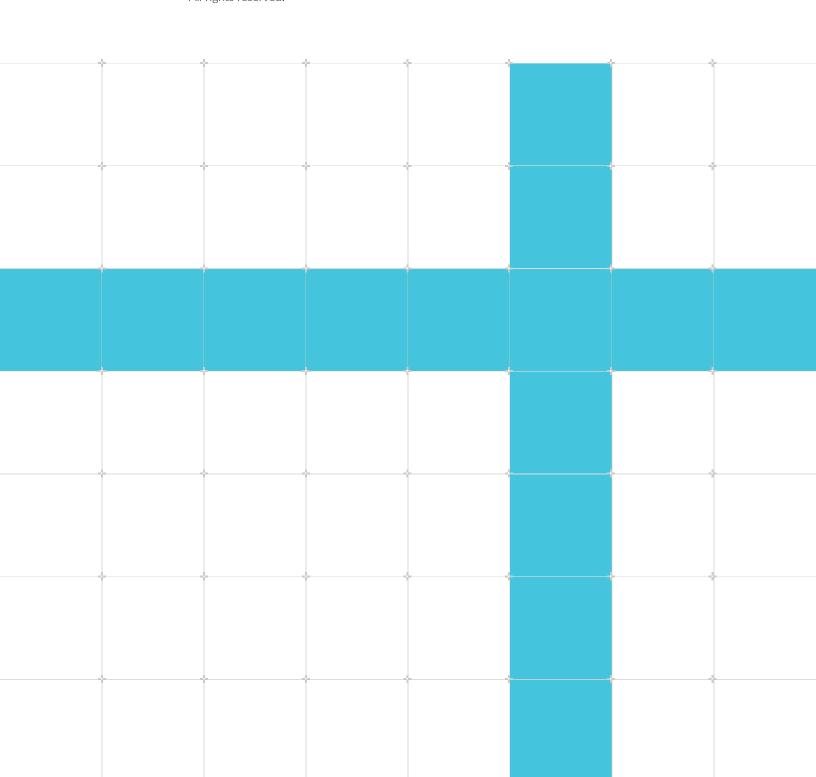


Arm® Cortex®-A715 Core


Revision: r1p1

Technical Reference Manual

Non-Confidential

Issue 07

Copyright © 2020–2022 Arm Limited (or its affiliates). $101590_0101_07_en$ All rights reserved.

Arm® Cortex®-A715 Core

Technical Reference Manual

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue	Date	Confidentiality	Change
0000-02	17 July 2020	Confidential	First alpha release for rOpO
0000-03	30 November 2020	Confidential	First beta release for r0p0
0000-04	7 May 2021	Confidential	First limited access release for r0p0
0100-05	30 September 2021	Confidential	First early access release for r1p0
0101-06	25 May 2022	Confidential	First early access release for r1p1
0101-07	22 June 2022	Non-Confidential	Second early access release for r1p1

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue of this document.

To report offensive language in this document, email terms@arm.com.

Contents

1. Introduction	18
1.1 Product revision status	18
1.2 Intended audience	18
1.3 Conventions	18
1.4 Additional reading	21
2. The Cortex®-A715 core	22
2.1 Cortex®-A715 core features	23
2.2 Cortex®-A715 core configuration options	24
2.3 DSU-110 dependent features	25
2.4 Supported standards and specifications	25
2.5 Test features	29
2.6 Design tasks	29
2.7 Product revisions	30
3. Technical overview	31
3.1 Core components	31
3.2 Interfaces	35
3.3 Programmers model	36
4. Clocks and resets	37
5. Power management	38
5.1 Voltage and power domains	38
5.2 Architectural clock gating modes	40
5.2.1 Wait for Interrupt and Wait for Event	40
5.2.2 Low-power state behavior considerations	41
5.3 Power control	42
5.4 Core power modes	42
5.4.1 On mode	44
5.4.2 Off mode	44
5.4.3 Emulated off mode	44
5.4.4 Full retention mode	45

5.4.5 Debug recovery mode	45
5.4.6 Warm reset mode	46
5.5 Performance and power management	46
5.5.1 Maximum Power Mitigation Mechanism	47
5.5.2 Performance Defined Power	47
5.5.3 Dispatch block	48
5.6 Cortex®-A715 core powerup and powerdown sequence	48
5.6.1 Managing RAS fault and error interrupts during the core powerdow	/n49
5.7 Debug over powerdown	50
6. Memory management	51
6.1 Memory Management Unit components	51
6.2 TLB entry content	53
6.3 TLB match process	53
6.4 Translation table walks	54
6.5 Hardware management of the Access flag and dirty state	55
6.6 Responses	55
6.7 Memory behavior and supported memory types	57
6.8 Page-based hardware attributes	58
7. L1 instruction memory system	60
7.1 L1 instruction cache behavior	60
7.2 L1 instruction cache Speculative memory accesses	61
7.3 Program flow prediction	61
8. L1 data memory system	63
8.1 L1 data cache behavior	63
8.2 Write streaming mode	64
8.3 Instruction implementation in the L1 data memory system	65
8.4 Internal exclusive monitor	66
8.5 Data prefetching	66
9. L2 memory system	68
9.1 L2 cache	68
9.2 Support for memory types	69
9.3 Transaction capabilities	69
10. Direct access to internal memory	71

10.1 L1 cache encodings	72
10.1.1 L1 RAM returned data	74
10.2 L2 cache encodings	74
10.2.1 L2 RAM returned data	75
10.3 L2 TLB encodings	75
10.3.1 L2 TLB RAM returned data	76
11. RAS Extension support	77
11.1 Cache protection behavior	
11.2 Error containment	78
11.3 Fault detection and reporting	79
11.4 Error detection and reporting	79
11.4.1 Error reporting and performance monitoring	80
11.5 Error injection	80
11.6 AArch64 RAS registers	81
12. Utility bus	82
12.1 Base addresses for system components	82
13. GIC CPU interface	84
13.1 Disable the GIC CPU interface	84
13.2 AArch64 GIC system registers	85
14. Advanced SIMD and floating-point support	86
15. Scalable Vector Extensions support	87
16. System control	88
17. Debug	89
17.1 Supported debug methods	
17.2 Debug register interfaces	91
17.2.1 Core interfaces	91
17.2.2 Effects of resets on debug registers	92
17.2.3 External access permissions to Debug registers	92
17.2.4 Breakpoints and watchpoints	93
17.3 Debug events	93
17.4 Debug memory map and debug signals	93

17.5 ROM table	94
17.6 CoreSight™ component identification	94
17.7 External Debug registers	95
17.8 External ROM table registers	95
18. Performance Monitors Extension support	97
18.1 Performance monitors events	97
18.2 Performance monitors interrupts	108
18.3 External register access permissions	109
18.4 AArch64 Performance Monitors registers	109
18.5 External PMU registers	109
19. Embedded Trace Extension support	112
19.1 Trace unit resources	113
19.2 Trace unit generation options	113
19.3 Reset the trace unit	114
19.4 Program and read the trace unit registers	115
19.5 Trace unit register interfaces	117
19.6 Interaction with the Performance Monitoring Unit and Debug	117
19.7 ETE events	118
19.8 AArch64 Trace registers	118
19.9 External ETE registers	119
20. Trace Buffer Extension support	121
20.1 Program and read the trace buffer registers	121
20.2 Trace buffer register interface	121
21. Activity Monitors Extension support	122
21.1 Activity monitors access	122
21.2 Activity monitors counters	123
21.3 Activity monitors events	123
21.4 AArch64 Activity Monitors registers	124
21.5 External AMU registers	124
22. Statistical Profiling Extension Support	126
22.1 Statistical Profiling Extension events packet	127
22.2 Statistical Profiling Extension data source packet	128

A. AArch64 registers	129
A.1 AArch64 Generic System Control registers summary	129
A.1.1 AIDR_EL1, Auxiliary ID Register	130
A.1.2 ACTLR_EL1, Auxiliary Control Register (EL1)	132
A.1.3 ACTLR_EL2, Auxiliary Control Register (EL2)	133
A.1.4 HACR_EL2, Hypervisor Auxiliary Control Register	136
A.1.5 ACTLR_EL3, Auxiliary Control Register (EL3)	138
A.1.6 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)	140
A.1.7 LORID_EL1, LORegionID (EL1)	
A.1.8 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)	145
A.1.9 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)	147
A.1.10 IMP_CPUCFR_EL1, CPU Configuration Register	149
A.1.11 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register	150
A.1.12 IMP_CPUACTLR2_EL1, CPU Auxiliary Control Register	152
A.1.13 IMP_CPUACTLR3_EL1, CPU Auxiliary Control Register	154
A.1.14 IMP_CPUACTLR4_EL1, CPU Auxiliary Control Register	156
A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register	158
A.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register	166
A.1.17 IMP_CPUPWRCTLR_EL1, CPU Power Control Register	170
A.1.18 IMP_CLUSTERACTLR_EL1, Cluster Auxiliary Control Register	172
A.1.19 IMP_ATCR_EL2, CPU Auxiliary Translation Control Register	174
A.1.20 IMP_AVTCR_EL2, CPU Auxiliary Virtualization Translation Control Register	178
A.1.21 IMP_ATCR_EL1, CPU Auxiliary Translation Control Register	181
A.1.22 IMP_ISIDE_DATA0_EL3, RAMINDEX Instruction Data register 0	184
A.1.23 IMP_ISIDE_DATA1_EL3, RAMINDEX Instruction Data register 1	186
A.1.24 IMP_ISIDE_DATA2_EL3, RAMINDEX Instruction Data register 2	188
A.1.25 IMP_MMU_DATAO_EL3, RAMINDEX TLB Data register 0	189
A.1.26 IMP_MMU_DATA1_EL3, RAMINDEX TLB Data register 1	193
A.1.27 IMP_MMU_DATA2_EL3, RAMINDEX TLB Data register 2	199
A.1.28 IMP_DSIDE_DATA0_EL3, RAMINDEX L1D Data register 0	204
A.1.29 IMP_DSIDE_DATA1_EL3, RAMINDEX L1D Data register 1	206
A.1.30 IMP_DSIDE_DATA2_EL3, RAMINDEX L1D Data register 2	208
A.1.31 IMP_L2_DATA0_EL3, RAMINDEX L2 Data register 0	210
A.1.32 IMP_L2_DATA2_EL3, RAMINDEX L2 Data register 2	214
A.1.33 IMP_L2_DATA1_EL3, RAMINDEX L2 Data register 1	216
A.1.34 IMP CLUSTERCDBG FL3. Cluster Cache Debug Register	217

A.1.35 IMP_ATCR_EL3, CPU Auxiliary Translation Control Register	220
A.1.36 IMP_CPUPSELR_EL3, Selected Instruction Private Control Register	222
A.1.37 IMP_CPUPCR_EL3, Selected Instruction Private Control Register	224
A.1.38 IMP_CPUPOR_EL3, Selected Instruction Patch Opcode Register	225
A.1.39 IMP_CPUPMR_EL3, Selected Instruction Patch Mask Register	227
A.1.40 IMP_CPUPOR2_EL3, Selected Instruction Patch Opcode Register 2	228
A.1.41 IMP_CPUPMR2_EL3, Selected Instruction Private Mask Register 2	230
A.1.42 IMP_CPUPFR_EL3, Selected Instruction Private Flag Register	232
A.1.43 FPCR, Floating-point Control Register	233
A.1.44 AFSRO_EL2, Auxiliary Fault Status Register 0 (EL2)	238
A.1.45 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)	240
A.1.46 AFSRO_EL1, Auxiliary Fault Status Register 0 (EL1)	
A.1.47 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)	245
A.1.48 AFSRO_EL3, Auxiliary Fault Status Register 0 (EL3)	248
A.1.49 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)	249
A.2 AArch64 Special-purpose registers summary	251
A.2.1 IMP_CPUPPMCR_EL3, Global PPM Configuration Register	251
A.3 AArch64 This register is a system instruction registers summary	253
A.3.1 RAMINDEX, RAMINDEX system instruction	254
A.4 AArch64 Identification registers summary	262
A.4.1 MIDR_EL1, Main ID Register	263
A.4.2 MPIDR_EL1, Multiprocessor Affinity Register	265
A.4.3 REVIDR_EL1, Revision ID Register	267
A.4.4 MVFRO_EL1, AArch32 Media and VFP Feature Register 0	268
A.4.5 MVFR1_EL1, AArch32 Media and VFP Feature Register 1	270
A.4.6 MVFR2_EL1, AArch32 Media and VFP Feature Register 2	271
A.4.7 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0	273
A.4.8 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1	276
A.4.9 ID_AA64ZFRO_EL1, SVE Feature ID register 0	278
A.4.10 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0	280
A.4.11 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1	283
A.4.12 ID_AA64AFRO_EL1, AArch64 Auxiliary Feature Register 0	284
A.4.13 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1	286
A.4.14 ID_AA64ISARO_EL1, AArch64 Instruction Set Attribute Register 0	287
A.4.15 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1	291
A.4.16 ID_AA64MMFRO_EL1, AArch64 Memory Model Feature Register O	294

A.4.17 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1	296
A.4.18 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2	299
A.4.19 CCSIDR_EL1, Current Cache Size ID Register	302
A.4.20 CLIDR_EL1, Cache Level ID Register	304
A.4.21 GMID_EL1, Multiple tag transfer ID register	308
A.4.22 CSSELR_EL1, Cache Size Selection Register	
A.4.23 CTR_ELO, Cache Type Register	312
A.4.24 DCZID_ELO, Data Cache Zero ID register	314
A.4.25 MPAMIDR_EL1, MPAM ID Register (EL1)	316
A.4.26 IMP_CPUPPMPDPCR_EL1, Global PPMPDP Configuration Register	318
A.4.27 IMP_CPUMPMMCR_EL3, Global MPMM Configuration Register	320
A.5 AArch64 Performance Monitors registers summary	322
A.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register	323
A.5.2 PMCR_ELO, Performance Monitors Control Register	325
A.5.3 PMCEIDO_ELO, Performance Monitors Common Event Identification register O	330
A.5.4 PMCEID1_ELO, Performance Monitors Common Event Identification register 1	337
A.6 AArch64 GIC system registers summary	344
A.6.1 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)	344
A.6.2 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register	349
A.6.3 ICC_APORO_EL1, Interrupt Controller Active Priorities Group O Registers	352
A.6.4 ICV_APORO_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers	354
A.6.5 ICC_AP1R0_EL1, Interrupt Controller Active Priorities Group 1 Registers	356
A.6.6 ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers	358
A.6.7 ICH_VTR_EL2, Interrupt Controller VGIC Type Register	360
A.6.8 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)	363
A.7 AArch64 Other system control registers summary	367
A.7.1 TRBIDR_EL1, Trace Buffer ID Register	367
A.8 AArch64 RAS registers summary	370
A.8.1 ERRIDR_EL1, Error Record ID Register	370
A.8.2 ERRSELR_EL1, Error Record Select Register	372
A.8.3 ERXFR_EL1, Selected Error Record Feature Register	374
A.8.4 ERXCTLR_EL1, Selected Error Record Control Register	378
A.8.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register	382
A.8.6 ERXADDR_EL1, Selected Error Record Address Register	390
A.8.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register	392
A.8.8 FRXPFGCTL FL1. Selected Pseudo-fault Generation Control register	397

A.8.9 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register	401
A.8.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register O	404
A.8.11 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1	410
A.8.12 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2	
A.8.13 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3	414
A.9 AArch64 Activity Monitors registers summary	417
A.9.1 AMEVTYPER10_ELO, Activity Monitors Event Type Registers 1	417
A.9.2 AMEVTYPER11_ELO, Activity Monitors Event Type Registers 1	418
A.9.3 AMEVTYPER12_ELO, Activity Monitors Event Type Registers 1	420
A.9.4 AMCFGR_ELO, Activity Monitors Configuration Register	421
A.9.5 AMCGCR_ELO, Activity Monitors Counter Group Configuration Register	423
A.9.6 AMEVTYPEROO_ELO, Activity Monitors Event Type Registers O	425
A.9.7 AMEVTYPER01_EL0, Activity Monitors Event Type Registers 0	427
A.9.8 AMEVTYPER02_EL0, Activity Monitors Event Type Registers 0	428
A.9.9 AMEVTYPER03_EL0, Activity Monitors Event Type Registers 0	429
A.10 AArch64 Trace registers summary	431
A.10.1 TRCIDR8, ID Register 8	431
A.10.2 TRCIMSPECO, IMP DEF Register 0	433
A.10.3 TRCIDR9, ID Register 9	435
A.10.4 TRCIDR2, ID Register 2	437
A.10.5 TRCIDR3, ID Register 3	439
A.10.6 TRCIDR4, ID Register 4	442
A.10.7 TRCIDR5, ID Register 5	444
A.10.8 TRCIDR6, ID Register 6	447
A.10.9 TRCIDR7, ID Register 7	448
A.10.10 TRCIDR10, ID Register 10	450
A.10.11 TRCIDR11, ID Register 11	451
A.10.12 TRCIDR12, ID Register 12	453
A.10.13 TRCIDR13, ID Register 13	454
A.10.14 TRCAUXCTLR, Auxiliary Control Register	456
A.10.15 TRCIDRO, ID Register 0	458
A.10.16 TRCIDR1, ID Register 1	461
A.10.17 TRCDEVARCH, Device Architecture Register	463
A.10.18 TRCDEVID, Device Configuration Register	465
A.10.19 TRCCLAIMSET, Claim Tag Set Register	467
A.10.20 TRCCLAIMCLR, Claim Tag Clear Register	470

A.11 AArch64 Memory Partitioning and Monitoring registers summary	473
A.11.1 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register	474
A.11.2 MPAMVPMO_EL2, MPAM Virtual PARTID Mapping Register O	476
A.11.3 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1	478
B. External registers	481
B.1 External MPMM registers summary	481
B.1.1 CPUPPMCR, Global PPM Configuration Register	481
B.1.2 CPUMPMMCR, Global MPMM Configuration Register	483
B.1.3 CPUPPMPDPCR, Global PPMPDP Configuration Register	485
B.2 External PMU registers summary	487
B.2.1 PMPCSSR, Snapshot Program Counter Sample Register	488
B.2.2 PMCIDSSR, Snapshot CONTEXTIDR_EL1 Sample Register	489
B.2.3 PMCID2SSR, Snapshot CONTEXTIDR_EL2 Sample Register	490
B.2.4 PMSSSR, PMU Snapshot Status Register	491
B.2.5 PMCCNTSR, PMU Cycle Counter Snapshot Register	493
B.2.6 PMEVCNTSRO, PMU Event Counter Snapshot Register	494
B.2.7 PMEVCNTSR1, PMU Event Counter Snapshot Register	495
B.2.8 PMEVCNTSR2, PMU Event Counter Snapshot Register	496
B.2.9 PMEVCNTSR3, PMU Event Counter Snapshot Register	497
B.2.10 PMEVCNTSR4, PMU Event Counter Snapshot Register	498
B.2.11 PMEVCNTSR5, PMU Event Counter Snapshot Register	499
B.2.12 PMEVCNTSR6, PMU Event Counter Snapshot Register	500
B.2.13 PMEVCNTSR7, PMU Event Counter Snapshot Register	501
B.2.14 PMEVCNTSR8, PMU Event Counter Snapshot Register	502
B.2.15 PMEVCNTSR9, PMU Event Counter Snapshot Register	503
B.2.16 PMEVCNTSR10, PMU Event Counter Snapshot Register	504
B.2.17 PMEVCNTSR11, PMU Event Counter Snapshot Register	505
B.2.18 PMEVCNTSR12, PMU Event Counter Snapshot Register	506
B.2.19 PMEVCNTSR13, PMU Event Counter Snapshot Register	507
B.2.20 PMEVCNTSR14, PMU Event Counter Snapshot Register	508
B.2.21 PMEVCNTSR15, PMU Event Counter Snapshot Register	509
B.2.22 PMEVCNTSR16, PMU Event Counter Snapshot Register	510
B.2.23 PMEVCNTSR17, PMU Event Counter Snapshot Register	511
B.2.24 PMEVCNTSR18, PMU Event Counter Snapshot Register	512
B.2.25 PMFVCNTSR19, PMU Event Counter Snapshot Register	513

B.2.26 PMSSCR, PMU Snapshot Capture Register	514
B.2.27 PMCFGR, Performance Monitors Configuration Register	515
B.2.28 PMCR_ELO, External Performance Monitors Control Register	516
B.2.29 PMCEIDO, Performance Monitors Common Event Identification register O	520
B.2.30 PMCEID1, Performance Monitors Common Event Identification register 1	524
B.2.31 PMCEID2, Performance Monitors Common Event Identification register 2	528
B.2.32 PMCEID3, Performance Monitors Common Event Identification register 3	532
B.2.33 PMMIR, Performance Monitors Machine Identification Register	536
B.2.34 PMDEVARCH, Performance Monitors Device Architecture register	537
B.2.35 PMDEVID, Performance Monitors Device ID register	539
B.2.36 PMDEVTYPE, Performance Monitors Device Type register	540
B.2.37 PMPIDR4, Performance Monitors Peripheral Identification Register 4	541
B.2.38 PMPIDRO, Performance Monitors Peripheral Identification Register O	543
B.2.39 PMPIDR1, Performance Monitors Peripheral Identification Register 1	544
B.2.40 PMPIDR2, Performance Monitors Peripheral Identification Register 2	546
B.2.41 PMPIDR3, Performance Monitors Peripheral Identification Register 3	547
B.2.42 PMCIDRO, Performance Monitors Component Identification Register O	549
B.2.43 PMCIDR1, Performance Monitors Component Identification Register 1	550
B.2.44 PMCIDR2, Performance Monitors Component Identification Register 2	551
B.2.45 PMCIDR3, Performance Monitors Component Identification Register 3	553
B.3 External Debug registers summary	554
B.3.1 EDRCR, External Debug Reserve Control Register	555
B.3.2 EDACR, External Debug Auxiliary Control Register	556
B.3.3 EDPRCR, External Debug Power/Reset Control Register	558
B.3.4 MIDR_EL1, External Main ID Register	560
B.3.5 EDPFR, External Debug Processor Feature Register	561
B.3.6 EDDFR, External Debug Feature Register	564
B.3.7 EDDEVARCH, External Debug Device Architecture register	566
B.3.8 EDDEVID2, External Debug Device ID register 2	568
B.3.9 EDDEVID1, External Debug Device ID register 1	569
B.3.10 EDDEVID, External Debug Device ID register 0	570
B.3.11 EDDEVTYPE, External Debug Device Type register	572
B.3.12 EDPIDR4, External Debug Peripheral Identification Register 4	573
B.3.13 EDPIDRO, External Debug Peripheral Identification Register O	574
B.3.14 EDPIDR1, External Debug Peripheral Identification Register 1	576
B.3.15 EDPIDR2, External Debug Peripheral Identification Register 2	577

B.3.16 EDPIDR3, External Debug Peripheral Identification Register 3	579
B.3.17 EDCIDRO, External Debug Component Identification Register O	580
B.3.18 EDCIDR1, External Debug Component Identification Register 1	581
B.3.19 EDCIDR2, External Debug Component Identification Register 2	583
B.3.20 EDCIDR3, External Debug Component Identification Register 3	584
B.4 External AMU registers summary	585
B.4.1 AMEVTYPER00, Activity Monitors Event Type Registers 0	586
B.4.2 AMEVTYPER01, Activity Monitors Event Type Registers 0	587
B.4.3 AMEVTYPERO2, Activity Monitors Event Type Registers O	588
B.4.4 AMEVTYPER03, Activity Monitors Event Type Registers 0	590
B.4.5 AMEVTYPER10, Activity Monitors Event Type Registers 1	591
B.4.6 AMEVTYPER11, Activity Monitors Event Type Registers 1	592
B.4.7 AMEVTYPER12, Activity Monitors Event Type Registers 1	593
B.4.8 AMCGCR, Activity Monitors Counter Group Configuration Register	594
B.4.9 AMCFGR, Activity Monitors Configuration Register	595
B.4.10 AMIIDR, Activity Monitors Implementation Identification Register	597
B.4.11 AMDEVARCH, Activity Monitors Device Architecture Register	598
B.4.12 AMDEVTYPE, Activity Monitors Device Type Register	599
B.4.13 AMPIDR4, Activity Monitors Peripheral Identification Register 4	600
B.4.14 AMPIDRO, Activity Monitors Peripheral Identification Register O	602
B.4.15 AMPIDR1, Activity Monitors Peripheral Identification Register 1	603
B.4.16 AMPIDR2, Activity Monitors Peripheral Identification Register 2	604
B.4.17 AMPIDR3, Activity Monitors Peripheral Identification Register 3	605
B.4.18 AMCIDRO, Activity Monitors Component Identification Register 0	606
B.4.19 AMCIDR1, Activity Monitors Component Identification Register 1	607
B.4.20 AMCIDR2, Activity Monitors Component Identification Register 2	608
B.4.21 AMCIDR3, Activity Monitors Component Identification Register 3	609
B.5 External ETE registers summary	610
B.5.1 TRCAUXCTLR, External Auxiliary Control Register	611
B.5.2 TRCIDR8, External ID Register 8	612
B.5.3 TRCIDR9, External ID Register 9	614
B.5.4 TRCIDR10, External ID Register 10	615
B.5.5 TRCIDR11, External ID Register 11	616
B.5.6 TRCIDR12, External ID Register 12	617
B.5.7 TRCIDR13, External ID Register 13	618
B.5.8 TRCIMSPECO, External IMP DEF Register O	619

B.5.9 TRCIDRO, External ID Register O	620
B.5.10 TRCIDR1, External ID Register 1	623
B.5.11 TRCIDR2, External ID Register 2	624
B.5.12 TRCIDR3, External ID Register 3	626
B.5.13 TRCIDR4, External ID Register 4	628
B.5.14 TRCIDR5, External ID Register 5	630
B.5.15 TRCIDR6, External ID Register 6	632
B.5.16 TRCIDR7, External ID Register 7	633
B.5.17 TRCITCTRL, Integration Mode Control Register	634
B.5.18 TRCCLAIMSET, External Claim Tag Set Register	635
B.5.19 TRCCLAIMCLR, External Claim Tag Clear Register	637
B.5.20 TRCDEVARCH, External Device Architecture Register	639
B.5.21 TRCDEVID2, Device Configuration Register 2	641
B.5.22 TRCDEVID1, Device Configuration Register 1	642
B.5.23 TRCDEVID, External Device Configuration Register	644
B.5.24 TRCDEVTYPE, Device Type Register	645
B.5.25 TRCPIDR4, Peripheral Identification Register 4	646
B.5.26 TRCPIDR5, Peripheral Identification Register 5	648
B.5.27 TRCPIDR6, Peripheral Identification Register 6	649
B.5.28 TRCPIDR7, Peripheral Identification Register 7	650
B.5.29 TRCPIDRO, Peripheral Identification Register O	651
B.5.30 TRCPIDR1, Peripheral Identification Register 1	653
B.5.31 TRCPIDR2, Peripheral Identification Register 2	654
B.5.32 TRCPIDR3, Peripheral Identification Register 3	656
B.5.33 TRCCIDRO, Component Identification Register 0	657
B.5.34 TRCCIDR1, Component Identification Register 1	658
B.5.35 TRCCIDR2, Component Identification Register 2	660
B.5.36 TRCCIDR3, Component Identification Register 3	661
B.6 External ROM table registers summary	662
B.6.1 ROMENTRYO, Class 0x9 ROM Table Entries	663
B.6.2 ROMENTRY1, Class 0x9 ROM Table Entries	665
B.6.3 ROMENTRY2, Class 0x9 ROM Table Entries	667
B.6.4 ROMENTRY3, Class 0x9 ROM Table Entries	669
B.6.5 AUTHSTATUS, Authentication Status Register	671
B.6.6 DEVARCH, Device Architecture Register	672
B.6.7 PIDR4, Peripheral Identification Register 4	673

B.6.8 PIDRO, Peripheral Identification Register O	674
B.6.9 PIDR1, Peripheral Identification Register 1	675
B.6.10 PIDR2, Peripheral Identification Register 2	676
B.6.11 PIDR3, Peripheral Identification Register 3	678
B.6.12 CIDRO, Component Identification Register O	679
B.6.13 CIDR1, Component Identification Register 1	680
B.6.14 CIDR2, Component Identification Register 2	681
B.6.15 CIDR3, Component Identification Register 3	682
C. Document revisions	683
C.1 Revisions	683

1. Introduction

1.1 Product revision status

The $r_x p_y$ identifier indicates the revision status of the product described in this manual, for example, $r_1 p_2$, where:

rx Identifies the major revision of the product, for example, r1.

py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This manual is for system designers, system integrators, and programmers who are designing or programming a *System on Chip* (SoC) that uses an Arm core.

1.3 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions

Convention	Use
italic	Citations.
bold	Interface elements, such as menu names.
	Signal names.
	Terms in descriptive lists, where appropriate.
monospace	Text that you can enter at the keyboard, such as commands, file and program names, and source code.
monospace bold	Language keywords when used outside example code.

Convention	Use	
monospace <u>underline</u>	A permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.	
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:	
	MRC p15, 0, <rd>, <crn>, <opcode_2></opcode_2></crn></rd>	
SMALL CAPITALS	Terms that have specific technical meanings as defined in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.	

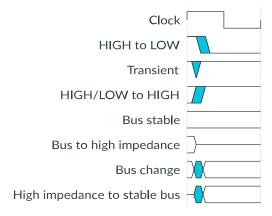
Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.


A reminder of something important that relates to the information you are reading.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

Figure 1-1: Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

Register descriptions

Reset definitions

Replication Operator {}

Verilog replication operators are used for reset values over 8-bits.

For example, 16(0) indicated a binary value of 16 zeros.

x

Resets that are unknown are indicated with x.

1.4 Additional reading

This document contains information that is specific to this product. See the following documents for other relevant information:

Table 1-2: Arm publications

Document Name	Document ID	Licensee only
Arm® Cortex®-A715 Core Cryptographic Extension Technical Reference Manual	101592	No
Arm® Cortex®-A715 Core Configuration and Integration Manual	101591	Yes
Arm® DynamlQ™ Shared Unit-110 Technical Reference Manual	101381	No
Arm® DynamlQ™ Shared Unit-110 Configuration and Integration Manual	101382	Yes
Arm® Architecture Reference Manual Armv8, for A-profile architecture	DDI 0487	No
Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile	DDI 0608	No
Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring (MPAM) for Armv8- A	DDI 0598	No
Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile	DDI 0587	No
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension	DDI 0584	No
AMBA® 5 CHI Architecture Specification	IHI 0050	No
Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4	IHI 0069	No
Arm® CoreSight™ Architecture Specification v3.0	IHI 0029	No
Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual	101088	No

Table 1-3: Other publications

Document ID	Document Name
-	-

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

2. The Cortex®-A715 core

The Cortex®-A715 core is a balanced-performance, low-power, and constrained area product that implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Arm®v8-A architectures up to Arm®v8.5-A. The Cortex®-A715 core targets large screen compute applications as well as smartphone applications.

The Cortex®-A715 core is implemented inside a DSU-110 DynamlQ $^{\text{™}}$ cluster. It is connected to the *DynamlQ^{\text{™}} Shared Unit-110* (DSU-110) that behaves as a full interconnect with L3 cache and snoop control. This connection configuration is also used in systems with different types of cores where the Cortex $^{\text{®}}$ -A715 core is the balanced-performance core.

The following figure shows an example configuration with four Cortex®-A715 cores in a DynamlQ[™] cluster.

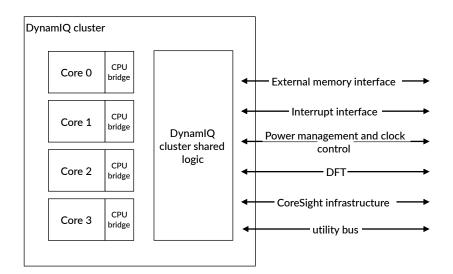


Figure 2-1: Cortex®-A715 cores example configuration

This manual applies to the Cortex®-A715 core only. Read this manual together with the $Arm^{\$}$ DynamlQ $^{\$}$ Shared Unit-110 Technical Reference Manual for detailed information about the DSU-110.

This manual does not provide a complete list of registers. Read this manual together with the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

2.1 Cortex®-A715 core features

You can use the Cortex®-A715 core in a standalone DynamlQ[™] configuration, that is, in a homogenous cluster of Cortex®-A715 cores. You can also use the Cortex®-A715 core as the balanced-performance core in a heterogenous cluster.

However, regardless of the cluster configuration, the Cortex®-A715 core has the same features as described in the following lists.

Core features

- Implementation of the Armv9.0-A A64 instruction set
- AArch64 Execution state at all Exception levels, ELO to EL3
- Memory Management Unit (MMU)
- 40-bit Physical Address (PA) and 48-bit Virtual Address (VA)
- Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor
- Generic Timers interface that supports 64-bit count input from an external system counter
- Implementation of the Reliability, Availability, and Serviceability (RAS) Extension
- Implementation of the Scalable Vector Extension (SVE) with a 128-bit vector length and Scalable Vector Extension 2 (SVE2)
- Integrated execution unit with Advanced Single Instruction Multiple Data (SIMD) and floatingpoint support
- Support for the optional Cryptographic Extension

The Cryptographic Extension is licensed separately.

Activity Monitoring Unit (AMU)

Cache features

- Separate L1 data and instruction caches
- Private, unified data and instruction L2 cache
- Optional error protection with parity or *Error Correcting Code* (ECC) allowing *Single Error Correction and Double Error Detection* (SECDED) on L1 instruction and data caches, L2 cache, and L2 *Translation Lookaside Buffer* (TLB)
- Support for Memory System Resource Partitioning and Monitoring (MPAM)

Debug features

- Armv9.0-A debug logic
- Performance Monitoring Unit (PMU)

- Embedded Trace Extension (ETE)
- Trace Buffer Extension (TRBE)
- Optional implementation of the Statistical Profiling Extension (SPE)
- Optional Embedded Logic Analyzer (ELA), ELA-600

The ELA-600 is licensed separately.

Related information

3. Technical overview on page 31

2.2 Cortex®-A715 core configuration options

You can choose the options that fit your implementation needs at build-time configuration. Configurability is on a per-core basis, that is, in a cluster, various Cortex®-A715 cores can have different configuration options.

You can configure your Cortex®-A715 core implementation using the following options:

Cache protection

You can configure your implementation with or without cache protection.

SPE

You can configure your implementation with or without the Statistical Profiling Extension (SPE).

PMU counters

You can configure the number of PMU counters to be 6 or 20.

Cryptographic Extension

You can configure your implementation with or without the Cryptographic Extension. The Cryptographic Extension is licensed separately.

L1 data cache size

You can configure the L1 data cache to be 32KB or 64KB.

L1 instruction cache size

You can configure the L1 instruction cache to be 32KB or 64KB.

L2 cache size

You can configure the L2 cache to be 128KB, 256KB, or 512KB.

CoreSight[™] Embedded Logic Analyzer (ELA)

You can include support for integrating the ELA-600. The ELA-600 is licensed separately.

Timing closure

You can configure the L2 data cache RAMs timing behavior.

See RTL configuration process in the Arm® Cortex®-A715 Core Configuration and Integration Manual for detailed configuration options and guidelines.

2.3 DSU-110 dependent features

Support for some $DynamIQ^{\text{TM}}$ Shared Unit-110 (DSU-110) features and behaviors depends on whether your licensed core supports a particular feature.

The following table describes which DSU-110 dependent features are supported in your Cortex®-A715 core.

Table 2-1: Cortex®-A715 core features that have a dependency on the DSU-110

Feature	Supported in the Cortex®-A715 core	Dependency on the DSU-110
Direct connect	No	-
Core included in a complex	No	Affects the DynamlQ™ cluster configuration and external signals.
Cryptographic Extension	Yes, as an option	Affects the external signals of the DSU-110.
Maximum Power Mitigation Mechanism (MPMM)	Yes	For more information on MPMM, PDP, and the dispatch block signal, see 5.5 Performance and power management on page 46
Performance Defined Power (PDP) feature	Yes	remormance and power management on page 40
DISPBLKy signal supported	Yes	
Statistical Profiling Extension (SPE) architecture	Yes	
Physical Address (PA) width	40-bit	Affects the CHI and AXI master port bus widths.
		For more details, see the following parts of the Arm® DynamIQ™ Shared Unit-110 Technical Reference Manual:
		CHI master interface
		AXI master interface

The Cryptographic Extension is supplied under a separate license.

2.4 Supported standards and specifications

The Cortex®-A715 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Arm®v8-A architectures up to Arm®v8.5-A. The

Cortex®-A715 core also implements specific Arm®v8-A architecture extensions and supports interconnect, interrupt, timer, debug, and trace architectures.

The Cortex®-A715 core supports AArch64 only at all Exception levels, EL0 to EL3, and supports all mandatory features of each architecture version.

The following tables show, for each Arm®v8-A architecture version, the optional features that the Cortex®-A715 core supports.

Table 2-2: Arm®v8.0-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
Cryptographic Extension	Supported using a configurable option	See the Arm® Cortex®-A715 Core Cryptographic Extension Technical Reference Manual for more technical reference and register information. This extension is licensed separately and access to the documentation is restricted by contract with Arm.
Advanced Single Instruction Multiple Data (SIMD) and floating-point support	Supported	See 14. Advanced SIMD and floating-point support on page 86 for more technical reference and register information.
Performance Monitoring Extension (PME)	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this feature.

Table 2-3: Arm®v8.1-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_HAFDBS, hardware management of the access flag and dirty state	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on these features.
FEAT_VMID16, 16-bit VMID	Supported	
FEAT_PAN3	Supported	Enhancement for Privileged Access Never with Execute-only.

Table 2-4: Arm®v8.2-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_HPDS2, Translation Table Page-Based Hardware Attributes	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on these features.
FEAT_PCSRv8p2, PC Sample-based Profiling	Supported	
FEAT_SHA512 and FEAT_SHA3, SHA2-512 and SHA3 functionality	Supported as part of Armv8-A Cryptographic Extension	
FEAT_SM3 and FEAT_SM4, SM3 and SM4 functionality	Supported as part of Armv8-A Cryptographic Extension	
FEAT_BF16, 16-bit floating-point instructions	Supported	
FEAT_I8MM, Int8 matrix multiply instructions	Supported	
FEAT_SVE, Scalable Vector Extension (SVE)	Supported	See 15. Scalable Vector Extensions support on page 87 and the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this extension.

Feature	Status	Notes
FEAT_LPA, Large Physical Address (PA) and Intermediate PA (IPA) support	Not supported	-
FEAT_LVA, Large Virtual Address (VA) support	Not supported	-
FEAT_LSMAOC, Load/Store Multiple Atomicity and Ordering Controls	Not supported	-
FEAT_AA32HPD, AArch32 Hierarchical Permission Disables	Not supported	-
FEAT_SPE, Statistical Profiling Extension (SPE)	Supported using a configurable option	See 22. Statistical Profiling Extension Support on page 126 and the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this optional extension.

Table 2-5: Arm®v8.3-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_NV, Nested Virtualization	Not supported	-
FEAT_CCIDX, Cache extended number of sets	Supported	-
FEAT_PAuth2, pointer authentication enhancements	Supported	-
FEAT_FPAC, Faulting Pointer Authentication Code (FPAC)	Supported	-
FEAT_SPEv1p1, Arm®v8.3 Statistical Profiling Extensions	Supported	-

Table 2-6: Arm®v8.4-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_AMUv1, Activity Monitors Extension (AMU)	Supported	See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on this feature.
FEAT_MPAM, Memory System Resource Partitioning and Monitoring (MPAM) Extension	Supported	See the Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A for information on this extension.
FEAT_NV2, Enhanced support for Nested Virtualization	Not supported	-

Table 2-7: Arm®v8.5-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_MTE, Memory Tagging Extension (MTE)	Supported	The Cortex®-A715 core always implements MTE and therefore is compliant with the CHI.E protocol.
		See CHI master interface in the Arm® DynamIQ™ Shared Unit-110 Technical Reference Manual for information on CHI.E commands inferred by MTE.
FEAT_RNG, Random Number Generator Instructions	Not supported	-
FEAT_ExS, Context Synchronization and Exception Handling	Not supported	-

Feature	Status	Notes
FEAT_MTE2 and FEAT_MTE3, Asymmetric Fault Handling	Supported	MTE enhancement.
FEAT_PMUv3p5, PMU Extension version 3.5	Subset of events supported	See 18.1 Performance monitors events on page 97.

The following table shows the Arm®v9.0-A features that the Cortex®-A715 core supports.

Table 2-8: Arm®v9.0-A optional feature support in the Cortex®-A715 core

Feature	Status	Notes
FEAT_SVE2, Scalable Vector Extension 2 (SVE2)	Supported	See 15. Scalable Vector Extensions support on page 87.
FEAT_ETE, Embedded Trace Extension (ETE)	Supported	See 19. Embedded Trace Extension support on page 112.
FEAT_TRBE, TRace Buffer Extension (TRBE)	Supported	See 20. Trace Buffer Extension support on page 121
FEAT_SVE_SM4, SVE2 SM4 instructions	Supported	These algorithms are UNDEFINED if the Cryptographic
FEAT_SVE_SHA3, SVE2 SHA-3 instructions	Supported	Extension is not enabled. See the Arm® Architecture Reference Manual Supplement,
FEAT_SVE_AES, SVE2 AES instructions	Supported	The Scalable Vector Extension for more information.
FEAT_SVE_BitPerm, SVE2 bit permute instructions	Supported	See the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension for more information.
FEAT_TME, Transactional Memory Extension	Not supported	-

The following table shows the other standards and specifications that the $Cortex^{\text{@}}$ -A715 core supports.

Table 2-9: Other standards and specifications support in the Cortex®-A715 core

Standard or specification	Version	Notes
FEAT_GICv4p1, Generic Interrupt Controller (GIC)	GICv4.1	See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for more information.
Debug	-	Arm®v9.0-A architecture implemented with Arm®v8.4-A Debug architecture support and Arm®v8.3-A Debug over Powerdown support.
CoreSight	v3.0	See the Arm® CoreSight™ Architecture Specification v3.0 for more information.
FEAT_RASv1p1, Reliability, Availability, and Serviceability (RAS)	-	All extensions up to Arm®v9.0-A at full containment capability with Error Correcting Code (ECC) configured. See 11. RAS Extension support on page 77 for more information on the implementation of this extension in the core.
FEAT_ECBHB, Exploitative Control using Branch History Buffer information between exception levels	-	The branch history information created in a context before an exception to a higher exception level, using AArch64, cannot be used by code before that exception. This prevents exploitative control of the execution of any indirect branches in code in a different context after the exception.

Related information

3.1 Core components on page 31

2.5 Test features

The Cortex®-A715 core provides test signals that enable the use of both *Automatic Test Pattern Generation* (ATPG) and *Memory Built-In Self Test* (MBIST) to test the core logic and memory arrays.

The Cortex®-A715 core includes an ATPG test interface that provides signals to control the *Design* for Test (DFT) features of the core. To prevent problems with DFT implementation, you must carefully consider how you use these signals.

Arm also provides MBIST interfaces that enable you to test the RAMs at operational frequency. You can add your own MBIST controllers to automatically generate test patterns and perform result comparisons. Optionally, you can use your EDA tool to test the physical RAMs directly instead of using the supplied Arm interfaces.

See Design for Test integration guidelines in the Arm® Cortex®-A715 Core Configuration and Integration Manual for the list of test signals and information on their usage. See also Design for Test integration guidelines in the Arm® DynamlQ $^{\text{M}}$ Shared Unit-110 Configuration and Integration Manual for the list of external scan control signals.

The Arm® Cortex®-A715 Core Configuration and Integration Manual and Arm® DynamlQ™ Shared Unit-110 Configuration and Integration Manual are confidential documents that are available with the appropriate product licenses.

2.6 Design tasks

The Cortex®-A715 core is delivered as a synthesizable RTL description in SystemVerilog. Before you can use the Cortex®-A715 core, you must implement, integrate, and program it.

A different party can perform each of the following tasks:

Implementation

The implementer configures the RTL, adds vendor cells/RAMs, and takes the design through the synthesis and place and route (P&R) steps to produce a hard macrocell.

The implementer chooses the options that affect how the RTL source files are rendered. These options can affect the area, maximum frequency, power, and features of the resulting macrocell.

Other components such as DFT structures and, if necessary, power switches can be added to the implementation flow.

Integration

The integrator connects the macrocell into a SoC. This task includes connecting it to a memory system and peripherals.

The integrator configures some features of the core by tying inputs to specific values. These configuration settings affect the start-up behavior before any software configuration is made and can also limit the options available to the software.

Software programming

The system programmer develops the software to configure and initialize the core and tests the application software.

The programmer configures the core by programming values into registers. The programmed values affect the behavior of the core.

The operation of the final device depends on the build configuration, the configuration inputs, and the software configuration.

See RTL configuration process in the Arm® Cortex®-A715 Core Configuration and Integration Manual and in the Arm® DynamlQ $^{\text{M}}$ Shared Unit-110 Configuration and Integration Manual for implementation options. See also Functional integration in the Arm® DynamlQ $^{\text{M}}$ Shared Unit-110 Configuration and Integration Manual for signal descriptions.

2.7 Product revisions

The following table indicates the main differences in functionality between product revisions.

Revision	Notes Control of the
r0p0	First release
r1p0	SPE functionality supported
r1p1	Added support for FEAT_ECBHB, Exploitative Control using Branch History Buffer information between exception levels

Changes in functionality that have an impact on the documentation also appear in C.1 Revisions on page 683.

3. Technical overview

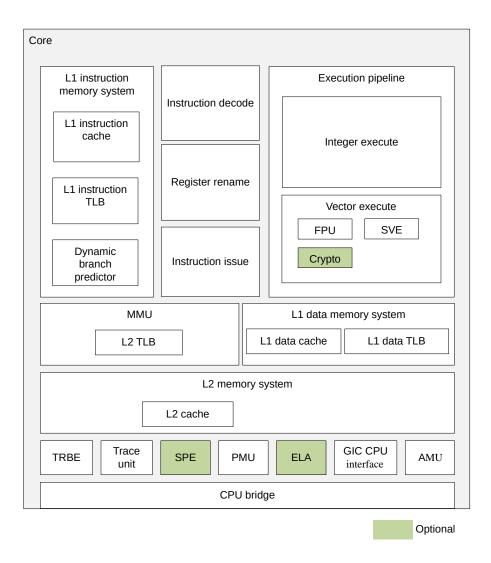
The components in the Cortex®-A715 core are designed to make it a balanced-performance core.

The main blocks include:

- L1 instruction and L1 data memory systems
- L2 memory system
- Register rename
- Instruction decode
- Instruction issue
- Execution pipeline
- Memory Management Unit (MMU)
- The trace unit and trace buffer
- Performance Monitoring Unit (PMU)
- Activity Monitoring Unit (AMU)
- Generic Interrupt Controller (GIC) CPU interface
- Branch prediction

The Cortex®-A715 core interfaces with the *DynamlQ*[™] *Shared Unit-110* (DSU-110) through the CPU bridge.

The Cortex®-A715 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Arm®v8-A architectures up to Arm®v8.5-A.


The programmers model and the architecture features implemented, such as the Generic Timer, are compliant with the standards in 2.4 Supported standards and specifications on page 25.

3.1 Core components

The Cortex®-A715 core includes components designed to make it a balanced-performance, low-power, and constrained area product. The Cortex®-A715 core includes a CPU bridge that connects the core to the $DynamlQ^{T}$ Shared Unit-110 (DSU-110). The DSU-110 connects the core to an external memory system and the rest of the System on Chip (SoC).

The following figure shows the Cortex®-A715 core components.

Figure 3-1: Cortex®-A715 core components

L1 instruction memory system

The L1 instruction memory system fetches instructions from the instruction cache and delivers the instruction stream to the instruction decode unit.

The L1 instruction memory system includes:

- A 32KB or 64KB, 4-way set associative L1 instruction cache with 64-byte cache lines
- A fully associative L1 instruction *Translation Lookaside Buffer* (TLB) with native support for 4KB, 16KB, 64KB, and 2MB page sizes
- A dynamic branch predictor

Instruction decode

The instruction decode unit decodes instructions from AArch64 into an internal format, which it then passes to the execution pipeline.

Register rename

The register rename unit performs register renaming to facilitate out-of-order execution and dispatches decoded instructions to various issue queues.

Instruction issue

The instruction issue unit controls when the decoded instructions are dispatched to the execution pipelines. It includes issue queues for storing instructions pending dispatch to execution pipelines.

Integer execute

The execution pipeline includes the integer execute unit that performs arithmetic and logical data processing operations.

Vector execute

The vector execute unit is part of the execution pipeline and performs Advanced SIMD and floating-point operations. The vector execute unit executes the *Scalable Vector Extension* (SVE) and *Scalable Vector Extension 2* (SVE2) instructions, and optionally executes the cryptographic instructions.

Advanced SIMD and floating-point support

Advanced SIMD is a media and signal processing architecture that adds instructions primarily for audio, video, 3D graphics, image, and speech processing. The floating-point architecture provides support for single-precision and double-precision floating-point operations.

Cryptographic Extension

The Cryptographic Extension is optional in the Cortex®-A715 cores. The Cryptographic Extension adds new instructions to the Advanced SIMD and the *Scalable Vector Extension* (SVE) instruction sets that accelerate:

- Advanced Encryption Standard (AES) encryption and decryption.
- The Secure Hash Algorithm (SHA) functions SHA-1, SHA-3, SHA-224, SHA-256, SHA-384, and SHA-512.
- Armv8.2-SM SM3 hash function and SM4 encryption and decryption instructions.
- Finite field arithmetic that is used in algorithms such as Galois/Counter Mode and Elliptic Curve Cryptography.

The optional Cryptographic Extension is not included in the base product. Arm supplies the Cryptographic Extension only under an additional license to the Cortex®-A715 core license.

Scalable Vector Extension

The Scalable Vector Extension (SVE) and Scalable Vector Extension 2 (SVE2) are extensions to the Armv8-A architecture.

They complement and do not replace AArch64 Advanced SIMD and floating-point functionality.

The Advanced SIMD architecture, its associated implementations, and supporting software, are also referred to as NEON™ technology.

L1 data memory system

The L1 data memory system executes load and store instructions. It also services memory coherency requests.

The L1 data memory system includes:

- A 32KB or 64KB, 4-way set associative cache with 64-byte cache lines.
- A fully associative L1 data TLB with native support for 4KB, 16KB, 64KB, and 2MB page sizes.

Memory Management Unit

The Memory Management Unit (MMU) provides fine-grained memory system control through a set of virtual-to-physical address mappings and memory attributes that are held in translation tables.

These are saved into the TLB when an address is translated. The TLB entries include global and Address Space IDentifiers (ASIDs) to prevent context switch TLB invalidations. They also include Virtual Machine IDentifiers (VMIDs) to prevent TLB invalidations on virtual machine switches by the hypervisor.

L2 memory system

The L2 memory system includes the L2 cache. The L2 cache is private to the core and is 8-way set associative. You can configure its RAM size to be 128KB, 256KB, or 512KB. The L2 memory system is connected to the DSU-110 through a CPU bridge.

Embedded Trace Extension and Trace Buffer Extension

The Cortex®-A715 core supports a range of debug, test, and trace options including a trace unit and trace buffer.

The Cortex®-A715 core also includes a ROM table that contains a list of components in the system. Debuggers can use the ROM table to determine which CoreSight $^{\text{M}}$ components are implemented.

All the debug and trace components of the Cortex®-A715 core are described in this manual. For more information about the *Embedded Logic Analyzer* (ELA), see the *Arm® CoreSight™ ELA-600 Embedded Logic Analyzer Technical Reference Manual*.

Statistical Profiling Extension

The Statistical Profiling Extension (SPE) is optional in the Cortex®-A715 cores. The Cortex®-A715 core implements the SPE to the Arm®v8.2-A architecture. The SPE provides a statistical view of the performance characteristics of executed instructions that software writers can use to optimize their code for better performance.

Performance Monitoring Unit

The *Performance Monitoring Unit* (PMU) provides either 6 or 20 performance monitors that can be configured to gather statistics on the operation of each core and the memory system. The information can be used for debug and code profiling.

Activity Monitoring Unit

The Cortex®-A715 core implements the Activity Monitors Extension to the Arm®v8.4-A architecture. Activity monitors in the Activity Monitoring Unit (AMU) provide useful information for system power management and persistent monitoring.

GIC CPU interface

The Generic Interrupt Controller (GIC) CPU interface, when integrated with an external distributor component, is a resource for supporting and managing interrupts in a cluster system.

CPU bridge

In a cluster, there is one CPU bridge between each Cortex®-A715 core and the DSU-110.

The CPU bridge controls buffering and synchronization between the core and the DSU-110.

The CPU bridge is asynchronous to allow different frequency, power, and area implementation points for each core. You can configure the CPU bridge to run synchronously without affecting the other interfaces such as debug and trace that are always synchronous.

Related information

- 6. Memory management on page 51
- 7. L1 instruction memory system on page 60
- 8. L1 data memory system on page 63
- 9. L2 memory system on page 68
- 13. GIC CPU interface on page 84
- 18. Performance Monitors Extension support on page 97
- 19. Embedded Trace Extension support on page 112
- 20. Trace Buffer Extension support on page 121
- 21. Activity Monitors Extension support on page 122
- 22. Statistical Profiling Extension Support on page 126

3.2 Interfaces

The $DynamIQ^{\mathbb{T}}$ Shared Unit-110 (DSU-110) manages all Cortex®-A715 core external interfaces to the System on Chip (SoC).

See Technical overview in the Arm[®] DynamlQ $^{\text{M}}$ Shared Unit-110 Technical Reference Manual for detailed information on these interfaces.

3.3 Programmers model

The Cortex®-A715 core implements the Arm®v9.0-A architecture. The Arm®v9.0-A architecture extends the architecture defined in the Arm®v8-A architectures up to Arm®v8.5-A. The Cortex®-A715 core supports the AArch64 Execution state at all Exception levels, EL0 to EL3.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about the programmers model.

Related information

2.4 Supported standards and specifications on page 25

4. Clocks and resets

To provide dynamic power savings, the Cortex®-A715 core supports hierarchical clock gating. It also supports Warm and Cold resets.

Each Cortex®-A715 core has a single clock domain and receives a single clock input. This clock input is gated by an architectural clock gate in the CPU bridge.

In addition, the Cortex®-A715 core implements extensive clock gating that includes:

- Regional clock gates to various blocks that can gate off portions of the clock tree
- Local clock gates that can gate off individual registers or banks of registers

The Cortex®-A715 core receives the following reset signals from the *DynamlQ*™ *Shared Unit-110* (DSU-110) side of the CPU bridge:

- A Warm reset for all registers in the core except for:
 - Some parts of Debug logic
 - Some parts of trace unit logic
 - Reliability, Availability, and Serviceability (RAS) logic
- A Cold reset for the logic in the core, including the debug logic, trace logic, and RAS logic.

For a complete description of the clock gating and reset scheme of the core, see the following sections in the $Arm^{\mathbb{R}}$ Dynaml $Q^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual:

- Clocks and resets
- Power and reset control with Power Policy Units

5. Power management

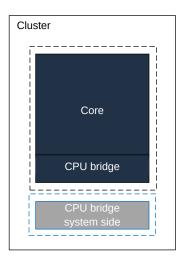
The Cortex®-A715 core provides mechanisms to control both dynamic and static power dissipation.

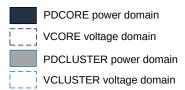
The dynamic power management includes the following features:

- Hierarchical clock gating
- Per-core Dynamic Voltage and Frequency Scaling (DVFS)

The static power management includes the following features:

- Powerdown
- Dynamic retention, a low-power mode that retains the register and RAM state

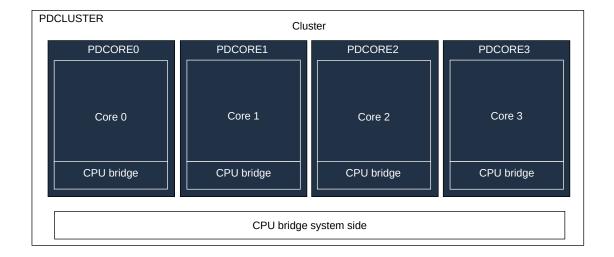

5.1 Voltage and power domains


The *DynamlQ*™ *Shared Unit-110* (DSU-110) *Power Policy Units* (PPUs) control power management for the Cortex®-A715 core. The core supports one power domain, PDCORE, and one system power domain, PDCLUSTER. Similarly, it supports one core voltage domain, VCORE, and one cluster system voltage domain, VCLUSTER. The power domains and voltage domains have the same boundaries.

The PDCORE power domain contains all Cortex®-A715 core logic and part of the core asynchronous bridge that belongs to the VCORE domain. The PDCLUSTER power domain contains the part of the CPU bridge that belongs to the VCLUSTER domain.

The following figure shows the Cortex®-A715 core power domain and voltage domain. It also shows the cluster power domain and voltage domain that cover the system side of the CPU bridge.

Figure 5-1: Cortex®-A715 core voltage domains and power domains


You can tie the VCORE and VCLUSTER voltage domains to the same supply if either:

- The core is configured to run synchronously with the DSU-110 sharing the same clock.
- The core is not required to support Dynamic Voltage and Frequency Scaling (DVFS).

In a cluster with multiple Cortex®-A715 cores, there is one PDCORE<n> power domain per core, where n is the core instance number. If a core is not present, then the corresponding power domain is not present.

This diagram shows the power domains for an example Cortex®-A715 configuration with a four-core cluster:

Figure 5-2: Core power domains in a cluster with four Cortex®-A715 cores

Clamping cells between power domains are inferred through power intent files (UPF) rather than instantiated in the RTL. See *Power management* in the *Arm® Cortex®-A715 Core Configuration and Integration Manual* for more information.

The Arm® Cortex®-A715 Core Configuration and Integration Manual is a confidential document that is available with the appropriate product license.

For detailed information on the DSU-110 cluster power domains and voltage domains, see *Power management* in the Arm® DynamlQ™ Shared Unit-110 Technical Reference Manual.

5.2 Architectural clock gating modes

The WFI and WFE instructions put the core into a low-power mode. These instructions disable the clock at the top of the clock tree. The core remains fully powered and retains the state.

5.2.1 Wait for Interrupt and Wait for Event

Wait for Interrupt (WFI) and Wait for Event (WFE) are features that put the core in a low-power state by disabling most of the core clocks, while keeping the core powered up. When the core is in WFI or WFE state, the input clock is gated externally to the core at the CPU bridge.

There is a small amount of dynamic power used by the logic that is required to wake up the core from WFI or WFE low-power state. Other than this power use, the power that is drawn is reduced to static leakage current only.

When the core executes the WFI or WFE instruction, it waits for all instructions in the core, including explicit memory accesses, to retire before it enters a low-power state. The WFI and WFE instructions also ensure that store instructions have updated the cache or have been issued to the L3 memory system.

Executing the WFE instruction when the event register is set does not cause entry into low-power state, but clears the event register.

The core exits the WFI or WFE state when one of the following events occurs:

- The core detects a reset.
- The core detects one of the architecturally defined WFI or WFE wakeup events.

WFI and WFE wakeup events can include physical and virtual interrupts.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about entering low-power state and wakeup events.

5.2.2 Low-power state behavior considerations

You must consider how certain events affect the *Wait for Interrupt* (WFI) and *Wait for Event* (WFE) low-power state behavior of the Cortex®-A715 core.

While the core is in WFI or WFE state, the clocks in the core are temporarily enabled when any of the following events are detected:

- A system snoop request that must be serviced by the core L1 data cache or the L2 cache
- A cache or *Translation Lookaside Buffer* (TLB) maintenance operation that must be serviced by the core L1 instruction cache, L1 data cache, L2 cache, or TLB
- An access on the utility bus interface
- A Generic Interrupt Controller (GIC) CPU access or debug access through the Advanced Peripheral Bus (APB) interface

The core does not exit WFI or WFE state when the clocks are temporarily enabled.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about WFI and WFF.

5.3 Power control

The DynamlQ[™] Shared Unit-110 (DSU-110) Power Policy Units (PPUs) control all core and cluster power mode transitions.

Each core has its own PPU to control its own core power domain. In addition, there is a PPU for the cluster.

The PPUs decide and request any change in power mode. The Cortex®-A715 core then performs any actions necessary to reach the requested power mode. For example, the core might gate clocks, clean caches, or disable coherency before it accepts the request.

For more information about the PPUs for the cluster and the cores, see the following sections in the Arm^{\otimes} DynamlQ^M Shared Unit-110 Technical Reference Manual:

- Power management
- Power and reset control with Power Policy Units

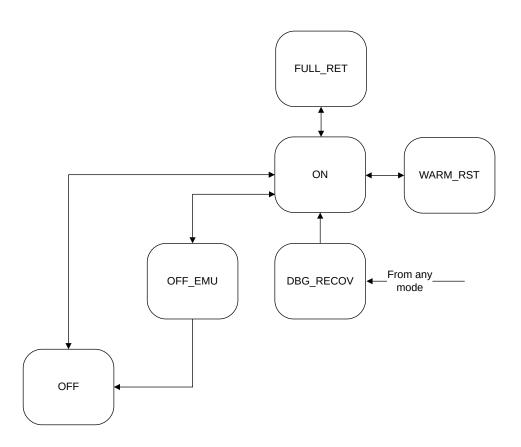
5.4 Core power modes

The Cortex®-A715 core power domain has a defined set of power modes and corresponding legal transitions between these modes. The power mode of each core can be independent of other cores in a cluster.

The Power Policy Unit (PPU) of a core manages at the cluster level the transitions between the power modes for that core. See Power management in the $Arm^{\text{@}}$ DynamlQ^M Shared Unit-110 Technical Reference Manual for more information.

The following table shows the supported Cortex®-A715 core power modes.

Power modes that are not shown in the following table are not supported and must not occur. Deviating from the legal power modes can lead to **UNPREDICTABLE** results. You must comply with the dynamic power management and powerup and powerdown sequences described in 5.6 Cortex-A715 core powerup and powerdown sequence on page 48.


Table 5-1: Cortex®-A715 core power modes

Power mode	Short name	Power state
On	ON	The core is powered up and active.
Full retention	FULL_RET	The core is in retention. In this mode, only power that is required to retain register and RAM state is available. The core is not operational. A core must be in Wait for Interrupt (WFI) or Wait for Event (WFE) low-power state before it enters this mode.
Off	OFF	The core is powered down.

Power mode	Short name	Power state	
Emulated Off	OFF_EMU	Emulated off mode permits you to debug the powerup and powerdown cycle without changing the software.	
		In this mode, the core powerdown is normal, except:	
		The clock is not gated and power is not removed when the core is powered down.	
		Only a Warm reset is asserted. The debug logic is preserved in the core and remains accessible by the debugger.	
Debug recovery	DBG_RECOV	The RAM and logic are powered up.	
		This mode is for applying a Warm reset to the cluster, while preserving memory and RAS registers for debug purposes. Both cache and RAS state are preserved when transitioning from DBG_RECOV to ON.	
		Caution: This mode must not be used during normal system operation.	
Warm reset	WARM_RST	A Warm reset resets all state except for the trace logic and the debug and RAS registers.	

The following figure shows the supported modes for the $Cortex^{\$}$ -A715 core power domain and the legal transitions between them.

Figure 5-3: Cortex®-A715 core power mode transitions

Related information

5.2 Architectural clock gating modes on page 40

5.4.4 Full retention mode on page 44

5.2.1 Wait for Interrupt and Wait for Event on page 40

5.4.1 On mode

In the On power mode, the Cortex®-A715 core is on and fully operational.

The core can be initialized into the On mode. When a transition to the On mode is completed, all caches are accessible and coherent. Other than the normal architectural steps to enable caches, no additional software configuration is required.

5.4.2 Off mode

In the Off power mode, power is removed completely from the core and no state is retained.

In Off mode, all core logic and RAMs are off. The domain is inoperable and all core state is lost. The L1 and L2 caches are disabled, cleaned, and invalidated, and the core is removed from coherency automatically on transition to Off mode.

A Cold reset can reset the core in this mode.

An attempted external debug access to core debug registers or a utility bus access when the core domain is off returns an error response on the internal debug interface. The error indicates that the core is not available.

The core-specific debug registers in the DebugBlock for External Debug Over PowerDown (EDOPD) feature can be accessed while the core is in Off mode.

5.4.3 Emulated off mode

In Emulated off mode, all core domain logic and RAMs are kept on. All Debug registers must retain their state and be accessible from the external debug interface. All other functional interfaces behave as if the core were in Off mode.

5.4.4 Full retention mode

Full retention mode is a dynamic retention mode that is controlled using the *Power Policy Unit* (PPU). On wakeup, full power to the core can be restored and execution can continue.

In Full retention mode, only power that is required to retain register and RAM state is available. The core is in retention state and is non-operational.

The core enters Full retention mode when all of the following conditions are met:

- The retention timer has expired. For more information on setting the retention timer, see A.1.17 IMP CPUPWRCTLR EL1, CPU Power Control Register on page 169.
- The core is in Wait for Interrupt (WFI) or Wait for Event (WFE) low-power state.
- The core clock is not temporarily enabled for any of the following reasons:
 - L1 snoops or L2 snoops
 - Cache or Translation Lookaside Buffer (TLB) maintenance operations
 - Debug or Generic Interrupt Controller (GIC) access

The core exits Full retention mode when it detects any of the following events:

- A WFI or WFE wakeup event, as defined in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.
- An event that requires the core clock to be temporarily enabled without exiting the WFI or WFE low-power state. For example:
 - L1 snoops or L2 snoops
 - Cache or TLB maintenance operations
 - Debug access from the DebugBlock of the DynamlQ[™] Shared Unit-110 (DSU)
 - GIC access

5.4.5 Debug recovery mode

Debug recovery mode supports debug of external watchdog-triggered reset events, such as watchdog timeout.

By default, the core invalidates its caches when it transitions from Off to On mode. Using Debug recovery mode allows the L1 cache and L2 cache contents that were present before the reset to be observable after the reset. The contents of the caches are retained and are not altered on the transition back to the On mode.

In addition to preserving the cache contents, Debug recovery supports preserving the *Reliability*, *Availability*, *and Serviceability* (RAS) state. When in Debug recovery mode, a DSU-110 DynamlQ $^{\text{TM}}$ cluster-wide Warm reset must be applied externally. The RAS and cache state are preserved when the core is transitioned to the On mode.

Power management

Debug recovery is strictly for debug purposes. It must not be used for functional purposes, because correct operation of the caches is not guaranteed when entering this mode.

Debug recovery mode can occur at any time with no guarantee of the state of the core. A request of this type is accepted immediately, therefore its effects on the core, the Dynaml Q^{TM} cluster, or the wider system are **UNPREDICTABLE**, and a wider system reset might be required. In particular, any outstanding memory system transactions at the time of the reset might complete after the reset. The core is not expecting these transactions to complete after a reset, and might cause a system deadlock.

If the system sends a snoop to the DynamIQ[™] cluster during Debug recovery mode, depending on the cluster state:

- The snoop might get a response and disturb the contents of the caches
- The snoop might not get a response and cause a system deadlock

5.4.6 Warm reset mode

A Warm reset resets all state except for the trace logic, debug registers, and *Reliability*, *Availability*, and *Serviceability* (RAS) registers.

A Warm reset is applied to the Cortex®-A715 core when the core receives a Warm reset signal from the *DynamlQ*™ *Shared Unit-110* (DSU-110) side of the CPU bridge.

The Cortex®-A715 core implements the Arm®v8-A Reset Management Register, RMR_EL3. When the core runs in EL3, it requests a Warm reset if you set the RMR_EL3.RR bit to 1.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about RMR_EL3.

5.5 Performance and power management

The Cortex®-A715 core implements *Performance and Power Management* (PPM) features that can be used to limit high activity events within the core, or trade off efficiency versus peak performance.

The PPM features are:

- Maximum Power Mitigation Mechanism (MPMM)
- Performance Defined Power (PDP)

5.5.1 Maximum Power Mitigation Mechanism

Maximum Power Mitigation Mechanism (MPMM) is a power management feature that detects and limits high activity events, specifically high-power load-store events and vector unit instructions.

If the count of high-activity events exceeds a pre-defined threshold during an evaluation period, MPMM temporarily limits the rate of instruction execution and memory system transactions.

MPMM provides three gears that enable it to limit certain classes of workloads. Each MPMM gear limits workloads at a different level of aggressiveness, where gear 0 produces the most aggressive throttling and gear 2 the least aggressive. The *Activity Monitoring Unit* (AMU) provides metrics for each gear. An external power controller can use these metrics to budget SoC power in the following ways:

- By limiting the number of cores that can execute higher activity workloads
- By switching to a different Dynamic Voltage and Frequency Scaling (DVFS) operating point

MPMM is not intended to limit workloads that operate close to typical power levels. The MPMM event detection and limiting are targeted to limit workloads that operate at significantly higher power levels than typical integer workloads.

MPMM must not be relied on as the only electrical safety mechanism. It is essentially a localized assistance mechanism that operates at core level. MPMM is not a substitute for a coarse-grained emergency power reduction scheme, but it does minimize the likelihood of such a scheme being engaged. It is a first line of defense rather than a complete solution.

Related information

A.2.1 IMP_CPUPPMCR_EL3, Global PPM Configuration Register on page 251
A.4.27 IMP_CPUMPMMCR_EL3, Global MPMM Configuration Register on page 320
B.1.1 CPUPPMCR, Global PPM Configuration Register on page 481
B.1.2 CPUMPMMCR, Global MPMM Configuration Register on page 483

5.5.2 Performance Defined Power

Performance Defined Power (PDP) is a power management feature that trades off peak performance for a reduced power envelope on general workloads.

The PDP is configured using a level of aggressiveness among three possible values. When the level of aggressiveness is increased, the average workload power is reduced but it causes more performance loss, which varies by workload.

The PDP has an impact on:

• Core power reduction. The core power is reduced and the efficiency is increased.

• External memory system power reduction. Memory request bandwidth is modulated to reduce power in the memory system.

5.5.3 Dispatch block

In extreme core thermal or power conditions, you can temporarily halt forward progress of the processor without stopping the clock.

A pin is provided on the DSU-110 boundary that can directly be used to force the processor to stall for the duration that the pin is asserted. When the processor is stalled, the dispatch of new instructions is stopped. However, instructions that have already been dispatched will continue to execute and complete as normal.

5.6 Cortex®-A715 core powerup and powerdown sequence

There is no specific sequence to power up the Cortex®-A715 core. To power down the core, you must follow a specific sequence. There are no software steps required to bring a core into coherence after reset.

To powerdown the Cortex®-A715 core:

- 1. If required, save the state of the core to system memory to allow for retrieval of the core state during core powerup.
- 2. Disable interrupts to the core.
 - a. Disable the interrupt enable bits in the ICC_IGRPEN0_EL1 and ICC_IGRPEN1_EL1 registers.
 - b. Set the GIC distributor wake-up request for the core using the GICR WAKER register.
 - c. Read the GICR_WAKER register to confirm that the ChildrenAsleep bit indicates that the interface is quiescent.
- 3. Disable the interrupt outputs from the RAS registers. Alternatively, re-direct the core RAS fault and error interrupt outputs to the system error manager. For more information, see 5.6.1 Managing RAS fault and error interrupts during the core powerdown on page 49.
- 4. Set the IMP_CPUPWRCTLR_EL1.CORE_PWRDN_EN bit to 1 to indicate to the power controller that a powerdown is requested.
- 5. Execute an ISB instruction.
- 6. Execute a wfi instruction. Once the wfi instruction is executed, the powerdown sequence cannot be interrupted.

After you have executed the WFI instruction, and subsequently received a powerdown request from the power controller, the hardware:

- Disables and cleans the core caches
- Removes the core from system coherency

When the IMP_CPUPWRCTLR_EL1.CORE_PWRDN_EN bit is set, executing a wfi instruction automatically masks all interrupts and wakeup events in the core. As a result, applying a reset is the only way to wake up the core from the *Wait for Interrupt* (WFI) state.

5.6.1 Managing RAS fault and error interrupts during the core powerdown

After the WFI instruction is executed, the power management architecture does not permit interrupting the core software.

Therefore, the core software cannot be interrupted to manage any RAS fault or error when either of the following is true:

- A RAS fault or error is detected before the core powerdown procedure executes the WFI instruction and the error has not been cleared.
- A RAS fault or error is detected after the core powerdown procedure executes the WFI instruction.

You must manage the status of the RAS fault and error interrupts to complete the core powerdown sequence. Any active RAS fault or error interrupt output from the core prevents the core from powering down, so that:

- The core is left powered ON, but the software remains inactive.
- All requests from the core PPU to power off the core are denied.
- A full cluster reset is the only mechanism available to restart the core software.

If the RAS fault and error interrupt outputs are disabled before the core powerdown procedure, and if the error detection and correction response is enabled, then the following is true:

- Correctable errors are corrected
- Deferrable errors are deferred as part of the automatic cache clean and invalidation procedures
- Error records for the correctable and deferrable errors are lost when the core is powered OFF
- If there is an uncorrectable error when the core is powering off, this error is not signaled to the system and might corrupt the system behavior

If preferable, you can disable the generation of RAS faults and error interrupts for correctable and deferrable errors while enabling the error interrupt for uncorrectable errors. However, the core error interrupt output must be re-routed to the system error manager before executing the WFI instruction in the core powerdown procedure. To do this, configure the ERxCTLR_EL1 register as follows:

- ERXCTLR EL1.CFI = 0
- ERXCTLR_EL1.FI = 0
- ERXCTLR EL1.UI = 1

If an uncorrectable error occurs during the powerdown, the core remains powered ON and the software remains inactive. The system error manager is then responsible for resetting the entire cluster and the wider system that interacts with the core and cluster. To use this approach, the

Power management

system must be designed to allow the core RAS error interrupt to re-route to the system error manager. As the core RAS registers are only accessible to software running on the core, the system error manager is unable to identify where the uncorrectable error occurred within the core.

5.7 Debug over powerdown

The Cortex®-A715 core supports debug over powerdown, which allows a debugger to retain its connection with the core even when powered down. This behavior enables debug to continue through powerdown scenarios, rather than having to re-establish a connection each time the core is powered up.

The debug over powerdown logic is part of the DebugBlock in the *DynamlQ*[™] *Shared Unit-110* (DSU-110). The DebugBlock is external to the DSU-110 DynamlQ[™] cluster and must remain powered on during the debug over powerdown process.

See Debug in the Arm® DynamIQ[™] Shared Unit-110 Technical Reference Manual for more information.

6. Memory management

The Memory Management Unit (MMU) translates an input address to an output address.

This translation is based on address mapping and memory attribute information that is available in the Cortex®-A715 core internal registers and translation tables. The MMU also controls memory access permissions, memory attributes, and cache policies for each region of memory.

An address translation from an input address to an output address is described as a stage of address translation. The Cortex®-A715 core can perform:

- Stage 1 translations that translate an input Virtual Address (VA) to an output Physical Address (PA) or Intermediate Physical Address (IPA).
- Stage 2 translations that translate an input IPA to an output PA.
- Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then translate that IPA to an output PA. The Cortex®-A715 core performs translation table walks for each stage of the translation.

In addition to translating an input address to an output address, a stage of address translation also defines the memory attributes of the output address. With a two-stage translation, the stage 2 translation can modify the attributes that the stage 1 translation defines. A stage of address translation can be disabled or bypassed, and cores can define memory attributes for disabled and bypassed stages of translation.

Each stage of address translation uses address translations and associated memory properties that are held in memory-mapped translation tables. Translation table entries can be cached into a *Translation Lookaside Buffer* (TLB). The translation table entries enable the MMU to provide fine-grained memory system control and to control the table walk hardware.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information on the Virtual Memory System Architecture (VMSA).

6.1 Memory Management Unit components

The Cortex®-A715 core Memory Management Unit (MMU) includes several Translation Lookaside Buffers (TLBs), an L2 TLB, and a translation table prefetcher.

A TLB is a cache of recently executed page translations within the MMU. The Cortex®-A715 core implements a two-level TLB structure. The L2 TLB stores all page sizes and is responsible for breaking down these pages into smaller pages when required for the L1 data TLB or L1 instruction TLB.

The following table describes the MMU components.

Table 6-1: MMU components

Component	Description			
L1 instruction TLB	Located in the L1 instruction block			
	 Caches entries at the 4KB, 16KB, 64KB, or 2MB granularity of Virtual Address (VA) to Physical Address (PA) mapping only 			
	Fully associative			
	• 32 entries			
L1 data TLB	Located in the L1 data block			
	Caches entries at the 4KB, 16KB, 64KB, or 2MB granularity of VA to PA mappings only			
	Fully associative			
	• 48 entries			
L1 Statistical Profiling Extension	Located in the SPE block			
(SPE) TLB	VA to PA translations of any page and block size			
	• 1 entry			
L1 TRace Buffer Extension (TRBE)	Located in the TRBE block			
TLB	VA to PA translations of any page and block size			
	• 1 entry			
L2 TLB	Located in the MMU block			
	Includes a walk cache functionality			
	Made of two translation caches dedicated to specific translation levels:			
	Small page TLB			
	 Stores the results of level 3 translations for pages of size 4KB, 16KB, or 64KB 			
	6-way set associative			
	• 1536 entries			
	Medium page TLB			
	 Stores the results of level 2 translations for blocks of size 2MB, 32MB, or 512MB 			
	4-way set associative			
	256 entries			
Translation table prefetcher	Detects access to contiguous translation tables and prefetches the next one			
	Can be disabled in the ECTLR register			

TLB entries contain:

- A global indicator and an Address Space IDentifier (ASID) to allow context switches without requiring the TLB to be invalidated
- A Virtual Machine IDentifier (VMID) to allow virtual machine switches by the hypervisor without requiring the TLB to be invalidated

A hit in the L1 instruction TLB provides a single clock cycle access to the translation, and returns the PA to the instruction cache for comparison. It also checks the access permissions to signal an Instruction Abort.

A hit in the L1 data TLB provides a single clock cycle access to the translation, and returns the PA to the data cache for comparison. It also checks the access permissions to signal a Data Abort.

A miss in the L1 data TLB that hits in the L2 TLB has a 5-cycle penalty compared to a hit in the L1 data TLB. This penalty can be increased depending on the arbitration of pending requests.

6.2 TLB entry content

Translation Lookaside Buffer (TLB) entries store the context information required to facilitate a match and avoid the need for a TLB clean on a context or virtual machine switch.

Each TLB entry contains:

- A Virtual Address (VA)
- A Physical Address (PA)
- A set of memory properties that includes type and access permissions

Each TLB entry is associated with either:

- A particular Address Space IDentifier (ASID)
- A global indicator

Each TLB entry also contains a field to store the *Virtual Machine IDentifier* (VMID) in the entry applicable to accesses from ELO and EL1. The VMID permits hypervisor virtual machine switches without requiring the TLB to be invalidated.

Related information

6.4 Translation table walks on page 54

6.3 TLB match process

The Armv8-A architecture supports multiple *Virtual Address* (VA) spaces that are translated differently.

Each Translation Lookaside Buffer (TLB) entry is associated with a particular translation regime:

- Secure EL3
- Secure EL2
- Secure EL2&0
- Non-secure EL2
- Non-secure EL2&0
- Secure EL1&0
- Non-secure EL1&0

A TLB match entry occurs when the following conditions are met:

• Its VA[48:N], where N is log₂ of the block size for that translation that is stored in the TLB entry, matches the requested address.

- Entry translation regime matches the current translation regime.
- The Address Space IDentifier (ASID) matches the current ASID held in the TTBRO_ELx or TTBR1_ELx register associated with the target translation regime, or the entry is marked global.
- The Virtual Machine IDentifier (VMID) matches the current VMID held in the VTTBR_EL2 register.

The ASID information is used for the purpose of TLB matching for entries using:

- The Secure EL1&O and Non-secure EL1&O translation regime
- The Secure EL2&O and Non-secure EL2&O translation regime

The VMID information is used for the purpose of TLB matching for entries using:

• The Secure EL1&O and Non-secure EL1&O translation regime, when EL2 is enabled.

