Bits Link Name Usage Default

[31] CYCLE_CNT_INT CYCLE_CNT_INT PMCCNTR overflow interrupt-request disable bit 0

[30:4] Reserved - - -

[3] EVENT_CNT_3_INT EVENT_CNT_3_INT Event-counter overflow interrupt-request disable bit for PMU_EVCNTR3 0

[2] EVENT_CNT_2_INT EVENT_CNT_2_INT Event-counter overflow interrupt-request disable bit for PMU_EVCNTR2 0

[1] EVENT_CNT_1_INT EVENT_CNT_1_INT Event-counter overflow interrupt-request disable bit for PMU_EVCNTR1 0

[0] EVENT_CNT_0_INT EVENT_CNT_0_INT Event-counter overflow interrupt-request disable bit for PMU_EVCNTR0 0

Field CYCLE_CNT_INT
PMCCNTR overflow interrupt-request disable bit.

CYCLE_CNT_INT is stored in bit[31] and is a 1-bit flag. Its default value is 0.

Table 4-101: Field CYCLE_CNT_INT values

Value Meaning

0
(default)

When read, it means the cycle-counter overflow interrupt-request is disabled. When written, it has no effect.

1 When read, it means the cycle-counter overflow interrupt-request is enabled. When written, it disables the cycle count
overflow interrupt request.

Field EVENT_CNT_3_INT
Event-counter overflow interrupt-request disable bit for PMU_EVCNTR3.

EVENT_CNT_3_INT is stored in bit[3] and is a 1-bit flag. Its default value is 0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-102: Field EVENT_CNT_3_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event counter interrupt request is
enabled. When written, it disables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_2_INT
Event-counter overflow interrupt-request disable bit for PMU_EVCNTR2.

EVENT_CNT_2_INT is stored in bit[2] and is a 1-bit flag. Its default value is 0.

Table 4-103: Field EVENT_CNT_2_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it disables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_1_INT
Event-counter overflow interrupt-request disable bit for PMU_EVCNTR1.

EVENT_CNT_1_INT is stored in bit[1] and is a 1-bit flag. Its default value is 0.

Table 4-104: Field EVENT_CNT_1_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it disables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Field EVENT_CNT_0_INT
Event-counter overflow interrupt-request disable bit for PMU_EVCNTR0.

EVENT_CNT_0_INT is stored in bit[0] and is a 1-bit flag. Its default value is 0.

Table 4-105: Field EVENT_CNT_0_INT values

Value Meaning

0
(default)

When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
disabled. When written, it has no effect.

1 When read, it means that the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 event-counter interrupt request is
enabled. When written, it disables the 4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3 on page 66 interrupt request.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.5.10 Register PMCCNTR_LO

Performance-monitor cycle count low register.

This represents the lower 32 bits of the dedicated 48-bit cycle counter, PMCCNTR.

Table 4-106: Register PMU.PMCCNTR_LO layout

Bits Link Name Usage Default

[31:0] CYCLE_CNT_LO CYCLE_CNT_LO Cycle count low 0x00000000

Field CYCLE_CNT_LO
Cycle count low.

CYCLE_CNT_LO is stored in bits[31:0] and is a 32-bit unsigned integer. Its default value is
0x00000000.

4.5.11 Register PMCCNTR_HI

Performance-monitor cycle count high register.

This represents the higher 16 bits of the dedicated 48-bit cycle counter, PMCCNTR.

Table 4-107: Register PMU.PMCCNTR_HI layout

Bits Link Name Usage Default

[31:16] Reserved - - -

[15:0] CYCLE_CNT_HI CYCLE_CNT_HI Cycle count high 0x0000

Field CYCLE_CNT_HI
Cycle count high.

CYCLE_CNT_HI is stored in bits[15:0] and is a 16-bit unsigned integer. Its default value is 0x0000.

4.5.12 Register PMCAXI_CHAN

Set which AXI channel to monitor.

Monitors for AXI bandwidth (bw) events (0x80-0x89, 0x180-0x189) and AXI latency events
(0xA0-0xA6).

Table 4-108: Register PMU.PMCAXI_CHAN layout

Bits Link Name Usage Default

[31:11] Reserved - - -

[10] BW_CH_SEL_EN BW_CH_SEL_EN Enable bandwidth channel selector: 0=AXI bw events measured for all channels,
1=AXI bw events measured for channel specified by CH_SEL

0x000000

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Bits Link Name Usage Default
[9:8] AXI_CNT_SEL AXI_CNT_SEL Select AXI counter to monitor for latency measurements (0=AXI0 counter0,

1=AXI0 counter1, 2=AXI1 counter 2, 3=AXI1 counter3)
0x000000

[7:4] Reserved - - -

[3:0] CH_SEL CH_SEL Specify the type of traffic for bandwidth or latency measurements
(Read: 0=command traffic, 1=IFM traffic, 2=Weight traffic, 3=Scale+Bias,
4=Mem2Mem traffic - read direction; Write: 8=OFM traffic, 9=Mem2Mem
traffic - write direction)

0x0

Field BW_CH_SEL_EN
Enable bandwidth channel selector: 0=AXI bw events measured for all channels, 1=AXI bw events
measured for channel specified by CH_SEL.

BW_CH_SEL_EN is stored in bit[10] and is a 1-bit unsigned integer. Its default value is 0x000000.

Field AXI_CNT_SEL
Select AXI counter to monitor for latency measurements (0=AXI0 counter0, 1=AXI0 counter1,
2=AXI1 counter 2, 3=AXI1 counter3).

AXI_CNT_SEL is stored in bits[9:8] and is a 2-bit unsigned integer. Its default value is 0x000000.

A maximum of two separate outstanding transaction queues can be connected to each AXI
interface. The counters are used to express the maximum number of outstanding jobs per queue.

Field CH_SEL
Specify the type of traffic for bandwidth or latency measurements (Read: 0=command traffic,
1=IFM traffic, 2=Weight traffic, 3=Scale+Bias, 4=Mem2Mem traffic - Read direction; Write: 8=OFM
traffic, 9=Mem2Mem traffic - Write direction).

CH_SEL is stored in bits[3:0] and is a 4-bit unsigned integer. Its default value is 0x0.

4.6 Command stream
The application processor uses a command stream to issue tasks to the NPU. The command stream
is made from 16-bit commands.

There are two command formats, cmd0 and cmd1. cmd0 is a 32-bit command with no data item.
cmd1 is a 32-bit command followed by a single 32-bit data item. In the command stream, these
commands must be aligned to start on a 32-bit boundary.

Bits[15:0] determine the command name. Bits[31:16] are the command parameter which the
command uses.

The NPU processes commands in the order they are received.

The following table lists the command formats and their differences.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-109: Command stream formats

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bits 9-0 Data

0 0 0 0 0 0 cmd0 No data item

0 1 0 0 0 0 cmd1 32-bit data item payload after the command

All unused combinations of bits[0:15] are reserved.

The following is an example command stream for a Conv2D network with input tensor 8x8x16,
weight tensor 16x2x2x16, stride 2x2, and output tensor 4x4x16. The following example applies to
a configuration with 256 MAC units.

Code: Command: Param: Payload:
0x0130 cmd0.NPU_SET_DMA0_SRC_REGION 0 -
0x4030 cmd1.NPU_SET_DMA0_SRC 0 0x00000000 (0)
0x0131 cmd0.NPU_SET_DMA0_DST_REGION 1 -
0x4031 cmd1.NPU_SET_DMA0_DST 0 0x00000400 (1024)
0x4032 cmd1.NPU_SET_DMA0_LEN 0 0x000002e0 (736)
0x0010 cmd0.NPU_OP_DMA_START 0 -
0x0116 cmd0.NPU_SET_OFM_BLK_HEIGHT_M1 3 -
0x0115 cmd0.NPU_SET_OFM_BLK_WIDTH_M1 3 -
0x0117 cmd0.NPU_SET_OFM_BLK_DEPTH_M1 15 -
0x010d cmd0.NPU_SET_IFM_IB_END 10 -
0x012d cmd0.NPU_SET_AB_START 30 -
0x0124 cmd0.NPU_SET_ACC_FORMAT 0 -
0x0107 cmd0.NPU_SET_IFM_UPSCALE 0 -
0x0100 cmd0.NPU_SET_IFM_PAD_TOP 0 -
0x0101 cmd0.NPU_SET_IFM_PAD_LEFT 0 -
0x0103 cmd0.NPU_SET_IFM_PAD_BOTTOM 0 -
0x0102 cmd0.NPU_SET_IFM_PAD_RIGHT 0 -
0x0121 cmd0.NPU_SET_KERNEL_HEIGHT_M1 1 -
0x0120 cmd0.NPU_SET_KERNEL_WIDTH_M1 1 -
0x0122 cmd0.NPU_SET_KERNEL_STRIDE 7 -
0x4020 cmd1.NPU_SET_WEIGHT_BASE 0 0x00000400 (1024)
0x4021 cmd1.NPU_SET_WEIGHT_LENGTH 0 0x000002e0 (736)
0x0128 cmd0.NPU_SET_WEIGHT_REGION 1 -
0x4022 cmd1.NPU_SET_SCALE_BASE 0 0x000002e0 (736)
0x4023 cmd1.NPU_SET_SCALE_LENGTH 0 0x000000a0 (160)
0x0129 cmd0.NPU_SET_SCALE_REGION 0 -
0x0125 cmd0.NPU_SET_ACTIVATION 0 -
0x0126 cmd0.NPU_SET_ACTIVATION_MIN 0 -
0x0127 cmd0.NPU_SET_ACTIVATION_MAX 255 -
0x0112 cmd0.NPU_SET_OFM_HEIGHT_M1 3 -
0x0111 cmd0.NPU_SET_OFM_WIDTH_M1 3 -
0x0113 cmd0.NPU_SET_OFM_DEPTH_M1 15 -
0x0104 cmd0.NPU_SET_IFM_DEPTH_M1 15 -
0x0109 cmd0.NPU_SET_IFM_ZERO_POINT 128 -
0x010b cmd0.NPU_SET_IFM_HEIGHT0_M1 7 -
0x010c cmd0.NPU_SET_IFM_HEIGHT1_M1 7 -
0x010a cmd0.NPU_SET_IFM_WIDTH0_M1 7 -
0x010f cmd0.NPU_SET_IFM_REGION 1 -
0x4000 cmd1.NPU_SET_IFM_BASE0 0 0x00000000 (0)
0x4001 cmd1.NPU_SET_IFM_BASE1 0 0x00000000 (0)
0x4002 cmd1.NPU_SET_IFM_BASE2 0 0x00000000 (0)
0x4003 cmd1.NPU_SET_IFM_BASE3 0 0x00000000 (0)
0x4006 cmd1.NPU_SET_IFM_STRIDE_C 0 0x00000001 (1)
0x4004 cmd1.NPU_SET_IFM_STRIDE_X 0 0x00000010 (16)
0x4005 cmd1.NPU_SET_IFM_STRIDE_Y 0 0x00000080 (128)
0x0118 cmd0.NPU_SET_OFM_ZERO_POINT 128 -
0x011b cmd0.NPU_SET_OFM_HEIGHT0_M1 3 -

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

0x011c cmd0.NPU_SET_OFM_HEIGHT1_M1 3 -
0x011a cmd0.NPU_SET_OFM_WIDTH0_M1 3 -
0x011f cmd0.NPU_SET_OFM_REGION 1 -
0x4010 cmd1.NPU_SET_OFM_BASE0 0 0x000006e0 (1760)
0x4011 cmd1.NPU_SET_OFM_BASE1 0 0x00000000 (0)
0x4012 cmd1.NPU_SET_OFM_BASE2 0 0x00000000 (0)
0x4013 cmd1.NPU_SET_OFM_BASE3 0 0x00000000 (0)
0x4016 cmd1.NPU_SET_OFM_STRIDE_C 0 0x00000001 (1)
0x4014 cmd1.NPU_SET_OFM_STRIDE_X 0 0x00000010 (16)
0x4015 cmd1.NPU_SET_OFM_STRIDE_Y 0 0x00000040 (64)
0x0114 cmd0.NPU_SET_OFM_PRECISION 0 -
0x0105 cmd0.NPU_SET_IFM_PRECISION 0 -
0x0011 cmd0.NPU_OP_DMA_WAIT 0 -
0x012f cmd0.NPU_SET_BLOCKDEP 3 -
0x0002 cmd0.NPU_OP_CONV 0 -
0x0000 cmd0.NPU_OP_STOP 65535 -

The following is an example command stream for a MaxPool2D with 2x2 kernel and 8x8x16 tensor.
The following example applies to a configuration with 256 MAC units.

