
Learn the architecture - Understanding trace
Version 2.0

Non-Confidential
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102119_0200_02_en

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Learn the architecture - Understanding trace

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 24 March 2020 Non-Confidential First release

0200-02 14 May 2020 Non-Confidential Updated the images

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 32

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 32

mailto:terms@arm.com

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Contents

Contents

1. Overview...6

2. What is trace?..7

3. What is trace used for?.. 11

4. Trace output...12

5. Trace components.. 15
5.1 Embedded Trace Macrocell Trace source... 15
5.2 Program Trace Macrocell Trace source..16
5.3 Instrumentation Trace Macrocell Trace source.. 17
5.4 System Trace Macrocell Trace source..17
5.5 Embedded Logic Analyzer Trace source... 18
5.6 Trace Memory Controller Trace sink..18
5.7 Trace Port Interface Unit Trace sink.. 19
5.8 Funnel Trace link...20
5.9 Cross trigger network Trace link...20
5.10 Timestamp generator.. 21

6. Trace infrastructure examples...22

7. Can trace capture affect a system?... 28

8. Specifications...29

9. Check your knowledge... 30

10. Related information...31

11. Next steps..32

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Overview

1. Overview
This guide focuses on a high-level view of trace in Armv7 systems, and Armv8 systems up to
version Armv8.4.

The guide covers:

• What trace is and how it is used

• How the trace architecture is defined and how it maps on to the different trace component
implementations

• What trace components are seen in Arm systems

• Examples of some trace systems

The information in this guide is tools agnostic. Screenshots of the Arm Debugger Trace view are
used to illustrate points that are made in the guide.

This guide does not cover low-level trace details like trace protocols, trace capture mechanisms,
trace data decode, or Tarmac trace.

Before you begin
We assume that you are familiar with CoreSight. If you are not, read our CoreSight guide (coming
soon).

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

What is trace?

2. What is trace?
Trace refers to the process of capturing data that illustrates how the components in a design are
operating, executing, and performing.

The ability to trace a target depends on what trace facilities the target offers. For example, you can
only store trace data on a target for later analysis if the target offers the facilities to do so. If you
have questions about the trace capabilities of your target, refer to the target manufacturer, target
designer, and target documentation.

The Arm approach to trace usually involves a separate trace generation component for each type
of trace that is performed. For example, different trace sources produce processor trace and bus
trace.

In this section of the guide, we look at the different kinds of trace and the components that
produce them.

Instruction trace
Instruction trace generates information about the instruction execution of a core or processor. In
a simple example, if a core executes a loop ten times and instruction trace is enabled, the decoded
instruction trace data shows the associated loop code ten times.

The following diagram shows two iterations of a simple loop example through instruction trace:

Figure 2-1: Instruction trace

The trace capabilities of your target might allow additional information, for example cycle counter
numbers or timestamps, to be captured alongside the trace data. You can choose the additional
information that best fits your tracing requirements.

The Arm trace sources that generate instruction trace are the Embedded Trace Macrocell (ETM)
and the Program Trace Macrocell (PTM). Whether a target includes an ETM or a PTM depends on
the processor that is in the design. Armv8 designs have an ETM. Most Armv7 designs have a PTM.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

What is trace?

Data trace
Data trace generates information about the data accesses of a core or processor. For example,
if a memory load instruction is executed and data trace is enabled, the data trace shows a load
instruction with the associated load address and value.

The following diagram shows how a data access appears through data trace:

Figure 2-2: Data trace

The Embedded Trace Macrocell (ETM) is the Arm trace source that captures data trace. ETM data
trace capability is an optional feature in the ETM architecture. ETMv4 does not support data trace
on Armv8 or Armv7 processors.

Instrumentation trace
Instrumentation trace outputs Operating System (OS) and application events and system
information. For example, if an event occurs when an application runs and instrumentation trace is
enabled, the environment pushes useful runtime information to the instrumentation trace source to
analyze later.

The following diagram shows how Data Watchpoint and Trace unit (DWT) values that are written
to an ITM appear through instrumentation trace:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

What is trace?

