
SystemReady IR IoT Integration, Test, and
Certification Guide
Version 1.1

Non-Confidential
Copyright © 2021–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
DUI1101_1.1_02_en

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

SystemReady IR IoT Integration, Test, and Certification Guide

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100 17
August
2021

Non-
Confidential

First release version 1.0

0101 7
April
2022

Non-
Confidential

Second release version 1.1

0101-
02

28
June
2022

Non-
Confidential

Minor modifications to explicitly mention IR 1.1 certification, refer to the
ACS-IR pre-built image v21.09_1.0, and refer to the ir1 branches in the
components.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 37

https://www.arm.com/company/policies/trademarks

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 37

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Contents

Contents

1. Introduction.. 6
1.1 Conventions..6
1.2 Other information... 7

2. Overview...8
2.1 Before you begin.. 8

3. Configure U-Boot for SystemReady.. 10

4. Test SystemReady IR... 14

5. Test with the ACS.. 20

6. Related information... 28

7. Next steps.. 29

A. Build firmware for Compulab IOT-GATE-IMX8 platform.. 30

B. Run the ACS-IR image on QEMU..31
B.1 Advises..32

C. Rebuild the ACS-IR image... 33

D. Test checklist...35

E. Frequently Asked Questions... 36

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 37

https://developer.arm.com/glossary

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 37

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Overview

2. Overview
SystemReady is a compliance certification program based on a set of hardware and firmware
standards that enable interoperability with generic off-the-shelf operating systems and hypervisors.
These standards include the Base System Architecture (BSA) and Base Boot Requirements (BBR)
specifications, and market-specific supplements.

SystemReady replaces the successful ServerReady compliance program and extends it to a broader
set of devices.

Figure 2-1: SystemReady IR Logo

The SystemReady certification ensures Arm-based servers, infrastructure edge, and embedded
IoT systems are designed to specific requirements. This certification enables generic, off-the-shelf
operating systems to work out of the box on Arm-based devices. The compliance certification
program tests and certifies that systems meet the SystemReady standards.

There are four bands of SystemReady:

• SR – Workstations and Enterprise Servers

• ES – General Purpose Embedded Servers for remote edge nodes

• IR – Embedded devices for IoT and Edge

• LS – Hyperscale Servers deployed with LinuxBoot

These bands are based on combinations or recipes from the BSA, supplements such as the Server
Base System Architecture (SBSA), and the BBR specifications.

2.1 Before you begin
This guide tells you how to configure a U-Boot based platform for SystemReady IR 1.1 compliance,
and how to run all the SystemReady IR tests before submitting the platform for certification in the
Arm SystemReady Certification Program.

By the end of this guide, you will be able to do the following tasks required for certification:

• Enable Unified Extensible Firmware Interface (UEFI) features in U-Boot

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 37

https://developer.arm.com/architectures/system-architectures/arm-systemready

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Overview

• Run the Arm Architecture Compliance Suite (ACS) and analyze test results

• Test the UpdateCapsule() interface to update firmware

• Boot and install generic Linux distribution images

For more information about SystemReady certification and testing requirements, see the Arm
SystemReady Requirements Specification.

This guide assumes U-Boot firmware and the examples shown are captured on a
U-Boot platform. However, SystemReady IR 1.1 compliance can be achieved with
any UEFI compliant firmware and U-Boot is not required. You can also use EDK2 or
another firmware implementation for certification. If you are not using U-Boot, you
can skip the Configure U-Boot for SystemReady section.

SystemReady certified platforms must use a specific set of hardware and firmware features to
enable an operating system to deploy the operating system image. Compliant systems must
conform to the following requirements:

• Embedded Base Boot (EBBR) Requirements. The EBBR specification is aimed at Arm
embedded device developers who want to use UEFI technology to separate firmware and OS
development. For example, class-A embedded devices like networking platforms can benefit
from a standard interface that supports features such as secure boot and firmware updates. For
more information, download the EBBR specification and reference source code from the EBBR
GitHub repository.

• EBBR recipe of the Arm Base Boot Requirements

• We recommended that SystemReady IR platforms comply with the Arm Base System
Architecture (BSA) specification. SystemReady IR v1.1 certification does not require BSA
compliance, but for certification the BSA compliance tests must still be run and the results
submitted. BSA compliance will become a requirement in a future version of SystemReady IR.

Before you get started with this guide, build U-Boot and install it on your platform. U-Boot
2021.04 or later is required for SystemReady IR certification. U-Boot releases and patches can
be found on the U-Boot git repository. Instructions for porting and building U-Boot is beyond the
scope of this document. Please refer to the U-Boot documentation for details on how to enable a
new platform.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 37

https://developer.arm.com/documentation/den0109/latest
https://developer.arm.com/documentation/den0109/latest
https://developer.arm.com/architectures/platform-design/embedded-systems
https://github.com/ARM-software/ebbr/releases
https://github.com/ARM-software/ebbr/releases
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0094/latest
https://source.denx.de/u-boot/u-boot

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Configure U-Boot for SystemReady

3. Configure U-Boot for SystemReady
This section tells you how to enable the following configuration options required for SystemReady
IR certification requirements:

• UEFI support with U-Boot

• Device Firmware Update to enable UpdateCapsule() support

This section is relevant if you are using U-Boot firmware. You can skip this section if you are using
EDK2 or other firmware.

Enable UEFI support with U-Boot
The UEFI Application Binary Interface must be enabled and supported in U-Boot for SystemReady
IR certification.

