
Arm® Architecture Reference
Manual Supplement,

Transactional Memory
Extension (TME), for
A-profile architecture

Document number DDI0617

Document version A.a

Document confidentiality Non-confidential

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.



Release information

Date Version Changes

2022/Aug/19 EAC • EAC release.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii



Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks
.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks


Contents

Arm® Architecture Reference Manual Supplement, Transactional
Memory Extension (TME), for A-profile architecture

Release information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Non-Confidential Proprietary Notice . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Part A Preface

About this Supplement
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Pseudocode descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Assembler syntax descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Rules-based writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Content item identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Content item rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Content item classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Additional reading

Feedback
Feedback on this Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Progressive terminology commitment . . . . . . . . . . . . . . . . . . . . . . . . . xv

Part B The Transactional Memory Extension

Chapter B1 Transactional Memory Extension
B1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B1.2 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B1.2.1 Transactional state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B1.2.2 Transactional reservation granule, read and write sets . . . . . . . . . . 18

B1.3 Transaction failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B1.3.1 Failure causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B1.3.2 Transaction checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B1.4 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B1.4.1 External visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B1.4.2 Atomicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B1.5 Transactions and memory attributes . . . . . . . . . . . . . . . . . . . . . . . . 25
B1.6 Address translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B1.6.1 Transactional translation table walks . . . . . . . . . . . . . . . . . . . . 26
B1.6.2 Hardware management of the Access flag and dirty state . . . . . . . . 26
B1.6.3 TLB shoot-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B1.6.4 Translation table modifications inside transactions . . . . . . . . . . . . 27

B1.7 Modification of instructions in Transactional state . . . . . . . . . . . . . . . . 28
B1.8 Interrupt masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B1.9 A64 instruction behavior in Transactional state . . . . . . . . . . . . . . . . . . 30

B1.9.1 MRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv



Contents

B1.9.2 MSR (register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B1.9.3 MSR (immediate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B1.9.4 SYS and SYSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B1.9.5 Wait for Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B1.9.6 DMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B1.9.7 ISB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B1.9.8 First-fault and Non-fault load instructions . . . . . . . . . . . . . . . . . 33

B1.10 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B1.11 Identification mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter B2 Debug, PMU, and Trace
B2.1 Self-hosted debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B2.1.1 Breakpoint Instruction exceptions . . . . . . . . . . . . . . . . . . . . . 36
B2.1.2 Breakpoint exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B2.1.3 Watchpoint exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B2.1.4 Software Step exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B2.2 External debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B2.2.1 Breakpoint and Watchpoint debug events . . . . . . . . . . . . . . . . . 38
B2.2.2 Halting Instruction debug event . . . . . . . . . . . . . . . . . . . . . . 38
B2.2.3 Halting Step debug events . . . . . . . . . . . . . . . . . . . . . . . . . 38
B2.2.4 External Debug Request debug event . . . . . . . . . . . . . . . . . . . 38
B2.2.5 Reset Catch debug event . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B2.2.6 Other Halting debug events . . . . . . . . . . . . . . . . . . . . . . . . . 39
B2.2.7 Behavior in Debug state . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B2.2.8 The PC Sample-based Profiling Extension . . . . . . . . . . . . . . . . 39

B2.3 The Statistical Profiling Extension . . . . . . . . . . . . . . . . . . . . . . . . . 40
B2.3.1 Memory accesses by profiling operations . . . . . . . . . . . . . . . . . 40
B2.3.2 Events packet payload . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B2.3.3 Profile Buffer management interrupts . . . . . . . . . . . . . . . . . . . 40

B2.4 The Embedded Trace Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B2.5 The Performance Monitors Extension . . . . . . . . . . . . . . . . . . . . . . . 42

B2.5.1 Event filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B2.5.2 Accuracy of event filtering . . . . . . . . . . . . . . . . . . . . . . . . . 42
B2.5.3 TSTART_RETIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B2.5.4 TCOMMIT_RETIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B2.5.5 TME_TRANSACTION_FAILED . . . . . . . . . . . . . . . . . . . . . . 43
B2.5.6 TME_INST_RETIRED_COMMITTED . . . . . . . . . . . . . . . . . . . 43
B2.5.7 TME_CPU_CYCLES_COMMITTED . . . . . . . . . . . . . . . . . . . . 43
B2.5.8 TME_FAILURE_CNCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B2.5.9 TME_FAILURE_ERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B2.5.10 TME_FAILURE_IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B2.5.11 TME_FAILURE_MEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B2.5.12 TME_FAILURE_NEST . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B2.5.13 TME_FAILURE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B2.5.14 TME_FAILURE_TLBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B2.5.15 TME_FAILURE_WSET . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B2.5.16 Behavior on overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter B3 System registers
B3.1 General system control registers . . . . . . . . . . . . . . . . . . . . . . . . . 46

B3.1.1 CTR_EL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B3.1.2 ID_AA64ISAR0_EL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B3.1.3 TCR_EL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B3.1.4 TCR_EL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B3.1.5 ISS encoding for an exception from a TSTART instruction . . . . . . . . 49

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v



Contents
Contents

B3.1.6 SCTLR_EL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B3.1.7 SCTLR_EL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B3.1.8 SCTLR_EL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B3.1.9 HCR_EL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B3.1.10 SCR_EL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B3.2 Performance Monitors registers . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B3.2.1 PMEVTYPER<n>_EL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B3.2.2 PMCCFILTR_EL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B3.2.3 PMSEVFR_EL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B3.3 Performance Monitors external registers . . . . . . . . . . . . . . . . . . . . . 55
B3.3.1 PMPCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter B4 Instructions
B4.1 TCANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B4.2 TCOMMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B4.3 TSTART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B4.4 TTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter B5 Interaction with Memory Tagging Extension

Part C Appendixes

Chapter C1 Transactional Memory Extension (TME) Litmus tests
C1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
C1.2 Transaction strong isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C1.2.1 Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C1.2.2 Non-interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C1.3 Transactions and barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C1.3.1 Simple weakly consistent ordering . . . . . . . . . . . . . . . . . . . . . 66
C1.3.2 Message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter C2 Transactional Memory Extension (TME) Transactional Lock Elision
C2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C2.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C2.3 Acquiring a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C2.3.1 Checking the lock inside the transaction . . . . . . . . . . . . . . . . . . 69
C2.3.2 Checking the lock at the fallback path . . . . . . . . . . . . . . . . . . . 70
C2.3.3 Synchronization between transactions and the fallback path . . . . . . . 70

C2.4 Releasing a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C2.4.1 Elision and nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter C3 Transactional Memory Extension (TME) Implementation recommen-
dations
C3.1 Permitted architectural difference between PEs . . . . . . . . . . . . . . . . . 72
C3.2 Individual operation latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C3.3 Read and write set capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C3.4 State tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C3.5 Transactional conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter C4 Stages of execution
C4.1 Stages of execution without Transactional Memory Extension (TME) . . . . . . 78
C4.2 Stages of execution with TME . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi



Contents
Contents

Part D Glossary

Chapter D1 Glossary

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii



Part A
Preface



About this Supplement

This document is the Arm ® Architecture Reference Manual Supplement, Transactional Memory Extension (TME),
for A-profile architecture. This Supplement describes the changes and additions to A-profile architecture, and
therefore must be read with the Arm ® Architecture Reference Manual, for A-profile architecture.

This Supplement is organized into the following parts:

• Part A

Preface to the Supplement.

• Part B

Describes the Transactional Memory Extension.

• Part C

Appendixes to the Supplement.

• Part D

Glossary that defines terms used in this document that have a specialized meaning.

ix



Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text

Indicates a link. This can be:

• A URL, for example http://developer.arm.com
• A cross-reference to another location within the document
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that

defines the colored term.

{ and }

Braces, { and }, have two distinct uses:

Optional items

In syntax descriptions braces enclose optional items. In the following example they indicate
that the <shift> parameter is optional:

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

Similarly they can be used in generalized field descriptions, for example TCR_ELx.{I}PS
refers to a field in the TCR_ELx registers that is called either IPS or PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set of
two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes

Notes are formatted as:

x

http://developer.arm.com


About this Supplement
Conventions

Note

This is a note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a Note
never provides any part of the definition of the architecture.

Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n

At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions.

These are shown in a monospace font.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi



Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration

A Declaration is a statement that either

• introduces a concept, or
• introduces a term, or
• describes the structure of data, or
• describes the encoding of data.

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

xii



About this Supplement
Rules-based writing

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii



Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer, http://developer.arm.com, for access to Arm documentation.

[1] Arm® Architecture Reference Manual, for A-profile architecture. (ARM DDI 0487).

This supplement should also be read with the following System register and ISA descriptions:

• Arm® Architecture Registers, for A-profile architecture.
• Arm® A64 Instruction Set, for A-profile architecture.

xiv



Feedback

Arm welcomes feedback on its documentation.

Feedback on this Supplement

If you have comments on the content of this supplement, send an e-mail to errata@arm.com. Give:

• The title, Arm® Architecture Reference Manual Supplement, Transactional Memory Extension (TME), for
A-profile architecture.

• The number, DDI0617 A.a.
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

xv



Part B
The Transactional Memory Extension



Chapter B1
Transactional Memory Extension

B1.1 Introduction

The Transactional Memory Extension (TME), FEAT_TME, introduces the TCANCEL, TCOMMIT, TSTART,
and TTEST instructions. These instructions support hardware transactional memory, which means a group of
instructions can appear to be collectively executed as a single atomic operation.

FEAT_TME is OPTIONAL.

This feature is supported in AArch64 state only.

The ID_AA64ISAR0_EL1.TME field identifies the presence of FEAT_TME.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17



Chapter B1. Transactional Memory Extension
B1.2. Transactions

B1.2 Transactions

RTJXB A transaction is a group of instructions executing in Transactional state.

RYQLB Instructions outside a transaction execute in Non-transactional state.

B1.2.1 Transactional state

B1.2.1.1 Entering transactional state: starting a transaction (TSTART)

RZYKL When a TSTART instruction is committed for execution in Non-transactional state, it starts an outer transaction.

RBMPK When starting an outer transaction, the PE enters Transactional state.

RZFWF When a TSTART instruction is committed for execution in Transactional state it starts a transaction nested within the
pre-existing transaction, or simply a nested transaction.

RDCDQ The transactional nesting depth indicates the degree of nesting of a transaction.

RDNMF The architecture requires the maximum transactional nesting depth to be 255.

RRRJX In Non-transactional state, the transactional nesting depth is 0.

RXKHY When starting a transaction, the transactional nesting depth is incremented by 1.

IWTLG In the rest of the document, unless explicitly prefixed with outer or nested, the term transaction will refer to an
outer transaction and all the nested transactions contained within.

