arm

Learn the architecture - ARMv8-A memory systems

Version 1.1

Non-Confidential Issue 02

Copyright © 2022 Arm Limited (or its affiliates). 100941_0101_02_en
All rights reserved.

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1

Learn the architecture - ARMv8-A memory systems

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history
Issue Date Confidentiality Change

0101-02 1 April 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm'’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 20

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 20

mailto:terms@arm.com

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1

Contents
Contents
1. ArmMVSB-A MEMOKY SYSELEIMS....ecueiereeeererererereeereeresresessesesseseesessessessessessesessessessessessesssessessessessessesesensensenss 6
2. THE MEMOIY MOUEL ..ttt se et st e e s esessesessesessesessesessesessesessasessrsessasessasensases 7
B IMIEBIMOTY LY PES..eeeeeeeeeeeetetereeeereeseeteetetesesaeseesessessesaessesaesassansassessessesassansansensessessesessensensensensessessnsensensansens 9
4, MEMOKY AtEFTDULES.....c.eoveeeereeeteeeteeeteecteeste e e e e sese e sessssessesessesessesassesessesansesensesensesessasesssessrsessnsesanes 12
D BaAITIEIS.uuieereeeteeereeetiesteressesessesessesessesessesessesesassesansesensessssesessesessesessssessasessssessasesssessnsesensesessesessesessesessssessnss 15

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Armv8-A memory systems

1. Armv8-A memory systems

This guide introduces memory systems in the Armv8-A architecture. These systems are detailed
through The memory model, Memory types, Memory attributes and Barriers.

You must understand the operation of the memory system and access ordering in cases where
your code interacts directly either with the hardware or with code executing on other cores, or if it
directly loads or writes instructions to be executed, or modifies translation tables.

If you are an application developer, hardware interaction on an OS such as Linux is probably
through a device driver. The interaction with other cores is through Pthreads or another
multithreading API and the interaction with a paged memory system is through the operating
system. In this case, the memory ordering issues are taken care of by the relevant code, however,
this is not the case for all operating systems and you must check whether the same is true for the
OS you work with.

However, if you are, for example, writing an operating system kernel or device drivers, or
implementing a hypervisor, you must have a good understanding of the memory ordering rules of
the ARM architecture.

Some reordering required when your code requires explicit ordering of memory accesses to be
seen by cores or devices in the system.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
The memory model

2. The memory model

Compilers give you a wide range of options that aim to increase the speed, or reduce the size,
of the executable files they generate. For each line in the source code, there are many possible
choices of assembly instructions that could be used.

The Armv8-A architecture employs a weakly ordered model of memory. This means that the order
of memory accesses is not necessarily required to be the same as the program order for load and
store operations.

During the optimization process, the processor and system elements can reorder memory read
operations with respect to each other to improve data throughput. Writes can also be reordered.
This means that the required bandwidth between the processor and external memory can be
reduced and the long latencies that are associated with such external memory accesses are hidden.

To ensure that reordering can take place, there must be memory types that allow such
optimizations to take place in them.

Hardware can reorder reads and writes to Normal memory. Reads and writes can also be ordered
by address dependencies, and half barriers. However, the existence of either data dependencies or
explicit memory barrier instructions can override this. Certain situations require stronger ordering
rules. You can provide information to the core about this through the memory type attribute of the
translation table entry that describes that memory.

High-performance systems can support technigues such as speculative memory reads, multiple
issuing of instructions, or out-of-order execution and these, along with other techniques, offer
further possibilities for hardware reordering of memory access:

Multiple issue of instructions

Processors can issue and execute multiple instructions per cycle. Some instructions can reach the
execution stage of the pipeline in parallel, as a result they may execute in a different order to their
order in the program.

Out-of-order execution

Many processors support out-of-order execution of non-dependent instructions. Because of the
multiple issue of instructions, some instructions can stall in the execution stage, while they wait for
others to complete, but these will not stop non-dependent instructions from completing.