To configure UEFI support in U-Boot:

1. Enable the configuration options in <root_workspace>/u-boot/configs/
<platform_name>_defconfig as shown in the following code:

// Core UEFI features
CONFIG_BOOTM_EFI=y
CONFIG_CMD_BOOTEFI=y
CONFIG_CMD_NVEDIT_EFI=y
CONFIG_CMD_EFIDEBUG=y
CONFIG_CMD_BOOTEFI_HELLO=y
CONFIG_CMD_BOOTEFI_HELLO_COMPILE=y
CONFIG_CMD_BOOTEFI_SELFTEST=y
CONFIG_CMD_GPT=y
CONFIG_EFI_PARTITION=y
CONFIG_EFI_LOADER=y
CONFIG_EFI_DEVICE_PATH_TO_TEXT=y
CONFIG_EFI_UNICODE_COLLATION_PROTOCOL2=y
CONFIG_EFI_UNICODE_CAPITALIZATION=y
CONFIG_EFI_HAVE_RUNTIME_RESET=y
CONFIG_CMD_EFI_VARIABLE_FILE_STORE=y

2. Add the configuration options to enable Real Time Clock (RTC) support as shown:

CONFIG_DM_RTC=y
CONFIG_EFI_GET_TIME=y
CONFIG_EFI_SET_TIME=y
CONFIG_RTC_EMULATION=y

3. This configuration uses the RTC emulation feature that works on all platforms. If your
platform has a real RTC, enable the CONFIG_RTC_* option for that device instead of
CONFIG_RTC_EMULATION.

4. Add the configuration options to enable the UEFI UpdateCapsule() interface to update
firmware as follows:

CONFIG_CMD_DFU=y
CONFIG_FLASH_CFI_MTD=y
CONFIG_EFI_CAPSULE_FIRMWARE_FIT=y
CONFIG_EFI_CAPSULE_FIRMWARE_MANAGEMENT=y

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Configure U-Boot for SystemReady

CONFIG_EFI_CAPSULE_FIRMWARE=y
CONFIG_EFI_CAPSULE_FIRMWARE_RAW=y
CONFIG_EFI_CAPSULE_FMP_HEADER=y

5. Add the following configuration options to enable partitions and filesystems support:

CONFIG_CMD_GPT=y
CONFIG_FAT_WRITE=y
CONFIG_FS_FAT=y
CONFIG_CMD_PART=y
CONFIG_PARTITIONS=y
CONFIG_DOS_PARTITION=y
CONFIG_ISO_PARTITION=y
CONFIG_EFI_PARTITION=y
CONFIG_PARTITION_UUIDS=y

With UEFI ABI, U-Boot finds and executes UEFI binaries from a system partition on an eMMC, SD
card, USB flash drive, or other devices. UEFI boot can be tested either with a Linux distribution ISO
image or the ACS. Boot the platform with the image on a USB flash drive to boot either Grub Linux
distribution or the EFI Shell.

Configure Device Firmware Upgrade
In U-Boot, configure Device Firmware Upgrade (DFU) to enable UpdateCapsule support, if it is
supported for your system.

To enable DFU mode:

1. Add the following configuration options as shown:

CONFIG_FIT=y
CONFIG_OF_LIBFDT=y
CONFIG_DFU=y
CONFIG_CMD_DFU=y

2. Add one or more of the DFU backend configuration options for the storage device containing
the firmware as show in the following code:

CONFIG_DFU_MMC=y
CONFIG_DFU_MTD=y
CONFIG_DFU_NAND=y
CONFIG_DFU_SF=y

3. Enable configuration options to ensure one or more of the DFU transport options are enabled
for testing as shown:

CONFIG_DFU_OVER_TFTP=y
CONFIG_DFU_OVER_USB=y

4. Adapt the test.its file to create a Flattened Image Tree (FIT) image used for testing as follows:

/dts-v1/;

/ {
 description = "Automatic U-Boot update";
 \#address-cells = <1>;

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Configure U-Boot for SystemReady

 images {
 u-boot.bin {
 description = "U-Boot binary";
 data = /incbin/("u-boot.bin");
 compression = "none";
 type = "firmware";
 arch = "arm64";
 load = <0>;

 hash-1 {
 algo = "sha1";
 };
 };
 };
};

5. Generate the binary test.itb test image using mkimage using the code shown:

$ mkimage -f test.its tests.itb

6. Use the dfu command to test that DFU is functioning correctly and reflash the device firmware.
The following example code shows DFU over TFTP:

u-boot=> setenv updatefile test.itb
u-boot=> dhcp
u-boot=> dfu tftp ${kernel_addr_r}

7. Use the mkeficapsule command to package the U-Boot binary in the capsule format:

$ mkeficapsule –fit tests.itb --index 1 capsule.bin

The resulting capsule.bin binary can be used to update the firmware with UEFI capsule update, as
described in Test SystemReady IR.

Alternatively, the GenerateCapsule tool from EDK2 could be used to create a UEFI Capsule binary.

Adapt the automated boot flow
Make sure the UEFI boot methods will be tried during the automated boot sequence. In U-Boot,
the bootcmd environment variable holds the default boot command. This is usually a script that
tries one or more boot methods in turn. This script tries to boot using the bootefi bootmgr
and bootefi commands. If your system is using the generic distro configuration, the generated
scan_dev_for_efi boot script automatically tries the UEFI boot methods.

Next, make sure the bootargs are empty when booting with UEFI. The bootargs U-Boot
environment variables holds the arguments passed to the image being booted, which is traditionally
the Linux kernel. When booting with the UEFI boot methods, the UEFI application binary receives
the bootargs. Commonly, operating systems boot with UEFI to run intermediate UEFI applications
like GNU GRUB before booting the Linux kernel. To avoid interfering with UEFI applications,
the bootargs must be empty when booting with UEFI. If your system uses the generic distro
configuration, the bootargs are handled appropriately.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 37

https://github.com/tianocore/edk2

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Configure U-Boot for SystemReady

Adapt the Devicetree
Adapt the U-Boot built-in Devicetree to support OS boot. When booting with UEFI the Devicetree
is passed to the UEFI applications, including the Linux kernel, as an EFI configuration table. With U-
Boot, the Devicetree used is specified by an argument to the bootefi command. This Devicetree
can be loaded by the boot scripts from storage medium. However, if U-Boot is already using a
built-in Devicetree in $fdtcontroladdr, the simplest way is to use this Devicetree. If necessary, you
can adapt U-Boot built-in Devicetree sources to support both U-Boot and Linux OS boot.