6.4 Translation table walks

When the Cortex®-A715 core generates a memory access, the *Memory Management Unit* (MMU) searches for the requested *Virtual Address* (VA) in the *Translation Lookaside Buffers* (TLBs). If it is not present, then it is a miss and the MMU proceeds by looking up the translation table during a translation table walk.

When the Cortex®-A715 core generates a memory access, the MMU:

- 1. Performs a lookup for the requested VA, current Address Space Identifier (ASID), current Virtual Machine Identifier (VMID), and current translation regime in the relevant instruction or data L1 TLB.
- 2. If there is a miss in the relevant L1 TLB, then the MMU performs a lookup in the L2 TLB for the requested VA, current ASID, current VMID, and translation regime.
- 3. If there is a miss in the L2 TLB, then the MMU performs a hardware translation table walk.


Address translation is performed only when the MMU is enabled. It can also be disabled for a particular translation base register, in which case the MMU returns a Translation Fault.

You can program the MMU to make the accesses that are generated by translation table walks cacheable. This means that translation table entries can be cached in the L2 cache, the L3 cache, and external caches.

During a lookup or translation table walk, the access permission bits in the matching translation table entry determine whether the access is permitted. If the permission checks are violated, then the MMU returns a Permission Fault. See the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile for more information.

The following figure shows the TLB lookup process.

Figure 6-1: Translation table walks

In translation table walks the descriptor is fetched from the L2 or external memory system.

6.5 Hardware management of the Access flag and dirty state

The core includes the option to perform hardware updates to the translation tables.

This feature is enabled in TCR_ELx (where x is 1-3) and VTCR_EL2. To support hardware management of dirty state, translation table descriptors include the *Dirty Bit Modifier* (DBM) field.

The Cortex®-A715 core supports hardware updates to the Access flag and to dirty state only when the translation tables are held in Inner Write-Back and Outer Write-Back Normal memory regions. If software requests a hardware update in a region that is not Inner Write-Back or Outer Write-Back Normal memory, then the Cortex®-A715 core returns an abort with the following encoding:

- ESR ELx.DFSC = 0b110001 for Data Aborts
- ESR_ELx.IFSC = 0b110001 for Instruction Aborts

6.6 Responses

Certain faults and aborts can cause an exception to be taken because of a memory access.

MMU responses

When one of the following operations is completed, the *Memory Management Unit* (MMU) generates a translation response to the requester:

- An L1 instruction or data Translation Lookaside Buffer (TLB) hit
- An L2 TLB hit
- A translation table walk

The responses from the MMU contain the following information:

- The Physical Address (PA) that corresponds to the translation
- A set of permissions
- Secure or Non-secure state information
- All the information that is required to report aborts

MMU aborts

The MMU can detect faults that are related to address translation and can cause exceptions to be taken to the core. Faults can include address size faults, translation faults, access flag faults, and permission faults.

External aborts

External aborts occur in the memory system, and are different from aborts that the MMU detects. Normally, external memory aborts are rare. External aborts are caused by errors that are flagged by the external memory interfaces or are generated because of an uncorrected *Error Correcting Code* (ECC) error in the L1 data cache or L2 cache arrays.

External aborts are reported synchronously when they occur during:

- Translation table walks for instruction fetches, loads, and stores
- Load operations to Inner Write-Back, Outer Write-Back Normal Cacheable memory

The address captured in the Fault Address Register (FAR) is the target address of the instruction that generated the synchronous external abort.

External aborts are reported asynchronously when they occur during:

- Load operations to all memory locations other than Inner Write-Back, Outer Write-Back
 Normal memory when the access is not caused by a translation table walk
- Store operations to any memory type
- Cache maintenance, TLB invalidate, and instruction cache invalidate operations
- Atomic operations including AtomicLd, AtomicSt, AtomicCAS, and AtomicSwap

Misprogramming contiguous hints

In the case of a misprogramming contiguous hint, when there is a descriptor that contains a set CH bit, the input *Virtual Address* (VA) address space must include all contiguous VAs contained in this block.

The VA address space is defined by:

- TCR ELx.TxSZ for stage1 translations
- VTCR_EL2.TOSX for stage2 translations

The Cortex®-A715 core treats such a block as not causing a translation fault and disregards the value of the contiguous bit.

Conflict aborts

The Cortex®-A715 core does not generate conflict abort exceptions.

When a TLB conflict is detected in the L1 TLB or L2 TLB, hardware automatically handles the conflict by invalidating the conflict entries.

6.7 Memory behavior and supported memory types

The Cortex®-A715 core supports memory types defined in the Armv8-A architecture.

Device memory types have the following attributes:

G - Gathering

The capability to gather and merge requests together into a single transaction

R - Reordering

The capability to reorder transactions

E - Early Write Acknowledgment

The capability to accept early acknowledgment of write transactions from the interconnect

In the following table, the n prefix means the capability is not allowed.

The following table shows how memory types are supported in the Cortex®-A715 core.

Table 6-2: Supported memory types

Memory attribute type	Shareability	Inner Cacheability	Outer Cacheability	Notes
Device nGnRnE	Outer Shareable	-	-	Treated as Device nGnRnE
Device nGnRE	Outer Shareable ¹	-	-	Treated as Device nGnRE
Device nGRE	Outer Shareable ¹	-	-	Treated as Device nGRE
Device GRE	Outer Shareable ¹	-	-	Treated as Device GRE
Normal	Outer Shareable ¹	Non-cacheable	Any	Treated as Non-cacheable

¹ Non-cacheable and Device are treated as Outer Shareable. Combinations of Non-cacheable and Write-Through are treated as Non-cacheable, and therefore are Outer Shareable.

Memory attribute type	Shareability	Inner Cacheability	Outer Cacheability	Notes
Normal	Outer Shareable ¹	Write-Through Cacheable	Any	Treated as Non-cacheable
Normal	Outer Shareable ¹	Write-Back Cacheable	Non- cacheable	Treated as Non-cacheable
Normal	Outer Shareable ¹	Write-Back Cacheable	Write- Through Cacheable	Treated as Non-cacheable
Normal	See Table 6-3: Shareability for Normal memory on page 58.	Write-Back Cacheable (any allocation hint)	Write-Back Cacheable No Allocate	Treated as Write-Back Read and Write Allocate but the outer cacheability propagated to the <i>DynamlQ™ Shared Unit-110</i> (DSU-110) is 0 (No Allocate)
Normal	See Table 6-3: Shareability for Normal memory on page 58.	Write-Back Cacheable (any allocation hint)	Write-Back Read or Write Allocate	Treated as Write-Back Read and Write Allocate but the outer cacheability propagated to the DSU-110 is 1, therefore upgraded to Write and Read Allocate

The following table shows how the shareability is treated for certain Normal memory.

Table 6-3: Shareability for Normal memory

Shareability	Treated as
Non-shareable	Non-shareable
Outer Shareable	Outer Shareable
Inner Shareable	Outer Shareable

6.8 Page-based hardware attributes

Page-Based Hardware Attributes (PBHA) is an optional, **IMPLEMENTATION DEFINED** feature.

It allows software to set up to four bits in the translation tables, which are then propagated though the memory system with transactions and can be used in the system to control system components. The meaning of the bits is specific to the system design.

For information on how to set and enable the PBHA bits in the translation tables, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture. When disabled, the PBHA value that is propagated on the bus is 0.

For memory accesses caused by a translation table walk, the ATCR, and AVTCR registers control the PBHA values.

PBHA combination between stage 1 and stage 2 on memory accesses

PBHA should always be considered as an attribute of the physical address.

When stage 1 and stage 2 are enabled:

- If both stage 1 PBHA and stage 2 PBHA are enabled, the final PBHA is stage 2 PBHA.
- If stage 1 PBHA is enabled and stage 2 PBHA is disabled, the final PBHA is stage 1 PBHA.

- If stage 1 PBHA is disabled and stage 2 PBHA is enabled, the final PBHA is stage 2 PBHA.
- If both stage 1 PBHA and stage 2 PBHA are disabled, the final PBHA is defined to 0.

Enable of PBHA has a granularity of one bit, so this property is applied independently on each PBHA bit.

Mismatched aliases

If the same physical address is accessed through more than one virtual address mapping, and the PBHA bits are different in the mappings, then the results are **UNPREDICTABLE**. The PBHA value sent on the bus could be for either mapping.

7. L1 instruction memory system

The Cortex®-A715 core L1 instruction memory system fetches instructions and predicts branches. It includes the L1 instruction cache, the L1 instruction *Translation Lookaside Buffer* (TLB), and the branch prediction unit.

The L1 instruction memory system provides an instruction stream to the decoder. To increase overall performance and reduce power consumption, the L1 instruction memory system uses dynamic branch prediction and instruction caching.

The following table shows the L1 instruction memory system features.

Table 7-1: L1 instruction memory system features

Feature	Description	
L1 instruction cache	• 32KB or 64KB	
	4-way set associative	
	Physically Indexed, Physically Tagged (PIPT)	
	Optionally protected with parity	
Cache line length	64 bytes	
Cache policy	Pseudo-Least Recently Used (PLRU) cache replacement policy	
Interface with L2 memory system	32 bytes per cycle interface	

The L1 instruction TLB also resides in the L1 instruction memory system. However, it is part of the *Memory Management Unit* (MMU) and is described in 6. Memory management on page 51.

7.1 L1 instruction cache behavior

The L1 instruction cache is invalidated automatically at reset unless the core power mode is initialized to Debug Recovery.

In Debug recovery mode, the L1 instruction cache is not functional.

L1 instruction cache disabled behavior

Disabling the L1 instruction cache has no effect on the operation of the L1 instruction cache. Instructions can be cached into, and fetched from, the L1 instruction cache even when it is disabled. The software must take into account Non-cacheable accesses to ensure correct behavior. See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information.

If the L1 instruction cache is disabled, then all memory accesses caused by instruction fetches are performed using the Non-cacheable memory attribute. It means that instruction fetches might not

be coherent with caches in the same core or other cores. The software must take this into account by performing the appropriate cache maintenance operations.

L1 instruction cache maintenance

The cache maintenance operation can happen at any time, regardless of L1I\$ status (disabled or enabled).

Related information

5.4.5 Debug recovery mode on page 45

7.2 L1 instruction cache Speculative memory accesses

Instruction fetches are Speculative and there can be several unresolved branches in the pipeline.

A branch instruction or exception in the code stream can cause a pipeline flush, discarding the currently fetched instructions. On instruction fetches, pages with Device memory type attributes are treated as Non-Cacheable Normal Memory.

Device memory pages must be marked with the translation table descriptor attribute bit *eXecute Never* (XN). The device and code address spaces must be separated in the physical memory map. This separation prevents Speculative fetches to read-sensitive devices when address translation is disabled.

If the L1 instruction cache is enabled and if the instruction fetches miss in the L1 instruction cache, then they can still look up in the L1 data cache. However, the lookup never causes an L1 data cache refill, regardless of the data cache enable status. The line is only allocated in the L2 cache, provided that the L1 instruction cache is enabled.

7.3 Program flow prediction

The Cortex®-A715 core contains program flow prediction hardware, also known as branch prediction. Branch prediction increases overall performance and enhances power efficiency.

Program flow prediction is always enabled, except when the *Memory Management Unit* (MMU) is disabled for the current exception level. If program flow prediction is disabled, then all taken branches incur a penalty that is associated with cleaning the pipeline. If program flow prediction is enabled, then it predicts whether a conditional or unconditional branch is to be taken, as follows:

- For conditional branches, it predicts whether the branch is to be taken and the address that the branch goes to, known as the branch target address.
- For unconditional branches, it only predicts the branch target address.

Program flow prediction hardware contains the following functionality:

A Branch Target Buffer (BTB) holding the branch target address of previously taken branches

- A Branch Prediction (BP) predictor that uses the previous branch history
- The return stack, including nested subroutine return addresses
- A static branch predictor
- An indirect branch predictor

Predicted and non-predicted instructions

Program flow prediction hardware predicts all branch instructions, and includes:

- Conditional branches
- Unconditional branches
- Indirect branches that are associated with procedure call and return instructions

Exception return branch instructions are not predicted.

Return stack

The return stack stores the address and instruction set state. This address is equal to the link register value stored in X30 in AArch64.

Any of the following instructions causes a return stack push:

- BL
- BLR
- BLRAA
- BLRAAX
- BLRAB
- BLRABZ

Any of the following instructions cause a return stack pop:

- RET
- RETAA
- RETAB

The following instructions are not predicted because they can change the core privilege mode, and the Security state:

- ERET
- ERETAA
- ERETAB

8. L1 data memory system

The Cortex®-A715 core L1 data memory system executes load and store instructions. It services memory coherency requests and specific instructions such as atomics, cache maintenance operations, and memory tagging instructions. The L1 data memory system includes the L1 data cache and the L1 data *Translation Lookaside Buffer* (TLB).

The following table shows the L1 data memory system features.

Table 8-1: L1 data memory system features

Feature	Description	
L1 data cache	• 32KB or 64KB	
	4-way set associative, 16 banks	
	Virtually Indexed, Physically Tagged (VIPT) behaving as Physically Indexed, Physically Tagged (PIPT)	
	Optionally protected with Error Correcting Code (ECC)	
Cache line length	64 bytes	
Cache policy	Pseudo-Least Recently Used (LRU) cache replacement policy	
Interface with integer execute pipeline and vector execute	3×64-bit read paths and 4×64-bit write paths for the integer execute pipeline	
	2×128-bit write paths and 3×128-bit read paths for the vector execute	

The L1 data TLB also resides in the L1 data memory system. However, it is part of the *Memory Management Unit* (MMU) and is described in 6. Memory management on page 51.

8.1 L1 data cache behavior

The L1 data cache is invalidated automatically at reset unless the core power mode is initialized to Debug recovery mode.

In Debug recovery mode, the L1 data cache is not functional.

There is no operation to invalidate the entire data cache. If software requires this function, then it must be constructed by iterating over the cache geometry and executing a series of individual invalidates by set/way instructions. DC CISW operations perform both a clean and invalidate of the target set/way. The values of HCR_EL2.SWIO have no effect. See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information about DC CISW and HCR EL2.

L1 data cache disabled behavior

If the L1 data cache is disabled, then:

- A new line is not allocated in the L2 or L3 caches as a result of a load instruction.
- All load and store instructions to cacheable memory are treated as Non-cacheable.
- Data cache maintenance operations continue to execute normally.

The L1 data and L2 caches cannot be disabled independently. When a core disables the L1 data cache, cacheable memory accesses issued by that core are no longer cached in the L1 or L2 cache. However, another core that shares the L2 cache can still cache data in its L1 cache and in the shared L2 cache.

To maintain data coherency between multiple cores, the Cortex®-A715 core uses the *Modified Exclusive Shared Invalid* (MESI) protocol.

The way that cache indices are determined means that there is no direct relationship between the *Physical Address* (PA) and set number. You cannot use targeted operations that assume a relationship between the PA and set number. To flush the entire cache, you must perform set and way maintenance operations over the number of sets and ways described in CCSIDR_EL1 for that cache. This operation is compliant with the Armv8-A architecture.

Related information

5.4.5 Debug recovery mode on page 45

8.2 Write streaming mode

The Cortex®-A715 core supports write streaming mode, sometimes referred to as read allocate mode, both for the L1 and the L2 cache.

A cache line is allocated to the L1 or L2 cache on either a read miss or a write miss. However, writing large blocks of data can pollute the cache with unnecessary data. It can also waste power and performance when a linefill is performed only to discard the linefill data, because the entire line gets overwritten by subsequent writes (for example using memset () or memcpy()). In some situations, cache line allocation on writes is not required. For example, when executing the C standard library memset () function to clear a large block of memory to a known value.

To prevent unnecessary cache line allocation, the *Merge Write Buffer* (MWB) detects when the core has written a full cache line before the linefill completes. If this situation is detected on a configurable number of consecutive linefills, then the MWB switches into write streaming mode.

When in write streaming mode, load operations behave as normal, and can still cause linefills. When in write streaming mode, write operations still look up in the cache, but if they miss, then they write out to the L2 or L3 cache rather than starting a linefill.

More than the specified number of linefills might be observed on the master interface before the MWB switches to write streaming mode.

The write streaming mode remains enabled until either:

- It detects a cacheable write burst that is not a full cache line.
- There is a subsequent load operation that targets the same line as an outstanding write stream.

When a Cortex®-A715 core has switched to write streaming mode, the MWB continues to monitor the bus traffic. It signals to the L2 or L3 cache to go into write streaming mode when it observes a further number of full cache line writes.

The write streaming threshold defines the number of consecutive cache lines that are fully written without being read before store operations stop causing cache allocations. You can configure the write streaming threshold for each cache (L1, L2, and L3) by writing the register A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 158.

8.3 Instruction implementation in the L1 data memory system

The Cortex®-A715 core supports the atomic instructions added in the Arm®v8.1-A architecture.

Atomic instructions to Cacheable memory can be performed as either near atomics or far atomics, the Cortex®-A715 core performs these instructions as near atomics by default.

Alternatively, CPUECTLR can be programmed so that depending on the system behavior, some atomic instructions attempt to execute as far atomics.

When executed as far atomics, the atomic is passed on to the interconnect to perform the operation. If the operation hits anywhere inside the cluster, or if an interconnect does not support atomics, then the L3 memory system performs the atomic operation. If the line is not already there, it allocates the line into the L3 cache.

When *Memory Tagging Extension* (MTE) is enabled with precise checking, all checked atomics are performed near.

The Cortex®-A715 core supports atomics to Device or Non-cacheable memory, however this relies on the interconnect also supporting atomics. If such an atomic instruction is executed when the interconnect does not support them, then it results in an abort.

8.4 Internal exclusive monitor

The Cortex®-A715 core includes an internal exclusive monitor with a 2-state, open and exclusive state machine that manages Load-Exclusive and Store-Exclusive accesses and Clear-Exclusive (CLREX) instructions.

You can use these instructions to construct semaphores, ensuring synchronization between different processes running on the core, and also between different cores that are using the same coherent memory locations for the semaphore. A Load-Exclusive instruction tags a small block of memory for exclusive access. CTR_ELO defines the size of the tagged blocks as 16 words, one cache line.

A Load-Exclusive or Store-Exclusive instruction is an instruction that has a mnemonic starting with LDX, LDAX, STX, Or STLX.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information on these instructions.

See A.4.23 CTR_ELO, Cache Type Register on page 312 for more technical reference and register information.

8.5 Data prefetching

Data prefetching fetches data before it is needed to boost execution performance.

For cases that cannot be handled efficiently by data prefetchers, the Cortex®-A715 core supports the AArch64 prefetch memory instructions, PRFM.

These instructions signal to the memory system that memory accesses from a specified address are likely to occur soon. The memory system takes actions that aim to reduce the latency of memory accesses when they occur.

PRFM instructions perform a lookup in the cache. If they miss and are to a cacheable address, then a linefill starts. However, a PRFM instruction retires when its linefill is started, and it does not wait until the linefill is complete.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information on prefetch memory and preloading caches.

Hardware data prefetcher

The load/store unit includes hardware prefetcher engines that are responsible for generating prefetches targeting the L1, L2, and L3 caches. Specifically, the prefetch engine in the L1 memory subsystem targets the L1, L2, and L3 cache. The prefetch engine in the L2 memory subsystem

targets the L2 and L3 cache. The load side prefetcher uses the Virtual Address (VA) and the Program Counter (PC). The store side prefetcher uses the Virtual Address (VA) only.

The CPUECTLR registers allows control over some aspects of the prefetcher behavior. For more information, see:

- A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 158
- A.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register on page 166

Data cache zero

In the Cortex®-A715 core, the *Data Cache Zero by Virtual Address* (DC ZVA) instruction enables a block of 64 bytes in memory, aligned to 64 bytes in size, to be set to zero.

For more information, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

9. L2 memory system

The Cortex®-A715 core L2 memory system connects the core with the *DynamlQ*[™] *Shared Unit-110* (DSU-110) through the CPU bridge. It includes the private L2 cache.

The L2 cache is unified and private to each Cortex®-A715 core in a cluster.

The L2 memory system includes data prefetcher engines that use the *Virtual Address* (VA) and the *Program Counter* (PC). The different engines are able to prefetch data in the L2 cache and the L3 cache.

The following table shows the L2 memory system features.

Table 9-1: L2 memory system features

Feature	Description	
L2 cache	• 128KB, 256KB, or 512KB	
	8-way set associative, 2 banks	
	Physically Indexed, Physically Tagged (PIPT)	
	Optionally protected with with Error Correcting Code (ECC)	
Cache line length	64 bytes	
Cache policy	Dynamic biased cache replacement policy	
Interface with the <i>DynamIQ</i> ™ <i>Shared Unit-110</i> (DSU-110)	One CHI Issue E compliant interfaces with 256-bit read and write channel widths	

9.1 L2 cache

The integrated L2 cache handles both instruction and data requests from the instruction and data side, as well as translation table walk requests.

The L1 instruction cache and L2 cache are weakly inclusive. Instruction fetches that miss in the L1 instruction cache and L2 cache allocate both caches, but the invalidation of the L2 cache does not cause back-invalidates of the L1 instruction cache.

The L1 data cache and L2 cache are strictly exclusive. Any data contained in the L1 data cache is never present in the L2 cache.

The L2 cache is invalidated automatically at reset unless the core power mode is initialized to Debug recovery mode.

The way that cache indices are determined means that there is no direct relationship between the *Physical Address* (PA) and set number. You cannot use targeted operations that assume a relationship between the PA and set number. To flush the entire cache, you must perform set and way maintenance operations

over the number of sets and ways described in CCSIDR_EL1 for that cache. This operation is compliant with the Armv8-A architecture.

Related information

5.4.5 Debug recovery mode on page 45

9.2 Support for memory types

The Cortex®-A715 core simplifies coherency logic by downgrading some memory types.

Memory that is marked as both Inner Write-Back Cacheable and Outer Write-Back Cacheable is cached in the L1 data cache and the L2 cache.

Memory that is marked as Inner Write-Through is downgraded to Non-cacheable.

Memory that is marked Outer Write-Through or Outer Non-cacheable is downgraded to Non-cacheable, even if the inner attributes are Write-Back Cacheable.

The additional attribute hints are used as follows:

Allocation hint

Allocation hints help to determine the rules of allocation of newly fetched lines in the system.

Transient hint

All cacheable reads and writes that have the transient bit set allocate in the L2 cache.

An allocating read to the L1 data cache that has the transient bit set is allocated in the L1 cache. Transient lines evicted from the L1 cache do not allocate downstream caches.

9.3 Transaction capabilities

The CHI Issue E interface between the Cortex®-A715 core L2 memory system and the *DynamlQ*[™] *Shared Unit-110* (DSU-110) provides transaction capabilities for the core.

The following table shows the maximum possible values for read, write, *Distributed Virtual Memory* (DVM) issuing, and snoop capabilities of the Cortex®-A715 core L2 cache.

Table 9-2: Cortex®-A715 core transaction capabilities

Attribute	Maximum value	Description
Write issuing capability	120	This is the maximum number of outstanding write transactions for memory that is cacheable, Non-cacheable, and Device GRE/nGRE.
	30	This is the maximum number of outstanding write transactions for memory that is Device nGnRE and nGnRnE.

Attribute	Maximum value	Description	
Read issuing capability	60	This is the maximum number of outstanding read transactions for memory that is cacheable, Non-cacheable, and Device GRE/nGRE.	
	30	This is the maximum number of outstanding read transactions for memory that is Device nGnRE and nGnRnE.	
Snoop acceptance capability	64	This is the maximum number of outstanding snoops accepted.	
DVM issuing capability	30	This is the maximum number of outstanding DVM operation transactions.	

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on the different memory types.

10. Direct access to internal memory

The Cortex®-A715 core provides a mechanism to read the internal memory that the L1 caches, L2 cache, and *Translation Lookaside Buffer* (TLB) structures use through **IMPLEMENTATION DEFINED** System registers. When the coherency between the cache data and the system memory data is broken, you can use this mechanism to investigate any issues.

It is not possible to update the contents of the caches or TLB structures.

Direct access to internal memory is available only in EL3. In all other Exception levels, executing these instructions results in an Undefined Instruction exception.

You can access the contents of the internal memory using the twelve read-only (RO) System registers in Table 10-1: System registers used to access internal memory on page 71. The internal memory is selected by programing the **IMPLEMENTATION DEFINED** RAMINDEX register using the following sys instruction:

SYS #6, C15, C0, #0, <Xt>

For more information on the RAMINDEX register, see A.3.1 RAMINDEX, RAMINDEX system instruction on page 254. The data is read from the read-only System registers as shown in the following table.

- All the System registers are read-only (RO) and 64-bits wide
- For the register reset value, see the individual bit resets
- Any access to the data registers returns data
- Click the register name for details on the returned data format

Table 10-1: System registers used to access internal memory

Register name	Function	Operation
IMP_ISIDE_DATA0_EL3	Instruction Data register 0	MRS <xt>, S3_6_c15_c0_0</xt>
IMP_ISIDE_DATA1_EL3	Instruction Data register 1	MRS <xt>, S3_6_c15_c0_1</xt>
IMP_ISIDE_DATA2_EL3	Instruction Data register 2	MRS <xt>, S3_6_c15_c0_2</xt>
IMP_DSIDE_DATA0_EL3	L1D Data register 0	MRS <xt>, S3_6_c15_c1_0</xt>
IMP_DSIDE_DATA1_EL3	L1D Data register 1	MRS <xt>, S3_6_c15_c1_1</xt>
IMP_DSIDE_DATA2_EL3	L1D Data register 2	MRS <xt>, S3_6_c15_c1_2</xt>
IMP_L2_DATAO_EL3	L2 Data register 0	MRS <xt>, S3_6_C15_C1_3</xt>
IMP_L2_DATA1_EL3	L2 Data register 1	MRS <xt>, S3_6_C15_C1_5</xt>

Register name	Function	Operation
IMP_L2_DATA2_EL3	L2 Data register 2	MRS <xt>, S3_6_C15_C1_4</xt>
IMP_MMU_DATAO_EL3	TLB Data register 0	MRS <xt>, S3_6_C15_C0_3</xt>
IMP_MMU_DATA1_EL3	TLB Data register 1	MRS <xt>, S3_6_C15_C0_4</xt>
IMP_MMU_DATA2_EL3	TLB Data register 2	MRS <xt>, S3_6_C15_C0_5</xt>

10.1 L1 cache encodings

Both the L1 data and instruction caches are 4-way set associative.

The size of the configured cache determines the number of sets in each way. The encoding that is used to locate the cache data entry for tag and data memory is set in x_n in the appropriate sys instruction. It is similar for both the tag and data RAM access.

The following tables show the encodings required for locating and selecting a given cache line.

Table 10-2: Cortex®-A715 L1 instruction cache tag location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x00
[23:20]	Reserved
[19:18]	Way
[17:14]	Reserved
[13:6]	Virtual Address bits[13:6]
[5:0]	Reserved

Table 10-3: Cortex®-A715 L1 instruction cache tag location encoding for 32KB

Bit field of Xn	Description
[31:24]	RAMID = 0x00
[23:20]	Reserved
[19:18]	Way
[17:13]	Reserved
[12:6]	Virtual Address bits[12:6]
[5:0]	Reserved

Table 10-4: Cortex®-A715 L1 instruction cache data location encoding for 64KB

Bit field of Xn	Description
[31:24]	RAMID = 0x01
[23:20]	Reserved
[19:18]	Way
17	Reserved
[16:14]	Virtual Address bits[5:3]
[13:6]	Virtual Address bits[13:6]

Bit field of Xn	Description
[5:0]	Reserved

Table 10-5: Cortex®-A715 L1 instruction cache data location encoding for 32KB

Bit field of Xn	Description					
[31:24]	RAMID = 0x01					
[23:20]	Reserved					
[19:18]	Way					
17	Reserved					
[16:14]	Virtual Address bits[5:3]					
13	Reserved					
[12:6]	Virtual Address bits[12:6]					
[5:0]	Reserved					

Table 10-6: Cortex®-A715 L1 data cache tag location encoding for 64KB (<n> = 13), and 32KB (<n> = 12)

Bit field of Xn	Description						
[31:24]	RAMID = 0x08						
[23:20]	Reserved						
[19:18]	Way						
[17:16]	Bank selection						
	0ь00						
	Tag RAM O						
	0b01						
	Tag RAM 1						
	0ь10						
	Tag RAM 2						
[15: <n+1>]</n+1>	Unused						
[<n>:6]</n>	Virtual Address bits[<n>:6]</n>						
[5:0]	Reserved						

Table 10-7: Cortex®-A715 L1 data cache data location encoding for 64KB (< n > = 13), and 32KB (< n > = 12)

Bit field of Xn	Description
[31:24]	RAMID = 0x09
[23:20]	Reserved
[19:18]	Way
[17:16]	Virtual Address bits[5:4]
[15: <n+1>]</n+1>	Unused
[<n>:6]</n>	Virtual Address bits[<n>:6]</n>
[5:0]	Reserved

10.1.1 L1 RAM returned data

For each register, any access to the L1 RAM returns data.

Click the register name in the following table for details on the returned data format.

Table 10-8: Generic system control register summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
IMP_ISIDE_DATA0_EL3	3	6	C15	CO	0	_	64-bit	RAMINDEX Instruction Data register 0
IMP_ISIDE_DATA1_EL3	3	6	C15	CO	1	_	64-bit	RAMINDEX Instruction Data register 1
IMP_ISIDE_DATA2_EL3	3	6	C15	CO	2	_	64-bit	RAMINDEX Instruction Data register 2
IMP_DSIDE_DATA0_EL3	3	6	C15	C1	0	_	64-bit	RAMINDEX L1D Data register 0
IMP_DSIDE_DATA1_EL3	3	6	C15	C1	1	_	64-bit	RAMINDEX L1D Data register 1
IMP_DSIDE_DATA2_EL3	3	6	C15	C1	2	_	64-bit	RAMINDEX L1D Data register 2

10.2 L2 cache encodings

The L2 cache is 8-way set associative.

The size of the configured cache determines the number of sets in each way. The encoding that is used to locate the cache data entry for tag and data memory is set in x_n in the appropriate sys instruction. It is similar for both the tag and data RAM access.

The following tables show the encodings required for locating and selecting a given cache line.

Table 10-9: Cortex $^{\otimes}$ -A715 L2 cache tag location encoding for 512KB ($^{\circ}$ n> = 15), 256KB ($^{\circ}$ n> = 14), and 128KB ($^{\circ}$ n> = 13)

Bit field of Xn	Description
[31:24]	RAMID = 0x10
[23:21]	Reserved
[20:18]	Way
[17: <n>+1]</n>	Reserved
[<n>:7]</n>	Physical Address bits[<n>:7]</n>
[6]	Superbank - Physical Address bit[6]
[5:0]	Reserved

Table 10-10: Cortex®-A715 L2 cache data location encoding for 512KB (<n> = 15), 256KB (<n> = 14), and 128KB (<n> = 13)

Bit field of Xn	Description				
[31:24]	RAMID = 0x11				
[23:21]	Reserved				
[20:18]	Way				
[17: <n>+1]</n>	Reserved				

Bit field of Xn	Description					
[<n>:7]</n>	Physical Address bits[<n>:7]</n>					
[6]	Superbank - Physical Address bit[6]					
[5:4]	16B granule inside the line					
[3:0]	Reserved					

10.2.1 L2 RAM returned data

For each register, any access to the L2 RAM returns data.

Click the register name in the following table for details on the returned data format.

Table 10-11: Generic system control register summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
IMP_L2_DATA0_EL3	3	6	C15	C1	3	_	64-bit	RAMINDEX L2 Data register 0
IMP_L2_DATA2_EL3	3	6	C15	C1	4	_	64-bit	RAMINDEX L2 Data register 2
IMP_L2_DATA1_EL3	3	6	C15	C1	5	_	64-bit	RAMINDEX L2 Data register 1

10.3 L2 TLB encodings

The L2 TLB RAM for small pages (TCSP) is 6-way set associative, and the L2 TLB RAM for medium pages (TCMP) is 4-way set associative.

The following tables show the encodings required for locating and selecting a given cache line.

Table 10-12: Cortex®-A715 L2 TLB location encoding

Bit field of Xn	Description						
[31:24]	RAMID = 0x18						
[23:20]	Reserved						
[19:16]	• TCSP: Way (0-5)						
	• TCMP: Way (0-3)						
[15:13]	Reserved						
12	Array						
	0ь0						
	TCSP						
	0b1						
	TCMP						
[11:8]	Reserved						
[7:0]	TCSP: Index (0-255)						
	• TCMP: Index (0-63)						

10.3.1 L2 TLB RAM returned data

For each register, any access to the L2 TLB RAM returns data.

Click the register name in the following table for details on the returned data format.

Table 10-13: Generic system control register summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
IMP_MMU_DATA0_EL3	3	6	C15	C0	3	_	64-bit	RAMINDEX TLB Data register 0
IMP_MMU_DATA1_EL3	3	6	C15	C0	4	_	64-bit	RAMINDEX TLB Data register 1
IMP_MMU_DATA2_EL3	3	6	C15	CO	5	_	64-bit	RAMINDEX TLB Data register 2

11. RAS Extension support

The Cortex®-A715 core supports the *Reliability*, *Availability*, *and Serviceability* (RAS) v1.1 Extension, however it does not support the optional RAS Timestamp Extension.

In particular, the Cortex®-A715 core supports these RAS Extension features:

- Cache protection with Single Error Correct, Double Error Detect (SECDED), Error Correcting Code (ECC) on the functional RAMs that contain dirty data. This includes the L1 data tag and data, the L2 tag and data, and the L2 Transaction Queue (TQ) RAMs.
- Cache protection with Single Error Detect (SED) parity on the functional RAMs that only contain clean data. This includes the L1 instruction tag and data cache, and the Memory Management Unit (MMU) RAMs.
- The Error Synchronization Barrier (ESB) instruction. When an ESB instruction is executed, the core ensures that all SError Interrupts that are generated by instructions before the ESB are either taken by the core or pended in DISR_EL1.
- Poison attribute on bus transfers
- Error Data Record registers
- Fault Handling Interrupts (FHIs)
- Error Recovery Interrupts (ERIs)
- Error injection

The Cortex®-A715 core features the following nodes:

- Node 0 that includes the shared L3 memory system in the DynamIQ[™] Shared Unit-110 (DSU-110)
- Node 1 that includes the private L1 and L2 memory systems in the core

For more information on the architectural RAS Extension and the definition of a node, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile.

For information on the node that includes the shared L3 memory system, see RAS Extension support in the Arm® DynamlQ™ Shared Unit-110 Technical Reference Manual.

11.1 Cache protection behavior

The configuration of the *Reliability*, *Availability*, *and Serviceability* (RAS) Extension that is implemented in the Cortex®-A715 core includes cache protection. In this case, the Cortex®-A715 core protects against errors that result in a RAM bitcell holding the incorrect value.

The RAMs in the Cortex®-A715 core have the following capabilities:

SED parity

Single Error Detect (SED). One bit of parity is applicable to the entire word. The word size is specific for each RAM and depends on the protection granule.

SECDED ECC

Single Error Correct, Double Error Detect (SECDED), Error Correcting Code (ECC). The word size is specific for each RAM and depends on the protection granule.

The following table indicates which protection type is applied to each RAM. The core can progress and remain functionally correct when there is a single bit error in any RAM.

Table 11-1: RAM cache protection

RAM	Parity or ECC support
L1 instruction cache tag	SED parity
L1 instruction cache data	
Translation Lookaside Buffer (TLB)	
L1 data cache tag	SECDED ECC
L1 data cache auxiliary tag	
L1 data cache data	
L2 cache tag	
L2 cache data	
L2 Transaction Queue (TQ)	

If there are multiple single bit errors in different RAMs, or within different protection granules within the same RAM, then the core also remains functionally correct.

If there is a double bit error in a single RAM within the same protection granule, then the behavior depends on the RAM:

- For RAMs with SECDED capability, the core detects and either reports or defers the error. If the error is in a cache line containing dirty data, then that data might be lost.
- For RAMs with only SED, the core does not detect a double bit error. This might cause data corruption.

If there are three or more bit errors within the same protection granule, the core might or might not detect the errors. Whether it detects the errors or not depends on the RAM and the position of the errors within the RAM. The cache protection feature of the core has a minimal performance impact when no errors are present.

11.2 Error containment

The Cortex®-A715 core supports error containment for data errors. This means that detected data errors are not silently propagated. Data errors are deferred using data poisoning, ensuring that a

consumer is aware of the error. Uncorrectable L1 data cache tag errors and L2 cache tag errors are not containable.

Error containment also implies support for poisoning if there is a double error on an eviction. This ensures that the error of the associated data is reported when it is consumed.

Support for the *Error Synchronization Barrier* (ESB) instruction in the core also allows further isolation of imprecise exceptions that are reported when poisoned data is consumed.

11.3 Fault detection and reporting

When the Cortex®-A715 core detects a fault, it raises a Fault Handling Interrupt (FHI) exception or an Error Recovery Interrupt (ERI) exception through the fault or the error signals. FHIs and ERIs are reflected in the Reliability, Availability, and Serviceability (RAS) registers, which are updated in the node that detects the errors. Core node errors are reported using **nCOREFAULTIRQ**.

Uncorrected faults

When ERR1CTLR.FI is set, all detected Deferred errors and Uncorrected errors that core n detects generate an FHI through the **nFAULTIRQ[n+1]** signal.

When ERR1CTLR.CFI or any other CE-counter overflow bits are set, then all detected Corrected errors also cause an FHI to be generated.

Uncorrected interrupts

When ERR1CTLR.UI is set, all detected Uncorrected errors that are not deferred that core n detects generate an error recovery interrupt on the **nCOREERRIQ** signal.

Clearing reported faults

nFAULTIRQ[n+1] and **nERRIRQ[n+1]** signals must remain asserted until software clears them by writing the ERR1STATUS register.

11.4 Error detection and reporting

When the Cortex®-A715 core consumes an error, it raises different exceptions depending on the error type.

The Cortex®-A715 core might raise:

- A Synchronous External Abort (SEA)
- An Asynchronous External Abort (AEA)
- An Error Recovery Interrupt (ERI)

Error detection and reporting registers

The following registers are provided:

- Error Record Feature Registers, ERR1FR. These read-only registers specify various error record settings.
- Error Record Control Registers, ERR1CTLR. These registers enable error reporting and also enable various interrupts that are related to errors and faults.
- Error Record Miscellaneous Registers, ERR1MISCO-3. These registers record details of the error location and counts.
- Pseudo-fault Generation Feature register, ERR1PFGF. This read-only register specifies various error settings.

11.4.1 Error reporting and performance monitoring

All detected memory errors, *Error Correcting Code* (ECC) or parity errors, trigger the MEMORY_ERROR event.

The MEMORY_ERROR event is counted by the *Performance Monitoring Unit* (PMU) counters if it is selected and the counter is enabled.

In Secure state, the event is counted only if MDCR_EL3.SPME is asserted. See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for a description of MDCR EL3.

Related information

18.1 Performance monitors events on page 97

11.5 Error injection

Error injection consists of inserting an error in the error detection logic to verify the error handling software.

Error injection uses the error detection and reporting registers to insert errors. The Cortex®-A715 core can inject the following error types:

Corrected errors

A Corrected Error (CE) is generated for a single Error Correcting Code (ECC) error on an L1 data cache access.

Deferred errors

A Deferred Error (DE) is generated for a double ECC error on eviction of a cache line from the L1 cache to the L2 cache, or as a result of a snoop on the L1 cache.

Uncontainable errors

An *Uncontainable Error* (UC) is generated for a double ECC error on the L1 tag RAM, or L2 tag RAM following an eviction.

An error can be injected immediately or when a 32-bit counter reaches zero. You can control the value of the counter through the Error Pseudo-fault Generation Countdown Register, ERR1PFGCDN. The value of the counter decrements on a per clock cycle basis. See the Arm®

RAS Extension support

Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A architecture profile for more information about ERR1PFGCDN.

Error injection is a separate source of error within the system and does not create hardware faults.

11.6 AArch64 RAS registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** RAS registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 11-2: RAS registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
ERRIDR_EL1	3	0	C5	C3	0	_	64-bit	Error Record ID Register
ERRSELR_EL1	3	0	C5	C3	1	_	64-bit	Error Record Select Register
ERXFR_EL1	3	0	C5	C4	0	_	64-bit	Selected Error Record Feature Register
ERXCTLR_EL1	3	0	C5	C4	1	_	64-bit	Selected Error Record Control Register
ERXSTATUS_EL1	3	0	C5	C4	2	_	64-bit	Selected Error Record Primary Status Register
ERXADDR_EL1	3	0	C5	C4	3	_	64-bit	Selected Error Record Address Register
ERXPFGF_EL1	3	0	C5	C4	4	_	64-bit	Selected Pseudo-fault Generation Feature register
ERXPFGCTL_EL1	3	0	C5	C4	5	_	64-bit	Selected Pseudo-fault Generation Control register
ERXPFGCDN_EL1	3	0	C5	C4	6	-	64-bit	Selected Pseudo-fault Generation Countdown register
ERXMISCO_EL1	3	0	C5	C5	0	_	64-bit	Selected Error Record Miscellaneous Register 0
ERXMISC1_EL1	3	0	C5	C5	1	-	64-bit	Selected Error Record Miscellaneous Register 1
ERXMISC2_EL1	3	0	C5	C5	2	-	64-bit	Selected Error Record Miscellaneous Register 2
ERXMISC3_EL1	3	0	C5	C5	3	-	64-bit	Selected Error Record Miscellaneous Register 3

12. Utility bus

The utility bus provides access to control registers for various system components in the $DynamIQ^{\mathbb{M}}$ $Shared\ Unit-110\ (DSU-110)$ and the cores within the DSU-110 DynamIQ $^{\mathbb{M}}$ cluster. The utility bus is implemented as a 64-bit AMBA AXI5 slave port, and the control registers are memory-mapped onto the utility bus.

The utility bus provides access to the following system functions in the Cortex®-A715 core:

- Activity Monitor Unit (AMU) registers in the cores
- Max Power Mitigation Mechanism (MPMM) registers in the cores

Information about the PPU registers for the cores in the cluster is provided in the $Arm^{\mathbb{B}}$ Dynaml $Q^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual. For all other registers accessed by the utility bus see Utility bus in the $Arm^{\mathbb{B}}$ Dynaml $Q^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual.

12.1 Base addresses for system components

Each set of System registers is grouped on separate 64KB page boundaries allowing access to be enforced by a *Memory Management Unit* (MMU).

The following table shows the base addresses for each set of system component registers and what Security state they should be accessed from.

• The base address for each set of registers for the core AMU, and MPMM registers depend on the core instance number <n>, from 0 to the total number of cores minus one.

- In the following table, any address space that is not documented is treated as RAZ/WI.
- The base addresses in the following table are the addresses accessed on the utility bus interface. The system interconnect typically maps these addresses into a particular address range based on the system address map. Therefore, software has to add the base address listed here onto the system address range base to get the absolute physical address of a register.

Table 12-1: Utility bus base addresses for system component registers

Base address, n is core instance number	Registers	Security state	Memory map
0x <n>9_0000</n>	Core <n> AMU</n>	Both	B.4 External AMU registers summary on page 585
0x <n>B_0000</n>	Core <n> MPMM</n>	Secure	B.1 External MPMM registers summary on page 481
0x <n>D_0000 - 0x<n>F_0000</n></n>	Reserved	-	-

For more information on utility bus base addresses for system component registers, see the Arm^{\otimes} $DynamlQ^{\sim}$ $Shared\ Unit-110\ Technical\ Reference\ Manual.$

13. GIC CPU interface

The Generic Interrupt Controller (GIC) supports and controls interrupts. The GIC Distributor connects to the Cortex®-A715 core through a GIC CPU interface. The GIC CPU interface includes registers to mask, identify, and control the state of interrupts that are forwarded to the core.

Each core in a DSU-110 DynamlQ[™] cluster has a GIC CPU interface, which connects to a common external distributor component.

The GICv4.1 architecture implemented in the Cortex®-A715 core supports:

- Two Security states
- Secure virtualization
- Software-Generated Interrupts (SGIs)
- Message-based interrupts
- System register access for the CPU interface
- Interrupt masking and prioritization
- Cluster environments, including systems that contain more than eight cores
- Wakeup events in power management environments

The GIC includes interrupt grouping functionality that supports:

- Configuring each interrupt to belong to either Group 0 or Group 1, where Group 0 interrupts are always Secure
- Signaling Group 1 interrupts to the target core using either the IRQ or the FIQ exception request. Group 1 interrupts can be Secure or Non-secure
- Signaling Group 0 interrupts to the target core using the FIQ exception request only
- A unified scheme for handling the priority of Group 0 and Group 1 interrupts

See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for more information about interrupt groups.

13.1 Disable the GIC CPU interface

The Cortex®-A715 core always includes the *Generic Interrupt Controller* (GIC) CPU interface. However, you can disable it to meet your requirements.

To disable the GIC CPU interface, assert the **GICCDISABLE** signal HIGH at reset. If you disable it this way, then you can use an external GIC IP to drive the interrupt signals (**nFIQ**, **nIRQ**). If the Cortex®-A715 core is not integrated with an external GIC interrupt distributor component (minimum GICv3 architecture) in the system, then you must disable the GIC CPU interface.

If you disable the GIC CPU interface, then:

- The virtual input signals **nVIRQ** and **nVFIQ** and the input signals **nIRQ** and **nFIQ** can be driven by an external GIC in the SoC.
- GIC system register access generates **UNDEFINED** instruction exceptions.

If you enable the GIC CPU interface, then you must tie off **nVIRQ** and **nVFIQ** to HIGH. This is because the GIC CPU interface generates the virtual interrupt signals to the core. The **nIRQ** and **nFIQ** signals are controlled by software, therefore there is no requirement to tie them HIGH.

See Functional integration in the Arm[®] DynamlQ^{M} Shared Unit-110 Configuration and Integration Manual for more information on these signals.

13.2 AArch64 GIC system registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** GIC system registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 13-1: GIC system registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
ICC_CTLR_EL1	3	0	C12	C12	4	_	64-bit	Interrupt Controller Control Register (EL1)
ICV_CTLR_EL1	3	0	C12	C12	4	_	64-bit	Interrupt Controller Virtual Control Register
ICC_APORO_EL1	3	0	C12	C8	4	_	64-bit	Interrupt Controller Active Priorities Group 0 Registers
ICV_APORO_EL1	3	0	C12	C8	4	_	64-bit	Interrupt Controller Virtual Active Priorities Group 0 Registers
ICC_AP1R0_EL1	3	0	C12	C9	0	_	64-bit	Interrupt Controller Active Priorities Group 1 Registers
ICV_AP1R0_EL1	3	0	C12	C9	0	_	64-bit	Interrupt Controller Virtual Active Priorities Group 1 Registers
ICH_VTR_EL2	3	4	C12	C11	1	_	64-bit	Interrupt Controller VGIC Type Register
ICC_CTLR_EL3	3	6	C12	C12	4	_	64-bit	Interrupt Controller Control Register (EL3)

14. Advanced SIMD and floating-point support

The Cortex®-A715 core supports the Advanced SIMD and scalar floating-point instructions in the A64 instruction set without floating-point exception trapping.

The Cortex®-A715 core floating-point implementation includes features up to Arm®v8.5-A. BFloat16 floating-point and Int8 matrix multiplication are part of these supported features.

The Cortex®-A715 core implements all operations in hardware with support for all combinations of:

- Rounding modes
- Flush-to-zero
- Default Not a Number (NaN) modes

15. Scalable Vector Extensions support

The Cortex®-A715 core supports the *Scalable Vector Extension* (SVE) and the *Scalable Vector Extension 2* (SVE2). SVE and SVE2 complement and do not replace AArch64 Advanced SIMD and floating-point functionality.

SVE is an optional extension introduced by the Armv8.2 architecture. SVE provides vector instructions that, primarily, support wider vectors than the Arm Advanced SIMD instruction set.

The Cortex®-A715 core implements a scalable vector length of 128 bits.

All the features and additions that SVE introduces are described in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension.

16. System control

The system registers control and provide status information for the functions that the core implements.

The main functions of the system registers are:

- System performance monitoring
- Cache configuration and management
- Overall system control and configuration
- Memory Management Unit (MMU) configuration and management
- Generic Interrupt Controller (GIC) configuration and management

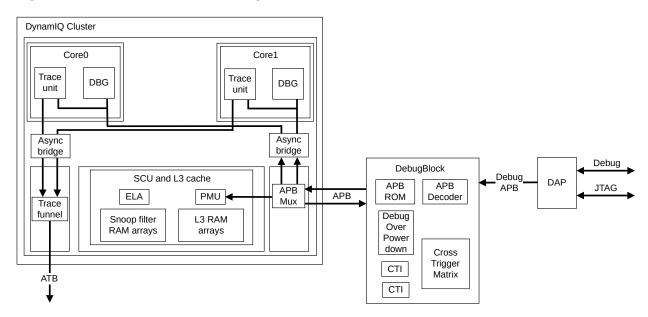
The system registers are accessible in AArch64 Execution state at ELO to EL3. Some of the system registers are accessible through the external debug interface or utility bus interface.

17. Debug

The DSU-110 DynamlQ[™] cluster provides a debug system that supports both self-hosted and external debug. It has an external DebugBlock component, and integrates various CoreSight debug related components.

The CoreSight debug related components are split into two groups, with some components in the DynamlQ $^{\text{m}}$ cluster, and others in the separate DebugBlock.

The DebugBlock is a dedicated debug component in the DSU-110, separate from the cluster. The DebugBlock operates within a separate power domain, enabling connection to a debugger to be maintained when the cores and the DynamlQ $^{\text{m}}$ cluster are both powered down.


The connection between the cluster and the DebugBlock consists of a pair of Advanced Peripheral Bus APB interfaces, one in each direction. All debug traffic, except the authentication interface, takes place over this interface as read or write APB transactions. This debug traffic includes register reads, register writes, and Cross Trigger Interface (CTI) triggers.

The debug system implements the following CoreSight debug components:

- Per-core trace unit, integrated into the CoreSight subsystem.
- Per-core CTI, contained in the DebugBlock.
- Cross Trigger Matrix (CTM)
- Debug control provided by AMBA® APB interface to the DebugBlock

The following figure shows how the debug system is implemented with the DynamlQ[™] cluster.

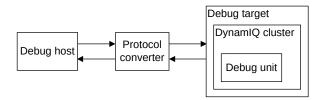
Figure 17-1: DynamIQ[™] cluster debug components

The primary debug APB interface on the DebugBlock controls the debug components. The APB decoder decodes the requests on this bus before they are sent to the appropriate component in the DebugBlock or in the Dynaml Q^{TM} cluster. The per-core CTIs are connected to a CTM.

Each core contains a debug component that the debug APB bus accesses. The cores support debug over powerdown using modules in the DebugBlock that mirror key core information. These modules allow access to debug over powerdown CoreSight™ registers while the core is powered down.

The trace unit in each core outputs trace, which is funneled in the Dynaml Q^{M} cluster down to a single AMBA® 4 ATBv1.1 interface.

See Debug in the Arm[®] DynamlQ^{$^{\text{M}}$} Shared Unit-110 Technical Reference Manual for more information about the DynamlQ^{$^{\text{M}}$} cluster debug components.


The Cortex®-A715 core also supports direct access to internal memory, that is, cache debug. Direct access to internal memory allows software to read the internal memory that the L1 and L2 cache and *Translation Lookaside Buffer* (TLB) structures use. See 10. Direct access to internal memory on page 71 for more information.

17.1 Supported debug methods

The DSU-110 DynamlQ[™] cluster along with its associated cores is part of a debug system that supports both self-hosted and external debug.

The following figure shows a typical external debug system.

Figure 17-2: External debug system

Debug host

A computer, for example a personal computer, that is running a software debugger such as the Arm® Debugger. You can use the debug host to issue high-level commands. For example, you can set a breakpoint at a certain location or examine the contents of a memory address.

Protocol converter

The debug host sends messages to the debug target using an interface such as Ethernet. However, the debug target typically implements a different interface protocol. A device such as DSTREAM is required to convert between the two protocols.

Debug target

The lowest level of the system implements system support for the protocol converter to access the debug unit. For DSU-110 based devices, the mechanism used to access the debug unit is based on the CoreSight architecture. The DSU-110 DebugBlock is accessed using an APB interface and the debug accesses are then directed to the selected A715 core inside the DynamlQ $^{\text{M}}$ cluster. An example of a debug target is a development system with a test chip or a silicon part with a A715 core.

Debug unit

Helps debugging software that is running on the core:

- DSU-110 and external hardware based around the core.
- Operating systems.
- Application software.

With the debug unit, you can:

- Stop program execution.
- Examine and alter process and coprocessor state.
- Examine and alter memory and the state of the input or output peripherals.
- Restart the processing element (PE).

For self-hosted debug, the debug target runs debug monitor software that runs on the core in the $\mathsf{Dynam} \mathsf{IQ}^\mathsf{M}$ cluster. This way, it does not require expensive interface hardware to connect a second host computer.

17.2 Debug register interfaces

The Cortex®-A715 core implements the Arm®v9.0-A Debug architecture. It also supports the Arm®v8.4-A Debug architecture and Arm®v8.3-A Debug over powerdown.

The Debug architecture defines a set of Debug registers. The Debug register interfaces provide access to these registers either from software running on the core or from an external debugger. See Debug in the Arm^{\otimes} DynamlQ $^{\sim}$ Shared Unit-110 Technical Reference Manual for more information.

Related information

5.7 Debug over powerdown on page 50

17.2.1 Core interfaces

System register access allows the Cortex®-A715 core to access certain debug registers directly. The debug register interfaces provide access to these registers either from software running on the core or from an external debugger.

Access to the debug registers is partitioned as follows:

Debug

This function is both system register based and memory-mapped. You can access the debug register map using the APB slave port that connects into the DebugBlock of the $DynamIQ^{\text{TM}}$ Shared Unit-110 (DSU-110).

Performance monitoring

This function is system register based and memory-mapped. You can access the performance monitor registers using the APB slave port that connects into the DebugBlock of the DSU.

Trace

This function is system register based and memory-mapped. You can access the trace unit registers using the APB slave port that connects into the DebugBlock of the DSU.

Statistical profiling

This function is system register based.

ELA registers

This function is memory-mapped. You can access the *Embedded Logic Analyzer* (ELA) registers using the APB slave port that connects into the DebugBlock of the DSU.

For information on the APB slave port interface, see Interfaces in the Arm[®] DynamlQ^{$^{\text{M}}$} Shared Unit-110 Technical Reference Manual.

17.2.2 Effects of resets on debug registers

The **complexporeset_n** and **complexreset_n** signals of the core affect the debug registers.

complexporeset_n maps to a Cold reset that covers reset of the core logic and the integrated debug functionality. This signal initializes the core logic, including the trace unit, breakpoint, watchpoint logic, performance monitor, and debug logic.

complexreset_n maps to a Warm reset that covers reset of the core logic. This signal resets some of the debug and performance monitor logic.

17.2.3 External access permissions to Debug registers

External access permission to the Debug registers is subject to the conditions at the time of the access.

The following table shows the core response to accesses through the external debug interface.

Table 17-1: External access conditions to registers

Name	Condition	Description
Off	EDPRSR.PU = 1	Because Armv8.3-DoPD, Debug over PowerDown, is implemented, access to this field is <i>Read-As-One</i> (RAO). When the core power domain is in a powerup state, the Debug registers in the core power domain can be accessed. When the core power domain is OFF, accesses to the Debug registers in the core power domain, including EDPRSR, return an error.
OSLK	OSLSR_EL1.OSLK = 1	OS Lock is locked.

Name	Condition	Description
EDAD	FALSE	External debug access is disabled. If an error is returned because of an EDAD condition code, and this is the highest priority error condition, then EDPRSR.SDAD is set to 1. Otherwise, SDAD is unchanged.
Default	-	This is normal access, none of the conditions apply.

17.2.4 Breakpoints and watchpoints

The Cortex®-A715 core supports six breakpoints, four watchpoints, and a standard *Debug Communications Channel* (DCC).

A breakpoint consists of a breakpoint control register and a breakpoint value register. These two registers are referred to as a *Breakpoint Register Pair* (BRP). Four of the breakpoints (BRP 0-3) match only to the *Virtual Address* (VA) and the other two (BRP 4 and 5) match against either the VA or context ID, or the *Virtual Machine ID* (VMID).

You can use watchpoints to stop your target when a specific memory address is accessed by your program. All the watchpoints can be linked to two breakpoints (BRP 4 and 5) to enable a memory request to be trapped in a given process context.

17.3 Debug events

A debug event can be either a software debug event or a Halting debug event.

The Cortex®-A715 core responds to a debug event in one of the following ways:

- It ignores the debug event
- It takes a debug exception
- It enters debug state

In the Cortex®-A715 core, watchpoint debug events are always synchronous. Memory hint instructions and cache clean operations, except pc zva, and pc ivac do not generate watchpoint debug events. Store exclusive instructions generate a watchpoint debug event even when the check for the control of exclusive monitor fails. Atomic cas instructions generate a watchpoint debug event even when the compare operation fails.

A Cold reset sets the Debug OS Lock. For the debug events and debug register accesses to operate normally, the Debug OS Lock must be cleared.

17.4 Debug memory map and debug signals

The debug memory map and debug signals are handled at the DSU-110 DynamlQ[™] cluster level.

See Debug and ROM tables in the Arm® DynamlQ[™] Shared Unit-110 Technical Reference Manual.

17.5 ROM table

The Cortex®-A715 core includes a ROM table that contains a list of components in the system. Debuggers must use the ROM table to determine which CoreSight components are implemented.

The ROM table is a CoreSight debug related component that aids system debug along with CoreSight SoC and is for the Cortex®-A715 core. There is one ROM table for each core and ROM tables comply with the Arm® CoreSight[™] Architecture Specification v3.0.

The $DynamIQ^{\mathbb{M}}$ Shared Unit-110 (DSU-110) has its own ROM tables, one for the cluster and one for the DebugBlock, and has entry points in the cluster ROM table for the ROM tables belonging to each core. See ROM tables in the $Arm^{\mathbb{B}}$ DynamIQ $^{\mathbb{M}}$ Shared Unit-110 Technical Reference Manual for more information.

The Cortex®-A715 core ROM table includes the following entries:

Table 17-2: Core ROM table

Offset	Name	Description
0x0000	ROMENTRYO	Core debug
0x0004	ROMENTRY1	Core PMU
0x0008	ROMENTRY2	Core trace unit
0x000C	ROMENTRY3	Optional ELA

Related information

17.8 External ROM table registers on page 95

17.6 CoreSight[™] component identification

Each component associated with the Cortex®-A715 core has a unique set of CoreSight™ ID values. The following table shows these values.

Table 17-3: Cortex®-A715 core CoreSight™ component identification

Component	Peripheral ID	Component ID	DevType	DevArch	Core revision
DBG	0x04101BBD4D	0xB105900D	0x15	0x47709A15	r1p1
PMU			0x16	0x47702A16	
Trace unit			0x13	0x47705A13	
ROM table]		0x00	0x47700AF7	

17.7 External Debug registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped Debug registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 17-4: Debug registers summary

Offset	Name	Reset	Width	Description
0x090	EDRCR	_	32-bit	External Debug Reserve Control Register
0x094	EDACR	_	32-bit	External Debug Auxiliary Control Register
0x310	EDPRCR	_	32-bit	External Debug Power/Reset Control Register
0xD00	MIDR_EL1	_	32-bit	Main ID Register
0xD20	EDPFR	_	64-bit	External Debug Processor Feature Register
0xD24	EDPFR	_	64-bit	External Debug Processor Feature Register
0xD28	EDDFR	_	64-bit	External Debug Feature Register
0xD2C	EDDFR	_	64-bit	External Debug Feature Register
0xFBC	EDDEVARCH	_	32-bit	External Debug Device Architecture register
0xFC0	EDDEVID2	_	32-bit	External Debug Device ID register 2
0xFC4	EDDEVID1	_	32-bit	External Debug Device ID register 1
0xFC8	EDDEVID	_	32-bit	External Debug Device ID register 0
0xFCC	EDDEVTYPE	_	32-bit	External Debug Device Type register
0xFD0	EDPIDR4	_	32-bit	External Debug Peripheral Identification Register 4
0xFE0	EDPIDR0	_	32-bit	External Debug Peripheral Identification Register 0
0xFE4	EDPIDR1	_	32-bit	External Debug Peripheral Identification Register 1
0xFE8	EDPIDR2	_	32-bit	External Debug Peripheral Identification Register 2
0xFEC	EDPIDR3	_	32-bit	External Debug Peripheral Identification Register 3
0xFF0	EDCIDR0	_	32-bit	External Debug Component Identification Register 0
0xFF4	EDCIDR1	_	32-bit	External Debug Component Identification Register 1
0xFF8	EDCIDR2	_	32-bit	External Debug Component Identification Register 2
0xFFC	EDCIDR3		32-bit	External Debug Component Identification Register 3

17.8 External ROM table registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped ROM table registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 17-5: ROM table registers summary

Offset	Name	Reset	Width	Description
0x0	ROMENTRY0	_	32-bit	Class 0x9 ROM Table Entries
0x4	ROMENTRY1	_	32-bit	Class 0x9 ROM Table Entries
0x8	ROMENTRY2	_	32-bit	Class 0x9 ROM Table Entries
0xC	ROMENTRY3	_	32-bit	Class 0x9 ROM Table Entries
0xFB8	AUTHSTATUS	_	32-bit	Authentication Status Register
0xFBC	DEVARCH	_	32-bit	Device Architecture Register
0xFD0	PIDR4	_	32-bit	Peripheral Identification Register 4
0xFE0	PIDRO	_	32-bit	Peripheral Identification Register 0
0xFE4	PIDR1	_	32-bit	Peripheral Identification Register 1
0xFE8	PIDR2	_	32-bit	Peripheral Identification Register 2
0xFEC	PIDR3	_	32-bit	Peripheral Identification Register 3
0xFF0	CIDRO	_	32-bit	Component Identification Register 0
0xFF4	CIDR1	_	32-bit	Component Identification Register 1
0xFF8	CIDR2	_	32-bit	Component Identification Register 2
0xFFC	CIDR3	_	32-bit	Component Identification Register 3

18. Performance Monitors Extension support

The Cortex®-A715 core implements the Performance Monitors Extension, including Arm®v8.4-A and Arm®v8.5-A performance monitoring features.

The Cortex®-A715 core Performance Monitoring Unit (PMU):

- Collects events through an event interface from other units in the design. These events are used as triggers for event counters.
- Supports cycle counters through the Performance Monitors Control Register.
- Implements PMU snapshots for context samples.
- Provides six or 20 PMU 64-bit counters that count any of the events available in the core. The absolute counts that are recorded might vary because of pipeline effects. This variation has negligible effect except in cases where the counters are enabled for a very short time.

You can program the PMU using either the System registers or the external Debug APB interface.

18.1 Performance monitors events

The Cortex®-A715 core *Performance Monitoring Unit* (PMU) collects events from other units in the design and uses numbers to reference these events.

CommonEvent PMU events

The following table shows the Cortex®-A715 core performance monitors events that are generated and the numbers that the PMU uses to reference the events. The table also shows the bit position of each event on the event bus. Event numbers that are not listed are reserved.

Unless otherwise indicated, each of these events can be exported to the trace unit and selected in accordance with the Arm® Embedded Trace Extension.

Table 18-1: CommonEvent PMU events

Event number	Mnemonic	Description
0x0000	SW_INCR	Instruction architecturally executed, Condition code check pass, software increment
		This event counts any instruction architecturally executed (condition code check pass).

Event number	Mnemonic	Description
0x0001	L1I_CACHE_REFILL	Level 1 instruction cache refill
		This event counts any instruction fetch which misses in the cache.
		The following instructions are not counted:
		Cache maintenance instructions
		Non-cacheable accesses
0x0002	L1I_TLB_REFILL	Level 1 instruction TLB refill
		This event counts any refill of the L1 instruction TLB from the MMU Translation Cache (MMUTC). This includes refills that result in a translation fault.
		The following instructions are not counted:
		TLB maintenance instructions
		This event counts regardless of whether the MMU is enabled.
0x0003	L1D_CACHE_REFILL	Level 1 data cache refill
		This event counts any load or store operation or translation table walk that causes data to be read from outside the L1 cache, including accesses which do not allocate into L1.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches.
		Stores of an entire cache line, even if they make a coherency request outside the L1.
		Partial cache line writes which do not allocate into the L1 cache.
		Non-cacheable accesses.
		This event counts the sum of L1D_CACHE_REFILL_RD and L1D_CACHE_REFILL_WR.
0x0004	L1D_CACHE	Level 1 data cache access
		This event counts any load or store operation or translation table walk that looks up in the L1 data cache. In particular, any access that could count the L1D_CACHE_REFILL event causes this event to count.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches.
		Non-cacheable accesses.
		This event counts the sum of L1D_CACHE_RD and L1D_CACHE_WR.
0x0005	L1D_TLB_REFILL	Level 1 data TLB refill
		This event counts any refill of the data L1 TLB from the L2 TLB. This includes refills which result in a translation fault.
		The following instructions are not counted:
		TLB maintenance instructions.
		This event counts regardless of whether the MMU is enabled.

Event number	Mnemonic	Description
0x0008	INST_RETIRED	Instruction architecturally executed
		This event counts all retired instructions, including ones that fail their condition check.
0x0009	EXC_TAKEN	Exception taken
		The counter counts each exception taken.
0x000A	EXC_RETURN	Instruction architecturally executed, Condition code check pass, exception return
0x000B	CID_WRITE_RETIRED	Instruction architecturally executed, Condition code check pass, write to CONTEXTIDR
		This event only counts writes using the CONTEXTIDR_EL1 mnemonic.
		Writes to CONTEXTIDR_EL12 and CONTEXTIDR_EL2 are not counted.
0x000C	PC_WRITE_RETIRED	Instruction architecturally executed, Condition code check pass, software change of the PC
		This event counts all branches taken and popped from the branch monitor. This excludes exception entries, debug entries, and CCFAIL branches.
0x000D	BR_IMMED_RETIRED	Instruction architecturally executed, immediate branch
		This event counts all branches decoded as immediate branches, taken or not, and popped from the branch monitor. This excludes exception entries, debug entries, and CCFAIL branches.
0x000E	BR_RETURN_RETIRED	Instruction architecturally executed, Condition code check pass, procedure return
0x0010	BR_MIS_PRED	Mispredicted or not predicted branch speculatively executed
		This event counts any predictable branch instruction which is mispredicted either due to dynamic misprediction or because the MMU is off and the branches are statically predicted not taken.
0x0011	CPU_CYCLES	Cycle
0x0012	BR_PRED	Predictable branch speculatively executed
		This event counts all predictable branches.
0x0013	MEM_ACCESS	Data memory access
		This event counts memory accesses due to load or store instructions.
		The following instructions are not counted:
		Instruction fetches.
		Cache maintenance instructions.
		Translation table walks or prefetches.
		This event counts the sum of MEM_ACCESS_RD and MEM_ACCESS_WR.
0x0014	L1I_CACHE	Level 1 instruction cache access
		This event counts any instruction fetch which accesses the L1 instruction cache.
		The following instructions are not counted:
		Cache maintenance instructions.
		Non-cacheable accesses.

Event number	Mnemonic	Description
0x0015	L1D_CACHE_WB	Level 1 data cache write-back
		This event counts any write-back of data from the L1 data cache to L2 or L3. The event counts both victim line evictions and snoops, including cache maintenance operations.
		The following instructions are not counted:
		Invalidations which do not result in data being transferred out of the L1.
		• Full-line writes which write to L2 without writing L1, such as write-streaming mode.
0x0016	L2D_CACHE	Level 2 data cache access
		• If the core is configured with a per-core L2 cache, this event counts any transaction from L1 which looks up in the L2 cache, and any writeback from the L1 to the L2. Snoops from outside the core and cache maintenance operations are not counted.
		• If the core is not configured with a per-core L2 cache, this event counts the cluster cache event, as defined by L3D_CACHE.
		If neither a per-core cache nor a cluster cache are configured, then this event is not implemented.
0x0017	L2D_CACHE_REFILL	Level 2 data cache refill
		• If the core is configured with a per-core L2 cache, this event counts any Cacheable transaction from L1 which causes data to be read from outside the core. L2 refills caused by stashes into L2 are not meant to be counted.
		If the core is not configured with a per-core L2 cache, this event counts the cluster cache event, as defined by L3D_CACHE_REFILL.
		If neither a per-core cache nor a cluster cache are configured, then this event is not implemented.
0x0018	L2D_CACHE_WB	Level 2 data cache write-back
		If the core is configured with a per-core L2 cache, this event counts any write-back of data from the L2 cache to a location outside the core. The event includes snoops to the L2 which return data, regardless of whether they cause an invalidation. Invalidations from the L2 which do not write data outside of the core and snoops which return data from the L1 are not counted.
		If the core is not configured with a per-core L2 cache, this event is not implemented.
0x0019	BUS_ACCESS	This event counts for every beat of data that is transferred over the data channels between the core and the SCU. If both read and write data beats are transferred on a given cycle, this event is counted twice on that cycle.
		This event counts the sum of BUS_ACCESS_RD and BUS_ACCESS_WR.
0x001B	INST_SPEC	Operation speculatively executed
		The second of th
	TTDD MIDITE DETIDED	This event duplicates INST_RETIRED.
UXUUIC	TTBR_WRITE_RETIRED	Instruction architecturally executed, condition code check pass, write to TTBR
		This event only counts writes to TTBRO/TTBR1 in AArch32 and TTBRO_EL1/TTBR1_EL1 in AArch64.
		The following instructions are not counted:
		Accesses to TTBR0_EL12/TTBR1_EL12 or TTBR0_EL2/TTBR1_EL2.

Event number	Mnemonic	Description
	BUS_CYCLES	Bus cycle
		This event duplicates CPU_CYCLES.
0x001E	CHAIN	For odd-numbered counters, this event increments the count by one for each overflow of the preceding even-numbered counter. For even numbered counters, there is no increment.
0x0020	L2D_CACHE_ALLOCATE	Level 2 data cache allocation without refill
		This event counts any full cache line write into the L2 cache which does not cause a linefill, including write-backs from L1 to L2 and full-line writes which do not allocate into L1.
0x0021	BR_RETIRED	Instruction architecturally executed, branch
		This event counts all branches, taken or not, popped from the branch monitor. This excludes exception entries, debug entries, and CCFAIL branches. In the ** core, an ISB is a branch, and even micro architectural ISBs are counted.
0x0022	BR_MIS_PRED_RETIRED	Instruction architecturally executed, mispredicted branch
		This event counts any branch that is counted by BR_RETIRED which is not correctly predicted and causes a pipeline clean.
0x0023	STALL_FRONTEND	No operation has been issued, because of the frontend
		The counter counts on any cycle when no operations are issued due to the instruction queue being empty.
0x0024	STALL_BACKEND	No operation has been issued, because of the backend
		The counter counts on any cycle when no operations are issued due to a pipeline stall.
0x0025	L1D_TLB	Level 1 data TLB access
		This event counts any load or store operation which accesses the data L1 TLB. If both a load and a store are executed on a cycle, this event counts twice. This event counts regardless of whether the MMU is enabled.
0x0026	L1I_TLB	Level 1 instruction TLB access
		This event counts any instruction fetch which accesses the instruction L1 TLB. This event counts regardless of whether the MMU is enabled.
0x0029	L3D_CACHE_ALLOCATE	Attributable level 3 data or unified cache allocation without refill This event counts any full cache line write into the L3 cache which does not cause a linefill, including write-backs from L2 to L3 and full-line writes which do not allocate into L2.
		This event also counts WriteUnique and datafull WriteEvictOrEvict.
0x002A	L3D_CACHE_REFILL	Attributable level 3 data or unified cache refill This event counts for any cacheable read transaction returning data from the SCU for which the data source was outside the cluster.
0x002B	L3D_CACHE	Attributable level 3 data or unified cache access This event counts for any cacheable read, write or write-back transaction sent to the SCU.
0x002D	L2D_TLB_REFILL	Level 2 data TLB refill
		This event counts on any refill of the L2 TLB, caused by either an instruction or data access.
		This event does not count if the MMU is disabled.

Event number	Mnemonic	Description
0x002F	L2D_TLB	Level 2 data TLB access
		Attributable level 2 unified TLB access.
		This event counts on any access to the L2 TLB (caused by a refill of any of the L1 TLBs).
		This event does not count if the MMU is disabled.
0x0031	REMOTE_ACCESS	Access to another socket in a multi-socket system
		This event counts any transactions returning data from another socket in a multi-socket system.
0x0034	DTLB_WALK	Data TLB access with at least one translation table walk
		Access to data TLB that caused a translation table walk.
		This event counts on any data access which causes L2D_TLB_REFILL to count.
0x0035	ITLB_WALK	Instruction TLB access with at least one translation table walk
		Access to instruction TLB that caused a translation table walk.
		This event counts on any instruction access which causes L2D_TLB_REFILL to count.
0x0036	LL_CACHE_RD	Last level cache access, read
		This event counts any cacheable read transaction which returns a data source of 'interconnect cache', 'DRAM', 'remote' or 'inter-cluster peer'.
0x0037	LL_CACHE_MISS_RD	Last Level cache miss read
		This event counts any cacheable read transaction which returns a data source of 'DRAM', 'remote' or 'inter-cluster peer'.
0x0039	L1D_CACHE_LMISS_RD	Level 1 data cache long-latency read miss
		Level 1 data cache access, read.
		This event counts any load operation or translation table walk access which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL_RD event causes this event to count.
		The following instructions are not counted:
		Cache maintenance instructions and prefetches.
		Non-cacheable accesses.
0x003A	OP_RETIRED	Micro-operation architecturally executed
		This event counts each operation counted by OP_SPEC that would be executed in a simple sequential execution of the program.
0x003B	OP_SPEC	Micro-operation speculatively executed
		This event counts the number of operations executed by the core, including those that are executed speculatively and would not be executed in a simple sequential execution of the program.

Event number	Mnemonic	Description
0x003C	STALL	No operation sent for execution
		This event counts every Attributable cycle on which no Attributable instruction or operation was sent for execution on this core.
0x003D	STALL_SLOT_BACKEND	No operation sent for execution on a slot due to the backend
		Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution because the backend is unable to accept one of:
		The instruction operation available for the PE on the slot.
		Any operations on the slot.
0x003E	STALL_SLOT_FRONTEND	No operation sent for execution on a slot due to the frontend
		Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution because there was no Attributable instruction or operation available to issue from the PE from the frontend for the slot.
0x003F	STALL_SLOT	No operation sent for execution on a slot
		The counter counts on each Attributable cycle the number of instruction or operation slots that are not occupied by an instruction or operation Attributable to the PE.
0x0040	L1D_CACHE_RD	Level 1 data cache access, read
		Counts any load operation or translation table walk access which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL_RD event causes this event to count. Cache maintenance instructions and prefetches are not counted. Non-cacheable accesses are not counted.
0x0041	L1D_CACHE_WR	Level 1 data cache access, write
		Counts any store operation which looks up in the L1 data cache. In particular, any access which could count the L1D_CACHE_REFILL event causes this event to count. Cache maintenance instructions and prefetches are not counted. Non-cacheable accesses are not counted.
0x0044	L1D_CACHE_REFILL_INNER	Level 1 data cache refill, inner
		This event counts any L1 data cache linefill (as counted by L1D_CACHE_REFILL) which hits in the L2 cache, L3 cache, or another core in the cluster.
0x0045	L1D_CACHE_REFILL_OUTER	Level 1 data cache refill, outer
		This event counts any L1 data cache linefill (as counted by L1D_CACHE_REFILL) which does not hit in the L2 cache, L3 cache, or another core in the cluster, and instead obtains data from outside the cluster.
0x0048	L1D_CACHE_INVAL	Level 1 data cache invalidate
0x0050	L2D_CACHE_RD	Level 2 data cache access, read
		This event counts any transaction issued from L1 caches which looks up in the L2 cache, including requests for instructions fetches and MMU table walks. The transaction is counted regardless of the source that generated it in the L1, being a load, store or prefetch request.
0x0051	L2D_CACHE_WR	Level 2 data cache access, write
		This event counts any full cache line write into the L2 cache which does not cause a linefill, including write-backs from L1 to L2, full-line writes which do not allocate into L1 and MMU descriptor hardware updates performed in L2.

Event number	Mnemonic	Description
0x0052	L2D_CACHE_REFILL_RD	Level 2 data cache refill, read
		This event counts any cacheable transaction generated by a read operation which causes data to be read from outside the L2.
		This event is counted on RXDAT, using the type of request to determine if the refill was for a read (line requested in any state).
0x0053	L2D_CACHE_REFILL_WR	Level 2 data cache refill, write
		This event counts any cacheable transaction generated by a store operation which causes data to be read from outside the L2.
		Counted on RXDAT, using the type of request to determine if the refill was for a write (line requested in unique state).
0x0056	L2D_CACHE_WB_VICTIM	Level 2 data cache write-back, victim
		This event counts any datafull write-back operation caused by allocations.
0x0057	L2D_CACHE_WB_CLEAN	Level 2 data cache write-back, cleaning, and coherency
		This event counts any datafull write-back operation caused by cache maintenance operations or external coherency requests.
0x0058	L2D_CACHE_INVAL	Level 2 data cache invalidate
		This event counts any cache maintenance operation which causes the invalidation of a line present in the L2 cache.
0x0060	BUS_ACCESS_RD	Bus access, read
		This event counts for every beat of data that is transferred over the read data channel between the core and the SCU.
0x0061	BUS_ACCESS_WR	Bus access, write
		This event counts for every beat of data that is transferred over the write data channel between the core and the SCU.
0x0066	MEM_ACCESS_RD	Data memory access, read
		This event counts memory accesses due to load instructions. The following instructions are not counted:
		The following instructions are not counted: - Instruction fetches - Cache maintenance instructions Translation table walks Prefetches.
0x0067	MEM_ACCESS_WR	Data memory access, write
		This event counts memory accesses due to store instructions.
		The following instructions are not counted:
		Instruction fetches.
		Cache maintenance instructions.
		Translation table walks. Disference
		Prefetches.