Figure 2-3: Instrumentation trace

Instrumentation trace is versatile, but its capabilities depend on how it is implemented in the
target design. Refer to your target manufacturer, target designer, and target documentation for
information on the instrumentation trace capability of your target.

Arm designs use an Instrumentation Trace Macrocell (ITM) to capture instrumentation trace data.

System trace
System trace outputs data about components across the system. For example, the STM supports
both target hardware and software event generation. System trace components have a superset
of the functionality of an instrumentation trace component. This means that there are many
similarities between the two components.

The following diagram shows how outputting an application text string and application-generated
numbers to an STM appear through system trace:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

What is trace?

Figure 2-4: System trace

System trace is versatile, but its capabilities depend on how it is implemented in the target design.
Refer to your target manufacturer, target designer, and target documentation for information on
the system trace capability of your target.

Arm designs use a System Trace Macrocell (STM) to capture system trace data. The two variants are
the STM and the STM-500.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

What is trace used for?

3. What is trace used for?
As shown in What is trace?, trace in Arm systems captures various different target operations and
information. This means that trace can help:

• Diagnose problems during runtime:

◦ Instruction trace shows the core execution history and places where execution might
behave unexpectedly.

◦ Data trace shows what memory addresses were accessed and if the accesses completed
successfully.

◦ Instrumentation trace can output printf-style debugging. On a Cortex-M processor,
instrumentation trace can dump useful core information.

◦ Program system trace to monitor signals within the system that might show abnormal
behavior.

• Measure performance:

◦ Instruction trace shows cycle count information and timestamps alongside the instruction
execution history.

◦ Instrumentation and system trace output profiling information like performance register
values or timestamps.

• View operation on a system-level:

◦ System trace monitors signals outside the processor or core to show a wider scope of
target activity.

Target designers try to keep trace functionality available throughout the
development life cycle of their target. However, trace capability might be phased
out or restricted during the development cycle of some targets. Refer to your target
manufacturer, target designer, and target documentation for the trace capability of
the target design.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace output

4. Trace output
Most trace sources generate packetized data that might be further formatted by the trace
infrastructure. This means that the captured trace data is not in a human-readable format. The
trace data must go through extraction, decompression, decode, and processing stages to become
human-readable. Native or self-hosted trace software or a trace-capable debugger implement these
steps.

The following diagram shows the trace processing stages.

Figure 4-1: Trace processing stages

There are exceptions to the trace data not being in human-readable format. For example, the ITM
can generate output in UART encoding over Serial Wire Output (SWO). This means that if you look
at the trace data in an ASCII hexadecimal editor, you can read some of the trace data.

What happens to the trace data when it is generated depends on your debugging environment and
the capabilities of your target.

Most external debug environments pull the trace data into the debugger for analysis. In this
situation, the trace data is stored on the target, or exported from the target, using either on-
chip capture or off-chip capture. Let’s look at these methods in detail for an external debugger
environment.

On-chip capture
The trace data is on chip and is exported to the external debugger:

• On-chip trace data is usually stored in a small hardware buffer, or is routed to a higher capacity
area of the system memory by the Trace Memory Controller (TMC). The applicable TMC
configurations are Embedded Trace Buffer (ETB), Embedded Trace FIFO (ETF), or Embedded
Trace Router (ETR).

• At particular points during debugging, the external debugger performs operations to extract the
on-chip trace data for analysis purposes.

The following diagram shows on-chip capture:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace output

Figure 4-2: On-chip capture

When using on-chip capture, the trace data that is captured is heavily compressed.
This heavy compression means that the trace decompression relies on the user
having access to the exact image code that was executed by the processor. Any
discrepancy between the image code that is used for decompression and the code
that was run on the processor leads to decompression corruption.

Off-chip capture
The trace data is output from the target to a debug probe or directly to the external debugger:

• Trace data is output by the Trace Port Interface Unit (TPIU), Embedded Trace Streamer (ETS),
or Serial Wire Output (SWO) that is on the target to an external debugger. The TPIU and ETS
output trace data to a debug probe and the debug probe then passes the trace data onto the
external debugger. The SWO passes the trace data directly to an external debugger.