This can also change the program order.

Speculation

When the processor encounters a conditional instruction, such as a branch, it can begin to execute
instructions before it knows for certain whether that particular instruction is executed or not.

The result is therefore available sooner if conditions prove that the speculation was correct.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
The memory model

Instruction fetch speculation is the fetch of instructions that are not defined by the program
execution order.

Speculative loads

If a load instruction that reads from a Cacheable location is speculatively executed, this can result in
a cache linefill and potential eviction of an existing cache line.

Load and store optimizations

As reads and writes to external memory can have a long latency, processors can reduce the number
of transfers for example, by merging together several stores into one larger transaction.

External memory systems

In many System on Chip (SoC) devices, there are several agents capable of initiating transfers and
multiple routes to the slave devices that are read or written.

Some of these devices, such as a DRAM controller, are capable of accepting simultaneous requests
from different masters. Transactions can be buffered, or reordered.

This means that accesses from different masters can therefore take varying numbers of cycles to
complete and might overtake each other.

Cache coherent cluster processing
In a cluster, hardware cache coherency can migrate cache lines between cores.

Different cores might see updates to cached memory locations in a different order to each other.
Also, these might not be coherent with external memory.

Optimizing compilers

An optimizing compiler can reorder instructions to hide latencies or make best use of hardware
features.

It can often move a memory access forward, to make it earlier, and give it more time to complete
before the value is required.

They can also have instruction scheduling that can take advantage of specific core multi-issue
pipelines.

In a single core system, the effects of such reordering are transparent to the programmer, because
the individual processor can check for hazards and ensure that data dependencies are respected.
However, in cases where you have multiple cores that communicate through shared memory, or
share data in other ways, memory ordering considerations become more important.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory types

3. Memory types

The ARMV8B-A architecture defines two mutually exclusive memory types, Normal and Device and
all regions of memory are configured as one or the other of these two types.

Normal memory

Normal memory is used for all code and for most data regions in memory. Examples of Normal
memory include areas of RAM, Flash, or ROM in physical memory. This kind of memory provides
the highest processor performance as it is weakly ordered and the compiler can perform more
optimizations. The processor can reorder, repeat, and merge accesses to Normal memory.

The processor can speculatively access address locations that are marked as Normal, so that data
or instructions can be read from memory without being explicitly referenced in the program, or
before the actual execution of an explicit reference. Such speculative accesses can occur as a
result of branch prediction, speculative cache linefills, out-of-order data loads, or other hardware
optimizations.

For best performance, always mark application code and data as Normal. In circumstances where

enforced memory ordering is required, do this by using explicit barrier operations. Normal memory
accepts weakly ordered memory accesses without any issues. There is no requirement for Normal
accesses to complete in order with respect to either other Normal accesses or to Device accesses.

However, the processor must always handle hazards that are caused by address dependencies. For
example, consider the following simple code sequence:

STR X0, [X2]
LDR X1, [X2]

A single processor running a single thread always ensures that the value that is placed in X1 is the
value that was written from register XO through to the address stored in X2.

This applies to more complex dependencies. Consider the following code:

ADD X4, X3, #3
ADD X5, X3, #2
STR X0, [X3]
STRB W1, [X4]
LDRH W2, [X5]

In this case, the accesses take place to addresses that overlap each other. The processor must
ensure that the memory is updated as if the str and strB occurred in order, so that the L.ora
returns the most up-to-date value. It would still be valid for the processor to merge the str and
STRB into a single access that contained the latest, correct data written.

Device memory

The Device memory type is used with memory-mapped peripherals and all memory regions where
an access might have a side effect. For example, a read to a timer is not repeatable, as it returns

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory types

different values for each read. A write to a control register can trigger an interrupt. The Device
memory type imposes more restrictions on the core.