Also, ensure the UEFI Devicetree mentions the console UART. It is common with U-Boot to pass
the console UART information to the Linux kernel as arguments using the bootargs variable. When
booting with UEFI, the console UART must be specified as stdout-path in the chosen node of the
Devicetree.

The following snippet shows a simplified Devicetree example:

/ {
 chosen {
 stdout-path = "/serial@f00:115200";
 };

 serial@f00 {
 compatible = "vendor,some-uart";
 reg = <0xf00 0x10>;
 };
};

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

4. Test SystemReady IR
This section teaches you how to run the U-Boot and UEFI tests, and how to test the Linux
installation for SystemReady IR certification. The following steps are also listed in the Test checklist
appendix to help during testing.

Before you start with the SystemReady IR testing, you need the following tools and images:

• Provided by your platform vendor:

◦ Platform under test with firmware already installed

◦ Firmware capsule image in Firmware Management Protocol (FMP) format

• Provided by Arm:

◦ SystemReady IR Test and Certification Guide (this guide)

◦ SystemReady Reporting template. Use this directory structure to collect all test results.

◦ SystemReady results parsing scripts. Use these scripts to check if all required logs are
provided and if the required tests have passed

◦ Arm SystemReady IR ACS v21.09_1.0 image installed on a USB drive

• Provided by a third party: two generic Linux ISO distribution images on USB drives

To test SystemReady IR, you must run a test on the U-Boot console, the UEFI environment, the
UpdateCapsule() interface, and install two Linux distributions.

Before running the tests, clone the SystemReady reporting template repo as shown and use it to
capture the test results and logs:

$ git clone https://git.gitlab.arm.com/systemready/systemready-template.git -b ir1

Refer to the documentation in the template repository for the latest list of check commands.

Test the U-Boot Shell
To perform the U-Boot tests:

1. Start a log of all the output from the serial console.

2. Reboot the platform and run the following commands from the U-Boot shell:

u-boot=> help
u-boot=> version
u-boot=> printenv
u-boot=> printenv -e
u-boot=> bdinfo
u-boot=> rtc list
u-boot=> sf probe
u-boot=> usb reset
u-boot=> usb info
u-boot=> mmc rescan
u-boot=> mmc list
u-boot=> mmc info
u-boot=> efidebug devices
u-boot=> efidebug drivers

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 37

https://gitlab.arm.com/systemready/systemready-template
https://gitlab.arm.com/systemready/systemready-scripts
https://gitlab.arm.com/systemready/edk2-test-parser
https://github.com/ARM-software/arm-systemready/tree/main/IR/prebuilt_images/v21.09_1.0
https://gitlab.arm.com/systemready/systemready-template

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

u-boot=> efidebug dh
u-boot=> efidebug memmap
u-boot=> efidebug tables
u-boot=> efidebug boot dump
u-boot=> efidebug capsule esrt
u-boot=> bootefi hello ${fdtcontroladdr}
u-boot=> bootefi selftest ${fdtcontroladdr}

3. Save the log as fw/u-boot-sniff.log in the results directory.

Test the UEFI Shell
To capture the behavior of the UEFI Shell:

1. Capture the output from the serial console and boot into the UEFI shell using the ACS utility,
and run the following commands:

FS0:\Sct\> cd ..
FS0:\> pci
FS0:\> drivers
FS0:\> devices
FS0:\> devtree
FS0:\> dmpstore
FS0:\> dh -d -v
FS0:\> memmap
FS0:\> smbiosview

2. Save the console log as fw/uefi-sniff.log in the results directory.

Test UpdateCapsule
UpdateCapsule is the standard interface for updating firmware. The CapsuleApp.efi application
included in the ACS image is used to test if the UpdateCapsule() interface is working correctly.

To test UpdateCapsule():

1. Copy the platform’s capsule file into the BOOT partition of the ACS image on a USB drive.

2. Boot the ACS image on the platform, then select bsa/bbr tests from the Grub boot menu.

3. Press Escape to stop running tests and open the UEFI shell. While the platform is booting,
note the firmware version number reported on the console. After running CapsuleApp.efi, the
firmware reports a different version.

4. From the UEFI shell, use the following commands to test the UpdateCapsule interface. FS#
references are different on each system. In this example, change FS1: to the FS#: for the ACS
USB on your platform. With the current version U-Boot, several ASSERT errors are displayed
on the console. These errors are due to U-Boot not implementing a protocol that is expected
by CapsuleApp.efi and can be ignored:

 UEFI Interactive Shell v2.2
 EDK II
 UEFI v2.80 (Das U-Boot, 0x20210700)
 Mapping table
 FS0: Alias(s):HD0c:;BLK2:
 /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/eMMC(2)/eMMC(1)/
HD(2,GPT,09d411d0-9fce-43cc-bc40-b1104cd510d8,0x4800,0x80000)
 FS1: Alias(s):HD0b:;BLK5:
 /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/
UsbClass(0x0,0x0,0x9,0x0,0x1)/UsbClass(0x781,0x5581,0x0,0x0,0x0)/
HD(1,GPT,c2825b51- 9880-4738-ae28-a0792f1e4e3d,0x800,0xfffff)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

 FS2: Alias(s):HD0c:;BLK6:
 /VenHw(e61d73b9-a384-4acc-aeab-82e828f3628b)/
UsbClass(0x0,0x0,0x9,0x0,0x1)/UsbClass(0x781,0x5581,0x0,0x0,0x0)/
HD(2,GPT,c2825b51-9880-4738-ae28-a0792f1e4e3d,0x100800,0x18fff)
 Press ESC in 4 seconds to skip startup.nsh or any other key to continue.
 Shell> fs1:
 FS1:\> ls
 Directory of: FS1:\
 00/00/0000 00:00 3,583,068 capsule.bin
 00/00/0000 00:00 <DIR> 0 EFI
 00/00/0000 00:00 <DIR> 0 grub
 00/00/0000 00:00 298 grub.cfg
 00/00/0000 00:00 32,930,304 Image
 00/00/0000 00:00 92,389,888 ramdisk-busybox.img
 4 File(s)
 2 Dir(s)
 FS1:\> efi\boot\app\capsuleapp -E