• When an STM or an ITM generates the trace data, if the debugger and debug probe support
real-time trace processing, the captured trace data is analyzed and displayed while it is
captured. Real-time trace processing is often called streaming trace.

• Here is an alternative to streaming trace: At particular points during debugging, the external
debugger can perform operations to dump trace data that is stored in the debug probe for later
trace analysis.

The following diagram shows off-chip capture:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace output

Figure 4-3: Off-chip capture

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

5. Trace components
There are many different types of trace components. Most trace components fall into three
categories:

• Trace source - a trace component which generates trace data

• Trace sink - a trace component which stores or outputs trace data

• Trace link - a component which links trace or non-trace components together

In this section of the guide, we define the different types of trace components, describe their
function, and provide the location of their implementation details. Specifications includes the trace
component architecture specification documents.

Debug subsystem design is highly configurable. It is the role of the target designer
to create a debug subsystem design that is suitable for the target. This means that
your target design might only implement a subset of the components that are
described in this section.

5.1 Embedded Trace Macrocell Trace source
Depending on the processor, Armv8 systems have an ETMv4 or an ETMv3.x. For example, Armv8-
A systems are ETMv4-only and Armv8-M might have ETMv4 or ETMv3.x.

The Embedded Trace Macrocell (ETM) architectures permit instruction and data trace. As
we mentioned in What is trace?, a particular ETM implementation might not include data
trace support. For example, the Armv8-A ETM is instruction trace only. Refer to your target
documentation to learn whether the implemented ETMs support data tracing.

Because ETM trace data is packetized, data is decompressed and decoded before being analyzed.

Triggers and filters control ETM trace data generation. Filters allow you to control how much trace
data is generated. This is useful if:

• The code or data being traced is large and can cause bandwidth issues on the target

• There are only certain points where having trace data is useful

Both triggers and filters are typically set using native or self-hosted trace software or an external
debugger.

Triggers act like a start point to trace a region of interest. When a trigger is set, the ETM only
generates trace data around the trigger point.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

Filtering works for instruction and data trace by enabling trace generation between two filter
points: a start point and end point. ETMv4 supports richer filters, for example filtering on context
ID, Security state, and Exception level, than earlier ETM versions.

Multiple cores or processors can share a single ETM. If multiple cores share an ETM, trace data is
generated for only one core at a time. This prevents the user from observing trace data from both
cores concurrently. ETM sharing is not allowed for Armv8-A cores.

An ETM can generate cycle-accurate trace and can insert timestamps into the trace data. Cycle-
accurate trace is useful for determining which code or functions are consuming the most execution
time. Timestamps are useful when calculating how long a code or function takes to execute and for
correlating trace data from different sources.

Including cycle-accurate and timestamping information in the trace data increases
the overall trace data size. This might be a problem for systems with limited trace
data storage or small off-chip trace port sizes. Consider using triggers and filters to
limit the amount of trace data that is generated when using cycle-accurate trace or
timestamps.

ETM implementation details are either described in an ETM section of the Technical Reference
Manual (TRM) for a processor, or in a separate TRM for that ETM. First, check whether the TRM
for the processor includes an ETM section. If the TRM does not include this section, search for a
separate TRM document. Separate TRM document names usually follow the format:

CoreSight ETM-<processor name> Technical Reference Manual

For example, the TRM for the Cortex-R7 ETM is CoreSight ETM-R7 Technical Reference Manual.

5.2 Program Trace Macrocell Trace source
Program Trace Macrocell (PTM) is only found in systems before Armv8. PTMs perform instruction
trace only.

Because PTM trace data is packetized, data is decompressed and decoded before being analyzed.

PTM can provide triggering and filtering capabilities. The PTM implementation determines whether
these capabilities are present and the number of capabilities that are available. The PTM trigger and
filter capabilities work the same way that they work for an ETM.

A PTM can generate cycle-accurate trace and can insert timestamps into the trace data. These
features work the same way that they work for an ETM.