Event number	Mnemonic	Description
	STREX_FAIL_SPEC	Exclusive operation speculatively executed, Store-Exclusive fail.
		Exclusive operation speculatively executed, STREX or STX fail.
0x006F	STREX_SPEC	Exclusive operation speculatively executed, Store-Exclusive.
		Exclusive operation speculatively executed, STREX or STX.
0x0070	LD_SPEC	Operation speculatively executed, load
0x0071	ST_SPEC	Operation speculatively executed, store
0x0073	DP_SPEC	Operation speculatively executed, integer data processing
0x0074	ASE_SPEC	Operation speculatively executed, Advanced SIMD
0x0075	VFP_SPEC	Operation speculatively executed, floating-point
0x0076	PC_WRITE_SPEC	Operation speculatively executed, software change of the PC
0x0077	CRYPTO_SPEC	Operation speculatively executed, Cryptographic instruction
0x007C	ISB_SPEC	Barrier speculatively executed, ISB
0x007D	DSB_SPEC	Barrier speculatively executed, DSB
0x007E	DMB_SPEC	Barrier speculatively executed, DMB
0x0081	EXC_UNDEF	Exception taken, other synchronous
		Counts the number of undefined exceptions taken locally
0x0082	EXC_SVC	Exception taken, Supervisor Call
	EVC DADODT	Exception taken locally, Supervisor Call
0x0083	EXC_PABORT	Exception taken, Instruction Abort
		Exception taken locally, Instruction Abort
0x0084	EXC_DABORT	Exception taken, Data Abort or SError
		Exportion taken levelly. Data About and CError
00006	EVC IDO	Exception taken locally, Data Abort and SError Exception taken, IRQ
UXUU86	EXC_IRQ	Exception taken, IRQ
		Exception taken locally, IRQ
0x0087	EXC_FIQ	Exception taken, FIQ
		Exception taken locally, FIQ
0x0088	EXC_SMC	Exception taken, Secure Monitor Call
		Exception taken locally, Secure Monitor Call
0x008A	EXC_HVC	Exception taken, Hypervisor Call
0.000	EVC TDAD DADODT	Exception taken locally, Hypervisor Call
-	EXC_TRAP_PABORT	Exception taken, Instruction Abort not Taken locally
	EXC_TRAP_DABORT	Exception taken, Data Abort or SError not Taken locally
	EXC_TRAP_OTHER	Exception taken, other traps not Taken locally
-	EXC_TRAP_IRQ	Exception taken, IRQ not Taken locally
0x008F	EXC_TRAP_FIQ	Exception taken, FIQ not Taken locally

Event number	Mnemonic	Description
0x0090	RC_LD_SPEC	Release consistency operation speculatively executed, Load-Acquire
0x0091	RC_ST_SPEC	Release consistency operation speculatively executed, Store-Release
0x00A0	L3D_CACHE_RD	Level 3 cache read
		This event counts for any cacheable read transaction sent to the SCU.
0x4000	SAMPLE_POP	Statistical Profiling sample population
		The counter increments for each operation that might be sampled, whether or not the operation was sampled. Operations that are executed at an Exception level or Security state in which the Statistical Profiling Extension is disabled are not counted.
0x4001	SAMPLE_FEED	Statistical Profiling sample taken
		The counter increments each time the sample interval counter reaches zero and is reloaded, and the sample does not collide with the previous sample. Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are counted.
0x4002	SAMPLE_FILTRATE	Statistical Profiling sample taken and not removed by filtering
		The counter increments each time that a completed sample record is checked against the filters and not removed. Sample records that are not removed by filtering, but are discarded before being written to the Profiling Buffer because of a Profiling Buffer management event, are counted.
0x4003	SAMPLE_COLLISION	Statistical Profiling sample collided with previous sample
		The counter increments for each sample record that is taken when the previous sampled operation has not completed generating its sample record.
0x4004	CNT_CYCLES	Constant frequency cycles
0x4005	STALL_BACKEND_MEM	Memory stall cycles
		The counter is defined identically to STALL_BACKEND_MEM in the AMUv1 architecture.
0x4006	L1I_CACHE_LMISS	Level 1 instruction cache long-latency miss
		The counter counts each access counted by L1I_CACHE that incurs additional latency because it returns instructions from outside the Level 1 instruction cache.
0x4009	L2D_CACHE_LMISS_RD	Level 2 data cache long-latency read miss
		The counter counts each memory read access counted by L2D_CACHE that incurs additional latency because it returns data from outside the Level 2 data or unified cache of this PE.
0x400B	L3D_CACHE_LMISS_RD	Level 3 data cache long-latency read miss
		The counter counts each memory read access counted by L3D_CACHE that incurs additional latency because it returns data from outside the Level 3 data or unified cache of this PE.
0x400C	TRB_WRAP	Trace buffer current write pointer wrapped
0x400D	PMU_OVFS	PMU overflow, counters accessible to EL1 and EL0 Note: This event is exported to the trace unit, but cannot be counted in the PMU.

Event number	Mnemonic	Description
	TRB_TRIG	Trace buffer Trigger Event
		Note: This event is exported to the trace unit, but cannot be counted in the PMU.
04005	PMU_HOVFS	PMU overflow, counters reserved for use by EL2
UX400F	PIMO_HOVES	PINO overflow, counters reserved for use by EL2
		Note: This event is exported to the trace unit, but cannot be counted in the PMU.
0x4010	TRCEXTOUT0	PE Trace Unit external output 0
		Note: This event is not exported to the trace unit.
0x4011	TRCEXTOUT1	PE Trace Unit external output 1
		Note: This event is not exported to the trace unit.
04012	TRCEXTOUT2	PE Trace Unit external output 2
084012	TRCLATOUTZ	FE Trace Offic external output 2
		Note:
	TROSVERVIEW	This event is not exported to the trace unit.
0x4013	TRCEXTOUT3	PE Trace Unit external output 3
		Note: This event is not exported to the trace unit.
0x4018	CTI_TRIGOUT4	Cross Trigger Interface output trigger 4
0x4019	CTI_TRIGOUT5	Cross Trigger Interface output trigger 5
0x401A	CTI_TRIGOUT6	Cross Trigger Interface output trigger 6
0x401B	CTI_TRIGOUT7	Cross Trigger Interface output trigger 7
0x4020	LDST_ALIGN_LAT	Access with additional latency from alignment
		The counter counts each access counted by MEM_ACCESS that, due to the alignment of the address and size of data being accessed, incurred additional latency.
0x4021	LD_ALIGN_LAT	Load with additional latency from alignment
0x4022	ST_ALIGN_LAT	Store with additional latency from alignment
0x4024	MEM_ACCESS_CHECKED	Checked data memory access
0x4025	MEM_ACCESS_RD_CHECKED	Checked data memory access, read
0x4026	MEM_ACCESS_WR_CHECKED	Checked data memory access, write
0x8005	ASE_INST_SPEC	Advanced SIMD operations speculatively executed
0x8006	SVE_INST_SPEC	SVE operation, including load/store
0x8014	FP_HP_SPEC	Half-precision floating-point operation speculatively executed
0x8018	FP_SP_SPEC	Single-precision floating-point operation speculatively executed
0x801C	FP_DP_SPEC	Double-precision floating-point operation speculatively executed
0x8074	SVE_PRED_SPEC	SVE predicated operations speculatively executed
0x8075	SVE_PRED_EMPTY_SPEC	SVE predicated operations with no active predicates speculatively executed
0x8076	SVE_PRED_FULL_SPEC	SVE predicated operations with all active predicates speculatively executed

Event number	Mnemonic	Description
0x8077	SVE_PRED_PARTIAL_SPEC	SVE predicated operations with partially active predicates speculatively executed
0x8079	SVE_PRED_NOT_FULL_SPEC	SVE predicated operations with no or partially active predicates speculatively executed
0x80BC	SVE_LDFF_SPEC	SVE First-fault load operations speculatively executed
0x80BD	SVE_LDFF_FAULT_SPEC	SVE First-fault load operations speculatively executed which set FFR bit to 0
0x80C0	FP_SCALE_OPS_SPEC	Scalable floating-point element operations speculatively executed
0x80C1	FP_FIXED_OPS_SPEC	Non-scalable floating-point element operations speculatively executed
0x80E3	ASE_SVE_INT8_SPEC	Advanced SIMD and SVE 8-bit integer operation speculatively executed
0x80E7	ASE_SVE_INT16_SPEC	Advanced SIMD and SVE 16-bit integer operation speculatively executed
0x80EB	ASE_SVE_INT32_SPEC	Advanced SIMD and SVE 32-bit integer operation speculatively executed
0x80EF	ASE_SVE_INT64_SPEC	Advanced SIMD and SVE 64-bit integer operation speculatively executed
0x8108	BR_IMMED_TAKEN_RETIRED	Instruction architecturally executed, immediate branch taken
0x810C	BR_INDNR_TAKEN_RETIRED	Instruction architecturally executed, indirect branch excluding procedure return retired
0x811D	BR_IND_RETIRED	Instruction architecturally executed, indirect branch
0x8128	DTLB_WALK_PERCYC	Total cycles, DTLB_WALK
		The counter counts by the number of data TLB walk events in progress on each processor cycle.
0x8129	ITLB_WALK_PERCYC	Total cycles, ITLB_WALK
		The counter counts by the number of instruction TLB walk events in progress on each processor cycle.
0x8136	DTLB_STEP	Data TLB translation table walk, step
		The counter counts each translation table walk access made by a refill of the data or unified TLB.
0x8137	ITLB_STEP	Instruction TLB translation table walk, step
		The counter counts each translation table walk access made by a refill of the instruction TLB.
0x8162	STALL_FRONTEND_FLUSH	No operation sent for execution due to the frontend flush recovery

18.2 Performance monitors interrupts

The *Performance Monitoring Unit* (PMU) can be configured to generate an interrupt when one or more of the counters overflow.

When the PMU generates an interrupt, the **nPMUIRQ[n]** output is driven LOW.

18.3 External register access permissions

The Cortex®-A715 core supports access to the *Performance Monitoring Unit* (PMU) registers from the system register interface and a memory-mapped interface.

Access to a register depends on:

- Whether the core is powered up
- The state of the OS Lock
- The state of External Performance Monitors Access Disable

The behavior is specific to each register and is not described in this manual. For a detailed description of these features and their effects on the registers, see the *Arm® Architecture Reference Manual Armv8*, for *A-profile architecture*. The register descriptions provided in this manual describe whether each register is read/write or read-only.

18.4 AArch64 Performance Monitors registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** Performance Monitors registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 18-2: Performance Monitors registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
PMMIR_EL1	3	0	C9	C14	6	_	64-bit	Performance Monitors Machine Identification Register
PMCR_EL0	3	3	C9	C12	0	_	64-bit	Performance Monitors Control Register
PMCEIDO_ELO	3	3	C9	C12	6	_	64-bit	Performance Monitors Common Event Identification register 0
PMCEID1_EL0	3	3	C9	C12	7	_	64-bit	Performance Monitors Common Event Identification register 1

18.5 External PMU registers

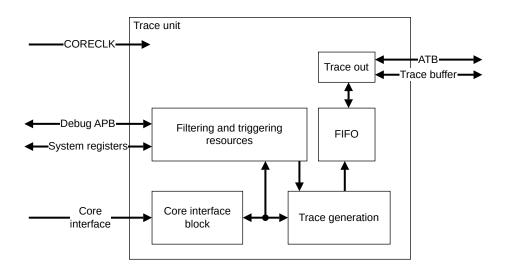
The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped PMU registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 18-3: PMU registers summary

Offset	Name	Reset	Width	Description
0x600	PMPCSSR	_	64-bit	Snapshot Program Counter Sample Register
0x608	PMCIDSSR	_	32-bit	Snapshot CONTEXTIDR_EL1 Sample Register

Offset	Name	Reset	Width	Description
0x60C	PMCID2SSR	_	32-bit	Snapshot CONTEXTIDR_EL2 Sample Register
0x610	PMSSSR	_	32-bit	PMU Snapshot Status Register
0x618	PMCCNTSR	_	64-bit	PMU Cycle Counter Snapshot Register
0x620	PMEVCNTSR0	_	64-bit	PMU Event Counter Snapshot Register
0x628	PMEVCNTSR1	_	64-bit	PMU Event Counter Snapshot Register
0x630	PMEVCNTSR2	_	64-bit	PMU Event Counter Snapshot Register
0x638	PMEVCNTSR3	_	64-bit	PMU Event Counter Snapshot Register
0x640	PMEVCNTSR4	_	64-bit	PMU Event Counter Snapshot Register
0x648	PMEVCNTSR5	_	64-bit	PMU Event Counter Snapshot Register
0x650	PMEVCNTSR6	_	64-bit	PMU Event Counter Snapshot Register
0x658	PMEVCNTSR7	_	64-bit	PMU Event Counter Snapshot Register
0x660	PMEVCNTSR8	_	64-bit	PMU Event Counter Snapshot Register
0x668	PMEVCNTSR9	_	64-bit	PMU Event Counter Snapshot Register
0x670	PMEVCNTSR10	_	64-bit	PMU Event Counter Snapshot Register
0x678	PMEVCNTSR11	_	64-bit	PMU Event Counter Snapshot Register
0x680	PMEVCNTSR12	_	64-bit	PMU Event Counter Snapshot Register
0x688	PMEVCNTSR13	_	64-bit	PMU Event Counter Snapshot Register
0x690	PMEVCNTSR14	_	64-bit	PMU Event Counter Snapshot Register
0x698	PMEVCNTSR15	_	64-bit	PMU Event Counter Snapshot Register
0x6A0	PMEVCNTSR16		64-bit	PMU Event Counter Snapshot Register
0x6A8	PMEVCNTSR17	_	64-bit	PMU Event Counter Snapshot Register
0x6B0	PMEVCNTSR18	_	64-bit	PMU Event Counter Snapshot Register
0x6B8	PMEVCNTSR19	_	64-bit	PMU Event Counter Snapshot Register
0x6F0	PMSSCR	_	32-bit	PMU Snapshot Capture Register
0xE00	PMCFGR		32-bit	Performance Monitors Configuration Register
0xE04	PMCR_EL0		32-bit	Performance Monitors Control Register
0xE20	PMCEID0	_	32-bit	Performance Monitors Common Event Identification register 0
0xE24	PMCEID1		32-bit	Performance Monitors Common Event Identification register 1
0xE28	PMCEID2	_	32-bit	Performance Monitors Common Event Identification register 2
0xE2C	PMCEID3	_	32-bit	Performance Monitors Common Event Identification register 3
0xE40	PMMIR	_	32-bit	Performance Monitors Machine Identification Register
OxFBC	PMDEVARCH	_	32-bit	Performance Monitors Device Architecture register
0xFC8	PMDEVID		32-bit	Performance Monitors Device ID register
OxFCC	PMDEVTYPE	_	32-bit	Performance Monitors Device Type register
0xFD0	PMPIDR4		32-bit	Performance Monitors Peripheral Identification Register 4
0xFE0	PMPIDR0		32-bit	Performance Monitors Peripheral Identification Register 0
0xFE4	PMPIDR1	_	32-bit	Performance Monitors Peripheral Identification Register 1
0xFE8	PMPIDR2		32-bit	Performance Monitors Peripheral Identification Register 2
0xFEC	PMPIDR3		32-bit	Performance Monitors Peripheral Identification Register 3
0xFF0	PMCIDR0		32-bit	Performance Monitors Component Identification Register 0


Offset	Name	Reset	Width	Description
0xFF4	PMCIDR1	_	32-bit	Performance Monitors Component Identification Register 1
0xFF8	PMCIDR2	_	32-bit	Performance Monitors Component Identification Register 2
0xFFC	PMCIDR3	_	32-bit	Performance Monitors Component Identification Register 3

19. Embedded Trace Extension support

The Cortex®-A715 core implements the *Embedded Trace Extension* (ETE). The trace unit performs real-time instruction flow tracing based on the ETE. The trace unit is a CoreSight component and is an integral part of the Arm real-time debug solution.

The following figure shows the main components of the trace unit:

Figure 19-1: Trace unit components

Core interface

The core interface monitors and generates PO elements that are essentially executed branches and exceptions traced in program order.

Trace generation

The trace generation logic generates various trace packets based on PO elements.

Filtering and triggering resources

You can limit the amount of trace data that the trace unit generates by filtering. For example, you can limit trace generation to a certain address range. The trace unit supports other logic analyzer style filtering options. The trace unit can also generate a trigger that is a signal to the Trace Capture Device to stop capturing trace.

FIFO

The trace unit generates trace in a highly compressed form. The First In First Out (FIFO) enables trace bursts to be flattened out. When the FIFO is full, the FIFO signals an overflow. The trace generation logic does not generate any new trace until the FIFO is emptied. This behavior causes a gap in the trace when viewed in the debugger.

Trace out

Trace from the FIFO is output on the AMBA ATB interface or to the trace buffer.

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

19.1 Trace unit resources

Trace resources include counters, external input and output signals, and comparators.

The following table shows the trace unit resources, and indicates which of these resources the A715 core trace unit implements.

Table 19-1: Trace unit resources

Description	Configuration
Number of resource selection pairs implemented	8
Number of external input selectors implemented	4
Number of Embedded Trace Extension (ETE) events	4
Number of counters implemented	2
Reduced function counter implemented	Not implemented
Number of sequencer states implemented	4
Number of Virtual Machine ID comparators implemented	1
Number of Context ID comparators implemented	1
Number of address comparator pairs implemented	4
Number of single-shot comparator controls	1
Number of core comparator inputs implemented	0
Data address comparisons implemented	Not implemented
Number of data value comparators implemented	0

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

19.2 Trace unit generation options

The Cortex®-A715 core trace unit implements a set of generation options.

The following table shows the trace generation options, and indicates which of these options the Cortex®-A715 core trace unit implements.

Table 19-2: Trace unit generation options

Description	Configuration
Instruction address size in bytes	8
Data address size in bytes	O, as the <i>Embedded Trace Extension</i> (ETE) does not implement data tracing
Data value size in bytes	O, as the ETE does not implement data tracing
Virtual Machine ID size in bytes	4
Context ID size in bytes	4
Support for conditional instruction tracing	Not implemented
Support for tracing of data	Not implemented
Support for tracing of load and store instructions as PO elements	Not implemented
Support for cycle counting in the instruction trace	Implemented
Support for branch broadcast tracing	Implemented
Number of events that are supported in the trace	4
Return stack support	Implemented
Tracing of SError exception support	Implemented
Instruction trace cycle counting minimum threshold	4
Size of Trace ID	7 bits
Synchronization period support	Read/write
Global timestamp size	64 bits
Number of cores available for tracing	1
ATB trigger support	Implemented
Low-power behavior override	Not implemented
Stall control support	Not implemented
Support for overflow avoidance	Not implemented
Support for using CONTEXTIDR_EL2 in Virtual Machine IDentifier (VMID) comparator	Implemented

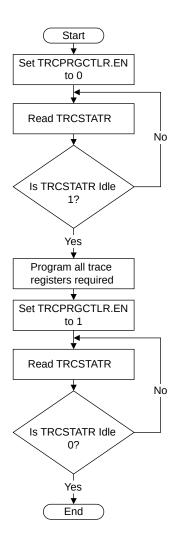
See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information.

19.3 Reset the trace unit

The reset for the trace buffer is the same as a Cold reset for the core. When using the *TRace Buffer Extension* (TRBE), a Warm reset disables the trace buffer and therefore it is not possible to use the trace buffer to capture trace for a Warm reset.

If the trace unit is reset, then tracing stops until the trace unit is reprogrammed and re-enabled. However, if the core is reset using Warm reset, the last few instructions provided by the core before the reset might not be traced.

19.4 Program and read the trace unit registers


You program and read the trace unit registers using either the Debug APB interface or the System register interface.

The core does not have to be in debug state when you program the trace unit registers. When you program the trace unit registers, you must enable all the changes at the same time. Otherwise, if you program the counter, it might start to count based on incorrect events before the correct setup is in place for the trigger condition. To disable the trace unit, use the TRCPRGCTLR.EN bit. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for more information about the following registers:

- Programming Control Register, TRCPRGCTLR
- Trace Status Register, TRCSTATR

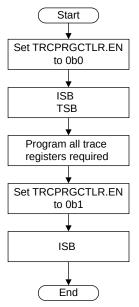

The following figure shows the flow for programming trace unit registers using the DebugBlock APB interface:

Figure 19-2: Programming trace unit registers using the DebugBlock APB interface

The following figure shows the flow for programming trace unit registers using the System register interface:

Figure 19-3: Programming trace registers using the System register interface

19.5 Trace unit register interfaces

The Cortex®-A715 core supports an APB memory-mapped interface and a system register interface to trace unit registers.

Register accesses differ depending on the trace unit state. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the behaviors and access mechanisms.

19.6 Interaction with the Performance Monitoring Unit and Debug

The trace unit interacts with the *Performance Monitoring Unit* (PMU) and it can access the PMU events.

Interaction with the PMU

The Cortex®-A715 core includes a PMU that enables events, such as cache misses and executed instructions, to be counted over time.

The PMU and trace unit function together.

Use of PMU events by the trace unit

The PMU architectural events are available to the trace unit through the extended input facility.

The trace unit uses four extended external input selectors to access the PMU events. Each selector can independently select one of the PMU events, that are then active for the cycles where the relevant events occur. These selected events can then be accessed by any of the event registers within the trace unit.

Related information

18. Performance Monitors Extension support on page 97

18.1 Performance monitors events on page 97

19.7 ETE events

The Cortex®-A715 core trace unit collects events from other units in the design and uses numbers to reference these events.

Other than the events mentioned in 18.1 Performance monitors events on page 97, the events listed in the following table are also exported.

Table 19-3: ETE events

Event number	Event mnemonic	Description
0x400D	PMU_OVFS	PMU overflow, counters accessible to EL1 and EL0
0x400E	TRB_TRIG	Trace buffer Trigger Event
0x400F	PMU_HOVS	PMU overflow, counters reserved for use by EL2

19.8 AArch64 Trace registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** Trace registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 19-4: Trace registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
TRCIDR8	2	1	C0	CO	6	_	64-bit	ID Register 8
TRCIMSPEC0	2	1	C0	CO	7	_	64-bit	IMP DEF Register 0
TRCIDR9	2	1	C0	C1	6	_	64-bit	ID Register 9
TRCIDR2	2	1	C0	C10	7	_	64-bit	ID Register 2
TRCIDR3	2	1	C0	C11	7	_	64-bit	ID Register 3
TRCIDR4	2	1	C0	C12	7	_	64-bit	ID Register 4
TRCIDR5	2	1	C0	C13	7	_	64-bit	ID Register 5
TRCIDR6	2	1	C0	C14	7	_	64-bit	ID Register 6
TRCIDR7	2	1	C0	C15	7	_	64-bit	ID Register 7

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
TRCIDR10	2	1	C0	C2	6	_	64-bit	ID Register 10
TRCIDR11	2	1	C0	C3	6	_	64-bit	ID Register 11
TRCIDR12	2	1	C0	C4	6	_	64-bit	ID Register 12
TRCIDR13	2	1	C0	C5	6	_	64-bit	ID Register 13
TRCAUXCTLR	2	1	C0	C6	0	_	64-bit	Auxiliary Control Register
TRCIDR0	2	1	C0	C8	7	_	64-bit	ID Register 0
TRCIDR1	2	1	C0	C9	7	_	64-bit	ID Register 1
TRCDEVARCH	2	1	C7	C15	6	_	64-bit	Device Architecture Register
TRCDEVID	2	1	C7	C2	7	_	64-bit	Device Configuration Register
TRCCLAIMSET	2	1	C7	C8	6	_	64-bit	Claim Tag Set Register
TRCCLAIMCLR	2	1	C7	C9	6	_	64-bit	Claim Tag Clear Register

19.9 External ETE registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped ETE registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 19-5: ETE registers summary

Offset	Name	Reset	Width	Description
0x018	TRCAUXCTLR	_	32-bit	Auxiliary Control Register
0x180	TRCIDR8	_	32-bit	ID Register 8
0x184	TRCIDR9	_	32-bit	ID Register 9
0x188	TRCIDR10	_	32-bit	ID Register 10
0x18C	TRCIDR11	_	32-bit	ID Register 11
0x190	TRCIDR12	_	32-bit	ID Register 12
0x194	TRCIDR13	_	32-bit	ID Register 13
0x1C0	TRCIMSPEC0	_	32-bit	IMP DEF Register 0
0x1E0	TRCIDRO	_	32-bit	ID Register 0
0x1E4	TRCIDR1	_	32-bit	ID Register 1
0x1E8	TRCIDR2	_	32-bit	ID Register 2
0x1EC	TRCIDR3	_	32-bit	ID Register 3
0x1F0	TRCIDR4	_	32-bit	ID Register 4
0x1F4	TRCIDR5	_	32-bit	ID Register 5
0x1F8	TRCIDR6	_	32-bit	ID Register 6
0x1FC	TRCIDR7	_	32-bit	ID Register 7
0xF00	TRCITCTRL	_	32-bit	Integration Mode Control Register
0xFA0	TRCCLAIMSET	_	32-bit	Claim Tag Set Register

Offset	Name	Reset	Width	Description
0xFA4	TRCCLAIMCLR	_	32-bit	Claim Tag Clear Register
0xFBC	TRCDEVARCH	_	32-bit	Device Architecture Register
0xFC0	TRCDEVID2	_	32-bit	Device Configuration Register 2
0xFC4	TRCDEVID1		32-bit	Device Configuration Register 1
0xFC8	TRCDEVID	_	32-bit	Device Configuration Register
0xFCC	TRCDEVTYPE	_	32-bit	Device Type Register
0xFD0	TRCPIDR4	_	32-bit	Peripheral Identification Register 4
0xFD4	TRCPIDR5	_	32-bit	Peripheral Identification Register 5
0xFD8	TRCPIDR6		32-bit	Peripheral Identification Register 6
0xFDC	TRCPIDR7	_	32-bit	Peripheral Identification Register 7
0xFE0	TRCPIDR0	_	32-bit	Peripheral Identification Register 0
0xFE4	TRCPIDR1	_	32-bit	Peripheral Identification Register 1
0xFE8	TRCPIDR2	_	32-bit	Peripheral Identification Register 2
0xFEC	TRCPIDR3		32-bit	Peripheral Identification Register 3
0xFF0	TRCCIDR0	_	32-bit	Component Identification Register 0
0xFF4	TRCCIDR1	_	32-bit	Component Identification Register 1
0xFF8	TRCCIDR2	_	32-bit	Component Identification Register 2
0xFFC	TRCCIDR3	_	32-bit	Component Identification Register 3

20. Trace Buffer Extension support

The Cortex®-A715 core implements the *TRace Buffer Extension* (TRBE). The TRBE writes the program flow trace generated by the trace unit directly to memory. The TRBE is programmed through System registers.

When enabled, the TRBE can:

- Accept trace data from the trace unit and write it to L2 memory.
- Discard trace data from the trace unit. In this case, the data is lost.
- Reject trace data from the trace unit. In this case, the trace unit retains data until the TRBE
 accepts it.

When disabled, the TRBE ignores trace data and the trace unit sends trace data to the AMBA® *Trace Bus* (ATB) interface.

20.1 Program and read the trace buffer registers

You can program and read the *TRace Buffer Extension* (TRBE) registers using the System register interface.

The core does not have to be in debug state when you program the TRBE registers. When you program the TRBE registers, you must enable all the changes at the same time. Otherwise, if you program the counter, it might start to count based on incorrect events before the correct setup is in place for the trigger condition. To disable the TRBE, use the TRBLIMITR EL1.E bit.

See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the TRBE register behaviors and access mechanisms.

20.2 Trace buffer register interface

The Cortex®-A715 core supports a System register interface to *TRace Buffer Extension* (TRBE) registers.

Register accesses differ depending on the TRBE state. See the Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile for information on the behaviors and access mechanisms.

21. Activity Monitors Extension support

The Cortex®-A715 core implements the Activity Monitors Extension to the Arm®v8.4-A architecture. Activity monitoring has features similar to performance monitoring features, but is intended for system management use whereas performance monitoring is aimed at user and debug applications.

The activity monitors provide useful information for system power management and persistent monitoring. The activity monitors are read-only in operation and their configuration is limited to the highest Exception level implemented.

The Cortex®-A715 core implements seven counters in two groups, each of which is a 64-bit counter that counts a fixed event. Group 0 has four counters 0-3, and Group 1 has three counters 10-12.

21.1 Activity monitors access

The Cortex®-A715 core supports access to activity monitors from the System register interface and supports read-only memory-mapped access using the utility bus interface.

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for information on the memory mapping of these registers.

Access enable bit

The access enable bit AMUSERENR_ELO.EN controls access from ELO to the activity monitors System registers.

The CPTR_EL2.TAM bit controls access from EL0 and EL1 to the activity monitors System registers. The CPTR_EL3.TAM bit controls access from EL0, EL1, and EL2 to the Activity Monitors Extension System registers. The AMUSERENR_EL0.EN bit is configurable at EL1, EL2, and EL3. All other controls, as well as the value of the counters, are configurable only at the highest implemented Exception level.

For a detailed description of access controls for the registers, see the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

System register access

The activity monitors are accessible using the MRS and MSR instructions.

External memory-mapped access

Activity monitors can be memory-mapped accessed from the utility bus interface. In this case, the Activity Monitors registers only provide read access to the Activity Monitor Event Counter Registers.

The base address for *Activity Monitoring Unit* (AMU) registers on the utility bus interface is 0x<n>90000, where n is the Cortex®-A715 core instance number in the DSU-110 DynamlQ[™] cluster.

These registers are treated as RAZ/WI if either:

- The register is marked as Reserved.
- The register is accessed in the wrong Security state.

21.2 Activity monitors counters

The Cortex®-A715 core implements four activity monitors counters, 0-3, and three auxiliary counters, 10-12.

Each counter has the following characteristics:

- All events are counted in 64-bit wrapping counters that overflow when they wrap. There is no support for overflow status indication or interrupts.
- Any change in clock frequency, including when a WFI and WFE instruction stops the clock, can affect any counter.
- Events 0-3 and auxiliary events 10-12 are fixed, and the AMEVTYPER0<n>_ELO and AMEVTYPER1<n>_ELO evtCount bits are read-only.
- The activity monitor counters are reset to zero on a Cold reset of the power domain of the core. When the core is not in reset, activity monitoring is available.

21.3 Activity monitors events

Activity monitors events in the Cortex®-A715 core are either fixed or programmable, and they map to the activity monitors counters.

The following table shows the mapping of counters to fixed events.

Table 21-1: Mapping of counters to fixed events

Activity monitor counter <n></n>	Event	Event number	Description
AMEVCNTR00	CPU_CYCLES	0x0011	Core frequency cycles
AMEVCNTR01	CNT_CYCLES	0x4004	Constant frequency cycles
AMEVCNTR02	Instructions retired	0x0008	Instruction architecturally executed
			This counter increments for every instruction that is executed architecturally, including instructions that fail their condition code check.

Activity monitor counter <n></n>	Event	Event number	Description
AMEVCNTR03	STALL_BACKEND_MEM	0x4005	Memory stall cycles This counter counts cycles in which the core is unable to dispatch instructions
			from the front end to the back end due to a back end stall caused by a miss in the last level of cache within the core clock domain.
AMEVCNTR10	MPMM_THRESHOLD_GEARO	0x0300	Maximum Power Mitigation System (MPMM) Gear 0 activity period threshold exceeded
AMEVCNTR11	MPMM_THRESHOLD_GEAR1	0x0301	Maximum Power Mitigation System (MPMM) Gear 1 activity period threshold exceeded
AMEVCNTR12	MPMM_THRESHOLD_GEAR2	0x0302	Maximum Power Mitigation System (MPMM) Gear 2 activity period threshold exceeded

21.4 AArch64 Activity Monitors registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** Activity Monitors registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 21-2: Activity Monitors registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
AMEVTYPER10_EL0	3	3	C13	C14	0	_	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER11_EL0	3	3	C13	C14	1	_	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER12_EL0	3	3	C13	C14	2	_	64-bit	Activity Monitors Event Type Registers 1
AMCFGR_EL0	3	3	C13	C2	1	_	64-bit	Activity Monitors Configuration Register
AMCGCR_EL0	3	3	C13	C2	2	_	64-bit	Activity Monitors Counter Group Configuration Register
AMEVTYPEROO_ELO	3	3	C13	C6	0	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER01_EL0	3	3	C13	C6	1	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPERO2_ELO	3	3	C13	C6	2	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER03_EL0	3	3	C13	C6	3	_	64-bit	Activity Monitors Event Type Registers 0

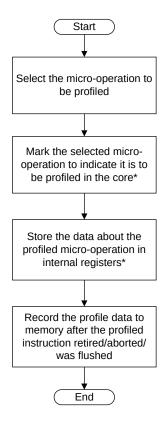
21.5 External AMU registers

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped AMU registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table 21-3: AMU registers summary

Offset	Name	Reset	Width	Description
0x400	AMEVTYPER00	_	32-bit	Activity Monitors Event Type Registers 0
0x404	AMEVTYPER01	_	32-bit	Activity Monitors Event Type Registers 0
0x408	AMEVTYPER02	_	32-bit	Activity Monitors Event Type Registers 0
0x40C	AMEVTYPER03	_	32-bit	Activity Monitors Event Type Registers 0
0x480	AMEVTYPER10	_	32-bit	Activity Monitors Event Type Registers 1
0x484	AMEVTYPER11	_	32-bit	Activity Monitors Event Type Registers 1
0x488	AMEVTYPER12	_	32-bit	Activity Monitors Event Type Registers 1
0xCE0	AMCGCR	_	32-bit	Activity Monitors Counter Group Configuration Register
0xE00	AMCFGR	_	32-bit	Activity Monitors Configuration Register
0xE08	AMIIDR	_	32-bit	Activity Monitors Implementation Identification Register
0xFBC	AMDEVARCH	_	32-bit	Activity Monitors Device Architecture Register
0xFCC	AMDEVTYPE	_	32-bit	Activity Monitors Device Type Register
0xFD0	AMPIDR4	_	32-bit	Activity Monitors Peripheral Identification Register 4
0xFE0	AMPIDR0	_	32-bit	Activity Monitors Peripheral Identification Register 0
0xFE4	AMPIDR1	_	32-bit	Activity Monitors Peripheral Identification Register 1
0xFE8	AMPIDR2	_	32-bit	Activity Monitors Peripheral Identification Register 2
0xFEC	AMPIDR3	_	32-bit	Activity Monitors Peripheral Identification Register 3
0xFF0	AMCIDR0	_	32-bit	Activity Monitors Component Identification Register 0
0xFF4	AMCIDR1	_	32-bit	Activity Monitors Component Identification Register 1
0xFF8	AMCIDR2	_	32-bit	Activity Monitors Component Identification Register 2
0xFFC	AMCIDR3	_	32-bit	Activity Monitors Component Identification Register 3


22. Statistical Profiling Extension Support

The Cortex®-A715 core implements the optional *Statistical Profiling Extension* (SPE) to the Arm®v8.2-A architecture. The SPE provides a statistical view of the performance characteristics of executed instructions that software writers can use to optimize their code for better performance.

The Cortex®-A715 core profiles micro-operations to minimize the amount of logic necessary to support the SPE.

The following figure shows the SPE behavior in the Cortex®-A715 core.

Figure 22-1: SPE behavior

* Throughout the lifetime of the micro-operation in the core

Profiles are collected periodically and a down-counter drives the selection of the micro-operations to be profiled. This counter counts the number of speculative micro-operations that are dispatched, decremented once for each micro-operation. When the counter reaches zero, a micro-operation is identified as being sampled and is profiled throughout its lifetime in the core.

SPE profiles are written to memory using a *Virtual Address* (VA), which means that writes of profiles must have access to the *Memory Management Unit* (MMU) to translate a VA to a *Physical Address* (PA), and must have a means to be written to memory.

Profiling is expected to be largely non-intrusive to the performance of the core. The performance of the core is not meaningfully perturbed while profiling is taking place. The rate of occurrence depends on the sampling rate. You can specify a sampling rate that is meaningfully intrusive to the performance of the core. Arm recommends that the minimum sampling interval is once per 1024 micro-operations. This value is communicated to software through PMSIDR EL1.Interval, bits[11:8].

See the Arm® Architecture Reference Manual Armv8, for A-profile architecture for more information.

22.1 Statistical Profiling Extension events packet

The events packet indicates the **IMPLEMENTATION DEFINED** events that the sampled operation generated.

The following table shows the events defined in the 32-bit events packet implemented in the Cortex®-A715 core.

Table 22-1: SPE events packet

Bits	Definition
[31:19]	Reserved
[18]	Empty predicate
[17]	Partial predicate
[16:13]	Reserved
[12]	Late prefetch
[11]	Data alignment flag
[10]	Remote access
[9]	Last level cache miss
[8]	Last level cache access
[7]	Branch mispredicted
[6]	Not taken
[5]	L1 data cache Translation Lookaside Buffer (TLB)
[4]	TLB access
[3]	L1 data cache refill
[2]	L1 data cache access
[1]	Architecturally retired
[0]	Generated exception

22.2 Statistical Profiling Extension data source packet

The data source packet indicates where the data returned for a load or store operation was sourced.

The following table shows the data source defined in the 8-bit data source packet implemented in the Cortex®-A715 core.

Table 22-2: SPE data source packet

Value	Name
0b0000	L1 data cache
0b1000	L2 cache
0b1001	Peer core
0b1010	Local cluster
0b1011	System cache
0b1100	Peer cluster
0b1101	Remote
0b1110	Dynamic Random Access Memory (DRAM)

Appendix A AArch64 registers

This appendix contains the descriptions for the Cortex®-A715 core AArch64 registers.

This manual does not provide a complete list of registers. Read this manual together with the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

A.1 AArch64 Generic System Control registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Generic System Control registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-1: Generic System Control registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
AIDR_EL1	3	1	C0	C0	7	_	64-bit	Auxiliary ID Register
ACTLR_EL1	3	0	C1	C0	1	_	64-bit	Auxiliary Control Register (EL1)
ACTLR_EL2	3	4	C1	C0	1	_	64-bit	Auxiliary Control Register (EL2)
HACR_EL2	3	4	C1	C1	7	_	64-bit	Hypervisor Auxiliary Control Register
ACTLR_EL3	3	6	C1	C0	1	_	64-bit	Auxiliary Control Register (EL3)
AMAIR_EL2	3	0	C10	C3	0	_	64-bit	Auxiliary Memory Attribute Indirection Register (EL2)
LORID_EL1	3	0	C10	C4	7	_	64-bit	LORegionID (EL1)
AMAIR_EL1	3	5	C10	C3	0	_	64-bit	Auxiliary Memory Attribute Indirection Register (EL1)
AMAIR_EL3	3	6	C10	C3	0	_	64-bit	Auxiliary Memory Attribute Indirection Register (EL3)
IMP_CPUCFR_EL1	3	0	C15	C0	0	_	64-bit	CPU Configuration Register
IMP_CPUACTLR_EL1	3	0	C15	C1	0	_	64-bit	CPU Auxiliary Control Register
IMP_CPUACTLR2_EL1	3	0	C15	C1	1	_	64-bit	CPU Auxiliary Control Register
IMP_CPUACTLR3_EL1	3	0	C15	C1	2	_	64-bit	CPU Auxiliary Control Register
IMP_CPUACTLR4_EL1	3	0	C15	C1	3	_	64-bit	CPU Auxiliary Control Register
IMP_CPUECTLR_EL1	3	0	C15	C1	4	_	64-bit	CPU Extended Control Register
IMP_CPUECTLR2_EL1	3	0	C15	C1	5	_	64-bit	CPU Extended Control Register
IMP_CPUPWRCTLR_EL1	3	0	C15	C2	7	_	64-bit	CPU Power Control Register
IMP_CLUSTERACTLR_EL1	3	0	C15	C3	3	_	64-bit	Cluster Auxiliary Control Register
IMP_ATCR_EL2	3	0	C15	C7	0	_	64-bit	CPU Auxiliary Translation Control Register
IMP_AVTCR_EL2	3	4	C15	C7	1	_	64-bit	CPU Auxiliary Virtualization Translation Control Register
IMP_ATCR_EL1	3	5	C15	C7	0	_	64-bit	CPU Auxiliary Translation Control Register
IMP_ISIDE_DATA0_EL3	3	6	C15	C0	0	_	64-bit	RAMINDEX Instruction Data register 0
IMP_ISIDE_DATA1_EL3	3	6	C15	C0	1	_	64-bit	RAMINDEX Instruction Data register 1
IMP_ISIDE_DATA2_EL3	3	6	C15	C0	2	_	64-bit	RAMINDEX Instruction Data register 2
IMP_MMU_DATA0_EL3	3	6	C15	C0	3	_	64-bit	RAMINDEX TLB Data register 0

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
IMP_MMU_DATA1_EL3	3	6	C15	C0	4	_	64-bit	RAMINDEX TLB Data register 1
IMP_MMU_DATA2_EL3	3	6	C15	C0	5	_	64-bit	RAMINDEX TLB Data register 2
IMP_DSIDE_DATA0_EL3	3	6	C15	C1	0	_	64-bit	RAMINDEX L1D Data register 0
IMP_DSIDE_DATA1_EL3	3	6	C15	C1	1	_	64-bit	RAMINDEX L1D Data register 1
IMP_DSIDE_DATA2_EL3	3	6	C15	C1	2	_	64-bit	RAMINDEX L1D Data register 2
IMP_L2_DATA0_EL3	3	6	C15	C1	3	_	64-bit	RAMINDEX L2 Data register 0
IMP_L2_DATA2_EL3	3	6	C15	C1	4	_	64-bit	RAMINDEX L2 Data register 2
IMP_L2_DATA1_EL3	3	6	C15	C1	5	_	64-bit	RAMINDEX L2 Data register 1
IMP_CLUSTERCDBG_EL3	3	6	C15	C4	7	_	64-bit	Cluster Cache Debug Register
IMP_ATCR_EL3	3	6	C15	C7	0	_	64-bit	CPU Auxiliary Translation Control Register
IMP_CPUPSELR_EL3	3	6	C15	C8	0	_	64-bit	Selected Instruction Private Control Register
IMP_CPUPCR_EL3	3	6	C15	C8	1	_	64-bit	Selected Instruction Private Control Register
IMP_CPUPOR_EL3	3	6	C15	C8	2	_	64-bit	Selected Instruction Patch Opcode Register
IMP_CPUPMR_EL3	3	6	C15	C8	3	_	64-bit	Selected Instruction Patch Mask Register
IMP_CPUPOR2_EL3	3	6	C15	C8	4	_	64-bit	Selected Instruction Patch Opcode Register 2
IMP_CPUPMR2_EL3	3	6	C15	C8	5	_	64-bit	Selected Instruction Private Mask Register 2
IMP_CPUPFR_EL3	3	6	C15	C8	6	_	64-bit	Selected Instruction Private Flag Register
FPCR	3	3	C4	C4	0	_	64-bit	Floating-point Control Register
AFSRO_EL2	3	0	C5	C1	0	_	64-bit	Auxiliary Fault Status Register 0 (EL2)
AFSR1_EL2	3	0	C5	C1	1	_	64-bit	Auxiliary Fault Status Register 1 (EL2)
AFSRO_EL1	3	5	C5	C1	0	_	64-bit	Auxiliary Fault Status Register 0 (EL1)
AFSR1_EL1	3	5	C5	C1	1	_	64-bit	Auxiliary Fault Status Register 1 (EL1)
AFSRO_EL3	3	6	C5	C1	0	_	64-bit	Auxiliary Fault Status Register 0 (EL3)
AFSR1_EL3	3	6	C5	C1	1	_	64-bit	Auxiliary Fault Status Register 1 (EL3)

A.1.1 AIDR_EL1, Auxiliary ID Register

Provides **IMPLEMENTATION DEFINED** identification information.

The value of this register must be interpreted in conjunction with the value of AArch64-MIDR_EL1.

Configurations

This register is available in all configurations.

Attributes

Width

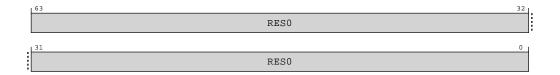
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-1: AArch64_aidr_el1 bit assignments

Table A-2: AIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, AIDR EL1

ор0	op1	CRn	CRm	op2
0b11	0b001	000000	000000	0b111

Accessibility

MRS <Xt>, AIDR_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return AIDR_EL1;
elsif PSTATE.EL == EL2 then
   return AIDR_EL1;
elsif PSTATE.EL == EL3 then
   return AIDR_EL1;
```

A.1.2 ACTLR_EL1, Auxiliary Control Register (EL1)

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Arm recommends the contents of this register have no effect on the PE when AArch64-HCR_EL2.{E2H, TGE} is {1, 1}, and instead the configuration and control fields are provided by the AArch64-ACTLR_EL2 register. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

This register is available in all configurations.

Attributes

Width

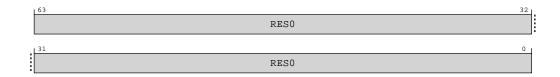
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-2: AArch64_actlr_el1 bit assignments

Table A-4: ACTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS <Xt>, ACTLR EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0001	0b0000	0b001

MSR ACTLR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	06000	0b0001	0b0000	0b001

Accessibility

MRS <Xt>, ACTLR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ACTLR_EL1;
elsif PSTATE.EL == EL2 then
    return ACTLR_EL1;
elsif PSTATE.EL == EL3 then
    return ACTLR_EL1;
```

MSR ACTLR_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TACR == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    ACTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ACTLR_EL1 = X[t];
```

A.1.3 ACTLR_EL2, Auxiliary Control Register (EL2)

Provides **IMPLEMENTATION DEFINED** configuration and control options for EL2.

Arm recommends the contents of this register are updated to apply to ELO when AArch64-HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields from the AArch64-ACTLR_EL1. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-3: AArch64_actlr_el2 bit assignments

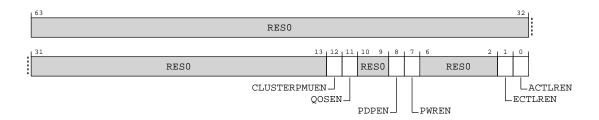


Table A-7: ACTLR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:13]	RESO	Reserved	RES0
[12]	CLUSTERPMUEN	Cluster PMU Registers enable. Traps EL1 writes to IMPLEMENTATION DEFINED cluster PMU registers to EL2. Possible values of this bit are:	
		This control causes writes to IMP_CLUSTERPM* at EL1 to be trapped. Ob1	
		This control does not cause any instructions to be trapped.	

Bits	Name	Description	Reset
[11]	QOSEN	Cluster Bus QoS Registers enable. Traps EL1 writes to AArch64-IMP_CLUSTERBUSQOS_EL1 to EL2. Possible values of this bit are:	0b0
		0ь0 This control causes writes to AArch64-IMP_CLUSTERBUSQOS_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[10:9]	RES0	Reserved	RES0
[8]	PDPEN	Perfomance defined power enable. Possible values of this bit are:	X
		0ъ0 This control causes writes to AArch64-IMP_CPUPPMPDPCR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[7]	PWREN	Power Control Registers enable. Traps EL1 writes to IMPLEMENTATION DEFINED power control registers to EL2. Possible values of this bit are:	0d0
		0ь0	
		This control causes writes to AArch64-IMP_CPUPWRCTLR_EL1, AArch64-IMP_CLUSTERPWRCTLR_EL1, AArch64-IMP_CLUSTERPWRDN_EL1 and IMP_CLUSTERL3*_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[6:2]	RESO .	Reserved	RES0
[1]	ECTLREN	Extended Control Registers enable. Traps EL1 writes to AArch64-IMP_CPUECTLR_EL1, AArch64-IMP_CMPXECTLR_EL1 and AArch64-IMP_CLUSTERECTLR_EL1 to EL2. Possible values of this bit are:	0d0
		0ь0	
		This control causes writes to AArch64-IMP_CPUECTLR_EL1, AArch64-IMP_CMPXECTLR_EL1 and AArch64-IMP_CLUSTERECTLR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[0]	ACTLREN	Auxiliary Control Registers enable. Traps EL1 writes to AArch64-IMP_CPUACTLR_EL1, AArch64-IMP_CPUACTLR2_EL1, AArch64-IMP_CMPXACTLR_EL1 and AArch64-IMP_CLUSTERACTLR_EL1 to EL2. Possible values of this bit are:	000
		0ь0	
		This control causes writes to AArch64-IMP_CPUACTLR_EL1, AArch64-IMP_CPUACTLR2_EL1, AArch64-IMP_CMPXACTLR_EL1 and AArch64-IMP_CLUSTERACTLR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	

Access

MRS <Xt>, ACTLR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	000000	0b001

MSR ACTLR_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0000	0b001

Accessibility

MRS <Xt>, ACTLR EL2

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        return ACTLR_EL2;
elsif PSTATE.EL == EL3 then
        return ACTLR_EL2;
```

MSR ACTLR_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    ACTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    ACTLR_EL2 = X[t];
```

A.1.4 HACR_EL2, Hypervisor Auxiliary Control Register

Controls trapping to EL2 of IMPLEMENTATION DEFINED aspects of EL1 or EL0 operation.

Arm recommends that the values in this register do not cause unnecessary traps to EL2 when AArch64-HCR_EL2. $\{E2H, TGE\} = \{1, 1\}$.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

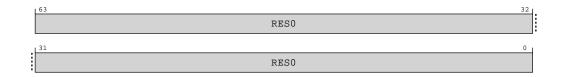
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-4: AArch64_hacr_el2 bit assignments

Table A-10: HACR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

MRS <Xt>, HACR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0001	0b111

MSR HACR EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0001	0b111

Accessibility

MRS <Xt>, HACR_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return HACR_EL2;
elsif PSTATE.EL == EL3 then
    return HACR_EL2;
```

MSR HACR_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    HACR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    HACR_EL2 = X[t];
```

A.1.5 ACTLR_EL3, Auxiliary Control Register (EL3)

Provides **IMPLEMENTATION DEFINED** configuration and control options for EL3.

Configurations

This register is available in all configurations.

Attributes

Width

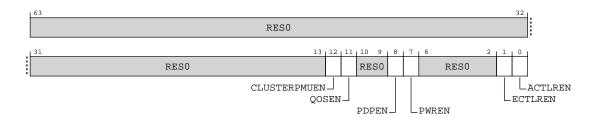
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-5: AArch64_actlr_el3 bit assignments

Table A-13: ACTLR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:13]	RESO	Reserved	RES0
[12]	CLUSTERPMUEN	Cluster PMU Registers enable. Traps EL1 writes to IMPLEMENTATION DEFINED cluster PMU registers to EL2. Possible values of this bit are:	0b0
		ОЬО This control causes writes to IMP_CLUSTERPM* at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[11]	QOSEN	Cluster Bus QoS Registers enable. Traps EL1 writes to AArch64-IMP_CLUSTERBUSQOS_EL1 to EL2. Possible values of this bit are:	0b0
		0ь0	
		This control causes writes to AArch64-IMP_CLUSTERBUSQOS_EL1 at EL1 to be trapped. 0b1	
		This control does not cause any instructions to be trapped.	
[10:9]	RESO	Reserved	RES0
[8]	PDPEN	Perfomance defined power enable. Possible values of this bit are:	Х
		0ь0	
		This control causes writes to AArch64-IMP_CPUPPMPDPCR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[7]	PWREN	Power Control Registers enable. Traps EL1 writes to IMPLEMENTATION DEFINED power control registers to EL2. Possible values of this bit are:	0b0
		This control causes writes to AArch64-IMP_CPUPWRCTLR_EL1, AArch64-IMP_CLUSTERPWRCTLR_EL1, AArch64-IMP_CLUSTERPWRDN_EL1 and IMP_CLUSTERL3*_EL1 at EL1 to be trapped. Ob1	
		This control does not cause any instructions to be trapped.	
[6:2]	RESO .	Reserved	RES0
[1]	ECTLREN	Extended Control Registers enable. Traps EL1 writes to AArch64-IMP_CPUECTLR_EL1, AArch64-IMP_CMPXECTLR_EL1 and AArch64-IMP_CLUSTERECTLR_EL1 to EL2. Possible values of this bit are:	0b0
		This control causes writes to AArch64-IMP_CPUECTLR_EL1, AArch64-IMP_CMPXECTLR_EL1 and AArch64-IMP_CLUSTERECTLR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	
[O]	ACTLREN	Auxiliary Control Registers enable. Traps EL1 writes to AArch64-IMP_CPUACTLR_EL1, AArch64-IMP_CPUACTLR2_EL1, AArch64-IMP_CMPXACTLR_EL1 and AArch64-IMP_CLUSTERACTLR_EL1 to EL2. Possible values of this bit are:	0d0
		0ь0	
		This control causes writes to AArch64-IMP_CPUACTLR_EL1, AArch64-IMP_CPUACTLR2_EL1, AArch64-IMP_CMPXACTLR_EL1 and AArch64-IMP_CLUSTERACTLR_EL1 at EL1 to be trapped.	
		0b1	
		This control does not cause any instructions to be trapped.	

Access

MRS <Xt>, ACTLR_EL3

ор0	op1	CRn	CRm	op2
0b11	0b110	0b0001	000000	0b001

MSR ACTLR_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	000000	0b001

Accessibility

MRS <Xt>, ACTLR EL3

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return ACTLR_EL3;
```

MSR ACTLR_EL3, <Xt>

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        ACTLR_EL3 = X[t];
```

A.1.6 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

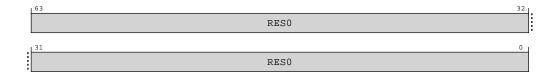
Functional group

Generic System Control

Access type

See bit descriptions

Reset value



Where the reset reads xxxx, see individual bits

Bit descriptions

AMAIR EL2 is permitted to be cached in a TLB.

Figure A-6: AArch64_amair_el2 bit assignments

Table A-16: AMAIR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2 or AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AMAIR_EL2

ор0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0011	00000

MSR AMAIR EL2, <Xt>

ор0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0011	00000

MRS <Xt>, AMAIR EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1010	0b0011	00000

MSR AMAIR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0011	00000

Accessibility

MRS <Xt>, AMAIR EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return AMAIR_EL2;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL2;
```

MSR AMAIR_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    AMAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AMAIR_EL2 = X[t];
```

MRS <Xt>, AMAIR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL2;
    else
        return AMAIR_EL2;
else
    return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL1;
```

MSR AMAIR_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
else
    AMAIR_EL1 = X[t];
```

```
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        AMAIR_EL2 = X[t];
   else
        AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   AMAIR_EL1 = X[t];
```

A.1.7 LORID_EL1, LORegionID (EL1)

Indicates the number of LORegions and LORegion descriptors supported by the PE.

Configurations

If no LORegion descriptors are implemented, then the registers AArch64-LORC_EL1, AArch64-LORN_EL1, AArch64-LOREA_EL1, and AArch64-LORSA_EL1 are RESO.

Attributes

Width

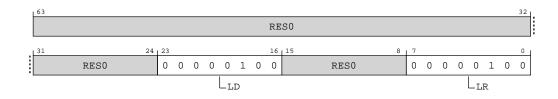
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-7: AArch64_lorid_el1 bit assignments

Table A-21: LORID_EL1 bit descriptions

Bits	Name	Description	Reset
[63:24]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[23:16]	LD	Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.	0x04
		0ь00000100	
		Four LOR descriptors are supported	
[15:8]	RES0	Reserved	RES0
[7:0]	LR	Number of LORegions supported by the PE. This is an 8-bit binary number.	0x04
		Note: If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and StoreLORelease will behave as LoadAcquire and StoreRelease.	
		0b0000100	
		Four LORegions are supported	

Access

MRS <Xt>, LORID_EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b1010	0b0100	0b111

Accessibility

MRS <Xt>, LORID_EL1

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TLOR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TLOR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return LORID EL1;
elsif PSTATE.EL == E\overline{L}2 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TLOR == '1' then
       UNDEFINED;
    elsif SCR EL3.TLOR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return LORID EL1;
elsif PSTATE.EL == \overline{EL}3 then
    return LORID EL1;
```

A.1.8 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR EL1.

Configurations

This register is available in all configurations.

Attributes

Width

64

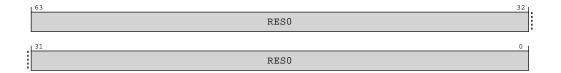
Functional group

Generic System Control

Access type

See bit descriptions

Reset value



Where the reset reads xxxx, see individual bits

Bit descriptions

AMAIR_EL1 is permitted to be cached in a TLB.

Figure A-8: AArch64_amair_el1 bit assignments

Table A-23: AMAIR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1 or AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AMAIR_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1010	0b0011	00000

MSR AMAIR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1010	0b0011	00000

MRS <Xt>, AMAIR_EL12

ор0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0011	00000

MSR AMAIR EL12, <Xt>

ор0	op1	CRn	CRm	op2
0b11	0b101	0b1010	0b0011	00000

Accessibility

MRS <Xt>, AMAIR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL2;
    else
        return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL1;
```

MSR AMAIR_EL1, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        AMAIR_EL2 = X[t];
   else
        AMAIR_EL1 = X[t];
else
        AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   AMAIR_EL1 = X[t];
```

MRS < Xt>, AMAIR EL12

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        return AMAIR_EL1;
    else
        UNDEFINED;
```

MSR AMAIR_EL12, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        AMAIR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        AMAIR_EL1 = X[t];
    else
        UNDEFINED;
```

A.1.9 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

Provides **IMPLEMENTATION DEFINED** memory attributes for the memory regions specified by AArch64-MAIR_EL3.

Configurations

This register is available in all configurations.

Attributes

Width

64

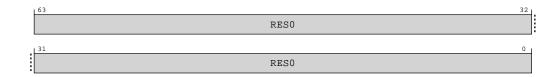
Functional group

Generic System Control

Access type

See bit descriptions

Reset value



Where the reset reads xxxx, see individual bits

Bit descriptions

AMAIR_EL3 is permitted to be cached in a TLB.

Figure A-9: AArch64_amair_el3 bit assignments

Table A-28: AMAIR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS <Xt>, AMAIR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1010	0b0011	00000

MSR AMAIR_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1010	0b0011	0b000

Accessibility

MRS <Xt>, AMAIR_EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL3;
```

MSR AMAIR_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

A.1.10 IMP_CPUCFR_EL1, CPU Configuration Register

This register provides configuration information for the core.

Configurations

This register is available in all configurations.

Attributes

Width

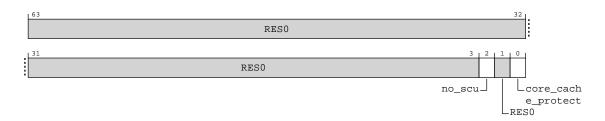
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-10: AArch64_imp_cpucfr_el1 bit assignments

Table A-31: IMP_CPUCFR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:3]	RESO	Reserved	RES0

Bits	Name	Description	Reset
[2]	no_scu	Indicates whether the SCU is present or not. Possible values of this bit are:	х
		0ь0	
		The SCU is present.	
		0b1	
		The SCU is not present.	
[1]	RESO	Reserved	RES0
[O]	core_cache_protect	Indicates whether ECC is present or not. Possible values of this field are:	х
		0ь0	
		ECC is not present.	
		0ь1	
		ECC is present.	

MRS <Xt>, S3_0_C15_C0_0

op0	op1	CRn	CRm	op2
0b11	06000	0b1111	0b0000	06000

Accessibility

MRS < Xt > , S3 0 C15 C0 0

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return IMP_CPUCFR_EL1;
elsif PSTATE.EL == EL2 then
   return IMP_CPUCFR_EL1;
elsif PSTATE.EL == EL3 then
   return IMP_CPUCFR_EL1;
```

A.1.11 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

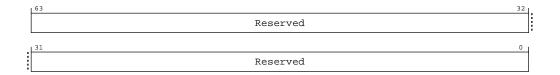
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-11: AArch64_imp_cpuactlr_el1 bit assignments

Table A-33: IMP_CPUACTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MSR S3_0_C15_C1_0, <Xt>

ор0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	00000

MRS < Xt>, S3 0 C15 C1 0

op0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0001	06000

Accessibility

MSR S3_0_C15_C1_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR_EL3.ACTLREN == '0' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif ACTLR_EL3.ACTLREN == '0' then
```

MRS < Xt>, S3_0_C15_C1_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR_EL1;
```

A.1.12 IMP_CPUACTLR2_EL1, CPU Auxiliary Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

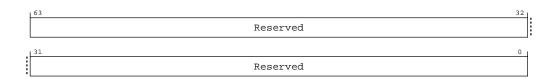
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-12: AArch64_imp_cpuactlr2_el1 bit assignments

Table A-36: IMP_CPUACTLR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MSR S3_0_C15_C1_1, <Xt>

ор0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0001	0b001

MRS < Xt>, S3_0_C15_C1_1

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b001

Accessibility

MSR S3_0_C15_C1_1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ACTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif ACTLR_EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
         IMP CPUACTLR2 EL1 = X[t];
elsif PSTAT\overline{E}.EL == EL\overline{2} then
    if ACTLR EL3.ACTLREN == '0' then
         if Halted() && EDSCR.SDD == '1' then
```

```
UNDEFINED;
else
AArch64.SystemAccessTrap(EL3, 0x18);
else
IMP_CPUACTLR2_EL1 = X[t];
elsif PSTATE.EL == EL3 then
IMP_CPUACTLR2_EL1 = X[t];
```

MRS < Xt>, S3_0_C15_C1_1

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return IMP_CPUACTLR2_EL1;
elsif PSTATE.EL == EL2 then
        return IMP_CPUACTLR2_EL1;
elsif PSTATE.EL == EL3 then
        return IMP_CPUACTLR2_EL1;
```

A.1.13 IMP_CPUACTLR3_EL1, CPU Auxiliary Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

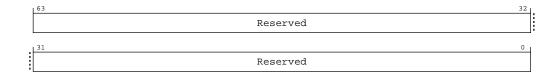
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-13: AArch64_imp_cpuactlr3_el1 bit assignments

Table A-39: IMP_CPUACTLR3_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64{x}

Access

MSR S3_0_C15_C1_2, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b010

MRS <Xt>, S3 0 C15 C1 2

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b010

Accessibility

MSR S3_0_C15_C1_2, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ACTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.ACTLREN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif ACTLR_EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         IMP CPUACTLR3 EL1 = X[t];
elsif PSTAT\overline{E}.EL == EL\overline{2} then
    if ACTLR EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CPUACTLR3 EL1 = X[t];
elsif PSTATE.EL == EL\overline{3} then
    IMP_CPUACTLR3_EL1 = X[t];
```

MRS < Xt>, S3_0_C15_C1_2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR3_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR3_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUACTLR3_EL1;
```

A.1.14 IMP_CPUACTLR4_EL1, CPU Auxiliary Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

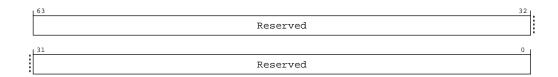
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-14: AArch64_imp_cpuactlr4_el1 bit assignments

Table A-42: IMP_CPUACTLR4_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MSR S3_0_C15_C1_3, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b011

MRS < Xt>, S3_0_C15_C1_3

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b011

Accessibility

MSR S3_0_C15_C1_3, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ACTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR EL2.ACTLREN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif ACTLR_EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED:
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         IMP CPUACTLR4 EL1 = X[t];
elsif PSTATE.EL == EL\overline{2} then
    if ACTLR EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CPUACTLR4 EL1 = X[t];
elsif PSTATE.EL == EL\overline{3} then
    IMP CPUACTLR4 EL1 = X[t];
```

MRS <Xt>, S3 0 C15 C1 3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUACTLR4_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUACTLR4_EL1;
elsif PSTATE.EL == EL3 then
```

return IMP CPUACTLR4 EL1;

A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

xxxx xxxx 0110 0000 0000 0000 0111 0010 0000 0110 0010 0000 1011 xxxx 0001 010x

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-15: AArch64_imp_cpuectlr_el1 bit assignments

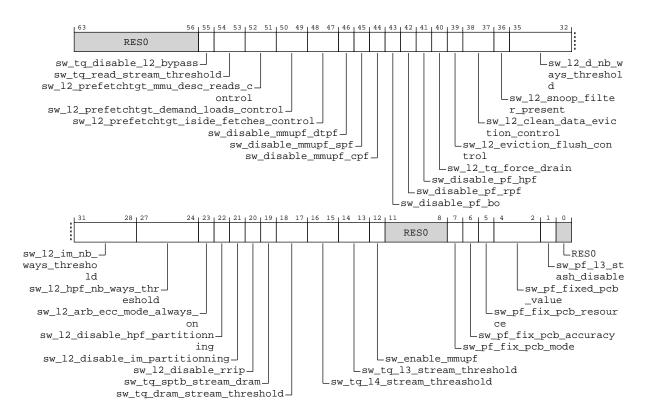


Table A-45: IMP_CPUECTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:56]	RESO	Reserved	RES0
[55]	sw_tq_disable_I2_bypass	Disable the heuristics that sends L1 evictions directly to L3, bypassing the L2	0b0
		0ъ0	
		Enabled	
		0b1	
		Disabled	
[54:53]	sw_tq_read_stream_threshold	Configure thresholds for transforming WriteEvictOrEvict into Evict	0b11
		0ь00	
		256 KB	
		0ь01	
		512 KB	
		0ь10	
		1024 KB	
		0ь11	
		Disable	

Bits	Name	Description	Reset
[52:51]	sw_l2_prefetchtgt_mmu_desc_reads_control	Control activation of the PrefetchTgt for MMU descriptors reads	0b00
		0ъ00	
		PrefetchTgt are not sent for MMU descriptors reads	
		0ь01 Conservatively generate PrefetchTgt for cacheable requests from	
		the MMU, always generate for noncacheable	
		Ob10 Aggressively generate PrefetchTgt for cacheable requests from the MMU, always generate for noncacheable	
		0b11	
		Always generate PrefetchTgt for cacheable requests from the MMU, always generate for noncacheable	
[50:49]	sw_l2_prefetchtgt_demand_loads_control	Control activation of the PrefetchTgt for the Demand Loads/Stores	0b00
		0ъ00	
		PrefetchTgt are not sent for Demand Loads/Stores Ob01	
		Conservatively generate PrefetchTgt for cacheable requests for Demand Loads/Stores, always generate for noncacheable	
		0ь10	
		Aggressively generate PrefetchTgt for cacheable requests for Demand Loads/Stores, always generate for noncacheable	
		0b11	
		Always generate PrefetchTgt for cacheable requests for Demand Loads/Stores, always generate for noncacheable	
[48:47]	sw_l2_prefetchtgt_iside_fetches_control	Control activation of the PrefetchTgt for the Iside fetches	0b00
		0ь00	
		PrefetchTgt are not sent for Iside fetches	
		Ob01 Conservatively generate PrefetchTgt for cacheable requests from the Iside, always generate for noncacheable	
		0b10	
		Aggressively generate PrefetchTgt for cacheable requests from the Iside, always generate for noncacheable	
		0b11	
		Always generate PrefetchTgt for cacheable requests from the Iside, always generate for noncacheable	
[46]	sw_disable_mmupf_dtpf	Control activation of MMU debug & trace prefetcher (DTPF)	0b0
		0b0	
		MMU D&T prefetcher is enabled allowing the prefetching of next/previous page for each D&T request (requires feature bit ENABLE_MMUPF in CPUECTLR to be set as well)	
		0b1	
		MMU D&T prefetcher is disabled	

Bits	Name	Description	Reset	
[45]	sw_disable_mmupf_spf	Control activation of MMU stream prefetcher (SPF)	0b0	
		 MMU stream prefetcher is enabled allowing the prefetching of next/previous page when a stream is detected (requires feature bit ENABLE_MMUPF in CPUECTLR to be set as well) MMU stream prefetcher is disabled 		
[44]	sw_disable_mmupf_cpf	Control activation of MMU coalescing prefetcher (CPF) 0b0 MMU coalescing prefetcher is enabled allowing the prefetching of next/previous clusters in case of coalesced entries (requires feature bit ENABLE_MMUPF in CPUECTLR to be set as well) 0b1 MMU coalescing prefetcher is disabled	060	
[43]	sw_disable_pf_bo	Disable Best Offset Prefetcher Ob0 Enabled Disabled	000	
[42]	sw_disable_pf_rpf	Disable Region Prefetcher 0b0 Enabled 0b1 Disabled	000	
[41]	sw_disable_pf_hpf	Disable History Prefetcher ObO Enabled Ob1 Disabled	0d0	
[40]	sw_l2_tq_force_drain	Force all evictions (L1/L2) to be drained out of TQ 0b0 Evictions are drained normally 0b1 Evictions are forced to drain ASAP	000	

Bits	Name	Description	Reset
[39]	sw_I2_eviction_flush_control	Controls whether hardware cache flushes and DC CISW instructions send data when evicting clean cache-lines on the CHI interface 0b0 Disables sending data when hardware cache flushes or DC CISW instructions evict a clean cache-line. Sending of Evict transactions is controlled by Downstream Snoop Filter Present. This is the reset	060
		value Ob1 Sending of data when hardware cache flushes or DC CISW instructions evict clean cache-lines is controlled by Downstream Cache Control. Sending of Evict transactions is controlled by Downstream Snoop Filter Present	
[38:37]	sw_l2_clean_data_eviction_control	Downstream Cache Control 0b00 Disables sending data when clean cache-lines are evicted 0b01	0b11
		Enables sending WriteEvictFull transactions when Unique Clean cache-lines are evicted. Shared Clean cache-line evictions do not send data Ob10 Enables sending WriteEvictOrEvict transactions when Unique Clean cache-lines are evicted. Shared Clean cache-line evictions do not send data Ob11 Enables sending WriteEvictOrEvict transactions when Unique Clean or Shared Clean cache-lines are evicted.	
[36]	sw_l2_snoop_filter_present	Downstream Snoop Filter Present Ob0 Disables sending Evict transactions when clean cache-lines are evicted without data. Ob1 Enables sending Evict transactions when clean cache-lines are evicted without data.	0b1
[35:32]	sw_l2_d_nb_ways_threshold	D-side ways partition in L2 cache. The value specified indicates the number of ways dedicated to requests from L1 data cache. It is expected within the range 0b0000-0b1000, an higher value will be ignored and set to 0b1000. The specified way partitioning is not guaranteed if the sum with sw_l2_im_nb_ways_threshold and sw_l2_hpf_nb_ways_threshold is not equal to 8, the number of L2 cache ways. If the sum is lower than 8, the remaining ways will be used for D and I/MMU requests. Reset value is 0b0010 and is the recommended value for this product	0b0010
[31:28]	sw_l2_im_nb_ways_threshold	I-side/MMU ways partition in L2 cache. The value specified indicates the number of ways dedicated to requests from L1 instruction cache or MMU. It is expected within the range 0b0000-0b1000, an higher value will be ignored and set to 0b1000. The specified way partitioning is not guaranteed if the sum with sw_l2_d_nb_ways_threshold and sw_l2_hpf_nb_ways_threshold is not equal to 8, the number of L2 cache ways. If the sum is lower than 8, the remaining ways will be used for D and I/MMU requests. Reset value is 0b0000 and is the recommended value for this product	060000

Name	Description	Reset
sw_l2_hpf_nb_ways_threshold	HPF ways partition in L2 cache. The value specified indicates the number of ways dedicated to requests from HPF. It is expected within the range 0b0000-0b1000, an higher value will be ignored and set to 0b1000. The specified way partitioning is not guaranteed if the sum with sw_l2_d_nb_ways_threshold and sw_l2_im_nb_ways_threshold is not equal to 8, the number of L2 cache ways. If the sum is lower than 8, the remaining ways will be used for D and I/MMU requests. Reset value is 0b0110 and is the recommended value for this product	0b0110
sw_l2_arb_ecc_mode_always_on	Force one more cycle in the L2 pipeline to allow for inline ECC error corrections on the Tag RAM 0b0 Default	060
sw_iz_disable_npr_partitionning	ObO Default Disable	0d0
sw_l2_disable_im_partitionning	Disable L2 cache replacement policy partitioning for L1I and MMU 0ь0 Default 0ь1 Disable	0b1
sw_l2_disable_rrip	Disable RRIP replacement policy in L2 cache, falling back to random policy 0b0 Default Disable	060
sw_tq_sptb_stream_dram	Force all writes for Trace and Statistical Profiling buffers to external memory 0b0 Default 0b1 Disable	0b0
sw_tq_dram_stream_threshold	Configure thresholds for streaming writes to external memory 0b00 1024 KB 0b01 2048 KB 0b10 4096 KB 0b11 Disable	0000
	sw_l2_hpf_nb_ways_threshold sw_l2_arb_ecc_mode_always_on sw_l2_disable_hpf_partitionning sw_l2_disable_im_partitionning sw_l2_disable_rrip	Sw_12_hpf_nb_ways_threshold

Bits	Name	Description	Reset
[16:15]	sw_tq_l4_stream_threashold	Configure thresholds for streaming writes to L4 cache	0b01
		0ь00	
		256 KB	
		0b01	
		512 KB	
		0 b10 1024 KB	
		0b11	
		Disable	
[14:13]	sw_tq_l3_stream_threshold	Configure thresholds for streaming writes to L3 cache	0b01
		0600	
		16 KB	
		0b01	
		32 KB	
		0b10	
		64 KB	
		0b11	
[4.0]		Disable	01.1
[12]	sw_enable_mmupf	Control activation of MMU prefetchers	0b1
		MMU prefetchers are disabled	
		0b1	
		MMU prefetchers are enabled and can send translation requests	
		to MMU pipeline	
[11:8]	RESO .	Reserved	RES0
[7]	sw_pf_fix_pcb_mode	Disable L2 PF dynamic modes and fix to a static value given by sw_pf_fixed_pcb_value	0b0
		0ь0	
		Dynamic behaviour is enabled	
		0b1	
F / 1		Modes are fixed to a static value	
[6]	sw_pf_fix_pcb_accuracy	Disable L2 PF dynamic accuracy feedback and fix to a static value given by sw_pf_fixed_pcb_value	0b0
		060	
		Dynamic behaviour is enabled	
		0b1	
[5]	sw of fiv och resource	Accuracy feedback is fixed to a static value Disable L2 PF dynamic resource feedback and fix to a static value given	0b0
[5]	sw_pf_fix_pcb_resource	by sw_pf_fixed_pcb_value	UQU
		0ь0	
		Dynamic behaviour is enabled	
		Description for all health in five data a static value	
		Resource feedback is fixed to a static value	

Bits	Name	Description	Reset
[4:2]	sw_pf_fixed_pcb_value	Static value for L2 PF mode, accuracy feedback or resource feedback if dynamic behaviour is disabled	0b101
		0ь000	
		Mode = 0 (turn PF off), accuracy_feedback = VERY_LOW, resource_feedback = FULLY_SATURATED	
		0ь001	
		Mode = 1, accuracy_feedback = LOW, resource_feedback = PARTLY_SATURATED	
		0ь010	
		Mode = 2, accuracy_feedback = MEDIUM, resource_feedback = NORMAL	
		0ь011	
	Mode = 3, accuracy_feedback = HIGH, resource_fe		
		0ь100	
		Mode = 4, accuracy_feedback = VERY_HIGH, resource_feedback = EMPTY	
		0b101	
		Mode = 5 (most aggressive), invalid for accuracy and resource feedback	
		0b110	
		Invalid	
		0b111	
		Invalid	
[1]	sw_pf_l3_stash_disable	Prevents any PF to send stash requests on CHI	0b0
		0ь0	
		Enabled	
		0b1	
		Disabled	
[0]	RESO	Reserved	RES0

MSR S3_0_C15_C1_4, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0001	0b100

MRS <Xt>, S3_0_C15_C1_4

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b100

Accessibility

MSR S3_0_C15_C1_4, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ECTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ACTLR_EL2.ECTLREN == '0' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR_EL3.ECTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CPUECTLR EL1 = X[t];
elsif PSTATE.EL == E\overline{L}2 then
    if ACTLR EL3.ECTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CPUECTLR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP CPUECTLR EL1 = X[t];
```

MRS < Xt>, S3_0_C15_C1_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUECTLR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUECTLR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUECTLR_EL1;
```

A.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register

This register contains control bits that affect the CPU behavior.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-16: AArch64_imp_cpuectlr2_el1 bit assignments

Table A-48: IMP_CPUECTLR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:10]	RES0	Reserved	RES0
[9]	sw_disable_stiss_pf	Disable Store Issue Prefetcher	0b0
		0ь0	
		Store Issue Prefetcher is enabled	
		0b1	
		Store Issue Prefetcher is disabled	
[8]	sw_disable_base_stride_pf	Disable Stride Prefetcher	0b0
		0ь0	
		Stride PF is enabled	
		0ъ1	
		Stride PF is disabled	

Bits	Name	Description	Reset
[7]	sw_disable_stream_mode	Disable stream of writes to L2 and beyond	0b0
		0ь0	
		Stream mode is enabled	
		0ь1	
		Stream mode is disabled	
[6]	sw_disable_write_hint_for_pf	Disable write access hint for prefetch.	0b0
		0ь0	
		Write access hint is enabled	
		0b1	
		Write access hint is disabled	
[5]	sw_disable_mte_hint_for_pf	Disable mte access hint for prefetch.	0b0
		0ь0	
		MTE access hint is enabled	
		0ь1	
		MTE access hint is disabled	
[4]	sw_disable_temp_hint_for_pf	Disable temp access hint for prefetch.	0b0
		0ь0	
		Temp access hint is enabled	
		0b1	
FO1		Temp access hint is disabled	
[3]	sw_try_ld_atomic_near	Try atomic load as near even if misses in cache. If the line is evicted, move to far	0b0
		0b0	
		Don't try to execute atomic load in near mode if miss	
		Ob1	
[2]	cut trust atomic poor	Try to execute atomic load in near mode if miss Try atomic store as near even if misses in cache. If the line is evicted, move to far	0b0
[2]	sw_try_st_atomic_near		000
		ObO Don't try to execute atomic store in near mode if miss	
		0b1 Try to execute atomic store in near mode if miss	
[1]	sw_force_st_atomic_near	Always execute atomic store in near mode	0b0
[+]	SW_force_st_atoffile_frear	0b0	000
		Don't force atomic store to execute in near mode	
		0b1	
		Force atomic store to execute in near mode	
[0]	sw_force_ld_atomic_near	Always execute atomic load in near mode	0b1
[]		0b0	
		Don't force atomic load to execute in near mode	
		0b1	
		Force atomic load to execute in near mode	

MSR S3_0_C15_C1_5, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0001	0b101

MRS < Xt>, S3_0_C15_C1_5

op0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0001	0b101

Accessibility

MSR S3_0_C15_C1_5, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ECTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR EL2.ECTLREN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif ACTLR_EL3.ECTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        IMP CPUECTLR2 EL1 = X[t];
elsif PSTAT\overline{E}.EL == EL\overline{2} then
    if ACTLR EL3.ECTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
         IMP_CPUECTLR2_EL1 = X[t];
elsif PSTAT\overline{E}.EL == EL\overline{3} then
    IMP CPUECTLR2 EL1 = X[t];
```

MRS < Xt>, S3_0_C15_C1_5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUECTLR2_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUECTLR2_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUECTLR2_EL1;
```

A.1.17 IMP_CPUPWRCTLR_EL1, CPU Power Control Register

This register controls various power aspects of the core.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-17: AArch64_imp_cpupwrctlr_el1 bit assignments

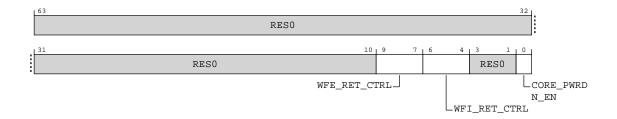


Table A-51: IMP_CPUPWRCTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:10]	RESO	Reserved	RES0

Bits	Name	Description	Reset
[9:7]	WFE_RET_CTRL	Wait for Event retention control.	xxx
		0ь000	
		Dynamic retention is disabled.	
		0b001	
		2 system counter ticks are required before retention entry.	
		0ь010	
		8 system counter ticks are required before retention entry.	
		0b011	
		32 system counter ticks are required before retention entry.	
		0ь100	
		64 system counter ticks are required before retention entry.	
		0ь101	
		128 system counter ticks are required before retention entry.	
		0ь110	
		256 system counter ticks are required before retention entry.	
		0b111	
		512 system counter ticks are required before retention entry.	
[6:4]	WFI_RET_CTRL	Wait for Interrupt retention control.	XXX
		0ь000	
		Dynamic retention is disabled.	
		06001	
		2 system counter ticks are required before retention entry.	
		0ь010	
		8 system counter ticks are required before retention entry.	
		0b011	
		32 system counter ticks are required before retention entry.	
		64 system counter ticks are required before retention entry.	
		128 system counter ticks are required before retention entry.	
		256 system counter ticks are required before retention entry.	
		0b111	
		512 system counter ticks are required before retention entry.	
[3:1]	RESO	Reserved	RES0
[0]	CORE_PWRDN_EN	Indicates to the power controller if the CPU wants to power down when it enters WFE/WFI state.	X
ال	CONF-LAAKDIA-EIA	Indicates to the power controller if the Cr O wants to power down when it enters VVFE/VVFI state.	X

MSR S3_0_C15_C2_7, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0010	0b111

MRS < Xt>, S3 0 C15 C2 7

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0010	0b111

Accessibility

MSR S3 0 C15 C2 7, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED:
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && ACTLR EL3.PWREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR EL2.PWREN == '0' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR_EL3.PWREN == '0' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       IMP CPUPWRCTLR EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if ACTLR EL3.PWREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
        IMP_CPUPWRCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP CPUPWRCTLR EL1 = X[t];
```

MRS < Xt>, S3 0 C15 C2 7

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUPWRCTLR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUPWRCTLR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPWRCTLR_EL1;
```

A.1.18 IMP_CLUSTERACTLR_EL1, Cluster Auxiliary Control Register

These register bits are reserved for Arm test purposes only and must not be used except under direction from Arm.

Configurations

This register is available in all configurations.