B1.2.1.2 Exiting transactional state by committing a transaction (TCOMMIT)

RHXMY A transaction commits when a TCOMMIT instruction is committed for execution in Transactional state.

RDDFV Transactional state is exited when committing an outer transaction.

RWYQK When committing a transaction, the transactional nesting depth is decremented by 1.

B1.2.1.3 Exiting transactional state by cancelling (TCANCEL) or failing a transaction

RLJYW A transaction is canceled when a TCANCEL instruction is committed for execution in Transactional state.

RCSXK A transaction fails when the PE exits transactional state for any reason other than the execution of a TCOMMIT

instruction or the execution of a TCANCEL instruction.

RHVFD When a transaction fails or is canceled, Transactional state is exited, and execution continues at the instruction that
follows the TSTART instruction of the outer transaction.

RMNVC The result of the TSTART instruction of the outer transaction encodes the cause of the failure. For more information,
see B1.3.1 Failure causes).

RVRLY When a transaction fails or is canceled, the transactional nesting depth is set to 0.

B1.2.2 Transactional reservation granule, read and write sets

RXCXC The transactional reservation granule is defined as a contiguous memory block of size 2a bytes, formed by ignoring
the least significant bits of a memory access.

RDVWQ The size of the memory block is IMPLEMENTATION DEFINED in the range 4 – 512 words.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18



Chapter B1. Transactional Memory Extension
B1.2. Transactions

RNYST The Exclusive Reservation Granule CTR_EL0.ERG identifies the transactional reservation granule.

Below the notions of Location and read or write memory effects are as described in [1] Basic definitions.

B1.2.2.1 Transactional read set

RRRZY The transactional read set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory reads inside the transaction.

RKJCC The reads in the transactional read set are referred to as transactional reads.

B1.2.2.2 Transactional write set

RXJNK The transactional write set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory writes inside the transaction.

RHWVK The writes in the transactional write set are referred to as transactional writes.

RBLGB Limits to the transactional read set size and the transactional write set size are IMPLEMENTATION DEFINED.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19



Chapter B1. Transactional Memory Extension
B1.3. Transaction failure

B1.3 Transaction failure

B1.3.1 Failure causes

RBWYQ When a transaction fails or is canceled, the destination register of the TSTART instruction of the outer transaction
encodes the cause of the failure as follows.

RSJJT For causes that are due to direct or attempted execution of an instruction, only the cause generated by the instruction
that appears first in program order is reported.

RPTGZ For causes that are not due to direct or attempted execution of an instruction, any number of causes may be
reported.

RYXLQ When more than one cause is reported, then RTRY is set to the logical AND of the prescribed or expected RTRY
value of each identified failure cause.

RYSWY RTRY, bit [15]

When this bit is set it signifies that the transaction may commit on retry.

When this bit is clear the software should assume that the transaction will not commit on retry.

RTRY is not a failure cause.

RYDHF REASON, bits [14:0]

This field holds the 15 low order bits of the TCANCEL operand value when CNCL is 1 else this field is 0.

Bits [63:25]

Reserved, RES0.

RTYHM TRIVIAL, bit [24]

When this bit is set it signifies that the system is currently running the trivial implementation enabled
by the bits described in B3.1.5 ISS encoding for an exception from a TSTART instruction.

The prescribed RTRY value is 0.

RBXPB INT, bit [23]

When IMP=1, this bit indicates whether or not an unmasked interrupt was delivered in transactional
state but not subsequently taken in non-transactional state due to being masked by the PE. See Section
B1.8 Interrupt masking for more information.

The prescribed RTRY value is 0.

RTTKV DBG, bit [22]

When this bit is set it signifies that a debug-related exception was encountered but not raised.

The prescribed RTRY value is 0.

RSTJB NEST, bit [21]

When this bit is set it signifies that the maximum transactional nesting depth was exceeded.

The prescribed RTRY value is 0.

RRVBK SIZE, bit [20]

When this bit is set it signifies that the transaction failed because the transactional read set limit or the
transactional write set limit was exceeded.

The prescribed RTRY value is 0.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20



Chapter B1. Transactional Memory Extension
B1.3. Transaction failure

RSZFF ERR, bit [19]

When this bit is set it signifies that an operation was attempted which is not architecturally permitted
in Transactional state. This includes but is not limited to attempting to raise a synchronous exception,
attempting to execute an instruction not permitted in Transactional state, or attempting to change
Exception level.

The prescribed RTRY value is 0.

RXZDB IMP, bit [18]

When this bit is set it signifies a failure cause that does not fall under any of the other cases.

The expected RTRY value is 1 if the transaction may commit on retrying and 0 otherwise.

RTRY must not systematically be set to 1 with IMP cause. This is because it could prevent the forward
progress in finite time of at least one the threads that is accessing a location within the transactional
read or write sets.

RRMJK MEM, bit [17]

When this bit is set it signifies that the transaction failed because a transactional memory conflict was
detected.

The expected RTRY value is 1.

RKWHH CNCL, bit [16]

When this bit is set it signifies that the transaction was canceled by a TCANCEL instruction.

The RTRY value is the most significant bit of the TCANCEL immediate operand.

B1.3.2 Transaction checkpoint

RPJGV The transaction checkpoint defines the following subset of the AArch64 state:

• Registers in AArch64 execution state: R0-R30, SP, ICC_PMR_EL1.

• AArch64 process state: NZCV, DAIF.

• If both floating-point and SVE are enabled: Z0-Z31, P0-P15, FFR, FPCR, FPSR.

• If floating-point is enabled and SVE is disabled or trapped: V0-V31, FPCR, FPSR.

RGKRW It is IMPLEMENTATION DEFINED if any of the System registers encoded with op0==0b11 and CRn==0b1x11 are
included in the transaction checkpoint.

RQJYL No other System registers are included in the transaction checkpoint.

RBFYL When a transaction fails or is canceled, the subset of the AArch64 state defined by the transaction checkpoint is
reverted to a state that is consistent with the PE having executed all of the instructions up to but not including the
point in the instruction stream where Transactional state was entered, and none afterwards, with the following
exceptions:

• The destination register of the TSTART instruction of the outer transaction is updated to encode the transaction
failure cause.

• When executing at an Exception level that is constrained to use a vector length that is less than the maximum
implemented vector length, the bits beyond the constrained length of Z0-Z31, P0-P15, and FFR are restored
to a value of either zero or the value they had when Transactional state was entered. The choice between
these options is IMPLEMENTATION DEFINED and can vary dynamically.

RFFQR Writes by a failed or canceled transaction do not generate write Memory effects. For the definition of Memory
effects, see [1] Basic definitions.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21



Chapter B1. Transactional Memory Extension
B1.3. Transaction failure

RKBBS If SVE is disabled or trapped, the current vector length is considered to be constrained to 128 bits (see [1] SVE
Configurable vector length).

RVQGT SPSel cannot be modified in Transactional state. For more information, see Section B1.9 A64 instruction behavior
in Transactional state.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22



Chapter B1. Transactional Memory Extension
B1.4. Memory model

B1.4 Memory model

Transactional Memory Extension (TME) proposes the following additions to the memory ordering and observability
rules described in the [1] Definition of the Armv8 memory model.

B1.4.1 External visibility

Adding the following definitions:

RTCXC Locally-ordered-before

A read or a write RW1 is Locally-ordered-before a read or a write RW2 from the same Observer if and
only if any of the following cases apply:

• RW1 is Dependency-ordered-before RW2.

• RW1 is Atomic-ordered-before RW2.

• RW1 is Barrier-ordered-before RW2.

• RW1 is Locally-ordered-before a read or a write that is Locally-ordered-before RW2.

RKDFQ Transactionally-observed-by

A read or a write RW1 from an Observer is Transactionally-observed-by a read or a write RW2 from a
different Observer if and only if any of the following cases apply:

• There is a read or a write RW3 in the same transaction as RW1, and RW3 is Observed-by RW2.

• There is a read or a write RW3 in the same transaction as RW2, and RW1 is Observed-by RW3.

Changing the definition of Barrier-ordered-before to the following:

RRBRW Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same
Observer if and only if RW1 appears in program order before RW2 and any of the following cases
apply:

• RW1 appears in program order before a DMB FULL that appears in program order before RW2.

• RW1 is a write W1 generated by an instruction with Release semantics and RW2 is a read R2 generated by
an instruction with Acquire semantics.

• RW1 is generated by an instruction with Acquire semantics.

• RW2 is generated by an instruction with Release semantics.

• RW1 is a read R1 appearing in program order before a DMB LD that appears in program order before RW2.

• RW2 is a write W2 and either:

– RW1 is a write W1 appearing in program order before a DMB ST that appears in program order before W2.

– RW1 appears in program order before a write W3 generated by an instruction with Release semantics
and W2 is Coherence-after W3.

• RW1 and RW2 are not in the same transaction, and at least one of RW1 or RW2 is in the read or write set of
a committed transaction.

• RW1 appears in program order before a committed transaction that appears in program order before RW2.

Changing the definition of Ordered-before to the following:

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23



Chapter B1. Transactional Memory Extension
B1.4. Memory model

RBXFQ Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A read or a write RW1 is Ordered-before a read or a write RW2 if
and only if any of the following cases apply:

• RW1 is Observed-by RW2.

• RW1 is Transactionally-observed-by RW2.

• RW1 is Locally-ordered-before RW2.

• RW1 is Ordered-before a read or a write that is Ordered-before RW2.

IFMHN Conflicts are a natural consequence of the pre-existing External visibility requirement. For more information, see
[1] Ordering constraint. A cycle in Ordered-before that involves a Transactionally-observed-by relation indicates a
conflict.

RZRBP A transaction is said to be conflicting if and only if committing the transaction would violate the external visibility
requirement, in which case the transaction fails with MEM cause.

SJCSK In the event of repeated transactional conflicts the architecture does not guarantee forward progress for any
transactions involved, and the software must take appropriate measures for example by setting a threshold after
which the software takes a specific fallback path.

B1.4.2 Atomicity

ILWMY This section documents the behavior of the A64 Load-Exclusive and Store-Exclusive instructions, and all A64
atomic instructions (CAS, CASP, LD<OP>, and SWP) in Transactional state.

RLJDF Transactional writes generated as side-effects from the above instructions follow the ordering and observability
rules described in the previous section.

RPNXP A transactional store to an address marked for exclusive access in the global monitor for any other PE:

• Clears the marking if the transaction commits.

• May clear the marking if the transaction fails or is canceled.

RJFLH When entering Transactional state or exiting Transactional state by committing, canceling or failing a transaction:

• The local monitor state of the executing PE transitions to the Open access state.

• The final state of the global monitor state machine for the executing PE is IMPLEMENTATION DEFINED.

• The global monitor state machine for any other PE is not affected.

RNBWK If the global monitor state for a PE changes from Exclusive access to Open access because of entering or exiting
Transactional state, an event is generated and held in the Event register for that PE.