Accesses to these types of memory must occur exactly the number of times that executing the
program suggests they should. Two writes to the same location must be performed as two writes,
and two reads from the same location must both take place. This is important when you are
accessing peripheral control registers.

There is however no guarantee about ordering between memory accesses to different devices, or
usually between accesses of different memory types.

Speculative data accesses cannot be performed to regions of memory that are marked as Device.
Trying to execute code from a region marked as Device is UNPREDICTABLE.

When an instruction can result in UNPREDICTABLE behavior, the ARM architecture can specify a
narrow range of permitted behaviors. This is defined as a number of CONSTRAINED UNPREDICTABLE
behaviors. The implementation can either handle the instruction fetch as if it were to a memory
location with the normal Non-cacheable attribute, or it can take a permission fault.

There are four different types of device memory, defining the rules which memory accesses must
obey.

As the memory type weakens those rules are relaxed:
e Device-nGnRnE is the most restrictive.

e Device-nGnRE

e Device-nGRE

e Device-GRE least restrictive
The letter suffixes refer to the following three properties:

Gathering or non-Gathering

Gathering or non-Gathering (G or nG) determines whether multiple accesses can be merged

into a single transaction for this memory region. If the address is marked as non-Gathering (nG),
then the number and size of accesses that are performed to that location must exactly match the
number and size of explicit accesses in the code. If the address is marked as Gathering (G), then the
processor can, for example, merge two bytes writes into a single halfword write.

Reordering

Reordering (R or NR) determines whether accesses to the same device can be reordered with
respect to each other. If the address is marked as non-Reordering (NR), then accesses within the
same block always appear on the bus in program order. The size of this block is IMPLEMENTATION
DEFINED. Where the size of this block is large, it could span several table entries. In this case, the
ordering rule is observed with respect to any other accesses also marked as NR.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory types

Early Write Acknowledgment

Early Write Acknowledgment (E or nE) determines whether an intermediate write buffer between
the processor and the device being accessed is allowed to send an acknowledgment of a write
completion.

If the address is marked as non-Early Write Acknowledgment (nE), then the write response must
come from the peripheral. If the address is marked as Early Write Acknowledgment (E), then it

is a buffer in the interconnect logic can signal write acceptance, before the write actually being
received by the end device. This is essentially a message to the external memory system.

The following figure shows the four different types of device memory:

Figure 3-1: Device memory

Device-GRE

Device-nGnRE

Device-nGnRnE

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory attributes

4. Memory attributes

The memory map of a system can be divided into several regions. Each region can have different
memory attributes, such as access permissions that include read and write permissions for different
privilege levels, memory type, and cache policies.

The following figure shows an example system memory map:

Figure 4-1: Example memory map

Ox25FFFFFF

* Privileged

Flash +—— + ReadOnly

= Normal, Shared
Ox1FFFFFFF

* Privileged

Peripherials «——— « Device, Not Shared

. Execute never
OXOODSFFEE Sram | * Read/Write
Ox00000000 = MNormal, Shared

Functional pieces of code and data are grouped in the memory map and the attributes for each of
these areas are controlled separately by the Memory Management Unit.

In addition to the memory type, memory attributes also provide control over cacheability,
shareability, access, and execution permissions. Shareable and cache properties apply only to
Normal memory. Device regions are always Non-cacheable and Outer-shareable. For Cacheable
locations, you can use attributes to indicate cache allocation policy to the processor.

Cacheable and shareable memory attributes

Regions of memory that are marked as Normal can be specified as either cached or non-cached.
Memory caching can be separately controlled through inner and outer attributes, for multiple levels
of cache. The division between inner and outer is IMPLEMENTATION DEFINED, but typically the inner
attributes are used by caches in the processor. The outer attributes are used by external memory
where they can be used by caches external to the core or cluster.