Attributes

Width

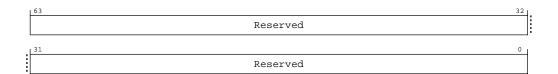
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-18: AArch64_imp_clusteractlr_el1 bit assignments

Table A-54: IMP_CLUSTERACTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_0_C15_C3_3

op0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0011	0b011

MSR S3 0 C15 C3 3, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0011	0b011

Accessibility

MRS < Xt>, S3_0_C15_C3_3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CLUSTERACTLR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CLUSTERACTLR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CLUSTERACTLR_EL1;
```

MSR S3_0_C15_C3_3, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TIDCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif Halted() && EDSCR.SDD == '1' && ACTLR_EL3.ACTLREN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && ACTLR EL2.ACTLREN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CLUSTERACTLR EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && ACTLR EL3.ACTLREN == '0' then
        UNDEFINED;
    elsif ACTLR EL3.ACTLREN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        IMP CLUSTERACTLR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP CLUSTERACTLR EL1 = X[t];
```

A.1.19 IMP_ATCR_EL2, CPU Auxiliary Translation Control Register

This register controls the values of the PBHA signals for memory accesses generated by translation table walks in the EL2 translation regime.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When AArch64-HCR_EL2.E2H == 1

When AArch64-HCR_EL2.E2H == 0

Where the reset reads xxxx, see individual bits

Bit descriptions

When AArch64-HCR_EL2.E2H == 1

Figure A-19: AArch64_imp_atcr_el2 bit assignments

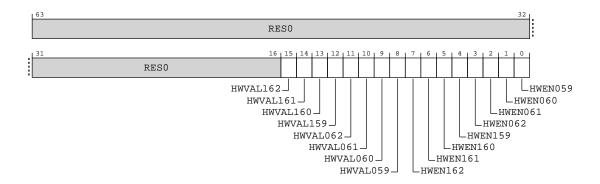


Table A-57: IMP_ATCR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:16]	RESO	Reserved	RES0
[15]	HWVAL162	Value of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN162 is set.	0b0
[14]	HWVAL161	Value of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN161 is set.	0b0
[13]	HWVAL160	Value of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN160 is set.	0b0
[12]	HWVAL159	Value of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL2 if HWEN159 is set.	0b0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN062 is set.	0b0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN061 is set.	0b0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN060 is set.	0b0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN059 is set.	0b0

Bits	Name	Description	Reset
[7]	HWEN162	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0d0
[6]	HWEN161	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0b0
[5]	HWEN160	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[4]	HWEN159	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0b0
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0d0
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[O]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0b0

When AArch64-HCR_EL2.E2H == 0

This view of the register is only valid from Armv8.1 when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Figure A-20: AArch64_imp_atcr_el2 bit assignments

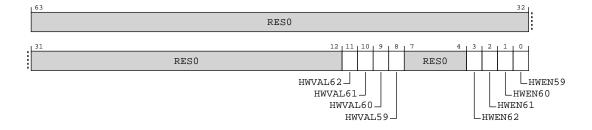


Table A-58: IMP_ATCR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:12]	RES0	Reserved	RES0
[11]	HWVAL62	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN62 is set.	0b0
[10]	HWVAL61	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN61 is set.	0b0
[9]	HWVAL60	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2 if HWEN60 is set.	0b0
[8]	HWVAL59	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2 if HWEN59 is set.	0b0
[7:4]	RES0	Reserved	RES0
[3]	HWEN62	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[2]	HWEN61	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	000

Bits	Name	Description	Reset
[1]		Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0d0
[0]		Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0d0

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic IMP_ATCR_EL2 or IMP_ATCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS < Xt>, S3_4_C15_C7_0

op0	op1	CRn	CRm	op2
0b11	0b100	0b1111	0b0111	0b000

MSR S3_4_C15_C7_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1111	0b0111	00000

MRS < Xt>, S3_0_C15_C7_0

ор0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0111	00000

MSR S3_0_C15_C7_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	06000	0b1111	0b0111	0b000

Accessibility

MRS < Xt>, S3_4_C15_C7_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return IMP_ATCR_EL2;
elsif PSTATE.E\(\overline{L}\) == \(\overline{E}\)L3 then
    return IMP_ATCR_EL2;
```

MSR S3_4_C15_C7_0, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
```

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   IMP_ATCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
   IMP_ATCR_EL2 = X[t];
```

MRS <Xt>, S3 0 C15 C7 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_ATCR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return IMP_ATCR_EL2;
    else
        return IMP_ATCR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_ATCR_EL1;
```

MSR S3 0 C15 C7 0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        IMP_ATCR_EL2 = X[t];
    else
        IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP_ATCR_EL1 = X[t];
```

A.1.20 IMP_AVTCR_EL2, CPU Auxiliary Virtualization Translation Control Register

This register controls the values of the PBHA signals for memory accesses generated by stage 2 translation table walks.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-21: AArch64_imp_avtcr_el2 bit assignments

Table A-63: IMP_AVTCR_EL2 bit descriptions

Bits	Name	Description	Reset
[63:16]	RESO	Reserved	RES0
[15]	SHWVAL62	Value of PBHA[3] on memory accesses due to translation table walks using VSTTBR_EL2 if SHWEN62 is set.	0b0
[14]	SHWVAL61	Value of PBHA[2] on memory accesses due to translation table walks using VSTTBR_EL2 if SHWEN61 is set.	0b0
[13]	SHWVAL60	Value of PBHA[1] on memory accesses due to translation table walks using VSTTBR_EL2 if SHWEN60 is set.	0b0
[12]	SHWVAL59	Value of PBHA[0] on memory accesses due to translation table walks using VSTTBR_EL2 if SHWEN59 is set.	0b0
[11]	HWVAL62	Value of PBHA[3] on memory accesses due to translation table walks using VTTBR_EL2 if HWEN62 is set.	0b0
[10]	HWVAL61	Value of PBHA[2] on memory accesses due to translation table walks using VTTBR_EL2 if HWEN61 is set.	0b0
[9]	HWVAL60	Value of PBHA[1] on memory accesses due to translation table walks using VTTBR_EL2 if HWEN60 is set.	0b0

Bits	Name	Description	Reset
[8]	HWVAL59	Value of PBHA[0] on memory accesses due to translation table walks using VTTBR_EL2 if HWEN59 is set.	0b0
[7]	SHWEN62	Enable use of PBHA[3] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[6]	SHWEN61	Enable use of PBHA[2] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0b0
[5]	SHWEN60	Enable use of PBHA[1] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[4]	SHWEN59	Enable use of PBHA[0] on memory accesses due to translation table walks using VSTTBR_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0b0
[3]	HWEN62	Enable use of PBHA[3] on memory accesses due to translation table walks using VTTBR_EL2. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[2]	HWEN61	Enable use of PBHA[2] on memory accesses due to translation table walks using VTTBR_EL2. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0b0
[1]	HWEN60	Enable use of PBHA[1] on memory accesses due to translation table walks using VTTBR_EL2. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[O]	HWEN59	Enable use of PBHA[0] on memory accesses due to translation table walks using VTTBR_EL2. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0b0

MRS < Xt>, S3_4_C15_C7_1

op0	op1	CRn	CRm	op2
0b11	0b100	0b1111	0b0111	0b001

MSR S3_4_C15_C7_1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1111	0b0111	0b001

Accessibility

MRS < Xt>, S3_4_C15_C7_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return IMP_AVTCR_EL2;
elsif PSTATE.EL == EL3 then
    return IMP_AVTCR_EL2;
```

MSR S3_4_C15_C7_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TIDCP == '1' then
```

A.1.21 IMP_ATCR_EL1, CPU Auxiliary Translation Control Register

This register controls the values of the PBHA signals for memory accesses generated by translation table walks in the EL1 translation regime.

Configurations

This register is available in all configurations.

Attributes

Width

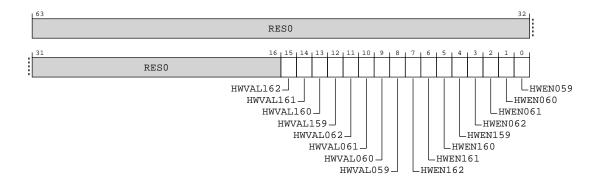
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-22: AArch64_imp_atcr_el1 bit assignments

Table A-66: IMP_ATCR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15]	HWVAL162	Value of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN162 is set.	0b0
[14]	HWVAL161	Value of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN161 is set.	0b0
[13]	HWVAL160	Value of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN160 is set.	0b0
[12]	HWVAL159	Value of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL1 if HWEN159 is set.	0b0
[11]	HWVAL062	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN062 is set.	0b0
[10]	HWVAL061	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN061 is set.	0b0
[9]	HWVAL060	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL1 if HWEN060 is set.	0b0
[8]	HWVAL059	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL1 if HWEN059 is set.	0b0
[7]	HWEN162	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0b0
[6]	HWEN161	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0b0
[5]	HWEN160	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[4]	HWEN159	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR1_EL1. If this bit is clear, PBHA[0] will be 0 on translation table walks.	000
[3]	HWEN062	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[3] will be 0 on translation table walks.	000
[2]	HWEN061	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[2] will be 0 on translation table walks.	000
[1]	HWEN060	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL1. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0b0
[O]	HWEN059	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL1. If this bit is clear, PBHA[0] will be 0 on translation table walks.	000

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic IMP_ATCR_EL1 or IMP_ATCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS < Xt>, S3_0_C15_C7_0

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0111	0b000

MSR S3_0_C15_C7_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0111	00000

MRS < Xt>, S3_5_C15_C7_0

op0	op1	CRn	CRm	op2
0b11	0b101	0b1111	0b0111	00000

MSR S3_5_C15_C7_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b1111	0b0111	00000

Accessibility

MRS < Xt>, S3_0_C15_C7_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_ATCR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return IMP_ATCR_EL2;
    else
        return IMP_ATCR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_ATCR_EL1;
```

MSR S3_0_C15_C7_0, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        IMP_ATCR_EL2 = X[t];
   else
        IMP_ATCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   IMP_ATCR_EL1 = X[t];
```

MRS <Xt>, S3 5 C15 C7 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        return IMP_ATCR_EL1;
```

MSR S3 5 C15 C7 0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        IMP_ATCR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        IMP_ATCR_EL1 = X[t];
    else
        UNDEFINED;
else
        UNDEFINED;
```

A.1.22 IMP_ISIDE_DATA0_EL3, RAMINDEX Instruction Data register 0

Returns the data from a RAMINDEX instruction using RAMID=0x0,0x1

Configurations

This register is available in all configurations.

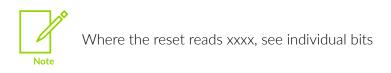
Attributes

Width

64

Functional group

Generic System Control


Access type

See bit descriptions

Reset value

When L1 instruction cache tag

When L1 instruction cache data

Bit descriptions

When L1 instruction cache tag

Figure A-23: AArch64_imp_iside_data0_el3 bit assignments

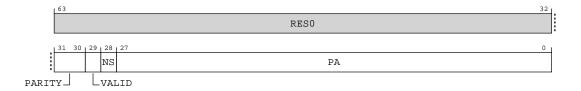


Table A-71: IMP_ISIDE_DATA0_EL3 bit descriptions

Bits	Name	ne Description	
[63:32]	RES0	Reserved	RESO
[31:30]	PARITY	Parity bit	XX
[29]	VALID	Validity bit	Х
[28]	NS Non-secure identifier for the physical address		Х
[27:0]	PA	Physical address [39:12]	28{x}

When L1 instruction cache data

Figure A-24: AArch64_imp_iside_data0_el3 bit assignments

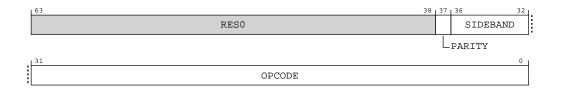


Table A-72: IMP_ISIDE_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:38]	RESO	Reserved	RES0
[37]	PARITY	Parity bit	х
[36:32]		Implementation defined field. If this field is not 5'b10000 or 5'b10110 then AArch64-IMP_ISIDE_DATA0_EL3.OPCODE represents the AArch64 instruction opcode	5 { x }
[31:0]		Aarch64 opcode at {Aarch64-RAMINDEX.VA[48:3], 1'b0} if AArch64-IMP_ISIDE_DATA0_EL3.SIDEBAND is not 5'b10000 or 5'b10110	32{x}

Access

MRS < Xt>, S3_6_C15_C0_0

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0000	00000

Accessibility

MRS <Xt>, S3 6 C15 C0 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_ISIDE_DATA0_EL3;
```

A.1.23 IMP_ISIDE_DATA1_EL3, RAMINDEX Instruction Data register 1

Returns the data from a RAMINDEX instruction using RAMID=0x0,0x1

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L1 instruction cache tag

When L1 instruction cache data

Where the reset reads xxxx, see individual bits

Bit descriptions

When L1 instruction cache tag

Figure A-25: AArch64_imp_iside_data1_el3 bit assignments

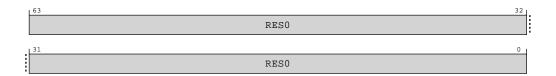
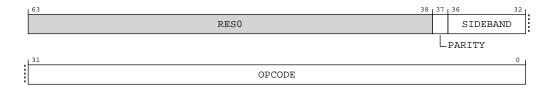



Table A-74: IMP_ISIDE_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RESO

When L1 instruction cache data

Figure A-26: AArch64_imp_iside_data1_el3 bit assignments

Table A-75: IMP_ISIDE_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:38]	RES0	Reserved	RES0
[37]	PARITY	Parity bit	Х
[36:32]	SIDEBAND	Implementation defined field. If this field is not 5'b10000 or 5'b10110 then AArch64-IMP_ISIDE_DATA1_EL3.OPCODE represents the AArch64 instruction opcode	5{x}
[31:0]	OPCODE	Aarch64 opcode at {Aarch64-RAMINDEX.VA[48:3], 1'b1} if AArch64-IMP_ISIDE_DATA1_EL3.SIDEBAND is not 5'b10000 or 5'b10110	32{x}

Access

MRS < Xt>, S3_6_C15_C0_1

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0000	0b001

Accessibility

MRS < Xt>, S3_6_C15_C0_1

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
```

A.1.24 IMP_ISIDE_DATA2_EL3, RAMINDEX Instruction Data register 2

Returns the data from a RAMINDEX instruction using RAMID=0x0,0x1

Configurations

This register is available in all configurations.

Attributes

Width

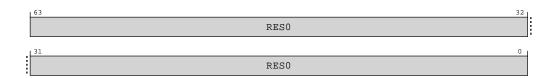
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-27: AArch64_imp_iside_data2_el3 bit assignments

Table A-77: IMP_ISIDE_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS < Xt>, S3_6_C15_C0_2

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0000	0b010

Accessibility

MRS < Xt>, S3 6 C15 C0 2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_ISIDE_DATA2_EL3;
```

A.1.25 IMP_MMU_DATA0_EL3, RAMINDEX TLB Data register 0

Returns the data from a RAMINDEX instruction using RAMID=0x18

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L2 TLB TCSP (small pages)

When L2 TLB TCMP (medium pages)

Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 TLB TCSP (small pages)

Figure A-28: AArch64_imp_mmu_data0_el3 bit assignments

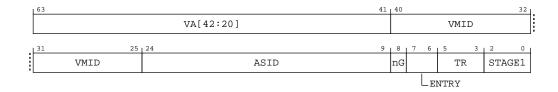


Table A-79: IMP_MMU_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:41]	VA[42:20]	Virtual Address [42:20]	23{x}
[40:25]	VMID	VMID	16{x}
[24:9]	ASID	ASID	16{x}
[8]	nG	Non-Global	Х
[7:6]	ENTRY	Entry Size	XX
		0ъ00	
		4KB	
		0ь01	
		16KB	
		0b10	
		64KB	
		0b11	
		Reserved	
[5:3]	TR	Translation Regime	xxx
		0Р000	
		Reserved	
		0b001	
		Secure EL1	
		0ь010	
		Secure EL2	
		0ь011	
		Secure EL3	
		0b100 Reserved	
		0b101 Non-Secure EL1	
		0b110 Non-Secure EL2	
		0b111	
		Non-Secure EL3	
		Hori Secure LLO	

Bits	Name	Description	Reset
[2:0]	STAGE1	Stage 1 description encoding	XXX
		06000	
		Entry is found at level 3 of 4KB granule (stage1 size = 4KB)	
		06001	
		Entry is found at level 3 of 16KB granule (stage1 size = 16KB)	
		0ь010	
		Entry is found at level 3 of 64KB granule (stage1 size = 64KB)	
		0b011	
		Reserved	
		0b100	
		Entry is found at level 2 of 4KB granule (stage1 size = 2MB)	
		0b101	
		Entry is found at level 2 of 16KB granule (stage1 size = 32MB)	
		0b110	
		Entry is found at level 2 of 64KB granule (stage1 size = 512MB)	
		0b111	
		Entry is found at level 1 of 4KB granule (stage1 size = 1GB)	

When L2 TLB TCMP (medium pages)

Figure A-29: AArch64_imp_mmu_data0_el3 bit assignments

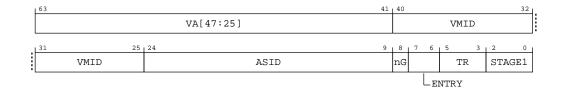


Table A-80: IMP_MMU_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:41]	VA[47:25]	Virtual Address [47:25]	23{x}
[40:25]	VMID	VMID	16{x}
[24:9]	ASID	ASID	16{x}
[8]	nG	Non-Global	Х

Bits	Name	Description	Reset
[7:6]	ENTRY	Entry Size	xx
		0600	
		2MB	
		0b01	
		32MB	
		0b10	
		512MB	
		0b11	
		Normal entries: Reseved, IPA entries: 2MB originating from a 1GB block	
[5:3]	TR	Translation Regime	xxx
		06000	
		Reserved	
		0b001	
		Secure EL1	
		06010	
		Secure EL2	
		0ь011	
		Secure EL3	
		0ь100	
		Reserved	
		0ь101	
		Non-Secure EL1	
		0ь110	
		Non-Secure EL2	
		0ь111	
		Non-Secure EL3	

Bits	Name	Description	Reset
[2:0]	STAGE1	Stage 1 description encoding	xxx
		0ь000	
		Entry is found at level 3 of 4KB granule (stage1 size = 4KB)	
		0b001	
		Entry is found at level 3 of 16KB granule (stage1 size = 16KB)	
		0b010	
		Entry is found at level 3 of 64KB granule (stage1 size = 64KB)	
		0b011	
		Entry is an IPA to PA translation	
		0b100	
		Entry is found at level 2 of 4KB granule (stage1 size = 2MB)	
		0b101	
		Entry is found at level 2 of 16KB granule (stage1 size = 32MB)	
		0b110	
		Entry is found at level 2 of 64KB granule (stage1 size = 512MB)	
		0b111	
		Entry is found at level 1 of 4KB granule (stage1 size = 1GB)	

Access

MRS < Xt>, S3_6_C15_C0_3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0000	0b011

Accessibility

MRS < Xt>, S3_6_C15_C0_3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_MMU_DATAO_EL3;
```

A.1.26 IMP_MMU_DATA1_EL3, RAMINDEX TLB Data register 1

Returns the data from a RAMINDEX instruction using RAMID=0x18

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L2 TLB TCSP (small pages)

When L2 TLB TCMP (medium pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b0

When L2 TLB TCMP (medium pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b1

Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 TLB TCSP (small pages)

Figure A-30: AArch64_imp_mmu_data1_el3 bit assignments

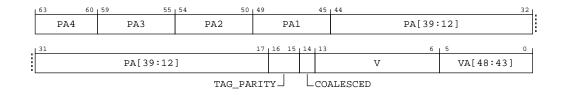


Table A-82: IMP_MMU_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:60]	PA4	Physical Address cluster 4[3:0]	xxxx
[59:55]	PA3	Physical Address cluster 3	5 { x }
[54:50]	PA2	Physical Address cluster 2	5 { x }
[49:45]	PA1	Physical address cluster 1	5 { x }
[44:17]	PA[39:12]	Physical address [39:12]	28{x}
[16:15]	TAG_PARITY	Tag Parity	xx

Bits	Name	Description	Reset
[14]	COALESCED	Coalesced entry	х
[13:6]	V	Validity bits	8 { x }
[5:0]	VA[48:43]	Virtual Address [48:43]	6{x}

When L2 TLB TCMP (medium pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b0

Figure A-31: AArch64_imp_mmu_data1_el3 bit assignments

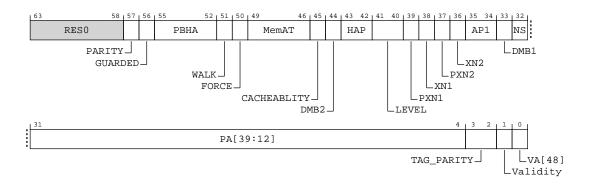


Table A-83: IMP_MMU_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:58]	RESO	Reserved	RES0
[57]	PARITY	Data Parity	Х
[56]	GUARDED	Guarded page	х
[55:52]	РВНА	РВНА	xxxx
[51]	WALK	Walk cache entry	x
[50]	FORCE	Force write-back	х

Bits	Name	Description	Reset
[49:46]	MemAT	Memory attributes information	xxxx
		0ь0000	
		Normal memory - Non-Cacheable due to stage 1. Originnaly not outer cacheable (WB/ WT)	
		0ь0001	
		Device nGnRnE with stage 1 being device	
		0ь0010	
		Device nGnRnE with stage 1 being normal non-cacheable	
		0ь0011	
		Device nGnRnE with stage 1 being normal cacheable	
		0ь0100	
		Normal memory - Non-Cacheable due to stage 1. Originnaly outer cacheable (WB/ WT)	
		0ь0101	
		Device nGnRE with stage 1 being device	
		0ь0110	
		Device nGnRE with stage 1 being normal non-cacheable	
		0b0111	
		Device nGnRE with stage 1 being normal cacheable	
		0b1000	
		Normal memory - Non-Cacheable due to stage 2. Originnaly not outer cacheable (WB/ WT)	
		0b1001	
		Device nGRE with stage 1 being device	
		0b1010	
		Device nGRE with stage 1 being normal non-cacheable	
		0b1011	
		Device nGRE with stage 1 being normal cacheable	
		0b1100 Normal memory - Non-Cacheable due to stage 2. Originnaly outer cacheable (WB/ WT)	
		Device GRE with stage 1 being device	
		Ob1110 Device GRE with stage 1 being normal non-cacheable	
		0b1111	
		Device GRE with stage 1 being normal cacheable	
[45]	CACHEABLITY	Cacheability	X
[44]	DMB2	Stage 2 dirty bit Modifier	X
[43:42]	HAP	Stage 2 Access Permissions	XX
[10.72]	1 1/ 11	Jampe 27 recess i citilissions	7,7,7

Bits	Name	Description	Reset
[41:40]	LEVEL	Stage 2 level	xx
		0600	
		Level 3	
		0b01	
		Level 2	
		0b10	
		Level 1	
		0b11	
		Level 0	
[39]	PXN1	Stage 1 privileged Execute-Never	х
[38]	XN1	Stage 1 Execute-Never	х
[37]	PXN2	Stage 2 privileged Execute-Never	х
[36]	XN2	Stage 2 Execute-Never	х
[35:34]	AP1	Stage 1 Access Permission	xx
[33]	DMB1	Stage 1 dirty bit Modifier	х
[32]	NS	Non-Secure which determines whether the physical address is in secure spece or non-secure space	х
[31:4]	PA[39:12]	Physical Address[39:12]	28{x}
[3:2]	TAG_PARITY	Tag Parity	xx
[1]	Validity	Valididy	х
[0]	VA[48]	Virtual Address [48]	х

When L2 TLB TCMP (medium pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b1

Figure A-32: AArch64_imp_mmu_data1_el3 bit assignments

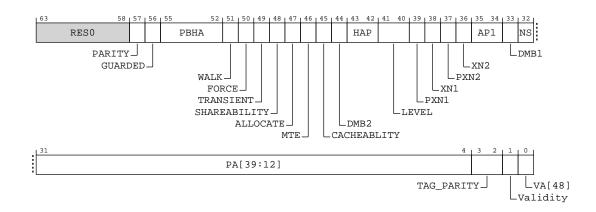


Table A-84: IMP_MMU_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:58]	RESO	Reserved	RES0
[57]	PARITY	Data Parity	х
[56]	GUARDED	Guarded page	Х

Bits	Name	Description	Reset
[55:52]	РВНА	РВНА	xxxx
[51]	WALK	Walk cache entry	х
[50]	FORCE	rce write-back	
[49]	TRANSIENT	Inner transient hint	х
[48]	SHAREABILITY	Shareability	x
[47]	ALLOCATE	Allocate hint	х
[46]	MTE	MTE tag	х
[45]	CACHEABLITY	Cacheability	х
[44]	DMB2	Stage 2 dirty bit Modifier	х
[43:42]	HAP	Stage 2 Access Permissions	xx
[41:40]	LEVEL	Stage 2 level	xx
		0ь00	
		Level 3	
		0b01	
		Level 2	
		0b10	
		Level 1	
		0b11	
		Level 0	
[39]	PXN1	Stage 1 privileged Execute-Never	х
[38]	XN1	Stage 1 Execute-Never	х
[37]	PXN2	Stage 2 privileged Execute-Never	х
[36]	XN2	Stage 2 Execute-Never	х
[35:34]	AP1	Stage 1 Access Permission	xx
[33]	DMB1	Stage 1 dirty bit Modifier	х
[32]	NS	Non-Secure which determines whether the physical address is in secure spece or non-secure space	
[31:4]	PA[39:12]	Physical Address[39:12]	28{x}
[3:2]	TAG_PARITY	Tag Parity	xx
[1]	Validity	Valididy	х
[O]	VA[48]	Virtual Address [48]	х

Access

MRS < Xt>, S3_6_C15_C0_4

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0000	0b100

Accessibility

MRS < Xt>, S3_6_C15_C0_4

if PSTATE.EL == ELO then
 UNDEFINED;

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   UNDEFINED;
elsif PSTATE.EL == EL3 then
   return IMP_MMU_DATA1_EL3;
```

A.1.27 IMP_MMU_DATA2_EL3, RAMINDEX TLB Data register 2

Returns the data from a RAMINDEX instruction using RAMID=0x18

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

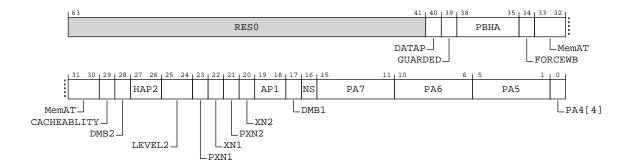
See bit descriptions

Reset value

When L2 TLB TCSP (small pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b0

When L2 TLB TCSP (small pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b1

When L2 TLB TCMP (medium pages)



Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 TLB TCSP (small pages) and AArch64-IMP MMU DATA1 EL3.CACHEABLITY == 0b0

Figure A-33: AArch64_imp_mmu_data2_el3 bit assignments

Table A-86: IMP_MMU_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:41]	RESO	Reserved	RES0
[40]	DATAP	Data Parity	Х
[39]	GUARDED	Guarded page	Х
[38:35]	РВНА	РВНА	XXXX
[34]	FORCEWB	Force Write-back	х

Bits	Name	Description	Reset
[33:30]	MemAT	Memory attributes information	xxxx
		0ь0000	
		Normal memory - Non-Cacheable due to stage 1. Originnaly not outer cacheable (WB/ WT)	
		0ь0001	
		Device nGnRnE with stage 1 being device	
		0ь0010	
		Device nGnRnE with stage 1 being normal non-cacheable	
		0b0011	
		Device nGnRnE with stage 1 being normal cacheable	
		0ь0100	
		Normal memory - Non-Cacheable due to stage 1. Originnaly outer cacheable (WB/ WT)	
		0b0101	
		Device nGnRE with stage 1 being device	
		0b0110	
		Device nGnRE with stage 1 being normal non-cacheable	
		0b0111	
		Device nGnRE with stage 1 being normal cacheable	
		0ь1000	
		Normal memory - Non-Cacheable due to stage 2. Originnaly not outer cacheable (WB/ WT)	
		0b1001	
		Device nGRE with stage 1 being device	
		0ь1010	
		Device nGRE with stage 1 being normal non-cacheable	
		0ь1011	
		Device nGRE with stage 1 being normal cacheable	
		0ь1100	
		Normal memory - Non-Cacheable due to stage 2. Originnaly outer cacheable (WB/ WT)	
		0b1101	
		Device GRE with stage 1 being device	
		0b1110	
		Device GRE with stage 1 being normal non-cacheable	
		0b1111	
_		Device GRE with stage 1 being normal cacheable	
[29]	CACHEABLITY	Cacheability	Х
[28]	DMB2	Stage 2 dirty bit Modifier	X
[27:26]	HAP2	Stage 2 Access Permissions	XX

Bits	Name	Description	Reset
[25:24]	LEVEL2	Stage 2 level	XX
		0ь00	
		Level 3	
		0b01	
		Level 2	
		0b10	
		Level 1	
		0b11	
		Level 0	
[23]	PXN1	Stage 1 privileged Execute-Never	Х
[22]	XN1	Stage 1 Execute-Never	Х
[21]	PXN2	ge 2 privileged Execute-Never	
[20]	XN2	ge 2 Execute-Never	
[19:18]	AP1	rage 1 Access Permission	
[17]	DMB1	Stage 1 dirty bit Modifier	Х
[16]	NS	Non-Secure which determines whether the physical address is in secure spece or non-secure space	х
[15:11]	PA7	Physical Address cluster 7	5 { x }
[10:6]	PA6	Physical Address cluster 6	5 { x }
[5:1]	PA5	Physical Address cluster 5	5 { x }
[O]	PA4[4]	Physical Address cluster 4 bit 4	х

When L2 TLB TCSP (small pages) and AArch64-IMP_MMU_DATA1_EL3.CACHEABLITY == 0b1

Figure A-34: AArch64_imp_mmu_data2_el3 bit assignments

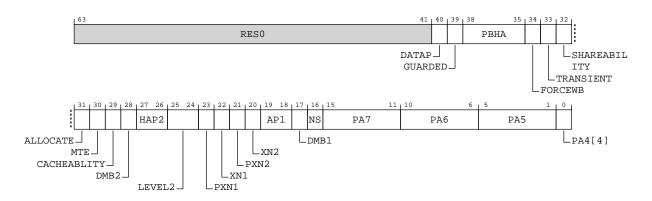


Table A-87: IMP_MMU_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:41]	RESO	Reserved	RES0
[40]	DATAP	Data Parity	Х
[39]	GUARDED	Guarded page	х
[38:35]	РВНА	РВНА	xxxx

Bits	Name	Description	Reset
[34]	FORCEWB	Force Write-back	х
[33]	TRANSIENT	Inner transient hint	Х
[32]	SHAREABILITY	Shareability	Х
[31]	ALLOCATE	Allocate hint	Х
[30]	MTE	MTE tag	Х
[29]	CACHEABLITY	Cacheability	X
[28]	DMB2	Stage 2 dirty bit Modifier	Х
[27:26]	HAP2	Stage 2 Access Permissions	xx
[25:24]	LEVEL2	Stage 2 level	xx
		0ь00	
		Level 3	
		0b01	
		Level 2	
		0b10	
		Level 1	
		0b11	
		Level 0	
[23]	PXN1	Stage 1 privileged Execute-Never	Х
[22]	XN1	Stage 1 Execute-Never	Х
[21]	PXN2	Stage 2 privileged Execute-Never	Х
[20]	XN2	Stage 2 Execute-Never	Х
[19:18]	AP1	Stage 1 Access Permission	xx
[17]	DMB1	Stage 1 dirty bit Modifier	Х
[16]	NS	Non-Secure which determines whether the physical address is in secure spece or non-secure space	Х
[15:11]	PA7	Physical Address cluster 7	5{x}
[10:6]	PA6	Physical Address cluster 6	5 { x }
[5:1]	PA5	Physical Address cluster 5	5{x}
[0]	PA4[4]	Physical Address cluster 4 bit 4	х

When L2 TLB TCMP (medium pages)

Figure A-35: AArch64_imp_mmu_data2_el3 bit assignments

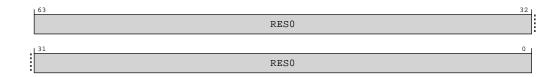


Table A-88: IMP_MMU_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS < Xt>, S3_6_C15_C0_5

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	000000	0b101

Accessibility

MRS <Xt>, S3 6 C15 C0 5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_MMU_DATA2_EL3;
```

A.1.28 IMP_DSIDE_DATA0_EL3, RAMINDEX L1D Data register 0

Returns the data from a RAMINDEX instruction using RAMID=0x8,0x9

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L1 Data cache tag

When L1 data cache data

Where the reset reads xxxx, see individual bits

Bit descriptions

When L1 Data cache tag

Figure A-36: AArch64_imp_dside_data0_el3 bit assignments

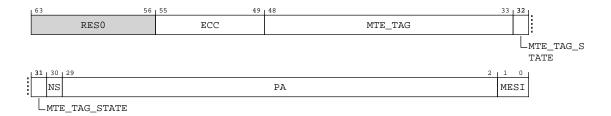
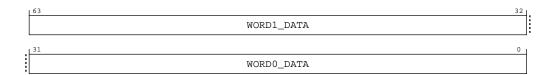



Table A-90: IMP_DSIDE_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:56]	RESO RESO	Reserved	RESO
[55:49]	ECC	ECC	7 { x }
[48:33]	MTE_TAG	MTE tag data	16{x}
[32:31]	MTE_TAG_STATE	MTE tag state	xx
		0ь00	
		Invalid	
		0b01	
		Invalid	
		0b10	
		Clean	
		0b11	
		Dirty state	
[30]	NS	Non-secure identifier for the physical address	X
[29:2]	PA	Physical address [39:12]	28{x}
[1:0]	MESI	MESI	xx
		0ь00	
		Invalid	
		0b01	
		Shared	
		0b10	
		Modified (unique dirty)	
		0b11	
		Exclusive (unique clean)	

When L1 data cache data

Figure A-37: AArch64_imp_dside_data0_el3 bit assignments

Table A-91: IMP_DSIDE_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:32]	WORD1_DATA	Word 1 data 31:0	32{x}
[31:0]	WORDO_DATA	Word 0 data 31:0	32{x}

Access

MRS < Xt>, S3 6 C15 C1 0

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	00000

Accessibility

MRS < Xt>, S3_6_C15_C1_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_DSIDE_DATAO_EL3;
```

A.1.29 IMP_DSIDE_DATA1_EL3, RAMINDEX L1D Data register 1

Returns the data from a RAMINDEX instruction using RAMID=0x8,0x9

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L1 data cache tag

When L1 data cache data

Where the reset reads xxxx, see individual bits

Bit descriptions

When L1 data cache tag

Figure A-38: AArch64_imp_dside_data1_el3 bit assignments

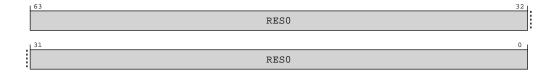
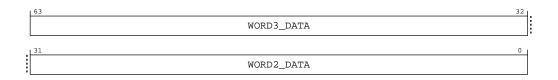



Table A-93: IMP_DSIDE_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RESO

When L1 data cache data

Figure A-39: AArch64_imp_dside_data1_el3 bit assignments

Table A-94: IMP_DSIDE_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:32]	WORD3_DATA	Word 3 data 31:0	32{x}
[31:0]	WORD2_DATA	Word 2 data 31:0	32{x}

Access

MRS < Xt>, S3_6_C15_C1_1

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	0b001

Accessibility

MRS < Xt>, S3_6_C15_C1_1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_DSIDE_DATA1_EL3;
```

A.1.30 IMP_DSIDE_DATA2_EL3, RAMINDEX L1D Data register 2

Returns the data from a RAMINDEX instruction using RAMID=0x8,0x9

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

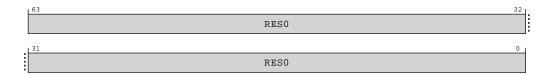
Access type

See bit descriptions

Reset value

When L1 data cache tag

When L1 data cache data



Where the reset reads xxxx, see individual bits

Bit descriptions

When L1 data cache tag

Figure A-40: AArch64_imp_dside_data2_el3 bit assignments

Table A-96: IMP_DSIDE_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

When L1 data cache data

Figure A-41: AArch64_imp_dside_data2_el3 bit assignments

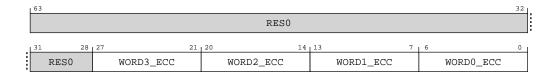


Table A-97: IMP_DSIDE_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:28]	RESO	Reserved	RESO
[27:21]	WORD3_ECC	Word 3 ECC	7 { x }
[20:14]	WORD2_ECC	Word 2 ECC	7 { x }
[13:7]	WORD1_ECC	Word 1 ECC	7 { x }
[6:0]	WORDO_ECC	Word 0 ECC	7 { x }

Access

MRS < Xt>, S3_6_C15_C1_2

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	0b010

Accessibility

MRS < Xt>, S3_6_C15_C1_2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
```

A.1.31 IMP_L2_DATA0_EL3, RAMINDEX L2 Data register 0

Returns the data from a RAMINDEX instruction using RAMID=0x10 or RAMID=0x11

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

When L2 tag cache for 512KB RAM

When L2 tag cache for 256KB RAM

When L2 tag cache for 128KB RAM

When L2 data cache

Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 tag cache for 512KB RAM

Figure A-42: AArch64_imp_l2_data0_el3 bit assignments

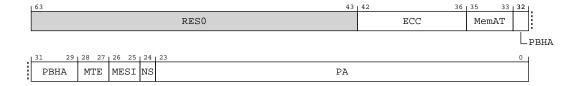


Table A-99: IMP_L2_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:43]	RES0	Reserved	RESO
[42:36]	ECC	ECC	7{x}
[35:33]	MemAT	Memory attribute	xxx
[32:29]	РВНА	РВНА	xxxx
[28:27]	MTE	MTE state	xx
		0600	
		Invalid	
		0ь01	
		Invalid	
		0b10	
		Clean	
		0b11	
		Dirty	
[26:25]	MESI	MESI	xx
		0ь00	
		Invalid	
		0b01	
		Shared	
		0ь10	
		Modified (unique dirty)	
		0b11	
		Exclusice (unique clean)	
[24]	NS	Non-Secure indentifier	х
[23:0]	PA	Physical address [39:16]	24{x}

When L2 tag cache for 256KB RAM

Figure A-43: AArch64_imp_l2_data0_el3 bit assignments

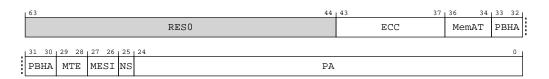
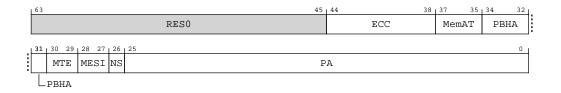


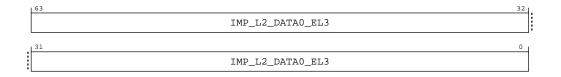
Table A-100: IMP_L2_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:44]	RES0	Reserved	RESO
[43:37]	ECC	ECC	7 { x }
[36:34]	MemAT	Memory attribute	xxx
[33:30]	PBHA	РВНА	xxxx
[29:28]	MTE	MTE state	xx
		0ь00	
		Invalid	
		0b01	
		Invalid	
		0b10	
		Clean	
		0b11	
		Dirty	
[27:26]	MESI	MESI	xx
		0Р00	
		Invalid	
		0b01	
		Shared	
		0b10	
		Modified (unique dirty)	
		0b11	
[0.5]	110	Exclusice (unique clean)	
[25]	NS	Non-Secure indentifier	Х
[24:0]	PA	Physical address [39:15]	25{x}

When L2 tag cache for 128KB RAM

Figure A-44: AArch64_imp_l2_data0_el3 bit assignments




Table A-101: IMP_L2_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:45]	RESO	Reserved	RESO
[44:38]	ECC	ECC	7 { x }
[37:35]	MemAT	Memory attribute	xxx
[34:31]	РВНА	РВНА	xxxx

Bits	Name	Description	Reset
[30:29]	MTE	MTE state	xx
		0ь00	
		Invalid	
		0b01	
		Invalid	
		0b10	
		Clean	
		0b11	
		Dirty	
[28:27]	MESI	MESI	xx
		0ь00	
		Invalid	
		0ь01	
		Shared	
		0ь10	
		Modified (unique dirty)	
		0b11	
		Exclusice (unique clean)	
[26]	NS	Non-Secure indentifier	х
[25:0]	PA	Physical address [39:14]	26{x}

When L2 data cache

Figure A-45: AArch64_imp_l2_data0_el3 bit assignments

Table A-102: IMP_L2_DATA0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	IMP_L2_DATA0_EL3	Least significant 8-bytes of the 16-bytes data granule of the line	64{x}

Access

MRS < Xt >, S3_6_C15_C1_3

ор0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	0b011

Accessibility

MRS < Xt>, S3_6_C15_C1_3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_L2_DATAO_EL3;
```

A.1.32 IMP_L2_DATA2_EL3, RAMINDEX L2 Data register 2

Returns the data from a RAMINDEX instruction using RAMID=0x10 or RAMID=0x11

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

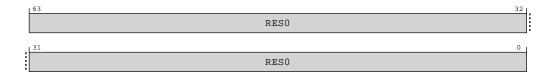
Access type

See bit descriptions

Reset value

When L2 tag cache

When L2 data cache



Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 tag cache

Figure A-46: AArch64_imp_l2_data2_el3 bit assignments

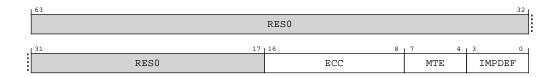


Table A-104: IMP_L2_DATA2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

When L2 data cache

Figure A-47: AArch64_imp_I2_data2_el3 bit assignments

Table A-105: IMP_L2_DATA2_EL3 bit descriptions

Bits	Name	Description	
[63:17]	RESO	Reserved	RES0
[16:8]	ECC	CCC	
[7:4]	MTE	MTE allocation tags for the 16-bytes granule	
[3:0]	IMPDEF	For granule 0 and 3: Implementation defined meta data For granule 1 and 2: MPAM	

Access

MRS < Xt>, S3_6_C15_C1_4

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	0b100

Accessibility

MRS < Xt>, S3_6_C15_C1_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
```

UNDEFINED;
elsif PSTATE.EL == EL3 then
 return IMP_L2_DATA2_EL3;

A.1.33 IMP_L2_DATA1_EL3, RAMINDEX L2 Data register 1

Returns the data from a RAMINDEX instruction using RAMID=0x10 or RAMID=0x11

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

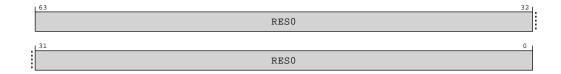
Access type

See bit descriptions

Reset value

When L2 tag cache

When L2 data cache



Where the reset reads xxxx, see individual bits

Bit descriptions

When L2 tag cache

Figure A-48: AArch64_imp_l2_data1_el3 bit assignments

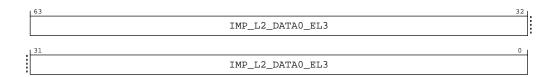


Table A-107: IMP_L2_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

When L2 data cache

Figure A-49: AArch64_imp_l2_data1_el3 bit assignments

Table A-108: IMP_L2_DATA1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	IMP_L2_DATA0_EL3	Most significant 8-bytes of the 16-bytes data granule of the line	64{x}

Access

MRS <Xt>, S3_6_C15_C1_5

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0001	0b101

Accessibility

MRS < Xt>, S3_6_C15_C1_5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_L2_DATA1_EL3;
```

A.1.34 IMP_CLUSTERCDBG_EL3, Cluster Cache Debug Register

Can be used to read the contents of the L3 cache RAMs and snoop filter RAMs. The register must be written with the information of which RAM is to be read. Then the same register should be read to read the contents of that RAM.

Configurations

This register is available in all configurations.

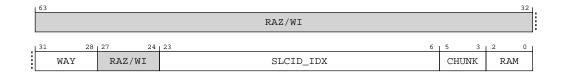
Attributes

Width

64

Functional group

Generic System Control


Access type

See bit descriptions

Reset value

Bit descriptions

Figure A-50: AArch64_imp_clustercdbg_el3 bit assignments

Table A-110: IMP_CLUSTERCDBG_EL3 bit descriptions

Name	Description	Reset
RAZ/WI	Reserved	RAZ/WI
WAY	Way of RAM being accessed.	0b0000
RAZ/WI	Reserved	RAZ/WI
	can be identified using contiguous index locations. The Set index values for slice 0 start from value zero in this field, followed by the index locations for slice 1, then slice 2, and so on. The total index width varies depending on the size of the RAM being accessed. The cache slice identification number, Slice ID, forms the upper used bits of the cache location encoding in this field. For a Tag RAM or Data RAM access this field will encode as {'0, SLICE_ID_W, TagRAM_IDX_W}	0b0000000000000000000000000000000000000
F	RAZ/WI WAY RAZ/WI SLCID_IDX	RAZ/WI Reserved RAZ/WI Reserved SLCID_IDX The L3 cache Set locations in each cache slice are all power-of-2 in size and therefore can be identified using contiguous index locations. The Set index values for slice 0 start from value zero in this field, followed by the index locations for slice 1, then slice 2, and so on. The total index width varies depending on the size of the RAM being accessed. The cache slice identification number, Slice ID, forms the upper used bits of the cache location encoding in this field. For a Tag RAM or Data RAM access this field will encode as {'0, SLICE_ID_W,

Bits	Name	Description	Reset
[5:3]	CHUNK	Select of 64-bit data chunk to read from 512-bit Data RAM cache line. Only used when accessing Data RAM data.	00000
		0ь000	
		Data[63:0]	
		0b001	
		Data[127:64]	
		0ь010	
		Data[191:128]	
		0b011	
		Data[255:192]	
		0b100	
		Data[319:256]	
		0b101	
		Data[383:320]	
		0b110	
		Data[447:384]	
		0b111	
		Data[511:448]	
[2:0]	RAM	RAM to be accessed. All other values are reserved.	0b000
		0ь001	
		Snoop Filter RAM	
		0ь010	
		Tag RAM	
		0ь011	
		Data RAM - accessing cacheline data	
		0ь111	
		Data RAM - accessing cacheline MTE tags	

Access

MRS <Xt>, S3_6_C15_C4_7

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0100	0b111

MSR S3_6_C15_C4_7, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0100	0b111

Accessibility

MRS <Xt>, S3_6_C15_C4_7

if PSTATE.EL == ELO then
 UNDEFINED;

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
   UNDEFINED;
elsif PSTATE.EL == EL3 then
   return IMP_CLUSTERCDBG_EL3;
```

MSR S3_6_C15_C4_7, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CLUSTERCDBG_EL3 = X[t];
```

A.1.35 IMP_ATCR_EL3, CPU Auxiliary Translation Control Register

This register controls the values of the PBHA signals for memory accesses generated by translation table walks in the EL3 translation regime.

Configurations

This register is available in all configurations.

Attributes

Width

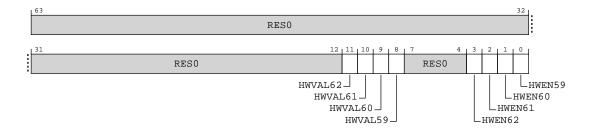
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-51: AArch64_imp_atcr_el3 bit assignments

Table A-113: IMP_ATCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:12]	RES0	Reserved	RES0
[11]	HWVAL62	Value of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN62 is set.	0b0
[10]	HWVAL61	Value of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN61 is set.	0b0
[9]	HWVAL60	Value of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL3 if HWEN60 is set.	0b0
[8]	HWVAL59	Value of PBHA[0] on memory accesses due to translation table walks using TTBR0_EL3 if HWEN59 is set.	0b0
[7:4]	RES0	Reserved	RES0
[3]	HWEN62	Enable use of PBHA[3] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[3] will be 0 on translation table walks.	0d0
[2]	HWEN61	Enable use of PBHA[2] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[2] will be 0 on translation table walks.	0d0
[1]	HWEN60	Enable use of PBHA[1] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[1] will be 0 on translation table walks.	0d0
[0]	HWEN59	Enable use of PBHA[0] on memory accesses due to translation table walks using TTBRO_EL3. If this bit is clear, PBHA[0] will be 0 on translation table walks.	0d0

Access

MRS < Xt>, S3_6_C15_C7_0

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0111	0b000

MSR S3_6_C15_C7_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0111	00000

Accessibility

MRS < Xt>, S3_6_C15_C7_0

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

MSR S3_6_C15_C7_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_ATCR_EL3 = X[t];
```

A.1.36 IMP_CPUPSELR_EL3, Selected Instruction Private Control Register

Selects the current instruction patch register for subsequent accesses to AArch64-IMP_CPUPCR_EL3, AArch64-IMP_CPUPOR_EL3, AArch64-IMP_CPUPMR_EL3, AArch64-IMP_CPUPMR2_EL3, and AArch64-IMP_CPUPFR_EL3

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-52: AArch64_imp_cpupselr_el3 bit assignments

Table A-116: IMP_CPUPSELR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_0

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	00000

MSR S3_6_C15_C8_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	00000

Accessibility

MRS < Xt>, S3_6_C15_C8_0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPSELR_EL3;
```

MSR S3_6_C15_C8_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
```

IMP CPUPSELR EL3 = X[t];

A.1.37 IMP_CPUPCR_EL3, Selected Instruction Private Control Register

Configures current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

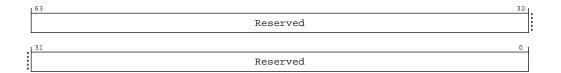
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-53: AArch64_imp_cpupcr_el3 bit assignments

Table A-119: IMP_CPUPCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS <Xt>, S3_6_C15_C8_1

ор0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b001

MSR S3_6_C15_C8_1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b001

Accessibility

MRS < Xt>, S3 6 C15 C8 1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPCR_EL3;
```

MSR S3_6_C15_C8_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPCR_EL3 = X[t];
```

A.1.38 IMP_CPUPOR_EL3, Selected Instruction Patch Opcode Register

Opcode for current Instruction Patch selected by AArch64-IMP CPUPSELR EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

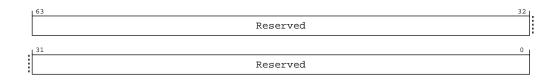
Functional group

Generic System Control

Access type

See bit descriptions

Reset value



Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-54: AArch64_imp_cpupor_el3 bit assignments

Table A-122: IMP_CPUPOR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_2

ор0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b010

MSR S3_6_C15_C8_2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b010

Accessibility

MRS < Xt>, S3_6_C15_C8_2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPOR_EL3;
```

MSR S3_6_C15_C8_2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        IMP_CPUPOR_EL3 = X[t];
```

A.1.39 IMP_CPUPMR_EL3, Selected Instruction Patch Mask Register

Mask for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

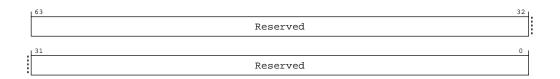
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-55: AArch64_imp_cpupmr_el3 bit assignments

Table A-125: IMP_CPUPMR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b011

MSR S3_6_C15_C8_3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b011

Accessibility

MRS < Xt>, S3_6_C15_C8_3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_CPUPMR_EL3;
```

MSR S3_6_C15_C8_3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        IMP_CPUPMR_EL3 = X[t];
```

A.1.40 IMP_CPUPOR2_EL3, Selected Instruction Patch Opcode Register 2

Opcode exclusion for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Generic System Control

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-56: AArch64_imp_cpupor2_el3 bit assignments

Table A-128: IMP_CPUPOR2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_4

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b100

MSR S3 6 C15 C8 4, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b100

Accessibility

MRS < Xt>, S3_6_C15_C8_4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_CPUPOR2_EL3;
```

MSR S3_6_C15_C8_4, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPOR2_EL3 = X[t];
```

A.1.41 IMP_CPUPMR2_EL3, Selected Instruction Private Mask Register 2

Mask exclusion for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

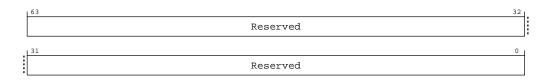
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-57: AArch64_imp_cpupmr2_el3 bit assignments

Table A-131: IMP_CPUPMR2_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_5

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b101

MSR S3_6_C15_C8_5, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b101

Accessibility

MRS < Xt>, S3_6_C15_C8_5

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPMR2_EL3;
```

MSR S3_6_C15_C8_5, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

A.1.42 IMP_CPUPFR_EL3, Selected Instruction Private Flag Register

Instruction Patch flags for current Instruction Patch selected by AArch64-IMP_CPUPSELR_EL3.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

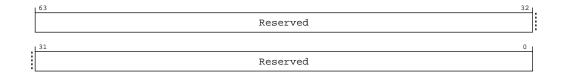
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-58: AArch64_imp_cpupfr_el3 bit assignments

Table A-134: IMP_CPUPFR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	Reserved	Reserved for Arm internal use	64 { x }

Access

MRS < Xt>, S3_6_C15_C8_6

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b110

MSR S3_6_C15_C8_6, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b1000	0b110

Accessibility

MRS < Xt>, S3_6_C15_C8_6

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPFR_EL3;
```

MSR S3_6_C15_C8_6, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPFR_EL3 = X[t];
```

A.1.43 FPCR, Floating-point Control Register

Controls floating-point behavior.

Configurations

This register is available in all configurations.

Attributes

Width

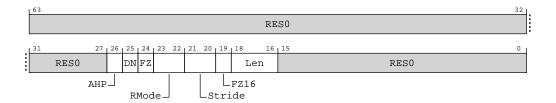
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-59: AArch64_fpcr bit assignments

Table A-137: FPCR bit descriptions

Bits	Name	Description	Reset
[63:27]	RES0	Reserved	RES0
[26]	AHP	Alternative half-precision control bit.	0b0
		0ь0	
		IEEE half-precision format selected.	
		0b1	
		Alternative half-precision format selected.	
		This bit is used only for conversions between half-precision floating-point and other floating-point formats.	
		The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision format, and ignore the value of this bit.	

Bits	Name	Description	Reset
[25]	DN	Default NaN use for NaN propagation.	0b0
		0ь0	
		NaN operands propagate through to the output of a floating-point operation.	
		0b1	
		Any operation involving one or more NaNs returns the Default NaN.	
		This bit has no effect on the output of FABS, FMAX*, FMIN*, and FNEG instructions, and a default NaN is never returned as a result of these instructions.	
		The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.	
[24]	FZ	Flushing denormalized numbers to zero control bit.	0b0
		оьо	
		Flushing denormalized numbers to zero disabled.	
		0b1	
		Flushing denormalized numbers to zero enabled.	
		The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.	
[23:22]	RMode	Rounding Mode control field.	0b00
		0ь00	
		Round to Nearest (RN) mode.	
		0b01	
		Round towards Plus Infinity (RP) mode.	
		0b10	
		Round towards Minus Infinity (RM) mode.	
		0b11 Round towards Zero (RZ) mode.	
		Round towards Zero (RZ) mode.	
		The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.	
	Stride	This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.	0b00
[19]	FZ16	Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.	0b0
		0ь0	
		For some instructions, this bit disables flushing to zero of inputs and outputs that are half-precision denormalized numbers. For more information, see 'Flushing denormalized numbers to zero'.	
		0b1	
		Flushing denormalized numbers to zero enabled.	
		The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.	
[18:16]	Len	This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.	0b000
[15:0]	RES0	Reserved	RES0

Access

MRS <Xt>, FPCR

ор0	op1	CRn	CRm	op2
0b11	0b011	0b0100	0b0100	00000

MSR FPCR, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b011	0b0100	0b0100	0b000

Accessibility

MRS <Xt>. FPCR

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif !(EL2Enabled() && HCR EL2.<E2H,TGE> == '11') && CPACR EL1.FPEN != '11'
 then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x00);
        else
            AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && HCR EL2.<E2H,TGE> == '11' && CPTR EL2.FPEN != '11' then
    AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPCR;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif CPACR EL1.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && HCR EL2.E2H != '1' && CPTR EL2.TFP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07);
elsif CPTR_EL3.TFP == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
        return FPCR;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif HCR EL2.E2H == '0' && CPTR EL2.TFP == '1' then
        AArch\overline{6}4.SystemAccessTrap(EL2, 0x07);
    elsif HCR EL2.E2H == '1' && CPTR EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR_EL3.TFP == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPCR;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPCR;
```

MSR FPCR. <Xt>

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif !(EL2Enabled() && HCR EL2.<E2H,TGE> == '11') && CPACR EL1.FPEN != '11'
 then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x00);
        else
    AArch64.SystemAccessTrap(EL1, 0x07); elsif EL2Enabled() && HCR EL2.<E2H,TGE> == '11' && CPTR EL2.FPEN != '11' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR_EL3.TFP == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
    else
        FPCR = X[t];
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif CPACR EL1.FPEN == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x07);
        FPCR = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TFP == '1' then
        UNDEFINED;
    elsif HCR EL2.E2H == '0' && CPTR EL2.TFP == '1' then
    AArch\overline{6}4.SystemAccessTrap(EL2, 0x07); elsif HCR_{EL2.E2H} == '1' && CPTR_{EL2.FPEN} == 'x0' then
        AArch\overline{64}. SystemAccessTrap (EL2, 0x07);
    elsif CPTR EL3.TFP == '1' then
        if Hal\overline{t}ed() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x07);
        FPCR = X[t];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
        FPCR = X[t];
```

A.1.44 AFSRO_EL2, Auxiliary Fault Status Register 0 (EL2)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

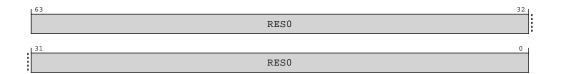
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-60: AArch64_afsr0_el2 bit assignments

Table A-140: AFSR0_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RESO

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSRO_EL2 or AFSRO_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AFSRO EL2

ор0	op1	CRn	CRm	op2
0b11	0b100	0b0101	0b0001	00000

MSR AFSRO_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0101	0b0001	00000

MRS <Xt>, AFSR0 EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0001	00000

MSR AFSRO_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0001	00000

Accessibility

MRS < Xt>, AFSRO EL2

```
if PSTATE.EL == EL0 then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     UNDEFINED;
elsif PSTATE.EL == EL2 then
    return AFSR0 EL2;
elsif PSTATE.EL == EL3 then
    return AFSR0_EL2;
```

MSR AFSRO EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    AFSRO_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AFSRO_EL2 = X[t];
```

MRS <Xt>, AFSRO_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return AFSRO_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSRO_EL2;
    else
```

```
return AFSR0_EL1;
elsif PSTATE.EL == EL3 then
  return AFSR0_EL1;
```

MSR AFSRO_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AFSRO_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSRO_EL2 = X[t];
    else
        AFSRO_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    AFSRO_EL1 = X[t];
```

A.1.45 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

If EL2 is not implemented, this register is RESO from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

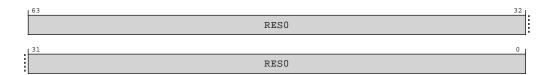
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-61: AArch64_afsr1_el2 bit assignments

Table A-145: AFSR1_EL2 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AFSR1_EL2

ор0	op1	CRn	CRm	op2
0b11	0b100	0b0101	0b0001	0b001

MSR AFSR1 EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0101	0b0001	0b001

MRS <Xt>, AFSR1_EL1

op0	op1	CRn	CRm	op2
0b11	06000	0b0101	0b0001	0b001

MSR AFSR1_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	000d0	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return AFSR1_EL2;
elsif PSTATE.EL == EL3 then
```

```
return AFSR1_EL2;
```

MSR AFSR1 EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    AFSR1 EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AFSR1_EL2 = X[t];
```

MRS <Xt>, AFSR1 EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSR1_EL2;
    else
        return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL1;
```

MSR AFSR1 EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AFSR1 EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSR1_EL2 = X[t];
    else
        AFSR1_EL1 = X[t];
else
        AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        AFSR1_EL1 = X[t];
```

A.1.46 AFSRO_EL1, Auxiliary Fault Status Register 0 (EL1)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

This register is available in all configurations.

Attributes

Width

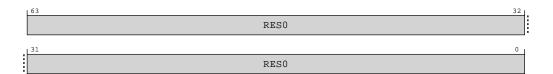
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-62: AArch64_afsr0_el1 bit assignments

Table A-150: AFSR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSRO_EL1 or AFSRO_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AFSR0 EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0001	0b000

MSR AFSRO_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0001	0b000

MRS <Xt>, AFSRO_EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b0101	0b0001	00000

MSR AFSRO EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b0101	0b0001	00000

Accessibility

MRS <Xt>, AFSR0 EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return AFSR0_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSR0_EL2;
    else
        return AFSR0_EL1;
elsif PSTATE.EL == EL3 then
    return AFSR0_EL1;
```

MSR AFSRO EL1, <Xt>

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        AFSR0_EL2 = X[t];
   else
        AFSR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   AFSR0_EL1 = X[t];
```

MRS <Xt>, AFSRO_EL12

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSRO_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
```

```
return AFSRO_EL1;
else
UNDEFINED;
```

MSR AFSRO_EL12, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        AFSRO_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        AFSRO_EL1 = X[t];
    else
        UNDEFINED;
```

A.1.47 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations

This register is available in all configurations.

Attributes

Width

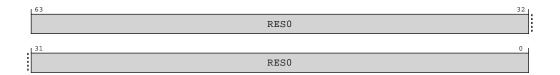
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-63: AArch64_afsr1_el1 bit assignments

Table A-155: AFSR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

When AArch64-HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

MRS <Xt>, AFSR1_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0001	0b001

MSR AFSR1 EL1, <Xt>

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0001	0b001

MRS <Xt>, AFSR1_EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b0101	0b0001	0b001

MSR AFSR1 EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1 EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    return AFSR1_EL1;
```

```
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
        return AFSR1_EL2;
   else
        return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
        return AFSR1_EL1;
```

MSR AFSR1 EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSR1_EL2 = X[t];
else
        AFSR1_EL1 = X[t];
else
        AFSR1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        AFSR1_EL1 = X[t];
```

MRS <Xt>, AFSR1_EL12

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AFSR1_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        return AFSR1_EL1;
    else
        UNDEFINED;
```

MSR AFSR1 EL12, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        AFSR1_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && HCR_EL2.E2H == '1' then
        AFSR1_EL1 = X[t];
    else
        UNDEFINED;
```

A.1.48 AFSRO_EL3, Auxiliary Fault Status Register 0 (EL3)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is available in all configurations.

Attributes

Width

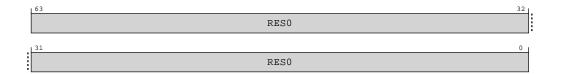
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-64: AArch64_afsr0_el3 bit assignments

Table A-160: AFSR0_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, AFSRO_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0101	0b0001	00000

MSR AFSRO_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0101	0b0001	0b000

Accessibility

MRS <Xt>, AFSRO EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AFSRO_EL3;
```

MSR AFSRO_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    AFSRO_EL3 = X[t];
```

A.1.49 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is available in all configurations.

Attributes

Width

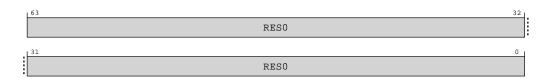
64

Functional group

Generic System Control

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-65: AArch64_afsr1_el3 bit assignments

Table A-163: AFSR1_EL3 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, AFSR1_EL3

ор0	op1	CRn	CRm	op2
0b11	0b110	0b0101	0b0001	0b001

MSR AFSR1_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0101	0b0001	0b001

Accessibility

MRS <Xt>, AFSR1_EL3

```
if PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return AFSR1_EL3;
```

MSR AFSR1_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
```

elsif PSTATE.EL == EL3 then
 AFSR1_EL3 = X[t];

A.2 AArch64 Special-purpose registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Special-purpose registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-166: Special-purpose registers summary

Name	Ор0	Op1	CRn	CRm	Op2	Reset	Width	Description
IMP_CPUPPMCR_EL3	3	6	C15	C2	0	_	64-bit	Global PPM Configuration Register

A.2.1 IMP_CPUPPMCR_EL3, Global PPM Configuration Register

This register controls global PPM features and allows discovery of some PPM implementation details.

Configurations

This register is available in all configurations.

Attributes

Width

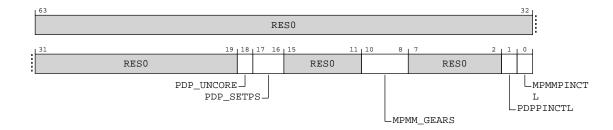
64

Functional group

Special-purpose registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-66: AArch64_imp_cpuppmcr_el3 bit assignments

Table A-167: IMP_CPUPPMCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:19]	RES0	Reserved	RES0
[18] PDP_UNCORE		Indicates whether PDP uncore is implemented	Х
		0ь1	
		PDP has separate uncore and core controls.	
		Access to this field is: RO	
[17:16] PDP_SETPS	Number of PDP Setpoints implemented	XX	
		0b11	
		3 PDP are enabled.	
		Access to this field is: RO	
[15:11]	RES0	Reserved	RES0
[10:8] MPMM_C	MPMM_GEARS	Number of MPMM Gears implemented	xxx
		0b011	
		3 MPMM are enabled.	
		Access to this field is: RO	
[7:2]	RES0	Reserved	RES0
[1] PDPPINCTL	PDPPINCTL	PDP Pin Control Enabled	0b0
		0ь0	
		PDP control through SPR and utility bus	
		0ь1	
		PDP control through pin only.	
[0]	MPMMPINCTL	MPMM Pin Control Enabled	0b0
		0ь0	
		MPMM control through SPR and utility bus.	
		0b1	
		MPMM control through pin only.	

Access

MRS < Xt>, S3_6_C15_C2_0

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0010	00000

MSR S3_6_C15_C2_0, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0010	0b000

Accessibility

MRS <Xt>, S3 6 C15 C2 0

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMCR_EL3;
```

MSR S3_6_C15_C2_0, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUPPMCR_EL3 = X[t];
```

A.3 AArch64 This register is a system instruction registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** This register is a system instruction registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-170: This register is a system instruction registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
RAMINDEX	1	6	C15	CO	0	_	64-bit	RAMINDEX system instruction

A.3.1 RAMINDEX, RAMINDEX system instruction

.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

This register is a system instruction

Access type

See bit descriptions

Reset value

When AArch64-RAMINDEX.ID == 0x0 and 64KB

When AArch64-RAMINDEX.ID == 0x0 and 32KB

When AArch64-RAMINDEX.ID == 0x1 and 64KB

When AArch64-RAMINDEX.ID == 0x1 and 32KB

When AArch64-RAMINDEX.ID == 0x8 and 64KB

When AArch64-RAMINDEX.ID == 0x8 and 32KB

When AArch64-RAMINDEX.ID == 0x9 and 64KB

When AArch64-RAMINDEX.ID == 0x9 and 32KB

When AArch64-RAMINDEX.ID == 0x10 or AArch64-RAMINDEX.ID == 0x11 and 256KB

When AArch64-RAMINDEX.ID == 0x10 or AArch64-RAMINDEX.ID == 0x11 and 128KB

When AArch64-RAMINDEX.ID == 0x18

Where the reset reads xxxx, see individual bits

Bit descriptions

When AArch64-RAMINDEX.ID == 0x0 and 64KB

Figure A-67: AArch64_ramindex bit assignments

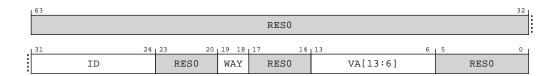
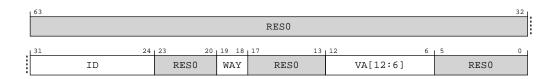



Table A-171: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		оьооооооо	
		L1_I TAG	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17:14]	RESO	Reserved	RESO
[13:6]	VA[13:6]	Virtual Address bits[13:6]	8 { x }
[5:0]	RES0	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x0 and 32KB

Figure A-68: AArch64_ramindex bit assignments

Table A-172: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO

Bits	Name	Description	Reset
[31:24]	ID	ID of the selected memory	8 { x }
		оьооооооо	
		L1_I TAG	
[23:20]	RES0	Reserved	RESO
[19:18]	WAY	Way	xx
[17:13]	RESO	Reserved	RESO
[12:6]	VA[12:6]	Virtual Address bits[12:6]	7 { x }
[5:0]	RES0	Reserved	RES0

When AArch64-RAMINDEX.ID == 0x1 and 64KB

Figure A-69: AArch64_ramindex bit assignments

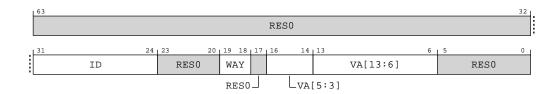


Table A-173: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00000001	
		L1_I Data	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17]	RESO	Reserved	RESO
[16:14]	VA[5:3]	Virtual Address bits[5:3]	xxx
[13:6]	VA[13:6]	Virtual Address bits[13:6]	8 { x }
[5:0]	RESO	Reserved	RESO .

When AArch64-RAMINDEX.ID == 0x1 and 32KB

Figure A-70: AArch64_ramindex bit assignments

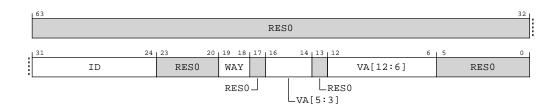


Table A-174: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00000001	
		L1_I Data	
[23:20]	RES0	Reserved	RESO
[19:18]	WAY	Way	xx
[17]	RES0	Reserved	RESO
[16:14]	VA[5:3]	Virtual Address bits[5:3]	xxx
[13]	RES0	Reserved	RESO
[12:6]	VA[12:6]	Virtual Address bits[12:6]	7 { x }
[5:0]	RES0	Reserved	RES0

When AArch64-RAMINDEX.ID == 0x8 and 64KB

Figure A-71: AArch64_ramindex bit assignments

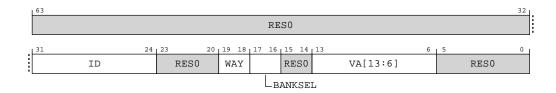


Table A-175: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO .
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00001000	
		L1_D Tag	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17:16]	BANKSEL	Bank selection	xx
		0ь00	
		Tag RAM 0	
		0b01	
		Tag RAM 1	
		0b10	
		Tag RAM 2	
[15:14]	RESO	Reserved	RESO
[13:6]	VA[13:6]	Virtual Address bits[13:6]	8 { x }
[5:0]	RESO	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x8 and 32KB

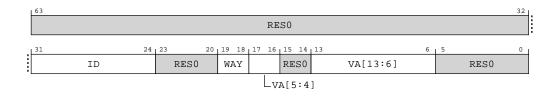
Figure A-72: AArch64_ramindex bit assignments

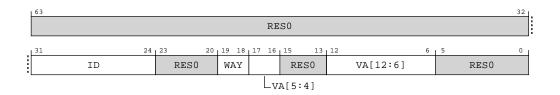
Table A-176: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00001000	
		L1_D Tag	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17:16]	BANKSEL	Bank selection	xx
		0ь00	
		Tag RAM 0	
		0b01	
		Tag RAM 1	
		0ь10	
		Tag RAM 2	
[15:13]	RESO	Reserved	RESO
[12:6]	VA[12:6]	Virtual Address bits[12:6]	7 { x }
[5:0]	RESO	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x9 and 64KB

Figure A-73: AArch64_ramindex bit assignments




Table A-177: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RESO

Bits	Name	Description	Reset
[31:24]	ID	ID of the selected memory	8 {x}
		0Ь00001001	
		L1_D Data	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17:16]	VA[5:4]	Virtual Address bits[5:4]	xx
[15:14]	RESO	Reserved	RESO
[13:6]	VA[13:6]	Virtual Address bits[13:6]	8 { x }
[5:0]	RESO	Reserved	RES0

When AArch64-RAMINDEX.ID == 0x9 and 32KB

Figure A-74: AArch64_ramindex bit assignments

Table A-178: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RESO .
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00001001	
		L1_D Data	
[23:20]	RESO	Reserved	RESO
[19:18]	WAY	Way	xx
[17:16]	VA[5:4]	Virtual Address bits[5:4]	xx
[15:13]	RES0	Reserved	RESO
[12:6]	VA[12:6]	Virtual Address bits[12:6]	7 {x}
[5:0]	RESO	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x10 or AArch64-RAMINDEX.ID == 0x11 and 512KB

Figure A-75: AArch64_ramindex bit assignments

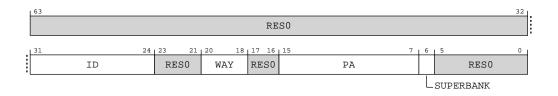


Table A-179: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO .	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00010000	
		L2 Tag	
		0ь00010001	
		L2 Data	
[23:21]	RESO	Reserved	RES0
[20:18]	WAY	Way	xxx
[17:16]	RESO .	Reserved	RESO
[15:7]	PA	Physical Address bits[15:7]	9{x}
[6]	SUPERBANK	Physical Address bit[6]	х
[5:0]	RESO .	Reserved	RESO .

When AArch64-RAMINDEX.ID == 0x10 or AArch64-RAMINDEX.ID == 0x11 and 256KB

Figure A-76: AArch64_ramindex bit assignments

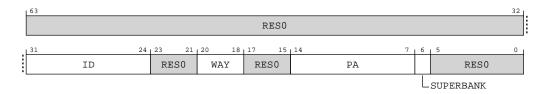


Table A-180: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RESO
[31:24]	ID	ID of the selected memory	8{x}
		0ь00010000	
		L2 Tag	
		0ь00010001	
		L2 Data	
[23:21]	RES0	Reserved	RESO
[20:18]	WAY	Way	xxx
[17:15]	RES0	Reserved	RESO
[14:7]	PA	Physical Address bits[14:7]	8{x}
[6]	SUPERBANK	Physical Address bit[6]	x
[5:0]	RESO RESO	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x10 or AArch64-RAMINDEX.ID == 0x11 and 128KB

Figure A-77: AArch64_ramindex bit assignments

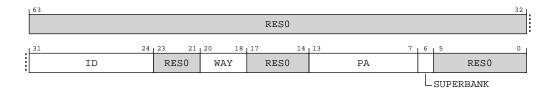


Table A-181: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0b00010000 L2 Tag	
		0b00010001 L2 Data	
[23:21]	RES0	Reserved	RESO
[20:18]	WAY	Way	xxx
[17:14]	RES0	Reserved	RESO
[13:7]	PA	Physical Address bits[13:7]	7 { x }
[6]	SUPERBANK	Physical Address bit[6]	х
[5:0]	RESO	Reserved	RESO

When AArch64-RAMINDEX.ID == 0x18

Figure A-78: AArch64_ramindex bit assignments

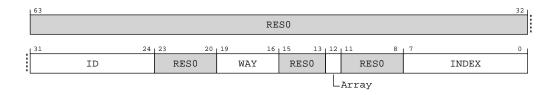


Table A-182: RAMINDEX bit descriptions

Bits	Name	Description	Reset
[63:32]	RESO	Reserved	RESO
[31:24]	ID	ID of the selected memory	8 { x }
		0ь00011000	
		TLB	
[23:20]	RES0	Reserved	RESO
[19:16]	WAY	Way	xxxx
[15:13]	RES0	Reserved	RESO

Bits	Name	Description	Reset
[12]	Array	Array	х
		0ь0	
		TCSP	
		0b1	
		TCMP	
[11:8]	RESO	Reserved	RESO
[7:0]	INDEX	Index	8 { x }

Access

Accesses to this instruction use the following encodings:

SYS #6, C15, C0, #0, <Xt>

ор0	op1	CRn	CRm	op2
0b01	0b110	0b1111	000000	00000

Accessibility

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    RAMINDEX(X[t]);
```

A.4 AArch64 Identification registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Identification registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-184: Identification registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
MIDR_EL1	3	0	CO	C0	0	_	64-bit	Main ID Register
MPIDR_EL1	3	0	C0	CO	5	_	64-bit	Multiprocessor Affinity Register
REVIDR_EL1	3	0	C0	CO	6	_	64-bit	Revision ID Register
MVFRO_EL1	3	0	CO	C3	0	_	64-bit	AArch32 Media and VFP Feature Register 0
MVFR1_EL1	3	0	CO	C3	1	_	64-bit	AArch32 Media and VFP Feature Register 1
MVFR2_EL1	3	0	C0	C3	2	_	64-bit	AArch32 Media and VFP Feature Register 2

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
ID_AA64PFR0_EL1	3	0	CO	C4	0	_	64-bit	AArch64 Processor Feature Register 0
ID_AA64PFR1_EL1	3	0	C0	C4	1	_	64-bit	AArch64 Processor Feature Register 1
ID_AA64ZFR0_EL1	3	0	C0	C4	4	_	64-bit	SVE Feature ID register 0
ID_AA64DFR0_EL1	3	0	C0	C5	0	_	64-bit	AArch64 Debug Feature Register 0
ID_AA64DFR1_EL1	3	0	C0	C5	1	_	64-bit	AArch64 Debug Feature Register 1
ID_AA64AFRO_EL1	3	0	C0	C5	4	_	64-bit	AArch64 Auxiliary Feature Register 0
ID_AA64AFR1_EL1	3	0	CO	C5	5	_	64-bit	AArch64 Auxiliary Feature Register 1
ID_AA64ISAR0_EL1	3	0	CO	C6	0	_	64-bit	AArch64 Instruction Set Attribute Register 0
ID_AA64ISAR1_EL1	3	0	CO	C6	1	_	64-bit	AArch64 Instruction Set Attribute Register 1
ID_AA64MMFR0_EL1	3	0	CO	C7	0	_	64-bit	AArch64 Memory Model Feature Register 0
ID_AA64MMFR1_EL1	3	0	C0	C7	1	_	64-bit	AArch64 Memory Model Feature Register 1
ID_AA64MMFR2_EL1	3	0	CO	C7	2	_	64-bit	AArch64 Memory Model Feature Register 2
CCSIDR_EL1	3	1	C0	CO	0	_	64-bit	Current Cache Size ID Register
CLIDR_EL1	3	1	C0	C0	1	_	64-bit	Cache Level ID Register
GMID_EL1	3	1	C0	CO	4	_	64-bit	Multiple tag transfer ID register
CSSELR_EL1	3	2	CO	C0	0	_	64-bit	Cache Size Selection Register
CTR_ELO	3	3	C0	C0	1	_	64-bit	Cache Type Register
DCZID_EL0	3	3	C0	C0	7	_	64-bit	Data Cache Zero ID register
MPAMIDR_EL1	3	0	C10	C4	4	_	64-bit	MPAM ID Register (EL1)
IMP_CPUPPMPDPCR_EL1	3	0	C15	C2	4	_	64-bit	Global PPMPDP Configuration Register
IMP_CPUMPMMCR_EL3	3	6	C15	C2	1	_	64-bit	Global MPMM Configuration Register

A.4.1 MIDR_EL1, Main ID Register

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-79: AArch64_midr_el1 bit assignments

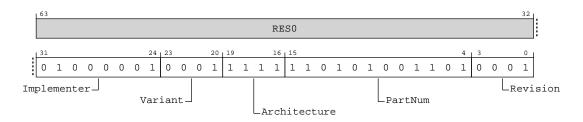


Table A-185: MIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:24]	Implementer	Indicates the implementer code. This value is:	0x41
		0ь01000001	
		Arm Limited	
[23:20]	Variant	Indicates the major revision of the product.	0b0001
		0ь0001	
		r1p1	
[19:16]	Architecture	Architecture version. For A-profile, the defined values are:	0b1111
		0b1111	
		Architecture is defined by ID registers	
[15:4]	PartNum	Primary Part Number for the device.	0xD4D
		On processors implemented by Arm, if the top four bits of the primary part number are 0×0 or 0×7 , the variant and architecture are encoded differently.	
		0b11010101101	
		A715	
[3:0]	Revision	Indicates the minor revision of the product.	0b0001
		0ь0001	
		r1p1	

Access

MRS <Xt>, MIDR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0000	0b000

Accessibility

MRS <Xt>, MIDR EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() then
        return VPIDR_EL2;
else
        return MIDR_EL1;
elsif PSTATE.EL == EL2 then
    return MIDR_EL1;
elsif PSTATE.EL == EL3 then
    return MIDR_EL1;
```

A.4.2 MPIDR_EL1, Multiprocessor Affinity Register

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configurations

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value of O.

Attributes

Width

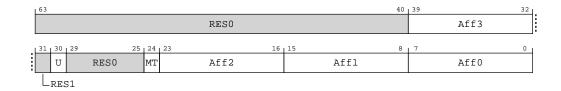
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-80: AArch64_mpidr_el1 bit assignments

Table A-187: MPIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:40]	RES0	Reserved	RES0
[39:32]	Aff3	Affinity level 3. See the description of Aff0 for more information.	8 { x }
		The value will be determined by the CLUSTERIDAFF3 configuration pins.	
[31]	RES1	Reserved	RES1
[30]	U	Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.	x
		0ь0 Processor is part of a multiprocessor system.	
[29:25]	RES0	Reserved	RES0
[24]	MT	Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of AffO for more information about affinity levels.	x
		0b1	
		Performance of PEs with different affinity level 0 values, and the same values for affinity level 1 and higher, is very interdependent.	
[23:16]	Aff2	Affinity level 2. See the description of Aff0 for more information.	8 { x }
		The value will be determined by the CLUSTERIDAFF2 configuration pins.	
[15:8]	Aff1	Affinity level 1. See the description of AffO for more information.	8 { x }
		Identification number for each core in an cluster counting from zero.	
[7:0]	AffO	Affinity level O. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or AArch64-MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.	8 {x}
		оьооооооо	
		Thread 0. A715 is single-threaded.	

Access

MRS <Xt>, MPIDR_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0000	0b0000	0b101

Accessibility

MRS <Xt>, MPIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() then
        return VMPIDR_EL2;
else
        return MPIDR_EL1;
elsif PSTATE.EL == EL2 then
   return MPIDR_EL1;
elsif PSTATE.EL == EL3 then
   return MPIDR_EL1;
```

A.4.3 REVIDR_EL1, Revision ID Register

Provides implementation-specific minor revision information.