SHBSY Inserting any of the A64 atomic primitive instructions inside a transaction does not provide any extra functionality
to software. Sharing code among the transaction and its fallback path may lead to such instructions being executed
in transactional state.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24



Chapter B1. Transactional Memory Extension
B1.5. Transactions and memory attributes

B1.5 Transactions and memory attributes

ICBHX Some system implementations might not support transactional accesses for all regions of the memory. This can
apply to:

• Any type of memory in the system that does not support hardware cache coherency.

• Device memory, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation
that does support hardware cache coherency.

RFVGF In such implementations, it is defined by the system which address ranges or memory types support transactional
accesses.

RNZRZ The memory types for which it is architecturally guaranteed that transactional accesses are supported are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

RLMVV If transactional accesses are not supported for an address range or memory type, then performing a transactional
load or a transactional store to such a location fails the transaction with IMP cause.

IJXXM Memory accesses generated by different instructions inside a transaction can have different shareability attributes.

RLSXT When accesses to any two Locations generated by the same instruction inside a transaction have different
shareability attributes then the results are CONSTRAINED UNPREDICTABLE. For more information, see [1] Memory
access restrictions.

RDCWP Accesses, including transactional accesses, by multiple PEs to a Location with mismatched attributes leads to
CONSTRAINED UNPREDICTABLE behavior. For more information, see [1] Mismatched memory attributes.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25



Chapter B1. Transactional Memory Extension
B1.6. Address translation

B1.6 Address translation

B1.6.1 Transactional translation table walks

RYCTD Transactional memory accesses to a given address are permitted to perform translation table walks, except when
the transactional memory access originates from EL0 and either of the following cases holds:

• The address is translated using TTBR0_EL1, and TCR_EL1.NFD0==1.

• The address is translated using TTBR1_EL1, and TCR_EL1.NFD1==1.

• The address is translated using TTBR0_EL2, and TCR_EL2.NFD0==1.

• The address is translated using TTBR1_EL2, and TCR_EL2.NFD1==1.

RMZBV A transactional memory access that is not permitted to perform a translation table walk and would otherwise
generate an exception in Non-transactional state fails the transaction with ERR cause without generating an
exception.

XWRWD This scheme addresses timing attacks on Kernel Address Space Layout Randomization. If TCR_EL1.NFD1 is set,
an EL0 transaction that attempts to probe the kernel address space will always fail with the same timing and the
same failure cause because either there is a TLB miss and the transaction fails with ERR cause, or there is a TLB
hit and a suppressed MMU permission fault (assuming TTBR1_EL1 address range is protecting itself from EL0
accesses) fails the transaction with ERR cause. This way the malicious software should not be able to distinguish
between the two cases.

B1.6.2 Hardware management of the Access flag and dirty state

RZNNY TME requires that the implementation supports hardware management of the Access flag and dirty state. For more
information, see [1] Hardware management of the Access flag and dirty state.

RKGPQ Transactional memory accesses follow the rules for updating the Access flag and dirty state as described in [1]
Hardware management of the Access flag and dirty state and [1] Ordering of hardware updates to the translation
tables.

RNCHW When hardware updating of the Access flag is enabled, updates to the stage 1 and stage 2 Access flag generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

RSSNZ When hardware updating of the dirty state is enabled, updates to the stage 1 and stage 2 dirty state generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

ILZDF Arm requires hardware management of the Access flag and dirty state for performance reasons.

SJKDY Software management of the Access flag would mean that when a page is accessed for the first time inside a
transaction, the transaction fails and is re-executed in Non-transactional state.

ITMBP Arm requires allowing transactional dirty state updates to become observable even if the responsible transaction
fails or is canceled for performance reasons. Otherwise, every time a page is written for the first time inside a
transaction, then either the transaction fails which is bad for performance, or the hardware must manage the dirty
state updates until the PE exits Transactional state which increases implementation complexity.

B1.6.3 TLB shoot-down

RXVMC A TLBI by another PE that applies to a Location in the transactional read set or the transactional write set of the
currently executing transaction causes that transaction to fail.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26



Chapter B1. Transactional Memory Extension
B1.6. Address translation

IYJQH In order to provide this functionality, an implementation needs to either track the Virtual to Physical Address
mappings for the Locations in the transactional read or write sets of the transaction that is currently executing, or fail
the transaction on any invalidation by another PE. In the former case, if a transaction exceeds the IMPLEMENTATION
DEFINED tracking limit of Virtual to Physical Address mappings, then the transaction fails.

IRFLJ For performance reasons, Arm recommends that the implementation does not fail the transaction if the ASID and
VMID of an invalidation by another PE, does not match the one of the currently executing transaction.

B1.6.4 Translation table modifications inside transactions

IKXRF The required break-before-make sequence described in the[1] General TLB maintenance requirements for updating
translation table entries cannot be executed inside a transaction, since the required TLBI and DSB instructions lead to
transaction failure (see Table B1.4 and Table B1.6).

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27



Chapter B1. Transactional Memory Extension
B1.7. Modification of instructions in Transactional state

B1.7 Modification of instructions in Transactional state

IZMVM The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for shared memory locations. For more information, see [1] Implication of caches for the application
programmer.

RRLTS TME follows the rules for concurrent modification and execution of instructions as explained in [1] Concurrent
modification and execution of instructions.

RCLBS TME does not guarantee that a transactional thread of execution T is isolated from a non-transactional thread of
execution making modifications to the instruction stream of T.

See also Table B1.6 for the behavior of ISB and DSB instructions in Transactional state.

ICVKD This implies that a transactional thread of execution cannot modify its own instruction stream, or other
instruction streams using the mechanism suggested in [1] Concurrent modification and execution of instruc-
tions, since transactional writes are not observable until a transaction commits and the DSB instruction required for
synchronization of the modifications fails the transaction.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28



Chapter B1. Transactional Memory Extension
B1.8. Interrupt masking

B1.8 Interrupt masking

RTTSQ In Transactional state, interrupts are pended, and unmasked interrupts are taken when Transactional state is exited.

RCHZK In the absence of a specific requirement to take an interrupt, it is IMPLEMENTATION DEFINED if the delivery of an
unmasked interrupt fails the transaction, but the architecture requires that the interrupt is taken in finite time. For
more information, see [1] Prioritization and recognition of interrupts.

RBFMS If the delivery of an unmasked interrupt fails the transaction, the failure cause reported is IMP.

ILHSC Transactional code with sufficient privileges can change the value of DAIF or ICC_PMR_EL1 to mask or unmask
interrupts.

RNXXN A transaction fails with IMP cause and INT set if both of the following happen:

• an unmasked interrupt delivered to a PE leads to the currently executing transaction on the PE to fail, and
• upon restoring DAIF and ICC_PMR_EL1 the interrupt becomes masked again and will not be taken.

XMLVZ If the transaction fails or is canceled the DAIF and ICC_PMR_EL1 registers are restored to the values they held
before entering Transactional state. This action will affect the masking or unmasking of interrupts before the first
non-transactional instruction executes. If the implementation decides to fail the transaction when the interrupt
is delivered, then after the values of DAIF and ICC_PMR_EL1 are restored to their pre-transactional state, the
interrupt will be masked and will not be taken. But if the transaction restarts then, as soon as interrupts are
transactionally re-enabled, the transaction will fail because there is a pending interrupt. To avoid a livelock this is
reported as a non-restartable failure. For more information, see Section B1.3.2 Transaction checkpoint.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29



Chapter B1. Transactional Memory Extension
B1.9. A64 instruction behavior in Transactional state

B1.9 A64 instruction behavior in Transactional state

RNHND Transactional state changes the execution of some A64 instructions.

This section includes the affected instructions and their expected behavior in Transactional state.

RQHYS Any instruction not included in this section behaves the same in Transactional state as in Non-transactional state.

RSHQC • Exception level changes cannot occur. Executing an instruction that would otherwise generate an Exception
level change fails the transaction with ERR cause as described in this document.

RLXPV • Synchronous exceptions are suppressed and fail the transaction with ERR cause. See Sections B2.1.1
Breakpoint Instruction exceptions, B2.1.2 Breakpoint exceptions, and B2.1.3 Watchpoint exceptions for
details.

Table B1.1: Exception generating instructions

Mnemonic Instruction Behavior

BRK Breakpoint Instruction See B2.1.1 Breakpoint Instruction exceptions

HLT Halt Instruction See B2.2.2 Halting Instruction debug event

HVC Generate exception targeting EL2 Transaction fails with ERR cause

SMC Generate exception targeting EL3 Transaction fails with ERR cause

SVC Generate exception targeting EL1 Transaction fails with ERR cause

Table B1.2: Exception return instructions

Mnemonic Instruction Behavior

ERET Exception return using current ELR and SPSR Transaction fails with ERR cause

ERETAA, ERETAB Exception return with pointer authentication Transaction fails with ERR cause

Table B1.3: System register instructions

Mnemonic Instruction Behavior

MRS Move System register to general-purpose register See B1.9.1 MRS

MSR (register) Move general-purpose register to System register See B1.9.2 MSR (register)

MSR (immediate) Move immediate to PSTATE field See B1.9.3 MSR (immediate)

Table B1.4: System instructions

Mnemonic Instruction Behavior

SYS System instruction See B1.9.4 SYS and SYSL

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30



Chapter B1. Transactional Memory Extension
B1.9. A64 instruction behavior in Transactional state

Mnemonic Instruction Behavior

SYSL System instruction with result See B1.9.4 SYS and SYSL

IC Instruction cache maintenance Transaction fails with ERR cause

DC except DC ZVA Data cache maintenance Transaction fails with ERR cause

DC ZVA Data cache zero Same as in Non-transactional state

AT Address translation Transaction fails with ERR cause

TLBI TLB Invalidate Transaction fails with ERR cause

Table B1.5: Hint instructions

Mnemonic Instruction Behavior

NOP No operation Same as in Non-transactional state

YIELD Yield hint Same as in Non-transactional state

WFE Wait for event See B1.9.5 Wait for Event

WFI Wait for interrupt Transaction fails with ERR cause

SEV Send event Same as in Non-transactional state

SEVL Send event local Same as in Non-transactional state

HINT Unallocated hint Same as in Non-transactional state

Table B1.6: Barrier and CLREX instructions

Mnemonic Instruction Behavior

CLREX Clear exclusive monitor Same as in Non-transactional state

DSB Data synchronization barrier Transaction fails with ERR cause

DMB Data memory barrier See B1.9.6 DMB

ESB Error synchronization barrier Transaction fails with ERR cause

ISB Instruction synchronization barrier See B1.9.7 ISB

PSB CSYNC Profiling synchronization barrier Same as in Non-transactional state

TSB CSYNC Trace synchronization barrier Same as in Non-transactional state

B1.9.1 MRS

RKTMD Registers encoded with op0==0b10 are not accessible at any Exception level.