PTM implementation details are either described in a PTM section of the TRM for a processor, or
in a separate TRM for that PTM. Start by checking whether the TRM for the processor includes
a PTM section. If the TRM does not include this section, search for a separate TRM document.
Separate TRM document names usually follow the format:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 32

https://developer.arm.com/documentation/ddi0459/

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

CoreSight PTM-<processor name> Technical Reference Manual

For example, the TRM for the Cortex-A9 PTM is CoreSight PTM-A9 Technical Reference Manual.

5.3 Instrumentation Trace Macrocell Trace source
The Instrumentation Trace Macrocell (ITM) is a low-bandwidth, application-driven trace source. The
ITM is mainly used to:

• Support printf-style debugging

• Trace OS and application events

• Output diagnostic system information

The ITM outputs trace data as packets. The four sources for the packets are:

• Software trace. Software can write directly to the ITM stimulus registers to generate packets.

• Hardware trace. The debug logic generates these packets, and the ITM outputs them. This is for
Cortex-M processors only.

• Time stamping

• Global system timestamping. This is for Cortex-M processors only.

The ITM is programmed to control what information is traced.

Cortex-M ITM implementation details are found in the ITM section in the TRM for the Cortex-
M processor. For example, the implementation details for the ITM for the Cortex-M4 are in the
Instrumentation Trace Macrocell Unit section of the Arm Cortex-M4 Processor Technical Reference
Manual.

General CoreSight ITM implementation details are found in the CoreSight Components Technical
Reference Manual.

5.4 System Trace Macrocell Trace source
The System Trace Macrocell (STM) is a trace source that is designed to provide system trace and
instrumentation information. This information includes:

• Memory-mapped writes to the STM Advanced eXtensible Interface (AXI) slave that carry
information about the behavior of the software

• A hardware event interface to signify certain events that are happening in the system

The STM supports timestamps. These timestamps allow correlation with other timestamping trace
sources in the CoreSight system, for example instruction trace.

For implementation details, the STM and STM-500 each have their own TRM:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 32

https://developer.arm.com/documentation/ddi0401/
https://developer.arm.com/documentation/100166/latest/Instrumentation-Trace-Macrocell-Unit
https://developer.arm.com/documentation/100166/
https://developer.arm.com/documentation/100166/
https://developer.arm.com/documentation/ddi0314/
https://developer.arm.com/documentation/ddi0314/

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

• CoreSight System Trace Macrocell Technical Reference Manual

• Arm CoreSight STM-500 System Trace Macrocell Technical Reference Manual

5.5 Embedded Logic Analyzer Trace source
The Embedded Logic Analyzer (ELA) is a CoreSight component that monitors signals within a
design. The ELA is most commonly used to monitor bus signals to allow the debug of bus and
memory issues. There are two ELA variants:

• CoreSight ELA-500 Embedded Logic Analyzer

• CoreSight ELA-600 Embedded Logic Analyzer

ELA-500 and ELA-600 both generate packetized output. You can configure ELA-500 and ELA-600
to store trace data in a dedicated SRAM. You can configure ELA-600 to output trace data onto the
AMBA Trace Bus (ATB). The ELA-600 target designer determines whether the trace data is stored
in a dedicated SRAM or output onto the ATB.

5.6 Trace Memory Controller Trace sink
The Trace Memory Controller (TMC) captures trace data into local or system memory, or streams
trace data to a High-Speed Serial Trace Port (HSSTP). The trace is read by an off-chip external
debugger or by on-chip self-hosted debug software.

The implementation details for the Arm CoreSight SoC-600 TMC are available in the Arm
CoreSight System-on-Chip SoC-600 Technical Reference Manual. CoreSight SoC-600 implements
the Arm Debug Interface Architecture Specification ADIv6.

The implementation details for the Arm CoreSight SoC-400 TMC are available in the CoreSight
Trace Memory Controller Technical Reference Manual. CoreSight SoC-400 implements the Arm
Debug Interface Architecture Specification ADIv5.

Consult your target designer if are unsure which of these TRMs applies to your target.