Code: Command: Param: Payload:
0x0116 cmd0.NPU_SET_OFM_BLK_HEIGHT_M1 7 -
0x0115 cmd0.NPU_SET_OFM_BLK_WIDTH_M1 7 -
0x0117 cmd0.NPU_SET_OFM_BLK_DEPTH_M1 15 -
0x010d cmd0.NPU_SET_IFM_IB_END 10 -
0x012d cmd0.NPU_SET_AB_START 30 -
0x0124 cmd0.NPU_SET_ACC_FORMAT 0 -
0x0107 cmd0.NPU_SET_IFM_UPSCALE 0 -
0x0100 cmd0.NPU_SET_IFM_PAD_TOP 0 -
0x0101 cmd0.NPU_SET_IFM_PAD_LEFT 0 -
0x0103 cmd0.NPU_SET_IFM_PAD_BOTTOM 1 -
0x0102 cmd0.NPU_SET_IFM_PAD_RIGHT 1 -
0x0121 cmd0.NPU_SET_KERNEL_HEIGHT_M1 1 -
0x0120 cmd0.NPU_SET_KERNEL_WIDTH_M1 1 -
0x0122 cmd0.NPU_SET_KERNEL_STRIDE 0 -
0x0125 cmd0.NPU_SET_ACTIVATION 0 -
0x0126 cmd0.NPU_SET_ACTIVATION_MIN 0 -
0x0127 cmd0.NPU_SET_ACTIVATION_MAX 255 -
0x0112 cmd0.NPU_SET_OFM_HEIGHT_M1 7 -
0x0111 cmd0.NPU_SET_OFM_WIDTH_M1 7 -
0x0113 cmd0.NPU_SET_OFM_DEPTH_M1 15 -
0x0104 cmd0.NPU_SET_IFM_DEPTH_M1 15 -
0x0109 cmd0.NPU_SET_IFM_ZERO_POINT 128 -
0x010b cmd0.NPU_SET_IFM_HEIGHT0_M1 7 -
0x010c cmd0.NPU_SET_IFM_HEIGHT1_M1 7 -
0x010a cmd0.NPU_SET_IFM_WIDTH0_M1 7 -
0x010f cmd0.NPU_SET_IFM_REGION 1 -
0x4000 cmd1.NPU_SET_IFM_BASE0 0 0x00000000 (0)
0x4001 cmd1.NPU_SET_IFM_BASE1 0 0x00000000 (0)
0x4002 cmd1.NPU_SET_IFM_BASE2 0 0x00000000 (0)
0x4003 cmd1.NPU_SET_IFM_BASE3 0 0x00000000 (0)
0x4006 cmd1.NPU_SET_IFM_STRIDE_C 0 0x00000001 (1)
0x4004 cmd1.NPU_SET_IFM_STRIDE_X 0 0x00000010 (16)
0x4005 cmd1.NPU_SET_IFM_STRIDE_Y 0 0x00000080 (128)
0x0118 cmd0.NPU_SET_OFM_ZERO_POINT 128 -
0x011b cmd0.NPU_SET_OFM_HEIGHT0_M1 7 -
0x011c cmd0.NPU_SET_OFM_HEIGHT1_M1 7 -
0x011a cmd0.NPU_SET_OFM_WIDTH0_M1 7 -
0x011f cmd0.NPU_SET_OFM_REGION 1 -
0x4010 cmd1.NPU_SET_OFM_BASE0 0 0x00000400 (1024)
0x4011 cmd1.NPU_SET_OFM_BASE1 0 0x00000000 (0)
0x4012 cmd1.NPU_SET_OFM_BASE2 0 0x00000000 (0)
0x4013 cmd1.NPU_SET_OFM_BASE3 0 0x00000000 (0)
0x4016 cmd1.NPU_SET_OFM_STRIDE_C 0 0x00000001 (1)
0x4014 cmd1.NPU_SET_OFM_STRIDE_X 0 0x00000010 (16)
0x4015 cmd1.NPU_SET_OFM_STRIDE_Y 0 0x00000080 (128)
0x0114 cmd0.NPU_SET_OFM_PRECISION 0 -
0x0105 cmd0.NPU_SET_IFM_PRECISION 0 -

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

0x012f cmd0.NPU_SET_BLOCKDEP 3 -
0x0005 cmd0.NPU_OP_POOL 0 -
0x0000 cmd0.NPU_OP_STOP 65535 -

4.6.1 Non-blocking command types

Commands can be non-blocking, which means that later commands can start before they are
completed.

The following table lists the non-blocking command types and the criteria that must be met for the
command to complete.

Table 4-110: Non-blocking command types

Command Completion criteria

NPU_OP_IRQ An IRQ is raised.

NPU_OP_<KERNEL>

<KERNEL> can be:

• CONV for convolution
operations

• DEPTHWISECONV for depth-
wise convolution operations

• POOL for pooling operations

• ELEMENTWISE for elementwise
operations

The resulting tensor is calculated and written to memory.

4.6.2 Blocking command types

Commands can be blocking, which means that later commands cannot start before these
commands are completed.

The following table lists the blocking command types and the criteria that must be met for the
command to complete.

Table 4-111: Non-blocking command types

Command Completion criteria

NPU_SET_<STATE> The value is written to the appropriate internal state. This value is applied to all following kernel
operations, until a new command overwrites it. New values must not affect operations that are already
in progress.

NPU_OP_STOP The NPU enters a stopped state.

NPU_OP_DMA_START The Direct Memory Access (DMA) instruction is accepted into the internal DMA queue. The DMA
instruction does not need to complete.

NPU_OP_<CONDITION>_WAIT The wait condition is satisfied.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.6.3 Command dependency requirements

When an operation is started, the NPU must know all the input data for it to be valid. If the NPU
does not know all the input data, then the behavior is UNPREDICTABLE.

The NPU_OP_SET_BLOCKDEP command sets the block dependency between NPU kernel
operations.

The NPU_OP_DMA_WAIT command causes the NPU to wait for certain results from previously
started DMA operations to be completed and written to memory. During this wait, the NPU does
not add later commands to the Command queue.

4.6.4 cmd0 commands

cmd0 commands have bits[15:10] = 0. cmd0 bits[9:0] indicate the command. cmd0 commands do not
take additional data.

Use these commands to:

• Perform an action, for example, raising an IRQ or starting an operation.

• Set a state based on the 16-bit parameter value.

The following table lists the cmd0 commands and their actions.

Table 4-112: cmd0 operations

cmd0 Enumerator Parameter Function

0x000 NPU_OP_STOP mask (1) Set BASE_STATUS |= (mask<<16).
(2) Move to stopped state.
(3) Raise IRQ to host (regardless of mask value).

At the point the IRQ is raised, the NPU is stopped and
all operations complete up to and including the STOP
operation.

Operations after the STOP may have been buffered in
the Command queue, but are not started (so no input or
weight data is read).

0x001 NPU_OP_IRQ mask (1) Set BASE_STATUS |= (mask<<16).
(2) Remain in run state.
(3) Raise IRQ to host (regardless of mask value).

At the point the IRQ is raised, all operations are complete
up to and including the IRQ operation. Operations after
the IRQ may have been started (or even completed). At
most, only one IRQ operation can be placed between
an NPU_OP_<KERNEL> command and the following
NPU_OP_<KERNEL> command (see 4.6.1 Non-blocking
command types on page 80 for the definition of
KERNEL).

0x002 NPU_OP_CONV 0 Start stripe with all-layer convolution or deconvolution.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x003 NPU_OP_DEPTHWISE 0 Start stripe width depth-wise convolution or

deconvolution operation.

0x004 - - -

0x005 NPU_OP_POOL mode Start stripe with pooling operation. mode: 0=MaxPool,
1=Average pool, 2=REDUCE_SUM.

0x006 NPU_OP_ELEMENTWISE mode Start stripe with elementwise operation between two
IFMs. mode: 0=Mul, 1=Add, 2=Sub, 3=Min, 4=Max,
5=LReLU, 6=ABS, 7=CLZ, 8=SHR, 9=SHL.

0x007 - - -

0x010 NPU_OP_DMA_START 16*channel Queue new DMA for the given channel.

The NPU contains one user channel. Therefore,
channel=0.

This command blocks until the DMA channel can accept a
new descriptor.

This command is viewed as complete when the DMA has
been queued and does not need to wait for the DMA to
complete. (This is different to other NPU_OP commands
that must have their final results written to memory
before they are considered complete.)

0x011 NPU_OP_DMA_WAIT 16*channel + k Wait for the DMA channel to have k or fewer active
descriptors outstanding.

The NPU contains one user channel. Therefore,
channel=0.

The NPU contains one descriptor per channel. Therefore,
k=0 and the command waits for the single DMA to be
complete. Descriptors are not outstanding if they have
completed, which means that data written to memory and
can be read by the next command.

0x012 NPU_OP_KERNEL_WAIT n=0-3 Wait for n or fewer kernel operations to be remaining
(that is, not complete) before starting the next command.

A kernel operation is Conv, Depthwise, Pool, Elementwise.

This command is typically placed before an
NPU_OP_DMA_START command to prevent the DMA
from starting until a previous kernel operation reading the
memory has completed.

0x013 NPU_OP_PMU_MASK 0 or 1 Enable or disable PMU counting (for debug purposes only)

0x100 NPU_SET_IFM_PAD_TOP 0-127 IFM top pad. Padding is applied after upscale, if
ifm_upscale_mode!=none.

0x101 NPU_SET_IFM_PAD_LEFT 0-127 IFM left pad. Padding is applied after upscale, if
ifm_upscale_mode!=none.

0x102 NPU_SET_IFM_PAD_RIGHT 0-128 IFM right pad. Padding is applied after upscale, if
ifm_upscale_mode!=none.

0x103 NPU_SET_IFM_PAD_BOTTOM 0-128 IFM bottom pad. Padding is applied after upscale if
ifm_upscale_mode!=none.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x104 NPU_SET_IFM_DEPTH_M1 0-65535 Number of input channels for convolution -1.

0x105 NPU_SET_IFM_PRECISION bitfield b0 = activation type 0=unsigned, 1=signed

b1 = reserved for weight size

b[3:2] = activation precision 0=8 bit, 1=16 bit, 2=32 bit
(only available for certain operations)

b[7:6] = IFM format select 0=NHWC or 1=NHCWB16

b[9:8] = IFM scale mode for elementwise ADD and SUB:
0=16-bit OPA/OPB scale, 1=32-bit OPA scale applied to
OPA, 2=32-bit OPA scale applied to OPB

b[15:14] = IFM round mode: 0=double rounding, 2=round
to nearest with 0.5 round to +infinity

0x106 - - -

0x107 NPU_SET_IFM_UPSCALE 0, 1, 2 b[1:0] = ifm_upscale_mode (0=none, 1=2x2 insert nearest,
2=2x2 insert zeros)

0x108 - - -

0x109 NPU_SET_IFM_ZERO_POINT int16 or uint16 IFM zero-point offset. Encoded as int16, if activation is
signed or uint16, if activation is unsigned.

Must be zero for 32-bit IFM and for CLZ operation.

Must be a valid activation value.

0x10A NPU_SET_IFM_WIDTH0_M1 0-65535 IFM Tile 0 and tile 2 (width-1)

0x10B NPU_SET_IFM_HEIGHT0_M1 0-65535 IFM Tile 0 (height-1)

0x10C NPU_SET_IFM_HEIGHT1_M1 0-65535 IFM Tile 1 (height-1)

0x10D NPU_SET_IFM_IB_END 0-48 End of IB0,IB1 buffers in the shared buffer in KB units.
Multiples of 2.

0x10E - - -

0x10F NPU_SET_IFM_REGION 0-7 Index n for IFM access: Region[n] is added to all IFM
addresses.

0x110 - - -

0x111 NPU_SET_OFM_WIDTH_M1 0-65535 OFM width-1 (for the stripe to process)

0x112 NPU_SET_OFM_HEIGHT_M1 0-65535 OFM height-1 (for the stripe to process)

0x113 NPU_SET_OFM_DEPTH_M1 0-65535 OFM depth-1 for convolution

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x114 NPU_SET_OFM_PRECISION bitfield b0 = activation type 0=unsigned, 1=signed

b[2:1] = activation precision type 0=8 bit, 1=16 bit, 2=32
bit (only available for certain operations)

b[7:6] = OFM format select 0=NHWC or 1=NHCWB16

b[8] = scaling, 0=Per channel scale/bias, 1=Global scale
(SET_OFM_SCALE), no bias

b[15:14] = rounding mode, 0=double rounding,
1=truncate towards zero, 2=Natural rounding

0x115 NPU_SET_OFM_BLK_WIDTH_M1 0-31 OFM_BLOCK_WIDTH-1 (see 4.9 Block based operation
on page 110)

0x116 NPU_SET_OFM_BLK_HEIGHT_M1 0-31 OFM_BLOCK_HEIGHT-1 (see 4.9 Block based operation
on page 110)

0x117 NPU_SET_OFM_BLK_DEPTH_M1 3-127 OFM_BLOCK_DEPTH-1 (see 4.9 Block based operation
on page 110)

0x118 NPU_SET_OFM_ZERO_POINT int16 or uint16 OFM zero-point offset. Encoded as int16, if activation is
signed or uint16, if activation is unsigned.

Must be a valid activation value given by
ACTIVATION[15:12].

Must be 0 for 32-bit activation range of for CLZ.

Note:
This can be nonzero, if OFM is 32 bit but
ACTIVATION[15:12] range is 8 bit.