RZTYF Registers encoded with op0==0b11 and CRn==12, except ICC_HPPIR0_EL1, ICC_HPPIR1_EL1, ICC_RPR_EL1,
are not accessible at any Exception level.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31



Chapter B1. Transactional Memory Extension
B1.9. A64 instruction behavior in Transactional state

RVJST If enhanced nested virtualization is enabled and the read of a permitted System register is transformed to a read
from memory, then the generated read is considered transactional.

RMCFP Attempting to read a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

RKPDH If a read from memory generates any exception, the exception is suppressed and the transaction fails with ERR
cause without trapping.

B1.9.2 MSR (register)

RCKFL Registers FPCR, FPSR, NZCV, DAIF, ICC_PMR_EL1, and PMSWINC_EL0 are accessible at the same Exception
levels as in Non-transactional state.

RSTQJ All other registers are not accessible at any Exception level.

RXZGW Attempting to write a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

B1.9.3 MSR (immediate)

RMNFL Only the instruction forms that select the MSR DAIFSet and MSR DAIFClr instructions are defined.

RSGNZ All other encodings are reserved, and the corresponding instructions are UNDEFINED.

RDNMG Attempting to execute an UNDEFINED instruction fails the transaction with ERR cause without trapping.

B1.9.4 SYS and SYSL

RLKNM The accessibility of the instructions encoded with op0=0b01 and CRn=0b1x11 is IMPLEMENTATION DEFINED.

RGKLF Attempting to execute an undefined instruction fails the transaction with ERR cause without trapping.

B1.9.5 Wait for Event

RBXPX If executing a WFE instruction in Non-transactional state would trap to a higher Exception level, then the transaction
fails with ERR cause without trapping.

Otherwise, the WFE instruction behaves the same as in Non-transactional state.

RGPGL A transaction that has entered low-power state due to the execution of a WFE instruction is called a waiting
transaction.

RFCPL A PE that enters a low-power state continues to track and respond to transactional conflicts with memory accesses
from other PEs.

RGFJL It is IMPLEMENTATION DEFINED whether a waiting transaction that receives a WFE wake-up event resumes
execution without failing. For more information, see [1] Wait for Event mechanism and Send event.

RKYSZ A waiting transaction is permitted to fail for any IMPLEMENTATION DEFINED reason before a wake-up event is
received.

IPMZF Arm recommends that a waiting transaction fails on a transactional conflict with another PE, for performance
reasons.

IFFTN Arm recommends that waiting transactions do not fail upon receiving a wake-up event that is not an interrupt that
must be taken, for performance reasons.

The following is a non-exhaustive list of wake-up events that could safely resume a transaction:

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32



Chapter B1. Transactional Memory Extension
B1.9. A64 instruction behavior in Transactional state

RZVBJ • The execution of an SEV instruction on any other PE in the multiprocessor system.

RZRNN • An event sent by the timer event stream for the PE. For more information, see [1] Event streams.

RFDMK • An event caused by the clearing of the global monitor for the PE.

RLPBD • A masked interrupt.

B1.9.6 DMB

RSHWX Transactional accesses to Device or Normal Non-cacheable memory that appear before the DMB in program order
are merged with transactional accesses to Device or Normal Non-cacheable memory of the same type (read or
write) to the same Location that appear in program order after the DMB, if they are executed in the same transaction.

RXMCB If transactional accesses, executing in the same transaction containing the DMB, access the same memory-mapped
peripheral of arbitrary system-defined size, then it is not guaranteed that accesses in program order before the
DMB that are accessing Device or Normal Non-cacheable memory will arrive at the peripheral before accesses in
program order after the DMB that are accessing Device or Normal Non-cacheable memory.

B1.9.7 ISB

RNLMZ Executing an ISB instruction in Transactional state is a Context synchronization event, with the same effects of a
Context synchronization event in Non-transactional state except that unmasked interrupts that are pending at the
time of the Context synchronization event are not required to be taken.

RYHLW If halting is allowed, any Halting debug event that is pending before the ISB instruction is executed fails the
transaction with DBG cause.

RJVGJ It is IMPLEMENTATION DEFINED whether the transaction fails if there are pending unmasked interrupts when the
ISB instruction is executed.

INMWC If the first instruction after exiting Transactional state generates a synchronous exception, then the architecture
does not define whether the PE takes the interrupt or the synchronous exception first.

See also B1.8 Interrupt masking.

B1.9.8 First-fault and Non-fault load instructions

IHMFW SVE provides a First-fault option for some SVE vector load instructions. For more information, see [1] Glossary.

RNMXZ In Transactional state, SVE’s First-fault option causes memory access faults to be suppressed without causing the
transaction to fail if they do not occur as a result of the First active element of the vector.

Instead, the FFR is updated to indicate which of the active vector elements were not successfully loaded (see [1]
FFR, First Fault Register).

IGHCR SVE provides a Non-fault option for some SVE vector load instructions. For more information, see [1] Glossary.

RQVYD In Transactional state, SVE’s Non-fault option causes all memory access faults to be suppressed without causing
the transaction to fail.

Instead, the FFR is updated to indicate which of the active Vector elements were not successfully loaded (see [1]
FFR, First Fault Register).

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33



Chapter B1. Transactional Memory Extension
B1.10. Reset

B1.10 Reset

RKFBV All the rules described in the [1] Reset section apply whether or not the PE is in Transactional state when a Cold or
a Warm reset is asserted.

RZGNK If the PE resets to AArch64 state using either a Cold or a Warm reset, the PE resets to Non-transactional state.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34



Chapter B1. Transactional Memory Extension
B1.11. Identification mechanism

B1.11 Identification mechanism

RXXMT The implementation of TME is identified by ID_AA64ISAR0_EL1.TME.

IWFVR Although TME defines no instruction enables and disables, or trap controls, Arm recommends the addition of
an instruction disable control in ACTLR_ELx for the highest implemented Exception level which if set has the
following effect:

• The bits in ID_AA64ISAR0_EL1.TME are RES0.

• The TME instructions are UNDEFINED at EL0 and above.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35



Chapter B2
Debug, PMU, and Trace

B2.1 Self-hosted debug

B2.1.1 Breakpoint Instruction exceptions

RBTRM In Transactional state, executing a breakpoint instruction fails the transaction with a DBG cause, without raising a
Breakpoint Instruction exception. For more information on breakpoint instructions, see [1] Breakpoint Instruction
exceptions.

IFDMB A transaction with a breakpoint instruction cannot make forward progress; it will always fail. The software is
responsible for reading the failure information returned by TSTART and acting accordingly.

B2.1.2 Breakpoint exceptions

RHLHZ In Transactional state, Breakpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on breakpoint exceptions, see [1] Breakpoint exceptions.

IVMWG A hardware breakpoint will continuously fail a restarting transaction until either the breakpoint conditions are
not met (e.g., the transactional code follows a different execution path), or the breakpoint is disabled. It is the
responsibility of the software to detect this situation and act accordingly.

B2.1.3 Watchpoint exceptions

RWSMX In Transactional state, Watchpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on watchpoint exceptions, see [1] Watchpoint exceptions.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36



Chapter B2. Debug, PMU, and Trace
B2.1. Self-hosted debug

IQHCS A hardware watchpoint will continuously fail a restarting transaction until either the watchpoint conditions are not
met (e.g., the transactional code accesses different Locations), or the watchpoint is disabled. It is the responsibility
of the software to detect this situation and act accordingly.

B2.1.4 Software Step exceptions

RTCSR In Non-transactional state, executing a TSTART instruction when software step is active-not-pending fails the
transaction with DBG cause. For more information on active-not-pending, see [1] Software Step exceptions.

IVYYF Enabling or disabling software step is not possible in Transactional state because attempting to update
MDSCR_EL1.SS fails the transaction. For more information, see B1.9.2 MSR (register).

RJNVJ If PSTATE.D is cleared inside a transaction and MDSCR_EL1.SS is 1 when entering Transactional state, the
transaction fails with DBG cause.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37



Chapter B2. Debug, PMU, and Trace
B2.2. External debug

B2.2 External debug

For the definitions of the various Halting debug events, see [1] Halting Debug Events.

B2.2.1 Breakpoint and Watchpoint debug events

RCLHP In Transactional state, a Breakpoint debug event or a Watchpoint debug event that would otherwise cause entry to
Debug state, fails the transaction with DBG cause without entering Debug state.

For more information, see [1] Breakpoint and Watchpoint debug events.

B2.2.2 Halting Instruction debug event

RCVJX If EDSCR.HDE == 0 or if halting is prohibited, then executing a HLT instruction in Transactional state fails the
transaction with ERR cause.

RXHFX If EDSCR.HDE == 1 and halting is allowed, then executing a HLT instruction in Transactional state fails the
transaction with a DBG cause without entering Debug state.

For more information, see [1] Halt Instruction debug event.

B2.2.3 Halting Step debug events

RBWLB In Non-transactional state, executing a TSTART instruction when Halting step is active-not-pending fails the
transaction with DBG cause. For more information on Halting step, see [1] Halting Step debug events.

IGTHQ Enabling or disabling Halting step is not possible in Transactional state because attempting to update EDECR.SS
fails the transaction as described in B1.9.2 MSR (register).

For more information, see [1] Halting Step debug events.

B2.2.4 External Debug Request debug event

RBWYJ If halting is allowed, all of the following applies:

• External Debug Request debug events asserted in Transactional state are pended.
• Unmasked External Debug Request debug events are taken when the PE exits Transactional state.
• In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of an

unmasked External Debug Request debug event fails the transaction, but the architecture requires that the
External Debug Request debug event is taken in finite time as per [1] Synchronization and External Debug
Request debug events.

• If the delivery of an unmasked External Debug Request debug event fails the transaction, the failure cause
reported is DBG.

See also:

• External Debug Request debug event in the [1].
• B1.9.7 ISB.

B2.2.5 Reset Catch debug event

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38



Chapter B2. Debug, PMU, and Trace
B2.2. External debug

RBJTP If halting is allowed, all of the following applies:

• Reset Catch debug events asserted in Transactional state are pended and are taken when the PE exits
Transactional state.

• In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of a Reset
Catch debug event fails the transaction, but the architecture requires that the Reset Catch debug event is taken
in finite time as per [1] Synchronization and Halting debug events.

• If the delivery of a Reset Catch debug event fails the transaction, the failure cause reported is DBG.

See also:

• Reset Catch debug events in the [1].
• B1.9.7 ISB.

B2.2.6 Other Halting debug events

IWTFX Exception Catch debug events cannot occur inside a transaction because an exception entry or exception return
cannot occur inside a transaction. For more information on Exception Catch, see [1] Exception Catch debug event.

IJYVR OS Unlock Catch debug events, and Software Access debug events cannot occur inside a transaction because they
are generated by accesses to System registers that cannot occur inside a transaction.