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeServicesTableLib/DxeServicesTableLib.c(58):
 !EFI_ERROR (Status)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeServicesTableLib/DxeServicesTableLib.c(59):
 gDS != ((void *) 0)

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/Build/
MdeModule/DEBUG_GCC5/AARCH64/MdeModulePkg/Application/CapsuleApp/CapsuleApp/
DEBUG/AutoGen.c(415):
 !EFI_ERROR (Status)

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeHobLib/HobLib.c(48):
 !EFI_ERROR (Status)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeHobLib/HobLib.c(49):
 mHobList != ((void *) 0)
 ##############
 # ESRT TABLE #
 ##############
 EFI_SYSTEM_RESOURCE_TABLE:
 FwResourceCount - 0x0
 FwResourceCountMax - 0x0
 FwResourceVersion - 0x1

 FS1:\> efi\boot\app\capsuleapp -P

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeServicesTableLib/DxeServicesTableLib.c(58):
 !EFI_ERROR (Status)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeServicesTableLib/DxeServicesTableLib.c(59):
 gDS != ((void *) 0)

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/Build/
MdeModule/DEBUG_GCC5/AARCH64/MdeModulePkg/Application/CapsuleApp/CapsuleApp/
DEBUG/AutoGen.c(415):
 !EFI_ERROR (Status)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

 ASSERT_EFI_ERROR (Status = Not Found)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeHobLib/HobLib.c(48):
 !EFI_ERROR (Status)
 ASSERT [CapsuleApp]
 /home/cherat01/ATEG/SystemReady/BBR/arm-systemready/IR/scripts/edk2/MdePkg/
Library/DxeHobLib/HobLib.c(49):
 mHobList != ((void *) 0)
 ############
 # FMP DATA #
 ############
 FMP protocol - Not Found
 FS1:\>

5. Use CapsuleApp.efi to install the new firmware version and reboot the platform. If successful,
the firmware reports the version of the firmware included in the capsule as shown:

FS1:\> efi\boot\app\capsuleapp capsule.bin

6. Save the console log from the UpdateCapsule() procedure as fw/capsule-update.log in the
reporting directory structure.

Run the ACS test suite
See Test with the ACS for instructions on running the ACS test suite. Save the full console log of
the ACS test log as acs-console.log in the results directory. Also copy the entire contents of the
ACS Results filesystem from the ACS USB drive into the results directory.

Run Linux BSA
The Linux BSA test is not run automatically by the ACS-IR and must be run manually.

To run the Linux BSA test:

1. Boot the ACS-IR image and select Linux BusyBox.

2. Load the kernel module as follows:

 / # insmod /lib/modules/bsa_acs.ko
 [78.227399] init BSA Driver

3. Run the BSA test under Linux, as shown in the following example:

 / # /bin/bsa

 ************ BSA Architecture Compliance Suite *********
 Version 1.0

 Starting tests (Print level is 3)

 Gathering system information....
 [108.895524] PE_INFO: Number of PE detected : 1
 [108.898411] PCIE_INFO: Number of ECAM regions : 1
 [109.820411] PCIE_INFO: No entries in BDF Table
 [109.821970] Peripheral: Num of USB controllers : 0
 [109.822530] Peripheral: Num of SATA controllers : 0
 [109.823418] Peripheral: Num of UART controllers : 0
 [109.826078] DMA_INFO: Number of DMA CTRL in PCIe : 0
 [109.827791] SMMU_INFO: Number of SMMU CTRL : 0

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

 *** Starting Memory Map tests ***
 [109.835649]
 [109.835649] Operating System View:
 [109.836258] 104 : Addressability : Result:
 PASS
 [109.838899]
 [109.838899] All Memory tests have passed!!

 *** Starting Peripherals tests ***
 [109.846249]
 [109.846249] Operating System View:
 [109.847315] 605 : Memory Attribute of DMA
 [109.847315] No DMA controllers detected...
 [109.847315] Checkpoint -- 3 : Result:
 SKIPPED
 [109.852298]
 [109.852298] *** One or more tests have Failed/Skipped.***

 *** Starting PCIe tests ***
 [109.856345]
 [109.856345] Operating System View:
 [109.858919] 801 : Check ECAM Presence : Result:
 PASS
 [109.861826]
 [109.861826] *** No Valid Devices Found, Skipping PCIE tests ***
 [109.862750]
 [109.862750] --
 [109.862750] Total Tests Run = 3, Tests Passed = 2, Tests Failed = 0
 [109.862750] --

 *** BSA tests complete ***

4. Save the console log from the Linux BSA procedure as manual-results/bsa-linux/
console.log in the reporting directory structure.

Test Linux Distributions installation
SystemReady IR must boot at least two unmodified generic UEFI distribution images from an ISO
image written to a USB drive.

The following Linux distributions produce suitable ISO images:

• Fedora IoT

• OpenSUSE Leap

• Debian Stable

• Ubuntu Server

To test the Linux distribution installation, write the ISO image to a USB drive. Use the following
command from a bash shell to write the downloaded ISO to a USB drive. Replace <usb-block-
device> with the path to the USB drive’s block device on your Linux workstation:

$ dd if=/path/to/distro-image.iso of=/dev/<usb-block-device> ; sync

When testing the distribution installation, capture a log of the serial console output from the first
power on the board. To capture this log, use the installation USB attached to the final installed
Linux distro after running the Linux sniff tests.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 37

https://getfedora.org/en/iot/
https://get.opensuse.org/leap/
https://www.debian.org/releases/stable/
https://ubuntu.com/download/server/arm

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test SystemReady IR

Once the ISO is written to the USB drive, connect the USB drive to your board and turn the drive
on. U-Boot finds the image and boots from the image by default. A compliant system will boot from
the distro ISO into the installer tool. Use the tool to complete the installation of Linux and then
reboot into a working Linux environment installed on the eMMC or other local storage.