Configurations

If REVIDR_EL1 has the same value as AArch64-MIDR_EL1, then its contents have no significance.

Attributes

Width

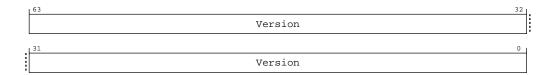
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-81: AArch64_revidr_el1 bit assignments

Table A-189: REVIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	Version	Identifies errata fixes present in this implementation. Refer to the Software Developer's Errata Notice or Product	64{x}
		Errata Notice for information on how to interpret this field.	

Access

MRS <Xt>, REVIDR_EL1

op0	op1	CRn	CRm	op2
0b11	06000	0b0000	0b0000	0b110

Accessibility

MRS < Xt>, REVIDR EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID1 == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
else
        return REVIDR_EL1;
elsif PSTATE.EL == EL2 then
   return REVIDR_EL1;
elsif PSTATE.EL == EL3 then
   return REVIDR_EL1;
```

A.4.4 MVFRO_EL1, AArch32 Media and VFP Feature Register 0

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR1_EL1 and AArch64-MVFR2_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-82: AArch64_mvfr0_el1 bit assignments

Table A-191: MVFRO_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	UNKNOWN	Reserved	UNKNOWN

Access

MRS <Xt>, MVFRO_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0011	0b000

Accessibility

MRS <Xt>, MVFRO_EL1

```
if PSTATE.EL == ELO then
  if EL2Enabled() && HCR_EL2.TGE == '1' then
```

A.4.5 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR0 EL1 and AArch64-MVFR2 EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-83: AArch64_mvfr1_el1 bit assignments

Table A-193: MVFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	UNKNOWN	Reserved	UNKNOWN

Access

MRS <Xt>, MVFR1_EL1

op0	op1	CRn	CRm	op2
0b11	06000	0b0000	0b0011	0b001

Accessibility

MRS <Xt>, MVFR1_EL1

```
if PSTATE.EL == ELO then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return MVFR1_EL1;
elsif PSTATE.EL == EL2 then
    return MVFR1_EL1;
elsif PSTATE.EL == EL3 then
    return MVFR1_EL1;
```

A.4.6 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with AArch64-MVFR0 EL1 and AArch64-MVFR1 EL1.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

Attributes

Width

64

Functional group

Identification registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-84: AArch64_mvfr2_el1 bit assignments

Table A-195: MVFR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	UNKNOWN	Reserved	UNKNOWN

Access

MRS <Xt>, MVFR2_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0011	0b010

Accessibility

MRS <Xt>, MVFR2_EL1

```
if PSTATE.EL == ELO then
  if EL2Enabled() && HCR_EL2.TGE == '1' then
```

A.4.7 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

The external register ext-EDPFR gives information from this register.

Attributes

Width

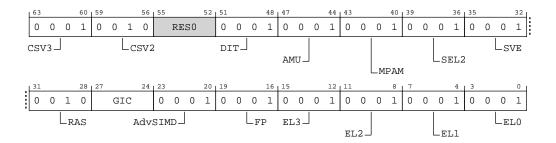
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-85: AArch64_id_aa64pfr0_el1 bit assignments

Table A-197: ID_AA64PFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:60]	CSV3	Speculative use of faulting data. Defined values are:	0b0001
		0ь0001	
		Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence.	
[59:56]	CSV2	Speculative use of out of context branch targets. Defined values are:	0b0010
		0ь0010	
		Branch targets trained in one hardware-described context can exploitatively control speculative execution in a different hardware-described context only in a hard-to-determine way. The SCXTNUM_ELx registers are supported and the contexts include the SCXTNUM_ELx register contexts.	
[55:52]	RES0	Reserved	RESO
[51:48]	DIT	Data Independent Timing. Defined values are:	0b0001
		0ь0001	
		AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time of certain instructions.	
[47:44]	AMU	Indicates support for Activity Monitors Extension. Defined values are:	0b0001
		0ь0001	
		FEAT_AMUv1 is implemented.	
[43:40]	MPAM	Indicates support for MPAM Extension. Defined values are:	0b0001
		0ь0001	
		If AArch64-ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension version 1.0 is implemented.	
		If AArch64-ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 1.1 is implemented.	
[39:36]	SEL2	Secure EL2. Defined values are:	0b0001
		0ь0001	
		Secure EL2 is implemented.	
[35:32]	SVE	Scalable Vector Extension. Defined values are:	0b0001
		0ь0001	
		SVE architectural state and programmers' model are implemented.	

Bits	Name	Description	Reset
[31:28]	RAS	RAS Extension version. Defined values are:	0b0010
		0ь0010	
		FEAT_RASv1p1 is implemented.	
[27:24]	GIC	System register GIC CPU interface. Defined values are:	The reset values can be
		0ь0000	the following: 0b0000, 0b0011, respective to
		GIC CPU interface system registers not implemented. This value is reported when the GICCDISABLE input is HIGH.	the value.
		0ь0011	
		System register interface to version 4.1 of the GIC CPU interface is supported. This value is reported when the GICCDISABLE input is LOW.	
[23:20]	AdvSIMD	Advanced SIMD. Defined values are:	0b0001
		0ь0001	
		Advanced SIMD is implemented, including support for the following SISD and SIMD operations:	
		Integer byte, halfword, word and doubleword element operations.	
		Half-precision, single-precision and double-precision floating-point arithmetic.	
		 Conversions between single-precision and half-precision data types, and double-precision and half-precision data types. 	
[19:16]	FP	Floating-point. Defined values are:	0b0001
		0ь0001	
		Floating-point is implemented, and includes support for:	
		Half-precision, single-precision and double-precision floating-point types.	
		 Conversions between single-precision and half-precision data types, and double-precision and half-precision data types. 	
[15:12]	EL3	EL3 Exception level handling. Defined values are:	0b0001
		0ь0001	
		EL3 can be executed in AArch64 state only.	
[11:8]	EL2	EL2 Exception level handling. Defined values are:	0b0001
		0ь0001	
		EL2 can be executed in AArch64 state only.	
[7:4]	EL1	EL1 Exception level handling. Defined values are:	0b0001
		0ь0001	
		EL1 can be executed in AArch64 state only.	
[3:0]	ELO	ELO Exception level handling. Defined values are:	0b0001
		0b0001	
		ELO can be executed in AArch64 state only.	

Access

MRS <Xt>, ID_AA64PFR0_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0000	0b0100	00000

Accessibility

MRS <Xt>, ID_AA64PFR0_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then
    return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64PFR0_EL1;
```

A.4.8 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

64

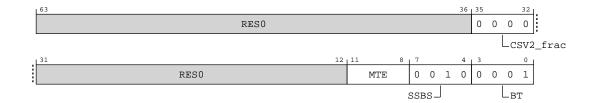
Functional group

Identification registers

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX OOOO XXXX XXXX XXXX XXXX XXXX XXXX OOOO OOO

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-86: AArch64_id_aa64pfr1_el1 bit assignments

Table A-199: ID_AA64PFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:36]	RES0	Reserved	RESO
[35:32]	CSV2_frac	CSV2 fractional field. Defined values are:	000000
		Оъ0000 This PE does not disclose whether branch targets trained in one hardware-described context can exploitatively control speculative execution in a different hardware-described context. The SCXTNUM_ELx registers are not supported.	
[31:12]	RES0	Reserved	RESO
[11:8]	MTE	Support for the Memory Tagging Extension. Defined values are:	The reset values can
		 Ob0001 Memory Tagging Extension instructions accessible at ELO are implemented. Instructions and System Registers defined by the extension not configurably accessible at ELO are Unallocated and other System Register fields defined by the extension are RESO. This value is reported when the BROADCASTMTE input is LOW. Ob0011 Memory Tagging Extension is implemented with support for asymmetric Tag Check 	be the following: 0b0001,0b0011, respective to the value.
[7:4]	SSBS	Fault handling. This value is reported when the BROADCASTMTE input is HIGH. Speculative Store Bypassing controls in AArch64 state. Defined values are: Ob0010 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypassing Safe, and the MSR and MRS instructions to directly read and write the PSTATE.SSBS field.	0b0010
[3:0]	BT	Branch Target Identification mechanism support in AArch64 state. Defined values are: 0b0001 The Branch Target Identification mechanism is implemented.	0b0001

Access

MRS <Xt>, ID_AA64PFR1_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0000	0b0100	0b001

Accessibility

MRS <Xt>, ID_AA64PFR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64PFR1_EL1;
```

A.4.9 ID_AA64ZFR0_EL1, SVE Feature ID register 0

Provides additional information about the implemented features of the AArch64 Scalable Vector Extension, when the AArch64-ID_AA64PFR0_EL1.SVE field is not zero.

For general information about the interpretation of the ID registers see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

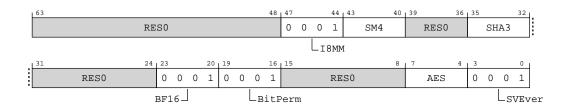
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-87: AArch64_id_aa64zfr0_el1 bit assignments

Table A-201: ID_AA64ZFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	RES0
[47:44]	I8MM	Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:	0b0001
		0ь0001	
		SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.	
[43:40]	SM4	Indicates support for SVE SM4 instructions. Defined values are:	The reset values can be the
		0ь0000	following: 0b0000,0b0001, respective to the value.
		SVE2 SM4 instructions are not implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled.	respective to the value.
		0ь0001	
		SVE2 SM4E and SM4EKEY instructions are implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
[39:36]	RES0	Reserved	RESO
[35:32]	SHA3	Indicates support for the SVE SHA3 instructions. Defined values are:	The reset values can be the
		оьоооо	following: 0b0000,0b0001, respective to the value.
		SVE2 SHA3 instructions are not implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled.	respective to the value.
		0ь0001	
		SVE2 RAX1 instruction is implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
[31:24]	RES0	Reserved	RESO
[23:20]	BF16	Indicates support for SVE BFloat16 instructions. Defined values are:	0b0001
		0ь0001	
		BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and BFMMLA instructions are implemented.	
[19:16]	BitPerm	Indicates support for SVE bit permute instructions. Defined values are:	0b0001
		0ь0001	
		SVE BDEP, BEXT, and BGRP instructions are implemented.	

Name	Description	Reset
RES0	Reserved	RES0
AES	Indicates support for SVE AES instructions. Defined values are: 0b0000 SVE2-AES instructions are not implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled. 0b0010 SVE2 AESE, AESD, AESMC, and AESIMC instructions are implemented plus SVE2 PMULLB and PMULLT instructions with 64-bit source. This value is reported when the Cryptographic Extension is implemented and enabled.	The reset values can be the following: 0b0000,0b0010, respective to the value.
SVEver	Indicates support for SVE. Defined values are:	0b0001
	0b0001 SVE and the non-ontional SVE2 instructions are implemented	
	RESO AES	RESO Reserved AES Indicates support for SVE AES instructions. Defined values are: Ob0000 SVE2-AES instructions are not implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled. Ob0010 SVE2 AESE, AESD, AESMC, and AESIMC instructions are implemented plus SVE2 PMULLB and PMULLT instructions with 64-bit source. This value is reported when the Cryptographic Extension is implemented and enabled. SVEver Indicates support for SVE. Defined values are:

Access

MRS <Xt>, ID_AA64ZFR0_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0100	0b100

Accessibility

MRS <Xt>, ID_AA64ZFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64ZFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64ZFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64ZFR0_EL1;
```

A.4.10 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

Provides top-level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

The external register ext-EDDFR gives information from this register.

Attributes

Width

64

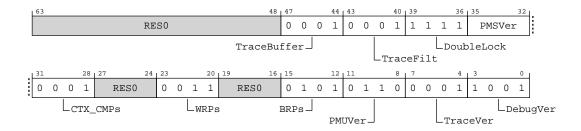
Functional group

Identification registers

Access type

See bit descriptions

Reset value


xxxx xxxx xxxx xxxx 0001 0001 1111 xxxx 0001 xxxx 0011 xxxx 0101 0110 0001 1001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-88: AArch64_id_aa64dfr0_el1 bit assignments

Table A-203: ID_AA64DFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	RESO
[47:44]	TraceBuffer	Trace Buffer Extension. Defined values are:	0b0001
		0ь0001	
		Trace Buffer Extension implemented, FEAT_TRBE.	
[43:40]	TraceFilt	Armv8.4 Self-hosted Trace Extension version. Defined values are:	0b0001
		0ь0001	
		Armv8.4 Self-hosted Trace Extension implemented.	
[39:36]	DoubleLock	OS Double Lock implemented. Defined values are:	0b1111
		0ь1111	
		OS Double Lock not implemented. AArch64-OSDLR_EL1 is RAZ/WI.	

Bits	Name	Description	Reset
[35:32]	PMSVer	Statistical Profiling Extension version. Defined values are:	The reset values can be the following:
		0ь0000	0b0000,0b0010, respective to the value.
		Statistical Profiling Extension not implemented.	
		0ь0010	
		Statistical Profiling Extension version SPEv1p1 is implemented.	
[31:28]	CTX_CMPs	Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.	0b0001
		0ь0001	
		Two context-aware breakpoints are included	
[27:24]	RESO	Reserved	RESO
[23:20]	WRPs	Number of watchpoints, minus 1. The value of 0b0000 is reserved.	0b0011
		0b0011	
		Four watchpoints	
[19:16]	RES0	Reserved	RESO
[15:12]	BRPs	Number of breakpoints, minus 1. The value of 0b0000 is reserved.	0b0101
		0b0101 Six breakpoints	
[11:8]	PMUVer	Performance Monitors Extension version. Defined value is:	0b0110
		0ь0110	
		Performance Monitors Extension implemented, PMUv3 for Armv8.5	
[7:4]	TraceVer	Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:	0b0001
		0ь0001	
		PE trace unit System registers implemented.	
[3:0]	DebugVer	Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:	0b1001
		0ь1001	
		Armv8.4 debug architecture.	

Access

MRS <Xt>, ID_AA64DFR0_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0101	00000

Accessibility

MRS <Xt>, ID_AA64DFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
```

```
AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64DFR0_EL1;
```

A.4.11 ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

Reserved for future expansion of top-level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

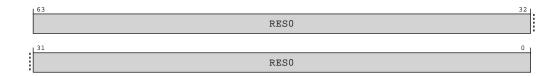
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-89: AArch64_id_aa64dfr1_el1 bit assignments

Table A-205: ID_AA64DFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS < Xt>, ID AA64DFR1 EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0000	0b0101	0b001

Accessibility

MRS < Xt>, ID AA64DFR1 EL1

```
if PSTATE.EL == ELO then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL2 then
        return ID_AA64DFR1_EL1;
elsif PSTATE.EL == EL3 then
        return ID_AA64DFR1_EL1;
```

A.4.12 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

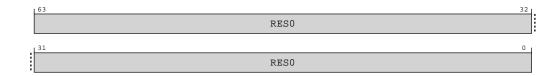
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-90: AArch64_id_aa64afr0_el1 bit assignments

Table A-207: ID_AA64AFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

MRS < Xt>, ID_AA64AFRO_EL1

op0	op1	CRn	CRm	op2
0b11	00000	000000	0b0101	0b100

Accessibility

MRS <Xt>, ID_AA64AFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64AFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64AFR0_EL1;
```

A.4.13 ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

Reserved for future expansion of information about the **IMPLEMENTATION DEFINED** features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

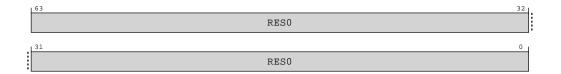
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-91: AArch64_id_aa64afr1_el1 bit assignments

Table A-209: ID_AA64AFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS < Xt>, ID AA64AFR1 EL1

ор0	op1	CRn	CRm	op2
0b11	00000	000000	0b0101	0b101

Accessibility

MRS < Xt>, ID AA64AFR1 EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL2 then
        return ID_AA64AFR1_EL1;
elsif PSTATE.EL == EL3 then
        return ID_AA64AFR1_EL1;
```

A.4.14 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

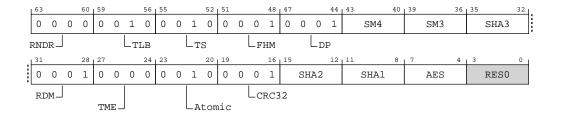
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-92: AArch64_id_aa64isar0_el1 bit assignments

Table A-211: ID_AA64ISAR0_EL1 bit descriptions

Bits	Name	Description	Reset
Defined v		Indicates support for Random Number instructions in AArch64 state.	000000
		Defined values are:	
		060000	
		No Random Number instructions are implemented.	
[59:56] TLB		Indicates support for Outer Shareable and TLB range maintenance instructions. Defined values are:	0b0010
		0ь0010	
		Outer Shareable and TLB range maintenance instructions are implemented.	
[55:52]	TS	Indicates support for flag manipulation instructions. Defined values are:	0b0010
		0ь0010	
		CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG instructions are implemented.	
[51:48]	FHM	Indicates support for FMLAL and FMLSL instructions. Defined values are:	0b0001
		0ь0001	
		FMLAL and FMLSL instructions are implemented.	
[47:44]	DP	Indicates support for Dot Product instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		UDOT and SDOT instructions implemented.	
[43:40]	SM4	Indicates support for SM4 instructions in AArch64 state. Defined values are:	The reset values can be the
		0ь0000	following: 0b0000,0b0001, respective to the value.
		No SM4 instructions implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled.	
		0ь0001	
		SM4E and SM4EKEY instructions implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset the Cryptographic Extension is implemented	

Bits	Name	Description	Reset
[39:36]	SM3	Indicates support for SM3 instructions in AArch64 state. Defined values are:	The reset values can be the
		0ь0000	following: 0b0000,0b0001, respective to the value.
		No SM3 instructions implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled.	respective to the value.
		0ь0001	
		SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and SM3PARTW2 instructions implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset the Cryptographic Extension is implemented	
[35:32]	SHA3	Indicates support for SHA3 instructions in AArch64 state. Defined values are:	The reset values can be the
		0ь0000	following: 0b0000,0b0001, respective to the value.
		No SHA3 instructions implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled.	respective to the value.
		0ь0001	
		EOR3, RAX1, XAR, and BCAX instructions implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset the Cryptographic Extension is implemented	
[31:28]	RDM	Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		SQRDMLAH and SQRDMLSH instructions implemented.	
[27:24]	TME	Indicates support for TME instructions. Defined values are:	0b0000
		0ь0000	
		TME instructions are not implemented.	
[23:20]	Atomic	Indicates support for Atomic instructions in AArch64 state. Defined values are:	0b0010
		0ь0010	
		LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN, CAS, CASP, and SWP instructions implemented.	
[19:16]	CRC32	Indicates support for CRC32 instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and CRC32CX instructions implemented.	
[15:12]	SHA2	Indicates support for SHA2 instructions in AArch64 state. Defined values are:	The reset values can be the
		0ь0000 No SHA2 instructions implemented. This value is reported when the	following: 0b0000,0b0010, respective to the value.
		Cryptographic Extension is not implemented or is disabled.	
		060010	
		SHA256H, SHA256H2, SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, and SHA512SU1 instructions implemented. This value is reported when the Cryptographic Extension is implemented and enabled.	
		When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset the Cryptographic Extension is implemented	

Bits	Name	Description	Reset
[11:8]	SHA1	Indicates support for SHA1 instructions in AArch64 state. Defined values are: 0b0000 No SHA1 instructions implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled. 0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SUO, and SHA1SU1 instructions implemented. This value is reported when the Cryptographic Extension is implemented and enabled. When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is leave at recent the Cryptographic Extension in implemented.	The reset values can be the following: 0b0000,0b0001, respective to the value.
[7:4]	AES	low at reset the Cryptographic Extension is implemented Indicates support for AES instructions in AArch64 state. Defined values are: 0b0000 No AES instructions implemented. This value is reported when the Cryptographic Extension is not implemented or is disabled. 0b0010 AESE, AESD, AESMC, and AESIMC instructions are implemented plus PMULL/PMULL2 instructions operating on 64-bit data quantities. This value is reported when the Cryptographic Extension is implemented and enabled. When the CRYPTO configuration parameter is true and the CRYPTODISABLE input is low at reset the Cryptographic Extension is implemented	The reset values can be the following: 0b0000,0b0010, respective to the value.
[3:0]	RES0	Reserved	RES0

MRS <Xt>, ID_AA64ISARO_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0110	00000

Accessibility

MRS <Xt>, ID_AA64ISAR0_EL1

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then
    return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64ISAR0_EL1;
```

A.4.15 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If ID AA64ISAR1 EL1.{API, APA} == {0000, 0000}, then:

- The AArch64-TCR_EL1.{TBID,TBID0}, AArch64-TCR_EL2.{TBID0,TBID1}, AArch64-TCR_EL2.TBID and AArch64-TCR_EL3.TBID bits are RESO.
- AArch64-APIAKeyHi_EL1, AArch64-APIAKeyLo_EL1, AArch64-APIBKeyHi_EL1, AArch64-APIBKeyLo_EL1, AArch64-APDAKeyHi_EL1, AArch64-APDBKeyHi EL1, AArch64-APDBKeyLo EL1 are not allocated.
- SCTLR ELx.EnIA, SCTLR ELx.EnIB, SCTLR ELx.EnDA, SCTLR ELx.EnDB are all RESO.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

- AArch64-HCR EL2.APK and AArch64-HCR EL2.API are RESO.
- AArch64-SCR_EL3.APK and AArch64-SCR_EL3.API are RESO.

Attributes

Width

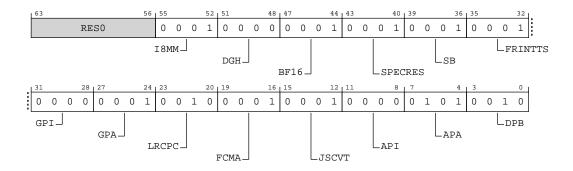
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-93: AArch64_id_aa64isar1_el1 bit assignments

Table A-213: ID_AA64ISAR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:56]	RES0	Reserved	RES0
[55:52]	I8MM	Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented.	
[51:48]	DGH	Indicates support for the Data Gathering Hint instruction. Defined values are:	0b0000
		0ь0000	
		Data Gathering Hint is not implemented.	
[47:44]	BF16	Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB, BFMLALT, and BFMMLA instructions are implemented.	
[43:40]	SPECRES	Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:	0b0001
		0ь0001	
		CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.	
[39:36]	SB	Indicates support for SB instruction in AArch64 state. Defined values are:	0b0001
		0ь0001	
		SB instruction is implemented.	
[35:32]	FRINTTS	Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined values are:	0b0001
		0ь0001	
		FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.	
[31:28]	GPI	Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:	0b0000
		0ь0000	
		Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.	

Bits	Name	Description	Reset
[27:24]	GPA	Indicates whether QARMA5 or Architected algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:	0b0001
		0ь0001	
		Generic Authentication using the QARMA5 algorithm is implemented. This includes the PACGA instruction.	
[23:20]	LRCPC	Indicates support for weaker release consistency, RCpc, based model. Defined values are:	0b0010
		0ь0010	
		The LDAPUR*, STLUR*, and LDAPR* instructions are implemented.	
[19:16]	FCMA	Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined values are:	0b0001
		0ь0001	
		The FCMLA and FCADD instructions are implemented.	
[15:12]	JSCVT	Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64 state. Defined values are:	0b0001
		0ь0001	
		The FJCVTZS instruction is implemented.	
[11:8]	API	Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:	000000
		0ь0000	
		Address Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.	
[7:4]	APA	Indicates whether QARMA5 or Architected algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:	0b0101
		0ь0101	
		Address Authentication using the QARMA5 algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.	
[3:0]	DPB	Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state. Defined values are:	0b0010
		0ь0010	
		DC CVAP and DC CVADP supported	

MRS <Xt>, ID_AA64ISAR1_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0110	0b001

Accessibility

MRS <Xt>, ID_AA64ISAR1_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
```

```
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64ISAR1_EL1;
```

A.4.16 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

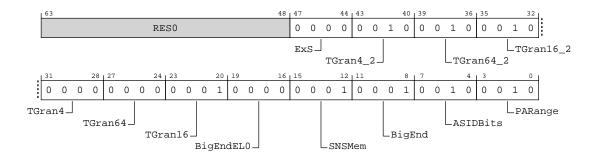
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-94: AArch64_id_aa64mmfr0_el1 bit assignments

Table A-215: ID_AA64MMFR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	RES0
[47:44]	ExS	Indicates support for disabling context synchronizing exception entry and exit. Defined values are:	0b0000
		0ь0000	
		All exception entries and exits are context synchronization events.	
[43:40]	TGran4_2	Indicates support for 4KB memory granule size at stage 2. Defined values are:	0b0010
		0b0010	
		4KB granule supported at stage 2.	
[39:36]	TGran64_2	Indicates support for 64KB memory granule size at stage 2. Defined values are:	0b0010
		0ь0010	
		64KB granule supported at stage 2.	
[35:32]	TGran16_2	Indicates support for 16KB memory granule size at stage 2. Defined values are:	0b0010
		0ь0010	
		16KB granule supported at stage 2.	
[31:28]	TGran4	Indicates support for 4KB memory translation granule size. Defined values are:	0b0000
		0ь0000	
		4KB granule supported.	
[27:24]	TGran64	Indicates support for 64KB memory translation granule size. Defined values are:	000000
		0ь0000	
		64KB granule supported.	
[23:20]	TGran16	Indicates support for 16KB memory translation granule size. Defined values are:	0b0001
		0ь0001	
		16KB granule supported.	
[19:16]	BigEndELO	Indicates support for mixed-endian at ELO only. Defined values are:	0b0000
		0ь0000	
		No mixed-endian support at ELO. The AArch64-SCTLR_EL1.E0E bit has a fixed value.	
[15:12]	SNSMem	Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:	0b0001
		0ь0001	
		Does support a distinction between Secure and Non-secure Memory.	

Bits	Name	Description	Reset
[11:8]	BigEnd	Indicates support for mixed-endian configuration. Defined values are:	0b0001
		0ь0001	
		Mixed-endian support. The SCTLR_ELx in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.EE and AArch64-SCTLR_EL1.E0E bits can be configured.	
[7:4]	ASIDBits	Number of ASID bits. Defined values are:	0b0010
		0ь0010	
		16 bits.	
[3:0]	PARange	Physical Address range supported. Defined values are:	0b0010
		0ь0010	
		40 bits, 1TB.	

MRS <Xt>, ID AA64MMFR0 EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0000	0b0111	00000

Accessibility

MRS <Xt>, ID_AA64MMFR0_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64MMFR0_EL1;
```

A.4.17 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

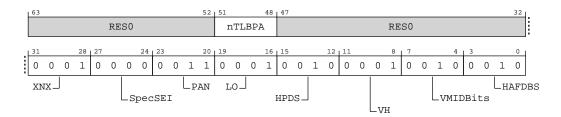
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-95: AArch64_id_aa64mmfr1_el1 bit assignments

Table A-217: ID_AA64MMFR1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:52]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[51:48]	nTLBPA	Indicates support for intermediate caching of translation table walks. Defined values are:	The reset values can
		0ь0000	be the following:
		The intermediate caching of translation table walks might include non-coherent caches of previous valid translation table entries since the last completed relevant TLBI applicable to the PE where either:	0b0000,0b0001, respective to the value.
		The caching is indexed by the physical address of the location holding the translation table entry.	
		 The caching is used for stage 1 translations and is indexed by the intermediate physical address of the location holding the translation table entry. 	
		0ь0001	
		The intermediate caching of translation table walks does not include non-coherent caches of previous valid translation table entries since the last completed TLBI applicable to the PE where either:	
		The caching is indexed by the physical address of the location holding the translation table entry.	
		The caching is used for stage 1 translations and is indexed by the intermediate physical address of the location holding the translation table entry.	
		All other values are reserved.	
		FEAT_nTLBPA implements the functionality identified by the value 0b0001.	
		From Armv8.0, the permitted values are 0b0000 and 0b0001.	
[47:32]		Reserved	RESO
[31:28]	XNX	Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:	0b0001
		0ь0001	
		Distinction between ELO and EL1 execute-never control at stage 2 supported.	
[27:24]	SpecSEI	Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:	000000
		0ь0000	
		The PE never generates an SError interrupt due to an External abort on a speculative read.	
[23:20]	PAN	Privileged Access Never. Indicates support for the PAN bit in PSTATE, AArch64-SPSR_EL1, AArch64-SPSR_EL2, AArch64-SPSR_EL3, and AArch64-DSPSR_EL0. Defined values are:	0b0011
		0ь0011	
		PAN supported, AT S1E1RP and AT S1E1WP instructions supported, and AArch64-SCTLR_EL1.EPAN and AArch64-SCTLR_EL2.EPAN bits supported.	
[19:16]	LO	LORegions. Indicates support for LORegions. Defined values are:	0b0001
		0ь0001	
		LORegions supported.	
[15:12]	HPDS	Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables. Defined values are:	0b0010
		0ь0010	
		Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED use.	

Bits	Name	Description	Reset
[11:8]	VH	Virtualization Host Extensions. Defined values are:	0b0001
		0ъ0001	
		Virtualization Host Extensions supported.	
[7:4]	VMIDBits	Number of VMID bits. Defined values are:	0b0010
		0ъ0010	
		16 bits	
[3:0]	HAFDBS	Hardware updates to Access flag and Dirty state in translation tables. Defined values are:	0b0010
		0ь0010	
		Hardware update of both the Access flag and dirty state is supported.	

MRS <Xt>, ID AA64MMFR1 EL1

op0	op1	CRn	CRm	op2
0b11	00000	000000	0b0111	0b001

Accessibility

MRS <Xt>, ID_AA64MMFR1_EL1

```
if PSTATE.EL == ELO then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then
        return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then
        return ID_AA64MMFR1_EL1;
```

A.4.18 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RESO from EL1, EL2, and EL3.

Attributes

Width

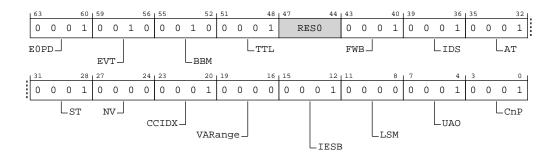
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-96: AArch64_id_aa64mmfr2_el1 bit assignments

Table A-219: ID_AA64MMFR2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:60]	EOPD	Indicates support for the EOPD mechanism. Defined values are:	
		0ь0001	
		EOPDx mechanism is implemented.	

Bits	Name	Description	Reset
[59:56]	EVT	Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the AArch64-HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:	0b0010
		0ь0010	
		AArch64-HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are supported.	
[55:52]	ВВМ	Allows identification of the requirements of the hardware to have break-before-make sequences when changing block size for a translation.	0b0010
		0ь0010	
		Level 2 support for changing block size is supported.	
[51:48]	TTL	Indicates support for TTL field in address operations. Defined values are:	0b0001
		0ь0001	
		TLB maintenance instructions by address have bits[47:44] holding the TTL field.	
[47:44]	RES0	Reserved	RES0
[43:40]	FWB	Indicates support for AArch64-HCR_EL2.FWB. Defined values are:	0b0001
		0b0001	
		AArch64-HCR_EL2.FWB is supported.	
[39:36]	IDS	Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space. Defined values are:	0b0001
		0b0001	
		All exceptions generated by an AArch64 read access to the feature ID space are reported by ESR_ELx.EC == 0x18.	
[35:32]	AT	Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:	0b0001
		0ъ0001	
		Unaligned single-copy atomicity and atomic functions with a 16-byte address range aligned to 16-bytes are supported.	
[31:28]	ST	Identifies support for small translation tables. Defined values are:	0b0001
		0ъ0001	
		The maximum value of the TCR_ELx.{TOSZ,T1SZ} and VTCR_EL2.TOSZ fields is 48 for 4KB and 16KB granules, and 47 for 64KB granules.	
[27:24]	NV	Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization. Defined values are:	000000
		0ь0000	
		Nested virtualization is not supported.	
[23:20]	CCIDX	Support for the use of revised AArch64-CCSIDR_EL1 register format. Defined values are:	0b0001
		0ъ0001	
		64-bit format implemented for all levels of the CCSIDR_EL1.	
[19:16]	VARange	Indicates support for a larger virtual address. Defined values are:	000000
		0ъ0000	
		VMSAv8-64 supports 48-bit VAs.	
[15:12]	IESB	Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:	0b0001
		0b0001	
		IESB bit in the SCTLR_ELx registers is supported.	

Bits	Name	Description	Reset		
[11:8]	LSM	Indicates support for LSMAOE and nTLSMD bits in AArch64-SCTLR_EL1 and AArch64-SCTLR_EL2. Defined values are:	0b0000		
		ь0000			
		LSMAOE and nTLSMD bits not supported.			
[7:4]	UAO	User Access Override. Defined values are:	0b0001		
		0ь0001			
		UAO supported.			
[3:0]	CnP	Indicates support for Common not Private translations. Defined values are:	0b0001		
		0ь0001			
		Common not Private translations supported.			

MRS < Xt>, ID_AA64MMFR2_EL1

op0	op1	CRn	CRm	op2
0b11	00000	000000	0b0111	0b010

Accessibility

MRS <Xt>, ID_AA64MMFR2_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
   return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL3 then
   return ID_AA64MMFR2_EL1;
```

A.4.19 CCSIDR_EL1, Current Cache Size ID Register

Provides information about the architecture of the currently selected cache.

Configurations

The implementation includes one CCSIDR_EL1 for each cache that it can access. AArch64-CSSELR EL1 selects which Cache Size ID Register is accessible.

Attributes

Width

64

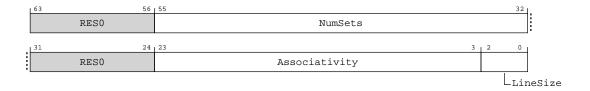
Functional group

Identification registers

Access type

See bit descriptions

Reset value


Where the reset reads xxxx, see individual bits

Bit descriptions

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on these parameters.

Figure A-97: AArch64_ccsidr_el1 bit assignments

Table A-221: CCSIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:56]	RESO	Reserved	RES0
[55:32]	NumSets	(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.	
[31:24]	RESO	Reserved	RES0
[23:3]	Associativity	(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.	21{x}
[2:0]	LineSize	(Log ₂ (Number of bytes in cache line)) - 4. For example:	xxx
		• For a line length of 16 bytes: Log ₂ (16) = 4, LineSize entry = 0. This is the minimum line length.	
		• For a line length of 32 bytes: Log ₂ (32) = 5, LineSize entry = 1.	
		When FEAT_MTE2 is implemented and enabled, where a cache only holds Allocation tags, this field is RESO .	

If AArch64-CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1 the behavior is **CONSTRAINED UNPREDICTABLE**, and can be one of the following:

- The CCSIDR EL1 read is treated as NOP.
- The CCSIDR EL1 read is UNDEFINED.
- The CCSIDR_EL1 read returns an UNKNOWN value.

MRS <Xt>, CCSIDR EL1

op0	op1	CRn	CRm	op2
0b11	0b001	000000	0b0000	0b000

Accessibility

MRS <Xt>, CCSIDR_EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return CCSIDR_EL1;
elsif PSTATE.EL == EL2 then
   return CCSIDR_EL1;
elsif PSTATE.EL == EL3 then
   return CCSIDR_EL1;
```

A.4.20 CLIDR_EL1, Cache Level ID Register

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configurations

This register is available in all configurations.

Attributes

Width

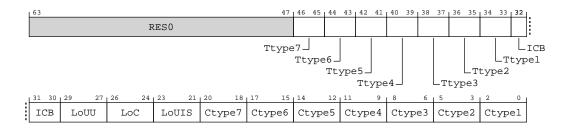
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-98: AArch64_clidr_el1 bit assignments

Table A-223: CLIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:47]	RES0	Reserved	RES0
[46:45]	Ttype7	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь00	
		No Tag Cache.	
[44:43]	Ttype6	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь00	
		No Tag Cache.	
[42:41]	Ttype5	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь00	
		No Tag Cache.	
[40:39]	Ttype4	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь00	
		No Tag Cache.	

Bits	Name	Description	Reset
[38:37]	Ttype3	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь00	
		No Tag Cache. This value is reported if the DSU is configured without an L3 cache.	
		0b10	
		Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines. This value is reported if the DSU is configured with an L3 cache.	
[36:35]	Ttype2	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0ь10	
		Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines.	
[34:33]	Ttype1	Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.	xx
		0b10	
		Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines.	
[32:30]	ICB	Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.	XXX
		The possible values are:	
		0b010	
		L2 cache is the highest Inner Cacheable level. This value is reported if the DSU is configured without an L3 cache.	
		0b011	
		L3 cache is the highest Inner Cacheable level. This value is reported if the DSU is configured with an L3 cache.	
[29:27]	LoUU	Level of Unification Uniprocessor for the cache hierarchy.	xxx
		Note:	
		When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.	
		0ь000	
		Level of Unification Uniprocessor is before the L1 data cache.	
[26:24]	LoC	Level of Coherence for the cache hierarchy.	xxx
		0ь010	
		Level of Coherency is after the L2 cache. This value is reported if the DSU is configured without an L3 cache.	
		0b011	
		Level of Coherency is after the L3 cache. This value is reported if the DSU is configured with an L3 cache.	
[23:21]	LoUIS	Level of Unification Inner Shareable for the cache hierarchy.	xxx
		Note: When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.	
		оьооо	
		Level of Unification Inner Shareable is before the L1 data cache.	

Bits	Name	Description	Reset
[20:18]	Ctype7	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	xxx
		0Р000	
		No cache.	
[17:15]	Ctype6	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0ъ000	
		No cache.	
[14:12]	Ctype5	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0ь000	
		No cache.	
[11:9]	Ctype4	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0ь000	
		No cache.	
[8:6]	Ctype3	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0ъ000	
		No cache. This value is reported if the DSU is configured without an L3 cache.	
		0b100	
		Unified cache. This value is reported if the DSU is configured with an L3 cache.	
[5:3]	Ctype2	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0b100	
		Unified cache.	
[2:0]	Ctype1	Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:	XXX
		0b011	
		Separate instruction and data caches.	

MRS <Xt>, CLIDR_EL1

ор0	op1	CRn	CRm	op2
0b11	0b001	0b0000	0b0000	0b001

Accessibility

MRS < Xt>, CLIDR EL1

```
if PSTATE.EL == ELO then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        return CLIDR_EL1;
elsif PSTATE.EL == EL2 then
        return CLIDR_EL1;
elsif PSTATE.EL == EL3 then
        return CLIDR_EL1;
```

A.4.21 GMID_EL1, Multiple tag transfer ID register

Indicates the block size that is accessed by the LDGM and STGM System instructions.

Configurations

This register is available in all configurations.

Attributes

Width

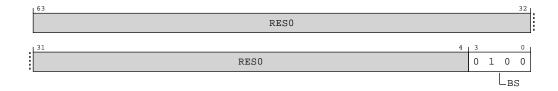
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-99: AArch64_gmid_el1 bit assignments

Table A-225: GMID_EL1 bit descriptions

Bits	Name	Description	Reset
[63:4]	RES0	Reserved	RES0
[3:0]	BS	Log_2 of the block size in words. The minimum supported size is 16B (value == 2) and the maximum is 256B (value == 6).	
		0ь0100	
		64 bytes.	

Access

MRS <Xt>, GMID_EL1

ор0	op1	CRn	CRm	op2
0b11	0b001	000000	000000	0b100

Accessibility

MRS <Xt>, GMID EL1

```
if PSTATE.EL == EL0 then
   if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.TID5 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
   else
        return GMID_EL1;
elsif PSTATE.EL == EL2 then
   return GMID_EL1;
elsif PSTATE.EL == EL3 then
   return GMID_EL1;
```

A.4.22 CSSELR_EL1, Cache Size Selection Register

Selects the current Cache Size ID Register, AArch64-CCSIDR_EL1, by specifying the required cache level and the cache type (either instruction or data cache).

Configurations

This register is available in all configurations.

Attributes

Width

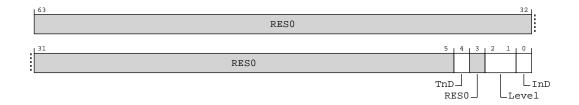
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-100: AArch64_csselr_el1 bit assignments

Table A-227: CSSELR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:5]	RES0	Reserved	RES0
[4]	TnD	Allocation Tag not Data bit.	Х
		0b0	
		Data, Instruction or Unified cache.	
[3]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[2:1]	Level	Cache level of required cache.	xx
		0ъ00	
		Level 1 cache.	
		0b01	
		Level 2 cache.	
		0b10	
		Level 3 cache.	
		All other values are reserved.	
		If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR_EL1 is UNKNOWN .	
[0]	InD	Instruction not Data bit.	х
		0ъ0	
		Data or unified cache.	
		0b1	
		Instruction cache.	
		If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSELR_EL1 is CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for CSSELR_EL1.{Level, InD}.	

MRS <Xt>, CSSELR_EL1

ор0	op1	CRn	CRm	op2
0b11	0b010	0b0000	000000	0b000

MSR CSSELR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b010	0b0000	0b0000	00000

Accessibility

MRS <Xt>, CSSELR EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return CSSELR_EL1;
elsif PSTATE.EL == EL2 then
    return CSSELR_EL1;
elsif PSTATE.EL == EL3 then
    return CSSELR_EL1;
```

MSR CSSELR EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        CSSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    CSSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    CSSELR_EL1 = X[t];
```

A.4.23 CTR_ELO, Cache Type Register

Provides information about the architecture of the caches.

Configurations

This register is available in all configurations.

Attributes

Width

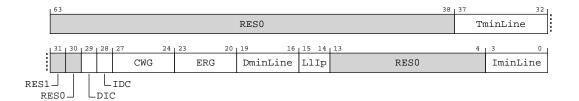
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-101: AArch64_ctr_el0 bit assignments

Table A-230: CTR_EL0 bit descriptions

Bits	Name	Description	Reset
[63:38]	RES0	Reserved	RES0
[37:32]	TminLine	Tag minimum Line. Log ₂ of the number of words covered by Allocation Tags in the smallest cache line of all caches which can contain Allocation tags that are controlled by the PE.	6{x}
		0ь000100	
		64 bytes.	
[31]	RES1	Reserved	RES1
[30]	RES0	Reserved	RES0
[29]	DIC	Instruction cache invalidation requirements for data to instruction coherence.	x
		0ь0	
		Instruction cache invalidation to the Point of Unification is required for data to instruction coherence.	
[28]	IDC	Data cache clean requirements for instruction to data coherence. The meaning of this bit is:	Х
		0ь1	
		Data cache clean to the Point of Unification is not required for instruction to data coherence.	
[27:24]	CWG	Cache writeback granule. Log ₂ of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.	xxxx
		0ь0100	
		64 bytes.	
[23:20]	ERG	Exclusives reservation granule. Log_2 of the number of words of the maximum size of the reservation granule for the Load-Exclusive and Store-Exclusive instructions.	xxxx
		0ь0100	
		64 bytes.	
[19:16]	DminLine	Log_2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.	xxxx
		0ь0100	
		64 bytes.	
[15:14]	L1lp	Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:	xx
		0b11	
		Physical Index, Physical Tag (PIPT).	
[13:4]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[3:0]	IminLine	\log_2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.	xxxx
		0ь0100	
		64 bytes.	

MRS <Xt>, CTR ELO

ор0	op1	CRn	CRm	op2
0b11	0b011	000000	000000	0b001

Accessibility

MRS <Xt>, CTR ELO

```
if PSTATE.EL == ELO then
    if !(EL2Enabled() && HCR EL2.<E2H, TGE> == '11') && SCTLR EL1.UCT == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x18);
             AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H, TGE> != '11' && HCR_EL2.TID2 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        return CTR ELO;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        return CTR ELO;
elsif PSTATE.EL == EL2 then
    return CTR ELO;
elsif PSTATE.\overline{\text{EL}} == EL3 then
    return CTR ELO;
```

A.4.24 DCZID_EL0, Data Cache Zero ID register

Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by Address) System instruction.

If FEAT_MTE is implemented, this register also indicates the granularity at which the DC GVA and DC GZVA instructions write.

Configurations

This register is available in all configurations.

Attributes

Width

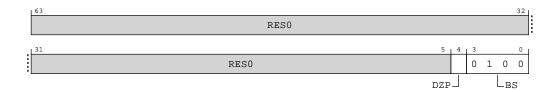
64

Functional group

Identification registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-102: AArch64_dczid_el0 bit assignments

Table A-232: DCZID_EL0 bit descriptions

Bits	Name	Description	Reset
[63:5]	RES0	Reserved	RES0
[4]	DZP	Data Zero Prohibited. This field indicates whether use of DC ZVA instructions is permitted or prohibited.	The reset values can be the following: 0b0,0b1, respective to the value.
		If FEAT_MTE is implemented, this field also indicates whether use of the DC GVA and DC GZVA instructions are permitted or prohibited.	
		0ъ0	
		Instructions are permitted.	
		0ь1	
		Instructions are prohibited.	
		The value read from this field is governed by the access state and the values of the AArch64-HCR_EL2.TDZ and AArch64-SCTLR_EL1.DZE bits.	
[3:0]	BS	Log_2 of the block size in words. The maximum size supported is 2KB (value == 9).	0b0100
		0ь0100	
		64 bytes.	

Access

MRS <Xt>, DCZID_EL0

op0	op1	CRn	CRm	op2
0b11	0b011	000000	0b0000	0b111

Accessibility

MRS <Xt>, DCZID ELO

```
if PSTATE.EL == EL0 then
    return DCZID EL0;
elsif PSTATE.EL == EL1 then
    return DCZID EL0;
elsif PSTATE.EL == EL2 then
    return DCZID EL0;
elsif PSTATE.EL == EL3 then
    return DCZID_EL0;
```

A.4.25 MPAMIDR_EL1, MPAM ID Register (EL1)

Indicates the presence and maximum PARTID and PMG values supported in the implementation. It also indicates whether the implementation supports MPAM virtualization.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

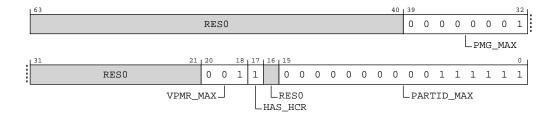
Identification registers

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0001 xxxx xxxx xxx0 011x 0000 0000 0011 1111



Where the reset reads xxxx, see individual bits

Bit descriptions

MPAMIDR EL1 indicates the MPAM implementation parameters of the PE.

Figure A-103: AArch64_mpamidr_el1 bit assignments

Table A-234: MPAMIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:40]	RES0	Reserved	RES0
[39:32]	PMG_MAX	The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of every MPAMn_ELx must implement at least enough bits to represent PMG_MAX.	0x01
		0ь0000001	
		Max PMG field is 1	
[31:21]	RESO	Reserved	RES0
[20:18]	VPMR_MAX	Indicates the maximum register index n for the MPAMVPM <n>_EL2 registers.</n>	
		0b001	
		2 MPAMVPMn_EL2 registers are implemented	
[17]	HAS_HCR	HAS_HCR indicates that the PE implementation supports MPAM virtualization, including AArch64-MPAMHCR_EL2, AArch64-MPAMVPMV_EL2, and MPAMVPM <n>_EL2 with n in the range 0 to VPMR_MAX. Must be 0 if EL2 is not implemented in either Security state.</n>	0b1
		0b1	
		MPAM virtualization is supported.	
[16]	RESO	Reserved	RES0
[15:0]	PARTID_MAX	The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D fields of every MPAMn_ELx must implement at least enough bits to represent PARTID_MAX.	0x003F
		0ь00000000111111	
		Max PARTID field is 63	

Access

MRS <Xt>, MPAMIDR_EL1

op0	op1	CRn	CRm	op2
0b11	06000	0b1010	0b0100	0b100

Accessibility

MRS <Xt>, MPAMIDR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

A.4.26 IMP_CPUPPMPDPCR_EL1, Global PPMPDP Configuration Register

This register controls the aggressiveness of PDP features.

Configurations

This register is available in all configurations.

Attributes

Width

64

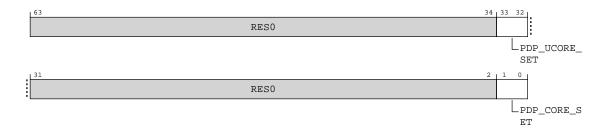
Functional group

Identification registers

Access type

See bit descriptions

Reset value


xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx00 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx00

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-104: AArch64_imp_cpuppmpdpcr_el1 bit assignments

Table A-236: IMP_CPUPPMPDPCR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:34]	RES0	Reserved	RES0
[33:32]	PDP_UCORE_SET	Uncore PDP Aggressiveness	0b00
		0600	
		Disable PDP.	
		0b01	
		Engage PDP at low aggressiveness	
		0b10	
		Engage PDP at medium aggressiveness	
		0b11	
		Engage PDP at high aggressiveness	
[31:2]	RES0	Reserved	RES0
[1:0]	PDP_CORE_SET	Core PDP Aggressiveness	0b00
		0ь00	
		Disable PDP.	
		0b01	
		Engage PDP at low aggressiveness.	
		0b10	
		Engage PDP at medium aggressiveness.	
		0b11	
		Engage PDP at high aggressiveness.	

Access

MRS < Xt>, S3_0_C15_C2_4

op0	op1	CRn	CRm	op2
0b11	0b000	0b1111	0b0010	0b100

MSR S3_0_C15_C2_4, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1111	0b0010	0b100

Accessibility

MRS < Xt>, S3 0 C15 C2 4

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return IMP_CPUPPMPDPCR_EL1;
elsif PSTATE.EL == EL2 then
    return IMP_CPUPPMPDPCR_EL1;
elsif PSTATE.EL == EL3 then
    return IMP_CPUPPMPDPCR_EL1;
```

MSR S3 0 C15 C2 4, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && ACTLR EL3.PDPEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TIDCP == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && ACTLR_EL2.PDPEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif ACTLR EL3.PDPEN == '0' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        IMP CPUPPMPDPCR EL1 = X[t];
elsif PSTATE.EL == EL2 \overline{then}
    if ACTLR EL3.PDPEN == '0' then
        if \overline{\text{Halted}}() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        IMP CPUPPMPDPCR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    IMP CPUPPMPDPCR EL1 = X[t];
```

A.4.27 IMP_CPUMPMMCR_EL3, Global MPMM Configuration Register

This register is used to change MPMM gears or disable MPMM.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Identification registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-105: AArch64_imp_cpumpmmcr_el3 bit assignments

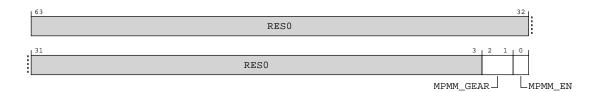


Table A-239: IMP_CPUMPMMCR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:3]	RESO	Reserved	RESO
[2:1]	MPMM_GEAR	MPMM Gear Select	0600
		0ь00	
		Select MPMM Gear 0.	
		0ь01	
		Select MPMM Gear 1.	
		0b10	
		Select MPMM Gear 2.	
		0b11	
		Select MPMM Gear 3.	
[O]	MPMM_EN	MPMM Master Enable	0b0
		000	
		MPMM is not enabled.	
		0b1	
		MPMM is enabled.	

MRS < Xt>, S3_6_C15_C2_1

ор0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0010	0b001

MSR S3_6_C15_C2_1, <Xt>

ор0	op1	CRn	CRm	op2
0b11	0b110	0b1111	0b0010	0b001

Accessibility

MRS < Xt>, S3 6 C15 C2 1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        UNDEFINED;
elsif PSTATE.EL == EL3 then
        return IMP_CPUMPMMCR_EL3;
```

MSR S3_6_C15_C2_1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TIDCP == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    IMP_CPUMPMMCR_EL3 = X[t];
```

A.5 AArch64 Performance Monitors registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Performance Monitors registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-242: Performance Monitors registers summary

Name	Ор0	Op1	CRn	CRm	Op2	Reset	Width	Description
PMMIR_EL1	3	0	C9	C14	6	_	64-bit	Performance Monitors Machine Identification Register
PMCR_EL0	3	3	C9	C12	0	_	64-bit	Performance Monitors Control Register
PMCEID0_EL0	3	3	C9	C12	6	_	64-bit	Performance Monitors Common Event Identification register 0
PMCEID1_EL0	3	3	C9	C12	7	_	64-bit	Performance Monitors Common Event Identification register 1

A.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is available in all configurations.

Attributes

Width

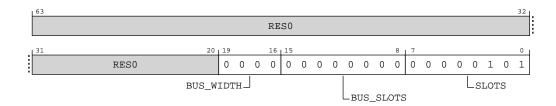
64

Functional group

Performance Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-106: AArch64_pmmir_el1 bit assignments

Table A-243: PMMIR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:20]	RESO	Reserved	RES0
[19:16]	BUS_WIDTH	Bus width. Indicates the number of bytes each BUS_ACCESS event relates to. Encoded as Log ₂ (number of bytes), plus one. Defined values are:	000000
		0ь0000	
		The information is not available.	
[15:8]	BUS_SLOTS	Bus count. The largest value by which the BUS_ACCESS event might increment in a single BUS_CYCLES cycle.	0x00
[7:0]	SLOTS	Operation width. The largest value by which the STALL_SLOT event might increment in a single cycle. If the STALL_SLOT event is not implemented, this field might be RAZ .	0x05
		0ь00000101	
		The largest value by which the STALL_SLOT PMU event may increment in one cycle is 5.	

Access

MRS <Xt>, PMMIR_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1001	0b1110	0b110

Accessibility

MRS <Xt>, PMMIR EL1

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
       UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
       return PMMIR EL1;
elsif PSTATE.EL == \overline{EL}2 then
   if Halted() && EDSCR.SDD == '1' && MDCR_EL3.TPM == '1' then
       UNDEFINED;
    elsif MDCR EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMMIR EL1;
elsif PSTATE.EL == EL3 then
    return PMMIR EL1;
```

A.5.2 PMCR_ELO, Performance Monitors Control Register

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

This register is available in all configurations.

Attributes

Width

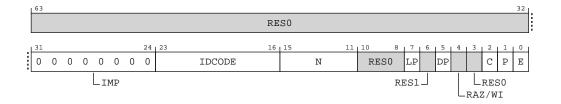
64

Functional group

Performance Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-107: AArch64_pmcr_el0 bit assignments

Table A-245: PMCR_EL0 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:24]	IMP	Implementer code.	0x00
		0Ъ0000000	
		No ID information is present in PMCR/PMCR_ELO. Software must use the MIDR_EL1 to identify the PE.	

Bits	Name	Description	Reset
[23:16]	IDCODE	Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED value.	8 {x}
		Each implementer must maintain a list of identification codes that are specific to the implementer. A specific implementation is identified by the combination of the implementer code and the identification code.	
		Access to this field is: RO	
[15:11]	N	Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is 0b00000 then only AArch64-PMCCNTR_ELO is implemented. If the value is 0b11111 AArch64-PMCCNTR_ELO and 31 event counters are implemented.	5{x}
		When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return the value of AArch64-MDCR_EL2.HPMN.	
		0ь00110	
		Six PMU Counters Implemented	
		Access to this field is: RO	
[10:8]	RES0	Reserved	RES0
[7]	LP	Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit.	х
		0ь0	
		Event counter overflow on increment that causes unsigned overflow of AArch64-PMEVCNTR <n>_EL0[31:0].</n>	
		0ь1	
		Event counter overflow on increment that causes unsigned overflow of AArch64-PMEVCNTR <n>_EL0[63:0].</n>	
		If EL2 is implemented and AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [AArch32-HDCR.HPMN(PMCR_EL0.N-1)] or [AArch64-MDCR_EL2.HPMN(PMCR_EL0.N-1)].	
		Note: The effect of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN.	
[6]	RES1	Reserved	RES1
[5]	DP	Disable cycle counter when event counting is prohibited.	Х
		0ъ0	
		Cycle counting by AArch64-PMCCNTR_ELO is not affected by this bit.	
		0b1	
		When event counting for counters in the range [0(AArch64-MDCR_EL2.HPMN-1)] is prohibited, cycle counting by AArch64-PMCCNTR_EL0 is disabled.	
		For more information see Prohibiting event counting in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.	
[4]	RAZ/WI	Reserved	RAZ/ WI
[3]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[2]	С	Cycle counter reset. The effects of writing to this bit are:	0b0
		0ь0	
		No action.	
		0b1	
		Reset AArch64-PMCCNTR_EL0 to zero.	
		Note: Resetting AArch64-PMCCNTR_ELO does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is implemented, the value of PMCR_ELO.LC is ignored, and bits [63:0] of the cycle counter are reset.	
		Access to this field is: WO/RAZ	
[1]	Р	Event counter reset. The effects of writing to this bit are:	0b0
		0ь0	
		No action.	
		0b1	
		Reset all event counters accessible in the current Exception level, not including AArch64-PMCCNTR_ELO, to zero.	
		In ELO and EL1:	
		• If EL2 is implemented and enabled in the current Security state, and AArch64-MDCR_EL2.HPMN is less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range [AArch64-MDCR_EL2.HPMN(PMCR_EL0.N-1)].	
		If EL2 is not implemented, EL2 is disabled in the current Security state, or AArch64-MDCR_EL2.HPMN equals PMCR_EL0.N, a write of 1 to this bit resets all the event counters.	
		In EL2 and EL3, a write of 1 to this bit resets all the event counters.	
		Note: Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5 is implemented, the values of AArch64-MDCR_EL2.HLP and PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are reset.	
		Access to this field is: WO/RAZ	

Bits	Name	Description	Reset
[0]	Е	Enable.	0b0
		0ь0	
		All event counters in the range [0(PMN-1)] and AArch64-PMCCNTR_EL0, are disabled.	
		0b1	
		All event counters in the range [0(PMN-1)] and AArch64-PMCCNTR_ELO, are enabled by AArch64-PMCNTENSET_ELO.	
		If EL2 is implemented, then:	
		If EL2 is using AArch64, PMN is AArch64-MDCR_EL2.HPMN.	
		If PMN is less than PMCR_ELO.N, this bit does not affect the operation of event counters in the range [PMN(PMCR_ELO.N-1)].	
		If EL2 is not implemented, PMN is PMCR_EL0.N.	
		Note: The effect of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN.	

MRS <Xt>, PMCR_ELO

op0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b1100	00000

MSR PMCR ELO, <Xt>

ор0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b1100	00000

Accessibility

MRS <Xt>, PMCR_ELO

```
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return PMCR ELO;
elsif PSTATE.EL ==\overline{E}L2 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMCR ELO;
elsif PSTATE.EL == \overline{E}L3 then
    return PMCR ELO;
```

MSR PMCR ELO, <Xt>

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif PMUSERENR ELO.EN == '0' then
       if EL2Enabled() && HCR_EL2.TGE == '1' then
           AArch64.SystemAccessTrap(EL2, 0x18);
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.TPMCR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        PMCR EL0 = X[t];
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR EL2.TPM == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMCR EL0 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
       UNDEFINED;
    elsif MDCR EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

A.5.3 PMCEIDO_ELO, Performance Monitors Common Event Identification register 0

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

For more information about the common events and the use of the PMCEID<n>_ELO registers see The PMU event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-108: AArch64_pmceid0_el0 bit assignments

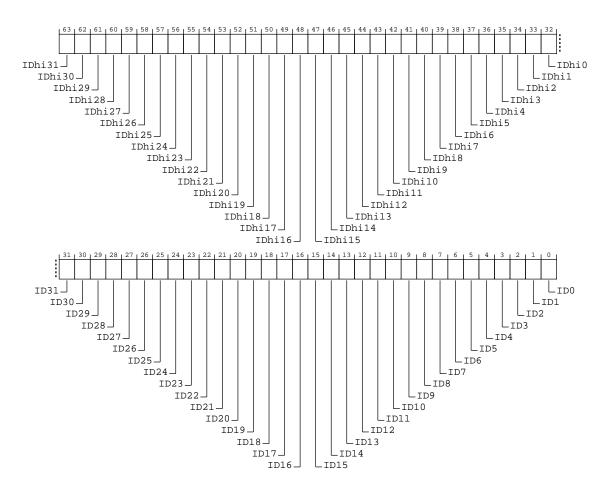


Table A-248: PMCEID0_EL0 bit descriptions

Bits	Name	Description	Reset
[63]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x401f)	Х
		0ъ0	
		The common event is not implemented, or not counted.	
[62]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x401e)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[61]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x401d)	Х
		0ъ0	
		The common event is not implemented, or not counted.	
[60]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x401c)	Х
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[59]	IDhi27	IDhi27 corresponds to common event (0x401b) CTI_TRIGOUT7	х
		0ь1	
		The common event is implemented.	
[58]	IDhi26	IDhi26 corresponds to common event (0x401a) CTI_TRIGOUT6	X
		0ь1	
		The common event is implemented.	
[57]	IDhi25	IDhi25 corresponds to common event (0x4019) CTI_TRIGOUT5	X
		0b1	
		The common event is implemented.	
[56]	IDhi24	IDhi24 corresponds to common event (0x4018) CTI_TRIGOUT4	x
		0ь1	
		The common event is implemented.	
[55]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4017)	X
		0ь0	
		The common event is not implemented, or not counted.	
[54]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4016)	X
		0ь0	
		The common event is not implemented, or not counted.	
[53]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4015)	X
		0ь0	
		The common event is not implemented, or not counted.	
[52]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4014)	X
		0ь0	
		The common event is not implemented, or not counted.	
[51]	IDhi19	IDhi19 corresponds to common event (0x4013) TRCEXTOUT3	X
		0b1	
		The common event is implemented.	
[50]	IDhi18	IDhi18 corresponds to common event (0x4012) TRCEXTOUT2	X
		0b1	
F 4 0 3	.5=	The common event is implemented.	
[49]	IDhi1/	IDhi17 corresponds to common event (0x4011) TRCEXTOUT1	X
		0b1	
[40]	IDI :4.4	The common event is implemented.	
[48]	IDhi16	IDhi16 corresponds to common event (0x4010) TRCEXTOUTO	X
[47]	IDE:45	The common event is implemented.	
[4/]	1טחון	IDhi15 corresponds to common event (0x400f) PMU_HOVFS	X
		The common event is not implemented or not counted	
[4/1	ID6:4.4	The common event is not implemented, or not counted.	
[46]	11111111111111111111111111111111111111	IDhi14 corresponds to common event (0x400e) TRB_TRIG	X
		The common event is not implemented or not counted	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[45]	IDhi13	IDhi13 corresponds to common event (0x400d) PMU_OVFS	Х
		0ь0	
		The common event is not implemented, or not counted.	
[44]	IDhi12	IDhi12 corresponds to common event (0x400c) TRB_WRAP	х
		0b1	
		The common event is implemented.	
[43]	IDhi11	IDhi11 corresponds to common event (0x400b) L3D_CACHE_LMISS_RD	х
		0b1	
		The common event is implemented.	
[42]	IDhi10	IDhi10 corresponds to common event (0x400a) L2I_CACHE_LMISS	х
		0ь0	
		The common event is not implemented, or not counted.	
[41]	IDhi9	IDhi9 corresponds to common event (0x4009) L2D_CACHE_LMISS_RD	X
		0b1	
		The common event is implemented.	
[40]	IDhi8	IDhi8 corresponds to common event (0x4008) Reserved	х
		0ь0	
		The common event is not implemented, or not counted.	
[39]	IDhi7	IDhi7 corresponds to common event (0x4007) Reserved	x
		0ъ0	
		The common event is not implemented, or not counted.	
[38]	IDhi6	IDhi6 corresponds to common event (0x4006) L1I_CACHE_LMISS	x
		0b1	
		The common event is implemented.	
[37]	IDhi5	IDhi5 corresponds to common event (0x4005) STALL_BACKEND_MEM	x
		0b1	
		The common event is implemented.	
[36]	IDhi4	IDhi4 corresponds to common event (0x4004) CNT_CYCLES	x
		0b1	
		The common event is implemented.	
[35]	IDhi3	IDhi3 corresponds to common event (0x4003) SAMPLE_COLLISION	x
		0ь0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	
[34]	IDhi2	IDhi2 corresponds to common event (0x4002) SAMPLE_FILTRATE	x
		0ъ0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	

Bits	Name	Description	Reset
[33]	IDhi1	IDhi1 corresponds to common event (0x4001) SAMPLE_FEED	х
		0ხ0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	
[32]	IDhi0	IDhiO corresponds to common event (0x4000) SAMPLE_POP	Х
		0ь0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	
[31]	ID31	ID31 corresponds to common event (0x1f) L1D_CACHE_ALLOCATE	Х
		0ь0	
[0.0]	1000	The common event is not implemented, or not counted.	
[30]	ID30	ID30 corresponds to common event (0x1e) CHAIN	X
		0b1 The common quant is implemented	
[00]	ID29	The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x1d) BUS_CYCLES	X
		The common event is implemented.	
[22]	ID28	ID28 corresponds to common event (0x1c) TTBR_WRITE_RETIRED	Х
	1020	0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x1b) INST_SPEC	x
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x1a) MEMORY_ERROR	х
		0b0	
		The common event is not implemented, or not counted.	
[25]	ID25	ID25 corresponds to common event (0x19) BUS_ACCESS	Х
		0b1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x18) L2D_CACHE_WB	X
		0b1	
		The common event is implemented.	
[23]	ID23	ID23 corresponds to common event (0x17) L2D_CACHE_REFILL	x
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x16) L2D_CACHE	X
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[21]	ID21	ID21 corresponds to common event (0x15) L1D_CACHE_WB	Х
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x14) L1I_CACHE	х
		0b1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to common event (0x13) MEM_ACCESS	х
		0b1	
		The common event is implemented.	
[18]	ID18	ID18 corresponds to common event (0x12) BR_PRED	Х
		0b1	
		The common event is implemented.	
[17]	ID17	ID17 corresponds to common event (0x11) CPU_CYCLES	Х
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x10) BR_MIS_PRED	Х
		0b1	
		The common event is implemented.	
[15]	ID15	ID15 corresponds to common event (0xf) UNALIGNED_LDST_RETIRED	Х
		0ъ0	
		The common event is not implemented, or not counted.	
[14]	ID14	ID14 corresponds to common event (0xe) BR_RETURN_RETIRED	Х
		0ь1	
		The common event is implemented.	
[13]	ID13	ID13 corresponds to common event (0xd) BR_IMMED_RETIRED	х
		0ь1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0xc) PC_WRITE_RETIRED	X
		0ь1	
		The common event is implemented.	
[11]	ID11	ID11 corresponds to common event (0xb) CID_WRITE_RETIRED	x
		0ь1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0xa) EXC_RETURN	х
		0ь1	
		The common event is implemented.	
[9]	ID9	ID9 corresponds to common event (0x9) EXC_TAKEN	x
		0ь1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x8) INST_RETIRED	х
		0ь1	
		The common event is implemented.	

Bits	Name	Description	Reset
[7]	ID7	ID7 corresponds to common event (0x7) ST_RETIRED	Х
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x6) LD_RETIRED	X
		0ь0	
		The common event is not implemented, or not counted.	
[5]	ID5	ID5 corresponds to common event (0x5) L1D_TLB_REFILL	X
		0b1	
		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x4) L1D_CACHE	X
		0b1	
		The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x3) L1D_CACHE_REFILL	Х
		0ь1	
		The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x2) L1I_TLB_REFILL	X
		0ь1	
		The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x1) L1I_CACHE_REFILL	х
		0b1	
		The common event is implemented.	
[O]	ID0	ID0 corresponds to common event (0x0) SW_INCR	Х
		0b1	
		The common event is implemented.	

MRS <Xt>, PMCEIDO_ELO

op0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b1100	0b110

Accessibility

MRS <Xt>, PMCEIDO_ELO

```
else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return PMCEIDO ELO;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
       UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR_EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMCEIDO ELO;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
       UNDEFINED;
    elsif MDCR_EL3.TPM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return PMCEIDO ELO;
elsif PSTATE.EL == EL3 then
    return PMCEIDO ELO;
```

A.5.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F.

For more information about the common events and the use of the PMCEID<n>_ELO registers see The PMU event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Performance Monitors registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-109: AArch64_pmceid1_el0 bit assignments

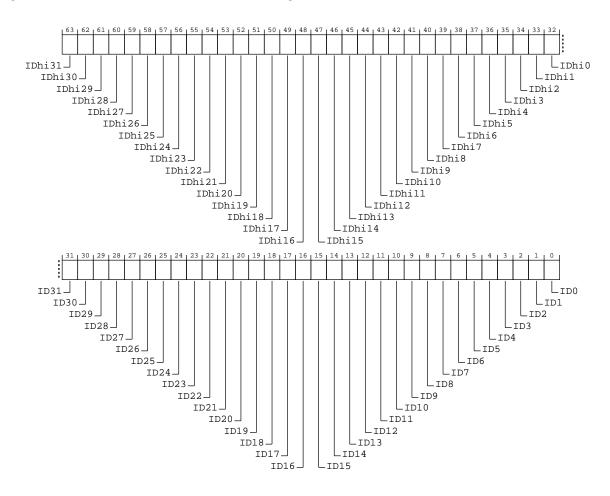


Table A-250: PMCEID1_EL0 bit descriptions

Bits	Name	Description	Reset					
[63]	IDhi31	xii31 corresponds to a Reserved Event event (0x403f)						
		The common event is not implemented, or not counted.						
[62]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x403e)	х					
		0ь0						
		The common event is not implemented, or not counted.						

Bits	Name	Description	Reset
[61]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x403d)	х
		0ь0	
		The common event is not implemented, or not counted.	
[60]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x403c)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[59]	IDhi27	IDhi27 corresponds to a Reserved Event event (0x403b)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[58]	IDhi26	IDhi26 corresponds to a Reserved Event event (0x403a)	Х
		0ხ0	
		The common event is not implemented, or not counted.	
[57]	IDhi25	IDhi25 corresponds to a Reserved Event event (0x4039)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[56]	IDhi24	IDhi24 corresponds to a Reserved Event event (0x4038)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[55]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4037)	х
		0ь0	
		The common event is not implemented, or not counted.	
[54]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4036)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[53]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4035)	X
		0ь0	
		The common event is not implemented, or not counted.	
[52]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4034)	х
		0ь0	
		The common event is not implemented, or not counted.	
[51]	IDhi19	IDhi19 corresponds to a Reserved Event event (0x4033)	X
		0ь0	
		The common event is not implemented, or not counted.	
[50]	IDhi18	IDhi18 corresponds to a Reserved Event event (0x4032)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[49]	IDhi17	IDhi17 corresponds to a Reserved Event event (0x4031)	х
		0ь0	
		The common event is not implemented, or not counted.	
[48]	IDhi16	IDhi16 corresponds to a Reserved Event event (0x4030)	х
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[47]	IDhi15	IDhi15 corresponds to a Reserved Event event (0x402f)	х
		0b0	
		The common event is not implemented, or not counted.	
[46]	IDhi14	IDhi14 corresponds to a Reserved Event event (0x402e)	Х
		0b0	
		The common event is not implemented, or not counted.	
[45]	IDhi13	IDhi13 corresponds to a Reserved Event event (0x402d)	х
		0ь0	
		The common event is not implemented, or not counted.	
[44]	IDhi12	IDhi12 corresponds to a Reserved Event event (0x402c)	X
		0ь0	
		The common event is not implemented, or not counted.	
[43]	IDhi11	IDhi11 corresponds to a Reserved Event event (0x402b)	X
		0ь0	
		The common event is not implemented, or not counted.	
[42]	IDhi10	IDhi10 corresponds to a Reserved Event event (0x402a)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[41]	IDhi9	IDhi9 corresponds to a Reserved Event event (0x4029)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[40]	IDhi8	IDhi8 corresponds to a Reserved Event event (0x4028)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[39]	IDhi7	IDhi7 corresponds to a Reserved Event event (0x4027)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[38]	IDhi6	IDhi6 corresponds to common event (0x4026) MEM_ACCESS_CHECKED_WR	X
		0b1	
		The common event is implemented.	
[37]	IDhi5	IDhi5 corresponds to common event (0x4025) MEM_ACCESS_CHECKED_RD	x
		0b1	
		The common event is implemented.	
[36]	IDhi4	IDhi4 corresponds to common event (0x4024) MEM_ACCESS_CHECKED	X
		0b1	
		The common event is implemented.	
[35]	IDhi3	IDhi3 corresponds to common event (0x4023) Reserved	x
		0ь0	
		The common event is not implemented, or not counted.	
[34]	IDhi2	IDhi2 corresponds to common event (0x4022) ST_ALIGN_LAT	X
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[33]	IDhi1	IDhi1 corresponds to common event (0x4021) LD_ALIGN_LAT	х
		0b1	
		The common event is implemented.	
[32]	IDhi0	IDhiO corresponds to common event (0x4020) LDST_ALIGN_LAT	х
		0b1	
		The common event is implemented.	
[31]	ID31	ID31 corresponds to common event (0x3f) STALL_SLOT	X
		0b1	
		The common event is implemented.	
[30]	ID30	ID30 corresponds to common event (0x3e) STALL_SLOT_FRONTEND	X
		0b1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x3d) STALL_SLOT_BACKEND	X
		0b1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x3c) STALL	X
		0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x3b) OP_SPEC	X
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x3a) OP_RETIRED	х
		0b1	
		The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x39) L1D_CACHE_LMISS_RD	Х
		0b1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x38) REMOTE_ACCESS_RD	Х
		0ь0	
		The common event is not implemented, or not counted.	
[23]	ID23	ID23 corresponds to common event (0x37) LL_CACHE_MISS_RD	Х
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x36) LL_CACHE_RD	Х
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x35) ITLB_WLK	Х
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x34) DTLB_WLK	X
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[19]	ID19	ID19 corresponds to a Reserved Event event (0x33)	х
		0b0	
		The common event is not implemented, or not counted.	
[18]	ID18	ID18 corresponds to a Reserved Event event (0x32)	х
		0b0	
		The common event is not implemented, or not counted.	
[17]	ID17	ID17 corresponds to common event (0x31) REMOTE_ACCESS	x
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x30) L2I_TLB	х
		0ь0	
		The common event is not implemented, or not counted.	
[15]	ID15	ID15 corresponds to common event (0x2f) L2D_TLB	х
		0b1	
		The common event is implemented.	
[14]	ID14	ID14 corresponds to common event (0x2e) L2I_TLB_REFILL	Х
		0ь0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0x2d) L2D_TLB_REFILL	х
		0b1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0x2c) Reserved	Х
		0ь0	
		The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0x2b) L3D_CACHE	х
		0ь1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0x2a) L3D_CACHE_REFILL	х
		0ь1	
		The common event is implemented.	
[9]	ID9	ID9 corresponds to common event (0x29) L3D_CACHE_ALLOCATE	х
		0b1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x28) L2I_CACHE_REFILL	х
		0ь0	
		The common event is not implemented, or not counted.	
[7]	ID7	ID7 corresponds to common event (0x27) L2I_CACHE	х
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x26) L1I_TLB	х
		0ь1	
		The common event is implemented.	

Bits	Name	Description	Reset
[5]	ID5	ID5 corresponds to common event (0x25) L1D_TLB	х
		0ь1	
		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x24) STALL_BACKEND	х
		0ь1	
		The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x23) STALL_FRONTEND	х
		0ь1	
		The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x22) BR_MIS_PRED_RETIRED	х
		0ь1	
		The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x21) BR_RETIRED	х
		0b1	
		The common event is implemented.	
[O]	ID0	ID0 corresponds to common event (0x20) L2D_CACHE_ALLOCATE	х
		0b1	
		The common event is implemented.	

MRS <Xt>, PMCEID1_EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1001	0b1100	0b111

Accessibility

MRS <Xt>, PMCEID1_EL0

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif PMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
             AArch64.SystemAccessTrap(EL2, 0x18);
    \label{eq:aarch64.SystemAccessTrap(EL1, 0x18);} \\ \text{elsif EL2Enabled() && MDCR\_EL2.TPM == '1' then} \\ \\
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x18);
         return PMCEID1_EL0;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && MDCR EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif MDCR_EL3.TPM == '1' then
```

A.6 AArch64 GIC system registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** GIC system registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-252: GIC system registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
ICC_CTLR_EL1	3	0	C12	C12	4	_	64-bit	Interrupt Controller Control Register (EL1)
ICV_CTLR_EL1	3	0	C12	C12	4	_	64-bit	Interrupt Controller Virtual Control Register
ICC_APORO_EL1	3	0	C12	C8	4	_	64-bit	Interrupt Controller Active Priorities Group 0 Registers
ICV_APORO_EL1	3	0	C12	C8	4	_	64-bit	Interrupt Controller Virtual Active Priorities Group 0 Registers
ICC_AP1R0_EL1	3	0	C12	C9	0	_	64-bit	Interrupt Controller Active Priorities Group 1 Registers
ICV_AP1R0_EL1	3	0	C12	C9	0	_	64-bit	Interrupt Controller Virtual Active Priorities Group 1 Registers
ICH_VTR_EL2	3	4	C12	C11	1	_	64-bit	Interrupt Controller VGIC Type Register
ICC_CTLR_EL3	3	6	C12	C12	4	_	64-bit	Interrupt Controller Control Register (EL3)

A.6.1 ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

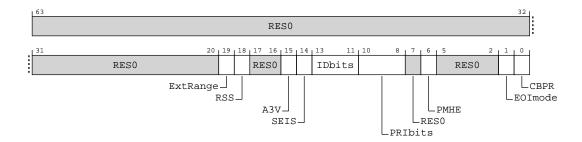
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-110: AArch64_icc_ctlr_el1 bit assignments

Table A-253: ICC_CTLR_EL1 bit descriptions

Bits	Name	Description	Reset						
[63:20]	RES0	Reserved	RES0						
[19]	ExtRange	Extended INTID range (read-only).	х						
		0b1							
		PU interface supports INTIDs in the range 10248191							
		All INTIDs in the range 10248191 are treated as requiring deactivation.							
[18]	RSS	Range Selector Support. Possible values are:							
		Targeted SGIs with affinity level 0 values of 0 - 15 are supported.							
[17:16]	RES0	Reserved	RES0						
[15]	A3V	ity 3 Valid. Read-only and writes are ignored. Possible values are:							
		0b1							
		The CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.							