The shareable attribute is used to define whether a location is shared with multiple cores. Marking
a region as Non-shareable means that it is only used by a particular core, whereas marking it

as Inner Shareable or Outer shareable, or both, means that the location is shared with other
observers, for example, a GPU or DMA device might be considered another observer.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory attributes

The division between inner and outer is also IMPLEMENTATION DEFINED. These attributes define sets
of observers for which the shareability attributes make the caches transparent for data accesses.
This also means that the system must provide hardware coherency management so that cores in
the Inner Shareable domain see a coherent copy of locations that are marked as Inner Shareable.

If a processor or other master in the system does not support coherency, then it must treat the
shareable regions as Non-cacheable.

Domains

Data memory accesses can take longer and consume more power with cache coherency hardware
than they otherwise would do. This overhead can be minimized by maintaining coherency between
a smaller number of masters while ensuring that they are physically close in the processor. For this
reason, the architecture splits the system into domains, and makes it possible to limit the overhead
to those locations where the coherency is required.

Shareability is assigned to each memory transaction in the system, based on:

e Memory attributes for the region accessed (determined by MMU translation tables).

e Core configuration (can differ between cores in a cluster).

e Implementation of interconnect.

» Integration between interconnect and the masters that are connected to it.

But there are also specific operations that can be performed with a domain defining their scope.
The following diagram shows shareability domain options:

Figure 4-2: Domains

Outer shareable

l’” ________ Inner shareable “I
S — — — ——— — — E— — E— — T E—— E— — — — —
I ann—sharsabla 1 N : :
| | |] I I
I | Core | Core Core Core | GPLU |
| |
I I
|'—=—=- | |
Processor Processor

|
| | \ . y, I
| M e e e e e e e e — o — — o — — — — — - |
_ J

The following shareability domain options are available:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Memory attributes

Domain Description
option
Non- A domain consisting only of the local agent. Accesses that never require synchronization with other cores, processors, or
shareable |devices. This domain is not typically used in SMP systems.
Note:
Symmetric Multi-Processing (SMP) is a software architecture that dynamically determines the roles of individual cores. Each
core in the cluster has the same view of memory and of shared hardware. Any application, process, or task can run on any
core and the operating system scheduler can migrate tasks between cores to achieve optimal system load.
Inner A domain that is shared by other agents, but not necessarily all agent in the system.
Shareable
A system can have several Inner Shareable domains.
An operation that affects one Inner Shareable domain does not affect other Inner Shareable domains in the system.
Outer A domain that is shared by multiple agents that can consist of one or more Inner Shareable domains.
Shareable
An operation that affects an Outer Shareable domain also affects all Inner Shareable domains inside it.
However, it does not otherwise behave as an Inner Shareable operation.
Full An operation on the full system affects all observers in the system.
system

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

5. Barriers

The Arm architecture includes barrier instructions to force access ordering and access completion
at a specific point.

Barriers are used to prevent unsafe optimizations from occurring and to enforce a specific memory
ordering. Use of unnecessary barrier instructions can therefore reduce software performance.
Consider carefully whether a barrier is necessary in a specific situation, and if so, which is the
correct barrier to use.

There are three types of barrier instruction.

Instruction Synchronization Barrier

Instruction Synchronization Barrier(ISB) is used to guarantee that any subsequent instructions are
fetched, so that privilege and access are checked with the current MMU configuration. It is used
to ensure any previously executed context-changing operations, such as writes to system control
registers, have completed by the time the ISB completes.

In hardware terms, for example, this might mean that the instruction pipeline is flushed. Typical
uses of this would be in memory management, cache control, and context switching code, or where
code is being moved about in memory.

The following example shows how to enable the floating-point unit and SIMD, which you can do
in AArché4 by writing to bit [20] of the CPACR_EL1 register. The ISB is a context synchronization
event that guarantees that the enable is complete before any subsequent FPU or NEON
instructions are executed.