After Linux is installed, run the following sequence of Linux sniff tests as root using the serial
console:

 # dmesg
 # lspci -vvv
 # lscpu
 # lsblk
 # lsusb
 # dmidecode
 # uname -a
 # cat /etc/os-release
 # efibootmgr
 # cp -r /sys/firmware ~/
 # tar czf ~/sys-firmware.tar.gz ~/firmware

Use the intermediate copy step to capture the /sys/firmware folder contents, then copy the
resulting console.log file and the sys-firmware.tar.gz file into os-logs/linux-<distroname>-
<distroversion>/ in the results directory for reporting.

Verify the test results
SystemReady IR results can be verified using an automated script, which detects common mistakes.

To verify the test results:

1. Clone the latest version of the scripts:

$ git clone https://gitlab.arm.com/systemready/systemready-scripts -b ir1

2. Run the script from the systemready-template folder, which contains the acs-console.log and
the acs_results:

$ cd systemready-template
$ /path/to/systemready-scripts/check-sr-results.py
WARNING check_file: `./acs_results/linux_dump/lspci.log' empty (allowed)
INFO <module>: 153 checks, 152 pass, 1 warning, 0 error

Make sure there is no error reported, as shown in the example output.

For more information, refer to the documentation in the systemready-scripts and systemready-
template repositories.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 37

https://gitlab.arm.com/systemready/systemready-scripts
https://gitlab.arm.com/systemready/systemready-template
https://gitlab.arm.com/systemready/systemready-template

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

5. Test with the ACS
The ACS ensures architectural compliance across different implementations of the architecture. The
ACS is delivered with tests in source form with a build environment. The build output is a bootable
live OS image containing a collection of test suites. This collection of test suites is known as the
BSA and BBR ACS. These test suites test compliance against BSA, BBR, and EBBR specifications
for SystemReady IR certification. We recommend using architectural implementations to sign off
against the ACS to prove compliance with these specifications.

ACS overview
The ACS for SystemReady IR certification is delivered through a live OS image, which enables the
basic automation to run the BSA and BBR tests. The OS image is a set of UEFI applications on
UEFI shell and Linux kernel with BusyBox integrated with the Firmware Test Suite (FWTS). The
FWTS is a package hosted by Canonical which provides tests for Device tree and UEFI. The FWTS
test is customized to run only UEFI tests.

The BSA test suites are checked for compliance against the BSA specification. The tests are
delivered through the following suites:

• BSA tests on UEFI Shell. These tests are written on top of Validation Adaption Layers (VAL)
and Platform Adaptation Layers (PAL). The abstraction layers provide the tests with platform
information and runtime environment to enable execution of the tests. In Arm deliveries, the
VAL and PAL are written on top of UEFI.

• BSA tests on the Linux command line. These tests consist of the Linux command-line
application bsa and the kernel module bsa_acs.ko.

The BBR test suites are checked for compliance against the BBR specification. For certification, the
firmware is tested against the EBBR recipe which contains a reduced set of UEFI, the BBR, and the
EBBR specification. The tests are delivered through two bodies of code:

• EBBR tests contained in UEFI Self-Certification Tests (SCT). UEFI implementation requirements
are tested by SCT.

• EBBR based on the FWTS. The FWTS is a package hosted by Canonical that provides tests for
UEFI. The FWTS tests are customized to run only UEFI tests applicable to EBBR.

The contents of the live OS image are shown in the following diagram:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

Figure 5-1: ACS components

Run the ACS test
The prerequisites to run the ACS tests are as follows:

• Prepare a USB device with a minimum of 1GB of storage. This USB is used to boot and run the
ACS and to store the execution results.

• Prepare the System Under Test (SUT) machine with the latest firmware loaded, a host machine
for console access, then collect the results

The ACS test process is shown in the following flow chart:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

Figure 5-2: ACS test process

The ACS image must be set up on an independent medium or disk, like a USB. After the ACS
image is written to the disk, it must not be edited again. The U-Boot firmware should be housed

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

in a separate disk to that of the ACS. A storage with ESP (EFI System Partition) must exist in the
system, otherwise the related UEFI- SCT tests can fail.

To set up the USB device:

1. Download the ACS v21.09_1.0 prebuilt image from the Arm SystemReady prebuilt images
repository to a local directory on Linux. For more information about the image releases, see the
SystemReady IR ACS readme.

2. Deploy the ACS image on USB. Write the IR ACS bootable image to a USB stick on the Linux
host machine using the following commands:

$ lsblk
$ sudo dd if=/path/to/ir_acs_live_image.img of=/dev/sdX
$ sync

In this code, replace /dev/sdX with the name of your USB device. Use the lsblk command to
display the USB device name.

To execute the ACS IR prebuilt image:

1. Start capturing a log of the serial console output. The log must cover from the first power on of
the board to the finished boot into Linux to run FWTS.

2. Select the option to boot from USB on the SoC.

3. Press any key to stop the boot process and change the boot_targets variable to specify the
boot device. Use setenv to change the boot_targets value and saveenv to make it the default.

4. If the platform cannot boot from the USB device, use an alternative like an SD card. If the
platform cannot boot, the following message is displayed:

 U-Boot 2021.01-ge4477e7954 (Apr 23 2021 - 14:54:15 +0100)

 CPU: [CPU Name] rev1.0 at 1200 MHz
 Reset cause: POR
 Model: [Board Name]
 DRAM: 2 GiB
 WDT: Started with servicing (60s timeout)
 2
 Loading Environment from MMC... OK
 In: serial
 Out: serial
 Err: serial
 Net:
 Warning: ethernet@30be0000 (eth0) using random MAC address - ea:d7:72:f7:a2:30
 eth0: ethernet@30be0000
 Hit any key to stop autoboot: 0
 u-boot=> print boot_targets
 boot_targets=mmc2 mmc0 usb0 pxe dhcp
 u-boot=> setenv boot_targets usb0 mmc2
 u-boot=> saveenv
 u-boot=> boot
 starting USB...
 Bus usb@32e40000: USB EHCI 1.00
 Bus usb@32e50000: USB EHCI 1.00
 [...]