Bits	Name	Description	Reset
[14]	SEIS	SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:	Х
		0ь0	
		The CPU interface logic does not support local generation of SEIs.	
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:	xxx
		0ь000	
		16 bits.	
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.	xxx
		An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).	
		An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).	
		Note: This field always returns the number of priority bits implemented, regardless of the Security state of the access or the value of ext-GICD_CTLR.DS.	
		For physical accesses, this field determines the minimum value of AArch64-ICC_BPR0_EL1.	
		If EL3 is implemented, physical accesses return the value from AArch64-ICC_CTLR_EL3.PRIbits.	
		0b100	
		5 bits of priority are implemented	
[7]	RES0	Reserved	RES0
[6]	PMHE	Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:	х
		0ь0	
		Disables use of AArch64-ICC_PMR_EL1 as a hint for interrupt distribution.	
		0ь1	
		Enables use of AArch64-ICC_PMR_EL1 as a hint for interrupt distribution.	
		If EL3 is implemented, this bit is an alias of AArch64-ICC_CTLR_EL3.PMHE. Whether this bit can be written as part of an access to this register depends on the value of ext-GICD_CTLR.DS:	
		• If ext-GICD_CTLR.DS == 0, this bit is read-only.	
		• If ext-GICD_CTLR.DS == 1, this bit is read/write.	
[5:2]	RES0	Reserved	RES0

Bits	Name	Description	Reset			
[1]	EOImode	EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the interrupt:	Х			
		0ь0				
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE .				
	0ь1					
	AArch64-ICC_EOIR0_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.					
	The Secure AArch64-ICC_CTLR_EL1.EOImode is an alias of AArch64-ICC_CTLR_EL3.EOImode_EL1S.					
		The Non-secure AArch64-ICC_CTLR_EL1.EOImode is an alias of AArch64-ICC_CTLR_EL3.EOImode_EL1NS				
[O]	CBPR	Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 interrupts:	х			
		0ь0				
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.				
		AArch64-ICC_BPR1_EL1 determines the preemption group for Group 1 interrupts.				
		0b1				
		AArch64-ICC_BPR0_EL1 determines the preemption group for both Group 0 and Group 1 interrupts.				
		If EL3 is implemented:				
		This bit is an alias of AArch64-ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security state.				
		If ext-GICD_CTLR.DS == 0, this bit is read-only.				
		• If ext-GICD_CTLR.DS == 1, this bit is read/write.				

MRS <Xt>, ICC_CTLR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1100	0b100

MSR ICC_CTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC_CTLR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.FMO == '1' then
```

```
return ICV CTLR EL1;
    elsif EL2Enabled() \overline{\&\&} HCR EL2.IMO == '1' then
        return ICV_CTLR_EL1;
    elsif SCR_EL3.\overline{<}IRQ,\overline{F}IQ> == '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        if SCR EL3.NS == '0' then
            return ICC CTLR EL1 S;
return ICC_CTLR_EL1_NS;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
    elsif SCR_EL3.<IRQ,FIQ> == '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        if SCR EL3.NS == '0' then
             return ICC CTLR EL1 S;
        else
             return ICC CTLR EL1 NS;
elsif PSTATE.EL == EL3 then
    if SCR EL3.NS == '0' then
        return ICC_CTLR_EL1_S;
    else
        return ICC CTLR EL1 NS;
```

MSR ICC CTLR EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
    elsif EL2Enabled() && ICH HCR EL2.TC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FMO == '1' then
        ICV CTLR EL1 = X[t];
    elsif \overline{\text{EL}}2\text{Enabled}() && HCR_EL2.IMO == '1' then
    ICV_CTLR_EL1 = X[t];
elsif SCR_EL3.<IRQ,FIQ> == '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
         if SCR EL3.NS == '0' then
            IC\overline{C} CTLR EL1 S = X[t];
        else
            ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
    elsif SCR EL3.<IRQ,FIQ> == '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        if SCR EL3.NS == '0' then
             IC\overline{C} CTLR EL1 S = X[t];
        else
             ICC CTLR_EL1_NS = X[t];
```

```
elsif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    ICC_CTLR_EL1_S = X[t];
  else
    ICC_CTLR_EL1_NS = X[t];
```

A.6.2 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register

Controls aspects of the behavior of the GIC virtual CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

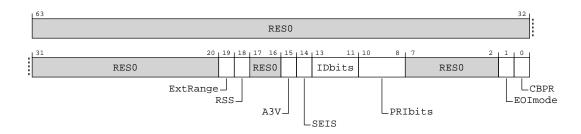
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-111: AArch64_icv_ctlr_el1 bit assignments

Table A-256: ICV_CTLR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:20]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[19]	ExtRange	Extended INTID range (read-only).	х
		0ь1	
		CPU interface supports INTIDs in the range 10248191	
		All INTIDs in the range 10248191 are treated as requiring deactivation.	
[18]	RSS	Range Selector Support. Possible values are:	х
		0ь0	
		Targeted SGIs with affinity level 0 values of 0 - 15 are supported.	
[17:16]	RES0	Reserved	RES0
[15]	A3V	Affinity 3 Valid. Read-only and writes are ignored. Possible values are:	х
		0ь1	
		The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.	
[14]	SEIS	SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface supports local generation of SEIs:	x
		0ь0	
		The virtual CPU interface logic does not support local generation of SEIs.	
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits supported:	xxx
		0ь000	
		16 bits.	
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.	xxx
		An implementation must implement at least 32 levels of physical priority (5 priority bits).	
		Note:	
		This field always returns the number of priority bits implemented.	
		The division between group priority and subpriority is defined in the binary point registers AArch64-ICV_BPR0_EL1 and AArch64-ICV_BPR1_EL1.	
		0ь100	
		5 bits of priority are implemented	
[7:2]	RES0	Reserved	RES0
[1]	EOlmode	Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the virtual interrupt:	x
		0ь0	
		AArch64-ICV_EOIR0_EL1 and AArch64-ICV_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICV_DIR_EL1 are UNPREDICTABLE.	
		0b1	
		AArch64-ICV_EOIR0_EL1 and AArch64-ICV_EOIR1_EL1 provide priority drop functionality only. AArch64-ICV_DIR_EL1 provides interrupt deactivation functionality.	

Bits	Name	Description	Reset			
[O]	CBPR	Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both virtual Group 0 and virtual Group 1 interrupts:	х			
		AArch64-ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.				
		0b1				
		Non-secure reads of AArch64-ICV_BPR1_EL1 return AArch64-ICV_BPR0_EL1 plus one, saturated to Ob111. Non-secure writes to AArch64-ICV_BPR1_EL1 are ignored.				
		Secure reads of AArch64-ICV_BPR1_EL1 return AArch64-ICV_BPR0_EL1. Secure writes of AArch64-ICV_BPR1_EL1 modify AArch64-ICV_BPR0_EL1.				

MRS <Xt>, ICC_CTLR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1100	0b100

MSR ICC_CTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC CTLR EL1

```
if PSTATE.EL == ELO then
     UNDEFINED;
elsif PSTATE.EL == EL1 then
     if Halted() && EDSCR.SDD == '1' && SCR EL3.<IRQ,FIQ> == '11' then
          UNDEFINED;
     elsif EL2Enabled() && ICH HCR EL2.TC == '1' then
     \label{eq:AArch64.SystemAccessTrap} $$\operatorname{AArch64.SystemAccessTrap}(\overline{\mathbb{E}L2},\ 0x18)$; elsif $\operatorname{EL2Enabled}() \&\& \ \operatorname{HCR\_EL2.FMO} == '1'$ then
          return ICV CTLR EL1;
     elsif EL2Enabled() && HCR_EL2.IMO == '1' then
    return ICV_CTLR_EL1;
     elsif SCR EL3.\overline{\langle}IRQ,\overline{F}IQ> == '11' then
          if Ha\overline{l}ted() && EDSCR.SDD == '1' then
               UNDEFINED;
          else
                AArch64.SystemAccessTrap(EL3, 0x18);
          if SCR EL3.NS == '0' then
               return ICC CTLR EL1 S;
          else
return ICC_CTLR_EL1_NS;
elsif PSTATE.EL == EL2 then
     if Halted() && EDSCR.SDD == '1' && SCR_EL3.<IRQ,FIQ> == '11' then
           UNDEFINED;
     elsif SCR_EL3.<IRQ,FIQ> == '11' then
          if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
          else
                AArch64.SystemAccessTrap(EL3, 0x18);
     else
           if SCR EL3.NS == '0' then
```

MSR ICC_CTLR_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
    elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR EL2.FMO == '1' then
        ICV CTLR EL1 = X[t];
    elsif EL2Enabled() && HCR EL2.IMO == '1' then
        ICV CTLR EL1 = X[t];
    elsif S\overline{C}R EL\overline{3}.<IRQ,FIQ> == '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        if SCR EL3.NS == '0' then
            IC\overline{C} CTLR EL1 S = X[t];
        else
            ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.<IRQ,FIQ> == '11' then
        UNDEFINED;
    elsif SCR_EL3.<IRQ,FIQ> == '11' then
        if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        if SCR EL3.NS == '0' then
            IC\overline{C} CTLR EL1 S = X[t];
        else
            ICC CTLR EL1 NS = X[t];
elsif PSTATE.EL == EL3 then
    if SCR EL3.NS == '0' then
        IC\overline{C} CTLR EL1 S = X[t];
    else
        ICC CTLR EL1 NS = X[t];
```

A.6.3 ICC_APORO_EL1, Interrupt Controller Active Priorities Group 0 Registers

Provides information about Group 0 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

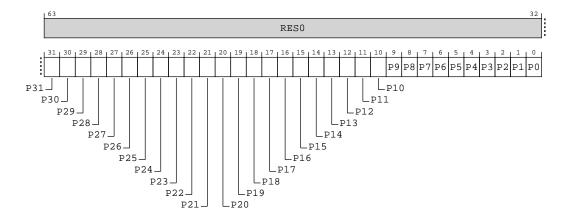
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-112: AArch64_icc_ap0r0_el1 bit assignments

Table A-259: ICC_APORO_EL1 bit descriptions

Bits	Name	Description	Reset		
[63:32]	RES0	Reserved	RES0		
[31:0]	P <x></x>	ovides the access to the active priorities for Group 0 interrupts. Possible values of each bit are:			
		 Ob0 There is no Group 0 interrupt active with this priority level, or all active Group 0 interrupts with this priority level have undergone priority-drop. Ob1 There is a Group 0 interrupt active with this priority level which has not undergone priority drop. There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3]. 			

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Access

Writing to these registers with any value other than the last read value of the register (or 0x0000000 when there are no Group 0 active priorities) might result in **UNPREDICTABLE** behavior of the interrupt prioritization system, causing:

- Interrupts that should preempt execution to not preempt execution.
- Interrupts that should not preempt execution to preempt execution.

ICC_APOR1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_APOR2_EL1 and ICC_APOR3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented registers are **UNDEFINED**.

[note] The number of bits of preemption is indicated by AArch64-ICH VTR EL2.PREbits.[/note]

Writing to the active priority registers in any order other than the following order will result in **UNPREDICTABLE** behavior:

- ICC APOR<n> EL1.
- Secure AArch64-ICC AP1R<n> EL1.
- Non-secure AArch64-ICC AP1R<n> EL1.

MRS <Xt>, ICC_APORO_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1000	0b100

MSR ICC_APORO_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1000	0b100

A.6.4 ICV_APORO_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers

Provides information about virtual Group 0 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

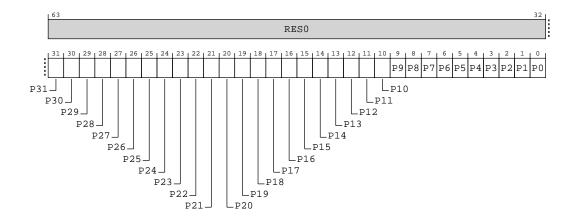
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-113: AArch64_icv_ap0r0_el1 bit assignments

Table A-262: ICV_APOR0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:0]	P <x></x>	Provides the access to the virtual active priorities for Group 0 interrupts. Possible values of each bit are:	32{x}
		There is no Group 0 interrupt active with this priority level, or all active Group 0 interrupts with this priority level have undergone priority-drop.0b1	
		There is a Group 0 interrupt active with this priority level which has not undergone priority drop.	
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].	

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Writing to these registers with any value other than the last read value of the register (or 0x0000000 when there are no Group 0 active priorities) might result in **UNPREDICTABLE** behavior of the virtual interrupt prioritization system, causing:

- Interrupts that should preempt execution to not preempt execution.
- Interrupts that should not preempt execution to preempt execution.

ICV_APOR1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_APOR2_EL1 and ICV_APOR3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are **UNDEFINED**.

Writing to the active priority registers in any order other than the following order might result in **UNPREDICTABLE** behavior of the interrupt prioritization system:

- ICV_APOR<n>_EL1.
- AArch64-ICV_AP1R<n>_EL1.

MRS <Xt>, ICC_APORO_EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1000	0b100

MSR ICC APORO EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	06000	0b1100	0b1000	0b100

A.6.5 ICC_AP1R0_EL1, Interrupt Controller Active Priorities Group 1 Registers

Provides information about Group 1 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

GIC system registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-114: AArch64_icc_ap1r0_el1 bit assignments

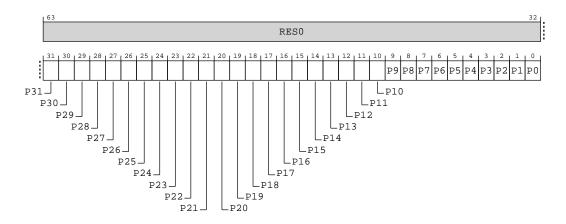


Table A-265: ICC_AP1R0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:0] P<>	P <x></x>	Group 1 interrupt active priorities. When AArch64-SCR_EL3.NS == '1', accesses the priorities for Non-secure Group 1 interrupts, and when AArch64-SCR_EL3.NS == '0' accesses the priorities for Secure Group 1 interrupts. Possible values of each bit are:	32{x}
		There is no Group 1 interrupt active with this priority level, or all active Group 1 interrupts with this priority level have undergone priority-drop.	
		There is a Group 1 interrupt active with this priority level which has not undergone priority drop.	
		There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].	
		When accessed from non-secure EL2 or EL1, only the 16 lowest-priority interrupts are visible in bits [15:0] of this register.	

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Writing to these registers with any value other than the last read value of the register (or 0x0000000 when there are no Group 1 active priorities) might result in **UNPREDICTABLE** behavior of the interrupt prioritization system, causing:

- Interrupts that should preempt execution to not preempt execution.
- Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2_EL1 and ICC_AP1R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented registers are **UNDEFINED**.

[note] The number of bits of preemption is indicated by AArch64-ICH VTR EL2.PREbits.[/note]

Writing to the active priority registers in any order other than the following order will result in **UNPREDICTABLE** behavior:

- AArch64-ICC APOR<n> EL1.
- Secure ICC AP1R<n> EL1.
- Non-secure ICC_AP1R<n>_EL1.

MRS < Xt>, ICC AP1R0 EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1001	00000

MSR ICC AP1R0 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1001	00000

A.6.6 ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers

Provides information about virtual Group 1 active priorities.

Configurations

This register is available in all configurations.

Attributes

Width

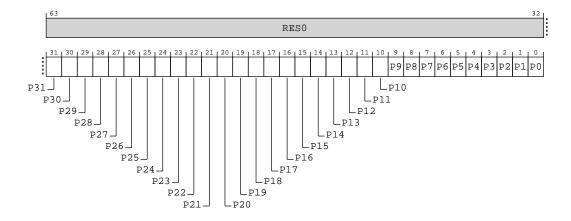
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-115: AArch64_icv_ap1r0_el1 bit assignments

Table A-268: ICV_AP1R0_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:0]	P <x></x>	Group 1 interrupt active priorities. Possible values of each bit are:	32{x}
		There is no Group 1 interrupt active with this priority level, or all active Group 1 interrupts with this priority level have undergone priority-drop.	
		There is a Group 1 interrupt active with this priority level which has not undergone priority drop. There are 32 preemption levels, and the active state of these preemption levels are held in the bits corresponding to Priority[7:3].	

The contents of these registers are **IMPLEMENTATION DEFINED** with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Writing to these registers with any value other than the last read value of the register (or 0x0000000 when there are no Group 1 active priorities) might result in **UNPREDICTABLE** behavior of the virtual interrupt prioritization system, causing:

- Interrupts that should preempt execution to not preempt execution.
- Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2_EL1 and ICV_AP1R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are **UNDEFINED**.

Writing to the active priority registers in any order other than the following order might result in **UNPREDICTABLE** behavior of the interrupt prioritization system:

- AArch64-ICV_APOR<n>_EL1.
- ICV_AP1R<n>_EL1.

MRS <Xt>, ICC_AP1R0_EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1001	00000

MSR ICC AP1R0 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b1100	0b1001	0b000

A.6.7 ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Reports supported GIC virtualization features.

Configurations

If EL2 is not implemented, all bits in this register are RESO from EL3, except for nV4, which is RES1 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

GIC system registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-116: AArch64_ich_vtr_el2 bit assignments

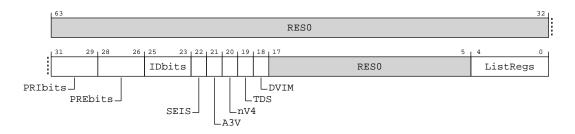


Table A-271: ICH_VTR_EL2 bit descriptions

Bits	Name	Description	Reset			
[63:32]	RES0	Reserved	RES0			
[31:29]	PRIbits	Priority bits. The number of virtual priority bits implemented, minus one.	xxx			
		An implementation must implement at least 32 levels of virtual priority (5 priority bits).				
	This field is an alias of AArch64-ICV_CTLR_EL1.PRIbits.					
	0ь100					
	5 virtual priority bits are implemented					
[28:26]	PREbits	The number of virtual preemption bits implemented, minus one.	xxx			
		An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).				
		The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.				
		The maximum value of this field is 6, indicating 7 bits of preemption.				
		This field determines the minimum value of AArch64-ICH_VMCR_EL2.VBPR0.				
		0ь100				
		5 virtual preemption bits are implemented				
[25:23]	IDbits	The number of virtual interrupt identifier bits supported:	xxx			
		оьооо				
		16 bits.				

Bits	Name	Description	Reset
[22]	SEIS	SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:	Х
		0ь0	
		The virtual CPU interface logic does not support generation of SEIs.	
[21]	A3V	Affinity 3 Valid. Possible values are:	Х
		0b1	
		The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation System registers.	
[20]	nV4	Direct injection of virtual interrupts not supported. Possible values are:	X
		0ь0	
		The CPU interface logic supports direct injection of virtual interrupts.	
[19]	TDS	Separate trapping of EL1 writes to AArch64-ICV_DIR_EL1 supported.	Х
		0b1	
		Implementation supports AArch64-ICH_HCR_EL2.TDIR.	
[18]	DVIM	Masking of directly-injected virtual interrupts.	Х
		0ь0	
		Masking of Directly-injected Virtual Interrupts not supported.	
		0b1	
		Masking of Directly-injected Virtual Interrupts is supported.	
[17:5]	RES0	Reserved	RES0
[4:0]	ListRegs	The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of 16 List registers are implemented.	
		0ь00011	
		Four list registers are implemented.	

MRS <Xt>, ICH_VTR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1100	0b1011	0b001

Accessibility

MRS <Xt>, ICH_VTR_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return ICH_VTR_EL2;
elsif PSTATE.EL == EL3 then
    return ICH_VTR_EL2;
```

A.6.8 ICC_CTLR_EL3, Interrupt Controller Control Register (EL3)

Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configurations

This register is available in all configurations.

Attributes

Width

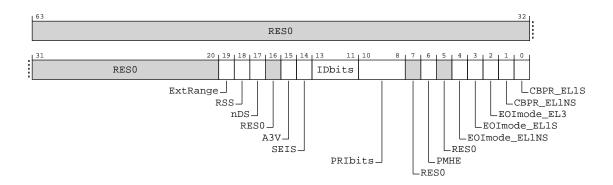
64

Functional group

GIC system registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-117: AArch64_icc_ctlr_el3 bit assignments

Table A-273: ICC_CTLR_EL3 bit descriptions

Bits	Name	Description	Reset
[63:20]	RESO	Reserved	RES0

Bits	Name	Description	Reset		
[19]	ExtRange	Extended INTID range (read-only).	х		
		0b1			
		CPU interface supports INTIDs in the range 10248191			
		All INTIDs in the range 10248191 are treated as requiring deactivation.			
[18]	RSS	Range Selector Support.	х		
		000			
		Targeted SGIs with affinity level 0 values of 0-15 are supported.			
[17]	nDS	Disable Security not supported. Read-only and writes are ignored.	Х		
		0b1			
disabled.		The CPU interface logic does not support disabling of security, and requires that security is not disabled.			
[16]	RESO	Reserved	RES0		
[15]	Affinity 3 Valid. Read-only and writes are ignored.				
061		0b1			
		The CPU interface logic supports non-zero values of the Aff3 field in SGI generation System registers.			
[14] SEIS SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports generation of SEIs:			Х		
		0ь0			
		The CPU interface logic does not support generation of SEIs.			
[13:11]	IDbits	Identifier bits. Read-only and writes are ignored. Indicates the number of physical interrupt identifier bits supported.	xxx		
		06000			
		16 bits.			
[10:8]	PRIbits	Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.	xxx		
		An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority bits).			
		An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4 priority bits).			
		Note: This field always returns the number of priority bits implemented, regardless of the value of SCR_EL3.NS or the value of ext-GICD_CTLR.DS.			
		The division between group priority and subpriority is defined in the binary point registers AArch64-ICC_BPR0_EL1 and AArch64-ICC_BPR1_EL1.			
		This field determines the minimum value of ICC_BPR0_EL1.			
		0b100			
		5 bits of priority are implemented			
[7]	RESO	Reserved	RES0		

Bits	Name	Description	Reset		
[6]	PMHE	Priority Mask Hint Enable.	0b0		
		0ь0			
		Disables use of the priority mask register as a hint for interrupt distribution.			
		0b1			
		Enables use of the priority mask register as a hint for interrupt distribution.			
		Software must write AArch64-ICC_PMR_EL1 to 0xFF before clearing this field to 0.			
		• An implementation might choose to make this field RAO/WI if priority-based routing is always used			
	An implementation might choose to make this field RAZ/WI if priority-based routing is never				
		If EL3 is present, AArch64-ICC_CTLR_EL1.PMHE is an alias of ICC_CTLR_EL3.PMHE.			
[5]	RESO	Reserved	RES0		
[4]	EOlmode_EL1NS	EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the interrupt.	Х		
		0ъ0			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE.			
		0b1			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.			
		If EL3 is present, AArch64-ICC_CTLR_EL1(NS).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS.			
[3]	EOlmode_EL1S	EOI mode for interrupts handled at Secure EL1 and EL2. Controls whether a write to an End of Interrupt register also deactivates the interrupt.	х		
		0ь0			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE .			
		0b1			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.			
		If EL3 is present, AArch64-ICC_CTLR_EL1(S).EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.			
[2]	EOlmode_EL3	EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register also deactivates the interrupt.	х		
		060			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide both priority drop and interrupt deactivation functionality. Accesses to AArch64-ICC_DIR_EL1 are UNPREDICTABLE.			
		0b1			
		AArch64-ICC_EOIRO_EL1 and AArch64-ICC_EOIR1_EL1 provide priority drop functionality only. AArch64-ICC_DIR_EL1 provides interrupt deactivation functionality.			

Bits	Name	Description	Reset			
[1]	CBPR_EL1NS	Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1 and EL2.	х			
		0ь0				
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.				
		AArch64-ICC_BPR1_EL1 determines the preemption group for Non-secure Group 1 interrupts				
		0b1				
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and Non-secure Group 1 interrupts. Non-secure accesses to ext-GICC_BPR and AArch64-ICC_BPR1_EL1 access the state of AArch64-ICC_BPR0_EL1.				
		If EL3 is present, AArch64-ICC_CTLR_EL1(NS).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1NS.				
[O]	CBPR_EL1S	Common Binary Point Register, EL1 Secure. Controls whether the same register is used for interrupt preemption of both Group 0 and Group 1 Secure interrupts at EL1 and EL2.	х			
		0ь0				
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts only.				
		AArch64-ICC_BPR1_EL1 determines the preemption group for Secure Group 1 interrupts.				
		0b1				
		AArch64-ICC_BPR0_EL1 determines the preemption group for Group 0 interrupts and Secure Group 1 interrupts. Secure EL1 accesses to AArch64-ICC_BPR1_EL1 access the state of AArch64-ICC_BPR0_EL1.				
		If EL3 is present, AArch64-ICC_CTLR_EL1(S).CBPR is an alias of ICC_CTLR_EL3.CBPR_EL1S.				

MRS <Xt>, ICC_CTLR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1100	0b1100	0b100

MSR ICC_CTLR_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1100	0b1100	0b100

Accessibility

MRS <Xt>, ICC_CTLR_EL3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return ICC_CTLR_EL3;
```

MSR ICC_CTLR_EL3, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    ICC_CTLR_EL3 = X[t];
```

A.7 AArch64 Other system control registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Other system control registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-276: Other system control registers summary

Name	Ор0	Op1	CRn	CRm	Op2	Reset	Width	Description
TRBIDR_EL1	3	0	C9	C11	7	_	64-bit	Trace Buffer ID Register

A.7.1 TRBIDR_EL1, Trace Buffer ID Register

Describes constraints on using the Trace Buffer Unit to software, including whether the Trace Buffer Unit can be programmed at the current Exception level.

Configurations

This register is available in all configurations.

Attributes

Width

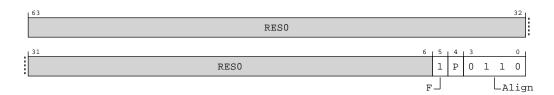
64

Functional group

Other system control registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-118: AArch64_trbidr_el1 bit assignments

Table A-277: TRBIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:6]	RES0	Reserved	RESO .
[5]	F	Flag Updates. Defines whether the address translation performed by the Trace Buffer Unit manages the Access Flag and dirty state. Defined values are:	0b1
		0ь1	
		Trace buffer address translation manages the Access Flag and dirty state in the same way as the MMU on this PE.	

Bits	Name	Description	Reset
[4]	Р	Programming not allowed. The trace buffer is owned by a higher Exception level or by the other Security state. Defined values are:	The reset values can be the following: 0b0,0b1, respective to the value.
		0ъ0	
		The owning Exception level is the current Exception level or a lower Exception level, and the owning Security state is the current Security state.	
		0ь1	
		The owning Exception level is a higher Exception level, or the owning Security state is not the current Security state.	
		The value read from this field depends on the current Exception level and the values of AArch64-MDCR_EL3.NSTB and AArch64-MDCR_EL2.E2TB:	
		• If EL3 is implemented and either AArch64-MDCR_EL3.NSTB == 0b00 or AArch64-MDCR_EL3.NSTB == 0b01, meaning the owning Security state is Secure state, this field reads as one from:	
		Non-secure EL2.	
		Non-secure EL1.	
		 If Secure EL2 is implemented and enabled, and AArch64- MDCR_EL2.E2TB == 0b00, Secure EL1. 	
		• If EL3 is implemented and either AArch64-MDCR_EL3.NSTB == 0b10 or AArch64-MDCR_EL3.NSTB == 0b11, meaning the owning Security state is Non-secure state, this field reads as one from:	
		• Secure EL1.	
		 If Secure EL2 is implemented, Secure EL2. 	
		 If EL2 is implemented and AArch64-MDCR_EL2.E2TB == 0b00, Non-secure EL1. 	
		Otherwise, this field reads as zero.	
[3:0]	Align	Defines the minimum alignment constraint for writes to AArch64-TRBPTR_EL1 and AArch64-TRBTRG_EL1. Defined values are:	0b0110
		0ь0110	
		64 bytes.	

MRS <Xt>, TRBIDR_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b1001	0b1011	0b111

Accessibility

MRS <Xt>, TRBIDR_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    return TRBIDR EL1;
elsif PSTATE.EL == EL2 then
    return TRBIDR EL1;
elsif PSTATE.EL == EL3 then
    return TRBIDR_EL1;
```

A.8 AArch64 RAS registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** RAS registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-279: RAS registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
ERRIDR_EL1	3	0	C5	C3	0	_	64-bit	Error Record ID Register
ERRSELR_EL1	3	0	C5	C3	1	_	64-bit	Error Record Select Register
ERXFR_EL1	3	0	C5	C4	0	_	64-bit	Selected Error Record Feature Register
ERXCTLR_EL1	3	0	C5	C4	1	_	64-bit	Selected Error Record Control Register
ERXSTATUS_EL1	3	0	C5	C4	2	_	64-bit	Selected Error Record Primary Status Register
ERXADDR_EL1	3	0	C5	C4	3	_	64-bit	Selected Error Record Address Register
ERXPFGF_EL1	3	0	C5	C4	4	_	64-bit	Selected Pseudo-fault Generation Feature register
ERXPFGCTL_EL1	3	0	C5	C4	5	_	64-bit	Selected Pseudo-fault Generation Control register
ERXPFGCDN_EL1	3	0	C5	C4	6	_	64-bit	Selected Pseudo-fault Generation Countdown register
ERXMISCO_EL1	3	0	C5	C5	0	_	64-bit	Selected Error Record Miscellaneous Register 0
ERXMISC1_EL1	3	0	C5	C5	1	_	64-bit	Selected Error Record Miscellaneous Register 1
ERXMISC2_EL1	3	0	C5	C5	2	_	64-bit	Selected Error Record Miscellaneous Register 2
ERXMISC3_EL1	3	0	C5	C5	3		64-bit	Selected Error Record Miscellaneous Register 3

A.8.1 ERRIDR_EL1, Error Record ID Register

Defines the highest numbered index of the error records that can be accessed through the Error Record System registers.

Configurations

This register is available in all configurations.

Attributes

Width

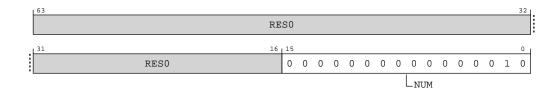
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-119: AArch64_erridr_el1 bit assignments

Table A-280: ERRIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:0]		Highest numbered index of the records that can be accessed through the Error Record System registers plus one. Zero indicates no records can be accessed through the Error Record System registers. Each implemented record is owned by a node. A node might own multiple records. Ob00000000000000 Two Records Present.	0x0002

Access

MRS <Xt>, ERRIDR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0011	0b000

Accessibility

MRS <Xt>, ERRIDR_EL1

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
   if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
    return ERRIDR_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
    else
            AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERRIDR_EL1;
elsif PSTATE.EL == EL3 then
    return ERRIDR_EL1;
```

A.8.2 ERRSELR_EL1, Error Record Select Register

Selects an error record to be accessed through the Error Record System registers.

Configurations

If AArch64-ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether ERRSELR EL1 is UNDEFINED or RESO.

Attributes

Width

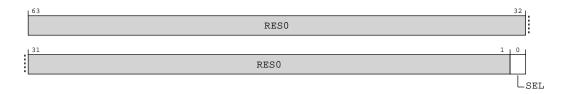
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-120: AArch64_errselr_el1 bit assignments

Table A-282: ERRSELR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:1]	RES0	Reserved	RES0
[0]	SEL	0ь0 Selects record 0, containing errors from DSU RAMs	000
		0b1 Selects record 1, containing errors from Core RAMs	

Access

MRS < Xt>, ERRSELR EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0011	0b001

MSR ERRSELR_EL1, <Xt>

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0011	0b001

Accessibility

MRS <Xt>, ERRSELR EL1

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return ERRSELR EL1;
elsif PSTATE.EL == EL2 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return ERRSELR EL1;
elsif PSTATE.EL == EL3 then
    return ERRSELR EL1;
```

MSR ERRSELR EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
```

```
elsif EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         ERRSELR\_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
        if Ha\overline{l}ted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
         ERRSELR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERRSELR EL1 = X[t];
```

A.8.3 ERXFR_EL1, Selected Error Record Feature Register

Accesses ext-ERR<n>FR for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

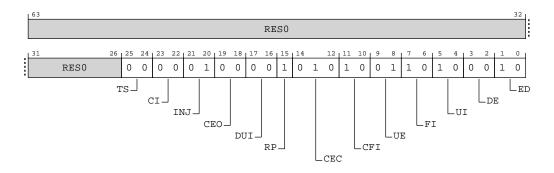
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-121: AArch64_erxfr_el1 bit assignments

Table A-285: ERXFR_EL1 bit descriptions

Bits	Name	Description	Reset
[63:26]	RES0	Reserved	RES0
[25:24]	TS	Timestamp Extension. Indicates whether, for each error record <m> owned by this node, AArch64-ERXMISC3_EL1 is used as the timestamp register, and, if it is, the timebase used by the timestamp.</m>	0000
		0ь00	
		Does not support a timestamp register.	
		All other values are reserved.	
[23:22]	CI	Critical error interrupt. Indicates whether the critical error interrupt and associated controls are implemented by the node.	0000
		Оьоо Does not support the critical error interrupt. AArch64-ERXCTLR_EL1.Cl is RESO .	
		All other values are reserved.	
[21:20]	INJ	Fault Injection Extension. Indicates whether the Common Fault Injection Model Extension is implemented by the node.	0b01
		0b01	
		Supports the Common Fault Injection Model Extension. See AArch64-ERXPFGF_EL1 for more information.	
		All other values are reserved.	

Bits	Name	Description	Reset
[19:18]	CEO	Corrected Error overwrite. Indicates the behavior of the node when a second or subsequent Corrected error is recorded and a first Corrected error has previously been recorded by an error record <m> owned by the node.</m>	0000
		0ь00	
		Keeps the previous error syndrome.	
		All other values are reserved.	
		The second or subsequent Corrected error is counted by the Corrected error counter, regardless of the value of this field. If counting the error causes unsigned overflow of the counter, then AArch64-ERXSTATUS_EL1.OF is set to 1.	
		This means that, if no other error is subsequently recorded that overwrites the syndrome:	
		• If AArch64-ERXFR_EL1.CEO is 0b00, the error record holds the syndrome for the first recorded Corrected error.	
		If AArch64-ERXFR_EL1.CEO is 0b01, the error record holds the syndrome for the most recently recorded Corrected error before the counter overflows.	
[17:16]	DUI	Error recovery interrupt for deferred errors control. Indicates whether the enabling and disabling of error recovery interrupts on deferred errors is supported by the node.	0b00
		0ь00	
		Does not support the enabling and disabling of error recovery interrupts on deferred errors. AArch64-ERXCTLR_EL1.DUI is RESO .	
		All other values are reserved.	
[15]	RP	Repeat counter. Indicates whether the node implements a second Corrected error counter in AArch64-ERXMISCO_EL1 for each error record <m> owned by the node that can record countable errors.</m>	0b1
		0b1	
		Implements a first (repeat) counter and a second (other) counter in AArch64-ERXMISCO_EL1 for each error record <m> owned by the node that can record countable errors. The repeat counter is the same size as the primary error counter.</m>	
[14:12]	CEC	Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter mechanisms in AArch64-ERXMISCO_EL1 for each error record <m> owned by the node that can record countable errors.</m>	0b010
		0b010	
		Implements an 8-bit Corrected error counter in AArch64-ERXMISCO_EL1[39:32] for each error record <m> owned by the node that can record countable errors.</m>	
		All other values are reserved.	
		Note: Implementations might include other error counter models, or might include the standard model and not indicate this in AArch64-ERXFR_EL1.	
[11:10]	CFI	Fault handling interrupt for corrected errors control. Indicates whether the enabling and disabling of fault handling interrupts on corrected errors is supported by the node.	0b10
		0b10	
		Enabling and disabling of fault handling interrupts on corrected errors is supported and controllable using AArch64-ERXCTLR_EL1.CFI.	
		All other values are reserved.	
	1		

Bits	Name	Description	Reset
[9:8]	UE	In-band error reponse (External Abort). Indicates whether the in-band error response and associated controls are implemented by the node.	0b01
		0b01	
		In-band error response is supported and always enabled. AArch64-ERXCTLR_EL1.UE is RESO .	
		It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as Deferred error, but is not deferred to the Requester, will signal an in-band error response to the Requester.	
[7:6]	FI	Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are implemented by the node.	0b10
		0b10	
		Fault handling interrupt is supported and controllable using AArch64-ERXCTLR_EL1.FI.	
[5:4]	UI	Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and associated controls are implemented by the node.	0b10
		0b10	
		Error handling interrupt is supported and controllable using AArch64-ERXCTLR_EL1.UI.	
[3:2]	DE	Defered Errors (DE).	0b00
		0ხ00	
		Defered errors are always disabled	
[1:0]	ED	Error reporting and logging. Indicates error record <n> is the first record owned the node, and whether the node implements the controls for enabling and disabling error reporting and logging.</n>	0b10
		0b10	
		Error reporting and logging is controllable using AArch64-ERXCTLR_EL1.ED.	
		All other values are reserved.	

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXFR_EL1 is RAZ.
- Direct reads of ERXFR_EL1 are NOPs.
- Direct reads of ERXFR_EL1 are UNDEFINED.

MRS <Xt>, ERXFR_EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	00000

Accessibility

MRS <Xt>, ERXFR_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
```

```
elsif EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return ERXFR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
        if Ha\overline{l}ted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXFR EL1;
elsif PSTATE.EL == E\overline{L}3 then
    return ERXFR EL1;
```

A.8.4 ERXCTLR_EL1, Selected Error Record Control Register

Accesses ext-ERR<n>CTLR for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

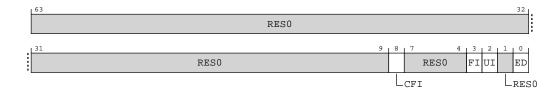
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-122: AArch64_erxctlr_el1 bit assignments

Table A-287: ERXCTLR_EL1 bit descriptions

Bits	Name	Description	Reset				
[63:9]	RES0	Reserved	RES0				
[8]	CFI	Fault handling interrupt for Corrected errors enable.	Х				
		When ext-ERR <n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.</n>					
		When enabled:					
		• If the node implements Corrected error counters, then the fault handling interrupt is generated when a counter overflows and the overflow bit for the counter is set to 1. For more information, see ext-ERR <n>MISCO.</n>					
		Otherwise, the fault handling interrupt is also generated for all errors recorded as Corrected error.					
		Fault handling interrupt not generated for Corrected errors.					
		Fault handling interrupt not generated for Corrected errors. 0b1					
		Fault handling interrupt generated for Corrected errors.					
		e interrupt is generated even if the error syndrome is discarded because the error record already records a higher prity error.					
[7:4]	RES0	Reserved					
[3]	FI	Fault handling interrupt enable.	х				
		When ext-ERR <n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.</n>					
		When enabled:					
		• The fault handling interrupt is generated for all errors recorded as either Deferred error or Uncorrected error.					
		If the fault handling interrupt for Corrected errors control is not implemented:					
		 If the node implements Corrected error counters, then the fault handling interrupt is also generated when a counter overflows and the overflow bit for the counter is set to 1. 					
		Otherwise, the fault handling interrupt is also generated for all errors recorded as Corrected error.					
		0 b 0					
		Fault handling interrupt disabled.					
		0ь1					
		Fault handling interrupt enabled.					
		The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.					

Bits	Name	Description	Reset	
[2]	UI	Uncorrected error recovery interrupt enable.	х	
		When ext-ERR <n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.</n>		
	When enabled, the error recovery interrupt is generated for all errors recorded as Uncorrected error.			
	0ь0			
		Error recovery interrupt disabled.		
		0b1		
		Error recovery interrupt enabled.		
		The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.		
[1]	RES0	Reserved		
[O]	ED	Error reporting and logging enable. When disabled, the node behaves as if error detection and correction are disabled, and no errors are recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for error injection.	Х	
		0ь0		
		Error reporting disabled.		
		0b1		
		Error reporting enabled.		
		It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when reporting is disabled. That is, even with error reporting disabled, the node might continue to silently correct errors. Uncorrected errors might result in corrupt data being silently propagated by the node.		
		Note: If this node requires initialization after Cold reset to prevent signaling false errors, then Arm recommends this field is set to 0 on Cold reset, meaning errors are not reported from Cold reset. This allows boot software to initialize a node without signaling errors. Software can enable error reporting after the node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED. If the Cold reset value is 1, the reset values of other controls in this register are also IMPLEMENTATION DEFINED and should not be UNKNOWN.		

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXCTLR_EL1 is RAZ/WI.
- Direct reads and writes of ERXCTLR_EL1 are NOPs.
- Direct reads and writes of ERXCTLR_EL1 are UNDEFINED.

If AArch64-ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ext-ERR<n>CTLR is not present, meaning reads and writes of ERXCTLR_EL1 are **RESO**.

MRS <Xt>, ERXCTLR_EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b001

MSR ERXCTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0100	0b001

Accessibility

MRS < Xt>, ERXCTLR EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
return ERXCTLR_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXCTLR_EL1;
elsif PSTATE.EL == EL3 then
    return ERXCTLR EL1;
```

MSR ERXCTLR_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXCTLR EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
    ERXCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXCTLR_EL1 = X[t];
```

A.8.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register

Accesses ext-ERR<n>STATUS for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

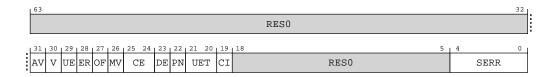
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-123: AArch64_erxstatus_el1 bit assignments

Table A-290: ERXSTATUS_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[31]	AV	Address Valid.	0b0
		0ь0	
		ext-ERR <n>ADDR not valid.</n>	
		0ь1	
		ext-ERR <n>ADDR contains an address associated with the highest priority error recorded by this record.</n>	
		Access to this field is: W1C	
[30]	V	Status Register Valid.	0b0
		0ь0	
		ERR <n>STATUS not valid.</n>	
		0b1	
		ERR <n>STATUS valid. At least one error has been recorded.</n>	
		Access to this field is: W1C	
[29]	UE	Uncorrected Error.	х
		0ь0	
		No errors have been detected, or all detected errors have been either corrected or deferred.	
		0b1	
		At least one detected error was not corrected and not deferred.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.V == '0'</n>	
		Access to this field is: UNKNOWN /WI	
		Otherwise:	
		Access to this field is: W1C	

Bits	Name	Description	Reset
[28]	ER	Error Reported.	Х
		0ъ0	
		No in-band error response (External Abort) signaled to the Requester making the access or other transaction.	
		0ь1	
		An in-band error response was signaled by the component to the Requester making the access or other transaction. This can be because any of the following are true:	
		 The applicable one of the ERR<q>CTLR.{WUE, RUE, UE} fields is implemented and was 1 when an error was detected and not corrected.</q> 	
		 The applicable one of the ERR<q>CTLR.{WUE, RUE, UE} fields is not implemented and the component always reports errors.</q> 	
		It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a Deferred error, but is not deferred to the Requester, will signal an in-band error response to the Requester, causing this field to be set to 1. If no in-band error response to the Requester, this field is set to 0.	
		Note: An in-band error response signaled by the component might be masked and not generate any exception.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.UE == '0' && ext-ERR<n>STATUS.DE == '0' && this field can be set to 0b1 by a Deferred error</n></n>	
		Access to this field is: unknown/WI	
		When ext-ERR <n>STATUS.UE == '0' && this field is never set to 0b1 by a Deferred error</n>	
		Access to this field is: unknown /Wl	
		When ext-ERR <n>STATUS.V == '0'</n>	
		Access to this field is: unknown /WI	
		Otherwise:	
		Access to this field is: W1C	

Bits	Name	Description	Reset
[27]	OF	Overflow.	х
		Indicates that multiple errors have been detected. This field is set to 1 when one of the following occurs:	
		A Corrected error counter is implemented, an error is counted, and the counter overflows.	
		• ERR <n>STATUS.V was previously 1, a Corrected error counter is not implemented, and a Corrected error is recorded.</n>	
		• ERR <n>STATUS.V was previously 1, and a type of error other than a Corrected error is recorded.</n>	
		Otherwise, this field is unchanged when an error is recorded.	
		If a Corrected error counter is implemented:	
		• A direct write that modifies the counter overflow flag indirectly might set this field to an UNKNOWN value.	
		 A direct write to this field that clears this field to zero might indirectly set the counter overflow flag to an UNKNOWN value. 	
		0ь0	
		Since this field was last cleared to zero, no error syndrome has been discarded and, if a Corrected error counter is implemented, it has not overflowed.	
		0b1	
		Since this field was last cleared to zero, at least one error syndrome has been discarded or, if a Corrected error counter is implemented, it might have overflowed.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.V == '0'</n>	
		Access to this field is: UNKNOWN /WI	
		Otherwise:	
		Access to this field is: W1C	
[26]	MV	Miscellaneous Registers Valid.	0b0
		0ь0	
		ERR <n>MISC<m> not valid.</m></n>	
		0b1	
		The IMPLEMENTATION DEFINED contents of the ERR <n>MISC<m> registers contains additional information for an error recorded by this record.</m></n>	
		Note: If the ERR <n>MISC<m> registers can contain additional information for a previously recorded error, then the contents must be self-describing to software or a user. For example, certain fields might relate only to Corrected errors, and other fields only to the most recent error that was not discarded.</m></n>	
		Access to this field is: W1C	

Bits	Name	Description	Reset				
[25:24]	CE	Corrected Error.	xx				
		0ъ00					
		No errors were corrected.					
		0b01					
		At least one transient error was corrected.					
		0b10					
		At least one error was corrected.					
		0b11 At least one persistent error was corrected					
		At least one persistent error was corrected.					
		The mechanism by which a component or node detects whether a Corrected error is transient or persistent is IMPLEMENTATION DEFINED . If no such mechanism is implemented, then the node sets this field to 0b10 when a corrected error is recorded.					
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.</n>					
		When ext-ERR <n>STATUS.V == '0'</n>					
		Access to this field is: UNKNOWN /WI					
		Otherwise:					
		Access to this field is: W1C					
[23]	DE	Deferred Error.	х				
		0ь0					
		No errors were deferred.					
		0b1					
		At least one error was not corrected and deferred.					
		Support for deferring errors is IMPLEMENTATION DEFINED .					
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>					
		When ext-ERR <n>STATUS.V == '0'</n>					
		Access to this field is: unknown /WI					
		Otherwise:					
		Access to this field is: W1C					

Bits	Name	Description	Reset
[22]	PN	Poison.	Х
		0b0	
		Uncorrected error or Deferred error recorded because a corrupt value was detected, for example, by an error detection code (EDC), or Corrected error recorded.	
		0ь1	
		Uncorrected error or Deferred error recorded because a poison value was detected.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.V == '0' (ext-ERR<n>STATUS.DE == '0' && ext-ERR<n>STATUS.UE == '0') Access to this field is: UNKNOWN/WI</n></n></n>	
		Otherwise:	
		Access to this field is: W1C	
[21:20]	UET	Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.	xx
		0ь00	
		Uncorrected error, Uncontainable error (UC).	
		0b01	
		Uncorrected error, Unrecoverable error (UEU).	
		0b10	
		Uncorrected error, Latent or Restartable error (UEO).	
		0b11	
		Uncorrected error, Signaled or Recoverable error (UER).	
		Note: Software might use the information in the error record registers to determine what recovery is necessary.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.V == '0' ext-ERR<n>STATUS.UE == '0'</n></n>	
		Access to this field is: UNKNOWN/WI	
		Otherwise:	
		Access to this field is: W1C	
[19]	CI	Critical Error. Indicates whether a critical error condition has been recorded.	Х
		0b0	
		No critical error condition.	
		0b1	
		Critical error condition.	
		When clearing ERR <n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero.</n>	
		When ext-ERR <n>STATUS.V == '0'</n>	
		Access to this field is: unknown /Wl	
		Otherwise:	
		Access to this field is: W1C	

Bits	Name	Description	Reset
[18:5]	RES0	Reserved	RES0
[4:0]	SERR	Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or generate a short log entry.	
		0ъ00000	
		No error.	
		0ь00010	
		Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.	
		0ь00110	
		Data value from associative memory. For example, ECC error on cache data.	
		0ь00111	
		Address/control value from associative memory. For example, ECC error on cache tag.	
		0ь01000	
		Data value from a TLB. For example, ECC error on TLB data.	
		0ь01001	
		Address/control value from a TLB. For example, ECC error on TLB tag.	
		0ь10010	
		Error response from Completer of access. For example, error response from cache write-back.	
		0ь11000	
		Deferred error from Requester passed through. For example, poisoned data received from the Requester of an access and deferred to the Completer.	
		All other values are reserved.	
		This field is not valid and reads unknown if ERR <n>STATUS.V == 0b0.</n>	

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXSTATUS_EL1 is RAZ/WI.
- Direct reads and writes of ERXSTATUS_EL1 are NOPs.
- Direct reads and writes of ERXSTATUS_EL1 are UNDEFINED.

ext-ERR<n>STATUS describes additional constraints that also apply when ext-ERR<n>STATUS is accessed through ERXSTATUS_EL1.

MRS <Xt>, ERXSTATUS_EL1

ор0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0100	0b010

MSR ERXSTATUS_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b010

Accessibility

MRS <Xt>, ERXSTATUS EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXSTATUS EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXSTATUS EL1;
elsif PSTATE.EL == EL3 then
    return ERXSTATUS EL1;
```

MSR ERXSTATUS EL1, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
        else
           AArch64.SystemAccessTrap(EL3, 0x18);
        ERXSTATUS EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
        else
           AArch64.SystemAccessTrap(EL3, 0x18);
       ERXSTATUS EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXSTATUS EL1 = X[t];
```

A.8.6 ERXADDR_EL1, Selected Error Record Address Register

Accesses ext-ERR<n>ADDR for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

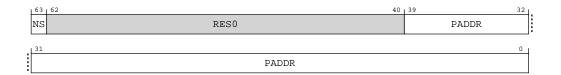
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-124: AArch64_erxaddr_el1 bit assignments

Table A-293: ERXADDR_EL1 bit descriptions

Bits	Name	Description	Reset
[63]	NS	Non-secure attribute.	x
		0ь0	
		The address is Secure.	
		0b1	
		The address is Non-secure.	
[62:40]	RES0	Reserved	RESO
[39:0]	PADDR	Physical Address. Address of the recorded location.	40 {x}

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXADDR_EL1 is RAZ/WI.
- Direct reads and writes of ERXADDR_EL1 are NOPs.
- Direct reads and writes of ERXADDR_EL1 are UNDEFINED.

ext-ERR<n>ADDR describes additional constraints that also apply when ext-ERR<n>ADDR is accessed through ERXADDR_EL1.

MRS <Xt>, ERXADDR EL1

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b011

MSR ERXADDR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b011

Accessibility

MRS <Xt>, ERXADDR EL1

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXADDR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXADDR EL1;
elsif PSTATE.EL == EL3 then
    return ERXADDR EL1;
```

MSR ERXADDR EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXADDR EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
        else
           AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXADDR EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXADDR EL1 = X[t];
```

A.8.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

Accesses ext-ERR<n>PFGF for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

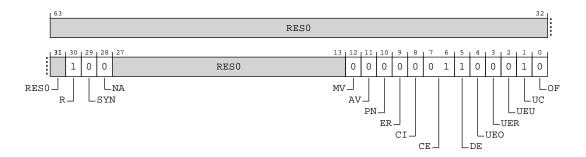
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-125: AArch64_erxpfgf_el1 bit assignments

Table A-296: ERXPFGF_EL1 bit descriptions

Bits	Name	Description	Reset
[63:31]	RES0	Reserved	RES0
[30]	R	Restartable. Support for Error Generation Counter restart mode.	
		0b1	
		Error Generation Counter restart mode is implemented and is controlled by AARCH64-ERXPFGCTL_EL1.R. AARCH64-ERXPFGCTL_EL1.R is a read/write field.	
[29]	SYN	Syndrome. Fault syndrome injection.	0b0
		When an injected error is recorded, the node sets AARCH64-ERXSTATUS_EL1.{IERR, SERR} to IMPLEMENTATION DEFINED values. AARCH64-ERXSTATUS_EL1.{IERR, SERR} are UNKNOWN when AARCH64-ERXSTATUS_EL1.V is 0.	
		Note: If ERR <n>PFGF.SYN is 1, software can write specific values into the AARCH64-ERXSTATUS_EL1.{IERR, SERR} fields when setting up a fault injection event. The sets of values that can be written to these fields is IMPLEMENTATION DEFINED.</n>	
[28]	NA	No access required. Defines whether this component fakes detection of the error on an access to the component or spontaneously in the fault injection state.	0d0
		0ь0	
		The component fakes detection of the error on an access to the component.	
[27:13]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[12]	MV	Miscellaneous syndrome.	0b0
		Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded in the ERR <n>MISC<m> registers when an injected error is recorded.</m></n>	
		0ь0	
		When an injected error is recorded, the node might update ERR <n>MISC<m>. If any syndrome is recorded by the node in ERR<n>MISC<m>, then AARCH64-ERXSTATUS_EL1.MV is set to 1.</m></n></m></n>	
		AARCH64-ERXPFGCTL_EL1.MV is res1 .	
		Note: If ERR <n>PFGF.MV is 1, software can write specific additional syndrome values into the ERR<n>MISC<m> registers when setting up a fault injection event. The values that can be written to these registers are IMPLEMENTATION DEFINED.</m></n></n>	
[11]	AV	Address syndrome. Address syndrome injection.	0b0
		0ь0	
		When an injected error is recorded, the node either sets AARCH64-ERXADDR_EL1 and AARCH64-ERXSTATUS_EL1.AV for the access, or leaves these unchanged. AARCH64-ERXPFGCTL_EL1.AV is RESO .	
		Note: If ERR <n>PFGF.AV is 1, software can write a specific address value into AARCH64-ERXADDR_EL1 when setting up a fault injection event.</n>	
[10]	PN	Poison flag. Describes how the fault generation feature of the node sets the AARCH64-ERXSTATUS_EL1.PN status flag.	0b0
		0ь0	
		When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets AARCH64-ERXSTATUS_EL1.PN to 1. AARCH64-ERXPFGCTL_EL1.PN is RESO .	
		This behavior replaces the architecture-defined rules for setting the AARCH64-ERXSTATUS_EL1.PN bit.	
[9]	ER	Error Reported flag. Describes how the fault generation feature of the node sets the AARCH64-ERXSTATUS_EL1.ER status flag.	0b0
		0ь0	
		When an injected error is recorded, the node sets AARCH64-ERXSTATUS_EL1.ER according to the architecture-defined rules for setting the ER field. AARCH64-ERXPFGCTL_EL1.ER is RESO .	
[8]	CI	Critical Error flag. Describes how the fault generation feature of the node sets the AARCH64-ERXSTATUS_EL1.CI status flag.	0b0
		0ь0	
		When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets AARCH64-ERXSTATUS_EL1.CI to 1. AARCH64-ERXPFGCTL_EL1.CI is RESO .	
		This behavior replaces the architecture-defined rules for setting the AARCH64-ERXSTATUS_EL1.Cl bit.	

Bits	Name	Description	Reset
[7:6]	CE	Corrected Error generation. Describes the types of Corrected error that the fault generation feature of the node can generate.	0b01
		0b01	
		The fault generation feature of the node allows generation of a non-specific Corrected error, that is, a Corrected error that is recorded by setting AARCH64-ERXSTATUS_EL1.CE to 0b10. AARCH64-ERXPFGCTL_EL1.CE is a read/write field. The values 0b10 and 0b11 in AARCH64-ERXPFGCTL_EL1.CE are reserved.	
		All other values are reserved.	
		If AARCH64-ERXFR_EL1.FRX is 1, then AARCH64-ERXFR_EL1.CE indicates whether the node supports this type of error.	
[5]	DE	Deferred Error generation. Describes whether the fault generation feature of the node can generate Deferred errors.	0b1
		061	
		The fault generation feature of the node allows generation of Deferred errors. AARCH64-ERXPFGCTL_EL1.DE is a read/write field.	
		If AARCH64-ERXFR_EL1.FRX is 1, then AARCH64-ERXFR_EL1.DE indicates whether the node supports this type of error.	
[4]	UEO	Latent or Restartable Error generation. Describes whether the fault generation feature of the node can generate Latent or Restartable errors.	0b0
		0ь0	
		The fault generation feature of the node does not generate Latent or Restartable errors. AARCH64-ERXPFGCTL_EL1.UEO is RESO .	
		If AARCH64-ERXFR_EL1.FRX is 1, then AARCH64-ERXFR_EL1.UEO indicates whether the node supports this type of error.	
[3]	UER	Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can generate Signaled or Recoverable errors.	0b0
		0ь0	
		The fault generation feature of the node does not generate Signaled or Recoverable errors. AARCH64-ERXPFGCTL_EL1.UER is RESO .	
		If AARCH64-ERXFR_EL1.FRX is 1, then AARCH64-ERXFR_EL1.UER indicates whether the node supports this type of error.	
[2]	UEU	Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate Unrecoverable errors.	0b0
		0ь0	
		The fault generation feature of the node does not generate Unrecoverable errors. AARCH64-ERXPFGCTL_EL1.UEU is RESO .	
		If AARCH64-ERXFR.FRX_EL1 is 1, then AARCH64-ERXFR_EL1.UEU indicates whether the node supports this type of error.	

Bits	Name	Description	Reset
[1]	UC	Uncontainable Error generation. Describes whether the fault generation feature of the node can generate Uncontainable errors.	0b1
		0ь1	
		The fault generation feature of the node allows generation of Uncontainable errors. AARCH64-ERXPFGCTL_EL1.UC is a read/write field.	
		If AARCH64-ERXFR.FRX_EL1 is 1, then AARCH64-ERXFR_EL1.UC indicates whether the node supports this type of error.	
[O]	OF	Overflow flag. Describes how the fault generation feature of the node sets the AARCH64-ERXSTATUS_EL1.OF status flag.	
		0ъ0	
		When an injected error is recorded, the node sets AARCH64-ERXSTATUS_EL1.OF according to the architecture-defined rules for setting the OF field. AARCH64-ERXPFGCTL_EL1.OF is RESO .	

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXPFGF EL1 is RAZ.
- Direct reads of ERXPFGF EL1 are NOPs.
- Direct reads of ERXPFGF_EL1 are UNDEFINED.

If AArch64-ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGF EL1 is RAZ.
- Direct reads of ERXPFGF_EL1 are NOPs.
- Direct reads of ERXPFGF EL1 are **UNDEFINED**.

[note]A node does not implement the RAS Common Fault Injection Model Extension when ERR<q>FR.INJ == 0b00. <q> is the index of the first error record owned by the same node as error record <n>, where <n> is the value in AArch64-ERRSELR_EL1.SEL. If the node owns a single record, then q = n.[/note]

If AArch64-ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ext-ERR<n>PFGF is not present, meaning reads of ERXPFGF EL1 are **RESO**.

ext-ERR<n>PFGF describes additional constraints that also apply when ext-ERR<n>PFGF is accessed through ERXPFGF_EL1.

MRS <Xt>, ERXPFGF EL1

ор0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0100	0b100

Accessibility

MRS <Xt>, ERXPFGF_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.FIEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
return ERXPFGF_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif SCR EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGF EL1;
```

A.8.8 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

Accesses ext-ERR<n>PFGCTL for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

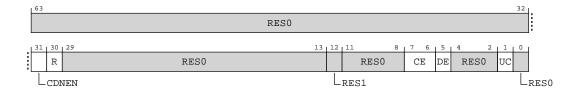
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-126: AArch64_erxpfgctl_el1 bit assignments

Table A-298: ERXPFGCTL_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31]	CDNEN	Countdown Enable. Controls transfers of the value held in AArch64-ERXPFGCDN_EL1 to the Error Generation Counter and enables this counter.	Х
		0ъ0	
		The Error Generation Counter is disabled.	
		0b1	
		The Error Generation Counter is enabled. On a write of 1 to this field, the Error Generation Counter is set to AArch64-ERXPFGCDN_EL1.CDN.	
[30]	R	Restartable. Support for Error Generation Counter restart mode.	Х
		0ъ0	
		The node does not support this feature.	
		0ь1	
		Feature controllable.	
[29:13]	RES0	Reserved	RES0
[12]	RES1	Reserved	RES1
[11:8]	RES0	Reserved	RES0
[7:6]	CE	Corrected Error generation. Describes the types of Corrected Error that the fault generation feature of the node can generate.	XX
		0ъ00	
		The fault generation feature of the node cannot generate this type of error.	
		0601	
		The fault generation feature of the node allows generation of a non-specific Corrected Error, that is, a Corrected Error that is recorded as AArch64-ERXSTATUS_EL1.CE == 0b10.	
		All other values are reserved.	
		If AArch64-ERXFR_EL1.FRX is 0b1 then AArch64-ERXFR_EL1.CE indicates whether the node supports this type of error.	
		This field reads-as-zeros if the node does not support this type of error.	

Bits	Name	Description	Reset		
[5]	DE	Deferred Error generation. Describes whether the fault generation feature of the node can generate this type of error.	х		
		0ь0			
		The fault generation feature of the node cannot generate this type of error.			
		0b1			
	The fault generation feature of the node allows generation of this type of error.				
	If AArch64-ERXFR_EL1.FRX is 0b1 then AArch64-ERXFR_EL1.DE indicates whether the node supports this type of error.				
		This bit reads-as-zero if the node does not support this type of error.			
[4:2]	RES0	Reserved			
[1]	UC	Uncontainable Error generation. Describes whether the fault generation feature of the node can generate this type of error.	Х		
		0ь0			
		The fault generation feature of the node cannot generate this type of error.			
		0b1			
		The fault generation feature of the node allows generation of this type of error.			
		If AArch64-ERXFR_EL1.FRX is 0b1 then AArch64-ERXFR_EL1.UC indicates whether the node supports this type of error.			
		This bit reads-as-zero if the node does not support this type of error.			
[0]	RES0	Reserved	RES0		

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXPFGCTL EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCTL EL1 are NOPs.
- Direct reads and writes of ERXPFGCTL EL1 are UNDEFINED.

If AArch64-ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGCTL_EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCTL EL1 are NOPs.
- Direct reads and writes of ERXPFGCTL_EL1 are **UNDEFINED**.

[note]A node does not implement the RAS Common Fault Injection Model Extension when ERR<q>FR.INJ == 0 \pm 000. <q> is the index of the first error record owned by the same node as error record <n>, where <n> is the value in AArch64-ERRSELR_EL1.SEL. If the node owns a single record, then q = n.[/note]

If AArch64-ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ext-ERR<n>PFGCTL is not present, meaning reads and writes of ERXPFGCTL EL1 are **RESO**.

ext-ERR<n>PFGCTL describes additional constraints that also apply when ext-ERR<n>PFGCTL is accessed through ERXPFGCTL_EL1.

MRS <Xt>, ERXPFGCTL_EL1

ор0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0100	0b101

MSR ERXPFGCTL_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b101

Accessibility

MRS <Xt>, ERXPFGCTL EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXPFGCTL EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif SCR_EL3.FIEN == '0' then
   if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCTL EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGCTL EL1;
```

MSR ERXPFGCTL_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.FIEN == '0' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.FIEN == '0' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
```

A.8.9 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

Accesses ext-ERR<n>PFGCDN for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

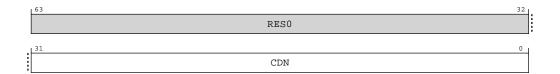
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-127: AArch64_erxpfgcdn_el1 bit assignments

Table A-301: ERXPFGCDN_EL1 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:0]	CDN	Countdown value.	32{x}
		 This field is copied to Error Generation Counter when either: Software writes ext-ERR<n>PFGCTL.CDNEN with 1.</n> The Error Generation Counter decrements to zero and ext-ERR<n>PFGCTL.R == 1.</n> While ext-ERR<n>PFGCTL.CDNEN == 1 and the Error Generation Counter is nonzero, the counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches 0, one of the errors enabled in the ext-ERR<n>PFGCTL register is generated.</n></n> Note: The current Error Generation Counter value is not visible to software. 	

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXPFGCDN EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCDN_EL1 are NOPs.
- Direct reads and writes of ERXPFGCDN EL1 are UNDEFINED.

If AArch64-ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGCDN EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCDN EL1 are NOPs.
- Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

[note]A node does not implement the RAS Common Fault Injection Model Extension when ERR<q>FR.INJ == 0 \pm 000. <q> is the index of the first error record owned by the same node as error record <n>, where <n> is the value in AArch64-ERRSELR_EL1.SEL. If the node owns a single record, then q = n.[/note]

If AArch64-ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ext-ERR<n>PFGCDN is not present, meaning reads and writes of ERXPFGCDN EL1 are **RESO**.

ext-ERR<n>PFGCDN describes additional constraints that also apply when ext-ERR<n>PFGCDN is accessed through ERXPFGCDN_EL1.

MRS <Xt>, ERXPFGCDN_EL1

ор0	op1	CRn	CRm	op2
0b11	06000	0b0101	0b0100	0b110

MSR ERXPFGCDN_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0100	0b110

Accessibility

MRS <Xt>, ERXPFGCDN EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXPFGCDN EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.FIEN == '0' then
        UNDEFINED;
    elsif SCR_EL3.FIEN == '0' then
   if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXPFGCDN EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGCDN EL1;
```

MSR ERXPFGCDN_EL1, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR_EL3.FIEN == '0' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.FIEN == '0' then
   if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
```

A.8.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0

Accesses ext-ERR<n>MISCO for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

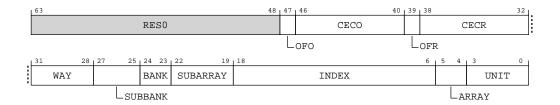
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-128: AArch64_erxmisc0_el1 bit assignments

Table A-304: ERXMISCO_EL1 bit descriptions

Bits	Name	Description	Reset
[63:48]	RES0	Reserved	RES0
[47]	OFO	Sticky overflow bit, other. Set to 1 when ERXMISCO_EL1.CECO is incremented and wraps through zero.	0d0
		0ь0 Other counter has not overflowed.	
		Other counter has overflowed.	
		A direct write that modifies this bit might indirectly set ERXSTATUS_EL1.OF to an UNKNOWN value and a direct write to ERXSTATUS_EL1.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.	
		Unaffected by Warm reset.	
[46:40]	CECO	Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing ERXMISCO_EL1.CECR.	0b0000000
		Unaffected by Warm reset.	
[39]	OFR	Sticky overflow bit, repeat. Set to 1 when ERXMISCO_EL1.CECR is incremented and wraps through zero.	000
		0ъ0	
		Repeat counter has not overflowed.	
		0b1	
		Repeat counter has overflowed.	
		A direct write that modifies this bit might indirectly set ERXSTATUS_EL1.OF to an UNKNOWN value and a direct write to ERXSTATUS_EL1.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.	
		Unaffected by Warm reset.	
[38:32]	CECR	Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the error, and subsequently for each countable error that matches the recorded other syndrome.	000000000

Bits	Name	Description	Reset
[31:28]	WAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	000000
		[L1 Data Cache]	
		Indicates which Tag RAM way or data RAM way detected the error. Upper 2 bits are unused.	
		[L2 TLB]	
		• Indicates which RAM detected an error. The possible values are 0 (RAM 1) to 9 (RAM 10).	
		[L1 Instruction Cache]	
		Indicates which way detected the error.	
		[L2 Tag Cache]	
		Indicates which way detected the error. Upper 1 bit unused.	
		[L2 Data Cache]	
		Unused.	
		Unaffected by Warm reset.	
[27:25]	SUBBANK	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	00000
		[L1 Instruction Cache]	
		Indicates which subbank detected the error, valid for Instruction Data Cache. For Tag errors this field is zero.	
		Unaffected by Warm reset.	
[24:23]	BANK	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	0600
		[L2 Cache]	
		Indicates which L2 bank detected the error. Upper 1 bit is unused.	
		[L1 Instruction Cache]	
		Indicates which bank detected the error, valid for Instruction Data Cache. For Tag errors this field is zero. Upper 1 bit is unused	
		Unaffected by Warm reset.	

Bits	Name	Description	Reset
[22:19]	SUBARRAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are: [L2 Cache] Indicates which L2 data doubleword detected the error. Upper 1 bit is unused.	000000
		 [L1 Data Cache] Indicates for L1 Data RAM which word had the error detected. For L1 Tag RAMs which bank had the error (0b0000: bank0, 0b0001: bank1) [L2 TLB] Indicates for L2 TLB RAM which word had the error detected. Upper 3 bits are unsued. 	
		Unaffected by Warm reset.	
[18:6]	INDEX	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are:	0b0000000000000
		[L2 Tag Cache]	
		• Indicates which index detected the error. Bits[n:6] are the index, n varies with the cache size.	
		[L2 Data Cache]	
		• Indicates which index detected the error. Bits[n+3:3] are the index, and bits[2:0] are the way, n varies wit the cache size.	
		[L1 Data Cache]	
		Indicates which index detected the error. Upper bits of the index are unused depending on the cache size	
		[L2 TLB]	
		Index of TLB RAM. Upper 4 bits are unused.	
		[L1 Instruction Cache]	
		Indicates which index detected the error. Upper bits of the index are unused depending on the cache size.	
		Unaffected by Warm reset.	

Bits	Name	Description	Reset
[5:4]	ARRAY	The encoding is dependent on the unit from which the error being recorded was detected. The possible values are: [L2 Cache] Indicates which array detected the error. The possible values are: • 0b00 L2 Tag RAM. • 0b01 L2 Data RAM. • 0b10 Transaction Queue RAM. [L1 Data Cache] Indicates which array detected the error. The possible values are: • 00 LS Tag RAM 0. • 01 LS Tag RAM 1. • 10 LS Data RAM. • 11 LS Tag RAM 2. [L1 Instruction Cache] Indicates which array that detected the error, Data Array has higher priority. The possible values are: • 0b01 Data. Unaffected by Warm reset.	0b00
[3:0]	UNIT	Indicates the unit which detected the error. The possible values are: 0b0001 L1 Instruction Cache. 0b0010 L2 TLB. 0b0100 L1 Data Cache. 0b1000 L2 Cache.	060000

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An **unknown** error record is selected.
- ERXMISCO_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISCO_EL1 are NOPs.
- Direct reads and writes of ERXMISCO_EL1 are UNDEFINED.

ext-ERR<n>MISCO describes additional constraints that also apply when ext-ERR<n>MISCO is accessed through ERXMISCO_EL1.

MRS <Xt>, ERXMISCO EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0101	0b000

MSR ERXMISCO EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0101	00000

Accessibility

MRS <Xt>, ERXMISCO EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
        if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISCO EL1;
elsif PSTATE.EL == EL2 \overline{t}hen
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISCO EL1;
elsif PSTATE.EL == EL3 \overline{t}hen
    return ERXMISCO EL1;
```

MSR ERXMISCO_EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR_EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        ERXMISCO EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif SCR EL3.TERR == '1' then
        if HaIted() && EDSCR.SDD == '1' then
```

```
UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
    ERXMISCO_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISCO_EL1 = X[t];
```

A.8.11 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

Accesses ext-ERR<n>MISC1 for the error record <n> selected by AArch64-ERRSELR_EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

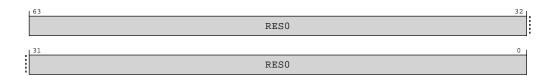
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-129: AArch64_erxmisc1_el1 bit assignments

Table A-307: ERXMISC1_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC1_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC1_EL1 are NOPs.
- Direct reads and writes of ERXMISC1_EL1 are UNDEFINED.

ext-ERR<n>MISC1 describes additional constraints that also apply when ext-ERR<n>MISC1 is accessed through ERXMISC1_EL1.

MRS <Xt>, ERXMISC1 EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0101	0b001

MSR ERXMISC1_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0101	0b001

Accessibility

MRS <Xt>, ERXMISC1_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISC1 EL1;
elsif PSTATE.EL == EL2 \overline{t}hen
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISC1 EL1;
elsif PSTATE.EL == EL3 then
    return ERXMISC1 EL1;
```

MSR ERXMISC1 EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXMISC1 EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
        else
           AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXMISC1 EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC1 EL1 = X[t];
```

A.8.12 ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

Accesses ext-ERR<n>MISC2 for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

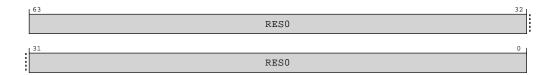
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-130: AArch64_erxmisc2_el1 bit assignments

Table A-310: ERXMISC2_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR EL1.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC2_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC2_EL1 are NOPs.
- Direct reads and writes of ERXMISC2_EL1 are UNDEFINED.

ext-ERR<n>MISC2 describes additional constraints that also apply when ext-ERR<n>MISC2 is accessed through ERXMISC2_EL1.

MRS <Xt>, ERXMISC2 EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0101	0b010

MSR ERXMISC2 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0101	0b0101	0b010

Accessibility

MRS <Xt>, ERXMISC2_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
```

```
AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERXMISC2_EL1;
elsif PSTATE.EL == EL2 Then
    if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERXMISC2_EL1;
elsif PSTATE.EL == EL3 Then
    return ERXMISC2_EL1;
```

MSR ERXMISC2 EL1, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
       ERXMISC2 EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
           AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXMISC2 EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC2 EL1 = X[t];
```

A.8.13 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

Accesses ext-ERR<n>MISC3 for the error record <n> selected by AArch64-ERRSELR EL1.SEL.

Configurations

This register is available in all configurations.

Attributes

Width

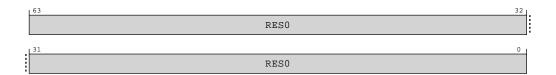
64

Functional group

RAS registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-131: AArch64_erxmisc3_el1 bit assignments

Table A-313: ERXMISC3_EL1 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

If AArch64-ERRIDR_EL1.NUM == 0×0000 or AArch64-ERRSELR_EL1.SEL is greater than or equal to AArch64-ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC3_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC3_EL1 are NOPs.
- Direct reads and writes of ERXMISC3 EL1 are UNDEFINED.

ext-ERR<n>MISC3 describes additional constraints that also apply when ext-ERR<n>MISC3 is accessed through ERXMISC3 EL1.

MRS <Xt>, ERXMISC3_EL1

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0101	0b011

MSR ERXMISC3_EL1, <Xt>

ор0	op1	CRn	CRm	op2
0b11	00000	0b0101	0b0101	0b011

Accessibility

MRS <Xt>, ERXMISC3_EL1

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif SCR_EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXMISC3 EL1;
elsif PSTATE.EL == EL2 \overline{t}hen
    if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return ERXMISC3 EL1;
elsif PSTATE.EL == EL3 then
    return ERXMISC3 EL1;
```

MSR ERXMISC3 EL1, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
       UNDEFINED;
    elsif EL2Enabled() && HCR EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif SCR EL3.TERR == '1' then
       if Ha\overline{l}ted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
       ERXMISC3_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if Halted() && EDSCR.SDD == '1' && SCR EL3.TERR == '1' then
        UNDEFINED;
    elsif SCR EL3.TERR == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       ERXMISC3 EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXMISC3 EL1 = X[t];
```

A.9 AArch64 Activity Monitors registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Activity Monitors registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-316: Activity Monitors registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
AMEVTYPER10_EL0	3	3	C13	C14	0	_	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER11_EL0	3	3	C13	C14	1	_	64-bit	Activity Monitors Event Type Registers 1
AMEVTYPER12_EL0	3	3	C13	C14	2	_	64-bit	Activity Monitors Event Type Registers 1
AMCFGR_EL0	3	3	C13	C2	1	_	64-bit	Activity Monitors Configuration Register
AMCGCR_EL0	3	3	C13	C2	2	_	64-bit	Activity Monitors Counter Group Configuration Register
AMEVTYPEROO_ELO	3	3	C13	C6	0	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER01_EL0	3	3	C13	C6	1	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPERO2_ELO	3	3	C13	C6	2	_	64-bit	Activity Monitors Event Type Registers 0
AMEVTYPER03_EL0	3	3	C13	C6	3	_	64-bit	Activity Monitors Event Type Registers 0

A.9.1 AMEVTYPER10_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR10_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

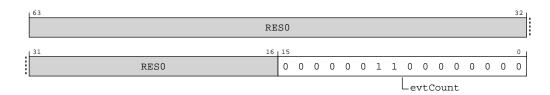
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-132: AArch64_amevtyper10_el0 bit assignments

Table A-317: AMEVTYPER10_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:0]		Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR10_EL0.	0x0300
		0ъ00000110000000	
		MPMM gear 0 period threshold exceeded	

Access

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVTYPER1<n>_ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPER10 EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b1110	00000

A.9.2 AMEVTYPER11_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR11 ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

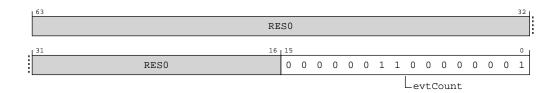
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-133: AArch64_amevtyper11_el0 bit assignments

Table A-319: AMEVTYPER11_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR11_ELO.	0x0301
		0b000001100000001 MPMM gear 1 period threshold exceeded	

Access

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVTYPER1<n> ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPER11 ELO

ор0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b1110	0b001

A.9.3 AMEVTYPER12_EL0, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR12_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

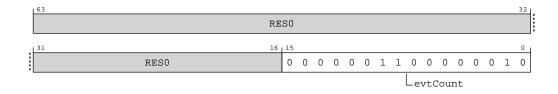
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-134: AArch64_amevtyper12_el0 bit assignments

Table A-321: AMEVTYPER12_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[15:0]		Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR12_ELO.	0x0302
		0b000001100000010 MPMM gear 2 period threshold exceeded	

Access

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVTYPER1<n> ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPER12_EL0

ор0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b1110	0b010

A.9.4 AMCFGR_EL0, Activity Monitors Configuration Register

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR_ELO is applicable to both the architected and the auxiliary counter groups.

Configurations

This register is available in all configurations.