See also:

• OS Unlock Catch debug event in the [1].
• Software Access debug event in the [1].

B2.2.7 Behavior in Debug state

RFKXF The TCOMMIT instruction is unchanged in Debug state.

IFDRG TCOMMIT follows the rules described in the Any instruction that is UNDEFINED in Non-debug state topic of the [1]
since the PE cannot enter Transactional state in Debug state and TCOMMIT is UNDEFINED in Non-transactional state.

RRVKB TCANCEL and TTEST are CONSTRAINED UNPREDICTABLE in Debug state.

IZKFG TCANCEL and TTEST follow the rules described in the [1] All other instructions.

RNQSW TSTART is CONSTRAINED UNPREDICTABLE in Debug state.

RXYLB TSTART behaves in one of the following ways:

• It is UNDEFINED.

• It executes as a NOP.

• It does not enter Transactional state and it returns an UNKNOWN value.

B2.2.8 The PC Sample-based Profiling Extension

RNPQB All the rules described in [1] The PC Sample-based Profiling Extension chapter apply to a PE in Transactional
state too.

RQCCR Additionally, Transactional Memory Extension (TME) extends PPMPCSR to indicate if a sample references an
instruction executed in Transactional state or Non-transactional state.

ISHHH Like in Non-transaction state, only reference instructions that were committed for execution are sampled in
Transactional state.

IVYCF Samples can reference instructions from failed or canceled transactions.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39



Chapter B2. Debug, PMU, and Trace
B2.3. The Statistical Profiling Extension

B2.3 The Statistical Profiling Extension

B2.3.1 Memory accesses by profiling operations

RTYGM The profiling operation executes independently of the instructions that are executed on the PE and acts as a separate
memory observer from the PE in the system. For more information, see [1] Synchronization and Statistical
Profiling.

RXXLF If a profiling write operation overlaps with the read-set or write-set of a transaction, it is constraint UNPREDICTABLE
whether:

• The write has the same effect on the transaction as a store by any other Observer to that address.
• The write has no effect on this transaction.

RZVWK A profiling operation executes independently of the instruction or instructions that are executed on the PE and acts
as a separate memory observer from the PE in the system.

RTSLS Writes to the Profiling Buffer generated by profiling operations in Transactional state are considered
non-transactional and as such:

• They are not part of the transactional write set.

• They are observable even if the transaction fails or is canceled.

RGJXT For a sampled operation, if the operation is executed in Transactional state then Events packet.E[16] (Transactional)
is set to 1.

SPHDN Software can use PMSEVFR_EL1[16] to filter recording of sampled operations based on the Transactional flag.

B2.3.2 Events packet payload

TME extends existing the SPE protocol with the following events packet payload:

RQPZV E[16], byte 2 bit [0]

If TME is not implemented, this bit reads-as-zero. The possible values of this bit are:

0 Operation executed in Non-transactional state.

1 Operation executed in Transactional state.

B2.3.3 Profile Buffer management interrupts

INTMY See B1.8 Interrupt masking for the treatment of interrupts in Transactional state.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40



Chapter B2. Debug, PMU, and Trace
B2.4. The Embedded Trace Extension

B2.4 The Embedded Trace Extension

For information, see [1] The Embedded Trace Extension.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41



Chapter B2. Debug, PMU, and Trace
B2.5. The Performance Monitors Extension

B2.5 The Performance Monitors Extension

B2.5.1 Event filtering

IWKDW TME extends the filtering capabilities of the PMU to enable filtering by Transactional state.

RNDRV For each Attributable event, if the value of PMEVTYPER<n>_EL0.T is 1, then the event is counted only if the PE
is in Transactional state.

Otherwise, for each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

RLFKP TME adds new events that count transitions between Transactional and Non-transactional states. It is IMPLE-
MENTATION DEFINED if these events are considered to occur in Transactional or Non-transactional state. See the
description of the individual events in Table B2.2 for more details.

ILNQD For the definition of Attributable and Unattributable, see [1] Attributability.

B2.5.2 Accuracy of event filtering

RQJQP TME does not require filtering by Transactional state to be accurate. For more information, see [1] Accuracy of
event filtering.

IWXMC For many events, during a transition between Transactional and Non-transactional states, events generated by
instructions executed in one state can be counted in the other state.

RVTYX It is not permitted for the following events to be counted in the wrong state:

• Any event classified as Instruction architecturally executed.

• Any event classified as Instruction architecturally executed, Condition code check pass.

• EXC_TAKEN, Exception taken.

IVMRV For the definition of Instruction architecturally executed, and Instruction architecturally executed, Condition code
check pass, see [1] PMU events and event numbers.

RFWHG TME adds the following required events.

Table B2.2: TME related events

Number Type Event

0x4030 Architectural B2.5.3 TSTART_RETIRED

0x4031 Architectural B2.5.4 TCOMMIT_RETIRED

0x4032 Architectural B2.5.5
TME_TRANSACTION_FAILED

0x4034 Architectural B2.5.6
TME_INST_RETIRED_COMMITTED

0x4035 Microarchitectural B2.5.7
TME_CPU_CYCLES_COMMITTED

0x4038 Microarchitectural B2.5.8 TME_FAILURE_CNCL

0x403A Microarchitectural B2.5.9 TME_FAILURE_ERR

0x403B Microarchitectural B2.5.10 TME_FAILURE_IMP

0x403C Microarchitectural B2.5.11 TME_FAILURE_MEM

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42



Chapter B2. Debug, PMU, and Trace
B2.5. The Performance Monitors Extension

Number Type Event

0x4039 Microarchitectural B2.5.12 TME_FAILURE_NEST

0x403D Microarchitectural B2.5.13 TME_FAILURE_SIZE

0x403E Microarchitectural B2.5.14 TME_FAILURE_TLBI

0x403F Microarchitectural B2.5.15 TME_FAILURE_WSET

B2.5.3 TSTART_RETIRED

RNRPB The counter increments for every architecturally executed TSTART instruction that starts an outer
transaction.

RHKGP If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not TSTART_RETIRED
increments the counter.

B2.5.4 TCOMMIT_RETIRED

RCKYT The counter increments for every architecturally executed TCOMMIT instruction that commits an outer
transaction.

RXCGL If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TCOMMIT_RETIRED increments the counter.

B2.5.5 TME_TRANSACTION_FAILED

RYVWS The counter increments for every transaction that fails or is canceled.

RJKPJ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_TRANSACTION_FAILED increments the counter.

B2.5.6 TME_INST_RETIRED_COMMITTED

RLPZF The counter increments for every architecturally executed instruction in Transactional state if the
currently executing transaction commits.

IWBGV It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 232-1.

ICJMQ Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored
to the value it had when the transaction started.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value.

B2.5.7 TME_CPU_CYCLES_COMMITTED

RRMSG The counter increments on every cycle the PE is in Transactional state if the currently executing
transaction commits.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43



Chapter B2. Debug, PMU, and Trace
B2.5. The Performance Monitors Extension

RDSFD All counters are subject to changes in clock frequency, including when a WFI or WFE
instruction stops the clock. This means that it is CONSTRAINED UNPREDICTABLE whether or not
TME_CPU_CYCLES_COMMITTED continues to increment when the clocks are stopped by WFI and
WFE instructions.

RJBQT In a multithreaded implementation, TME_CPU_CYCLES_COMMITTED counts each cycle for the
processor for which this PE thread was active and could issue an instruction. For more information, see
[1] Cycle event counting on multithreaded implementations.

IWMBD It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 232-1.

ICFNH Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored
to the value it had when the transaction started.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value.

B2.5.8 TME_FAILURE_CNCL

RBTWV The counter increments for every transaction that fails with CNCL cause.

RLVHX If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_CNCL increments the counter.

B2.5.9 TME_FAILURE_ERR

RNJXX The counter increments for every transaction that fails with ERR cause.

RXDTJ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_ERR increments the counter.

B2.5.10 TME_FAILURE_IMP

RTCHY The counter increments for every transaction that fails with IMP cause.

RSFBT If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_IMP increments the counter.

B2.5.11 TME_FAILURE_MEM

RFFTX The counter increments for every transaction that fails with MEM cause.

RZTDY If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_MEM increments the counter.

B2.5.12 TME_FAILURE_NEST

RLRJQ The counter increments for every transaction that fails with NEST cause.

RQWVR If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_NEST increments the counter.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44



Chapter B2. Debug, PMU, and Trace
B2.5. The Performance Monitors Extension

B2.5.13 TME_FAILURE_SIZE

RLDPC The counter increments for every transaction that fails with SIZE cause.

RBZTQ If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_SIZE increments the counter.

B2.5.14 TME_FAILURE_TLBI

RMXRY The counter increments for every transaction that fails with IMP cause due to the execution of a TLBI
instruction by another PE.

RFFTW If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_TLBI increments the counter.

B2.5.15 TME_FAILURE_WSET

RBSJR The counter increments for every transaction that fails with SIZE cause due to a memory access that
causes an eviction of an entry from the transactional write set.

RQZHV If PMEVTYPER<n>_EL0.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_WSET increments the counter.

B2.5.16 Behavior on overflow

RRGWF A Performance Monitors counter overflow while in Transactional state behaves the same as in Non-transactional
state. For more information, see [1] Behavior on overflow.

RDGMD A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not set the overflow status bit in PMOVSCLR if the currently
executing transaction fails.

RPPFR A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not generate an overflow interrupt request in Transactional
state.

IKHXN Two possible implementations of this functionality are:

• The implementation accumulates events to the counter directly and sets the overflow status bit when the
counter overflows. If the system is programmed to generate an interrupt on overflow, the interrupt is not
generated until the transaction commits. If the transaction fails, both the counter and the overflow status bit
are restored to the value they had when the transaction started, and no interrupt is generated.

• The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value. If the counter update overflows the counter value, then the overflow
status bit is set, and if the system is programmed to generate an interrupt on overflow, then an interrupt is
generated.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45



Chapter B3
System registers

B3.1 General system control registers

B3.1.1 CTR_EL0

RLCCW ERG, bits [23:20]

Exclusives reservation granule, and, if Transactional Memory Extension (TME) is implemented,
transactional reservation granule. Log2 of the number of words of the maximum size of the reservation
granule for the Load-Exclusive and Store-Exclusive instructions, and, if TME is implemented, for
detecting transactional conflicts.

A value of 0b0000 indicates that this register does not provide granule information and the architectural
maximum of 512 words (2KB) must be assumed.

Value 0b0001 and values greater than 0b1001 are reserved.

B3.1.2 ID_AA64ISAR0_EL1

RVJLM TME, bits [27:24]

Indicates whether TME instructions are implemented. Defined values are:

0000 No TME instructions are implemented.

0001 TCANCEL, TCOMMIT, TSTART, and TTEST instructions are implemented.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46



Chapter B3. System registers
B3.1. General system control registers

B3.1.3 TCR_EL1

RNJGX NFD1, bit [54]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL1.