5. Insert the USB device in one of the USB slots and start a power cycle. The live image boots to
run the ACS.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 37

https://github.com/ARM-software/arm-systemready/tree/main/IR/prebuilt_images/v21.09_1.0
https://github.com/ARM-software/arm-systemready/tree/main/IR/prebuilt_images/v21.09_1.0
https://github.com/ARM-software/arm-systemready/blob/main/IR/README.md

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

The complete ACS execution process through IR ACS live image is shown in the following
flowchart:

Figure 5-3: ACS execution process

To skip the debug and test steps shown in the diagram, press any key within five seconds.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

The UpdateCapsule tests must be tested manually, then the logs must be recorded and submitted.

The prebuilt ACS live-images are released with a specific version Linux kernel which
are progressively upgraded with every release of the ACS. If the boot on your
SoC demands the updates for a newer version of the kernel, then you may build
the ACS image manually. The steps to build a customized ACS live-image with a
newer kernel are detailed in [Appendix: Rebuild the ACS-IR image]. The test results
obtained from manually built ACS live-image is for reference only. For the purpose
of SystemReady IR certifications, these tests have to be rerun after the ACS image
with the new kernel is released.

Run ACS in automated mode
If no option in GRUB is chosen and no tests are skipped, the image runs the ACS in the following
order:

1. SCT tests are run.

2. Debug dumps are executed.

3. BSA ACS is run.

4. Linux BusyBox Boot.

5. FWTS tests are run.

After these tests are executed, the control returns to a Linux prompt.

Run ACS in normal mode
When the image boots, choose one of the following GRUB options to specify the test automation:

• Linux BusyBox to boot Linux and execute FWTS

• BBR or BSA to execute the tests in the same sequence as fully automated mode

Review the ACS logs
The logs are stored in a separate partition in the image called acs-results.

After the automated execution, the results partition acs_results is automatically mounted on /mnt.
Navigate to acs_results to view the logs, as shown in the following screenshot:

Figure 5-4: acs_results file location

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

The logs can also be extracted from the USB key on the host machine.

Check for the generation of the following logs after mounting the acs_results directory as shown
in the table:

Number ACS Full log path Running
time

Description

1 BSA
(UEFI)

acs_results/uefi/
BsaResults.log

Less than
two minutes

2 SCT acs_results/
sct_results/Summary.
log

Four to six
hours

Summary.log contains the summary of all tests run. Logs of individual
SCT test suites can be found in the same path.

3 FWTS acs_results/fwts/
results.log

Less than
two minutes

4 Debug
Dumps

acs_results/linux_
dumps
acs_results/uefi_
dumps

Less than
two minutes

Contains dumps of the lspci command, drivers, devices, memmap,
and other files

ACS logs
If any logs are missing, run the suite manually and report the error to your Arm Certification
Partner. To report the error, mount the acs_results partition to copy the logs to a local directory,
then submit the logs in the acs_results partition. Clone the systemready-template directory
structure as shown and use it for recording the logs:

$ git clone https://git.gitlab.arm.com/systemready/systemready-template.git -b ir1

Use SSD in USB enclosure to execute the SCT tests more quickly.

Run the SCT Parser tool to parse the logs further, based on YAML configurations.

To run the SCT Parser tool:

1. Clone the latest version of the parser:

$ git clone https://git.gitlab.arm.com/systemready/edk2-test-parser.git -b ir1

2. Run the parser from the SCT results folder:

$ cd acs_results/sct_results
$ /path/to/edk2-test-parser/parser.py Overall/Summary.ekl Sequence/EBBR.seq
INFO ident_seq: Identified `Sequence/EBBR.seq' as "ACS-IR v21.09_1.0 EBBR.seq".
INFO apply_rules: Updated 55 tests out of 10657 after applying 144 rules
INFO print_summary: 0 dropped, 0 failure, 51 ignored, 1 known acs limitation, 3
known u-boot limitations, 10602 pass, 0 warning

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 37

https://gitlab.arm.com/systemready/systemready-template

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test with the ACS

Make sure the sequence file is recognized correctly, and that there are no dropped, skipped, failure
or warnings reported.

For more information, see the documentation in the SCT Results Parser repository.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 37

https://gitlab.arm.com/systemready/edk2-test-parser

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Related information

6. Related information
Here are some resources that are related to the material in this guide:

• Arm Base Boot Requirements

• Arm Base System Architecture (BSA) specification

• Arm Community

• Arm SystemReady Certification Program

• Arm SystemReady GitHub repository

• Arm SystemReady Requirements Specification

• Embedded Base Boot (EBBR) Requirements

• Introduction to SystemReady

• SystemReady IR

• U-Boot git repository

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 37

https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/den0094/latest
https://community.arm.com/
https://developer.arm.com/architectures/system-architectures/arm-systemready
https://github.com/ARM-software/arm-systemready
https://developer.arm.com/documentation/den0109/latest
https://developer.arm.com/architectures/platform-design/embedded-systems
https://developer.arm.com/architectures/system-architectures/arm-systemready
https://developer.arm.com/architectures/system-architectures/arm-systemready/ir
https://source.denx.de/u-boot/u-boot

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1
Next steps

7. Next steps
In this guide, you learned how to prepare for SystemReady IR certification and perform tasks
needed for the compliance program. This certification is for devices in the IoT edge sector that
are built around SoCs based on the Arm A-profile architecture. It ensures interoperability with
embedded Linux and other embedded operating systems.