Attributes

Width

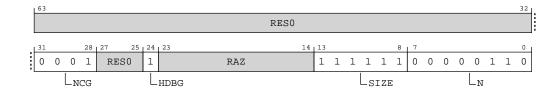
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-135: AArch64_amcfgr_el0 bit assignments

Table A-323: AMCFGR_ELO bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:28]	NCG	Defines the number of counter groups. The following value is specified for this product.	0b0001
		0ь0001	
		Two counter groups are implemented	
[27:25]	RES0	Reserved	RES0
[24]	HDBG	Halt-on-debug supported.	0b1
		From Armv8, this feature must be supported, and so this bit is 0b1.	
		0b1	
		AArch64-AMCR_EL0.HDBG is read/write.	
[23:14]	RAZ	Reserved	RAZ
[13:8]	SIZE	Defines the size of activity monitor event counters.	0b111111
		The size of the activity monitor event counters implemented by the activity monitors Extension is defined as [AMCFGR_ELO.SIZE + 1].	
		From Armv8, the counters are 64-bit, and so this field is 0b111111.	
		Note: Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.	
		0ь11111	
		64 bits	
[7:0]	Ν	Defines the number of activity monitor event counters.	0x06
		The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR_ELO.N + 1].	
		0ь00000110	
		Seven activity monitor event counters	

Access

MRS <Xt>, AMCFGR_EL0

ор0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0010	0b001

Accessibility

MRS <Xt>, AMCFGR ELO

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCFGR ELO;
elsif PSTATE.EL == EL\overline{1} then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCFGR ELO;
elsif PSTATE.EL == EL\overline{2} then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCFGR ELO;
elsif PSTATE.EL == EL\overline{3} then
   return AMCFGR ELO;
```

A.9.5 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

This register is available in all configurations.

Attributes

Width

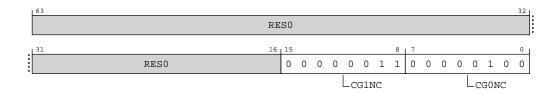
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-136: AArch64_amcgcr_el0 bit assignments

Table A-325: AMCGCR_ELO bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:8]	CG1NC	Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.	0x03
		In an implementation that includes FEAT_AMUv1, the permitted range of values is 0x0 to 0x10.	
		0ь00000011	
		Three counters in the auxiliary counter group	
[7:0]	CG0NC	Counter Group 0 Number of Counters. The number of counters in the architected counter group.	0x04
		In an implementation that includes FEAT_AMUv1, the value of this field is 0x4.	
		0ь00000100	
		Four counters in the architected counter group	

Access

MRS <Xt>, AMCGCR_EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0010	0b010

Accessibility

MRS <Xt>, AMCGCR ELO

```
if PSTATE.EL == ELO then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR ELO.EN == '0' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCGCR ELO;
elsif PSTATE.EL == EL\overline{1} then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCGCR ELO;
elsif PSTATE.EL == EL\overline{2} then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif CPTR EL3.TAM == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        return AMCGCR ELO;
elsif PSTATE.EL == EL\overline{3} then
   return AMCGCR ELO;
```

A.9.6 AMEVTYPER00_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR00_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

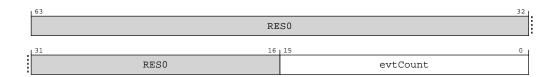
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-137: AArch64_amevtyper00_el0 bit assignments

Table A-327: AMEVTYPER00_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RESO .
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTRO <n>_ELO. The value of this field is architecturally required for each architected counter.</n>	The reset values can be the following: 0b0000000000010001, respective to the value.
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0ъ00000000010001	
		Processor frequency cycles	

Access

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPERO<n>_ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_EL0.CGONC identifies the number of architected activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPEROO ELO

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0110	00000

A.9.7 AMEVTYPER01_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR01_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

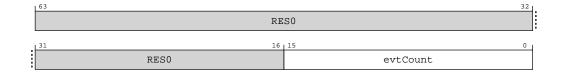
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-138: AArch64_amevtyper01_el0 bit assignments

Table A-329: AMEVTYPER01_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTRO <n>_ELO. The value of this field is architecturally required for each architected counter.</n>	The reset values can be the following: 0b0100000000000100, respective to the value.
	The following table shows the mapping between required event numbers and the corresponding counters:		
		0ъ01000000000100	
		Constant frequency cycles	

Access

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPERO<n>_ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_ELO.CGONC identifies the number of architected activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPER01_EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0110	0b001

A.9.8 AMEVTYPER02_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR02_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

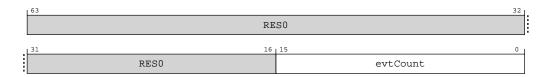
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-139: AArch64_amevtyper02_el0 bit assignments

Table A-331: AMEVTYPER02_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RESO .
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTRO <n>_EL0. The value of this field is architecturally required for each architected counter.</n>	The reset values can be the following: 0b00000000000000000000000000000000000
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0b0000000000000	

Access

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPERO<n> ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_ELO.CGONC identifies the number of architected activity monitor event counters.[/note]

MRS <Xt>, AMEVTYPER02 EL0

ор0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0110	0b010

A.9.9 AMEVTYPER03_EL0, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR03 ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

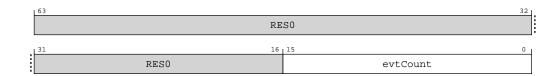
64

Functional group

Activity Monitors registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-140: AArch64_amevtyper03_el0 bit assignments

Table A-333: AMEVTYPER03_EL0 bit descriptions

Bits	Name	Description	Reset
[63:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter AArch64-AMEVCNTRO <n>_ELO. The value of this field is architecturally required for each architected counter.</n>	The reset values can be the following: 0b0100000000000101, respective to the value.
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0ь01000000000101	
		Memory stall cycles	

Access

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPERO<n>_ELO are **UNDEFINED**.

[note]AArch64-AMCGCR_ELO.CGONC identifies the number of architected activity monitor event counters.[/note]

MRS < Xt>, AMEVTYPERO3 ELO

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0110	0b011

A.10 AArch64 Trace registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Trace registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-335: Trace registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
TRCIDR8	2	1	C0	CO	6	_	64-bit	ID Register 8
TRCIMSPEC0	2	1	CO	CO	7	_	64-bit	IMP DEF Register 0
TRCIDR9	2	1	CO	C1	6	_	64-bit	ID Register 9
TRCIDR2	2	1	CO	C10	7	_	64-bit	ID Register 2
TRCIDR3	2	1	CO	C11	7	_	64-bit	ID Register 3
TRCIDR4	2	1	CO	C12	7	_	64-bit	ID Register 4
TRCIDR5	2	1	CO	C13	7	_	64-bit	ID Register 5
TRCIDR6	2	1	CO	C14	7	_	64-bit	ID Register 6
TRCIDR7	2	1	CO	C15	7	_	64-bit	ID Register 7
TRCIDR10	2	1	CO	C2	6	_	64-bit	ID Register 10
TRCIDR11	2	1	CO	C3	6	_	64-bit	ID Register 11
TRCIDR12	2	1	CO	C4	6	_	64-bit	ID Register 12
TRCIDR13	2	1	CO	C5	6	_	64-bit	ID Register 13
TRCAUXCTLR	2	1	CO	C6	0	_	64-bit	Auxiliary Control Register
TRCIDR0	2	1	CO	C8	7	_	64-bit	ID Register 0
TRCIDR1	2	1	CO	C9	7	_	64-bit	ID Register 1
TRCDEVARCH	2	1	C7	C15	6	_	64-bit	Device Architecture Register
TRCDEVID	2	1	C7	C2	7	_	64-bit	Device Configuration Register
TRCCLAIMSET	2	1	C7	C8	6	_	64-bit	Claim Tag Set Register
TRCCLAIMCLR	2	1	C7	C9	6	_	64-bit	Claim Tag Clear Register

A.10.1 TRCIDR8, ID Register 8

Returns the maximum speculation depth of the instruction trace element stream.

Configurations

This register is available in all configurations.

Attributes

Width

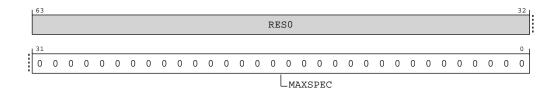
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-141: AArch64_trcidr8 bit assignments

Table A-336: TRCIDR8 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:0]		Indicates the maximum speculation depth of the instruction trace element stream. This is the maximum number of PO elements in the trace element stream that can be speculative at any time.	0x00000000
		000000000000000000000000000000000000000	

Access

MRS <Xt>, TRCIDR8

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0000	0b110

Accessibility

MRS <Xt>, TRCIDR8

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR8;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR8;
elsif PSTATE.EL == EL3 then
if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR8;
```

A.10.2 TRCIMSPECO, IMP DEF Register 0

TRCIMSPECO shows the presence of any **IMPLEMENTATION DEFINED** features, and provides an interface to enable the features that are provided.

Configurations

This register is available in all configurations.

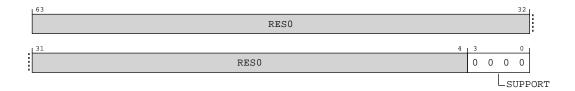
Attributes

Width

64

Functional group

Trace registers


Access type

See bit descriptions

Reset value

Figure A-142: AArch64_trcimspec0 bit assignments

Table A-338: TRCIMSPEC0 bit descriptions

Bits	Name	Description	Reset
[63:4]	RES0	Reserved	RES0
[3:0]	SUPPORT	Indicates whether the implementation supports IMPLEMENTATION DEFINED features.	0b0000
		060000	
		No IMPLEMENTATION DEFINED features are supported.	

Access

MRS <Xt>, TRCIMSPECO

ор0	op1	CRn	CRm	op2
0b10	0b001	000000	000000	0b111

MSR TRCIMSPECO, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0000	0b111

Accessibility

MRS <Xt>, TRCIMSPECO

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIMSPECO;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
```

MSR TRCIMSPECO, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCIMSPEC0 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCIMSPEC0 = X[t];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCIMSPEC0 = X[t];
```

A.10.3 TRCIDR9, ID Register 9

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

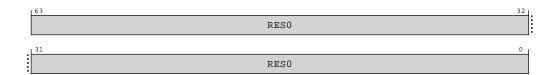
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-143: AArch64_trcidr9 bit assignments

Table A-341: TRCIDR9 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RESO

Access

MRS <Xt>, TRCIDR9

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b0001	0b110

Accessibility

MRS <Xt>, TRCIDR9

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
```

```
return TRCIDR9;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch6\overline{4}.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR9;
elsif PSTATE.EL == EL3 then
if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR9;
```

A.10.4 TRCIDR2, ID Register 2

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

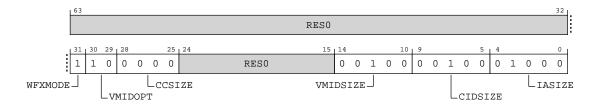
Width

64

Functional group

Trace registers

Access type


See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 1100 000x xxxx xxxx x001 0000 1000 1000

Figure A-144: AArch64_trcidr2 bit assignments

Table A-343: TRCIDR2 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31]	WFXMODE	Indicates whether WFI and WFE instructions are classified as PO instructions:	0b1
		0b1	
		WFI and WFE instructions are classified as PO instructions.	
[30:29]	VMIDOPT	Indicates the options for Virtual context identifier selection.	0b10
		0b10	
		Virtual context identifier selection not supported. AArch64-TRCCONFIGR.VMIDOPT is RES1 .	
[28:25]	CCSIZE	Indicates the size of the cycle counter.	0b0000
		0ь0000	
		The cycle counter is 12 bits in length.	
[24:15]	RES0	Reserved	RES0
[14:10]	VMIDSIZE	Indicates the trace unit Virtual context identifier size.	0b00100
		0ь00100	
		32-bit Virtual context identifier size.	
[9:5]	CIDSIZE	Indicates the Context identifier size.	0b00100
		0ь00100	
		32-bit Context identifier size.	
[4:0]	IASIZE	Virtual instruction address size.	0b01000
		0ь01000	
		Maximum of 64-bit instruction address size.	

Access

MRS <Xt>, TRCIDR2

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1010	0b111

Accessibility

MRS <Xt>, TRCIDR2

```
if PSTATE.EL == EL0 then
   UNDEFINED;
```

```
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR2;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR2;
elsif PSTATE.EL == EL3 then
   if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR2;
```

A.10.5 TRCIDR3, ID Register 3

Returns the base architecture of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace registers

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0000 0001 x111 1111 xx00 0000 0000 0100

Figure A-145: AArch64_trcidr3 bit assignments

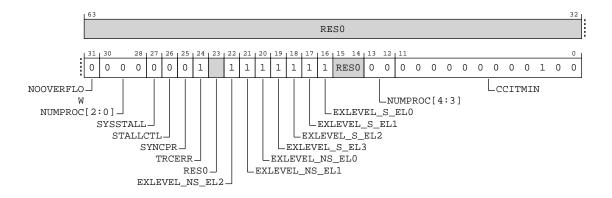


Table A-345: TRCIDR3 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31]	NOOVERFLOW	Indicates if overflow prevention is implemented.	0b0
		0ь0	
		Overflow prevention is not implemented.	
[27]	SYSSTALL	Indicates if stalling of the PE is permitted.	0b0
		0ь0	
		Stalling of the PE is not permitted.	
[26]	STALLCTL	Indicates if trace unit implements stalling of the PE.	0b0
		0ь0	
		Stalling of the PE is not implemented.	
[25]	SYNCPR	Indicates if an implementation has a fixed synchronization period.	0b0
		0ь0	
		AArch64-TRCSYNCPR is read/write so software can change the synchronization period.	
[24]	TRCERR	Indicates forced tracing of System Error exceptions is implemented.	0b1
		061	
		Forced tracing of System Error exceptions is implemented.	
[23]	RESO	Reserved	RES0
[22]	EXLEVEL_NS_EL2	Indicates if Non-secure EL2 is implemented.	0b1
		061	
		Non-secure EL2 is implemented.	
[21]	EXLEVEL_NS_EL1	Indicates if Non-secure EL1 is implemented.	0b1
		061	
		Non-secure EL1 is implemented.	
[20]	EXLEVEL_NS_ELO	Indicates if Non-secure ELO is implemented.	0b1
		061	
		Non-secure ELO is implemented.	

Bits	Name	Description	Reset
[19]	EXLEVEL_S_EL3	Indicates if EL3 is implemented.	0b1
		0b1	
		EL3 is implemented.	
[18]	EXLEVEL_S_EL2	Indicates if Secure EL2 is implemented.	0b1
		0b1	
		Secure EL2 is implemented.	
[17]	EXLEVEL_S_EL1	Indicates if Secure EL1 is implemented.	0b1
		0b1	
		Secure EL1 is implemented.	
[16]	EXLEVEL_S_ELO	Indicates if Secure ELO is implemented.	0b1
		0b1	
		Secure ELO is implemented.	
[15:14]	RESO	Reserved	RES0
[13:12,	NUMPROC	Indicates the number of PEs available for tracing.	0000000
30:28]		0b00000	
		The trace unit can trace one PE.	
[11:0]	CCITMIN	Indicates the minimum value that can be programmed in AArch64-TRCCCCTLR.THRESHOLD.	0x004
		If AArch64-TRCIDR0.TRCCCI == 1 then the minimum value of this field is 0×001 .	
		If AArch64-TRCIDR0.TRCCCI == 0 then this field is zero.	
		0500000000100	

Access

MRS <Xt>, TRCIDR3

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b1011	0b111

Accessibility

MRS <Xt>, TRCIDR3

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
else
            return TRCIDR3;
```

A.10.6 TRCIDR4, ID Register 4

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

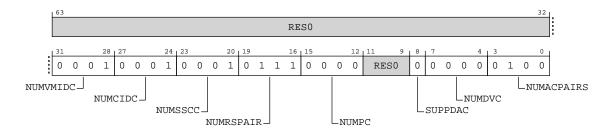
Attributes

Width

64

Functional group

Trace registers


Access type

See bit descriptions

Reset value

Figure A-146: AArch64_trcidr4 bit assignments

Table A-347: TRCIDR4 bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:28]	NUMVMIDC	Indicates the number of Virtual Context Identifier Comparators that are available for tracing.	0b0001
		0ь0001	
		The implementation has one Virtual Context Identifier Comparator.	
[27:24]	NUMCIDC	Indicates the number of Context Identifier Comparators that are available for tracing.	0b0001
		0ь0001	
		The implementation has one Context Identifier Comparator.	
[23:20]	NUMSSCC	Indicates the number of Single-shot Comparator Controls that are available for tracing.	0b0001
		0ь0001	
		The implementation has one Single-shot Comparator Control.	
[19:16]	NUMRSPAIR	Indicates the number of resource selector pairs that are available for tracing.	0b0111
		0ь0111	
		The implementation has eight resource selector pairs.	
[15:12]	NUMPC	Indicates the number of PE Comparator Inputs that are available for tracing.	000000
		0ъ0000	
		No PE Comparator Inputs are available.	
[11:9]	RES0	Reserved	RES0
[8]	SUPPDAC	Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.	0d0
		0ъ0	
		Data address comparisons not implemented.	
[7:4]	NUMDVC	Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.	000000
		0ъ0000	
		No data value comparators implemented.	
[3:0]	NUMACPAIRS	Indicates the number of Address Comparator pairs that are available for tracing.	0b0100
		0ь0100	
		The implementation has four Address Comparator pairs.	

Access

MRS <Xt>, TRCIDR4

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b1100	0b111

Accessibility

MRS <Xt>, TRCIDR4

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR4;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR4;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR4;
```

A.10.7 TRCIDR5, ID Register 5

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-147: AArch64_trcidr5 bit assignments

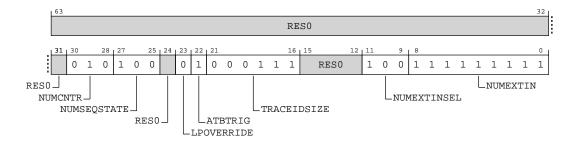


Table A-349: TRCIDR5 bit descriptions

Bits	Name	Description	Reset	
[63:31]	RESO	Reserved	RES0	
[30:28]	NUMCNTR	Indicates the number of Counters that are available for tracing.	0b010	
	0b010			
		Two Counters implemented.		
[27:25]	NUMSEQSTATE	Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.	0b100	
		0ь100		
		Four Sequencer states are implemented.		
[24]	RESO	Reserved	RES0	
[23]	LPOVERRIDE	Indicates support for Low-power Override Mode.	0b0	
		0ь0		
		The trace unit does not support Low-power Override Mode.		
[22]	ATBTRIG	Indicates if the implementation can support ATB triggers.	0b1	
		0ь1		
		The implementation supports ATB triggers.		
[21:16]	TRACEIDSIZE	Indicates the trace ID width.	0b000111	
		0ь000111		
		The implementation supports a 7-bit trace ID.		
[15:12]	RES0	Reserved	RESO	

Bits	Name	Description	Reset
[11:9]	NUMEXTINSEL	Indicates how many External Input Selector resources are implemented.	0b100
		0ь100	
		4 External Input Selector resources are available.	
[8:0]	NUMEXTIN	Indicates how many External Inputs are implemented.	0b111111111
		0ь11111111	
		Unified PMU event selection.	

Access

MRS <Xt>, TRCIDR5

ор0	op1	CRn	CRm	op2
0b10	0b001	000000	0b1101	0b111

Accessibility

MRS <Xt>, TRCIDR5

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
         return TRCIDR5;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR5;
elsif PSTATE.EL == EL3 then
   if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDR5;
```

A.10.8 TRCIDR6, ID Register 6

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

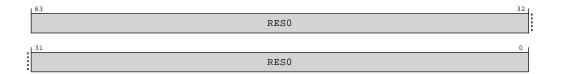
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-148: AArch64_trcidr6 bit assignments

Table A-351: TRCIDR6 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RESO

Access

MRS <Xt>, TRCIDR6

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b1110	0b111

Accessibility

MRS < Xt>, TRCIDR6

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Hal\overline{t}ed() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR6;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR6;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR6;
```

A.10.9 TRCIDR7, ID Register 7

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

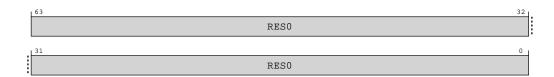
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-149: AArch64_trcidr7 bit assignments

Table A-353: TRCIDR7 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, TRCIDR7

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1111	0b111

Accessibility

MRS <Xt>, TRCIDR7

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Hal\overline{t}ed() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR7;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
    return TRCIDR7;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    return TRCIDR7;
```

A.10.10 TRCIDR10, ID Register 10

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

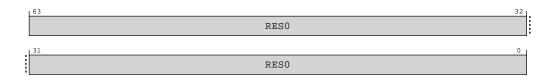
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-150: AArch64_trcidr10 bit assignments

Table A-355: TRCIDR10 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, TRCIDR10

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0010	0b110

Accessibility

MRS <Xt>, TRCIDR10

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR10;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR10;
elsif PSTATE.EL == EL3 then
   if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR10;
```

A.10.11 TRCIDR11, ID Register 11

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

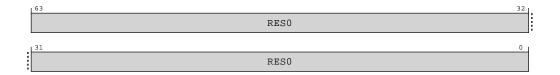
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-151: AArch64_trcidr11 bit assignments

Table A-357: TRCIDR11 bit descriptions

Bits	Name	Description	Reset
[63:0]	RESO	Reserved	RES0

Access

MRS <Xt>, TRCIDR11

ор0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0011	0b110

Accessibility

MRS < Xt>, TRCIDR11

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR11;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
```

A.10.12 TRCIDR12, ID Register 12

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

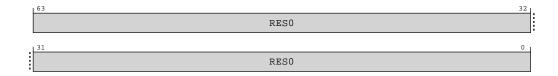
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-152: AArch64_trcidr12 bit assignments

Table A-359: TRCIDR12 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

MRS <Xt>, TRCIDR12

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b0100	0b110

Accessibility

MRS <Xt>, TRCIDR12

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR12;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return TRCIDR12;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR12;
```

A.10.13 TRCIDR13, ID Register 13

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

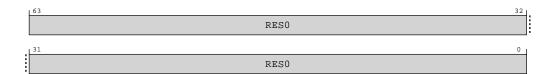
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-153: AArch64_trcidr13 bit assignments

Table A-361: TRCIDR13 bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

MRS <Xt>, TRCIDR13

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0101	0b110

Accessibility

MRS < Xt>, TRCIDR13

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR13;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR13;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR13;
```

A.10.14 TRCAUXCTLR, Auxiliary Control Register

The function of this register is **IMPLEMENTATION DEFINED**.

Configurations

This register is available in all configurations.

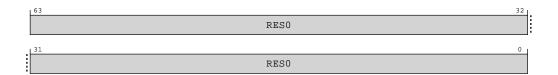
Attributes

Width

64

Functional group

Trace registers


Access type

See bit descriptions

Reset value

Figure A-154: AArch64_trcauxctlr bit assignments

Table A-363: TRCAUXCTLR bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

If this register is nonzero then it might cause the behavior of a trace unit to contradict this architecture specification. See the documentation of the specific implementation for information about the **IMPLEMENTATION DEFINED** support for this register.

MRS <Xt>, TRCAUXCTLR

op0	op1	CRn	CRm	op2
0b10	0b001	000000	0b0110	00000

MSR TRCAUXCTLR. <Xt>

ор0	op1	CRn	CRm	op2
0b10	0b001	000000	0b0110	00000

Accessibility

MRS <Xt>, TRCAUXCTLR

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCAUXCTLR;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
```

MSR TRCAUXCTLR, <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCAUXCTLR = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCAUXCTLR = X[t];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCAUXCTLR = X[t];
```

A.10.15 TRCIDRO, ID Register 0

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-155: AArch64_trcidr0 bit assignments

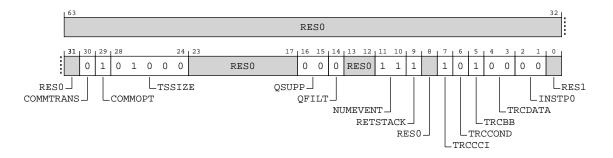


Table A-366: TRCIDRO bit descriptions

Bits	Name	Description	Reset		
[63:31]	RES0	Reserved	RES0		
[30]	COMMTRANS	Transaction Start element behavior.	0b0		
		0ь0			
		Transaction Start elements are PO elements.			
[29]	СОММОРТ	Indicates the contents and encodings of Cycle count packets.	0b1		
		Commit mode 1.			
[28:24]	TSSIZE	Indicates that the trace unit implements Global timestamping and the size of the timestamp value.	0b01000		
		0ь01000			
		Global timestamping implemented with a 64-bit timestamp value.			
[23:17]	RES0	Reserved	RES0		
[16:15]	QSUPP	Indicates that the trace unit implements Q element support.	0b00		
		0ь00			
		Q element support is not implemented.			

Bits	Name	Description	Reset		
[14]	QFILT	Indicates if the trace unit implements Q element filtering.	0b0		
		060			
		Q element filtering is not implemented.			
[13:12]	RES0	Reserved	RES0		
[11:10]	NUMEVENT	Indicates the number of ETEEvents implemented.			
		0b11			
		The trace unit supports 4 ETEEvents.			
[9]	RETSTACK	Indicates if the trace unit supports the return stack.	0b1		
		0b1			
		Return stack implemented.			
[8]	RES0	Reserved	RES0		
[7]	TRCCCI	Indicates if the trace unit implements cycle counting.	0b1		
		0b1			
		Cycle counting implemented.			
[6]	TRCCOND	Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing is not implemented in ETE and this field is reserved for other trace architectures.	0d0		
		060			
		Conditional instruction tracing not implemented.			
[5]	TRCBB	Indicates if the trace unit implements branch broadcasting.	0b1		
		0b1			
		Branch broadcasting implemented.			
[4:3]	TRCDATA	Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved for other trace architectures.	00d0		
		0600			
		Tracing of data addresses and data values is not implemented.			
[2:1]	INSTP0	Indicates if load and store instructions are P0 instructions. Load and store instructions as P0 instructions is not implemented in ETE and this field is reserved for other trace architectures.	0000		
		0600			
		Load and store instructions are not PO instructions.			
[0]	RES1	Reserved	RES1		

Access

MRS <Xt>, TRCIDRO

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1000	0b111

Accessibility

MRS <Xt>, TRCIDRO

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
```

```
elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
         if Halted() && EDSCR.SDD == '1' then
              UNDEFINED;
              AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDRO;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
         UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
    \label{eq:AArch64.SystemAccessTrap} $$\operatorname{AArch64.SystemAccessTrap}(EL2,\ 0x18)$; elsif CPTR_EL3.TTA == '1' then
         if Halted() && EDSCR.SDD == '1' then
              UNDEFINED;
         else
              AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCIDRO;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
         return TRCIDRO;
```

A.10.16 TRCIDR1, ID Register 1

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

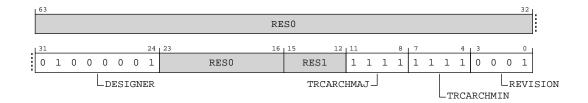
Width

64

Functional group

Trace registers

Access type


See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0100 0001 xxxx xxxx xxxx 1111 1111 0001

Figure A-156: AArch64_trcidr1 bit assignments

Table A-368: TRCIDR1 bit descriptions

Bits	Name	Description	Reset	
[63:32]	RES0	Reserved	RES0	
[31:24]	DESIGNER	Indicates which company designed the trace unit. The permitted values of this field are the same as AArch64-MIDR_EL1.Implementer.		
		0ь01000001		
		Arm Limited		
[23:16]	RES0	Reserved	RES0	
[15:12]	RES1	Reserved	RES1	
[11:8]	TRCARCHMAJ	Major architecture version.	0b1111	
		0b1111		
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to AArch64-TRCDEVARCH.		
[7:4]	TRCARCHMIN	Minor architecture version.	0b1111	
		0b1111		
		If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to AArch64-TRCDEVARCH.		
[3:0]	REVISION	Indicates the major revision of the product	0b0001	
		0ь0001		
		r1p1		

Access

MRS <Xt>, TRCIDR1

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1001	0b111

Accessibility

MRS <Xt>, TRCIDR1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR1;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCIDR1;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        return TRCIDR1;
```

A.10.17 TRCDEVARCH, Device Architecture Register

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

64

Functional group

Trace registers

Access type

See bit descriptions

Reset value

Figure A-157: AArch64_trcdevarch bit assignments

Table A-370: TRCDEVARCH bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:21]	ARCHITECT	Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.	11{x}
		0ь01000111011	
		JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.	
		Other values are defined by the JEDEC JEP106 standard.	
		This field reads as 0x23B.	
[20]	PRESENT	DEVARCH Present. Defines that the DEVARCH register is present.	Х
		0b1	
		Device Architecture information present.	
[19:16]	REVISION	Revision. Defines the architecture revision of the component.	xxxx
		050000	
		ETEv1.0, FEAT_ETE.	
		All other values are reserved.	
[15:12]	ARCHVER	Architecture Version. Defines the architecture version of the component.	xxxx
		0ь0101	
		ETEv1.	
		ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].	
		This field reads as 0x5.	
[11:0]	ARCHPART	Architecture Part. Defines the architecture of the component.	12{x}
		0b101000010011	
		Arm PE trace architecture.	
		ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].	
		This field reads as 0xA13.	

Access

MRS <Xt>, TRCDEVARCH

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b1111	0b110

Accessibility

MRS <Xt>, TRCDEVARCH

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return TRCDEVARCH;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCDEVARCH;
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
       return TRCDEVARCH;
```

A.10.18 TRCDEVID, Device Configuration Register

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

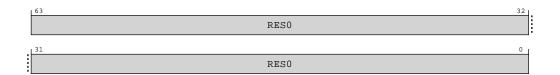
64

Functional group

Trace registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-158: AArch64_trcdevid bit assignments

Table A-372: TRCDEVID bit descriptions

Bits	Name	Description	Reset
[63:0]	RES0	Reserved	RES0

Access

MRS <Xt>, TRCDEVID

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b0010	0b111

Accessibility

MRS <Xt>, TRCDEVID

```
if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR_EL3.TTA == '1' then
   if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
```

```
return TRCDEVID;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCDEVID;
elsif PSTATE.EL == EL3 then
if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCDEVID;
```

A.10.19 TRCCLAIMSET, Claim Tag Set Register

In conjunction with AArch64-TRCCLAIMCLR, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that implementations support a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes

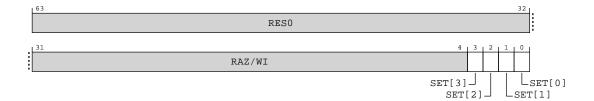
Width

64

Functional group

Trace registers

Access type


RAOW1S

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0000 0000 0000 0000 0000 0000 1111

Figure A-159: AArch64_trcclaimset bit assignments

Table A-374: TRCCLAIMSET bit descriptions

Bits	Name	Description	Reset			
[63:32]	RES0	Reserved				
[31:4]	RAZ/WI	Reserved				
[3]	SET[3]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1			
		0ь0				
		On a read: Claim Tag bit <m> is not implemented.</m>				
		On a write: Ignored.				
		0b1				
		On a read: Claim Tag bit <m> is implemented.</m>				
		On a write: Set Claim Tag bit <m> to 1.</m>				
[2]	SET[2]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1			
		0ь0				
		On a read: Claim Tag bit <m> is not implemented.</m>				
		On a write: Ignored.				
		0ь1				
		On a read: Claim Tag bit <m> is implemented.</m>				
		On a write: Set Claim Tag bit <m> to 1.</m>				
[1]	SET[1]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1			
		000				
		On a read: Claim Tag bit <m> is not implemented.</m>				
		On a write: Ignored.				
		0ь1				
		On a read: Claim Tag bit <m> is implemented.</m>				
		On a write: Set Claim Tag bit <m> to 1.</m>				

Bits	Name	Description	Reset
[O]	SET[0]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1
		0ь0	
		On a read: Claim Tag bit <m> is not implemented.</m>	
		On a write: Ignored.	
		0b1	
		On a read: Claim Tag bit <m> is implemented.</m>	
		On a write: Set Claim Tag bit <m> to 1.</m>	

Access

MRS <Xt>, TRCCLAIMSET

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b1000	0b110

MSR TRCCLAIMSET, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b1000	0b110

Accessibility

MRS <Xt>, TRCCLAIMSET

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
         UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && CPTR EL2.TTA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif CPTR EL3.TTA == '1' then
         if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCCLAIMSET;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
         UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
         AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         return TRCCLAIMSET;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
    else
```

return TRCCLAIMSET;

MSR TRCCLAIMSET, <Xt>

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
       AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
       else
            AArch64.SystemAccessTrap(EL3, 0x18);
       TRCCLAIMSET = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
       UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
           UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
       TRCCLAIMSET = X[t];
elsif PSTATE.EL == EL3 then
   if CPTR EL3.TTA == '1' then
       AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCLAIMSET = X[t];
```

A.10.20 TRCCLAIMCLR, Claim Tag Clear Register

In conjunction with AArch64-TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

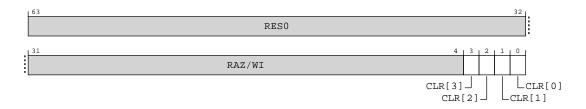
64

Functional group

Trace registers

Access type

RW1C


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-160: AArch64_trcclaimclr bit assignments

Table A-377: TRCCLAIMCLR bit descriptions

Bits	Name	Description	Reset
[63:32]	RES0	Reserved	RES0
[31:4]	RAZ/WI	Reserved	RAZ/WI
[3]	CLR[3]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0
		0b0	
		On a read: Claim Tag bit <m> is not set.</m>	
		On a write: Ignored.	
		0b1	
		On a read: Claim Tag bit <m> is set.</m>	
		On a write: Clear Claim tag bit <m> to 0.</m>	
[2]	CLR[2]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0
		0ь0	
		On a read: Claim Tag bit <m> is not set.</m>	
		On a write: Ignored.	
		0b1	
		On a read: Claim Tag bit <m> is set.</m>	
		On a write: Clear Claim tag bit <m> to 0.</m>	

Bits	Name	Description	Reset
[1]	CLR[1]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0
		0ь0	
		On a read: Claim Tag bit <m> is not set.</m>	
		On a write: Ignored.	
		0b1	
		On a read: Claim Tag bit <m> is set.</m>	
		On a write: Clear Claim tag bit <m> to 0.</m>	
[O]	CLR[0]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0
		0ь0	
		On a read: Claim Tag bit <m> is not set.</m>	
		On a write: Ignored.	
		0ь1	
		On a read: Claim Tag bit <m> is set.</m>	
		On a write: Clear Claim tag bit <m> to 0.</m>	

Access

MRS <Xt>, TRCCLAIMCLR

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b1001	0b110

MSR TRCCLAIMCLR, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b0111	0b1001	0b110

Accessibility

MRS <Xt>, TRCCLAIMCLR

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
        if Hal\overline{t}ed() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TRCCLAIMCLR;
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR_EL3.TTA == '1' then
        UNDEFINED;
```

```
elsif CPTR EL2.TTA == '1' then
          AArch64.SystemAccessTrap(EL2, 0x18);
elsif CPTR EL3.TTA == '1' then
          if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
else
                AArch64.SystemAccessTrap(EL3, 0x18);
else
               return TRCCLAIMCLR;
elsif PSTATE.EL == EL3 then
               if CPTR EL3.TTA == '1' then
                      AArch64.SystemAccessTrap(EL3, 0x18);
else
                return TRCCLAIMCLR;
```

MSR TRCCLAIMCLR. <Xt>

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
    AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    elsif CPTR_EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
            AArch64.SystemAccessTrap(EL3, 0x18);
        TRCCLAIMCLR = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && EDSCR.SDD == '1' && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch6\overline{4}. SystemAccessTrap (EL2, 0x18);
    elsif CPTR EL3.TTA == '1' then
       if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCLAIMCLR = X[t];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        TRCCLAIMCLR = X[t];
```

A.11 AArch64 Memory Partitioning and Monitoring registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** Memory Partitioning and Monitoring registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table A-380: Memory Partitioning and Monitoring registers summary

Name	Op0	Op1	CRn	CRm	Op2	Reset	Width	Description
MPAMVPMV_EL2	3	4	C10	C4	1	_	64-bit	MPAM Virtual Partition Mapping Valid Register
MPAMVPM0_EL2	3	4	C10	C6	0	_	64-bit	MPAM Virtual PARTID Mapping Register 0
MPAMVPM1_EL2	3	4	C10	C6	1	_	64-bit	MPAM Virtual PARTID Mapping Register 1

A.11.1 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

Valid bits for virtual PARTID mapping entries. Each bit m corresponds to virtual PARTID mapping entry m in the MPAMVPM<n>_EL2 registers where n = m >> 2.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

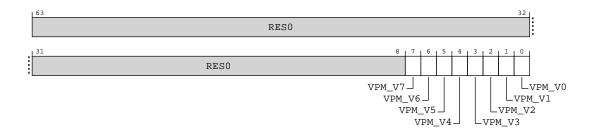
64

Functional group

Memory Partitioning and Monitoring registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-161: AArch64_mpamvpmv_el2 bit assignments

Table A-381: MPAMVPMV_EL2 bit descriptions

Bits	Name	Description	Reset
[63:8]	RES0	Reserved	RES0
[7]	VPM_V7	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[6]	VPM_V6	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	Х
[5]	VPM_V5	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[4]	VPM_V4	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[3]	VPM_V3	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[2]	VPM_V2	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[1]	VPM_V1	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х
[0]	VPM_V0	Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID <m>.</m>	х

Access

MRS <Xt>, MPAMVPMV EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0100	0b001

MSR MPAMVPMV EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0100	0b001

Accessibility

MRS <Xt>, MPAMVPMV_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
    else
            AArch64.SystemAccessTrap(EL3, 0x18);
else
        return MPAMVPMV_EL2;
elsif PSTATE.EL == EL3 then
    return MPAMVPMV_EL2;
```

MSR MPAMVPMV_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
```

A.11.2 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

MPAMVPMO EL2 provides mappings from virtual PARTIDs 0 - 3 to physical PARTIDs.

AArch64-MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 register. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If AArch64-MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, AArch64-MPAMVPMO EL2.

Virtual PARTID mapping is enabled by AArch64-MPAMHCR_EL2.EL1_VPMEN for PARTIDs in AArch64-MPAM1_EL1 and by AArch64-MPAMHCR_EL2.EL0_VPMEN for PARTIDs in AArch64-MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the AArch64-MPAMVPMV EL2.VPM V bit in bit position n is set to 1.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

64

Functional group

Memory Partitioning and Monitoring registers

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-162: AArch64_mpamvpm0_el2 bit assignments

63 54	53 48	47 38	37 32
RES0	PhyPARTID3	RES0	PhyPARTID2
31 22	21 16	15 6	5 0
RES0	PhyPARTID1	RES0	PhyPARTID0

Table A-384: MPAMVPM0_EL2 bit descriptions

Bits	Name	Description	Reset
[63:54]	RES0	Reserved	RES0
[53:48]	PhyPARTID3	Virtual PARTID Mapping Entry for virtual PARTID 3. PhyPARTID3 gives the mapping of virtual PARTID 3 to a physical PARTID.	6{x}
[47:38]	RESO	Reserved	RES0
[37:32]	PhyPARTID2	Virtual PARTID Mapping Entry for virtual PARTID 2. PhyPARTID2 gives the mapping of virtual PARTID 2 to a physical PARTID.	6{x}
[31:22]	RES0	Reserved	RES0
[21:16]	PhyPARTID1	Virtual PARTID Mapping Entry for virtual PARTID 1. PhyPARTID1 gives the mapping of virtual PARTID 1 to a physical PARTID.	6{x}
[15:6]	RESO	Reserved	RES0
[5:0]	PhyPARTIDO	Virtual PARTID Mapping Entry for virtual PARTID 0. PhyPARTID0 gives the mapping of virtual PARTID 0 to a physical PARTID.	6{x}

Access

MRS <Xt>, MPAMVPMO_EL2

ор0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	0b000

MSR MPAMVPMO_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	00000

Accessibility

MRS <Xt>, MPAMVPMO_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if MPAM3 EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
    else
            AArch64.SystemAccessTrap(EL3, 0x18);
else
```

```
return MPAMVPM0_EL2;
elsif PSTATE.EL == EL3 then
  return MPAMVPM0_EL2;
```

MSR MPAMVPMO EL2, <Xt>

A.11.3 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

MPAMVPM1_EL2 provides mappings from virtual PARTIDs 4 - 7 to physical PARTIDs.

AArch64-MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented AArch64-MPAMVPMO_EL2 to AArch64-MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If AArch64-MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, AArch64-MPAMVPMO_EL2.

Virtual PARTID mapping is enabled by AArch64-MPAMHCR_EL2.EL1_VPMEN for PARTIDs in AArch64-MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in AArch64-MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the AArch64-MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

Width

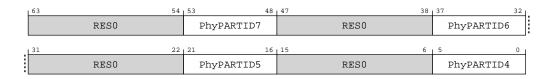
64

Functional group

Memory Partitioning and Monitoring registers

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure A-163: AArch64_mpamvpm1_el2 bit assignments

Table A-387: MPAMVPM1_EL2 bit descriptions

Bits	Name	Description	Reset
[63:54]	RESO	Reserved	RES0
[53:48]	PhyPARTID7	Virtual PARTID Mapping Entry for virtual PARTID 7. PhyPARTID7 gives the mapping of virtual PARTID 7 to a physical PARTID.	6{x}
[47:38]	RES0	Reserved	RES0
[37:32]	PhyPARTID6	Virtual PARTID Mapping Entry for virtual PARTID 6. PhyPARTID6 gives the mapping of virtual PARTID 6 to a physical PARTID.	6{x}
[31:22]	RES0	Reserved	RES0
[21:16]	PhyPARTID5	Virtual PARTID Mapping Entry for virtual PARTID 5. PhyPARTID5 gives the mapping of virtual PARTID 5 to a physical PARTID.	6{x}
[15:6]	RESO	Reserved	RES0
[5:0]	PhyPARTID4	Virtual PARTID Mapping Entry for virtual PARTID 4. PhyPARTID4 gives the mapping of virtual PARTID 4 to a physical PARTID.	6{x}

Access

MRS <Xt>, MPAMVPM1_EL2

ор0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	0b001

MSR MPAMVPM1_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	0b001

Accessibility

MRS <Xt>, MPAMVPM1_EL2

if PSTATE.EL == ELO then
 UNDEFINED;

```
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
    else
            AArch64.SystemAccessTrap(EL3, 0x18);
else
        return MPAMVPM1_EL2;
elsif PSTATE.EL == EL3 then
    return MPAMVPM1_EL2;
```

MSR MPAMVPM1_EL2, <Xt>

Appendix B External registers

This appendix contains the descriptions for the Cortex®-A715 core external registers.

This manual does not provide a complete list of registers. Read this manual together with the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

B.1 External MPMM registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped MPMM registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-1: MPMM registers summary

Offset	Name	Reset	Width	Description
0x000	CPUPPMCR	_	32-bit	Global PPM Configuration Register
0x010	CPUMPMMCR	_	32-bit	Global MPMM Configuration Register
0x020	CPUPPMPDPCR	_	64-bit	Global PPMPDP Configuration Register
0x024	CPUPPMPDPCR	_	64-bit	Global PPMPDP Configuration Register

B.1.1 CPUPPMCR, Global PPM Configuration Register

This register controls global PPM features and allows discovery of some PPM implementation details.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

MPMM

Register offset

0x000

Access type

See bit descriptions

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-1: ext_cpuppmcr bit assignments

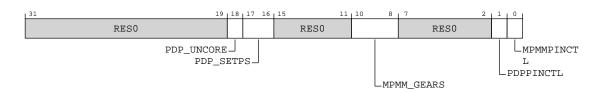


Table B-2: CPUPPMCR bit descriptions

Bits	Name	Description	Reset
[31:19]	RES0	Reserved	RES0
[18]	PDP_UNCORE	Indicates whether PDP uncore is implemented	х
		0ь1	
		PDP has separate uncore and core controls.	
		Access to this field is: RO	
[17:16]	PDP_SETPS	Number of PDP Setpoints implemented	xx
		0b11	
		3 PDP are enabled.	
		Access to this field is: RO	
[15:11]	RES0	Reserved	RES0
[10:8]	MPMM_GEARS	EARS Number of MPMM Gears implemented	
		0b011	
		3 MPMM are enabled.	
		Access to this field is: RO	
[7:2]	RES0	Reserved	RES0
[1]	PDPPINCTL	PDP Pin Control Enabled	0b0
		0ь0	
		PDP control through SPR and utility bus	
		0b1	
		PDP control through pin only.	
[O]	MPMMPINCTL	MPMM Pin Control Enabled	0b0
		0ь0	
		MPMM control through SPR and utility bus.	
		0ь1	
		MPMM control through pin only.	

Accessibility

Component	Offset	Instance
МРММ	0x000	CPUPPMCR

This interface is accessible as follows:

When IsCorePowered() && IsAccessSecure()

RW

When IsCorePowered() && !IsAccessSecure()

RAZ/WI

Otherwise

ERROR

B.1.2 CPUMPMMCR, Global MPMM Configuration Register

This register is used to change MPMM gears or disable MPMM.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

MPMM

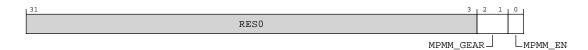
Register offset

0x010

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX XOOO

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-2: ext_cpumpmmcr bit assignments

Table B-4: CPUMPMMCR bit descriptions

Bits	Name	Description	Reset
[31:3]	RESO	Reserved	RESO
[2:1]	MPMM_GEAR	MPMM Gear Select	0000
		0600	
		Select MPMM Gear 0.	
		0ь01	
		Select MPMM Gear 1.	
		0ь10	
		Select MPMM Gear 2.	
		0b11	
		Select MPMM Gear 3.	
[0]	MPMM_EN	MPMM Master Enable	0d0
		0ъ0	
		MPMM is not enabled.	
		0ъ1	
		MPMM is enabled.	

Accessibility

Component	Offset	Instance
MPMM	0x010	CPUMPMMCR

This interface is accessible as follows:

When IsCorePowered() && IsAccessSecure()

RW

When IsCorePowered() && !IsAccessSecure()

RAZ/WI

Otherwise

ERROR

B.1.3 CPUPPMPDPCR, Global PPMPDP Configuration Register

This register controls the aggressiveness of PDP features.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

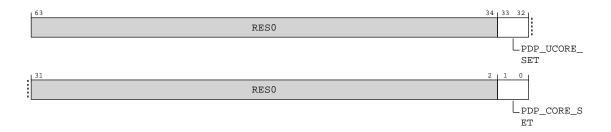
MPMM

Register offsets (2)

0x020,0x024

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-3: ext_cpuppmpdpcr bit assignments

Table B-6: CPUPPMPDPCR bit descriptions

Bits	Name	Description	Reset
[63:34]	RESO	Reserved	RES0

Bits	Name	Description	Reset
[33:32]	PDP_UCORE_SET	Uncore PDP Aggressiveness	0b00
		0ь00	
		Disable PDP.	
		0ь01	
		Engage PDP at low aggressiveness	
		0b10	
		Engage PDP at medium aggressiveness	
		0b11	
		Engage PDP at high aggressiveness	
[31:2]	RES0	Reserved	RES0
[1:0]	PDP_CORE_SET	Core PDP Aggressiveness	0b00
		0600	
		Disable PDP.	
		0b01	
		Engage PDP at low aggressiveness.	
		0b10	
		Engage PDP at medium aggressiveness.	
		0b11	
		Engage PDP at high aggressiveness.	

Accessibility

Component	Offset	Instance
MPMM	0x020	CPUPPMPDPCR

This interface is accessible as follows:

When IsCorePowered() && IsAccessSecure()

RW

When IsCorePowered() && !IsAccessSecure()

RAZ/WI

Otherwise

ERROR

Component	Offset	Instance
МРММ	0x024	CPUPPMPDPCR

This interface is accessible as follows:

When IsCorePowered() && IsAccessSecure()

RW

When IsCorePowered() && !IsAccessSecure()

RAZ/WI

Otherwise

FRROR

B.2 External PMU registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped PMU registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-9: PMU registers summary

Offset	Name	Reset	Width	Description
0x600	PMPCSSR	_	64-bit	Snapshot Program Counter Sample Register
0x608	PMCIDSSR	_	32-bit	Snapshot CONTEXTIDR_EL1 Sample Register
0x60C	PMCID2SSR	_	32-bit	Snapshot CONTEXTIDR_EL2 Sample Register
0x610	PMSSSR	_	32-bit	PMU Snapshot Status Register
0x618	PMCCNTSR	_	64-bit	PMU Cycle Counter Snapshot Register
0x620	PMEVCNTSR0	_	64-bit	PMU Event Counter Snapshot Register
0x628	PMEVCNTSR1	_	64-bit	PMU Event Counter Snapshot Register
0x630	PMEVCNTSR2	_	64-bit	PMU Event Counter Snapshot Register
0x638	PMEVCNTSR3	_	64-bit	PMU Event Counter Snapshot Register
0x640	PMEVCNTSR4	_	64-bit	PMU Event Counter Snapshot Register
0x648	PMEVCNTSR5	_	64-bit	PMU Event Counter Snapshot Register
0x650	PMEVCNTSR6	_	64-bit	PMU Event Counter Snapshot Register
0x658	PMEVCNTSR7	_	64-bit	PMU Event Counter Snapshot Register
0x660	PMEVCNTSR8	_	64-bit	PMU Event Counter Snapshot Register
0x668	PMEVCNTSR9	_	64-bit	PMU Event Counter Snapshot Register
0x670	PMEVCNTSR10	_	64-bit	PMU Event Counter Snapshot Register
0x678	PMEVCNTSR11	_	64-bit	PMU Event Counter Snapshot Register
0x680	PMEVCNTSR12	_	64-bit	PMU Event Counter Snapshot Register
0x688	PMEVCNTSR13	_	64-bit	PMU Event Counter Snapshot Register
0x690	PMEVCNTSR14	_	64-bit	PMU Event Counter Snapshot Register
0x698	PMEVCNTSR15	_	64-bit	PMU Event Counter Snapshot Register
0x6A0	PMEVCNTSR16	_	64-bit	PMU Event Counter Snapshot Register
0x6A8	PMEVCNTSR17	_	64-bit	PMU Event Counter Snapshot Register
0x6B0	PMEVCNTSR18	_	64-bit	PMU Event Counter Snapshot Register
0x6B8	PMEVCNTSR19	_	64-bit	PMU Event Counter Snapshot Register
0x6F0	PMSSCR	_	32-bit	PMU Snapshot Capture Register
0xE00	PMCFGR	_	32-bit	Performance Monitors Configuration Register
0xE04	PMCR_EL0		32-bit	Performance Monitors Control Register

Offset	Name	Reset	Width	Description
0xE20	PMCEID0	_	32-bit	Performance Monitors Common Event Identification register 0
0xE24	PMCEID1	_	32-bit	Performance Monitors Common Event Identification register 1
0xE28	PMCEID2	_	32-bit	Performance Monitors Common Event Identification register 2
0xE2C	PMCEID3	_	32-bit	Performance Monitors Common Event Identification register 3
0xE40	PMMIR	_	32-bit	Performance Monitors Machine Identification Register
0xFBC	PMDEVARCH	_	32-bit	Performance Monitors Device Architecture register
0xFC8	PMDEVID	_	32-bit	Performance Monitors Device ID register
0xFCC	PMDEVTYPE	_	32-bit	Performance Monitors Device Type register
0xFD0	PMPIDR4	_	32-bit	Performance Monitors Peripheral Identification Register 4
0xFE0	PMPIDR0	_	32-bit	Performance Monitors Peripheral Identification Register 0
0xFE4	PMPIDR1	_	32-bit	Performance Monitors Peripheral Identification Register 1
0xFE8	PMPIDR2	_	32-bit	Performance Monitors Peripheral Identification Register 2
OxFEC	PMPIDR3	_	32-bit	Performance Monitors Peripheral Identification Register 3
0xFF0	PMCIDR0	_	32-bit	Performance Monitors Component Identification Register 0
0xFF4	PMCIDR1	_	32-bit	Performance Monitors Component Identification Register 1
0xFF8	PMCIDR2	_	32-bit	Performance Monitors Component Identification Register 2
OxFFC	PMCIDR3	_	32-bit	Performance Monitors Component Identification Register 3

B.2.1 PMPCSSR, Snapshot Program Counter Sample Register

Captured copy of the Program Counter.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x600

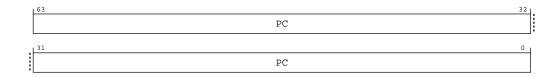
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-4: ext_pmpcssr bit assignments

Table B-10: PMPCSSR bit descriptions

Bits	Name	Description	Reset
[63:0]	PC	Sampled PC.	64 { x }
		The instruction address for the sampled instruction. The sampled instruction must be an instruction recently executed by the PE.	
		The architecture does not require that all instructions are eligible for sampling. However, it must be possible to reference instructions at branch targets. The branch target for a conditional branch instruction that fails its Condition code check is the instruction following the conditional branch target.	
		The sampled instruction must be architecturally executed. However, in exceptional circumstances, such as a change in security state or other boundary condition, it is permissible to sample an instruction that was speculatively executed and not architecturally executed.	
		Note: The ARM architecture does not define recently executed.	

B.2.2 PMCIDSSR, Snapshot CONTEXTIDR_EL1 Sample Register

Captured copy of the CONTEXTIDR_EL1 register.

The value captured must relate to the instruction captured in PMPCSSR.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0x608

Access type

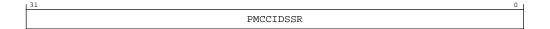
Read

R

Write

RESERVED

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-5: ext_pmcidssr bit assignments

Table B-11: PMCIDSSR bit descriptions

Bits	Name	Description	Reset
[31:0]	PMCCIDSSR	PMCIDSR sample. Sampled CONTEXTIDR_EL1 snapshot.	32{x}

B.2.3 PMCID2SSR, Snapshot CONTEXTIDR_EL2 Sample Register

Captured copy of the CONTEXTIDR_EL2 register.

The value captured must relate to the instruction captured in PMPCSSR.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0x60C

Access type

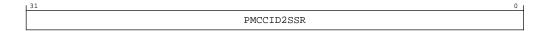
Read

R

Write

RESERVED

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-6: ext_pmcid2ssr bit assignments

Table B-12: PMCID2SSR bit descriptions

Bits	Name	Description	Reset
[31:0]	PMCCID2SSR	PMCID2SR sample. Sampled CONTEXTIDR_EL2 snapshot.	32{x}

B.2.4 PMSSSR, PMU Snapshot Status Register

Holds status information about the captured counters.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0x610

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxx1

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-7: ext_pmsssr bit assignments

Table B-13: PMSSSR bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	RES0
[O]	NC	No capture. Indicates whether the PMU counters have been captured.	0b1
		0ь0	
		PMU counters captured.	
		0ь1	
		PMU counters not captured.	
		The event counters are only not captured by the PE in the event of a security violation. The external Monitor is responsible for keeping track of whether it managed to capture the snapshot registers from the PE.	
		PMSSR.NC does not reflect the status of the captured Program Counter Sample registers.	
		PMSSR.NC is reset to 1 by PE Warm reset, but is overwritten at the first capture. Tools need to be aware that capturing over reset or power-down might lose data, as they are reliant on software saving and restoring the PMU state (including PMSSCR). There is no sampled sticky reset bit.	

B.2.5 PMCCNTSR, PMU Cycle Counter Snapshot Register

Captured copy of PMCCNTR_ELO. Once captured, the value in PMCCNTSR is unaffected by writes to PMCCNTR_ELO and PMCR_ELO.C.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

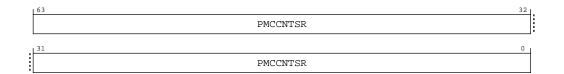
PMU

Register offset

0x618

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-8: ext_pmccntsr bit assignments

Table B-14: PMCCNTSR bit descriptions

Bits	Name	Description	Reset
[63:0]	PMCCNTSR	PMCCNTR_ELO sample. Sampled cycle count.	64 { x }

B.2.6 PMEVCNTSRO, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

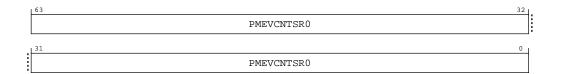
PMU

Register offset

0x620

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-9: ext_pmevcntsr0 bit assignments

Table B-15: PMEVCNTSR0 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR0	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.7 PMEVCNTSR1, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

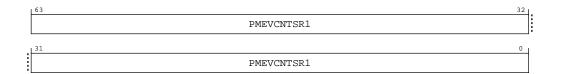
PMU

Register offset

0x628

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-10: ext_pmevcntsr1 bit assignments

Table B-16: PMEVCNTSR1 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR1	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.8 PMEVCNTSR2, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

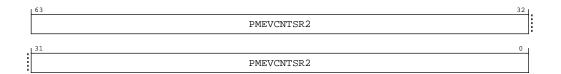
PMU

Register offset

0x630

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-11: ext_pmevcntsr2 bit assignments

Table B-17: PMEVCNTSR2 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR2	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.9 PMEVCNTSR3, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

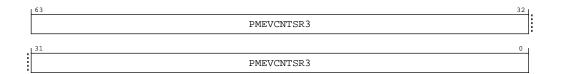
PMU

Register offset

0x638

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-12: ext_pmevcntsr3 bit assignments

Table B-18: PMEVCNTSR3 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR3	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.10 PMEVCNTSR4, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

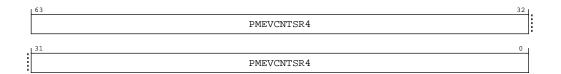
PMU

Register offset

0x640

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-13: ext_pmevcntsr4 bit assignments

Table B-19: PMEVCNTSR4 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR4	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.11 PMEVCNTSR5, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

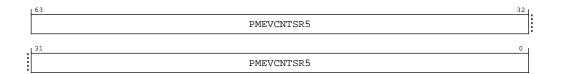
PMU

Register offset

0x648

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-14: ext_pmevcntsr5 bit assignments

Table B-20: PMEVCNTSR5 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR5	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.12 PMEVCNTSR6, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

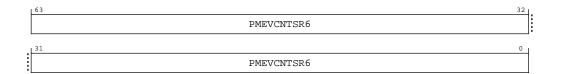
PMU

Register offset

0x650

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-15: ext_pmevcntsr6 bit assignments

Table B-21: PMEVCNTSR6 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR6	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.13 PMEVCNTSR7, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

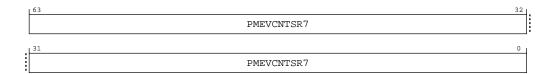
PMU

Register offset

0x658

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-16: ext_pmevcntsr7 bit assignments

Table B-22: PMEVCNTSR7 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR7	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.14 PMEVCNTSR8, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

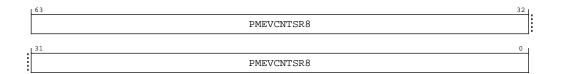
PMU

Register offset

0x660

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-17: ext_pmevcntsr8 bit assignments

Table B-23: PMEVCNTSR8 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR8	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.15 PMEVCNTSR9, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

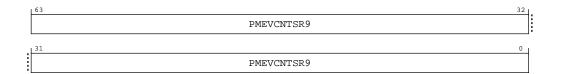
PMU

Register offset

0x668

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-18: ext_pmevcntsr9 bit assignments

Table B-24: PMEVCNTSR9 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR9	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.16 PMEVCNTSR10, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x670

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-19: ext_pmevcntsr10 bit assignments

Table B-25: PMEVCNTSR10 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR10	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.17 PMEVCNTSR11, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x678

Access type

RO

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-20: ext_pmevcntsr11 bit assignments

Table B-26: PMEVCNTSR11 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR11	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.18 PMEVCNTSR12, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

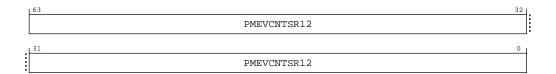
PMU

Register offset

0x680

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-21: ext_pmevcntsr12 bit assignments

Table B-27: PMEVCNTSR12 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR12	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.19 PMEVCNTSR13, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

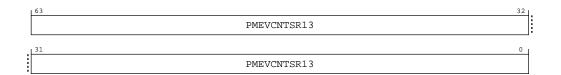
PMU

Register offset

0x688

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-22: ext_pmevcntsr13 bit assignments

Table B-28: PMEVCNTSR13 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR13	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.20 PMEVCNTSR14, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

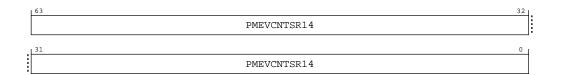
PMU

Register offset

0x690

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-23: ext_pmevcntsr14 bit assignments

Table B-29: PMEVCNTSR14 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR14	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.21 PMEVCNTSR15, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

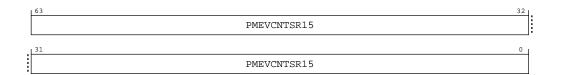
PMU

Register offset

0x698

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-24: ext_pmevcntsr15 bit assignments

Table B-30: PMEVCNTSR15 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR15	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.22 PMEVCNTSR16, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

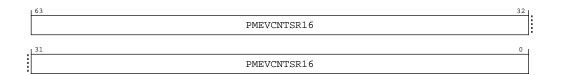
PMU

Register offset

0x6A0

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-25: ext_pmevcntsr16 bit assignments

Table B-31: PMEVCNTSR16 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR16	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.23 PMEVCNTSR17, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x6A8

Access type

RO

Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-26: ext_pmevcntsr17 bit assignments

Table B-32: PMEVCNTSR17 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR17	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.24 PMEVCNTSR18, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x6B0

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-27: ext_pmevcntsr18 bit assignments

Table B-33: PMEVCNTSR18 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR18	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.25 PMEVCNTSR19, PMU Event Counter Snapshot Register

Captured copy of PMEVCNTR<n>_ELO. Once captured, the value in PMSSEVCNTR<n> is unaffected by writes to PMSSEVCNTR<n>_ELO and PMCR_ELO.P.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

PMU

Register offset

0x6B8

Access type

RO


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-28: ext_pmevcntsr19 bit assignments

Table B-34: PMEVCNTSR19 bit descriptions

Bits	Name	Description	Reset
[63:0]	PMEVCNTSR19	PMEVCNTR <n>_ELO sample. Sampled event count.</n>	64{x}

B.2.26 PMSSCR, PMU Snapshot Capture Register

Provides a mechanism for software to initiate a sample.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0x6F0

Access type

RESERVEDW

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-29: ext_pmsscr bit assignments

Table B-35: PMSSCR bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	RESO
[O]	SS	Capture now.	x
		0ь0	
		Ignored.	
		0b1	
		Initiate a capture immediately.	

B.2.27 PMCFGR, Performance Monitors Configuration Register

Contains PMU-specific configuration data.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

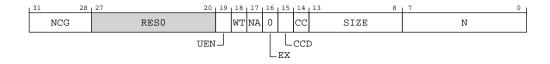
Register offset

0xE00

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX OXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-30: ext_pmcfgr bit assignments

Table B-36: PMCFGR bit descriptions

Bits	Name	Description	Reset
[31:28]	NCG	This feature is not supported, so this field is RAZ .	xxxx
[27:20]	RES0	Reserved	RES0
[19]	UEN	User-mode Enable Register supported. AArch64-PMUSERENR_ELO is not visible in the external debug interface, so this bit is RAZ .	Х
[18]	WT	This feature is not supported, so this bit is RAZ .	Х
[17]	NA	This feature is not supported, so this bit is RAZ .	Х

Bits	Name	Description	Reset
[16]	EX	Export supported. Value is IMPLEMENTATION DEFINED.	0b0
		0ь0	
		Export Not supported	
[15]	CCD	Cycle counter has prescale.	Х
		This field is RAZ	
		0ь0	
		ext-PMCR_ELO.D is reso .	
[14]	CC	Dedicated cycle counter (counter 31) supported. This bit is RAO.	X
[13:8]	SIZE	Size of counters, minus one. This field defines the size of the largest counter implemented by the Performance Monitors Unit.	6{x}
		From Armv8, the largest counter is 64-bits, so the value of this field is 0b111111.	
		This field is used by software to determine the spacing of the counters in the memory-map. From Armv8, the counters are a doubleword-aligned addresses.	
[7:0]	N	Number of counters implemented in addition to the cycle counter, ext-PMCCNTR_ELO. The maximum number of event counters is 31.	8 { x }
		оьоооооо	
		Only ext-PMCCNTR_EL0 implemented.	
		0ь00000001	
		ext-PMCCNTR_ELO plus one event counter implemented.	

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE00	PMCFGR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess()

RO

Otherwise

FRROR

B.2.28 PMCR_EL0, External Performance Monitors Control Register

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE04

Access type

See bit descriptions

Reset value

0000 0000 0000 0000 0000 0xxx xxx0 x000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-31: ext_pmcr_el0 bit assignments

Table B-38: PMCR_EL0 bit descriptions

Bits	Name	Description	Reset
[31:11]	RAZ/ WI	Reserved	RAZ/ WI
[10:8]	RES0	Reserved	RES0
[7]	LP	Long event counter enable. Determines when unsigned overflow is recorded by an event counter overflow bit. Ob0 Event counter overflow on increment that causes unsigned overflow of ext-PMEVCNTR <n>_ELO[31:0]. Ob1 Event counter overflow on increment that causes unsigned overflow of ext-PMEVCNTR<n>_ELO[63:0]. If EL2 is implemented and AArch64-MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [AArch64-MDCR_EL2.HPMN:(PMCR_EL0.N-1)]. Note: The effect of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of AArch64-MDCR_EL2.HPMN or AArch32-HDCR.HPMN.</n></n>	x

Bits	Name	Description	Reset
[6]	RES1	Reserved	RES1
[5]	DP	Disable cycle counter when event counting is prohibited. The possible values of this bit are:	Х
		Сусle counting by ext-PMCCNTR_ELO is not affected by this bit.	
		When event counting for counters in the range [0(AArch64-MDCR_EL2.HPMN-1)] is prohibited, cycle counting by ext-PMCCNTR_EL0 is disabled.	
		For more information, see Prohibiting event counting in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.	
[4]	RAZ/ WI	Reserved	RAZ/ WI
[3]	RES0	Reserved	RES0
[2]	С	Cycle counter reset. The effects of writing to this bit are:	0b0
		0ь0	
		No action.	
		0b1	
		Reset ext-PMCCNTR_EL0 to zero.	
		Note: Resetting ext-PMCCNTR_ELO does not change the cycle counter overflow bit. If FEAT_PMUv3p5 is implemented, the value of PMCR_ELO.LC is ignored, and bits [63:0] of the cycle counter are reset.	
		Access to this field is: WO/RAZ	
[1]	Р	Event counter reset. The effects of writing to this bit are:	0b0
		0ь0	
		No action.	
		0b1 Reset all event counters, not including ext-PMCCNTR_ELO, to zero.	
		Note: Resetting the event counters does not change the event counter overflow bits. If FEAT_PMUv3p5 is implemented, the value of AArch64-MDCR_EL2.HLP, or PMCR_EL0.LP is ignored and bits [63:0] of all affected event counters are reset. Access to this field is: WO/RAZ	

Bits	Name	Description	Reset
[0]	Е	Enable.	0b0
		0ъ0	
		All event counters in the range [0(PMN-1)] and ext-PMCCNTR_ELO, are disabled.	
		0b1	
		All event counters in the range [0(PMN-1)] and ext-PMCCNTR_ELO, are enabled by ext-PMCNTENSET_ELO.	
		If EL2 is implemented then:	
		• If EL2 is using AArch64, PMN is AArch64-MDCR_EL2.HPMN.	
		• If PMN is less than PMCR_ELO.N, this bit does not affect the operation of event counters in the range [PMN (PMCR_ELO.N-1)].	
		If EL2 is not implemented, PMN is PMCR_EL0.N.	
		Note:	
		The effect of the following fields on the operation of this bit applies if EL2 is implemented regardless of whether EL2 is enabled in the current Security state:	
		AArch64-MDCR_EL2.HPMN. See the description of AArch64-MDCR_EL2.HPMN for more information.	

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE04	PMCR_EL0

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess() && SoftwareLockStatus()

RO

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess() && !SoftwareLockStatus()

RW

Otherwise

ERROR

B.2.29 PMCEID0, Performance Monitors Common Event Identification register 0

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x0000 to 0x001F

For more information about the common events and the use of the PMCEIDn registers, see *The PMU* event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

This view of the register was previously called PMCEIDO ELO.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE20

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-32: ext_pmceid0 bit assignments

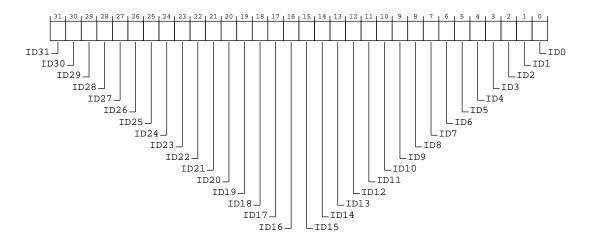


Table B-40: PMCEID0 bit descriptions

Bits	Name	Description	Reset
[31]	ID31	ID31 corresponds to common event (0x1f) L1D_CACHE_ALLOCATE	х
		0ь0	
		The common event is not implemented, or not counted.	
[30]	ID30	ID30 corresponds to common event (0x1e) CHAIN	Х
		0ь1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x1d) BUS_CYCLES	Х
		0ь1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x1c) TTBR_WRITE_RETIRED	x
		0ь1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x1b) INST_SPEC	х
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x1a) MEMORY_ERROR	х
		0ь0	
		The common event is not implemented, or not counted.	
[25]	ID25	ID25 corresponds to common event (0x19) BUS_ACCESS	x
		0b1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x18) L2D_CACHE_WB	х
		0b1	
		The common event is implemented.	

Bits	Name	Description	Reset
[23]	ID23	ID23 corresponds to common event (0x17) L2D_CACHE_REFILL	X
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x16) L2D_CACHE	X
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x15) L1D_CACHE_WB	X
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x14) L1I_CACHE	X
		0b1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to common event (0x13) MEM_ACCESS	X
		0b1	
		The common event is implemented.	
[18]	ID18	ID18 corresponds to common event (0x12) BR_PRED	X
		0b1	
		The common event is implemented.	
[17]	ID17	ID17 corresponds to common event (0x11) CPU_CYCLES	X
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x10) BR_MIS_PRED	Х
		0b1	
		The common event is implemented.	
[15]	ID15	ID15 corresponds to common event (0xf) UNALIGNED_LDST_RETIRED	Х
		0b0	
		The common event is not implemented, or not counted.	
[14]	ID14	ID14 corresponds to common event (Oxe) BR_RETURN_RETIRED	X
		0b1	
		The common event is implemented.	
[13]	ID13	ID13 corresponds to common event (0xd) BR_IMMED_RETIRED	Х
		0b1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0xc) PC_WRITE_RETIRED	Х
		0b1	
		The common event is implemented.	
[11]	ID11	ID11 corresponds to common event (0xb) CID_WRITE_RETIRED	х
		0b1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0xa) EXC_RETURN	х
		0b1	
		The common event is implemented.	

Reset
Х
х
X
x
X
X
X
X
X
x

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE20	PMCEID0

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess()

RO

Otherwise

FRROR

B.2.30 PMCEID1, Performance Monitors Common Event Identification register 1

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x020 to 0x03F.

For more information about the common events and the use of the PMCEIDn registers, see *The PMU* event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

This view of the register was previously called PMCEID1 ELO.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE24

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-33: ext_pmceid1 bit assignments

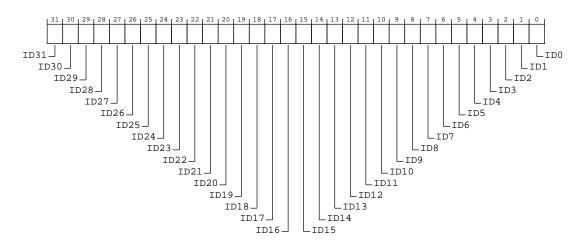


Table B-42: PMCEID1 bit descriptions

Bits	Name	Description	Reset
[31]	ID31	ID31 corresponds to common event (0x3f) STALL_SLOT	x
		0ь1	
		The common event is implemented.	
[30]	ID30	ID30 corresponds to common event (0x3e) STALL_SLOT_FRONTEND	x
		0ь1	
		The common event is implemented.	
[29]	ID29	ID29 corresponds to common event (0x3d) STALL_SLOT_BACKEND	x
		0ь1	
		The common event is implemented.	
[28]	ID28	ID28 corresponds to common event (0x3c) STALL	x
		0b1	
		The common event is implemented.	
[27]	ID27	ID27 corresponds to common event (0x3b) OP_SPEC	x
		0b1	
		The common event is implemented.	
[26]	ID26	ID26 corresponds to common event (0x3a) OP_RETIRED	x
		0b1	
		The common event is implemented.	
[25]	ID25	ID25 corresponds to common event (0x39) L1D_CACHE_LMISS_RD	x
		0b1	
		The common event is implemented.	
[24]	ID24	ID24 corresponds to common event (0x38) REMOTE_ACCESS_RD	x
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[23]	ID23	ID23 corresponds to common event (0x37) LL_CACHE_MISS_RD	Х
		0b1	
		The common event is implemented.	
[22]	ID22	ID22 corresponds to common event (0x36) LL_CACHE_RD	Х
		0b1	
		The common event is implemented.	
[21]	ID21	ID21 corresponds to common event (0x35) ITLB_WLK	Х
		0b1	
		The common event is implemented.	
[20]	ID20	ID20 corresponds to common event (0x34) DTLB_WLK	Х
		0b1	
		The common event is implemented.	
[19]	ID19	ID19 corresponds to a Reserved Event event (0x33)	Х
		0b0	
		The common event is not implemented, or not counted.	
[18]	ID18	ID18 corresponds to a Reserved Event event (0x32)	Х
		0b0	
		The common event is not implemented, or not counted.	
[17]	ID17	ID17 corresponds to common event (0x31) REMOTE_ACCESS	Х
		0b1	
		The common event is implemented.	
[16]	ID16	ID16 corresponds to common event (0x30) L2I_TLB	х
		0ь0	
		The common event is not implemented, or not counted.	
[15]	ID15	ID15 corresponds to common event (0x2f) L2D_TLB	х
		0b1	
		The common event is implemented.	
[14]	ID14	ID14 corresponds to common event (0x2e) L2I_TLB_REFILL	х
		0ь0	
		The common event is not implemented, or not counted.	
[13]	ID13	ID13 corresponds to common event (0x2d) L2D_TLB_REFILL	Х
		0ь1	
		The common event is implemented.	
[12]	ID12	ID12 corresponds to common event (0x2c) Reserved	Х
		0ь0	
		The common event is not implemented, or not counted.	
[11]	ID11	ID11 corresponds to common event (0x2b) L3D_CACHE	Х
		0ь1	
		The common event is implemented.	
[10]	ID10	ID10 corresponds to common event (0x2a) L3D_CACHE_REFILL	х
		0ь1	
		The common event is implemented.	

Bits	Name	Description	Reset
[9]	ID9	ID9 corresponds to common event (0x29) L3D_CACHE_ALLOCATE	х
		0ь1	
		The common event is implemented.	
[8]	ID8	ID8 corresponds to common event (0x28) L2I_CACHE_REFILL	х
		0ь0	
		The common event is not implemented, or not counted.	
[7]	ID7	ID7 corresponds to common event (0x27) L2I_CACHE	х
		0ь0	
		The common event is not implemented, or not counted.	
[6]	ID6	ID6 corresponds to common event (0x26) L1I_TLB	x
		0b1	
		The common event is implemented.	
[5]	ID5	ID5 corresponds to common event (0x25) L1D_TLB	X
		0b1	
		The common event is implemented.	
[4]	ID4	ID4 corresponds to common event (0x24) STALL_BACKEND	x
		0b1	
[0]	IDO	The common event is implemented.	
[3]	ID3	ID3 corresponds to common event (0x23) STALL_FRONTEND	X
		0b1 The common event is implemented.	
[2]	ID2	ID2 corresponds to common event (0x22) BR_MIS_PRED_RETIRED	
[4]	IDZ		X
		0b1 The common event is implemented.	
[1]	ID1	ID1 corresponds to common event (0x21) BR_RETIRED	x
[+]		0b1	A
		The common event is implemented.	
[0]	ID0	ID0 corresponds to common event (0x20) L2D_CACHE_ALLOCATE	X
'		0b1	
		The common event is implemented.	

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE24	PMCEID1

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess()

RO

Otherwise

FRROR

B.2.31 PMCEID2, Performance Monitors Common Event Identification register 2

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

For more information about the common events and the use of the PMCEIDn registers, see *The PMU* event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE28

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-34: ext_pmceid2 bit assignments

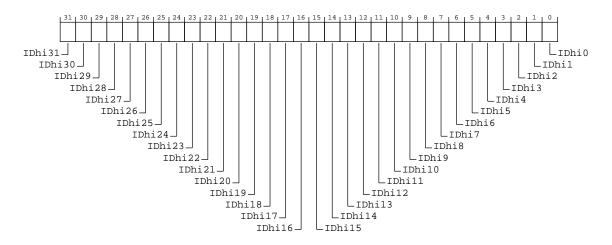


Table B-44: PMCEID2 bit descriptions

Bits	Name	Description	Reset
[31]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x401f)	Х
		0ъ0	
		The common event is not implemented, or not counted.	
[30]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x401e)	X
		0ъ0	
		The common event is not implemented, or not counted.	
[29]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x401d)	х
		0ъ0	
		The common event is not implemented, or not counted.	
[28]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x401c)	х
		0ъ0	
		The common event is not implemented, or not counted.	
[27]	IDhi27	IDhi27 corresponds to common event (0x401b) CTI_TRIGOUT7	x
		0b1	
		The common event is implemented.	
[26]	IDhi26	IDhi26 corresponds to common event (0x401a) CTI_TRIGOUT6	x
		0b1	
		The common event is implemented.	
[25]	IDhi25	IDhi25 corresponds to common event (0x4019) CTI_TRIGOUT5	x
		0b1	
		The common event is implemented.	
[24]	IDhi24	IDhi24 corresponds to common event (0x4018) CTI_TRIGOUT4	X
		0b1	
		The common event is implemented.	

Bits	Name	Descri	ption	Reset
[23]	IDhi23	IDhi23	3 corresponds to a Reserved Event event (0x4017)	х
		0ь0		
			The common event is not implemented, or not counted.	
[22]	IDhi22	IDhi22	corresponds to a Reserved Event event (0x4016)	Х
		0ь0		
			The common event is not implemented, or not counted.	
[21]	IDhi21	IDhi21	corresponds to a Reserved Event event (0x4015)	х
		0ь0		
			The common event is not implemented, or not counted.	
[20]	IDhi20	IDhi20	corresponds to a Reserved Event event (0x4014)	х
		0ь0		
			The common event is not implemented, or not counted.	
[19]	IDhi19	IDhi19	corresponds to common event (0x4013) TRCEXTOUT3	Х
		0b1		
			The common event is implemented.	
[18]	IDhi18	IDhi18	corresponds to common event (0x4012) TRCEXTOUT2	Х
		0b1		
			The common event is implemented.	
[17]	IDhi17	IDhi17	corresponds to common event (0x4011) TRCEXTOUT1	x
		0b1		
			The common event is implemented.	
[16]	IDhi16	IDhi16	corresponds to common event (0x4010) TRCEXTOUTO	x
		0b1		
			The common event is implemented.	
[15]	IDhi15	IDhi15	corresponds to common event (0x400f) PMU_HOVFS	X
		0ь0		
			The common event is not implemented, or not counted.	
[14]	IDhi14	IDhi14	corresponds to common event (0x400e) TRB_TRIG	X
		0ь0		
			The common event is not implemented, or not counted.	
[13]	IDhi13	IDhi13	3 corresponds to common event (0x400d) PMU_OVFS	X
		0ъ0		
			The common event is not implemented, or not counted.	
[12]	IDhi12	IDhi12	corresponds to common event (0x400c) TRB_WRAP	X
		0b1		
			The common event is implemented.	
[11]	IDhi11	IDhi11	corresponds to common event (0x400b) L3D_CACHE_LMISS_RD	x
		0b1		
			The common event is implemented.	
[10]	IDhi10	IDhi10	corresponds to common event (0x400a) L2I_CACHE_LMISS	x
		0ь0		
			The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[9]	IDhi9	IDhi9 corresponds to common event (0x4009) L2D_CACHE_LMISS_RD	Х
		0b1	
		The common event is implemented.	
[8]	IDhi8	IDhi8 corresponds to common event (0x4008) Reserved	Х
		0ь0	
		The common event is not implemented, or not counted.	
[7]	IDhi7	IDhi7 corresponds to common event (0x4007) Reserved	Х
		060	
		The common event is not implemented, or not counted.	
[6]	IDhi6	IDhi6 corresponds to common event (0x4006) L1I_CACHE_LMISS	Х
		0b1	
[[]	IDI :F	The common event is implemented.	
[5]	IDhi5		X
		The common event is implemented.	
[4]	IDhi4	10114	X
[4]		0b1	X
		The common event is implemented.	
[3]	IDhi3	IDI'O	X
		0ь0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	
[2]	IDhi2	IDhi2 corresponds to common event (0x4002) SAMPLE_FILTRATE	Х
		0ь0	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	
[1]	IDhi1	IDhi1 corresponds to common event (0x4001) SAMPLE_FEED	X
		060	
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		The common event is implemented. This value is reported if SPE is implemented.	
[0]	IDhi0		
[O]	טוווטו		X
		The common event is not implemented, or not counted. This value is reported if the SPE is not implemented.	
		0b1	
		The common event is implemented. This value is reported if SPE is implemented.	