0x119 - - -

0x11A NPU_SET_OFM_WIDTH0_M1 0-65535 OFM Tile 0 and tile 2 (width-1)

0x11B NPU_SET_OFM_HEIGHT0_M1 0-65535 OFM Tile 0 (height-1)

0x11C NPU_SET_OFM_HEIGHT1_M1 0-65535 OFM Tile 1 (height-1)

0x11D - - -

0x11E - - -

0x11F NPU_SET_OFM_REGION 0-7 Index n for OFM access: Region[n] is added to all OFM
addresses

0x120 NPU_SET_KERNEL_WIDTH_M1 0-65535 Set (dilated_kernel_width-1) =
(kernel_width-1)*kernel_x_dilation

0x121 NPU_SET_KERNEL_HEIGHT_M1 0-65535 Set (dilated_kernel_height-1) =
(kernel_height-1)*kernel_y_dilation

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x122 NPU_SET_KERNEL_STRIDE bitfield b0 = (kernel_x_stride – 1)&1 (x stride low bit)

b1 = (kernel_y_stride – 1)&1 (y stride low bit)

b2 = kernel_weight_order (0=depth-first weight order,
1=part kernel-first weight order)

b3 = kernel_x_dilation - 1 (0=no x dilation, 1=x dilation of
x2)

b4 = kernel_y_dilation -1 (0=no y dilation, 1=y dilation of
x2)

b5 = 0 for kernel_split_size=8, 1 for kernel_split_size=4
(8x8 or 4x4 kernel decomposition)

b[8:6] = (kernel_x_stride-1) >> 1 (stride extension bits –
supported stride range is 1 to 3)
b[11:9] = (kernel_y_stride-1)>>1 (stride extension bits –
supported stride range is 1 to 3)

0x123 - - -

0x124 NPU_SET_ACC_FORMAT 0-3 Sets the accumulator format: 0=32-bit integer, 1=40-bit
integer, 2=s5.10 floating point

0x125 NPU_SET_ACTIVATION 0, 3 ,4, 0x10+n 0=none/ReLU, 3=tanh, 4=sigmoid; 0x10+n for 0<=n<8
indicates a LUT operation starting at address n*256 bytes
in the last 2KB page of the shared buffer

b[15:12] = Activation clip range (before table lookup,
set to '0' if table lookup is not used). 0=OFM precision,
2=force to uint8 3=force to int8, 5=force to int16

0x126 NPU_SET_ACTIVATION_MIN int16 or uint16 Lower bound clip for OFM activations – range is the OFM
type range

0x127 NPU_SET_ACTIVATION_MAX int16 or uint16 Upper bound clip for OFM activations – range is the OFM
type range

0x128 NPU_SET_WEIGHT_REGION 0-7 Index n for weight access: Region[n] is added to all
Weight stream offsets

0x129 NPU_SET_SCALE_REGION 0-7 Index n for scale access: Region[n] is added to all scale
stream offsets

0x12A - - -

0x12B - - -

0x12C - - -

0x12D NPU_SET_AB_START 0-48 Start of ACC0,ACC1 buffers in the shared buffer in KB
units. Multiples of 2.

0x12E - - -

0x12F NPU_SET_BLOCKDEP 0-3 Set block number of blocks-dependency between kernel
operations.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x130 NPU_SET_DMA0_SRC_REGION Bitmap If Bit[8]=0, Bit[7:0] = Region number in the range 0<=n<8

of SRC offset

Bit[8] = must be 0 for external

Bit[10:9] = stride mode 0=1D

0x131 NPU_SET_DMA0_DST_REGION Bitmap If Bit[8]=0, Bit[7:0] = Region number in the range 0<=n<8
of DST offset

If Bit[8]=1, Bit[7:1] = 0, Bit[0] = write mask = 1

Bit[8] = select external/internal=0/1

Bit[10:9] = stride mode 0=1D

0x132-0x17F - - -

0x180 NPU_SET_IFM2_BROADCAST bitfield b0 = broadcast H dimension (if set, then any accesses to
IFM2 sets y=0 and IFM2 height=1)

b1 = broadcast W dimension (if set, then any accesses to
IFM2 sets x=0 and IFM2 width=1)

b2 = broadcast C dimension (if set, then any accesses to
IFM2 sets c=0 and IFM2 depth=1)

b6 = operand order 0=IFM2 is second operand B, 1=IFM2
is first operand A.

b7 = broadcast constant given by
NPU_SET_IFM2_SCALAR and so ignore b0-b2

0x181 NPU_SET_IFM2_SCALAR int16 or uint16 IFM2 scalar value at range IFM_PRECISION.
The scalar is encoded with IFM2_ZERO_POINT.

Values are encoded as signed or unsigned 16-bit values
depending on whether IFM2_PRECISION is signed or
unsigned.

0x182-0x184 - - -

0x185 NPU_SET_IFM_PRECISION bitfield b[0] = activation type 0=unsigned, 1=signed – MUST
MATCH IFM

b[3:2] = activation precision 0=8 bit, 1=16 bit, 2=32 bit –
MUST MATCH IFM

b[7:6] = IFM2 format, select 0=NHWC or 1=NHCWB16

0x186-0x188 - - -

0x189 NPU_SET_IFM2_ZERO_POINT int16 or uint16 IFM2 zero-point offset. Encoded as int16, if activation is
signed or uint16, if activation is unsigned.

Must be zero for 32-bit IFM.

Must be a valid activation value.

0x18A NPU_SET_IFM2_WIDTH0_M1 0-65535 IFM2 Tile 0 and tile 2 (width-1)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd0 Enumerator Parameter Function
0x18B NPU_SET_IFM2_HEIGHT0_M1 0-65535 IFM2 Tile 0 (height-1)

0x18C NPU_SET_IFM2_HEIGHT1_M1 0-65535 IFM2 Tile 1 (height-1)

0x18D NPU_SET_IFM2_IB_START 0-48 Start of IB0, IB1 buffers for IFM2 in the shared buffer. In
KB units, multiples of 2.

0x18E - - -

0x18F NPU_SET_IFM2_REGION 0-7 Index n for IFM2 access: Region[n] is added to all IFM2
addresses

4.6.5 cmd1 commands

cmd1 commands have bits[15:14] = 1. cmd1 bits[9:0] indicate the command. cmd1 commands take a
payload data item of 32 bits in addition to the 16-bit parameter field.

About the Parameter field
Where payload items in the following table give an address offset, stride, or data length, the
value is in bytes.

The following table lists the cmd1 commands and their functionality.

Address extension bits are supported, but for those ending with '_32' the
Ethos™-U55 NPU supports only 32-bit addresses.

Table 4-113: cmd1 operations

cmd1 Enumerator Parameter Payload data

0x000 NPU_SET_IFM_BASE0 extu_47_32 IFM tile0 byte offset (top-left tile) from IFM_REGION start

0x001 NPU_SET_IFM_BASE1 extu_47_32 IFM tile1 byte offset (top-right tile) from IFM_REGION
start

0x002 NPU_SET_IFM_BASE2 extu_47_32 IFM tile2 byte offset (bottom-left tile) from IFM_REGION
start

0x003 NPU_SET_IFM_BASE3 extu_47_32 IFM tile3 byte offset (bottom-right tile) from IFM_REGION
start

0x004 NPU_SET_IFM_STRIDE_X exts_47_32 IFM byte stride between horizontal values

0x005 NPU_SET_IFM_STRIDE_Y exts_47_32 IFM byte stride between vertical values

0x006 NPU_SET_IFM_STRIDE_C exts_47_32 IFM byte stride between channel blocks (of 16 bytes each
block)

0x007-0x00F - - -

0x010 NPU_SET_OFM_BASE0 extu_47_32 OFM tile0 byte offset (top-left tile) from OFM_REGION

0x011 NPU_SET_OFM_BASE1 extu_47_32 OFM tile1 byte offset (top-right tile) from OFM_REGION

0x012 NPU_SET_OFM_BASE2 extu_47_32 OFM tile2 byte offset (bottom-left tile) from
OFM_REGION

0x013 NPU_SET_OFM_BASE3 extu_47_32 OFM tile3 byte offset (bottom-right tile) from
OFM_REGION

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd1 Enumerator Parameter Payload data
0x014 NPU_SET_OFM_STRIDE_X exts_47_32 OFM byte stride between horizontal values

0x015 NPU_SET_OFM_STRIDE_Y exts_47_32 OFM byte stride between vertical values

0x016 NPU_SET_OFM_STRIDE_C exts_47_32 OFM byte stride between channel blocks (of 16 bytes
each block)

0x017-0x01F - - -

0x020 NPU_SET_WEIGHT_BASE extu_47_32 Weight stream byte offset in WEIGHT_REGION

0x021 NPU_SET_WEIGHT_LENGTH 0 Weight stream byte length (unsigned 32 bits)

0x022 NPU_SET_SCALE_BASE extu_47_32 Scale and bias stream input byte offset from
SCALE_REGION

0x023 NPU_SET_SCALE_LENGTH 0 Scale and bias stream input byte length (unsigned 20 bits)

0x024 NPU_SET_OFM_SCALE shift (6-bit
unsigned)

Unsigned scale (32 bit). Used by average pool with pad=0,
elementwise MUL, ADD, SUB, ABS.
Note:
For 32-bit operations scale is not applied but shift is.

0x025 NPU_SET_OPA_SCALE shift (6-bit
unsigned)

Unsigned input scale. The format depends on the
IFM_PRECISION register:

• If IFM scale mode is 0, then shift is ignored and scale
is 16 bit.

• If IFM scale mode is 1 or 2, then shift is 6 bit and
scale is 32 bit or 16 bit, respectively.

0x026 NPU_SET_OPB_SCALE Reserved Unsigned input scale. The format depends on the
IFM_PRECISION register:

• If IFM scale mode is 0, then scale is 16 bit.

• If IFM scale mode is 1 or 2, then this register is not
used.

0x027-0x02F - - -

0x030 NPU_SET_DMA0_SRC extu_47_32 DMA user channel 0 source byte offset from
DMA0_SRC_REGION

0x031 NPU_SET_DMA0_DST extu_47_32 DMA user channel 0 destination byte offset from
DMA0_DST_REGION

0x032 NPU_SET_DMA0_LEN extu_47_32 DMA user channel 0 transfer length in bytes for ID mode.

0x033 NPU_SET_DMA0_SKIP0 extu_47_32 Byte distance to skip after each inner (1D) transfer
(2D/3D mode), any alignment

0x034 NPU_SET_DMA0_SKIP1 extu_47_32 Byte distance to skip after each 2D transfer (3D mode),
any alignment

0x035-0x03F - - -

0x080 NPU_SET_IFM2_BASE0 extu_47_32 IFM2 tile0 byte offset (top-left tile) from IFM2_REGION
start

0x081 NPU_SET_IFM2_BASE1 extu_47_32 IFM2 tile1 byte offset (top-right tile) from IFM2_REGION
start

0x082 NPU_SET_IFM2_BASE2 extu_47_32 IFM2 tile2 byte offset (bottom-left tile) from
IFM2_REGION start

0x083 NPU_SET_IFM2_BASE3 extu_47_32 IFM2 tile3 byte offset (bottom-right tile) from
IFM2_REGION start

0x084 NPU_SET_IFM2_STRIDE_X exts_47_32 IFM2 byte stride between horizontal values

0x085 NPU_SET_IFM2_STRIDE_Y exts_47_32 IFM2 byte stride between vertical values

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

cmd1 Enumerator Parameter Payload data
0x086 NPU_SET_IFM2_STRIDE_C exts_47_32 IFM2 byte stride between channel blocks (of 16 bytes per

block)

0x087-0x08F - - -

0x090 NPU_SET_WEIGHT1_BASE extu_47_32 Weight stream byte offset in WEIGHT_REGION

0x091 NPU_SET_WEIGHT1_LENGTH 0 Weight stream byte length (unsigned 32 bits)

0x092 NPU_SET_SCALE1_BASE extu_47_32 Scale and bias stream input byte offset from
SCALE_REGION

0x093 NPU_SET_SCALE1_LENGTH 0 Scale and bias stream input byte length (unsigned 20 bits)

0x094-0x09F - - -

4.7 Weight stream format
The weight stream format encodes a sequence of signed weight values in the range -255 to +255.
The weights are stored in a lossless compressed format.

The compression encodes sequences of zeros efficiently. Nonzero weight values are compressed
using Golomb-Rice coding and a configurable lookup table. The weight stream is made from several
bitstream slices, a slice header, and some Variable Length Coded (VLC) symbols. The VLC symbols
are grouped into chunks. For each slice, the compression parameters are specified in the slice
header and then kept for the duration of the slice.

4.7.1 Bit order convention

In the weight stream, all bits are stored in ascending bit number order. The LSB is therefore the first
bit read in a byte.

Syntax elements are stored with the LSB first. Therefore, writing 0b10010 or 0x12, then 0b1011
or 0xB, then 0b1010101 or 0xAB, stores 0b10101011 01110010 from MSB to LSB. Therefore,
the content of the first byte is 0b01110010 or 0x72, and the content of the second byte is
0b10101011 or 0xAB.

4.7.2 Weight stream structure and slice header syntax

The slice header indicates to the NPU when to switch coding mode. Using an extended header, the
slice header can optionally be used to reload the palette (lookup table).

The encoder decides the frequency of slice headers. A higher frequency is a trade-off between
improving the compression ratio when switching coding mode and the cost of inserting a header.
Adding a slice header also affects the decoding throughput, particularly when a header signals a
reload of the palette.

The following figure shows an example weight stream payload.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Figure 4-1: Example weight stream payload

Header Palette Chunks Header Chunks

The following example specifies the high-level weight bitstream structure and the slice header
syntax. The number of bits used in the bitstream is listed next to each symbol.

weight_stream() { // -
 while(!end_of_stream()) { // -
 zdiv // 3 bit
 if (zdiv == 7) { // -
 while (!byte_aligned()) // -
 bytealign // 1 bit
 } else { // -
 slice_header() // -
 chunks() // -
 } // -
 } // -
 assert(word_aligned()) // -
} // -

slice_header() { // -
 slicelen // 15 bits
 slice_length = slicelen + 1 // -
 wdiv // 3 bits
 wtrunc // 1 bit
 newpal // 1 bit
 if (newpal) { // -
 dirofs // 5 bits
 palsize // 5 bits
 palbits // 3 bits
 palette_size = palsize==0 ? 0 : palsize + 1 // -
 palette_bits = palbits + 2 // -
 for (i = 0; i <palette_size; i++) // -
 palette[I] // pallette_bits
 } // -
} // -

The byte_aligned() function returns true if the current bit position is on a byte
boundary, otherwise the return value is false. Similarly, the word_aligned()
function returns true if the current bit position is on a 128-bit boundary. The
end_of_stream() function returns true if the weight stream has reached the end.

The following table lists the symbols in this bitstream and their meanings.