The TMC uses one of four configurations that the target designer chooses:

• Embedded Trace Buffer (ETB)

• Embedded Trace FIFO (ETF)

• Embedded Trace Router (ETR)

• Embedded Trace Streamer (ETS)

Let’s look at these different TMC configurations in more detail:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 32

https://developer.arm.com/documentation/ddi0444/
https://developer.arm.com/documentation/ddi0528/
https://developer.arm.com/documentation/100127/
https://developer.arm.com/documentation/101088/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/ihi0074/
https://developer.arm.com/documentation/ddi0461/
https://developer.arm.com/documentation/ddi0461/
https://developer.arm.com/documentation/ihi0031/
https://developer.arm.com/documentation/ihi0031/

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

Embedded Trace Buffer
The Embedded Trace Buffer (ETB) contains a dedicated SRAM that stores generated trace data on-
chip for later retrieval. The SRAM acts like a circular buffer that wraps when the buffer size limit is
reached. Buffer wrapping works by replacing the oldest trace data with the newest data.

A single ETB can store multiple ETM and PTM trace streams. Normally, the buffer is small, typically
from 4KB to 64KB, so the amount of trace data that can be captured is limited. It is usually
necessary to use trace source triggering and filtering capabilities to limit the amount of trace data
that is captured to ensure that important trace data is not lost due to buffer wrapping.

Embedded Trace FIFO
The Embedded Trace FIFO (ETF) contains a dedicated SRAM that can be used as either a circular
buffer, a hardware FIFO, or a software FIFO. In Circular Buffer mode, the ETF has the same
functionality as the ETB. In Hardware FIFO mode, ETF is typically used to smooth out fluctuations
in the trace data. In Software FIFO mode, on-chip software uses the ETF to read out data over the
debug AMBA Peripheral Bus (APB) interface. Configure the ETF mode at runtime.

Embedded Trace Router
With the Embedded Trace Router (ETR), trace can be routed over an AXI interface to the system
memory, or to any other AXI slave. An ETR allows larger amounts of trace data to be stored on-
chip than an ETB or ETF allows. Like the ETF, the ETR has Circular Buffer and Software FIFO
modes. The ETR programmer decides where to store the trace data in memory. Refer to your target
documentation or target designer for the best place to store ETR trace data on your target, so that
used memory is not overwritten.

Embedded Trace Streamer
The Embedded Trace Streamer (ETS) routes trace data over an AXI4-Stream interface to a
streaming device, for example an HSSTP link layer, either directly or through an AXI4-Stream
interconnect. The ETS behaves in a similar way to the ETR, by keeping the same baseline
functionality. However, the ETS does not include features that are not applicable to trace data
streaming, for example incrementing address support.

5.7 Trace Port Interface Unit Trace sink
The Trace Port Interface Unit (TPIU) drives trace data to external pins on a target, so that the Trace
Port Analyzer (TPA), which is often part of a debug probe, can capture the trace data. The TPIU:

• Coordinates the stopping of trace capture when it receives a trigger

• Inserts source identification information into the trace stream so that trace data can be re-
associated with its trace source

• Outputs the trace data over trace port pins

• Outputs patterns over the trace port. This pattern output is often referred to as TPIU pattern
generation. This allows a TPA to tune its capture logic to the trace port, which maximizes the
trace data output frequency on the trace port.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

TPIU implementation details are found in either the Arm CoreSight System-on-Chip SoC-600
Technical Reference Manual or the Arm CoreSight SoC-400 Technical Reference Manual.

CoreSight SoC-600 implements the Arm Debug Interface Architecture Specification ADIv6.
CoreSight SoC-400 implements the Arm Debug Interface Architecture Specification ADIv5. Consult
your target designer if are unsure which of these TRMs apply to your target.

5.8 Funnel Trace link
The funnel, also called an ATB funnel, merges multiple ATBs into a single ATB. Typically, the single
ATB is then routed to a trace component, for example another funnel, an ETB, an ETR, or a TPIU.
The funnel comes in programmable or non-programmable configurations. With the programmable
configuration, the funnel priority setting is configurable.