MRS X1, CPACR ELI1 // Copy contents of CPACR to X1

ORR X1, X1, #(0x3 << 20) // Write to bit 20 of X1. (Enable FPU and SIMD)
MSR CPACR _EL1, X1 // Write contents of X1 to CPACR

ISB

An ISB flushes the pipeline and ensures that the effects of any completed context-changing
operation before the ISB are visible to any instruction after the ISB. Instructions from the cache or
memory are refetched.

It also ensures that any context-changing operations after the ISB instruction only take effect after
the ISB has completed and are not seen by instructions before the ISB.

This does not mean that an ISB is required after each instruction that modifies a processor register.
For example, reads or writes to PSTATE fields, ELRs, SPs, and SPSRs always occur in program order
relative to other instructions.

Data Memory Barrier

Data Memory Barrier (DMB) prevents reordering of data accesses instructions across the DMB
instruction. Depending on the barrier type, certain data accesses, that is, loads or stores, but not

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

instruction fetches, performed by this processor before the DMB, are visible to all other masters
within the specified shareability domain before certain other data accesses after the DMB.

For example:
LDR X0, [X1] // Must be seen by the memory system before
the

// STR below.

DMB ISHLD

ADD X2, #1 // May be executed before or after the memory
//system sees LDR.

STR X3, [X4] // Must be seen by the memory system after the

// LDR above.

It also ensures that any explicit preceding data or unified cache maintenance operations have
completed before any subsequent data accesses are executed.

For example:
DC CSW, X5 // Data clean by Set/way
LDR x0, [X1] // Effect of data cache clean might not be seen by
// this instruction
DMB ISH
LDR X2, [X3] // Effect of data cache clean are seen by this

// instruction

Data Synchronization Barrier

Data Synchronization Barrier(DSB) enforces the same ordering as the Data Memory Barrier, but
it also blocks execution of any further instructions, not just loads or stores, until synchronization
is complete. This can be used to prevent execution of a SEV instruction, for instance, that would
signal to other cores that an event occurred. It waits until all cache, TLB, and branch predictor
maintenance operations that are issued by this processor have completed for the specified
shareability domain.

For example:
DC ISW, X5 // operation must have completed before DSB can
// complete STR
STR X0, [X1] // Access must have completed before DSB can complete
DSB ISH
ADD X2, X2, #3 // Cannot be executed until DSB completes

Using barriers

The DMB and DSB instructions take a parameter which specifies the types of access to which the
barrier operates, before or after, and a shareability domain to which it applies.

The available options are listed in the following table.

<option> Description Ordered Accesses (before - Shareability

after) Domain

OSHLD | Operation that waits only for loads to complete, and only to the outer Load - Load, Load - Store Quter Shareable
shareable domain

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

<option> Description Ordered Accesses (before - Shareability
after) Domain

OSHST | Operation that waits only for stores to complete, and only to the outer Store - Store Outer Shareable
shareable domain.

OSH Operation only to the outer shareable domain. Any - Any Outer Shareable

NSHLD |Operation that waits only for loads to complete and only out to the point of |Load - Load, Load - Store Non-shareable
unification.

NSHST |Operation that waits only for stores to complete and only out to the point of |Store - Store Non-shareable
unification.

NSH Operation only out to the point of unification. Any - Any Non-shareable

ISHLD Operation that waits only for loads to complete, and only to the Inner Load -Load, Load - Store Inner Shareable
Shareable domain

ISHST Operation that waits only for stores to complete, and only to the Inner Store - Store Inner Shareable
Shareable domain.

ISH Operation only to the Inner Shareable domain. Any - Any Inner Shareable

LD Operation that waits only for loads to complete. Load -Load, Load - Store Full system

ST Operation that waits only for stores to complete. Store - Store Full system

SY Full system operation. This is the default and can be omitted. Any - Any Full system

The ordered access field specifies which classes of accesses the barrier operates on. There are
three options.

Ordered Description

Accesses (before

- after)

Load - Load/ This means that the barrier requires all loads to complete before the barrier but does not require stores to complete.