Table 4-114: Bitstream symbols

Symbol Valid
values

Meaning

zdiv 0-3,
6, or
7

0-3 Specifies the zero-run GRC divisor to be 1<<zdiv.
6 Indicates that zero run compression is not used for the slice.
7 Indicates that several bits follow to byte-align the next syntax element. This is used at the end of the

weight stream to make sure the weight stream has a length that is a multiple of 128-bit words.

bytealign 1 Padding used to align the end of the stream. Must have the value 1.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Symbol Valid
values

Meaning

slicelen,
slice_length

All Number of weights in this slice. In alternate mode, this is the number of nonzero weights.

wdiv 0-5 or
7

Weight GRC divisor. Possible values are:

0-5 Specifies the weight index GRC divisor to be 1<<wdiv.
7 Uncompressed mode

wtrunc All If this is set, the weight GRC unary length is truncated to 2.

newpal All If this is set, a new palette mode is configured. If this is not set, then dirofs, palsize, palbits, and
palette[i] keep the values from the previous slice. This must be set for the first slice in a stream.

dirofs All Direct mode offset. For more information about direct mode, see 4.7.3.1 Palette mode and direct mode on page
91.

palsize,
palette_size

All Indicates the number of entries in the palette. A value of 0 means direct mode where the palette is not used.

palbits,
palette_bits

All If the palette is used (palette_size>0), then palette_bits indicates the precision in bits of each palette
entry.

In direct mode (palette_size==0), then palette_bits indicates the precision used in uncompressed
mode.

palette[i] All Weight value for palette entry with index i. The weight value is stored in sign-magnitude format. The LSB of
palette[i] is the sign and the remainder of the bits (bit palette_bits-1 down to bit 1) indicate the absolute
level.

The weight value is calculated with the following formula:

weight_value = palette[i] & 1 ? -(palette[i]>>1) : (palette[i]>>1)

4.7.3 Coding modes

There are a few different coding modes.

4.7.3.1 Palette mode and direct mode

The weight stream encodes compressed weight indices. A weight index is a 9-bit unsigned integer
in the range 0 to 511 which represents different weight values.

If the weight index is less than palette_size, the weight index is used as an index into the palette,
and the weight value is found in the palette entry for that index. Otherwise (if the weight index is
greater than or equal to the palette_size), the weight value is calculated directly from the weight
index using a formula as indicated below. The first mode is called palette mode and the latter mode
is called direct mode.

if (weight_index < palette_size)
 tmp = palette[weight_index]
else
 tmp = weight_index - palette_size + dirofs
weight_value = tmp&1 ? –(tmp>>1) : +(tmp>>1)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.7.3.2 Weight index coding

Weight indices are either Golomb-Rice coded or uncompressed as indicated by wdiv.

4.7.3.2.1 Golomb-Rice coding

In Golomb-Rice coding, the weight index is represented as a quotient and a remainder.

Golomb-Rice coding is represented as follows:

wq = weight_index >> wdiv
wr = weight_index & ((1<<wdiv)-1)

The quotient wq must be less than or equal to 31. If wtruncis is set, then wqmust be less than or
equal to 2. It is the responsibility of the encoder to select the wdiv parameter so that this is the
case. The quotient is unary coded in the bitstream and the remainder is stored as an unsigned
binary in wdiv bits. Unary coding is a variable length coding where numbers are coded as zero-
terminated strings of ones as follows:

Table 4-115: Example of unary coding structure

wq Unary coding

0 0

1 10

2 110

3 1110

… …

31 11111111111111111111111111111110

If truncated coding (wtrunc) is set, the coding is as follows:

Table 4-116: Truncated unary coding

wq Unary coding

0 0

1 10

2 11

The unary part is coded in the wunary0 and wunary1 syntax elements and the remainder is encoded
in the wremain syntax element as described later.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

4.7.3.2.2 Uncompressed coding

If wdiv indicates uncompressed coding, the weight_index is coded directly as an unsigned binary
integer.

The number of bits used, uncompressed_bits, is derived from the palette size when the palette is
non-empty. If the palette is empty, then palette_bits is repurposed to indicate the uncompressed
precision. This behavior is summarized in the following formula:

uncompressed_bits = palette_size>0 ? ceil(log2(palette_size)) : palette_bits

The uncompressed weight index is coded in the wremain syntax element as described later.

4.7.3.3 Alternating mode (zero-run coding)

If zdiv<4, alternating mode is enabled. This mode is beneficial if weights with a value of 0 are
frequent in the weight stream.

Let n be the number of nonzero weight values and let the array weight_values (of length n) be the
sequence of nonzero weight values. Let the array zruns (of length n+1) be the sequence of zero
run lengths between the nonzero weights (zruns[0] is the initial zero run length and zruns[n] is
the ending zero run length). For example, consider the following weight sequence:

 0, 5, 6, 0, 0, 0, 7, 0

You then code the following:

n = 3
weight_values = {5, 6, 7}
zruns = {1, 0, 3, 1}

From the prior code, the original weight sequence can be reconstructed.

The weights values and the zrun values are potentially coded in multiple slices. The initial zero run
is only coded for slices with newpal set (and in particular for the first slice in the weight stream,
since the first slice must have newpal set). A slice is only allowed to change between alternating
and non-alternating coding if newpal is set. So, a slice that does not set newpal must be of the same
kind (alternating or non-alternating) as the previous slice.

The following formulas give the number of coded weights values and the number of zrun values in
a slice.

n_weight_values = slice_length
n_zruns = slice_length + newpal

For example, say we have 3 slices and all of them are coded using alternating mode and assume
that newpal is set for slice 1 and slice 3

0, 5, 6, 0, 0, 0, 7, 0, 8, 9, 10, 0, 11, 12, 13, 14, 15

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

<-- slice 1 ---> <-- slice 2 ----> <-- slice 3 ----->

then we code

Slice 1 (newpal=1):
 slice_length = 2
 weight_values = {5, 6 }
 zruns = {1, 0, 3 }
Slice 2 (newpal=0):
 slice_length = 4
 weight_values = {7, 8, 9, 10 }
 zruns = {1, 0, 0, 1 }
Slice 3 (newpal=1):
 slice_length = 5
 weight_values = {11, 12, 13, 14, 15 }
 zruns = {0, 0, 0, 0, 0, 0 }

The nonzero weight values are coded using the direct and palette modes described in previous
sections. The zero run values are Golomb-Rice coded using 1<<zdiv as divisor, so, each zero run
value is represented as a quotient and a remainder as follows:

zq = zrun >> zdiv
zr = zrun & ((1<<zdiv)-1)

Note that unlike for wq, there is no upper bound for zq. That means zero runs of arbitrary length
can be coded.

4.7.4 Chunk syntax

There is a specific chunk syntax structure.

After the slice header follows some chunks to encode the weight indices and, if alternating mode,
the zero runs that belong to the slice. Each chunk encodes from 0-12 weight indices and from 0-12
zero run values. These values are generally not the same number. The reason for this is that the
number of values depends on the quotient values, that is, the unary lengths. If the unary lengths
are long, then fewer values fit in the chunk compared to if the unary length is short.

The number of chunks in the slice is not known in advance since this number depends on the
weight and zrun values.

In alternating mode, a sort of flow control is used to make sure the number of coded weight indices
and zrun values are roughly the same. This is achieved by tracking a balance (number of weight
indices minus number of zrun values so far). If the balance is greater than or equal to 8, then only
zrun values are included in the chunk (so that zrun can catch up). Similarly, if the balance is less
than 0, then only weight indices are included in the chunk. If the balance is between 0 and 7, then
both weights and zrun values are included in the chunk.

The Golomb-Rice remainders are pipelined to the chunk after the chunk containing the
corresponding quotient values.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The chunk bitstream syntax and parsing process are described below. The output of the process is
the weight_indices and the zruns arrays.

chunks() { // -
 w_cnt = slice_length // -
 z_cnt = slice_length + new_pal // -
 zunary_len = zdiv<3 ? 12 : 8 // -
 alternating_mode = zdiv<4 // -
 uncompressed_mode = wdiv==7 // -
 wremain_bits = uncompressed_mode ? uncompressed_bits : wdiv // -
 uncompressed_per_chunk = uncompressed_bits<=5 ? 12 : 8 // -
 wq = 0 // -
 wq_i = 0 // -
 wr_i = 0 // -
 zq = 0 // -
 zq_i = 0 // -
 zr_i = 0 // -
 prev_w_enable=0 // -
 prev_z_enable=0 // -
 do { // -
 // In alternating mode, make sure the rate of weight indices
 // and zrun are kept about the same. // -
 balance = wq_i - zq_i // -
 w_enable = (balance<8 || !alternating_mode) && wq_i < w_cnt // -
 z_enable = balance>=0 && alternating_mode && zq_i < z_cnt // -
 if (w_enable && !uncompressed_mode) // -
 wunary0 // 12 bits
 if (z_enable) { // -
 zunary // zunary_len
 for(i=0; i<zunary_bits; i++) { // -
 if ((zunary>>i)&1)) { // -
 zq++ // -
 } else { // -
 zruns[zq_i++] = zq<<zdiv // -
 zq=0 // -
 } // -
 } // -
 } // -
 if (w_enable && !uncompressed_mode) { // -
 wunary1_len = 0 // -
 for(i=0; i<12; i++) // -
 if ((wunary0>>i)&1 || wtrunc) // -
 wunary1_len++ // -
 wunary1 // wunary1_len
 for(i=0, j=0; i<12 && wq_i<w_cnt; i++) { // -
 c=0 // -
 if ((wunary0>>i)&1) { // -
 c = 1 + ((wunary1>>j)&1) // -
 j++ // -
 } // -
 wq+=c // -
 if (c<2 || wtrunc) { // -
 assert(wq<32) // -
 weight_indices[wq_i++] = wq<<wdiv // -
 wq=0 // -
 } // -
 } // -
 } // -
 if (w_enable && uncompressed_mode) { // -
 for(i=0; i<uncompressed_per_chunk && wq_i<w_cnt; i++) { // -
 weight_indices[wq_i++] = 0 // -
 } // -
 } // -
 // Remainders corresponding to the quotients
 // in the previous chunk // -
 if (prev_w_enable) { // -
 while(wr_i < prev_wq_i) { // -
 wremain // wremain_bits
 weight_indices[wr_i++] += wremain // -

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

 } // -
 } // -
 if (prev_z_enable) { // -
 while(zr_i < prev_zq_i) { // -
 zremain // zdiv
 zruns[zr_i++] += zremain // -
 } // -
 } // -
 prev_w_enable = w_enable // -
 prev_wq_i = wq_i // -
 prev_z_enable = z_enable // -
 prev_zq_i = zq_i // -
 } while(prev_w_enable || prev_z_enable) // -

4.7.5 Weight blocks and ordering

The Ethos™-U55 NPU must get weights in a certain order to function correctly. This process is
described in this section.

The weights are also compressed, as described in section 4.7 Weight stream format on page 89.
This section describes how the 1D array, that is the input to the weight encoder, is ordered.

Overview
The weights are not only reordered, padding is also inserted to align to full weight blocks that the
weight decoder works on. Here padding is done by inserting weights that are 0 into the weight
stream. Therefore, unless the stripe dimensions align perfectly to the internal work blocks of the
NPU, the uncompressed weight stream is larger than the original weights.

The ordering is described below in pseudocode as nested loops. It is divided into depth-wise
convolution, normal convolution with depth-first order, and normal convolution with part-kernel-
first order, although they are in most ways similar where, for example, depth-wise with only some
exception using the same order as part-kernel-first convolution, but removing the loops used to
traverse ifm depth.

Depth-wise convolution
Table 4-117: Depth-wise convolution weight ordering

Inputs/outputs Description Range

Input

weights 3D array of 9-bit signed weights in 2's complement

Dimensions:

[ofm-z][ifm_z][kernel_x][kernel_y]

[-255..255]

Stripe-dependent input

ofm_depth Number of ofm channels [1..65536]

ofm_block_depth Number of ofm channels per block [1..128]

kernel_width Kernel width (before dilation) [1..65536]

kernel_height Kernel height (before dilation) [1..65536]

kernel_x_dilation Kernel x dilation by 2 enabled Boolean

kernel_y_dilation Kernel y dilation by 2 enabled Boolean

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Inputs/outputs Description Range

kernel_split_size Kernel decomposition size [4,8]

Configuration-dependent input

ublk_depth Microblock depth [4,8]

Output

weight_stream 1D array of 9-bit signed weights [-255..255]

Example code of weight ordering for depth-wise convolution.

decomp_w = kernel_split_size
if (kernel_x_dilation)
 decomp_w = decomp_w / 2
decomp_h = kernel_split_size
if (kernel_y_dilation)
 decomp_h = decomp_h / 2
w_idx = 0
for (blk_z = 0; blk_z < ofm_depth; blk_z += ofm_block_depth)
 for (kernel_x = 0; kernel_x < kernel_width; kernel_x += decomp_h)
 for (kernel_y = 0; kernel_y < kernel_height; kernel_y += decomp_w)
 subkernel_w = min(kernel_width - kernel_x, decomp_w)
 subkernel_h = min(kernel_height - kernel_y, decomp_h)
 subkernel_size = ((subkernel_w * subkernel_h + 3) / 4) * 4
 blk_d = min(ofm_block_depth, ofm_depth - blk_z)
 for (ublk_z = 0; ublk_z < blk_d; ublk_z += ublk_depth)
 for (kernel_i = 0; kernel_i < subkernel_size; kernel_i++)
 subkernel_x = kernel_i % subkernel_width
 subkernel_y = kernel_i / subkernel_width
 for (z = 0; z < ublk_depth; z++)
 kx = kernel_x + subkernel_x
 ky = kernel_y + subkernel_y
 ofm_z = blk_z + ublk_z + z
 padding = False
 if (subkernel_y = subkernel_height ||
 ofm_z = ofm_depth)
 weight_stream[w_idx++] = 0
 else
 weight_stream[w_idx++] = weights[ofm_z][ky][kx]