Funnel implementation details are found in either the Arm CoreSight System-on-Chip SoC-600
Technical Reference Manual or the Arm CoreSight SoC-400 Technical Reference Manual.

CoreSight SoC-600 implements the Arm Debug Interface Architecture Specification ADIv6.
CoreSight SoC-400 implements the Arm Debug Interface Architecture Specification ADIv5. Consult
your target designer if are unsure which of these TRMs apply to your target.

5.9 Cross trigger network Trace link
The cross-trigger network consists of Cross Trigger Interfaces (CTIs) and Cross Trigger Matrices
(CTMs). CTIs enable the distribution of events to and from sources and destinations in the system.
CTIs are connected to each other using one or more CTMs through channel interfaces.

CTIs are software-configurable, which allows the user to program the trigger to channel and
channel to trigger mappings. When a trigger event occurs on a mapped channel, the event is
broadcast on that channel to all other CTIs in the system.

In the context of trace, CTIs communicate events between the different trace components and
other CoreSight components. For example, the cross-trigger network allows triggers to be routed
from trace sources like cores to trace sinks like an ETR.

CTI and CTM implementation details are found in either the Arm CoreSight System-on-Chip
SoC-600 Technical Reference Manual or the Arm CoreSight SoC-400 Technical Reference Manual.

CoreSight SoC-600 implements the Arm Debug Interface Architecture Specification ADIv6.
CoreSight SoC-400 implements the Arm Debug Interface Architecture Specification ADIv5. Consult
your target designer if are unsure which of these TRMs apply to your target.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 32

https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/ddi0480/
https://developer.arm.com/documentation/ihi0074/
https://developer.arm.com/documentation/ihi0031/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/ddi0480/
https://developer.arm.com/documentation/ihi0074/
https://developer.arm.com/documentation/ihi0031/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/ddi0480/
https://developer.arm.com/documentation/ihi0074/
https://developer.arm.com/documentation/ihi0031/

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace components

5.10 Timestamp generator
The timestamp generator generates 64-bit rolling time for distribution to other CoreSight
components, which allows later alignment of trace information. In the Arm implementation, the
timestamp generator runs at a constant clock frequency, regardless of the power and clocking
state of the processor that uses it. The timestamp generator has two APB interfaces: a read-only
interface to read the counter value and management registers, and a programming interface. In
many Cortex-A processor systems, the processors and the CoreSight infrastructure use the same
source of time.

Timestamp generator implementation details are found in either the Arm CoreSight System-on-
Chip SoC-600 Technical Reference Manual or the Arm CoreSight SoC-400 Technical Reference
Manual.

CoreSight SoC-600 implements the Arm Debug Interface Architecture Specification ADIv6.
CoreSight SoC-400 implements the Arm Debug Interface Architecture Specification ADIv5. Consult
your target designer if are unsure which of these TRMs apply to your target.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 32

https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/100806/
https://developer.arm.com/documentation/ddi0480/
https://developer.arm.com/documentation/ddi0480/
https://developer.arm.com/documentation/ihi0074/
https://developer.arm.com/documentation/ihi0031/

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

6. Trace infrastructure examples
In this section of the guide, we provide some trace infrastructure examples. These examples
illustrate:

• The general flow of trace data from trace source to trace sink

• The interaction of non-trace components with the trace infrastructure

• That trace infrastructures can have varying levels of complexity

Refer to your target designer and target documentation to learn how your target implements its
trace infrastructure.

The trace infrastructure examples use ETMs as the processor instruction and data
trace source. This is because most Arm-based systems use ETMs. Other core trace
sources, for example PTMs, could be used in the same way.

ETM trace infrastructure examples
The following diagrams show two similar trace infrastructure examples that are centered around
ETM trace generation:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

Figure 6-1: ETM trace infrastructure example 1

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

Figure 6-2: ETM trace infrastructure example 2

In both examples, an ETM is used like a trace source to generate trace data for an Arm core. The
ETMs generate instruction trace, and potentially data trace, for the cores that they are connected
to. The ETM-generated trace data is passed to a trace sink over the ATB. Example 1 uses an ETB
for a trace sink, and Example 2 uses a TPIU.