After reading this guide, you can go to Arm SystemReady Certification Program for more
information about certification registration.

For support with the ACS, please send an email to support-systemready-acs@arm.com.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 37

https://www.arm.com/resources/contact-us/systemready-certification?_ga=2.101293185.1437417978.1647254166-1514066959.1612183942
mailto:support-systemready-acs@arm.com

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Build firmware for Compulab IOT-GATE-IMX8 platform

Appendix A Build firmware for Compulab
IOT-GATE-IMX8 platform

This is an example of how to build compliant firmware for an iMX8 platform, specifically for the
IOT-GATE-IMX8 from Compulab. Use the following commands to fetch the relevant reference
source code and build the reference firmware:

$ sudo apt install swig # if the swig package is missing for Ubuntu
$ git clone https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/
$ cd build-scripts
$./download_everything.sh
$./build_everything.sh

By default, the generated binary images are in the following directories:

• /tmp/uboot-imx8/flash.bin

• /tmp/uboot-imx8/u-boot.itb

• /tmp/uboot-imx8/capsule1.bin

For more information about how to test SCT on an iMX8 board, see the following repositories:

• iot-gate-imx8

• Building and running iot-gate-imx8

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 37

https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/tree/docs
https://git.linaro.org/people/paul.liu/systemready/build-scripts.git/tree/docs/iotgateimx8_building_running.md

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Run the ACS-IR image on QEMU

Appendix B Run the ACS-IR image on
QEMU

To test SystemReady IR for QEMU, use a PC running Ubuntu 21.10 (Impish Indri) and install the
packages, as shown in the following example:

$ sudo apt install git curl build-essential autoconf pkg-config libconfuse-dev \
 flex bison crossbuild-essential-arm64 libssl-dev bc uuid-dev \
 python3-distutils zip dosfstools mtools qemu-system-arm python-is-python3 \
 wget

Then download and run an automated script as follows:

$ git clone https://git.gitlab.arm.com/systemready/systemready-scripts.git -b ir1
$./systemready-scripts/ir-guide/acs-on-qemu

The acs-on-qemu script will perform the following intermediate operations:

• Download repo

• Compile a U-Boot firmware

• Prepare an EFI System Partition (ESP) image

• Download and uncompress the SystemReady ACS-IR pre-built image v21.09_1.0

Finally, the acs-on-qemu script will launch QEMU. The ACS-IR will start, as shown in the following
screenshot:

Figure B-1: ACS-IR image starting on qemu

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 37

https://www.qemu.org
http://www.releases.ubuntu.com/impish/
https://github.com/ARM-software/arm-systemready/raw/main/IR/prebuilt_images/v21.09_1.0/ir_acs_live_image.img.xz

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Run the ACS-IR image on QEMU

B.1 Advises
If the ACS halts at the following BSA test:

 502 : Wake from System Timer Int
 Checkpoint -- 1 : Result: SKIPPED
 503 : Wake from EL0 PHY Timer Int

Just restart the acs-on-qemu script to finish running the ACS.

If the ACS halts during SCT with the following error:

System will cold reset after 1 second. please run this test again...resetting...
ERROR: QEMU System Reset: with GPIO.

It is likely that the QEMU version is too old and does not support reset.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Rebuild the ACS-IR image

Appendix C Rebuild the ACS-IR image
These steps are from ACS build steps in the SystemReady documentation.

Prerequisites
Before starting the ACS build, ensure that the following requirements are met:

• Ubuntu 18.04 or 20.04 LTS with a minimum of 32GB free disk space

• Bash shell

• Sudo privilege to install tools required for build

• Git is installed

If Git is not installed, install Git using sudo apt install git. Additionally, git config --global
user.name Your Name and git config --global user.email Your Email must be configured.

Build the SystemReady IR ACS live image
To build the live image:

1. Clone the arm-systemready repository using the following code with the latest release tag, for
example: v21.07_0.9_BETA:

git clone https://github.com/ARM-software/arm-systemready.git \
 --branch <release_tag>

2. Update the common_config.cfg in the path arm-systemready/common/config/
common_config.cfg to change the kernel version.

3. Change the parameter LINUX_KERNEL_VERSION=5.13 to LINUX_KERNEL_VERSION=<New Version>.

4. Make the following changes to disable linux bsa:

diff --git a/common/ramdisk/files.txt b/common/ramdisk/files.txt
 file /bin/fwts ./fwts_output/bin/fwts 755 0 0
-file /bin/bsa ./linux-bsa/bsa 755 0 0
-file /lib/modules/bsa_acs.ko ./linux-bsa/bsa_acs.ko 755 0 0
 file /lib/libbsd.so.0 ./fwts_build_dep/libbsd.so.0 755 0 0
 file /lib/libfdt.so.1 ./fwts_build_dep/libfdt.so.1 755 0 0
 file /lib/libgio-2.0.so.0 ./fwts_build_dep/libgio-2.0.so.0 755 0 0

diff --git a/common/scripts/build-all.sh b/common/scripts/build-all.sh
 source ./build-scripts/build-sct.sh $@
 source ./build-scripts/build-uefi-apps.sh $@
 source ./build-scripts/build-linux.sh
-source ./build-scripts/build-linux-bsa.sh
 source ./build-scripts/build-grub.sh
 source ./build-scripts/build-fwts.sh $@
 source ./build-scripts/build-busybox.sh

diff --git a/common/scripts/get_source.sh b/common/scripts/get_source.sh
 get_linux_src
 get_cross_compiler
 get_fwts_src
-get_linux-acs_src

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 37

https://github.com/ARM-software/arm-systemready/tree/main/IR#acs-build-steps

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Rebuild the ACS-IR image

5. Navigate to the IR/scripts directory as shown:

cd /path-to/arm-systemready/IR/scripts

6. Run get_source.sh to download the sources and tools for the build. Provide the sudo
permission as follows:

./build-scripts/get_source.sh

7. To start building the IR ACS live image, use the following command:

./build-scripts/build-ir-live-image.sh

If this procedure is successful, the bootable image will be available at /path-to/arm-systemready/
IR/scripts/output/ir_acs_live_image.img.xz