Convolution - depth-first weight order
Table 4-118: Depth-first weight ordering

Inputs/outputs Description Range

Input

weights 4D array of 9-bit signed weights in 2's complement

Dimensions:

[ofm-z][ifm_z][kernel_x][kernel_y]

[-255..255]

Stripe-dependent input

ofm_depth Number of ofm channels [1..65536]

ofm_block_depth Number of ofm channels per block [1..128]

kernel_width Kernel width (before dilation) [1..65536]

kernel_height Kernel height (before dilation) [1..65536]

kernel_x_dilation Kernel x dilation by 2 enabled Boolean

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Inputs/outputs Description Range

kernel_y_dilation Kernel y dilation by 2 enabled Boolean

kernel_split_size Kernel decomposition size [4,8]

ifm_depth Number of IFM channels [1..65536]

ifm_bitdepth Bit depth for IFM elements [8,16]

Configuration-dependent input

ublk_depth Microblock depth [4,8]

Output

weight_stream 1D array of 9-bit signed weights in 2's complement [-255..255]

Example code for depth-first weight ordering.

decomp_w = kernel_split_size
if (kernel_x_dilation)
 decomp_w = decomp_w / 2
decomp_h = kernel_split_size
if (kernel_y_dilation)
 decomp_h = decomp_h / 2
ifm_block_depth = 32
if (ifm_bitdepth == 16)
 ifm_block_depth = 16
w_idx = 0
for (blk_z = 0; blk_z < ofm_depth; blk_z += ofm_block_depth)
 for (iblk_z = 0; iblk_z < ifm_depth; iblk_z += ifm_block_depth)
 for (kernel_x = 0; kernel_x < kernel_width; kernel_x += decomp_h)
 for (kernel_y = 0; kernel_y < kernel_height; kernel_y += decomp_w)
 subkernel_width = min(kernel_width - kernel_x, decomp_w)
 subkernel_height = min(kernel_height - kernel_y, decomp_h)
 subkernel_size = subkernel_width * subkernel_height
 blk_d = min(ofm_block_depth, ofm_depth - blk_z)
 for (ublk_z = 0; ublk_z < blk_d; ublk_z += ublk_depth)
 for (kernel_i = 0; kernel_i < subkernel_size; kernel_i++)
 subkernel_x = kernel_i % subkernel_width
 subkernel_y = kernel_i / subkernel_width
 for (iublk_z = 0; iublk_z < ifm_block_depth; iublk_z += 8)
 for (z = 0; z < ublk_depth; z++)
 for (iz = 0; iz < 8; iz++)
 kx = kernel_x + subkernel_x
 ky = kernel_y + subkernel_y
 ifm_z = iblk_z + iublk_z + iz
 ofm_z = blk_z + ublk_z + z
 if (ifm_z >= ifm_depth ||
 ofm_z >= ofm_depth)
 weight_stream[w_idx++] = 0
 else
 weight_stream[w_idx++] = weights[ofm_z][ifm_z][ky][kx]

Convolution - part-kernel-first weight order
Table 4-119: Part-kernel-first weight ordering

Inputs/outputs Description Range

Input

weights 4D array of 9-bit signed weights in 2's complement

Dimensions:

[ofm-z][ifm_z][kernel_x][kernel_y]

[-255..255]

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Inputs/outputs Description Range

Stripe-dependent input

ofm_depth Number of ofm channels [1..65536]

ofm_block_depth Number of ofm channels per block [1..128]

kernel_width Kernel width (before dilation) [1..65536]

kernel_height Kernel height (before dilation) [1..65536]

kernel_x_dilation Kernel x dilation by 2 enabled Boolean

kernel_y_dilation Kernel y dilation by 2 enabled Boolean

kernel_split_size Kernel decomposition size [4,8]

ifm_depth Number of IFM channels [1..65536]

ifm_bitdepth Bit depth for IFM elements [8,16]

Configuration-dependent input

ublk_depth Microblock depth [4,8]

Output

weight_stream 1D array of 9-bit signed weights in 2's complement [-255..255]

Example code for part-kernel-first weight ordering.

decomp_w = kernel_split_size
if (kernel_x_dilation)
 decomp_w = decomp_w / 2
decomp_h = kernel_split_size
if (kernel_y_dilation)
 decomp_h = decomp_h / 2
ifm_block_depth = 32
if (ifm_bitdepth == 16)
 ifm_block_depth = 16
w_idx = 0
for (blk_z = 0; blk_z < ofm_depth; blk_z += ofm_block_depth)
 for (iblk_z = 0; iblk_z < ifm_depth; iblk_z += ifm_block_depth)
 for (kernel_x = 0; kernel_x < kernel_width; kernel_x += decomp_h)
 for (kernel_y = 0; kernel_y < kernel_height; kernel_y += decomp_w)
 subkernel_width = min(kernel_width - kernel_x, decomp_w)
 subkernel_height = min(kernel_height - kernel_y, decomp_h)
 subkernel_size = subkernel_width * subkernel_height
 if (ifm_bitdepth == 16)
 subkernel_size = ((subkernel_size + 1) / 2) * 2
 if (ifm_bitdepth == 8)
 subkernel_size = ((subkernel_size + 3) / 4) * 4
 iblk_d = min(16, ifm_depth - iblk_z)
 for (iublk_z = 0; iublk_z < iblk_d; iublk_z += 8)
 blk_d = min(ofm_block_depth, ofm_depth - blk_z)
 for (ublk_z = 0; ublk_z < blk_d; ublk_z += ublk_depth)
 for (kernel_i = 0; kernel_i < subkernel_size; kernel_i++)
 subkernel_x = kernel_i % subkernel_width
 subkernel_y = kernel_i / subkernel_width
 for (z = 0; z < ublk_depth; z++)
 for (iz = 0; iz < 8; iz++)
 kx = kernel_x + subkernel_x
 ky = kernel_y + subkernel_y
 ifm_z = iblk_z + iublk_z + iz
 ofm_z = blk_z + ublk_z + z
 if (subkernel_y = subkernel_height ||
 ifm_z = ifm_depth ||
 ofm_z = ofm_depth)
 weight_stream[w_idx++] = 0
 else

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

 weight_stream[w_idx++] = weights[ofm_z][ifm_z][ky][kx]

4.8 Operators and performance
This section provides information on supported data types, operators, and operations, and details
the convolution and elementwise performance of the Ethos™-U55 NPU.

4.8.1 Supported data types and operators

The NPU design process supports the following data types and operators to enable a range of
operations. The command-stream generator can construct additional operators.

Data types
The following data types and formats are supported.

Table 4-120: Supported data types

Data type Range / values

Unsigned 8-bit activations with unsigned 8-bit weights. These allow unsigned zero point of range 0-255 on
both activations and weights on a per-tensor basis.

Signed 8-bit activations with signed 8-bit weights. These allow signed zero point of range -128 to +127 on
activations per tensor, but not zero point on weights (weights are symmetric).

Supported activation and
weight combinations

Signed 16-bit activations with signed 8-bit weights. Both activations and weights are symmetric (zero point is
not supported).

Output-channel bias-and-
scale activations

8-bit activations per output-channel bias and scale
16-bit activations per output-channel bias and scale

Accumulator formats 32-bit accumulators, 40-bit accumulators, 16-bit floating point (s5.10) accumulators

Bit sizes 8x16-bit operations run at half the speed of 8x8-bit operations.

Tensor dimensions Tensor height range 1–65536.
Tensor width range 1–65536.
Tensor depth range 1–65536.

The zero-point data type and range must match the corresponding weight or
activation data type and range. For example:

• For int8_t activations, the zero_point is also int8_t and both are in the range
[-128, 127]. The minimum value of the range activation-zero_point is -128 -
(+127) = -255 and the maximum value is +127 - (-128) = +255.

• For uint8_t activations, the zero_point is also uint8_t and both are in the range
[0,255]. The minimum value of the range activation-zero_point is 0 - (+255) =
-255 and the maximum value is +255 - (0) = +255.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The tensor size is limited by available memory; therefore, tensor dimensions cannot
all have maximum values at the same time.

Operators
The command-stream generator can combine features of the NPU to create the following
additional operators.

Table 4-121: Command-stream generated operators

Operator Construction

Concat The Concatenation operator is constructed by using strides to lay out tensors.

ExpandDims The ExpandDims operator does not move data for packed NHWC, but adds a '1' dimension.

GRU The Gated Recurrent Unit (GRU) operation is constructed from vector products and point-wise MUL, ADD, and SUB.

Identity Identity can be realized as a 1x1 average pool with a 1x1 stride. This can be useful for rearranging data.

Logistic This is a different name for sigmoid activation, both are 1/(1+exp(-x)).

LSTM The Long Short-Term Memory (LSTM) operation is constructed from vector products and point-wise MUL, ADD, and
SUB.

Pack Same as Stack (see below).

Reshape The Reshape operator does not move data for packed NHWC, but reinterprets the dimensions.

Split The Split operator is the inverse of Concatenate and can be constructed by using strides to extract a subtensor.

Squeeze The Squeeze operator does not move data for packed NHWC, but removes a '1' dimension.

Stack The Stack operator is constructed by using strides. For example, stack NxHWC tensors to obtain one NHWC
tensor.

Unpack Same as Unstack (see below).

Unstack The inverse of Stack. This can be constructed by using strides to extract the lower dimension subtensors.

Resize_Bilinear For a bilinear x2 upscale, this can be achieved by performing a nearest-neighbor upscale combined with a 2x2
average pool.

BatchRenorm Average pool 1x1 with per-channel scale and bias to rescale data at inference time with fixed scaling only.

StridedSlice, 1-
strides only

StridedSlice with strides of 1 extracts a subtensor and can be implemented in NHWC format. (StridedSlice with
strides not equal to 1 are not supported.)

4.8.2 Operations

The following tables provide details of parameters that enable a number of convolution, depth-wise
convolution, pooling, vector-product, elementwise, and reduction operations.

Convolution operations
A convolution has a weight matrix of size HxWxICxOC

where

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

HxWxIC
is the size of the convolution kernel,

IC
the number of input channels, and

OC
the number of convolutions to apply (= number of output channels).

Table 4-122: Convolution operations

Parameter Range / values

Kernels 1 <= kernel_x*kernel_y <= 64*64
1 <= kernel_y <= 64
(kernel limit applies after any kernel dilation)

The sum of absolute weights must not exceed 127*65536.

Precision Weight types: {int8, uint8}

{IFM types} → {OFM types} supported combinations:

{uint8, int8, int16} → {uint8, int8, int16, int32}, any pairing

Stride 1 <= stride_x <= 3
1 <= stride_y <= 3

Kernel dilation 1x1, 1x2, 2x1, 2x2

Input upscale None, 2x2 (nearest neighbor, insert zeros).
A 2x2 upscale must use a stride of 1x1.

Input padding 0-31 top/left, 0-32 bottom/right

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT
{int32}: None (linear output only)

If LUT is not used, the activation and OFM type must match.

Weight order Depth-first order, part-kernel-first order (either order can be used for any IFM depth)

Scaling Per output-channel scale and bias parameters

Accumulators fp(s5.10), int32, int40

The restrictions in the range / values column allow 2D convolutions of size up to
64x64 and 1D convolutions of size up to 1x4096. The condition on the sum of
absolute weights ensures that a 32-bit accumulator does not overflow for 8-bit
activation values and a 40-bit accumulator does not overflow for 16-bit activation
values.

Depth-wise convolution operations
Depth-wise convolutions have a matrix of HxWxC, where the kernel of size HxW is applied to each
channel independently. Only one kernel is applied to each layer (depth_multiplier=1).

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-123: Depth-wise convolution operations

Parameter Range / values

Kernels 1 <= kernel_x*kernel_y <= 64*64
1 <= kernel_y <= 64
(kernel limit applies after any kernel dilation)

The sum of absolute weights must not exceed 127*65536.

Precision Weight types: {int8, uint8}

{IFM types} → {OFM types} supported combinations:

{uint8, int8, int16} → {uint8, int8, int16, int32}, any pairing

Stride 1 <= stride_x <= 3
1 <= stride_y <= 3

Dilation 1x1, 1x2, 2x1, 2x2

Input scale None, 2x2 (nearest neighbor, insert zeros).
A 2x2 upscale must use a stride of 1x1.

Input padding 0-31 top/left, 0-32 bottom/right

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT
{int32}: None (linear output only)

If LUT is not used, the activation and OFM type must match.

Depth multiplier 1

Scaling Per output-channel scale and bias parameters

Accumulators fp(s5.10), int32, int40

The restrictions in the range / values column allow 2D convolutions of size up to
64x64 and 1D convolutions of size up to 1x4096. The condition on the sum of
absolute weights ensures that a 32-bit accumulator does not overflow for 8-bit
activation values and a 40-bit accumulator does not overflow for 16-bit activation
values.

Pooling operations
Pooling operations are applied independently to each channel.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-124: Pooling operations

Parameter Range / format

Kernels Average pool with padding (for example SAME padding):

1 <= kernel_x <= 8
1 <= kernel_y <= 8

Average pool without padding and max pool, any padding:

1 <= kernel_x*kernel_y <= 256*256
1 <= kernel_y <= 256

Precision Average pool without padding (VALID type):

{IFM types} → {OFM types} supported combinations: {uint8, int8, int16} → {uint8, int8, int16} (any pairing)

Average pool with padding or max pool. OFM type must equal IFM type. Supported types:

{int8, uint8, int16}

Stride 1 <= stride_x <= 3
1 <= stride_y <= 3

Input upscale Average pool: none, 2x2 nearest neighbor OR 2x2 insert zeros.
Max pool: none, 2x2 nearest neighbor (only for 2x2 mode).
A 2x2 upscale must use a stride of 1x1.