In systems where the trace sink is an ETB or an ETR, the trace data is stored on-chip for later
retrieval by a debugger. If the trace sink is a TPIU, a debug probe is required to capture the trace
data that is output by the TPIU.

Multiple core trace infrastructure example
The following diagram shows a trace infrastructure example in which more than one core is traced:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

Figure 6-3: Multiple core trace infrastructure example

This example shows a mix of different types of cores: two Cortex-A class cores and one Cortex-
M class core. This type of configuration is referred to as a heterogeneous system. The Cortex-A
class cores each have an ETM as their trace source to generate core trace data. The ETMs generate
instruction trace, and potentially data trace, for the cores that they are connected to. The Cortex-M
class core is connected to an ITM to collect instrumentation trace from that core. There is also an
STM to collect system trace for the target.

All the trace sources pass trace data over the ATB to a trace funnel. This means that all the ATBs
can be combined before they are passed to the trace sinks. There are three trace sinks in the
system: ETF, ETR, and TPIU.

The ETF can be configured either as a circular buffer, to capture trace data, or as a FIFO, to smooth
out trace data fluctuations.

From the ETF, the replicator duplicates the ATB before it reaches the ETR and the TPIU. The ETR
routes the combined ATB to system memory through AXI, the system interconnect. The trace data
that is stored in the system memory can later be retrieved by a debugger for analysis. In the case

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

of self-hosted debug, the trace data in the system memory could be consumed by another core on
the target. The TPIU operates in the same way as in the ETM trace infrastructure example.

CTI trace infrastructure example
The following diagram shows a trace infrastructure example with CTI connections:

Figure 6-4: CTI trace infrastructure example

This example shows four Cortex-A class cores and one Cortex-M class core.

All the Cortex-A cores have their own ETM to generate core trace data. Unlike the multiple core
trace infrastructure example, the Cortex-M core has both an ETM and an ITM. This means that
core and instrumentation trace data are generated.

The configuration also includes an STM to collect system trace data for the target.

The output from the ETMs, ITM, and STM are routed to a trace funnel to combine into one ATB.
The single ATB from the funnel is routed to an ETF. The ETF in this example operates like the ETF
in the multiple core trace infrastructure example.

From the ETF, the ATB is routed to a replicator. This example includes an ETS that allows the trace
data to be passed off-chip using an HSSTP. An HSSTP is useful if the target is running at high
frequencies, or if the target has many trace sources that must be captured concurrently.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Trace infrastructure examples

CTIs are connected to the ETF, ETR, and ETS. If the CTIs are programmed appropriately, they allow
the ETF, ETR, and ETS to pass halt requests to the core CTIs. For example, the ETR can send a halt
request through the associated CTIs to the cores when the circular memory buffer is full. The halt
request halts the cores, which allows the debugger to collect the trace data before the ETR wraps.
This means that no core trace data is lost.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Can trace capture affect a system?

7. Can trace capture affect a system?
Except for the power that is consumed by the system trace components, trace is almost entirely
non-invasive. This means that performing trace generation and collection does not influence the
wider system. There are exceptions to this.

For example, a target might be able to halt the cores or processors when the trace sink capturing
the trace source data is full. Halting the cores or processors is an invasive action and does affect
the system.

Also, executing instrumentation code might be required to generate output for any ITMs or
STMs in the system. This is code that a core would not usually execute and therefore affects the
operation of the system.

Using an ETR consumes some bandwidth on the system interconnect. This can affect system
performance. Configuring the appropriate Quality-of-Service (QoS), or setting priorities on the
system interconnect, can minimize this effect.