Store Both loads and stores that appear after the barrier in program order must wait for the barrier to complete.

Store - Store This means that the barrier only affects store accesses and that loads can still be freely reordered around the barrier.

Any - Any This means that both loads and stores must complete before the barrier. Both loads and stores that appear after the
barrier in program order must wait for the barrier to complete.

A more subtle effect of the ordering rules is that the instruction interface, data interface, and MMU
table walker of a core are considered as separate observers. This means that you might need, for
example, to use DSB instructions to ensure that an access to one interface is guaranteed to be
observable on a different interface.

If you execute a data cache clean and invalidate instruction, DC CVAU, XO for example, you must
insert a DSB instruction after this. You must add this to be sure that subsequent translation table
walks, modifications to translation table entries, instruction fetches, or updates to instructions in
memory, can all see the new values.

For example, consider an update of the translation tables:

STR X0, [X1] // update a translation table entry

DSB ISHST // ensure write has completed

TLBI VAEIIS, X2 // invalidate the TLB entry for the entry that
// changes

DSB ISH // ensure that TLB invalidation is complete

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 17 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

ISB // synchronize context on this
processor

A DSB is required to ensure that the maintenance operations complete and an ISB is required to
ensure that the effects of those operations are seen by the instructions that follow.

The processor might speculatively access an address that is marked as Normal at any time. So
when considering whether barriers are required, consider more than just explicit accesses that are
generated by load or store instructions.

One-way barriers

A64 adds new load and store instructions with implicit barrier semantics. The instructions are less
restrictive than either DMB or DSB instructions. They also require that all loads and stores before
or after the implicit barrier are observed in program order.

Instruction Description

Load-Acquire |All loads and stores that are after an LDAR in program order, and that match the shareability domain of the target
(LDAR) address, must be observed after the LDAR.

Store-Release | All loads and stores preceding an STLR that match the shareability domain of the target address must be observed
(STLR) before the STLR.

There are also exclusive versions of the above, Loaxr and sTLxg, available.

Unlike the data barrier instructions, which take a qualifier to control which shareability domains see
the effect of the barrier, the Lpar and sTLR instructions use the attribute of the address accessed.

An LDAR instruction guarantees that any memory access instructions after the n.pag, are only
visible after the load-acquire. A store-release guarantees that all earlier memory accesses are visible
before the store-release becomes visible and that the store is visible to all parts of the system
capable of storing cached data at the same time.

The following figure shows how accesses can cross a one-way barrier in one direction but not in
the other:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 20

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

Figure 5-1: One way barriers

Critical

code
section

Use of barriers in C code

The C11 and C++11 languages have a good platform-independent memory model that is
preferable to intrinsics.

All versions of C and C++ have sequence points, but C11 and C++11 also provide memory models.
Sequence points only prevent the compiler from reordering C++ source code. There is nothing

to stop the processor reordering instructions in the generated object code, or for read and write
buffers to reorder the sequence in which data transfers are sent to the cache. In other words, they
are only relevant for single-threaded code. For multi-threaded code, then either use the memory
model features of C11 / C++11, or other synchronization mechanisms such as mutexes which are
provided by the operating system. Examples of sequence points in code include function calls and
accesses to volatile variables.

The C language specification defines sequence points as follows:

At certain specified points in the execution sequence, called sequence points, all side effects of
previous evaluations shall be complete, and no side effects of subsequent evaluations shall have
taken place.

Barriers in Linux

The Linux kernel includes several platform-independent barrier functions. See the Linux kernel
documentation in the memory-barriers.txt file for more details.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 19 of 20

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/

Learn the architecture - ARMv8-A memory systems Document ID: 100941 0101 02 en
Version 1.1
Barriers

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 20 of 20

	Learn the architecture - ARMv8-A memory systems
	Contents
	1. Armv8-A memory systems
	2. The memory model
	3. Memory types
	4. Memory attributes
	5. Barriers