Input padding Average pool: 0-3 top/left, 0-4 bottom/right
Max pool: 0-127 top/left, 0-128 bottom/right

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT

If LUT is not used, the activation and OFM type must match.

Scaling Average pool with padding or Max pool has no scaling.

Average pool with pad=0 has selectable per-channel scale and bias or global scale.

Accumulators All pooling: int32

Average pool with no padding: int32, int40

Vector-product operations
The kernel for a (fully connected) vector product is 1x1xIC, where IC is the number of input
channels. Multiple output vector products with the same weights can be executed in batches of up
to eight.

Vector product is implemented as a convolution 2D with a 1x1 kernel size.

Table 4-125: Vector-product operations

Parameter Range / format

Kernels 1x1x1 to 1x1x64K vector product

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Parameter Range / format

Precision Weight types: {int8, uint8}

{IFM types} → {OFM types} supported combinations:

{uint8, int8, int16} → {uint8,int8,int16,int32}, any pairing

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT
{int32}: None (linear output only)

If LUT is not used, the activation and OFM type must match.

Scaling Per output-channel scale and bias parameters

Accumulators int32, int40

Elementwise operations
The following operations include both unary element-wise (or point-wise) and binary elementwise
operations, which support two IFMs to produce one OFM.

Table 4-126: Elementwise operations

Parameter Range / format

Kernels Binary operations: Multiply, Add, Subtract, Minimum, Maximum, SHR, SHL.

Unary operations: ABS, Leaky ReLU, CLZ.

Precision Multiply, Add, Subtract {IFM}→{OFM}:

{uint8, int8, int16 int32} → {uint8, int8, int16, int32}, any pairing

Minimum, Maximum, LReLU, ABS:

IFM and OFM must be of the same type, one of:

{int8, uint8, int16}

SHR {IFM}→{OFM}:

{int32}→{int8, uint8, int32}, any pairing

CLZ and SHL:

{int32}→{int32} only

Broadcast (for binary tensor
operations)

Operand IFM2 can be one of the following:
(a) A scalar constant broadcast to all elements for 8-bit or 16-bit IFM (scalar constant is not
supported for a 32-bit IFM).
(b) A tensor whose dimensions are either 1 or match IFM1.

If (b), any dimension that is broadcast to match the dimension of IFM1.

Operand order Selectable if IFM2 is the first or second operand (A or B).

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Parameter Range / format

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT
{int32}: None (linear output only)

If LUT is not used, the activation and OFM type must match.

Input scaling For ADD and SUB (only) the following input scales are supported when neither the IFM nor the
activation type is 32-bit:

1. 16-bit input scale on elementwise ADD and SUB operands.

2. 32-bit input scale applied to only input (fixed shift for the other).

Output scaling Global 32-bit output scale on elementwise MUL, ADD, SUB, ABS, LReLU, ABS, SHR.

Leaky ReLU scales only negative inputs.

Reduction operations
The following operations the supported reduction operations for REDUCE_SUM, which reduce the
channel dimension from an HWC tensor to an HW1 tensor.

Table 4-127: Reduction operations

Parameter Range / format

Kernels REDUCE_SUM

Precision Supported {IFM types} → {OFM types}:
{uint8, int8, int16, int32} → {int32} (any pairing)

Input upscale 1x1 only

Input padding None

Fused activation Available activations for {activation type}:

{int8, uint8, int16}: None, ReLU, ReLUX, tanh, sigmoid, LUT
{int32}: None (linear output only).

If LUT is not used, the activation and OFM type must match.

Scaling Global 32-bit scale.

Accumulators int32, int40

4.8.3 Convolution performance

The following tables detail the convolution performance of the Ethos™-U55 NPU by configuration.

The convolution performance for the different configurations of the NPU depends on the
operation used, such as the kernel height (kh), kernel width (kw). In addition, it also depends on the
dimensions of the tensors being processed.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The purpose of these tables is to explain the architectural limitations of the MAC
utilization of different convolutional operations. If layers are broken into small jobs,
there may be more overhead at top level.

For shallow 1x1 convolutions, where IFM depth is <64 or OFM depth is <16, the
overall performance is limited by the output and memory bandwidth.

Convolution performance of the Ethos™-U55256
In the following tables k, h, w, d, and n should be integers to achieve the MACs per cycle as
specified for the operation. For any non-integer values, the hardware effectively rounds up this
value and the extra MACs computed as a consequence are lost.

Cells marked “WB” denote weight-bound values. The actual performance of weight-
bound layers depends on the number of weights that can be compressed by the
weight decoder per cycle. This number is affected by the compression ratio and the
bandwidth of the memory available for the weights. (The capacity of the weight
decoder itself is unaffected.)

Table 4-128: Convolution performance for 8-bit activations

8-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV2D (depth first) kh*kw=1*k 2*h 2*w 8*d 32*n 256

CONV2D (kernel first) kh*kw=4*k 2*h 2*w 8*d 8*n 256

CONV1D (depth first) kh=1 kw=1*k 1 4*w 8*d 32*n 256

CONV1D (kernel first) kh=1 kw=4*k 1 4*w 8*d 8*n 256

Fully connected kh=1 kw=1 1 1 8*d 32*n WB

DepthwiseConv2D kh*kw=4*k 2*h 2*w 8*d 8*n 32

DepthwiseConv1D kh=1 kw=4*k 1 4*w 8*d 8*n 32

Table 4-129: Convolution performance for 16-bit activations

16-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV2D (depth first) kh*kw=1*k 2*h 2*w 8*d 16*n 128

CONV2D (kernel first) kh*kw=2*k 2*h 2*w 8*d 8*n 128

CONV1D (depth first) kh=1 kw=1*k 1 4*w 8*d 16*n 128

CONV1D (kernel first) kh=1 kw=2*k 1 4*w 8*d 8*n 128

Fully connected kh=1 kw=1 1 1 8*d 16*n WB

DepthwiseConv2D kh*kw=4*k 2*h 2*w 8*d 8*n 16

DepthwiseConv1D kh=1 kw=4*k 1 4*w 8*d 8*n 16

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Convolution performance of the Ethos™-U55128
Table 4-130: Convolution performance for 8-bit activations

8-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h 2*w 8*d 32*n 128

CONV (kernel first) kh*kw=4*k h 2*w 8*d 8*n 128

Fully connected kh=1 kw=1 1 1 8*d 32*n WB

DepthwiseConv kh*kw=4*k h 2*w 8*d 8*n 16

Table 4-131: Convolution performance for 16-bit activations

16-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h 2*w 8*d 16*n 64

CONV (kernel first) kh*kw=2*k h 2*w 8*d 8*n 64

Fully connected kh=1 kw=1 1 1 8*d 16*n WB

DepthwiseConv kh*kw=4*k h 2*w 8*d 8*n 8

Convolution performance of the Ethos™-U5564
Table 4-132: Convolution performance for 8-bit activations

8-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h w 8*d 32*n 64

CONV (kernel first) kh*kw=4*k h w 8*d 8*n 64

Fully connected kh=1 kw=1 1 1 8*d 32*n WB

DepthwiseConv kh*kw=4*k h w 8*d 8*n 8

Table 4-133: Convolution performance for 16-bit activations

16-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h w 8*d 16*n 32

CONV (kernel first) kh*kw=2*k h w 8*d 8*n 32

Fully connected kh=1 kw=1 1 1 8*d 16*n WB

DepthwiseConv kh*kw=4*k h w 8*d 8*n 4

Convolution performance of the Ethos™-U5532
Table 4-134: Convolution performance for 8-bit activations

8-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h w 4*d 32*n 32

CONV (kernel first) kh*kw=4*k h w 4*d 8*n 32

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

8-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

Fully connected kh=1 kw=1 1 1 4*d 32*n WB

DepthwiseConv kh*kw=4*k h w 4*d 8*n 4

Table 4-135: Convolution performance for 16-bit activations

16-bit activation

Operation Kernel size OFM height OFM width OFM depth IFM depth MACs per cycle

CONV (depth first) kh*kw=1*k h w 4*d 16*n 16

CONV (kernel first) kh*kw=2*k h w 4*d 8*n 16

Fully connected kh=1 kw=1 1 1 4*d 16*n WB

DepthwiseConv kh*kw=4*k h w 4*d 8*n 2

4.8.4 Elementwise performance

The following tables detail the elementwise performance of the Ethos™-U55 NPU by configuration.

The performance of elementwise operations depends on the configuration of the NPU, as well
as which operation is performed as shown in the following tables. Note that some operations are
bound by the bandwidth required to read and write the operations to external SRAM.

Elementwise performance of the Ethos™-U55 NPU
Table 4-136: Operations per cycle for 8-bit activations

Ethos™-U55 configuration LReLU, ABS MIN, MAX MUL Simple ADD, SUB Advanced ADD, SUB LUT, tanh, sigmoid

32 0.5 0.5 0.33 0.25 0.17 0.5

64 1 1 0.67 0.5 0.33 1

128 2 2 1.33 1 0.67 1

256 4 2.671 2.67 2 1.33 1

Table 4-137: Operations per cycle for 16-bit activations

Ethos™-U55 configuration LReLU, ABS MIN, MAX MUL Simple ADD, SUB Advanced ADD, SUB LUT, tanh, sigmoid

32 0.5 0.5 0.33 0.25 0.17 0.5

64 1 1 0.67 0.5 0.33 1

128 2 1.331 1.33 1 0.67 1

256 21 1.331 1.331 1.331 1.33 1

Table 4-138: Operations per cycle for int32

Ethos™-U55 configuration CLZ SHR, SHL

32 0.5 0.33

1 This value is memory-bound.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Ethos™-U55 configuration CLZ SHR, SHL

64 1 0.67

128 11 0.671

256 11 0.671

4.9 Block based operation
Due to limited internal storage, the NPU must break down an operation into smaller jobs.

The stripe is divided into one or more blocks and jobs scheduled by the hardware are processed
one block at a time. The size of each block is specified in the command stream, each block follows
the restrictions described in this section. If the block is not a multiple of the stripe size, the
hardware runs partial blocks at the edge of the stripe.

Output feature map
The NPU generates the Output Feature Map (OFM) of an operation in blocks which repeat in z, x, y
order over the OFM. The size of each OFM block must not exceed the size of the available shared
buffer.

Each block is configured in the command stream according to the following restrictions:

• OFM_BLOCK_WIDTH must be in the range 1-64 and a multiple of the MIN_BLOCK_WIDTH.

• OFM_BLOCK_HEIGHT must be in the range 1-32 and a multiple of the MIN_BLOCK_HEIGHT.

• OFM_BLOCK_DEPTH must be in the range 1-128 and a multiple of MIN_BLOCK_DEPTH.

• If OFM_BLOCK_DEPTH is not a multiple of 16, then OFM_DEPTH <= OFM_BLOCK_DEPTH.

The minimum block sizes are listed in the following table.

Table 4-139: Minimum block sizes

Configuration MIN_BLOCK_HEIGHT MIN_BLOCK_WIDTH MIN_BLOCK_DEPTH

32 1 1 4

64 1 1 8

128 1 2 8

256 2 2 8

Input feature map
To generate an OFM block, the NPU reads one or more Input Feature Map (IFM) blocks. An upper
limit on the size of an IFM block is derived from the OFM block size and the operation being
performed, as listed in the following table.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

The size of the IFM and OFM blocks must not exceed the size of the available
shared buffer. For more information about the size of the available shared buffer,
see 4.9.1 Shared buffer on page 112.

Table 4-140: IFM block size limit

Dimension OFM block size and operation

IFM_BLOCK_HEIGHT ALIGN_HEIGHT(min(ifm_get_height(OFM_BLOCK_HEIGHT, min(kernel_split_size, dilated_kernel_height)),
ifm_get_height(OFM_HEIGHT, dilated_kernel_height - PAD_TOP - PAD_BOTTOM))

IFM_BLOCK_WIDTH ALIGN_WIDTH(min(ifm_get_width(OFM_BLOCK_WIDTH, min(kernel_split_size, dilated_kernel_width)),
ifm_get_width(OFM_WIDTH, dilated_kernel_width - PAD_LEFT - PAD_RIGHT))

IFM_MEMBLK_DEPTH OFM_BLK_DEPTH for a depth-wise convolution, max or average pooling and elementwise operations

ALIGN(min(32, IFM_DEPTH), 8) for conv2d, fully connected or reduce_sum with 8-bit activations and
kernel_weight_order=0

ALIGN(min(16, IFM_DEPTH), 8) for conv2d, fully connected or reduce_sum with 8-bit activation and
kernel_weight_order=1

ALIGN(min(16, IFM_DEPTH), 4) for conv2d, fully connected or reduce_sum with 16-bit activation tensor

ALIGN(min(8, IFM_DEPTH), 2) for reduce_sum with 32-bit activation

The definitions used in the preceding table are:

• ALIGN(x, n) = (int)ceil(x/(float)n)*n = (x + (n-1)) &~ (n-1)

• ALIGN_HEIGHT(h) = ALIGN(h, MIN_BLOCK_HEIGHT)

• ALIGN_WIDTH(w) = ALIGN(w, MIN_BLOCK_WIDTH)

• ifm_get_height(ofm_height, border_height) = (int)ceil(((ofm_height-1)*kernel_y_stride +
border_height)/(float)upscaling_factor_y)

• ifm_get_width(ofm_width, border_width) = (int)ceil(((ofm_width-1)*kernel_x_stride +
border_width)/(float)upscaling_factor_x)

• dilated_kernel_height = (kernel_height-1)*kernel_y_dilation+1, dilated_kernel_width =
(kernel_width-1)*kernel_x_dilation+1

• upscaling_factor_x = upscaling_factor_y = (ifm_upscale_mode!=0 ? 2 : 1)

Block dependency
The output of one operation is the input of the following operation. The NPU breaks down
the output and input operations into blocks, creating dependencies between each block. The
dependency between blocks is specified in the command stream, which ensures the hardware
writes the input data before the input data is read. Correctly setting the block dependency allows
the hardware to run two operations back to back more efficiently without having to flush the
hardware pipeline.