If the system that you are working with is sensitive to disturbances, consult your target designer or
target documentation to learn how trace might affect your system.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Specifications

8. Specifications
Here are the trace component architecture specifications that are referred to in this guide:

• Embedded Trace Macrocell (ETMv4) Architecture Specification: The architecture specification
that is used by CoreSight-compatible Embedded Trace Macrocells (ETMs)

• Embedded Trace Macrocell Architecture Specification ETMv1.0 to ETMv3.5: The architecture
specification that is used by CoreSight and non-CoreSight-compatible Embedded Trace
Macrocells (ETMs)

• CoreSight Program Flow Trace Architecture Specification: The architecture specification that is
used by CoreSight Program Trace Macrocells (PTMs)

• Armv8-M Architecture Reference Manual: The architecture specification that is used by the
Armv8-M Instrumentation Trace Macrocells (ITMs)

• Armv7-M Architecture Reference Manual: The architecture specification that is used by the
Armv7-M Instrumentation Trace Macrocells (ITMs)

• Arm System Trace Macrocell Programmers’ Model Architecture Specification: The programmers’
model architecture specification that is used by System Trace Macrocells (STMs)

• Arm Embedded Trace Router Architecture Specification: The architecture specification that is
used by CoreSight-enabled Embedded Trace Routers (ETRs)

The STM and STM-500 conform to the MIPI Alliance System Trace Protocol (STP) specification.
Request a copy of the specification from the MIPI System Trace Protocol (STP) download page.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 32

https://developer.arm.com/documentation/ihi0064/
https://developer.arm.com/documentation/ihi0014/
https://developer.arm.com/documentation/ihi0035/
https://developer.arm.com/documentation/ddi0553/
https://developer.arm.com/documentation/ddi0403/
https://developer.arm.com/documentation/ihi0054/
https://developer.arm.com/documentation/ihi0081/
http://resources.mipi.org/mipi-download-system-trace-protocol

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Check your knowledge

9. Check your knowledge
The following questions will help you test you knowledge:

Enabling cycle-accurate trace increases the amount of ETM trace data that is captured. True or
False?

True. Enabling any type of cycle-accurate trace increases the amount of ETM trace data
collected. This increase in trace data might not be supportable if the trace bandwidth of the
target is limited.

All target designs contain trace components. True or False?
False. Not all targets include trace components. The target designer decides whether trace
components are included in the target or not.

Which TMC configurations can buffer trace data?
• ETB

• ETF

• ETR

• ETS

• All of the above

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 32

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0

Related information

10. Related information
Here are some resources that are related to material in this guide:

• Arm Community - ask development questions, and find articles and blogs on specific topics
from Arm experts

• Arm CoreSight Base System Architecture - Arm Platform Design Document - learn more about
designing Armv8-A CoreSight systems

• Trace component architecture specifications referred to in this guide.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 32

https://community.arm.com/
https://developer.arm.com/documentation/den0068/
https://developer.arm.com/documentation/102119/0200/Specifications?lang=en

Learn the architecture - Understanding trace Document ID: 102119_0200_02_en
Version 2.0
Next steps

11. Next steps
This guide focused on providing a high-level view of trace in Armv8 and Armv7 systems. We have
looked at what trace is, how it is useful, how it is output, and what components can make up the
trace infrastructure.

This knowledge is useful for first-time trace users, or for users who want to expand their existing
trace knowledge.

If you want to learn more about debug and trace, read these guides in our series:

• Before debugging on Armv8-A

• Debugger usage on Armv8-A

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 32

https://developer.arm.com/architectures/learn-the-architecture/before-debugging-on-armv8-a
https://developer.arm.com/architectures/learn-the-architecture/debugger-usage-on-armv8-a

	Learn the architecture - Understanding trace
	Contents
	1. Overview
	2. What is trace?
	3. What is trace used for?
	4. Trace output
	5. Trace components
	5.1 Embedded Trace Macrocell Trace source
	5.2 Program Trace Macrocell Trace source
	5.3 Instrumentation Trace Macrocell Trace source
	5.4 System Trace Macrocell Trace source
	5.5 Embedded Logic Analyzer Trace source
	5.6 Trace Memory Controller Trace sink
	5.7 Trace Port Interface Unit Trace sink
	5.8 Funnel Trace link
	5.9 Cross trigger network Trace link
	5.10 Timestamp generator

	6. Trace infrastructure examples
	7. Can trace capture affect a system?
	8. Specifications
	9. Check your knowledge
	10. Related information
	11. Next steps