1 A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

RXNRP NFD0, bit [53]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR0_EL1.

1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47



Chapter B3. System registers
B3.1. General system control registers

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

B3.1.4 TCR_EL2

RQWCK NFD1, bit [54]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL2.

1 A TLB miss on a virtual address that is translated using TTBR1_EL2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

RMWBR NFD0, bit [53]

Present only if SVE or TME is implemented.

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from EL0 for a virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.

• Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48



Chapter B3. System registers
B3.1. General system control registers

0 Does not disable stage 1 translation table walks using TTBR0_EL2.

1 A TLB miss on a virtual address that is translated using TTBR0_EL2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RES0.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

B3.1.5 ISS encoding for an exception from a TSTART instruction

RJKTZ Bits [24:10] Reserved, RES0

Rd, Bits [9:5] The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0] Reserved, RES0

B3.1.6 SCTLR_EL1

RNBFV TMT0, bit [50]

Forces a trivial implementation of TME at EL0.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

0b1 When the AArch64 TSTART instruction is executed at EL0,

the transaction fails with TRIVIAL cause.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RQHHT TMT, bit [51]

Forces a trivial implementation of TME at EL1.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

0b1 When the AArch64 TSTART instruction is executed at EL1,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49



Chapter B3. System registers
B3.1. General system control registers

RYCNC TME0, bit [52]

Enables the AArch64 TSTART instruction at EL0, otherwise traps to EL1.

The defined values are:

0b0 Any attempt at EL0 to execute the AArch64 TSTART instruction is trapped to EL1, (reported with ESR_ELx.EC
value 0b011011), subject to the exception prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause TSTART instructions to be trapped.

When ARMv8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RNQPY TME, bit [53]

Enables the AArch64 TSTART instruction at EL1.

The defined values are:

0b0 Any attempt at EL1 to execute the AArch64 TSTART instruction is trapped

to EL1, (reported with ESR_ELx.EC value 0b011011), subject to the exception

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL1.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

B3.1.7 SCTLR_EL2

RHYJD TMT0, bit [50]

When HCR_EL2.{E2H,TGE} is {1,1}, forces a trivial implementation of TME at EL0.

The defined values are:

0b0 This control does not cause TSTART instructions to fail.

0b1 When the AArch64 TSTART instruction is executed at EL0,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50



Chapter B3. System registers
B3.1. General system control registers

RTXJP TMT, bit [51]

Forces a trivial implementation of TME at EL2.

The defined values are:

0 This control does not cause TSTART instructions to fail.

1 When the AArch64 TSTART instruction is executed at EL2,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RQZST TME0, bit [52]

When HCR_EL2.{E2H,TGE} is {1,1}, enables the AArch64 TSTART instruction at EL0, otherwise traps
to EL2.

The defined values are:

0b0 Any attempt at EL0 to execute the AArch64 TSTART instruction is trapped to EL2,

(reported with ESR_ELx.EC value 0b011011), subject to the exception prioritization rules,

unless HCR_EL2.TME or SCR_EL3.TME causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RHHMY TME, bit [53]

Enables the AArch64 TSTART instruction at EL2.

The defined values are:

0b0 Any attempt at EL2 to execute the AArch64 TSTART instruction is trapped

to EL2, (reported with ESR_ELx.EC value 0b011011), subject to the exception

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL2.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

B3.1.8 SCTLR_EL3

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51



Chapter B3. System registers
B3.1. General system control registers

RYDGG TMT, bit [51]

Forces a trivial implementation of TME at EL3.

The defined values are:

0 This control does not cause TSTART instructions to fail.

1 When the AArch64 TSTART instruction is executed at EL3,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

RZRLR TME, bit [53]

Enables the AArch64 TSTART instruction at EL3.

The defined values are:

0b0 Any attempt at EL3 to execute the AArch64 TSTART instruction is trapped

to EL3, (reported with ESR_ELx.EC value 0b011011), subject to the exception

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes TSTART to

be UNDEFINED at EL0, EL1 and EL2.

0b1 This control does not cause TSTART instructions to be trapped.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RES0.

B3.1.9 HCR_EL2

RWBJM TME, bit [39]

Enables the AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL{0,1}.

The defined values are:

0b0 The AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions are UNDEFINED

at EL{0,1}, and EL1 reads from ID_AA64ISAR0_EL1.TME return 0, when EL2 is

enabled in the current Security state.

0b1 This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

If EL2 is not implemented or is disabled in the current Security state, the system behaves as if this bit is
1.

Otherwise:

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52



Chapter B3. System registers
B3.1. General system control registers

Reserved, RES0.

B3.1.10 SCR_EL3

RXYXB TME, bit [34]

Enables the AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL{0,1,2}.

The defined values are:

0b0 The AArch64 TSTART, TCOMMIT, TTEST and TCANCEL instructions are

UNDEFINED at EL{0,1,2}, and EL{1,2} reads from ID_AA64ISAR0_EL1.TME return 0.

0b1 This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RES0.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53



Chapter B3. System registers
B3.2. Performance Monitors registers

B3.2 Performance Monitors registers

B3.2.1 PMEVTYPER<n>_EL0

RDQWK T, bit [23]

Transactional state filtering bit. Controls counting in Transactional state. If TME is not implemented,
this bit is RES0. The possible values of this bit are:

0 Count events in Non-transactional state and in Transactional state.

1 Count events in Transactional state only.

B3.2.2 PMCCFILTR_EL0

RKCZZ T, bit [23]

Non-transactional state filtering bit. Controls counting in Non-transactional state. If TME or PMUv3
are not implemented, this bit is RES0. The possible values of this bit are:

0 Count cycles in Non-transactional state and in Transactional state.

1 Count cycles in Transactional state only.

This bit resets to an architecturally UNKNOWN value on a reset.

B3.2.3 PMSEVFR_EL1

RRHWX E, bit [16]

Transactional. The possible values of this bit are:

0 Transactional event is ignored.

1 Do not record samples that have event 16 (Transactional) == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

This bit resets to an architecturally UNKNOWN value on a reset.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54



Chapter B3. System registers
B3.3. Performance Monitors external registers

B3.3 Performance Monitors external registers

B3.3.1 PMPCSR

RRCJT T, bit [60]

Transactional state of the sample. Indicates the Transactional state that is associated with the most
recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

0 Sample is from Non-transactional state.

1 Sample is from Transactional state.

This field resets to a value that is architecturally UNKNOWN.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55



Chapter B4
Instructions

Transactional Memory Extension (TME) adds the following instructions.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56



Chapter B4. Instructions
B4.1. TCANCEL

B4.1 TCANCEL

RVPTY The TCANCEL instruction exits Transactional state and discards all state modifications that are due to instructions that
were executed transactionally.

RDSCF Execution continues at the instruction that follows the TSTART instruction of the outer transaction.

RYFDC The destination register of the TSTART instruction of the outer transaction is written with the immediate operand of
TCANCEL.

TCANCEL #<imm>

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57



Chapter B4. Instructions
B4.2. TCOMMIT

B4.2 TCOMMIT

RVVNT The TCOMMIT instruction commits the current transaction.

RYHKK If the current transaction is an outer transaction, then Transactional state is exited, and all state modifications due
to instructions that were executed transactionally are committed to the architectural state.

RXJVQ TCOMMIT takes no inputs and returns no value.

RSJJW Execution of TCOMMIT is UNDEFINED in Non-transactional state.

TCOMMIT

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58



Chapter B4. Instructions
B4.3. TSTART

B4.3 TSTART

RWBJV This instruction starts a new transaction.

RNXXP If the transaction started successfully, the destination register is set to zero.

RVNLM If the transaction failed or was canceled, then all state modifications that are due to instructions that were executed
transactionally are discarded and the destination registers is written with a non-zero value that encodes the cause of
the failure.

TSTART <Xd>

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59



Chapter B4. Instructions
B4.4. TTEST

B4.4 TTEST

RFZLN The TTEST instruction takes no inputs.

RVLYG The TTEST instruction writes the depth of the transaction to the destination register, or the value 0 otherwise.

TTEST <Xd>

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60



Chapter B5
Interaction with Memory Tagging Extension

This section describes the interaction of Transactional Memory Extension (TME) with the Memory Tagging
Extension.

RSKRL The MTE instructions for Tag generation, Tag setting and getting, are allowed within a transaction. This means in
particular that the accesses to GCR_EL1 and RGSR_EL1 stemming from the MTE instructions are allowed within
a transaction, but it is IMPLEMENTATION DEFINED whether they are checkpointed.

RMYGP In the case of an asynchronous Tag Check Failure within a Transaction:

• Tag check failures configured to asynchronously accumulate failure status should not expect transaction
failure with ERR cause.

• If the transaction succeeds then reading TFSR_ELx.TFy status determines if there are any errors.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61



Part C
Appendixes



Chapter C1
Transactional Memory Extension (TME) Litmus tests

This appendix is to help understand, via examples, how transactions extend the Armv8 memory model.

See also Section B1.4 Memory model, [1] Definition of the Armv8 memory model, and [1] Barrier Litmus Tests.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63



Chapter C1. Transactional Memory Extension (TME) Litmus tests
C1.1. Conventions

C1.1 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with
unnecessary code sequences, using the same conventions as [1] Load-Acquire Exclusive, Store-Release Exclusive
and barriers. In addition, we define the following constructs.

The construct TX{<code>} describes the following sequence:

loop:

TSTART X12 ; attempt to start a new transaction

CBNZ X12, loop ; retry forever

<code>

TCOMMIT

Note: This construct is unsafe in the general case because a transaction is permitted to never commit and should
be avoided. But, for the simple examples that are presented in this section it is expected that an implementation
will be able to commit the transaction eventually.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64



Chapter C1. Transactional Memory Extension (TME) Litmus tests
C1.2. Transaction strong isolation

C1.2 Transaction strong isolation

TME transactions are strongly isolated. Strongly isolated transactions require both non-interference and contain-
ment from other transactions as well as from non-transactional code executing concurrently.

C1.2.1 Containment

The containment property of transactions means that only the last write to a Location is observable outside of the
transaction:

P1 P2

LDR W5, [X1] TX { STR W5, [X1] STR W6, [X1] }

In this example, the result of P1:W5==0x55 is not permissible.

C1.2.2 Non-interference

The non-interference property of transactions means that multiple reads to the same memory Location inside a
transaction should return the same value:

P1 P2

STR W5, [X1] TX { LDR W5, [X1] LDR W6, [X1] }

In this example, it is required for P2:W5 and P2:W6 to contain the same value.

The non-interference property of transactions also means that a read to Location following a write to the same
Location inside a transaction should return the value of the write:

P1 P2

STR W5, [X1] TX { STR W6, [X1] LDR W5, [X1] }

In this example, it is required that P2:W5==0x66.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65



Chapter C1. Transactional Memory Extension (TME) Litmus tests
C1.3. Transactions and barriers

C1.3 Transactions and barriers

The following sections show that most of the examples in [1] Simple ordering and barrier cases can be achieved
using transactions without the need for additional barriers.