Each block operation reads an IFM block and updates or completes an OFM block. The order of
block operations is:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

• For depth-wise convolution, pooling, or elementwise operations, the block operations iterate
over the IFM and OFM blocks at the same position in z, x, y order (depth, horizontal, then
vertical). The IFM block position matches the OFM block position.

• For convolution-2D, the block operations iterate over the OFM blocks in z, x, y order and for
each OFM block, the IFM block iterates over the IFM in z order. Each separate IFM block for
the same OFM block counts as a separate block operation.

NPU_SET_BLOCKDEP takes a block offset k as a parameter. The block dependency guarantees
that IFM block read n in the kernel does not start until all OFM block writes of the previous kernel
operation, except max(k-n, 0), are complete and written to memory.

The following figure shows an example with two stripes, each of five blocks A0-A4 and B0-B4. The
B operation is applied to the output of the A operation but due to the filter margin, the block B(k)
read depends on the A(k+1) write as indicated by the arrows.

Figure 4-2: Example blocks

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

The example shows blocks issued in normal order A0, A1, A2, A3, A4, B0, B1, B2, B3, B4, but B0 is
not permitted to start until A1 is complete and written to memory. Similarly, B1 is not permitted to
start until A2 is complete. This sequence continues until A4 is complete, and B3 is then permitted
to start.

An example of how the dependency is expressed in the command stream is:

• NPU_OP_A issues operation A

• NPU_SET_BLOCKDEP #3 expresses the B->A dependency as three block operations

• NPU_OP_B issues operation B

4.9.1 Shared buffer

The NPU has a shared buffer that stores data.

Shared buffer purpose
The purposes of the shared buffer are:

• To store data that the NPU is processing, for example Input Feature Map (IFM) blocks,
accumulators, or Lookup Table (LUT) definitions which allow for data reuse.

• To store data being transferred to or from external memory by the Direct Memory Access (DMA)
controller which absorbs memory read or write latency.

The following table lists the buffers that are placed within the shared buffer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Table 4-141: Shared buffers

Buffer Buffer
entries

Buffer contents

IFM IB0,
IB1

Double buffered input block buffers that must be the size in bytes of at least IFM_BLOCK_HEIGHT *
IFM_BLOCK_WIDTH * ALIGN(IFM_MEMBLK_DEPTH*IFM_BYTEWIDTH,8).

IFM2 IB0,
IB1

Double buffered IFM2 input block buffers that must be the size of at least IFM2_BLOCK_HEIGHT *
IFM2_BLOCK_WIDTH * ALIGN(IFM2_MEMBLK_DEPTH*IFM_BYTEWIDTH,8).

Where IFM2 dimensions are equal to the IFM dimension, or are set to one if the dimension is broadcast.

Accumulator ACC0,
ACC1

Double buffered accumulator and output block buffers that must be the size in bytes of at least min(OFM_HEIGHT,
OFM_BLOCK_HEIGHT) * min(OFM_WIDTH, OFM_BLOCK_WIDTH) * ALIGN(OFM_BLK_DEPTH,8) *
ACC_BYTEWIDTH.

Output OB0,
OB1

Scale output to OFM streaming buffer. The size of OB0 and OB1 is fixed at 1KB.

LUT Tables A single 2KB buffer that, if used, must be in the last 2KB of the shared buffer.

Shared buffer format
The shared buffer is divided into 1KB units and each buffer is a whole number of kilobytes.

The following table lists the shared buffer layout for non-elementwise operations. For the 128 and
256 configurations of the NPU, or if a LUT is used, the value of t is set to one. For the 32 and 64
configurations of the NPU, a LUT is not used and the value of t is set to zero.

Table 4-142: Non-elementwise operations

Bank address
(KB)

Bank
+0KB

Bank
+1KB

Notes

0 OB0 OB1 Output data buffer -

2 IB0 IB1 IFM data buffer

4 IB0 IB1 IFM data buffer

… … … …

IFM_IB_END-2 IB0 IB1 IFM data buffer

The IFM data buffer is allocated from bank address 2 to IFM_IB_END-2 in
steps of 2KB.

IFM_IB_END
+0

- - Not used for the
current block

Unallocated bank addresses can be zero or greater.

AB_START+0 ACC0 ACC0 Accumulator buffer 0

AB_START+2 ACC1 ACC1 Accumulator buffer 1

AB_START+4 ACC0 ACC0 Accumulator buffer 0

… … … …

SB_SIZE-2-2t ACC1 ACC1 Accumulator buffer 1

The accumulator buffer is allocated from bank address AB_START+0 to
SB_SIZE-2-2t in steps of 2KB.

The following table lists the shared buffer layout for elementwise operations AB_START=SB_SIZE.

Table 4-143: Elementwise operations

Bank address
(KB)

Bank
+0KB

Bank
+1KB

Notes

0 OB0 OB1 Output data buffer -

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

Bank address
(KB)

Bank
+0KB

Bank
+1KB

Notes

2 IB0 IB1 IFM data buffer

4 IB0 IB1 IFM data buffer

… … … …

IFM2_IB_START-2 IB0 IB1 IFM data buffer

The IFM data buffer is allocated from bank address 2 to IFM2_IB_START-2
in steps of 2KB.

IFM2_IB_START
+0

IB0 IB1 IFM2 data buffer

… … … …

IFM_IB_END-2 IB0 IB1 IFM2 data buffer

The IFM2 data buffer is allocated from bank address IFM2_IB_START+0 to
IFM_IB_END-2 in steps of 2KB.

IFM_IB_END+0 - - Not used for the
current block

… … … …

SB_SIZE-2-2t - - Not used for the
current block

IFM_IB_END+0 to SB_SIZE-2-2t are unallocated bank addresses.

Buffer restrictions
The following table lists the restrictions on IB_END, IFM2_IB_START, and AB_START. The table also
lists the total RAM size, SB_SIZE for each NPU configuration. The values n, m, and k are positive
integers determining the size of the IFM, IFM2, and accumulator buffers respectfully.

Table 4-144: Buffer restrictions

Elementwise non-scaler Other
operations

AB_START values in KBNPU configuration
(MAC/cycle)

IFM2_IB_START IB_END IB_END
(KB)

16-bit
accumulator

32-bit
accumulator

40-bit
accumulator

Elementwise

SB_SIZE
in KB

32 2+2*n 2+2*(n
+m)

2+2*n 16-2*t-4*k 16-2*t-4*k 16-2*t-4*k 16-2*t 16

64 2+2*n 2+2*(n
+m)

2+2*n 16-2*t-4*k 16-2*t-4*k 16-2*t-8*k 16-2*t 16

128 2+4*n 2+4*(n
+m)

2+4*n 22-4*k 22-8*k 22-12*k 22 24

256 2+8*n 2+8*(n
+m)

2+8*n 46-8*k 46-16*k 46-20*k 46 48

The values must satisfy IFM2_IB_START <= IB_END <= AB_START. The input and accumulator
buffer regions must be large enough to hold the configured block size. If the activation LUT is used,
the value of t is set to one by NPU_SET_ACTIVATION in the command stream. If the activation
LUT is not used, the value of t is set to zero.

If t is set to one, then the activation LUT is always in the final 2KB of the shared buffer.

Buffer reconfiguration
The shared buffer can be reconfigured between stripes and operations. The hardware uses IB_END
and AB_START to ensure that data is not overwritten. The host processor must be aware that if

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Programmers model

IB_END of the current operation is larger than AB_START of the previous operation, a pipeline
delay occurs.

Because the accumulators are not required for elementwise operations, set
AB_START to SB_SIZE.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

Appendix A Signal descriptions
This appendix describes the signals for the processor.

A.1 Clock and reset signals
The processor has one clock signal and two reset signals.

The following table lists the clock and reset signals.

Table A-1: Clock and reset signals

Signal Direction Description

CLK Input Clock input

nRESET Input The reset. This signal is an asynchronous, active-LOW signal.

nMBISTRESET Input The reset is used to prepare the IP for MBIST mode. This signal is an asynchronous, active-LOW signal.

PORPL Input The Power-On-Reset Privilege Level (PORPL).

This signal sets the privilege level of the NPU after a hard reset.

LOW means User level.

HIGH means Privileged level.

PORSL Input The Power-On-Reset Security Level (PORSL).

This signal sets the security level of the NPU after a hard reset.

LOW means Secure.

HIGH means Non-secure.

Related information
AMBA® 5 AXI manager signals on page 117
DFT and MBIST signals on page 121

A.2 Interrupt signals
The processor has an interrupt signal which you must connect to an interrupt controller.

The following table lists the interrupt signals.

Table A-2: Interrupt signals

Signal Direction Edge or level trigger

IRQ Output Level triggered when HIGH.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

A.3 Power management signals
The processor has several signals for power management.

The following table lists the clock Q-Channel signals.

Table A-3: Clock Q-Channel signals

Signal Direction Description

CLKQACTIVE Output This signal indicates that the NPU requires CLK to be active.

CLKQREQn Input This signal indicates that the clock controller wants to gate the clock. This signal is active-LOW.

CLKQACCEPTn Output This signal indicates that the NPU accepts the clock controller request. This signal is active-LOW.

CLKQDENY Output This signal indicates that the NPU denies the clock controller request.

The following table lists the power Q-Channel signals.

Table A-4: Power Q-Channel signals

Signal Direction Description

PWRQACTIVE Output This signal indicates that the NPU requires power.

PWRQREQn Input This signal indicates that the power controller wants to power down the NPU. This signal is active-LOW.

PWRQACCEPTn Output This signal indicates that the NPU accepts the power controller request. This signal is active-LOW.

PWRQDENY Output This signal indicates that the NPU denies the power controller request.

A.4 AMBA® 5 AXI manager signals
The requester port implements a subset of AMBA® 5 AXI which is compatible with AMBA® 4 AXI,
with the addition of ACLKEN and AWAKEUP signals.

M0 wake-up signal and clock enable signals
The following table lists the wake-up and clock enable signals for manager 0.

Table A-5: M0 wake-up and clock enable signals

Signal Direction Description

AWAKEUPM0 Output This signal indicates if there is pending
activity.

ACLKENM0 Input This signal is the clock enable. Inputs are
sampled when this signal is HIGH and
outputs are held stable when this signal is
LOW.

M0 write address channel signals
The following table lists the write address channel signals for manager 0.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

Table A-6: M0 write address channel signals

Signal Direction Description

AWVALIDM0 Output This signal indicates that the write address is valid.

AWIDM0[5:0] Output This signal indicates the write address ID.

AWADDRM0[31:0] Output This signal indicates the write address.

AWLENM0[7:0] Output This signal indicates the write burst length.

AWSIZEM0[2:0] Output This signal indicates the write burst size.

AWBURSTM0[1:0] Output This signal indicates the write burst type.

AWCACHEM0[3:0] Output This signal indicates the write cache type.

AWPROTM0[2:0] Output This signal indicates the write protection type.

AWREADYM0 Input This signal indicates that the write address is ready.

M0 write data channel signals
The following table lists the write data channel signals for manager 0.

Table A-7: M0 write data channel signals

Signal Direction Description

WVALIDM0 Output This signal indicates that the write data is valid.

WDATAM0[63:0] Output This signal indicates the write data.

WSTRBM0[7:0] Output This signal indicates the write byte lane strobes.

WLASTM0 Output This signal is the write data last transfer indicator.

WREADYM0 Input This signal indicates that the write data is ready.

M0 write response channel signals
The following table lists the write response channel signals for manager 0.

Table A-8: M0 write response channel signals

Signal Direction Description

BVALIDM0 Input This signal indicates that the write response is valid.

BIDM0[5:0] Input This signal indicates the write response ID.

BRESPM0[1:0] Input This signal indicates the write response.

BREADYM0 Output This signal indicates that the write response is ready.

M0 read address channel signals
The following table lists the read address channels signals for manager 0.

Table A-9: M0 read address channel signals

Signal Direction Description

ARVALIDM0 Output This signal indicates that the read address is valid.

ARIDM0[5:0] Output This signal indicates the read address ID.

ARADDRM0[31:0] Output This signal indicates the read address.

ARLENM0[7:0] Output This signal indicates the read burst length.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

Signal Direction Description
ARSIZEM0[2:0] Output This signal indicates the read burst size.

ARBURSTM0[1:0] Output This signal indicates the read burst type.

ARCACHEM0[3:0] Output This signal indicates the read cache type.

ARPROTM0[2:0] Output This signal indicates the read protection type.

ARREADYM0 Input This signal indicates that the read address is ready.

The DMA uses different ARID values to fetch data from external memories. The following table
lists the ARIDM0 values that correspond to each stream used by the DMA.

Table A-10: ARIDM0

ARID values Channel

0-3 Command stream

4-29 IFM stream

30-55 Weight stream

56-59 Bias stream

60-63 M2M stream

M0 read data channel signals
The following table lists the read data channel signals for manager 1.

Table A-11: M0 read data channel signals

Signal Direction Description

RVALIDM1 Input This signal indicates that the read data is valid.

RIDM1[5:0] Input This signal indicates the read data ID.

RDATAM1[63:0] Input This signal indicates the read data.

RRESPM1[1:0] Input This signal indicates the read data response.

RLASTM1 Input This signal is the read data last transfer indicator.

RREADYM1 Output This signal indicates that the read data is ready.