The image is generated in a compressed (.xz) format. The image must be
uncompressed before it is used.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Test checklist

Appendix D Test checklist
The following summarizes the steps to test your system before submitting your results for
SystemReady IR certification:

1. Perform U-Boot sanity tests manually as described in the Test the U-Boot Shell section in Test
SystemReady IR.

2. Perform UEFI sanity tests manually as described in the Test the UEFI Shell section in Test
SystemReady IR.

3. Perform capsule update manually as described in the Test UpdateCapsule section in Test
SystemReady IR.

4. Run the automated ACS-IR as described in the Run the ACS test suite section in Test
SystemReady IR.

5. Run Linux BSA test manually as described in the Run Linux BSA section in Test SystemReady IR.

6. Install two Linux distributions and perform OS tests manually as described in the Test Linux
Distributions installation section in Test SystemReady IR.

7. Verify your test results using the scripts as described in the Verify the test results section in the
Test SystemReady IR and the Review the ACS logs section in Test with the ACS.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 37

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Frequently Asked Questions

Appendix E Frequently Asked Questions
This section answers some common questions related to SystemReady IR.

General
What operating systems can run on a SystemReady IR platform?

While SystemReady IR is intended to make it easier to build embedded Linux and BSD systems, it
defines a base platform architecture that can be used by any operating system. Operating systems
that use the UEFI firmware ABI and the Devicetree system description can boot on a SystemReady
IR platform.

How does SystemReady IR differ from SystemReady ES and SystemReady SR?

SystemReady IR differs from SystemReady ES and SystemReady SR in two important ways:

• SystemReady IR requires only a subset of the UEFI ABI required by SystemReady ES and
SystemReady SR. In particular, SystemReady IR does not require most Runtime Services after
ExitBootServices() has been called, and SystemReady IR does not require Option ROM
loadable driver support. The lack of Runtime Services means changes to firmware variables,
like BootXXXX, must be done in the UEFI environment before the OS boots. The lack of Option
ROM support means that booting from PCIe devices may not be supported if the firmware
does not have native drivers for the device.

• SystemReady IR uses the Devicetree system description instead of ACPI and SMBIOS.
Devicetree is used by Embedded Linux products and many embedded SoCs do not currently
have working ACPI descriptions. Linux supports both ACPI and Devicetree system descriptions,
so SystemReady IR, SystemReady ES, and SystemReady SR platforms can all be supported with
a single kernel image if the appropriate config options are enabled.

Can I certify using a custom kernel?

No. Certification requires evidence that mainline Linux or BSD works on the platform. Unmodified
third party distros are the best way to provide that evidence. Using a custom kernel can hide
firmware or hardware problems that prevent mainline from running on the hardware.

Certification testing
I get X errors from the ACS SCT results. How many errors are acceptable?

If you are using the latest copy of the SCT_Parser script you should not see any errors. If you have
errors, it is likely a problem with your firmware configuration. The latest copy of the SCT parser
script can be found on Arm Gitlab.

How do I fix Variable services test failures?

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 37

https://gitlab.arm.com/systemready/edk2-test-parser

SystemReady IR IoT Integration, Test, and Certification
Guide

Document ID: DUI1101_1.1_02_en
Version 1.1

Frequently Asked Questions

Firmware must have the ability to set UEFI variable and persist the value over reboots. If variable
values do not persist over reboot, you will get VariableServices test failures and the following
failure:

|BS.ExitBootServices - ConsistencyTestCheckpoint1
|FAILURE
|BootServicesTest|ImageServicesTest|ExitBootServices_Conf
|303ABFAB-C865-4255-86E3-6EEF175E30DD
|0
|19-08-2021|08:15:00
|0x00010001
|Image Services Test
|No device path
|A5BB81FA-1063-4358-97AF-AD57D42BF055
|/home/charles/work/acs_images/arm-systemready/IR/scripts/edk2-test/uefi-sct/SctPkg/
TestCase/UEFI/EFI/BootServices/ImageServices/BlackBoxTest/ImageBBTestConformance.c
 917 GetVariable service routine failed - Not Found
|Check logs for messages such as "No EFI system partition" or "Failed to persist EFI
 variables" and check that system has an EFI System Partition
|Add comments to failure due to missing ESP|

By default, U-Boot stores UEFI variables as a file in the EFI System Partition (ESP). The most
common cause of this failure is not having an ESP on the primary storage device, like eMMC or SD.
To fix the problem, make sure the eMMC or SD has a GPT partition table and create a small FAT
formatted 100MB partition with type 0xEF00. U-Boot will use the partition to store variables and
the failure will stop.

How do I work around Debian’s Failed to install Grub error?

Debian currently requires UEFI SetVariable() to work after ExitBootServices() while the
operating system is running, but SystemReady IR does not require SetVariable() to be supported
after ExitBootServices(). Fedora IoT and OpenSUSE both have workaround code to handle
installing Grub in a failsafe way, but Debian does not.

The workaround for Debian is to finalize the Grub install manually before exiting the installer. After
the Debian installer displays the No Bootloader Installed error message, select Execute a shell and
enter the following commands:

 ~ # in-target grub-install --no-nvram --force-extra-removable
 ~ # in-target update-grub

Exit the chroot and the shell to return to the installer and select Continue without boot loader to
finish installation.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 37

	SystemReady IR IoT Integration, Test, and Certification Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Overview
	2.1 Before you begin

	3. Configure U-Boot for SystemReady
	4. Test SystemReady IR
	5. Test with the ACS
	6. Related information
	7. Next steps
	A. Build firmware for Compulab IOT-GATE-IMX8 platform
	B. Run the ACS-IR image on QEMU
	B.1 Advises

	C. Rebuild the ACS-IR image
	D. Test checklist
	E. Frequently Asked Questions