C1.3.1 Simple weakly consistent ordering

The simple weakly consistent ordering example in [1] Simple ordering and barrier cases can be solved by the use
of transactions in various ways. In the following examples, the result of P1:W6==0, P2:W5==0 is not permissible.

Memory accesses after the transaction cannot be observed by other observers before the transaction:

P1 P2

TX { STR W5, [X1] } LDR W6, [X2] TX { STR W6, [X2] } LDR W5, [X1]

Memory accesses before the transaction cannot be observed by other observers after the transaction:

P1 P2

STR W5, [X1] TX { LDR W6, [X2] } STR W6, [X2] TX { LDR W5, [X1] }

An empty transaction behaves like a barrier instruction:

P1 P2

STR W5, [X1] TX {} LDR W6, [X2] STR W6, [X2] TX {} LDR W5, [X1]

C1.3.2 Message passing

The weakly-ordered message passing problem in [1] Simple ordering and barrier cases can be solved by the use of
transactions in various ways. In the following examples, the result of P2:W5==0 is not permissible.

Using a transaction when accessing the data:

P1 P2

TX { STR W5, [X1] } STR W0, [X2] WAIT([X2]==1) AND X12, X12, #0

LDR W5, [X1, X12]

An empty transaction behaves like a barrier instruction:

P1 P2

STR W5, [X1] TX {} STR W0, [X2] WAIT([X2]==1) AND X12, X12, #0

LDR W5, [X1, X12]

These approaches also work with multiple observers, viz, with extra observers running the same sequence as P2.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66



Chapter C2
Transactional Memory Extension (TME) Transactional Lock Eli-
sion

C2.1 Overview

Contended locks can lead to software scalability problems on multicore systems. Hardware Transactional Memory
may improve the scalability of contended locks by implementing transactional lock elision.

With transactional lock elision, critical regions are converted into transactions and multiple threads can execute
their critical regions in parallel as long as there are no transactional conflicts. When such conflicts occur, the
implementation resolves them by failing transactions as necessary.

Failed transactions must re-execute the critical region for the application to progress, but since transactions are
best effort, a fallback execution path is necessary. In the case of transactional lock elision, typically the fallback
path acquires a lock and executes the critical region non-transactionally.

The most popular implementations of transactional lock elision use the same programming model as locks, so they
can be applied to existing programs.

Arm notes however that not all locking libraries are equal with respect to lock elision. Certain existing libraries
cannot be elided soundly (see below for an example) and will need reviewing or perhaps revisiting entirely (e.g. by
adding extra barriers or using atomic operations) if they are intended to be used in this context. This is the case
both for the surrounding locks on other threads, and the lock used as the fallback path.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67



Chapter C2. Transactional Memory Extension (TME) Transactional Lock Elision
C2.2. Conventions

C2.2 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with
unnecessary code sequences, using the same conventions as the Conventions topic in the [1] Barrier Litmus Tests
chapter. In addition, we define the following constructs.

The construct LOCK(Xx) describes the following sequence from [1] Acquiring a lock:

PRFM PSTL1KEEP, [Xx] ; preload into cache in unique state

loop:

LDAXR W5, [Xx] ; read lock with acquire

CBNZ W5, loop ; check if 0

STXR W5, W0, [Xx] ; attempt to store new value

CBNZ W5, loop ; test if store succeeded and retry if not

The construct UNLOCK(Xx) describes the following sequence from [1] Releasing a lock:

STLR WZR, [Xx] ; clear the lock with release semantics

The construct CHECK(Xx) describes the following sequence:

LDR W5, [Xx] ; read lock

The construct CHECK_ACQ(Xx) describes the following sequence:

LDAR W5, [Xx] ; read lock with acquire

The construct WAIT_ACQ(Xx==0) describes the following sequence:

loop:

LDAR W5, [Xx] ; load acquire ensures it is ordered before subsequent loads/stores

CBNZ W5, loop

In the rest of this chapter, the LOCK(Xx) construct is used as one example of lock acquisition, the UNLOCK(Xx) construct
is used as one example of lock release, the CHECK(Xx) and CHECK_ACQ(Xx) constructs are used as one example of
reading the status of a lock, and the WAIT_ACQ(Xx==0) construct is used as one example of waiting until the lock
is free. Unless otherwise stated, the examples where these constructs are used would work the same if these
constructs were mapped to different locking primitives, such as but not limited to the ones presented in [1] Ticket
locks and [1] Use of Wait For Event (WFE) and Send Event (SEV) with locks.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68



Chapter C2. Transactional Memory Extension (TME) Transactional Lock Elision
C2.3. Acquiring a lock

C2.3 Acquiring a lock

The recommended instruction sequence for acquiring a lock using transactional lock elision is as follows (where W6

contains a retry count for the transaction):

loop:

TSTART X5 ; attempt to start a new transaction

CBNZ X5, fallback ; check if TSTART succeeded

CHECK_ACQ(X1) ; add the fallback lock to the transactional read set ; and set W5 to 0 if the fallback lock is free.

CBZ W5, enter ; if the fallback lock is free enter the critical region

TCANCEL #0xFFFF ; otherwise cancel the transaction with RTRY set to 1

fallback:

TBZ X5, #15, lock ; if RTRY is 0 take the fallback lock

SUB W6, W6, #1 ; decrement the retry count

CBZ W6, lock ; take the lock if 0

WAIT_ACQ(X1==0) ; wait until the lock is free

B loop ; retry the transaction

lock:

LOCK(X1) ; elision failed, acquire the fallback lock

DMB ISH ; block loads/stores from the critical region

enter:

C2.3.1 Checking the lock inside the transaction

When eliding a lock, it is required to check the status of the lock inside the transaction because the memory
accesses of a thread that executes the critical region non-transactionally are not tracked by hardware. In the
following example, mutual exclusion cannot be guaranteed:

P1 P2

LOCK(X1) LDR W5, [X2]

ADD W5, W5, #1 STR W5, [X2]

UNLOCK(X1)

TSTART X5 CBNZ X5, fallback

LDR W5, [X2] ADD W5, W5, #1

STR W5, [X2] TCOMMIT

To ensure mutual exclusion when the transaction by P2 commits after the load from the address in X2 by P1
and before the store to the address in X2 by P1, P2 must ensure that the lock variable is contained within the
transactional read set, which occurs as a side effect of adding the CHECK_ACQ(Xx) construct inside the transaction.

To ensure mutual exclusion when the transaction by P2 starts after the LOCK(Xx) construct by P1 and the transaction
in P2 commits before the store to the address in X2 by P1, P2 must test the value of the lock returned by the
CHECK_ACQ(Xx) construct and cancel the transaction as appropriate.

Using CHECK_ACQ(Xx) instead of CHECK(Xx) ensures that read from a critical region executing in a transaction do not
take their values from writes from a mutually excluded critical region that acquires a lock, including when the
acquisition of the lock generates a conflict that fails the transaction.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69



Chapter C2. Transactional Memory Extension (TME) Transactional Lock Elision
C2.3. Acquiring a lock

C2.3.2 Checking the lock at the fallback path

When eliding a lock, it is recommended to use the WAIT_ACQ(Xx==0) construct in the fallback handler to avoid the
Lemming effect, in which one thread acquiring the lock causes all other concurrent threads to do so too because
they retry too many times while the first thread holds the lock.

C2.3.3 Synchronization between transactions and the fallback path

When transactional lock elision fails, and the lock is acquired, it is required that loads and stores from the critical
region are not observable before the lock is acquired.

In the following example, mutual exclusion cannot be guaranteed:

P1 P2

LOCK(X1) LDR W5, [X2]

ADD W5, W5, #1 STR W5, [X2]

UNLOCK(X1)

TSTART X5 CBNZ X5, fallback

CHECK_ACQ(X1) CBNZ W5, cancel

LDR W5, [X2] ADD W5, W5, #1

STR W5, [X2] TCOMMIT

The following architecturally permissible ordering violates mutual exclusion:

• P1 performs the Load-Exclusive of the LOCK(Xx) construct.

• P1 performs the load of the shared variable from the critical region (reading 0).

• P2 enters the transaction, executes the critical region writing 1 to the shared variable, and commits the
transaction (because the lock is not acquired yet).

• P1 performs the Store-Exclusive of the LOCK(Xx) construct. The Store-Exclusive does not fail because there
are no intervening writes to the lock variable (P2 only reads the lock)

• P1 performs the store of the shared variable from the critical region (writing 1).

To ensure mutual exclusion when the fallback lock acquisition implementation permits reads or writes from the
critical region to be observable before the lock variable is updated, a DMB is added before the first load or store of
the critical region.

All the recommended locking acquisition sequences from [1] Load-Acquire Exclusive, Store-Release Exclusive
and barriers that use Load-Exclusive and Store-Exclusive to acquire the lock are affected.

Lock implementations that use an atomic operation with Acquire or Acquire-Release semantics (such as LDADDA,
SWPA, etc.) to update the lock variable are not affected.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70



Chapter C2. Transactional Memory Extension (TME) Transactional Lock Elision
C2.4. Releasing a lock

C2.4 Releasing a lock

The recommended instruction sequence for releasing a lock using transactional lock elision is as follows:

CHECK(X1) ; set W5 to 0 if the fallback lock is free

CBNZ W5, unlock ; check if 0

TCOMMIT ; the lock was elided, exit the transaction

B exit

unlock:

UNLOCK(X1) ; elision failed, release the fallback lock

exit:

C2.4.1 Elision and nesting

When releasing a lock that has potentially been elided it is advisable to use the CHECK(Xx) construct to check if
the lock is acquired instead of using TTEST to check if the PE is in Transactional state, because inside a nested
transaction using TTEST is not sufficient to distinguish if the lock was elided or not.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71



Chapter C3
Transactional Memory Extension (TME) Implementation recom-
mendations

C3.1 Permitted architectural difference between PEs

The architecture does not support implementations where the value of ID_AA64ISAR0_EL1.TME differs between
PEs in a single system.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72



Chapter C3. Transactional Memory Extension (TME) Implementation recommendations
C3.2. Individual operation latency

C3.2 Individual operation latency

In order to not affect single-thread performance when using transactional lock elision, Arm recommends that the
latency of starting and committing a transaction is not higher than the latency of the illustrative code sequence for
acquiring and releasing a spinlock.