M1 wake-up signal and clock enable signals
The following table lists the wake-up and clock enable signals for manager 1.

Table A-12: M1 wake-up and clock enable signals

Signal Direction Description

AWAKEUPM1 Output This signal indicates if there is pending
activity.

ACLKENM1 Input This signal is the clock enable. Inputs are
sampled when this signal is HIGH and
outputs are held stable when this signal is
LOW.

M1 read address channel signals
The following table lists the read address channels signals for manager 1.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

Table A-13: M1 read address channel signals

Signal Direction Description

ARVALIDM1 Output This signal indicates that the read address is valid.

ARIDM1[5:0] Output This signal indicates the read address ID.

ARADDRM1[31:0] Output This signal indicates the read address.

ARLENM1[7:0] Output This signal indicates the read burst length.

ARSIZEM1[2:0] Output This signal indicates the read burst size.

ARBURSTM1[1:0] Output This signal indicates the read burst type.

ARCACHEM1[3:0] Output This signal indicates the read cache type.

ARPROTM1[2:0] Output This signal indicates the read protection type.

ARREADYM1 Input This signal indicates that the read address is ready.

The DMA uses different ARID values to fetch data from external memories. The following tables
list the ARIDM1 values that correspond to each stream used by the DMA.

Table A-14: ARIDM1

ARID values Channel

0-3 Command stream

4-29 IFM stream

30-55 Weight stream

56-59 Bias stream

60-63 M2M stream

M1 read data channel signals
The following table lists the read data channel signals for manager 1.

Table A-15: M1 read data channel signals

Signal Direction Description

RVALIDM1 Input This signal indicates that the read data is valid.

RIDM1[5:0] Input This signal indicates the read data ID.

RDATAM1[63:0] Input This signal indicates the read data.

RRESPM1[1:0] Input This signal indicates the read data response.

RLASTM1 Input This signal is the read data last transfer indicator.

RREADYM1 Output This signal indicates that the read data is ready.

Related information
Clock and reset signals on page 116
DFT and MBIST signals on page 121

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

A.5 AMBA® 4 APB completer signals
The completer port implements AMBA® 4 APB, with the addition of PCLKEN and PWAKEUP
signals.

The following table lists the AMBA® 4 APB completer signals.

Table A-16: AMBA® 4 APB signals

Signal Direction Description

PWAKEUP Input This signal indicates if there is pending activity. This signal is input into an OR-
gate that drives CLKQACTIVE.

PCLKEN Input This signal is the clock enable, Inputs are sampled when this signal is HIGH
and outputs are held stable when this signal is LOW.

PSEL Input This signal indicates a transfer request.

PENABLE Input This signal indicates the second and later cycles of an AMBA® 4 APB transfer.

PPROT[2:0] Input This signal indicates the transfer privilege and security level. PPROT[2] is an
indicator for data or instruction and is not used by the NPU.

PWRITE Input This signal indicates a write transfer.

PADDR[11:0] Input This signal indicates the transfer address.

PWDATA[31:0] Input This signal indicates the write data.

PSTRB[3:0] Input This signal indicates the write data byte strobes.

PREADY Output This signal indicates that the completer is ready.

PSLVERR Output This signal indicates the completer error response.

PRDATA[31:0] Output This signal indicates the completer read data.

A.6 DFT and MBIST signals
The NPU has several DFT and MBIST signals that you must connect.

The following table lists the DFT and MBIST signals.

Table A-17: DFT and MBIST signals

Signal Direction Description

DFTCGEN Input This signal forces the clock gates on during scan shift.

DFTRSTDISABLE[1:0] Input This signal disables the internal synchronized reset during scan shift.

DFTRAMHOLD Input This signal disables the RAM chip select during scan shift.

MBISTREQ Input This signal is the MBIST test request.

nMBISTRESET Input This signal is the MBIST reset for the whole NPU.

This active-LOW signal overrides the system resets when the MBISTREQ signal is asserted.

Related information
AMBA® 5 AXI manager signals on page 117

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Signal descriptions

Clock and reset signals on page 116

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

General neural network concepts

Appendix B General neural network
concepts

This appendix describes the various concepts Arm uses to describe the NPU.

B.1 General neural network concepts
Arm uses various concepts to describe the NPU.

The following list describes how Arm uses these architectural concepts in this document:

Feature map
A feature map is a 3D array of elements. Feature maps are the data that the layers of a neural
network consume and produce. The NPU works with 8-bit or 16-bit integer elements. For
example, the initial input to an image recognition network might be a three channel feature
map. In this example, the channels correspond to the red, green, and blue color planes of an
image. Each element contains an RGB value. Therefore, the feature maps for the first layer
describe the image.

Integer elements can also be described as activation values to distinguish
them from weight values.

Layer
A neural network (NN) is composed of several layers; the input to one layer is the output
from a prior layer. The NPU is designed to process the layer of a network without requiring
interaction from the host application processor. There are various types of layers, with CNNs
named due to their large usage of convolutional layers.

NHWC and NCHW
NHWC and NCHW are standard memory formats of feature maps. Each letter in the NHWC
and NCHW memory formats represents an axis of the feature map. The order of the letters
represents the sequence of data when stored in memory. The letters of the memory formats
represent:

N
Number of batches.

H
Height.

W
Width.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

General neural network concepts

C
Channels.

NHWC is the standard format for the TensorFlow Lite stack used by the NPU.

Weights, kernels, and filters
Weights, kernels, and filters are all related concepts. A filter is an operation on a signal.
A kernel is a linear function that is used within a convolution as a filter. A kernel can be
represented as a matrix. A weight is an individual element of this matrix.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Boot flow information

Appendix C Boot flow information
This appendix describes the various boot flows for the NPU.

C.1 Boot flow information
This appendix describes the software interactions needed to boot up the NPU, perform a soft reset
of the NPU, and power down the NPU.

Boot flow
At system start-up, the NPU is normally powered down. You must do the following before the NPU
can be used:

1. If Power Q-Channels are not supported, you must:

a. Assert nRESET.

b. Enable NPU power.

c. Deassert nRESET.

The software interface to control the deassertion of the nRESET signal and
NPU power is platform-dependent.

2. Perform a write to the CMD register.

To ensure the NPU demands power, set the field power_q_enable to 0x0.

Setting the field clock_q_enable to 0x0 ensures the NPU demands that the
clock is running. Setting the field clock_q_enable to 0x1 enables automatic
high-level clock gating. Arm recommends setting field clock_q_enable to 0x1.

Set all other fields in the CMD register to 0x0. For more information about the
CMD register, see 4.2.3 Register CMD on page 36.

3. To ensure the NPU is now in a known state, Arm recommends doing a soft reset. A soft reset
negates the risk that power was on before step 1 and nRESET was not asserted. For more
information about the soft reset, see Soft reset flow on page 125.

Soft reset flow
A soft reset is used for setting the NPU in a known state and to update the NPU security status.
Do the following to perform a soft reset of the NPU:

1. To trigger a soft reset, write to the RESET register. For more information about setting the fields
pending_CSL and pending_CPL, see 4.2.4 Register RESET on page 37.

2. Read the STATUS register until the field reset_status no longer yields the value 0x1.
Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 125 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03

Boot flow information

The value 0x1 indicates a soft reset phase is in progress. During this phase, no
other APB accesses are allowed.

3. Write the CMD register. If the Power Q-Channel is used, set the field power_q_enable to 0x0 to
keep power enabled.

Setting the field clock_q_enable to 0x0 ensures the NPU demands that the
clock is running. Setting the field clock_q_enable to 0x1 enables automatic
high-level clock gating. Arm recommends setting field clock_q_enable to 0x1.

Powering down flow
Do the following to power down the NPU:

1. Acknowledge any pending interrupts by writing register CMD.

All interrupts must be cleared for power down to occur.

For more information about the CMD register, see 4.2.3 Register CMD on page
36.

2. Write to the CMD register.

The field power_q_enable must be set to 0x1 to permit power down.

3. After the preceding sequence of register writes, the powering down starts by the NPU
handshaking with the power controller.

Related information
Security and boot flow on page 21

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 127

Arm® Ethos™-U55 NPU Technical Reference Manual Document ID: 102420_0200_03_en
Issue: 03
Revisions

Appendix D Revisions
This appendix describes the technical changes between releases of this book.

Related information
Product revisions on page 18

D.1 Revisions
This appendix describes the technical changes between releases of this manual.

Table D-1: First EAC release for r2p0

Change Location Affects

First release - -

Table D-2: Second EAC release for r2p0

Change Location Affects

Updated the register information 4.2.2 Register STATUS on page 34 All

Table D-3: Third EAC release for r2p0

Change Location Affects

Progressive terminology added. Throughout. All

Added a note on only using registers that are documented in the TRM. 4.1 Register characteristics on page 31 All

Updated the bus_status section. 4.2.2 Register STATUS on page 34 All

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 127

	Arm® Ethos™-U55 NPU Technical Reference Manual
	Contents
	1. Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.4 Useful resources

	2. Neural processing unit introduction
	2.1 Description of the neural processing unit
	2.1.1 Supported application programming interfaces
	2.1.2 Security support

	2.2 Interfaces
	2.3 Documentation
	2.4 Design process
	2.5 Product revisions

	3. Functional description
	3.1 Control and data flow
	3.1.1 Supported memory formats for feature maps

	3.2 Security and boot flow
	3.3 Functional blocks
	3.3.1 External interfaces
	3.3.2 Central control
	3.3.3 DMA controller
	3.3.4 Clock and power module
	3.3.4.1 Clock and power module controlling reset
	3.3.4.2 QLPI for clock
	3.3.4.3 QLPI for power
	3.3.4.4 Clock and power module clock gates

	3.3.5 Weight decoder
	3.3.6 MAC unit
	3.3.6.1 IFM unit
	3.3.6.2 Dot product units
	3.3.6.3 Adder array

	3.3.7 Output unit
	3.3.7.1 Scaling unit
	3.3.7.2 ReLU and Leaky ReLU
	3.3.7.3 tanh, sigmoid, and LUT
	3.3.7.4 Elementwise operations

	4. Programmers model
	4.1 Register characteristics
	4.2 Register page BASE
	4.2.1 Register ID
	4.2.2 Register STATUS
	4.2.3 Register CMD
	4.2.4 Register RESET
	4.2.5 Register QBASE0
	4.2.6 Register QBASE1
	4.2.7 Register QREAD
	4.2.8 Register QCONFIG
	4.2.9 Register QSIZE
	4.2.10 Register PROT
	4.2.11 Register CONFIG
	4.2.12 Register LOCK
	4.2.13 Register REGIONCFG
	4.2.14 Register AXI_LIMIT0
	4.2.15 Register AXI_LIMIT1
	4.2.16 Register AXI_LIMIT2
	4.2.17 Register AXI_LIMIT3

	4.3 Register page BASE_POINTERS
	4.3.1 Register BASEP0
	4.3.2 Register BASEP1
	4.3.3 Register BASEP2
	4.3.4 Register BASEP3
	4.3.5 Register BASEP4
	4.3.6 Register BASEP5
	4.3.7 Register BASEP6
	4.3.8 Register BASEP7
	4.3.9 Register BASEP8
	4.3.10 Register BASEP9
	4.3.11 Register BASEP10
	4.3.12 Register BASEP11
	4.3.13 Register BASEP12
	4.3.14 Register BASEP13
	4.3.15 Register BASEP14
	4.3.16 Register BASEP15

	4.4 Register page ID
	4.4.1 Register PID4
	4.4.2 Register PID5
	4.4.3 Register PID6
	4.4.4 Register PID7
	4.4.5 Register PID0
	4.4.6 Register PID1
	4.4.7 Register PID2
	4.4.8 Register PID3
	4.4.9 Register CID0
	4.4.10 Register CID1
	4.4.11 Register CID2
	4.4.12 Register CID3

	4.5 Register page PMU
	4.5.1 Register PMCR
	4.5.2 Register PMCNTENSET
	4.5.3 Register PMCNTENCLR
	4.5.4 PMU_EVCNTR0 ... PMU_EVCNTR3
	4.5.5 PMU_EVTYPER0 ... PMU_EVTYPER3
	4.5.6 Register PMOVSSET
	4.5.7 Register PMOVSCLR
	4.5.8 Register PMINTSET
	4.5.9 Register PMINTCLR
	4.5.10 Register PMCCNTR_LO
	4.5.11 Register PMCCNTR_HI
	4.5.12 Register PMCAXI_CHAN

	4.6 Command stream
	4.6.1 Non-blocking command types
	4.6.2 Blocking command types
	4.6.3 Command dependency requirements
	4.6.4 cmd0 commands
	4.6.5 cmd1 commands

	4.7 Weight stream format
	4.7.1 Bit order convention
	4.7.2 Weight stream structure and slice header syntax
	4.7.3 Coding modes
	4.7.3.1 Palette mode and direct mode
	4.7.3.2 Weight index coding
	4.7.3.2.1 Golomb-Rice coding
	4.7.3.2.2 Uncompressed coding

	4.7.3.3 Alternating mode (zero-run coding)

	4.7.4 Chunk syntax
	4.7.5 Weight blocks and ordering

	4.8 Operators and performance
	4.8.1 Supported data types and operators
	4.8.2 Operations
	4.8.3 Convolution performance
	4.8.4 Elementwise performance

	4.9 Block based operation
	4.9.1 Shared buffer

	A. Signal descriptions
	A.1 Clock and reset signals
	A.2 Interrupt signals
	A.3 Power management signals
	A.4 AMBA® 5 AXI manager signals
	A.5 AMBA® 4 APB completer signals
	A.6 DFT and MBIST signals

	B. General neural network concepts
	B.1 General neural network concepts

	C. Boot flow information
	C.1 Boot flow information

	D. Revisions
	D.1 Revisions