In an application that successfully employs transactional lock elision, it is expected that most transactions will not
fail, so it acceptable that failing or canceling a transaction is a slower operation than committing a transaction.
Even so, in order to not affect single-thread performance, Arm recommends that the latency of failing or canceling
a transaction is not unreasonably high compared to the latency of committing a transaction.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73



Chapter C3. Transactional Memory Extension (TME) Implementation recommendations
C3.3. Read and write set capacity

C3.3 Read and write set capacity

Arm recommends that, for adequate performance of applications written in Java and C/C++, hardware supports a
read set size of at least 512 objects and a write set size of at least 300 objects – assuming average object size to be
128 bytes.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74



Chapter C3. Transactional Memory Extension (TME) Implementation recommendations
C3.4. State tracking

C3.4 State tracking

The properties of the transactional read set and the transactional write set imply that the implementation tracks
the addresses of transactional reads and writes and buffers the data values of transactional writes throughout the
execution of a transaction.

Arm expects a typical transaction to execute between a few tens to a few thousand instructions and to access up to
several hundreds or even thousands of distinct transactional reservation granules.

Arm expects the transactional write set to contain a significantly smaller number of transactional reservation
granules compared to the transactional read set of a typical transaction.

Arm expects the capacity of a typical Level 1 data or unified cache to be enough to hold the transactional write set,
but not enough to hold the transactional read set in many cases.

Arm expects the associativity of a typical Level 1 data or unified cache to not be enough to hold the transactional
write set or the transactional read set in many cases.

Arm considers a typical Level 1 data or unified cache to have a capacity between 32KB and 64KB with an
associativity between 2 to 4.

Arm recommends that implementations take these expectations into consideration in order to avoid frequent
transactional failures due to insufficient hardware resources.

For holding the transactional write set, Arm recommends the use of hardware structures in addition to the Level 1
data or unified cache that can provide the illusion of high associativity, such as a small fully associative cache.

For holding the transactional read set, Arm recommends the use of hardware structures in addition or instead of
the Level 1 data or unified cache that are capable of holding the addresses of tens of thousands of transactional
reservation granules, such as higher-level caches, Bloom filters, Signatures, or other similar structures.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75



Chapter C3. Transactional Memory Extension (TME) Implementation recommendations
C3.5. Transactional conflicts

C3.5 Transactional conflicts

Arm recommends that the hardware cache coherency facilities of the processor be used to detect transactional
conflicts. This is also known as eager conflict detection because conflicts are detected when the read or write
requests are generated. The alternative, lazy conflict detection, defers the detection of conflicts until the transaction
attempts to commit.

Arm recommends that implementations do not generate a transactional conflict when a read generated by a PRFM
instruction or by hardware prefetching accesses a Location within the transactional write set of a transaction.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76



Chapter C4
Stages of execution

This section shows the relationship between the stages of execution. The terms are defined in the Glossary.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77



Chapter C4. Stages of execution
C4.1. Stages of execution without Transactional Memory Extension (TME)

C4.1 Stages of execution without Transactional Memory Extension (TME)

IKHCRN Figure C4.1 shows the stages of execution in a PE that does not implement FEAT_TME.

Begin Speculative
uArch-unfinished

Canceled
Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations Performed

Nonspeculative
uArch finished

Operations Performed

Cancel

Resolve

CompleteCoherent

Figure C4.1: Stages of execution without TME

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78



Chapter C4. Stages of execution
C4.2. Stages of execution with TME

C4.2 Stages of execution with TME

IBBNYK Figure C4.2 shows the stages of execution in a PE that does implement FEAT_TME.

Non-transactional

Transactional

Begin

Speculative
uArch-unfinishedOutside

transaction

Speculative
uArch-unfinished

Inside
transaction

Canceled

Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations
Performed

Nonspeculative
uArch finished

Operations
Performed

Cancel

Resolve
CompleteCoherent

Cancel

Nonspeculative
uArch-unfinished

Resolve

Speculative
uArch finished

Operations
Performed

Nonspeculative
uArch finished

Operations
Performed

Cancel

Resolve

TCOMMIT

Transaction-
canceled

TCANCEL

Transaction-
failed

Fail

Figure C4.2: Stages of execution with TME

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79



Part D
Glossary



Chapter D1
Glossary

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81



Chapter D1. Glossary

Canceled

An operation on an incorrectly predicted execution path.

Complete

An operation that has finished all its operational pseudocode, and the results of any memory accesses, including
translation table walks and updates, are coherent with other observers. For more information see the [1].

Microarchitecturally-finished

An operation that has finished all its operational pseudocode, although the results of any memory accesses,
including translation table walks and updates, are not yet coherent with other observers.

Microarchitecturally-unfinished

An operation that has not completed all its operational pseudocode.

Nonspeculative

An operation on a confirmed execution path.

Nonspeculative Microarchitecturally-finished

An operation that has finished all its operational pseudocode, on a confirmed execution path, although the results
of any memory accesses, including translation table walks and updates, are not yet coherent with other observers
and the operation is not Complete.

Nonspeculative Microarchitecturally-unfinished

An operation that is in progress on a confirmed execution path.

Speculative

An operation on a predicted execution path. For more information see the [1].

Speculative Microarchitecturally-finished

An operation that has finished all its operational pseudocode, on a predicted execution path.

Speculative Microarchitecturally-unfinished

An operation that is in progress on a predicted execution path.

TME

Transactional Memory Extension

Transaction-canceled

An operation that was part of a transaction that was canceled by a TCANCEL instruction.

Transaction-failed

An operation that was part of a transaction that failed.

Transactional

An operation that is part of a transaction and the transaction has not yet succeeded, failed or been canceled. The
operation can be any of:

• Speculative Microarchitecturally-unfinished.
• Speculative Microarchitecturally-finished.
• Nonspeculative Microarchitecturally-unfinished.
• Nonspeculative Microarchitecturally-finished.

DDI0617
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82


	Release information
	Non-Confidential Proprietary Notice
	Contents
	A Preface
	About this Supplement
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes


	Additional reading
	Feedback
	Feedback on this Supplement
	Progressive terminology commitment


	B The Transactional Memory Extension
	B1 Transactional Memory Extension
	B1.1 Introduction
	B1.2 Transactions
	B1.2.1 Transactional state
	B1.2.2 Transactional reservation granule, read and write sets

	B1.3 Transaction failure
	B1.3.1 Failure causes
	B1.3.2 Transaction checkpoint

	B1.4 Memory model
	B1.4.1 External visibility
	B1.4.2 Atomicity

	B1.5 Transactions and memory attributes
	B1.6 Address translation
	B1.6.1 Transactional translation table walks
	B1.6.2 Hardware management of the Access flag and dirty state
	B1.6.3 TLB shoot-down
	B1.6.4 Translation table modifications inside transactions

	B1.7 Modification of instructions in Transactional state
	B1.8 Interrupt masking
	B1.9 A64 instruction behavior in Transactional state
	B1.9.1 MRS
	B1.9.2 MSR (register)
	B1.9.3 MSR (immediate)
	B1.9.4 SYS and SYSL
	B1.9.5 Wait for Event
	B1.9.6 DMB
	B1.9.7 ISB
	B1.9.8 First-fault and Non-fault load instructions

	B1.10 Reset
	B1.11 Identification mechanism

	B2 Debug, PMU, and Trace
	B2.1 Self-hosted debug
	B2.1.1 Breakpoint Instruction exceptions
	B2.1.2 Breakpoint exceptions
	B2.1.3 Watchpoint exceptions
	B2.1.4 Software Step exceptions

	B2.2 External debug
	B2.2.1 Breakpoint and Watchpoint debug events
	B2.2.2 Halting Instruction debug event
	B2.2.3 Halting Step debug events
	B2.2.4 External Debug Request debug event
	B2.2.5 Reset Catch debug event
	B2.2.6 Other Halting debug events
	B2.2.7 Behavior in Debug state
	B2.2.8 The PC Sample-based Profiling Extension

	B2.3 The Statistical Profiling Extension
	B2.3.1 Memory accesses by profiling operations
	B2.3.2 Events packet payload
	B2.3.3 Profile Buffer management interrupts

	B2.4 The Embedded Trace Extension
	B2.5 The Performance Monitors Extension
	B2.5.1 Event filtering
	B2.5.2 Accuracy of event filtering
	B2.5.3 TSTART_RETIRED
	B2.5.4 TCOMMIT_RETIRED
	B2.5.5 TME_TRANSACTION_FAILED
	B2.5.6 TME_INST_RETIRED_COMMITTED
	B2.5.7 TME_CPU_CYCLES_COMMITTED
	B2.5.8 TME_FAILURE_CNCL
	B2.5.9 TME_FAILURE_ERR
	B2.5.10 TME_FAILURE_IMP
	B2.5.11 TME_FAILURE_MEM
	B2.5.12 TME_FAILURE_NEST
	B2.5.13 TME_FAILURE_SIZE
	B2.5.14 TME_FAILURE_TLBI
	B2.5.15 TME_FAILURE_WSET
	B2.5.16 Behavior on overflow


	B3 System registers
	B3.1 General system control registers
	B3.1.1 CTR_EL0
	B3.1.2 ID_AA64ISAR0_EL1
	B3.1.3 TCR_EL1
	B3.1.4 TCR_EL2
	B3.1.5 ISS encoding for an exception from a TSTART instruction
	B3.1.6 SCTLR_EL1
	B3.1.7 SCTLR_EL2
	B3.1.8 SCTLR_EL3
	B3.1.9 HCR_EL2
	B3.1.10 SCR_EL3

	B3.2 Performance Monitors registers
	B3.2.1 PMEVTYPER<n>_EL0
	B3.2.2 PMCCFILTR_EL0
	B3.2.3 PMSEVFR_EL1

	B3.3 Performance Monitors external registers
	B3.3.1 PMPCSR


	B4 Instructions
	B4.1 TCANCEL
	B4.2 TCOMMIT
	B4.3 TSTART
	B4.4 TTEST

	B5 Interaction with Memory Tagging Extension

	C Appendixes
	C1 Transactional Memory Extension (TME) Litmus tests
	C1.1 Conventions
	C1.2 Transaction strong isolation
	C1.2.1 Containment
	C1.2.2 Non-interference

	C1.3 Transactions and barriers
	C1.3.1 Simple weakly consistent ordering
	C1.3.2 Message passing


	C2 Transactional Memory Extension (TME) Transactional Lock Elision
	C2.1 Overview
	C2.2 Conventions
	C2.3 Acquiring a lock
	C2.3.1 Checking the lock inside the transaction
	C2.3.2 Checking the lock at the fallback path
	C2.3.3 Synchronization between transactions and the fallback path

	C2.4 Releasing a lock
	C2.4.1 Elision and nesting


	C3 Transactional Memory Extension (TME) Implementation recommendations
	C3.1 Permitted architectural difference between PEs
	C3.2 Individual operation latency
	C3.3 Read and write set capacity
	C3.4 State tracking
	C3.5 Transactional conflicts

	C4 Stages of execution
	C4.1 Stages of execution without Transactional Memory Extension (TME)
	C4.2 Stages of execution with TME


	D Glossary
	D1 Glossary