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE28	PMCEID2

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess()

RO

Otherwise

ERROR

B.2.32 PMCEID3, Performance Monitors Common Event Identification register 3

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

For more information about the common events and the use of the PMCEIDn registers, see *The PMU* event number space and common events in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE2C

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-35: ext_pmceid3 bit assignments

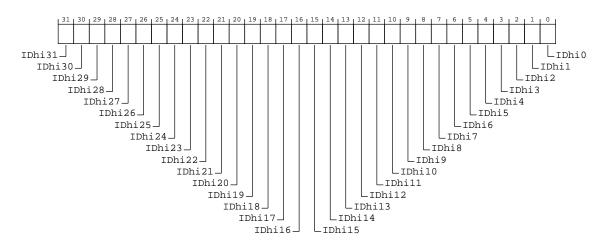


Table B-46: PMCEID3 bit descriptions

Bits	Name	Description	Reset
[31]	IDhi31	IDhi31 corresponds to a Reserved Event event (0x403f)	х
		0ь0	
		The common event is not implemented, or not counted.	
[30]	IDhi30	IDhi30 corresponds to a Reserved Event event (0x403e)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[29]	IDhi29	IDhi29 corresponds to a Reserved Event event (0x403d)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[28]	IDhi28	IDhi28 corresponds to a Reserved Event event (0x403c)	х
		0ь0	
		The common event is not implemented, or not counted.	
[27]	IDhi27	IDhi27 corresponds to a Reserved Event event (0x403b)	х
		0ь0	
		The common event is not implemented, or not counted.	
[26]	IDhi26	IDhi26 corresponds to a Reserved Event event (0x403a)	x
		0ь0	
		The common event is not implemented, or not counted.	
[25]	IDhi25	IDhi25 corresponds to a Reserved Event event (0x4039)	x
		0ь0	
		The common event is not implemented, or not counted.	
[24]	IDhi24	IDhi24 corresponds to a Reserved Event event (0x4038)	х
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[23]	IDhi23	IDhi23 corresponds to a Reserved Event event (0x4037)	х
		0ь0	
		The common event is not implemented, or not counted.	
[22]	IDhi22	IDhi22 corresponds to a Reserved Event event (0x4036)	x
		0ь0	
		The common event is not implemented, or not counted.	
[21]	IDhi21	IDhi21 corresponds to a Reserved Event event (0x4035)	x
		0ь0	
		The common event is not implemented, or not counted.	
[20]	IDhi20	IDhi20 corresponds to a Reserved Event event (0x4034)	x
		0ь0	
		The common event is not implemented, or not counted.	
[19]	IDhi19	IDhi19 corresponds to a Reserved Event event (0x4033)	x
		0ь0	
		The common event is not implemented, or not counted.	
[18]	IDhi18	IDhi18 corresponds to a Reserved Event event (0x4032)	x
		0ь0	
		The common event is not implemented, or not counted.	
[17]	IDhi17	IDhi17 corresponds to a Reserved Event event (0x4031)	х
		0ь0	
		The common event is not implemented, or not counted.	
[16]	IDhi16	IDhi16 corresponds to a Reserved Event event (0x4030)	х
		0 ₀ 0	
		The common event is not implemented, or not counted.	
[15]	IDhi15	IDhi15 corresponds to a Reserved Event event (0x402f)	х
		0ь0	
		The common event is not implemented, or not counted.	
[14]	IDhi14	IDhi14 corresponds to a Reserved Event event (0x402e)	х
		0ь0	
		The common event is not implemented, or not counted.	
[13]	IDhi13	IDhi13 corresponds to a Reserved Event event (0x402d)	х
		0ь0	
		The common event is not implemented, or not counted.	
[12]	IDhi12	IDhi12 corresponds to a Reserved Event event (0x402c)	х
		0ь0	
		The common event is not implemented, or not counted.	
[11]	IDhi11	IDhi11 corresponds to a Reserved Event event (0x402b)	х
		0ь0	
		The common event is not implemented, or not counted.	
[10]	IDhi10	IDhi10 corresponds to a Reserved Event event (0x402a)	х
		0ь0	
		The common event is not implemented, or not counted.	

Bits	Name	Description	Reset
[9]	IDhi9	IDhi9 corresponds to a Reserved Event event (0x4029)	х
		0ъ0	
		The common event is not implemented, or not counted.	
[8]	IDhi8	IDhi8 corresponds to a Reserved Event event (0x4028)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[7]	IDhi7	IDhi7 corresponds to a Reserved Event event (0x4027)	Х
		0ь0	
		The common event is not implemented, or not counted.	
[6]	IDhi6	IDhi6 corresponds to common event (0x4026) MEM_ACCESS_CHECKED_WR	х
		0b1	
		The common event is implemented.	
[5]	IDhi5	IDhi5 corresponds to common event (0x4025) MEM_ACCESS_CHECKED_RD	X
		0ь1	
		The common event is implemented.	
[4]	IDhi4	IDhi4 corresponds to common event (0x4024) MEM_ACCESS_CHECKED	X
		0b1	
		The common event is implemented.	
[3]	IDhi3	IDhi3 corresponds to common event (0x4023) Reserved	X
		0ь0	
		The common event is not implemented, or not counted.	
[2]	IDhi2	IDhi2 corresponds to common event (0x4022) ST_ALIGN_LAT	X
		0b1	
F 4 3	151.14	The common event is implemented.	
[1]	IDhi1	IDhi1 corresponds to common event (0x4021) LD_ALIGN_LAT	X
		0b1	
FO1	IDLIO	The common event is implemented.	
[O]	IDhi0	IDhi0 corresponds to common event (0x4020) LDST_ALIGN_LAT	X
		0b1	
		The common event is implemented.	

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

Component	Offset	Instance
PMU	0xE2C	PMCEID3

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess()

RO

Otherwise

FRROR

B.2.33 PMMIR, Performance Monitors Machine Identification Register

Describes Performance Monitors parameters specific to the implementation.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

PMU

Register offset

0xE40

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-36: ext_pmmir bit assignments

Table B-48: PMMIR bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:0]		Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is implemented, this field must not be zero.	0x05
		0ъ0000101	
		The largest value by which the STALL_SLOT PMU event may increment in one cycle is 5.	

If the Core power domain is off or in a low-power state, access on this interface returns an Error.

Component	Offset	Instance
PMU	0xE40	PMMIR

This interface is accessible as follows:

When !IsCorePowered() || DoubleLockStatus() || OSLockStatus() || !AllowExternalPMUAccess() ERROR

Otherwise

RO

B.2.34 PMDEVARCH, Performance Monitors Device Architecture register

Identifies the programmers' model architecture of the Performance Monitor component.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

PMU

Register offset

OxFBC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-37: ext_pmdevarch bit assignments

Table B-50: PMDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For Performance Monitors, this is Arm Limited.	11{x}
		Bits [31:28] are the JEP106 continuation code, 0x4.	
		Bits [27:21] are the JEP106 ID code, 0x3B.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	х
		This field is 1 in Armv8.	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	XXXX
		For Performance Monitors, the revision defined by Armv8 is 0x0.	
		All other values are reserved.	
[15:0]	ARCHID	Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further subdivided.	16{x}
		For Performance Monitors:	
		Bits [15:12] are the architecture version, 0x2.	
		Bits [11:0] are the architecture part number, 0xA16.	
		This corresponds to Performance Monitors architecture version PMUv3.	
		Note: The PMUv3 memory-mapped programmers' model can be used by devices other than Armv8 processors. Software must determine whether the PMU is attached to an Armv8 processor by using the ext-PMDEVAFF0 and ext-PMDEVAFF1 registers to discover the affinity of the PMU to any Armv8 processors.	

Accessibility

Component	Offset	Instance
PMU	0xFBC	PMDEVARCH

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.35 PMDEVID, Performance Monitors Device ID register

Provides information about features of the Performance Monitors implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT DoPD is not implemented, this register is in the Debug power domain.

This register is required from Armv8.2 and in any implementation that includes FEAT_PCSRv8p2. Otherwise, its location is RESO.

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of ext-EDDEVID.PCSample.

Attributes

Width

32

Component

PMU

Register offset

0xFC8

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-38: ext_pmdevid bit assignments

Table B-52: PMDEVID bit descriptions

Bits	Name	Description	Reset
[31:4]	RES0	Reserved	RES0
[3:0]	PCSample	Indicates the level of PC Sample-based Profiling support using Performance Monitors registers.	
		0ь0001	
		PC Sample-based Profiling Extension is implemented in the Performance Monitors register space.	

Accessibility

Component	Offset	Instance
PMU	0xFC8	PMDEVID

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.36 PMDEVTYPE, Performance Monitors Device Type register

Indicates to a debugger that this component is part of a PEs performance monitor interface.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

PMU

Register offset

OxFCC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-39: ext_pmdevtype bit assignments

Table B-54: PMDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SUB	Subtype. Must read as 0x1 to indicate this is a component within a PE.	xxxx
[3:0]	MAJOR	Major type. Must read as 0x6 to indicate this is a performance monitor component.	xxxx

Accessibility

Component	Offset	Instance
PMU	0xFCC	PMDEVTYPE

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.37 PMPIDR4, Performance Monitors Peripheral Identification Register 4

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFD0

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-40: ext_pmpidr4 bit assignments

Table B-56: PMPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SIZE	Size of the component. RAZ . Log_2 of the number of 4KB pages from the start of the component to the end of the component ID registers.	xxxx
[3:0]	DES_2	Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	0b0100
		0ь0100	
		Arm Limited	

Accessibility

Component	Offset	Instance
PMU	0xFD0	PMPIDR4

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

FRROR

B.2.38 PMPIDRO, Performance Monitors Peripheral Identification Register 0

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFE0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX O100 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-41: ext_pmpidr0 bit assignments

Table B-58: PMPIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PART_0	Part number, least significant byte.	0x4D
		0ь01001101	
		A715	

Accessibility

Component	Offset	Instance
PMU	0xFE0	PMPIDRO

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.39 PMPIDR1, Performance Monitors Peripheral Identification Register 1

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFE4

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-42: ext_pmpidr1 bit assignments

Table B-60: PMPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.	0b1011
		0b1011	
		Arm Limited	
[3:0]	PART_1	Part number, most significant nibble.	0b1101
		0b1101	
		A715	

Accessibility

Component	Offset	Instance
PMU	0xFE4	PMPIDR1

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.40 PMPIDR2, Performance Monitors Peripheral Identification Register 2

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFE8

Access type

See bit descriptions

Reset value


xxxx xxxx xxxx xxxx xxxx xxxx 0001 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-43: ext_pmpidr2 bit assignments

Table B-62: PMPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0

Bits	Name	Description	Reset
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	0b0001
		0b0001	
		r1p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	х
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.	0b011
		0b011	
		Arm Limited	

Component	Offset	Instance
PMU	0xFE8	PMPIDR2

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.41 PMPIDR3, Performance Monitors Peripheral Identification Register 3

Provides information to identify a Performance Monitor component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

OxFEC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-44: ext_pmpidr3 bit assignments

Table B-64: PMPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	REVAND	Part minor revision. Parts using ext-PMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.	0b0001
		0ь0001	
		r1p1	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component.	0b0000
		оьоооо	

Accessibility

Component	Offset	Instance
PMU	OxFEC	PMPIDR3

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.42 PMCIDRO, Performance Monitors Component Identification Register 0

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFF0

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-45: ext_pmcidr0 bit assignments

Table B-66: PMCIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_0	Preamble.	0x0D

Component	Offset	Instance
PMU	0xFF0	PMCIDR0

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.43 PMCIDR1, Performance Monitors Component Identification Register 1

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFF4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX 1001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-46: ext_pmcidr1 bit assignments

Table B-68: PMCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:4]	CLASS	Component class.	0b1001
		0b1001 CoreSight component.	
		Other values are defined by the CoreSight Architecture.	
		This field reads as 0x9.	
[3:0]	PRMBL_1	Preamble. RAZ.	000000

Accessibility

Component	Offset	Instance
PMU	0xFF4	PMCIDR1

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.44 PMCIDR2, Performance Monitors Component Identification Register 2

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

0xFF8

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-47: ext_pmcidr2 bit assignments

Table B-70: PMCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO .	Reserved	RESO
[7:0]	PRMBL_2	Preamble.	0x05

Accessibility

Component	Offset	Instance
PMU	0xFF8	PMCIDR2

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.2.45 PMCIDR3, Performance Monitors Component Identification Register 3

Provides information to identify a Performance Monitor component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

PMU

Register offset

OxFFC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-48: ext_pmcidr3 bit assignments

Table B-72: PMCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_3	Preamble.	0xB1

Component	Offset	Instance
PMU	0xFFC	PMCIDR3

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3 External Debug registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped Debug registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-74: Debug registers summary

Offset	Name	Reset	Width	Description
0x090	EDRCR	_	32-bit	External Debug Reserve Control Register
0x094	EDACR	_	32-bit	External Debug Auxiliary Control Register
0x310	EDPRCR	_	32-bit	External Debug Power/Reset Control Register
0xD00	MIDR_EL1	_	32-bit	Main ID Register
0xD20	EDPFR	_	64-bit	External Debug Processor Feature Register
0xD24	EDPFR	_	64-bit	External Debug Processor Feature Register
0xD28	EDDFR	_	64-bit	External Debug Feature Register
0xD2C	EDDFR	_	64-bit	External Debug Feature Register
0xFBC	EDDEVARCH	_	32-bit	External Debug Device Architecture register
0xFC0	EDDEVID2	_	32-bit	External Debug Device ID register 2
0xFC4	EDDEVID1	_	32-bit	External Debug Device ID register 1
0xFC8	EDDEVID	_	32-bit	External Debug Device ID register 0
0xFCC	EDDEVTYPE	_	32-bit	External Debug Device Type register
0xFD0	EDPIDR4	_	32-bit	External Debug Peripheral Identification Register 4
0xFE0	EDPIDRO	_	32-bit	External Debug Peripheral Identification Register 0
0xFE4	EDPIDR1	_	32-bit	External Debug Peripheral Identification Register 1
0xFE8	EDPIDR2	_	32-bit	External Debug Peripheral Identification Register 2
0xFEC	EDPIDR3	_	32-bit	External Debug Peripheral Identification Register 3
0xFF0	EDCIDR0	_	32-bit	External Debug Component Identification Register 0
0xFF4	EDCIDR1	_	32-bit	External Debug Component Identification Register 1
0xFF8	EDCIDR2	_	32-bit	External Debug Component Identification Register 2

Offset	Name	Reset	Width	Description
0xFFC	EDCIDR3	_	32-bit	External Debug Component Identification Register 3

B.3.1 EDRCR, External Debug Reserve Control Register

This register is used to allow imprecise entry to Debug state and clear sticky bits in ext-EDSCR.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

Debug

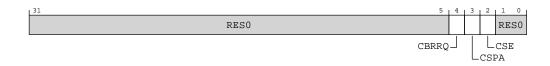
Register offset

0x090

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-49: ext_edrcr bit assignments

Table B-75: EDRCR bit descriptions

Bits	Name	Description	Reset
[31:5]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[4]	CBRRQ	Allow imprecise entry to Debug state. The actions on writing to this bit are:	Х
		0ь0	
		No action.	
		0ь1	
		Allow imprecise entry to Debug state, for example by canceling pending bus accesses.	
		Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug Request debug event must be pending before the debugger sets this bit to 1.	
		This feature is optional. If this feature is not implemented, writes to this bit are ignored.	
[3]	CSPA	Clear Sticky Pipeline Advance. This bit is used to clear the ext-EDSCR. PipeAdv bit to 0. The actions on writing to this bit are:	
		0ь0	
		No action.	
		0ь1	
		Clear the ext-EDSCR.PipeAdv bit to 0.	
[2]	CSE	Clear Sticky Error. Used to clear the ext-EDSCR cumulative error bits to 0. The actions on writing to this bit are:	х
		0ь0	
		No action.	
		0ь1	
		Clear the ext-EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the ext-EDSCR.ITO bit, to 0.	
[1:0]	RES0	Reserved	RES0

Component	Offset	Instance
Debug	0x090	EDRCR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && SoftwareLockStatus() $\ensuremath{\mathbb{W}}$

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && !SoftwareLockStatus() $\ensuremath{\mathbb{W}}\xspace$

Otherwise

ERROR

B.3.2 EDACR, External Debug Auxiliary Control Register

Allows implementations to support **IMPLEMENTATION DEFINED** controls.

Configurations

If FEAT_DoPD is implemented, this register is implemented in the Core power domain.

If FEAT_DoPD is not implemented, the power domain that this register is implemented in is IMPLEMENTATION DEFINED.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including possible deviation from the architecturally-defined behavior.

If the EDACR contains any control bits that must be preserved over power down, then these bits must be accessible by the external debug interface when the OS Lock is locked, AArch64-OSLSR EL1.OSLK == 1, and when the Core is powered off.

Attributes

Width

32

Component

Debug

Register offset

0x094

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-50: ext_edacr bit assignments

Table B-77: EDACR bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Accessibility

Component	Offset	Instance
Debug	0x094	EDACR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && SoftwareLockStatus() RO

When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && !SoftwareLockStatus() RW

Otherwise

ImplementationDefined

B.3.3 EDPRCR, External Debug Power/Reset Control Register

Controls the PE functionality related to powerup, reset, and powerdown.

Configurations

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and DBGPRCR EL1.

Attributes

Width

32

Component

Debug

Register offset

0x310

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-51: ext_edprcr bit assignments

Table B-79: EDPRCR bit descriptions

Bits	Name	Description	Reset
[31:1]	RES0	Reserved	RES0
[0]	CORENPDRQ	Core no powerdown request. Requests emulation of powerdown.	х
		This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.	
		0ь0	
		If the system responds to a powerdown request, it powers down Core power domain.	
		0b1	
		If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.	
		When this bit reads as UNKNOWN , the PE ignores writes to this bit.	
		This field is in the Core power domain, and permitted accesses to this field map to the AArch32-DBGPRCR.CORENPDRQ and AArch64-DBGPRCR_EL1.CORENPDRQ fields.	
		In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.	
		It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states, see <i>Core power domain power states</i> in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.	
		Note: Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.	
		When OSLockStatus()	
		Access to this field is: unknown /WI	
		When SoftwareLockStatus()	
		Access to this field is: RO	
		Otherwise:	
		Access to this field is: RW	

Accessibility

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

Component	Offset	Instance
Debug	0x310	EDPRCR

This interface is accessible as follows:

When IsCorePowered() && SoftwareLockStatus()

RO

When IsCorePowered() && !SoftwareLockStatus()

RW

Otherwise

ERROR

B.3.4 MIDR_EL1, External Main ID Register

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

This register is available in all configurations.

Attributes

Width

32

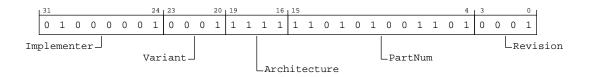
Component

Debug

Register offset

0xD00

Access type


See bit descriptions

Reset value

0100 0001 0001 1111 1101 0100 1101 0001

Bit descriptions

Figure B-52: ext_midr_el1 bit assignments

Table B-81: MIDR_EL1 bit descriptions

Bits	Name	Description	Reset
[31:24]	Implementer	Indicates the implementer code. This value is:	0x41
		0ъ01000001	
		Arm Limited	

Bits	Name	Description	Reset
[23:20]	Variant	Indicates the major revision of the product.	0b0001
		0ь0001	
		r1p1	
[19:16]	Architecture	Architecture version. Defined values are:	0b1111
		0b1111	
		Architecture is defined by ID registers	
[15:4]	PartNum	Primary Part Number for the device.	0xD4D
		On processors implemented by Arm, if the top four bits of the primary part number are $0x0$ or $0x7$, the variant and architecture are encoded differently.	
		0Ь110101001101	
		A715	
[3:0]	Revision	Indicates the minor revision of the product.	0b0001
		0ь0001	
		r1p1	

Component	Offset	Instance
Debug	0xD00	MIDR_EL1

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus()

RO

Otherwise

ImplementationDefined

B.3.5 EDPFR, External Debug Processor Feature Register

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

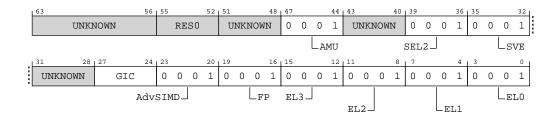
Debug

Register offsets (2)

0xD20,0xD24

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-53: ext_edpfr bit assignments

Table B-83: EDPFR bit descriptions

Bits	Name	Description	Reset
[63:56]	UNKNOWN	Reserved	UNKNOWN
[55:52]	RES0	Reserved	RESO
[51:48]	UNKNOWN	Reserved	UNKNOWN
[47:44]	AMU	Indicates support for Activity Monitors Extension. Defined values are:	0b0001
		0ь0001	
		FEAT_AMUv1 is implemented.	
[43:40]	UNKNOWN	Reserved	UNKNOWN
[39:36]	SEL2	Secure EL2. Defined values are:	0b0001
		0ь0001	
		Secure EL2 is implemented.	
[35:32]	SVE	Scalable Vector Extension. Defined values are:	0b0001
		0ь0001	
		SVE is implemented.	
[31:28]	UNKNOWN	Reserved	UNKNOWN

Bits	Name	Description	Reset
[27:24]	GIC	System register GIC interface support. Defined values are: 0b0000 GIC CPU interface system registers not implemented. 0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.	The reset values can be the following: 0b0000,0b0011, respective to the value.
[23:20]	AdvSIMD	 Advanced SIMD. Defined values are: 0b0001 Advanced SIMD is implemented, including support for the following SISD and SIMD operations:	0b0001
[19:16]	FP	Floating-point. Defined values are: 0b0001 Floating-point is implemented, and includes support for: • Half-precision, single-precision and double-precision floating-point types. • Conversions between single-precision and half-precision data types, and double-precision and half-precision data types.	0b0001
[15:12]	EL3	AArch64 EL3 Exception level handling. Defined values are: 0b0001 EL3 can be executed in AArch64 state only.	0b0001
[11:8]	EL2	AArch64 EL2 Exception level handling. Defined values are: 0b0001 EL2 can be executed in AArch64 state only.	0b0001
[7:4]	EL1	AArch64 EL1 Exception level handling. Defined values are: 0b0001 EL1 can be executed in AArch64 state only.	0b0001
[3:0]	ELO	AArch64 ELO Exception level handling. Defined values are: 0b0001 ELO can be executed in AArch64 state only.	0b0001

Component	Offset	Instance
Debug	0xD20	EDPFR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus()

RO

Otherwise

ImplementationDefined

Component	Offset	Instance
Debug	0xD24	EDPFR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus()

RO

Otherwise

ImplementationDefined

B.3.6 EDDFR, External Debug Feature Register

Provides top-level information about the debug system.

Debuggers must use ext-EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme* for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

64

Component

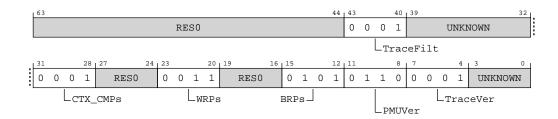
Debug

Register offsets (2)

0xD28,0xD2C

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-54: ext_eddfr bit assignments

Table B-86: EDDFR bit descriptions

Bits	Name	Description	Reset
[63:44]	RES0	Reserved	RES0
[43:40]	TraceFilt	Armv8.4 Self-hosted Trace Extension version. Defined values are:	0b0001
		0001	
		Armv8.4 Self-hosted Trace Extension is implemented.	
[39:32]	UNKNOWN	Reserved	UNKNOWN
[31:28]	CTX_CMPs	Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.	0b0001
		In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.CTX_CMPs.	
		0ь0001	
		Two context-aware breakpoints are included	
[27:24]	RES0	erved	
[23:20]	WRPs	Number of watchpoints, minus 1. The value of 0b0000 is reserved.	
		n an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.WRPs.	
		b0011	
		Four watchpoints	
[19:16]	RES0	Reserved	RES0
[15:12]	BRPs	Number of breakpoints, minus 1. The value of 0b0000 is reserved.	0b0101
		In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of AArch64-ID_AA64DFR0_EL1.BRPs.	
		0ь0101	
		Six breakpoints	

Bits	Name	Description	Reset
[11:8]	PMUVer	Performance Monitors Extension version. Defined value is:	
		0b0110	
		Performance Monitors Extension implemented, PMUv3 for Armv8.5	
[7:4]	TraceVer	Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:	0b0001
		0b0001	
		PE trace unit System registers implemented.	
[3:0]	UNKNOWN	Reserved	UNKNOWN

Component	Offset	Instance
Debug	0xD28	EDDFR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus()

RO

Otherwise

ImplementationDefined

Component	Offset	Instance
Debug	0xD2C	EDDFR

This interface is accessible as follows:

When IsCorePowered() && !DoubleLockStatus()

RO

Otherwise

ImplementationDefined

B.3.7 EDDEVARCH, External Debug Device Architecture register

Identifies the programmers' model architecture of the external debug component.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

Debug

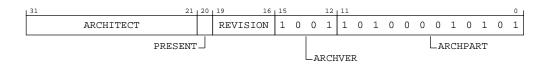
Register offset

OxFBC

Access type

See bit descriptions

Reset value


xxxx xxxx xxxx xxxx 1001 1010 0001 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-55: ext_eddevarch bit assignments

Table B-89: EDDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For debug, this is Arm Limited.	11 { x }
		ts [31:28] are the JEP106 continuation code, 0x4.	
		Bits [27:21] are the JEP106 ID code, 0x3B.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	х
		This field is 1 in Armv8.	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	xxxx
		For debug, the revision defined by Armv8-A is 0x0.	
		All other values are reserved.	
[15:12]	ARCHVER	Defines the architecture version of the component. This is the same value as AArch64-ID_AA64DFR0_EL1.DebugVer and AArch32-DBGDIDR.Version. The defined values of this field are:	0b1001
		0ь1001	
		Armv8.4 Debug architecture.	

Bits	Name	Description	Reset
[11:0]	ARCHPART	0ь101000010101	0xA15
		The part number of the Armv8-A debug component. The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHPART is ARCHID[11:0].	

Component	Offset	Instance
Debug	0xFBC	EDDEVARCH

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.8 EDDEVID2, External Debug Device ID register 2

Reserved for future descriptions of features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

Debug

Register offset

0xFC0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-56: ext_eddevid2 bit assignments

Table B-91: EDDEVID2 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RES0

Accessibility

Component	Offset	Instance
Debug	0xFC0	EDDEVID2

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.9 EDDEVID1, External Debug Device ID register 1

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

Debug

Register offset

0xFC4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX OOOO

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-57: ext_eddevid1 bit assignments

Table B-93: EDDEVID1 bit descriptions

Bits	Name	Description	Reset
[31:4]	RES0	Reserved	RES0
[3:0]		This field indicates the offset applied to PC samples returned by reads of ext-EDPCSR. Permitted values of this field in Armv8 are:	000000
		0ъ0000	
		ext-EDPCSR not implemented.	

Accessibility

Component	Offset	Instance
Debug	0xFC4	EDDEVID1

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.10 EDDEVID, External Debug Device ID register 0

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

Debug

Register offset

0xFC8

Access type

See bit descriptions

Reset value

xxxx 0000 xxxx xxxx xxxx xxxx 0001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-58: ext_eddevid bit assignments

Table B-95: EDDEVID bit descriptions

Bits	Name	Description	Reset
[31:28]	RES0	Reserved	RES0
[27:24]	AuxRegs	Indicates support for Auxiliary registers. Defined values are:	000000
		0ь0000	
		None supported.	
[23:8]	RES0	Reserved	RES0
[7:4]	DebugPower	ndicates support for the FEAT_DoPD feature. Defined values are:	
		0b0001	
		FEAT_DoPD implemented. All registers in the external debug interface register map are implemented in the Core power domain.	
[3:0]	PCSample	Indicates the level of PC Sample-based Profiling support using external debug registers. Defined values are:	
		0ь0000	
		PC Sample-based Profiling Extension is not implemented in the external debug registers space.	

Accessibility

Component	Offset	Instance
Debug	0xFC8	EDDEVID

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.11 EDDEVTYPE, External Debug Device Type register

Indicates to a debugger that this component is part of a PEs debug logic.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

Width

32

Component

Debug

Register offset

OxFCC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-59: ext_eddevtype bit assignments

Table B-97: EDDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0
[7:4]	SUB	Subtype. Must read as 0x1 to indicate this is a component within a PE.	xxxx

Bits	Name	Description	Reset
[3:0]	MAJOR	Major type. Must read as 0x5 to indicate this is a debug logic component.	xxxx

Component	Offset	Instance
Debug	0xFCC	EDDEVTYPE

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.12 EDPIDR4, External Debug Peripheral Identification Register 4

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFD0

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX O100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-60: ext_edpidr4 bit assignments

Table B-99: EDPIDR4 bit descriptions

Bits	Name	Description	Reset	
[31:8]	RES0	Reserved	RES0	
[7:4]		Size of the component. RAZ . Log_2 of the number of 4KB pages from the start of the component to the end of the component ID registers.	xxxx	
[3:0]	DES_2	Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	0b0100	
		0ь0100		
		Arm Limited		

Accessibility

Component	Offset	Instance
Debug	0xFD0	EDPIDR4

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.13 EDPIDRO, External Debug Peripheral Identification Register 0

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFE0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX O100 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-61: ext_edpidr0 bit assignments

Table B-101: EDPIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO .
[7:0]	PART_0	Part number, least significant byte.	0x4D
		0ь01001101	
		A715	

Accessibility

Component	Offset	Instance
Debug	0xFE0	EDPIDR0

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

FRROR

B.3.14 EDPIDR1, External Debug Peripheral Identification Register 1

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFE4

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-62: ext_edpidr1 bit assignments

Table B-103: EDPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.	0b1011
		0b1011	
		Arm Limited	
[3:0]	PART_1	Part number, most significant nibble.	0b1101
		0b1101	
		A715	

Accessibility

Component	Offset	Instance
Debug	0xFE4	EDPIDR1

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.15 EDPIDR2, External Debug Peripheral Identification Register 2

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFE8

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-63: ext_edpidr2 bit assignments

Table B-105: EDPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	0b0001
		0ь0001	
		r1p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	х
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.	0b011
		0ь011	
		Arm Limited	

Accessibility

Component	Offset	Instance
Debug	0xFE8	EDPIDR2

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.16 EDPIDR3, External Debug Peripheral Identification Register 3

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

OxFEC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX OOO1 OOOO

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-64: ext_edpidr3 bit assignments

Table B-107: EDPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[7:4]		Part minor revision. Parts using ext-EDPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.	0b0001
		0ъ0001	
		r1p1	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component.	000000
		0ь0000	

Accessibility

Component	Offset	Instance
Debug	OxFEC	EDPIDR3

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.17 EDCIDRO, External Debug Component Identification Register 0

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFF0

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-65: ext_edcidr0 bit assignments

Table B-109: EDCIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_0	Preamble.	0x0D

Accessibility

Component	Offset	Instance
Debug	0xFF0	EDCIDR0

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.18 EDCIDR1, External Debug Component Identification Register 1

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFF4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX 1001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-66: ext_edcidr1 bit assignments

Table B-111: EDCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:4]	CLASS	Component class.	0b1001
		0ь1001	
		CoreSight component.	
		Other values are defined by the CoreSight Architecture.	
		This field reads as 0x9.	
[3:0]	PRMBL_1	Preamble.	000000

Accessibility

Component	Offset	Instance
Debug	0xFF4	EDCIDR1

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.19 EDCIDR2, External Debug Component Identification Register 2

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

0xFF8

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-67: ext_edcidr2 bit assignments

Table B-113: EDCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_2	Preamble.	0x05

Accessibility

Component	Offset	Instance
Debug	0xFF8	EDCIDR2

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.3.20 EDCIDR3, External Debug Component Identification Register 3

Provides information to identify an external debug component.

For more information, see About the Component Identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

Width

32

Component

Debug

Register offset

OxFFC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-68: ext_edcidr3 bit assignments

Table B-115: EDCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_3	Preamble.	0xB1

Accessibility

Component	Offset	Instance
Debug	OxFFC	EDCIDR3

This interface is accessible as follows:

When IsCorePowered()

RO

Otherwise

ERROR

B.4 External AMU registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped AMU registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-117: AMU registers summary

Offset	Name	Reset	Width	Description
0x400	AMEVTYPER00	_	32-bit	Activity Monitors Event Type Registers 0
0x404	AMEVTYPER01	_	32-bit	Activity Monitors Event Type Registers 0
0x408	AMEVTYPER02	_	32-bit	Activity Monitors Event Type Registers 0
0x40C	AMEVTYPER03	_	32-bit	Activity Monitors Event Type Registers 0

Offset	Name	Reset	Width	Description
0x480	AMEVTYPER10	_	32-bit	Activity Monitors Event Type Registers 1
0x484	AMEVTYPER11	_	32-bit	Activity Monitors Event Type Registers 1
0x488	AMEVTYPER12	_	32-bit	Activity Monitors Event Type Registers 1
0xCE0	AMCGCR	_	32-bit	Activity Monitors Counter Group Configuration Register
0xE00	AMCFGR	_	32-bit	Activity Monitors Configuration Register
0xE08	AMIIDR	_	32-bit	Activity Monitors Implementation Identification Register
0xFBC	AMDEVARCH	_	32-bit	Activity Monitors Device Architecture Register
0xFCC	AMDEVTYPE	_	32-bit	Activity Monitors Device Type Register
0xFD0	AMPIDR4	_	32-bit	Activity Monitors Peripheral Identification Register 4
0xFE0	AMPIDRO	_	32-bit	Activity Monitors Peripheral Identification Register 0
0xFE4	AMPIDR1	_	32-bit	Activity Monitors Peripheral Identification Register 1
0xFE8	AMPIDR2	_	32-bit	Activity Monitors Peripheral Identification Register 2
OxFEC	AMPIDR3	_	32-bit	Activity Monitors Peripheral Identification Register 3
0xFF0	AMCIDRO	_	32-bit	Activity Monitors Component Identification Register 0
0xFF4	AMCIDR1	_	32-bit	Activity Monitors Component Identification Register 1
0xFF8	AMCIDR2	_	32-bit	Activity Monitors Component Identification Register 2
0xFFC	AMCIDR3	_	32-bit	Activity Monitors Component Identification Register 3

B.4.1 AMEVTYPER00, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR00_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x400

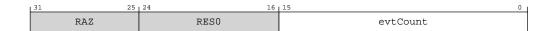
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-69: ext_amevtyper00 bit assignments

Table B-118: AMEVTYPER00 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	16{x}
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0ь00000000010001	
		Processor frequency cycles	

B.4.2 AMEVTYPER01, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR01_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x404

Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-70: ext_amevtyper01 bit assignments

Table B-119: AMEVTYPER01 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	16{x}
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0b0100000000100	
		Constant frequency cycles	

B.4.3 AMEVTYPER02, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR02_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x408

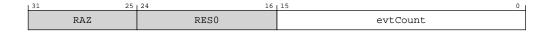
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-71: ext_amevtyper02 bit assignments

Table B-120: AMEVTYPER02 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter. The following table shows the mapping between required event numbers and the corresponding counters: 0b00000000000000 Instructions retired</n>	16{x}

B.4.4 AMEVTYPER03, Activity Monitors Event Type Registers 0

Provides information on the events that an architected activity monitor event counter AArch64-AMEVCNTR03_ELO counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x40C

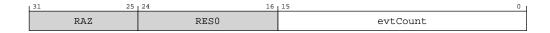
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-72: ext_amevtyper03 bit assignments

Table B-121: AMEVTYPER03 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[15:0]		Event to count. The event number of the event that is counted by the architected activity monitor event counter ext-AMEVCNTRO <n>. The value of this field is architecturally required for each architected counter.</n>	16{x}
		The following table shows the mapping between required event numbers and the corresponding counters:	
		0ь0100000000101	
		Memory stall cycles	

B.4.5 AMEVTYPER10, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR10_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x480

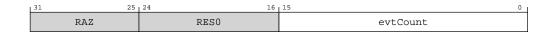
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-73: ext_amevtyper10 bit assignments

Table B-122: AMEVTYPER10 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]		Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR10_EL0.	16{x}
		0ь000001100000000	
		MPMM gear 0 period threshold exceeded	

B.4.6 AMEVTYPER11, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR11_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x484

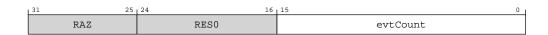
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-74: ext_amevtyper11 bit assignments

Table B-123: AMEVTYPER11 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]	evtCount	Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR11_ELO.	16{x}
		0ь000001100000001	
		MPMM gear 1 period threshold exceeded	

B.4.7 AMEVTYPER12, Activity Monitors Event Type Registers 1

Provides information on the events that an auxiliary activity monitor event counter AArch64-AMEVCNTR12_EL0 counts.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0x488

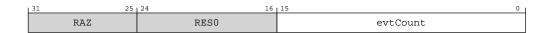
Access type

Read

R

Write

RESERVED


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-75: ext_amevtyper12 bit assignments

Table B-124: AMEVTYPER12 bit descriptions

Bits	Name	Description	Reset
[31:25]	RAZ	Reserved	RAZ
[24:16]	RES0	Reserved	RES0
[15:0]	evtCount Event to count. The event number of the event that is counted by the auxiliary activity monitor event count AMEVCNTR12_ELO.		16{x}
		0ь000001100000010	
		MPMM gear 2 period threshold exceeded	

B.4.8 AMCGCR, Activity Monitors Counter Group Configuration Register

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

 AMU

Register offset

0xCE0

Access type

RO

Reset value

xxxx xxxx xxxx xxxx 0000 0011 0000 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-76: ext_amcgcr bit assignments



Table B-125: AMCGCR bit descriptions

Bits	Name	Description	Reset
[31:16]	RES0	Reserved	RES0
[15:8]	CG1NC	Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group. In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16. 0b0000011	0x03
		Three counters in the auxiliary counter group	
[7:0]	CG0NC	Counter Group 0 Number of Counters. The number of counters in the architected counter group. In an implementation that includes FEAT_AMUv1, the value of this field is 4. 0b0000100 Four counters in the architected counter group	0x04

B.4.9 AMCFGR, Activity Monitors Configuration Register

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both the architected and the auxiliary counter groups.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xE00

Access type

RO

Reset value

0001 xxx1 0000 0000 0011 1111 0000 0110

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-77: ext_amcfgr bit assignments

Table B-126: AMCFGR bit descriptions

Bits	Name	Description	Reset
[31:28]	NCG	Defines the number of counter groups. The following value is specified for this product.	0b0001
		0ь0001	
		Two counter groups are implemented	
[27:25]	RES0	Reserved	RES0
[24]	HDBG	Halt-on-debug supported.	0b1
		From Armv8, this feature must be supported, and so this bit is 0b1. 0b1 ext-AMCR.HDBG is read/write.	
[23:14]	RAZ	Reserved	RAZ

Bits	Name	Description	Reset
[13:8]	SIZE	Defines the size of activity monitor event counters.	0b111111
		The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as [AMCFGR.SIZE + 1].	
		From Armv8, the counters are 64-bit, and so this field is 0b111111.	
		Note: Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.	
		0b111111	
		64 bits	
[7:0]	Ν	Defines the number of activity monitor event counters.	0x06
		The total number of counters implemented in all groups by the Activity Monitors Extension is defined as [AMCFGR.N + 1].	
		0ь00000110	
		Seven activity monitor event counters	

B.4.10 AMIIDR, Activity Monitors Implementation Identification Register

Defines the implementer and revisions of the AMU.

Configurations

This register is available in all configurations.

Attributes

Width

32

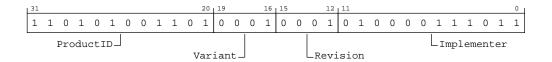
Component

AMU

Register offset

0xE08

Access type


RO

Reset value

1101 0100 1101 0001 0001 0100 0011 1011

Bit descriptions

Figure B-78: ext_amiidr bit assignments

Table B-127: AMIIDR bit descriptions

Bits	Name	Description	Reset
[31:20]	ProductID	This field is an AMU part identifier.	0xD4D
		0b110101001101	
		A715	
[19:16]	Variant	This field distinguishes product variants or major revisions of the product.	0b0001
		0ь0001	
		r1p1	
[15:12]	Revision	This field distinguishes minor revisions of the product.	0b0001
		0ь0001	
		r1p1	
[11:0]	Implementer	Contains the JEP106 code of the company that implemented the AMU.	0x43B
		For an Arm implementation, this field reads as 0x43B.	
		0b010000111011	
		Arm Limited	

B.4.11 AMDEVARCH, Activity Monitors Device Architecture Register

Identifies the programmers' model architecture of the AMU component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

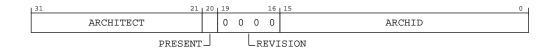
Register offset

OxFBC

Access type

RO

Reset value


XXXX XXXX XXXX 0000 XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-79: ext_amdevarch bit assignments

Table B-128: AMDEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Defines the architecture of the component. For AMU, this is Arm Limited.	11 (x)
		Bits [31:28] are the JEP106 continuation code, 0x4.	
		Bits [27:21] are the JEP106 ID code, 0x3B.	
[20]	PRESENT	When set to 1, indicates that the DEVARCH is present.	х
		This field is 1 in Armv8.	
[19:16]	REVISION	Defines the architecture revision. For architectures defined by Arm this is the minor revision.	0b0000
		0ь0000	
		Architecture revision is AMUv1.	
		All other values are reserved.	
[15:0]	ARCHID	Defines this part to be an AMU component. For architectures defined by Arm this is further subdivided.	16{x}
		For AMU:	
		Bits [15:12] are the architecture version, 0x0.	
		Bits [11:0] are the architecture part number, 0xA66.	
		This corresponds to AMU architecture version AMUv1.	

B.4.12 AMDEVTYPE, Activity Monitors Device Type Register

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

OxFCC

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-80: ext_amdevtype bit assignments

Table B-129: AMDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SUB	Subtype. Reads as 0x1, to indicate this is a component within a PE.	xxxx
[3:0]	MAJOR	Major type. Reads as 0x6, to indicate this is a performance monitor component.	xxxx

B.4.13 AMPIDR4, Activity Monitors Peripheral Identification Register 4

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFD0

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX O100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-81: ext_ampidr4 bit assignments

Table B-130: AMPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SIZE	Size of the component. Log_2 of the number of 4KB pages from the start of the component to the end of the component ID registers. This field reads as $0b0000$.	XXXX
10.01	DEC 0		
[3:0]	DES_2	Designer. JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	0b0100
		0ь0100	
		Arm Limited	

B.4.14 AMPIDRO, Activity Monitors Peripheral Identification Register 0

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFE0

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0100 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-82: ext_ampidr0 bit assignments

Table B-131: AMPIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RESO
[7:0]	PART_0	Part number, least significant byte.	0x4D
		0ь01001101	
		A715	

B.4.15 AMPIDR1, Activity Monitors Peripheral Identification Register 1

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFE4

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX 1011 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-83: ext_ampidr1 bit assignments

Table B-132: AMPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.	0b1011
		Ob1011 Arm Limited	

Bits	Name	Description	Reset
[3:0]	PART_1	Part number, most significant nibble.	0b1101
		0b1101	
		A715	

B.4.16 AMPIDR2, Activity Monitors Peripheral Identification Register 2

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFE8

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-84: ext_ampidr2 bit assignments

Table B-133: AMPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	0b0001
		0ь0001	
		r1p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	Х
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code.	0b011
		For Arm Limited, this field is 0b011.	
		0b011	
		Arm Limited	

B.4.17 AMPIDR3, Activity Monitors Peripheral Identification Register 3

Provides information to identify an activity monitors component.

For more information, see About the Peripheral identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

OxFEC

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-85: ext_ampidr3 bit assignments

Table B-134: AMPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]		Part minor revision. Parts using ext-AMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number. 0b0001	0b0001
		r1p1	
[3:0]		Customer modified. Indicates someone other than the Designer has modified the component. 0b0000	0b0000
		05000	

B.4.18 AMCIDRO, Activity Monitors Component Identification Register 0

Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

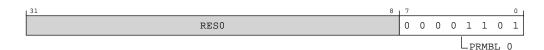
Register offset

0xFF0

Access type

RO

Reset value


xxxx xxxx xxxx xxxx xxxx xxxx 0000 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-86: ext_amcidr0 bit assignments

Table B-135: AMCIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_0	Preamble.	0x0D

B.4.19 AMCIDR1, Activity Monitors Component Identification Register 1

Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFF4

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-87: ext_amcidr1 bit assignments

Table B-136: AMCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	CLASS	Component class.	0b1001
		Ob1001 CoreSight component. Other values are defined by the CoreSight Architecture. This field reads as 0х9.	
[3:0]	PRMBL_1	Preamble.	000000

B.4.20 AMCIDR2, Activity Monitors Component Identification Register 2

Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

0xFF8

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-88: ext_amcidr2 bit assignments

Table B-137: AMCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_2	Preamble.	0x05

B.4.21 AMCIDR3, Activity Monitors Component Identification Register 3

Provides information to identify an activity monitors component.

For more information, see About the Component identification scheme in the Arm® Architecture Reference Manual Armv8, for A-profile architecture.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

AMU

Register offset

OxFFC

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-89: ext_amcidr3 bit assignments

Table B-138: AMCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_3	Preamble.	0xB1

B.5 External ETE registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped ETE registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-139: ETE registers summary

Offset	Name	Reset	Width	Description
0x018	TRCAUXCTLR	_	32-bit	Auxiliary Control Register
0x180	TRCIDR8	_	32-bit	ID Register 8
0x184	TRCIDR9	_	32-bit	ID Register 9
0x188	TRCIDR10	_	32-bit	ID Register 10
0x18C	TRCIDR11	_	32-bit	ID Register 11
0x190	TRCIDR12	_	32-bit	ID Register 12
0x194	TRCIDR13	_	32-bit	ID Register 13
0x1C0	TRCIMSPECO	_	32-bit	IMP DEF Register 0
0x1E0	TRCIDRO	_	32-bit	ID Register 0
0x1E4	TRCIDR1	_	32-bit	ID Register 1
0x1E8	TRCIDR2	_	32-bit	ID Register 2

Offset	Name	Reset	Width	Description
0x1EC	TRCIDR3	_	32-bit	ID Register 3
0x1F0	TRCIDR4		32-bit	ID Register 4
0x1F4	TRCIDR5		32-bit	ID Register 5
0x1F8	TRCIDR6	_	32-bit	ID Register 6
0x1FC	TRCIDR7	_	32-bit	ID Register 7
0xF00	TRCITCTRL	_	32-bit	Integration Mode Control Register
0xFA0	TRCCLAIMSET	_	32-bit	Claim Tag Set Register
0xFA4	TRCCLAIMCLR	_	32-bit	Claim Tag Clear Register
0xFBC	TRCDEVARCH	_	32-bit	Device Architecture Register
0xFC0	TRCDEVID2	_	32-bit	Device Configuration Register 2
0xFC4	TRCDEVID1	_	32-bit	Device Configuration Register 1
0xFC8	TRCDEVID	_	32-bit	Device Configuration Register
0xFCC	TRCDEVTYPE	_	32-bit	Device Type Register
0xFD0	TRCPIDR4	_	32-bit	Peripheral Identification Register 4
0xFD4	TRCPIDR5	_	32-bit	Peripheral Identification Register 5
0xFD8	TRCPIDR6	_	32-bit	Peripheral Identification Register 6
0xFDC	TRCPIDR7	_	32-bit	Peripheral Identification Register 7
0xFE0	TRCPIDRO	_	32-bit	Peripheral Identification Register O
0xFE4	TRCPIDR1	_	32-bit	Peripheral Identification Register 1
0xFE8	TRCPIDR2	_	32-bit	Peripheral Identification Register 2
0xFEC	TRCPIDR3	_	32-bit	Peripheral Identification Register 3
0xFF0	TRCCIDRO	_	32-bit	Component Identification Register 0
0xFF4	TRCCIDR1	_	32-bit	Component Identification Register 1
0xFF8	TRCCIDR2	_	32-bit	Component Identification Register 2
0xFFC	TRCCIDR3		32-bit	Component Identification Register 3

B.5.1 TRCAUXCTLR, External Auxiliary Control Register

The function of this register is **IMPLEMENTATION DEFINED**.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x018

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-90: ext_trcauxctlr bit assignments

Table B-140: TRCAUXCTLR bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RES0

Accessibility

If this register is nonzero then it might cause the behavior of a trace unit to contradict this architecture specification. See the documentation of the specific implementation for information about the IMPLEMENTATION DEFINED support for this register.

Component	Offset	Instance
ETE	0x018	TRCAUXCTLR

This interface is accessible as follows:

When OSLockStatus() || !AllowExternalTraceAccess() || !IsTraceCorePowered()

ERROR

Otherwise

RW

B.5.2 TRCIDR8, External ID Register 8

Returns the maximum speculation depth of the instruction trace element stream.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x180

Access type

See bit descriptions

Reset value

0000 0000 0000 0000 0000 0000 0000 0000

Bit descriptions

Figure B-91: ext_trcidr8 bit assignments

Table B-142: TRCIDR8 bit descriptions

Bits	Name	Description	Reset
[31:0]		Indicates the maximum speculation depth of the instruction trace element stream. This is the maximum number of PO elements in the trace element stream that can be speculative at any time.	0x00000000
		0Р0000000000000000000000000000	

Accessibility

Component	Offset	Instance
ETE	0x180	TRCIDR8

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.3 TRCIDR9, External ID Register 9

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x184

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-92: ext_trcidr9 bit assignments

Table B-144: TRCIDR9 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RES0

Accessibility

Component	Offset	Instance
ETE	0x184	TRCIDR9

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.4 TRCIDR10, External ID Register 10

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x188

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-93: ext_trcidr10 bit assignments

Table B-146: TRCIDR10 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RES0

Accessibility

Component	Offset	Instance
ETE	0x188	TRCIDR10

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.5 TRCIDR11, External ID Register 11

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x18C

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-94: ext_trcidr11 bit assignments

Table B-148: TRCIDR11 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Component	Offset	Instance
ETE	0x18C	TRCIDR11

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.6 TRCIDR12, External ID Register 12

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x190

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-95: ext_trcidr12 bit assignments

Table B-150: TRCIDR12 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Accessibility

Component	Offset	Instance
ETE	0x190	TRCIDR12

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.7 TRCIDR13, External ID Register 13

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x194

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-96: ext_trcidr13 bit assignments

Table B-152: TRCIDR13 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RESO

Accessibility

Component	Offset	Instance
ETE	0x194	TRCIDR13

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.8 TRCIMSPECO, External IMP DEF Register 0

TRCIMSPECO shows the presence of any **IMPLEMENTATION DEFINED** features, and provides an interface to enable the features that are provided.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x1C0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX OOOO

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-97: ext_trcimspec0 bit assignments

Table B-154: TRCIMSPEC0 bit descriptions

Bits	Name	Description	Reset
[31:4]	RESO	Reserved	RES0
[3:0]	SUPPORT	Indicates whether the implementation supports IMPLEMENTATION DEFINED features.	0b0000
		50000	
		No IMPLEMENTATION DEFINED features are supported.	

Accessibility

Component	Offset	Instance
ETE	0x1C0	TRCIMSPEC0

This interface is accessible as follows:

When OSLockStatus() | !AllowExternalTraceAccess() | !IsTraceCorePowered()

ERROR

Otherwise

RW

B.5.9 TRCIDRO, External ID Register 0

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x1E0

Access type

See bit descriptions

Reset value

x010 1000 xxxx xxx0 00xx 111x 1010 000x

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-98: ext_trcidr0 bit assignments

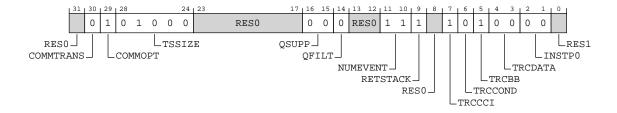


Table B-156: TRCIDRO bit descriptions

Bits	Name	Description	Reset
[31]	RES0	Reserved	RES0
[30]	COMMTRANS	Transaction Start element behavior.	0b0
		0ь0	
		Transaction Start elements are PO elements.	
[29]	СОММОРТ	Indicates the contents and encodings of Cycle count packets.	0b1
		0b1	
		Commit mode 1.	
[28:24]	TSSIZE	Indicates that the trace unit implements Global timestamping and the size of the timestamp value.	0b01000
		0ь01000	
		Global timestamping implemented with a 64-bit timestamp value.	
[23:17]	RES0	Reserved	RES0
[16:15]	QSUPP	Indicates that the trace unit implements Q element support.	0b00
		0ь00	
		Q element support is not implemented.	
[14]	QFILT	Indicates if the trace unit implements Q element filtering.	0b0
		0ь0	
		Q element filtering is not implemented.	

Bits	Name	Description	Reset
[13:12]	RES0	Reserved	RES0
[11:10]	NUMEVENT	Indicates the number of ETEEvents implemented.	0b11
		0b11	
		The trace unit supports 4 ETEEvents.	
[9]	RETSTACK	Indicates if the trace unit supports the return stack.	
		0b1	
		Return stack implemented.	
[8]	RESO	Reserved	RES0
[7]	TRCCCI	Indicates if the trace unit implements cycle counting.	0b1
		0b1	
		Cycle counting implemented.	
[6]	TRCCOND	Indicates if the trace unit implements conditional instruction tracing. Conditional instruction tracing is not implemented in ETE and this field is reserved for other trace architectures.	0b0
		060	
		Conditional instruction tracing not implemented.	
[5]	TRCBB	Indicates if the trace unit implements branch broadcasting.	0b1
		0b1	
		Branch broadcasting implemented.	
[4:3]	TRCDATA	Indicates if the trace unit implements data tracing. Data tracing is not implemented in ETE and this field is reserved for other trace architectures.	0000
		0ь00	
		Tracing of data addresses and data values is not implemented.	
[2:1]	INSTP0	Indicates if load and store instructions are PO instructions. Load and store instructions as PO instructions is not implemented in ETE and this field is reserved for other trace architectures.	0b00
		0ь00	
		Load and store instructions are not PO instructions.	
[0]	RES1	Reserved	RES1

Component	Offset	Instance
ETE	0x1E0	TRCIDR0

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.10 TRCIDR1, External ID Register 1

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

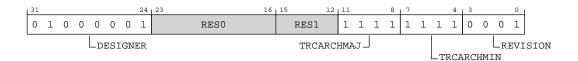
Register offset

0x1E4

Access type

See bit descriptions

Reset value


0100 0001 xxxx xxxx xxxx 1111 1111 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-99: ext_trcidr1 bit assignments

Table B-158: TRCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:24]	DESIGNER	dicates which company designed the trace unit. The permitted values of this field are the same as Arch64-MIDR_EL1.Implementer.	
		01000001	
		Arm Limited	
[23:16]	RESO .	Reserved	RES0
[15:12]	RES1	Reserved	RES1

Bits	Name	Description	Reset
[11:8]	TRCARCHMAJ	Major architecture version.	0b1111
		0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to ext-TRCDEVARCH.	
[7:4]	TRCARCHMIN	Minor architecture version.	0b1111
		0b1111 If both TRCARCHMAJ and TRCARCHMIN == 0xF then refer to ext-TRCDEVARCH.	
[3:0]	REVISION	Indicates the major revision of the product	0b0001
		0ь0001	
		r1p1	

Component	Offset	Instance
ETE	0x1E4	TRCIDR1

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.11 TRCIDR2, External ID Register 2

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

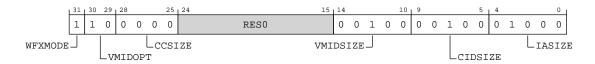
ETE

Register offset

0x1E8

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-100: ext_trcidr2 bit assignments

Table B-160: TRCIDR2 bit descriptions

Bits	Name	Description	Reset
[31]	WFXMODE	Indicates whether WFI and WFE instructions are classified as PO instructions:	0b1
		0b1	
		WFI and WFE instructions are classified as PO instructions.	
[30:29]	30:29] VMIDOPT Indicates the options for Virtual context identifier selection.		0b10
		0b10	
		Virtual context identifier selection not supported. ext-TRCCONFIGR.VMIDOPT is RES1 .	
[28:25]	CCSIZE	Indicates the size of the cycle counter.	000000
		000000	
		The cycle counter is 12 bits in length.	
[24:15]	RES0	Reserved	RES0
[14:10]	VMIDSIZE	Indicates the trace unit Virtual context identifier size.	0b00100
		0b00100	
		32-bit Virtual context identifier size.	
[9:5]	CIDSIZE	Indicates the Context identifier size.	0b00100
		0b00100	
		32-bit Context identifier size.	
[4:0]	IASIZE	Virtual instruction address size.	0b01000
		0ь01000	
		Maximum of 64-bit instruction address size.	

Accessibility

Component	Offset	Instance
ETE	0x1E8	TRCIDR2

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.12 TRCIDR3, External ID Register 3

Returns the base architecture of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

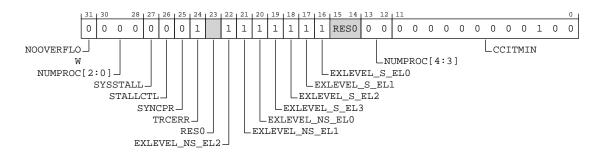
Register offset

0x1EC

Access type

See bit descriptions

Reset value


0000 0001 x111 1111 xx00 0000 0000 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-101: ext_trcidr3 bit assignments

Table B-162: TRCIDR3 bit descriptions

Bits	Name	Description	Reset
[31]	NOOVERFLOW	Indicates if overflow prevention is implemented.	0b0
		0ь0	
		Overflow prevention is not implemented.	
[27]	SYSSTALL	Indicates if stalling of the PE is permitted.	0b0
		0ь0	
		Stalling of the PE is not permitted.	
[26]	STALLCTL	Indicates if trace unit implements stalling of the PE.	0b0
		0ь0	
		Stalling of the PE is not implemented.	
[25]	SYNCPR	Indicates if an implementation has a fixed synchronization period.	0b0
		0ъ0	
		ext-TRCSYNCPR is read/write so software can change the synchronization period.	
[24]	TRCERR	Indicates forced tracing of System Error exceptions is implemented.	0b1
		0b1	
		Forced tracing of System Error exceptions is implemented.	
[23]	RESO	Reserved	RES0
[22]	EXLEVEL_NS_EL2	Indicates if Non-secure EL2 is implemented.	0b1
		0b1	
		Non-secure EL2 is implemented.	
[21]	EXLEVEL_NS_EL1	Indicates if Non-secure EL1 is implemented.	0b1
		0b1	
		Non-secure EL1 is implemented.	
[20]	EXLEVEL_NS_ELO	Indicates if Non-secure ELO is implemented.	0b1
		0b1	
		Non-secure ELO is implemented.	
[19]	EXLEVEL_S_EL3	Indicates if EL3 is implemented.	0b1
		0b1	
[4.0]	EV/1 EV / EL C EL O	EL3 is implemented.	01.1
[18]	EXLEVEL_S_EL2	Indicates if Secure EL2 is implemented.	0b1
		Obl	
[17]	EVIEVEL C FL1	Secure EL2 is implemented.	01- 1
[1/]	EXLEVEL_S_EL1	Indicates if Secure EL1 is implemented.	0b1
		Ob1 Secure EL1 is implemented.	
[16]	EXLEVEL_S_ELO	Indicates if Secure ELO is implemented.	0b1
[10]	LALLVIL_3_LLU	·	ODI
		Ob1 Secure ELO is implemented.	
[15:14]	RESO	Reserved	RES0
[17.14]	KESU	Ivesel ven	KESU

Bits	Name	Description	Reset
[13:12, 30:28]	NUMPROC	Indicates the number of PEs available for tracing.	0000000
		0ь00000	
		The trace unit can trace one PE.	
[11:0]	CCITMIN	Indicates the minimum value that can be programmed in ext-TRCCCCTLR.THRESHOLD.	0x004
		If ext-TRCIDR0.TRCCCI == 1 then the minimum value of this field is 0×001 .	
		If ext-TRCIDRO.TRCCCI == 0 then this field is zero.	
		0b0000000100	

Component	Offset	Instance
ETE	0x1EC	TRCIDR3

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.13 TRCIDR4, External ID Register 4

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x1F0

Access type

See bit descriptions

Reset value

0001 0001 0001 0111 0000 xxx0 0000 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-102: ext_trcidr4 bit assignments



Table B-164: TRCIDR4 bit descriptions

Bits	Name	Description	Reset		
[31:28]	NUMVMIDC	Indicates the number of Virtual Context Identifier Comparators that are available for tracing.	0b0001		
		060001			
		The implementation has one Virtual Context Identifier Comparator.			
[27:24]	NUMCIDC	Indicates the number of Context Identifier Comparators that are available for tracing.	0b0001		
		060001			
		The implementation has one Context Identifier Comparator.			
[23:20]	NUMSSCC	Indicates the number of Single-shot Comparator Controls that are available for tracing.	0b0001		
		0ь0001			
		The implementation has one Single-shot Comparator Control.			
[19:16]	NUMRSPAIR	Indicates the number of resource selector pairs that are available for tracing.	0b0111		
		0ь0111			
		The implementation has eight resource selector pairs.			
[15:12]	NUMPC	Indicates the number of PE Comparator Inputs that are available for tracing.			
		0000			
		No PE Comparator Inputs are available.			
[11:9]	RESO	Reserved	RES0		
[8]	SUPPDAC	Indicates whether data address comparisons are implemented. Data address comparisons are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.	0b0		
		0ь0			
		Data address comparisons not implemented.			
[7:4]	NUMDVC	Indicates the number of data value comparators. Data value comparators are not implemented in ETE and are reserved for other trace architectures. Allocated in other trace architectures.			
		0ь0000			
		No data value comparators implemented.			

Bits	Name	Description	Reset
[3:0]	NUMACPAIRS	Indicates the number of Address Comparator pairs that are available for tracing.	0b0100
		0ь0100	
		The implementation has four Address Comparator pairs.	

Component	Offset	Instance
ETE	0x1F0	TRCIDR4

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.14 TRCIDR5, External ID Register 5

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

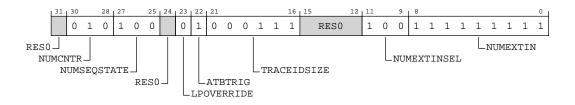
ETE

Register offset

0x1F4

Access type

See bit descriptions


Reset value

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-103: ext_trcidr5 bit assignments

Table B-166: TRCIDR5 bit descriptions

Bits	Name	Description	Reset
[31]	RESO	Reserved	RES0
[30:28]	NUMCNTR	Indicates the number of Counters that are available for tracing.	0b010
		0ь010	
		Two Counters implemented.	
[27:25]	NUMSEQSTATE	Indicates if the Sequencer is implemented and the number of Sequencer states that are implemented.	0b100
		0b100	
		Four Sequencer states are implemented.	
[24]	RESO	Reserved	RES0
[23]	LPOVERRIDE	Indicates support for Low-power Override Mode.	0b0
		0ь0	
		The trace unit does not support Low-power Override Mode.	
[22]	ATBTRIG	Indicates if the implementation can support ATB triggers.	0b1
		The implementation supports ATB triggers.	
[21:16]	TRACEIDSIZE	icates the trace ID width. 0b000111	
		000111	
		The implementation supports a 7-bit trace ID.	
[15:12]	RESO	Reserved	RES0
[11:9]	NUMEXTINSEL	Indicates how many External Input Selector resources are implemented.	0b100
		0ь100	
		4 External Input Selector resources are available.	
[8:0]	NUMEXTIN	Indicates how many External Inputs are implemented.	0b111111111
		0b11111111	
		Unified PMU event selection.	

Accessibility

Component	Offset	Instance
ETE	0x1F4	TRCIDR5

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.15 TRCIDR6, External ID Register 6

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x1F8

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-104: ext_trcidr6 bit assignments

Table B-168: TRCIDR6 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RESO

Component	Offset	Instance
ETE	0x1F8	TRCIDR6

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.16 TRCIDR7, External ID Register 7

Returns the tracing capabilities of the trace unit.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0x1FC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-105: ext_trcidr7 bit assignments

Table B-170: TRCIDR7 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RESO

Accessibility

Component	Offset	Instance
ETE	0x1FC	TRCIDR7

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.17 TRCITCTRL, Integration Mode Control Register

A component can use TRCITCTRL to dynamically switch between functional mode and integration mode. In integration mode, topology detection is enabled. After switching to integration mode and performing integration tests or topology detection, reset the system to ensure correct behavior of CoreSight and other connected system components.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xF00

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-106: ext_trcitctrl bit assignments

Table B-172: TRCITCTRL bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Accessibility

External debugger accesses to this register are IMPLEMENTATION DEFINED when the trace unit is not in the Idle state.

Component	Offset	Instance
ETE	0xF00	TRCITCTRL

This interface is accessible as follows:

When OSLockStatus() | !AllowExternalTraceAccess() | !IsTraceCorePowered()

ERROR

Otherwise

RW

B.5.18 TRCCLAIMSET, External Claim Tag Set Register

In conjunction with ext-TRCCLAIMCLR, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

The number of claim tag bits implemented is IMPLEMENTATION DEFINED. Arm recommends that implementations support a minimum of four claim tag bits, that is, SET[3:0] reads as 0b1111.

Attributes

Width

32

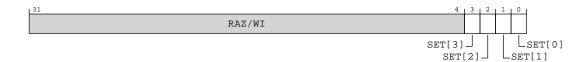
Component

ETE

Register offset

0xFA0

Access type


RAOW1S

Reset value

0000 0000 0000 0000 0000 0000 0000 1111

Bit descriptions

Figure B-107: ext_trcclaimset bit assignments

Table B-174: TRCCLAIMSET bit descriptions

Bits	Name	Description	Reset	
[31:4]	RAZ/WI	Reserved	RAZ/WI	
[3]	SET[3]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1	
		0ь0		
		On a read: Claim Tag bit <m> is not implemented.</m>		
		On a write: Ignored.		
		0b1		
	On a read: Claim Tag bit <m> is implemented.</m>			
		On a write: Set Claim Tag bit <m> to 1.</m>		
[2]	SET[2]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1	
		0ь0		
		On a read: Claim Tag bit <m> is not implemented.</m>		
		On a write: Ignored.		
		0ь1		
		On a read: Claim Tag bit <m> is implemented.</m>		
		On a write: Set Claim Tag bit <m> to 1.</m>		

Bits	Name	Description	Reset		
[1]	SET[1]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>	0b1		
		0ь0			
		On a read: Claim Tag bit <m> is not implemented.</m>			
		On a write: Ignored.			
		061			
		On a read: Claim Tag bit <m> is implemented.</m>			
		On a write: Set Claim Tag bit <m> to 1.</m>			
[O]	SET[O]	Claim Tag Set. Indicates whether Claim Tag bit <m> is implemented, and is used to set Claim Tag bit <m> to 1.</m></m>			
		b0			
		On a read: Claim Tag bit <m> is not implemented.</m>			
		On a write: Ignored.			
		b1			
		On a read: Claim Tag bit <m> is implemented.</m>			
		On a write: Set Claim Tag bit <m> to 1.</m>			

Component	Offset	Instance
ETE	0xFA0	TRCCLAIMSET

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RW

B.5.19 TRCCLAIMCLR, External Claim Tag Clear Register

In conjunction with ext-TRCCLAIMSET, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

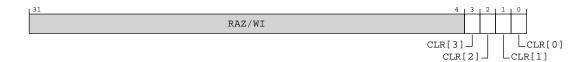
Component

ETE

Register offset

0xFA4

Access type


RW1C

Reset value

0000 0000 0000 0000 0000 0000 0000 0000

Bit descriptions

Figure B-108: ext_trcclaimclr bit assignments

Table B-176: TRCCLAIMCLR bit descriptions

Bits	Name	Description	Reset		
[31:4]	RAZ/WI	Reserved	RAZ/WI		
[3]	CLR[3]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0		
		On a read: Claim Tag bit <m> is not set.</m>			
		On a write: Ignored.			
		0b1			
	On a read: Claim Tag bit <m> is set.</m>				
		On a write: Clear Claim tag bit <m> to 0.</m>			
[2]	CLR[2]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0		
		0ь0			
		On a read: Claim Tag bit <m> is not set.</m>			
		On a write: Ignored.			
		0b1			
		On a read: Claim Tag bit <m> is set.</m>			
		On a write: Clear Claim tag bit <m> to 0.</m>			

Bits	Name	Description	Reset		
[1]	CLR[1]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0		
		0ь0			
		On a read: Claim Tag bit <m> is not set.</m>			
		On a write: Ignored.			
		0ь1			
		On a read: Claim Tag bit <m> is set.</m>			
		On a write: Clear Claim tag bit <m> to 0.</m>			
[O]	CLR[0]	Claim Tag Clear. Indicates the current status of Claim Tag bit <m>, and is used to clear Claim Tag bit <m> to 0.</m></m>	0b0		
		ь0			
		On a read: Claim Tag bit <m> is not set.</m>			
		On a write: Ignored.			
		ь1			
		On a read: Claim Tag bit <m> is set.</m>			
		On a write: Clear Claim tag bit <m> to 0.</m>			

Component	Offset	Instance
ETE	0xFA4	TRCCLAIMCLR

This interface is accessible as follows:

When OSLockStatus() | !IsTraceCorePowered()

ERROR

Otherwise

RW

B.5.20 TRCDEVARCH, External Device Architecture Register

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

OxFBC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-109: ext_trcdevarch bit assignments

Table B-178: TRCDEVARCH bit descriptions

Bits	Name	Description	Reset		
[31:21]	ARCHITECT	Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.	11{x}		
		b01000111011			
		JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.			
		Other values are defined by the JEDEC JEP106 standard.			
		This field reads as 0x23B.			
[20]	PRESENT	DEVARCH Present. Defines that the DEVARCH register is present.			
		0ь1			
		Device Architecture information present.			
[19:16]	REVISION	Revision. Defines the architecture revision of the component.	xxxx		
		0ъ0000			
		ETEv1.0, FEAT_ETE.			
		All other values are reserved.			

Bits	Name	Description	Reset
[15:12]	ARCHVER	Architecture Version. Defines the architecture version of the component.	xxxx
		0ь0101	
		ETEv1.	
		ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is	
		ARCHID[15:12].	
		This field reads as 0x5.	
[11:0]	ARCHPART	Architecture Part. Defines the architecture of the component.	12{x}
		0b101000010011	
		Arm PE trace architecture.	
		ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is	
		ARCHID[11:0].	
		This field reads as 0xA13.	

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFBC	TRCDEVARCH

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.21 TRCDEVID2, Device Configuration Register 2

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFC0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-110: ext_trcdevid2 bit assignments

Table B-180: TRCDEVID2 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RESO

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFC0	TRCDEVID2

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.22 TRCDEVID1, Device Configuration Register 1

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFC4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-111: ext_trcdevid1 bit assignments

Table B-182: TRCDEVID1 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RESO

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFC4	TRCDEVID1

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.23 TRCDEVID, External Device Configuration Register

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

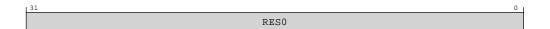
Register offset

0xFC8

Access type

See bit descriptions

Reset value


XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-112: ext_trcdevid bit assignments

Table B-184: TRCDEVID bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RESO

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFC8	TRCDEVID

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.24 TRCDEVTYPE, Device Type Register

Provides discovery information for the component. If the part number field is not recognized, a debugger can report the information that is provided by TRCDEVTYPE about the component instead.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

OxFCC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 0011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-113: ext_trcdevtype bit assignments

Table B-186: TRCDEVTYPE bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SUB	Component sub-type.	0b0001
		0ъ0001 When MAJOR == 0x3 (Trace source): Associated with a PE.	
		This field reads as 0x1.	
[3:0]	MAJOR	Component major type.	0b0011
		0ь0011	
		Trace source.	
		Other values are defined by the CoreSight Architecture.	
		This field reads as 0x3.	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFCC	TRCDEVTYPE

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.25 TRCPIDR4, Peripheral Identification Register 4

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFD0

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX OOOO 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-114: ext_trcpidr4 bit assignments

Table B-188: TRCPIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SIZE	Size of the component.	0b0000
		The distance from the start of the address space used by this component to the end of the component identification registers.	
		A value of 0b0000 means one of the following is true:	
		The component uses a single 4KB block.	
		• The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.	
		Any other value means the component occupies 2 ^{TRCPIDR4.SIZE} 4KB blocks.	
		Using this field to indicate the size of the component is deprecated. This field might not correctly indicate the size of the component. Arm recommends that software determine the size of the component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.	
[3:0]	DES_2	Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer of the component, minus 1. The code identifies the designer of the component, which might not be not the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.	0b0100
		0ь0100	
		Arm Limited	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFD0	TRCPIDR4

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.26 TRCPIDR5, Peripheral Identification Register 5

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFD4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-115: ext_trcpidr5 bit assignments

Table B-190: TRCPIDR5 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFD4	TRCPIDR5

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.27 TRCPIDR6, Peripheral Identification Register 6

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFD8

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-116: ext_trcpidr6 bit assignments

Table B-192: TRCPIDR6 bit descriptions

Bits	Name	Description	Reset
[31:0]	RES0	Reserved	RES0

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFD8	TRCPIDR6

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.28 TRCPIDR7, Peripheral Identification Register 7

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

OxFDC

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-117: ext_trcpidr7 bit assignments

Table B-194: TRCPIDR7 bit descriptions

Bits	Name	Description	Reset
[31:0]	RESO	Reserved	RES0

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFDC	TRCPIDR7

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.29 TRCPIDRO, Peripheral Identification Register 0

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFE0

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0100 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-118: ext_trcpidr0 bit assignments

Table B-196: TRCPIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:0]	PART_0	Part number, bits [7:0]. The part number is selected by the designer of the component, and is stored in ext-TRCPIDR1.PART_1 and TRCPIDR0.PART_0.	0x4D
		0b01001101 A715	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFE0	TRCPIDR0

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.30 TRCPIDR1, Peripheral Identification Register 1

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

FTF

Register offset

0xFE4

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-119: ext_trcpidr1 bit assignments

Table B-198: TRCPIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[7:4]	DES_0	Designer, JEP106 identification code, bits [3:0]. TRCPIDR1.DES_0 and ext-TRCPIDR2.DES_1 together form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code is not included. The code identifies the designer of the component, which might not be not the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.	0b1011
		0ь1011	
		Arm Limited	
[3:0]	PART_1	Part number, bits [11:8].	0b1101
		The part number is selected by the designer of the component, and is stored in TRCPIDR1.PART_1 and ext-TRCPIDR0.PART_0.	
		0b1101	
		A715	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFE4	TRCPIDR1

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.31 TRCPIDR2, Peripheral Identification Register 2

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFE8

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX 0001 1011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-120: ext_trcpidr2 bit assignments

Table B-200: TRCPIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	REVISION	Component major revision. TRCPIDR2.REVISION and ext-TRCPIDR3.REVAND together form the revision number of the component, with TRCPIDR2.REVISION being the most significant part and ext-TRCPIDR3.REVAND the least significant part. When a component is changed, TRCPIDR2.REVISION or ext-TRCPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the component. ext-TRCPIDR3.REVAND should be set to 0b0000 when TRCPIDR2.REVISION is increased. 0b0001 r1p1	0b0001
[3]	JEDEC	JEDEC-assigned JEP106 implementer code is used.	0b1
[2:0]	DES_1	Designer, JEP106 identification code, bits [6:4]. ext-TRCPIDR1.DES_0 and TRCPIDR2.DES_1 together form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code is not included. The code identifies the designer of the component, which might not be not the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.	0b011
		0b011 Arm Limited	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFE8	TRCPIDR2

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.32 TRCPIDR3, Peripheral Identification Register 3

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

OxFEC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-121: ext_trcpidr3 bit assignments

Table B-202: TRCPIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0

Bits	Name	Description	Reset
[7:4]	REVAND	Component minor revision. ext-TRCPIDR2.REVISION and TRCPIDR3.REVAND together form the revision number of the component, with ext-TRCPIDR2.REVISION being the most significant part and TRCPIDR3.REVAND the least significant part. When a component is changed, ext-TRCPIDR2.REVISION or TRCPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the component. TRCPIDR3.REVAND should be set to 0b0000 when ext-TRCPIDR2.REVISION is increased.	0b0001
		0b0001	
		r1p1	
[3:0]	CMOD	Customer Modified.	000000
		Indicates the component has been modified.	
		A value of 0b0000 means the component is not modified from the original design.	
		Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.	
		060000	

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	OxFEC	TRCPIDR3

This interface is accessible as follows:

When !IsTraceCorePowered()

FRROR

Otherwise

RO

B.5.33 TRCCIDRO, Component Identification Register 0

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFF0

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-122: ext_trccidr0 bit assignments

Table B-204: TRCCIDR0 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0
[7:0]	PRMBL_0	Component identification preamble, segment 0.	0x0D

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFF0	TRCCIDR0

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.34 TRCCIDR1, Component Identification Register 1

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

Width

32

Component

ETE

Register offset

0xFF4

Access type

See bit descriptions

Reset value

XXXX XXXX XXXX XXXX XXXX 1001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-123: ext_trccidr1 bit assignments

Table B-206: TRCCIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:4]	CLASS	Component class.	0b1001
		Ob1001 CoreSight peripheral. Other values are defined by the CoreSight Architecture. This field reads as 0x9.	
[3:0]	PRMBL_1	Component identification preamble, segment 1.	0b0000

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFF4	TRCCIDR1

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.35 TRCCIDR2, Component Identification Register 2

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

0xFF8

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-124: ext_trccidr2 bit assignments

Table B-208: TRCCIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0

Bits	Name	Description	Reset
[7:0]	PRMBL_2	Component identification preamble, segment 2.	0x05

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFF8	TRCCIDR2

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.5.36 TRCCIDR3, Component Identification Register 3

Provides discovery information about the component.

For additional information, see the CoreSight Architecture Specification.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ETE

Register offset

OxFFC

Access type

See bit descriptions

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-125: ext_trccidr3 bit assignments

Table B-210: TRCCIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PRMBL_3	Component identification preamble, segment 3.	0xB1

Accessibility

External debugger accesses to this register are unaffected by the OS Lock.

Component	Offset	Instance
ETE	0xFFC	TRCCIDR3

This interface is accessible as follows:

When !IsTraceCorePowered()

ERROR

Otherwise

RO

B.6 External ROM table registers summary

The summary table provides an overview of **IMPLEMENTATION DEFINED** memory-mapped ROM table registers in the core. For more information about a register, click the register name in the table.

For registers without a listed reset value refer to the individual field resets documented on the register description pages or in the Arm ARM.

Table B-212: ROM table registers summary

Offset	Name	Reset	Width	Description
0x0	ROMENTRY0	_	32-bit	Class 0x9 ROM Table Entries
0x4	ROMENTRY1	_	32-bit	Class 0x9 ROM Table Entries
0x8	ROMENTRY2	_	32-bit	Class 0x9 ROM Table Entries
0xC	ROMENTRY3	_	32-bit	Class 0x9 ROM Table Entries
0xFB8	AUTHSTATUS	_	32-bit	Authentication Status Register
0xFBC	DEVARCH	_	32-bit	Device Architecture Register
0xFD0	PIDR4	_	32-bit	Peripheral Identification Register 4
0xFE0	PIDRO	_	32-bit	Peripheral Identification Register 0

Offset	Name	Reset	Width	Description
0xFE4	PIDR1	_	32-bit	Peripheral Identification Register 1
0xFE8	PIDR2	_	32-bit	Peripheral Identification Register 2
0xFEC	PIDR3	_	32-bit	Peripheral Identification Register 3
0xFF0	CIDRO	_	32-bit	Component Identification Register 0
0xFF4	CIDR1	_	32-bit	Component Identification Register 1
0xFF8	CIDR2	_	32-bit	Component Identification Register 2
0xFFC	CIDR3	_	32-bit	Component Identification Register 3

B.6.1 ROMENTRYO, Class 0x9 ROM Table Entries

A Class 0x9 ROM Table contains up to 512 ROM Table entries. Each entry that is present, ext-ROMENTRY<n>, provides the address offset of the address space of one CoreSight component, component 0, along with information about its power domain.

The series of ROM Table entries starts at the base address of the Class 0x9 ROM Table:

- The first entry, entry 0, has offset 0x000.
- ext-ROMENTRY<n> has the offset 0x000 + 0x4, where $0 \le 0 \le 511$.
- If the number of components, 0, is lower than the maximum supported number, 512, the offsets of the ROM Table entries are in the following range:
 - ROM Table entries representing components have offsets from 0x000 to (0-1)×4.
 - The ext-ROMENTRY<n> at offset 0×4, which has a PRESENT field with the value 0b00, indicates the end of the ROM Table.
- If the number of components is equal to the maximum supported number, the ROM Table entries have offsets from 0x000 to 0x7FC. If a ROM Table entry is present at offset 0x7FC, its PRESENT field must have a value of either 0b00 or 0b11, and it must be interpreted as the final entry of the ROM Table, even if its PRESENT field has the value 0b11.

A component that requires differentiation between external and internal accesses may provide two views, one for internal and one for external accesses. For these components, Arm strongly recommends that ROM Tables provide a pointer only to the external view.

Configurations

If ext-DEVID.FORMAT has the value 0x0, ext-ROMENTRY<n> are 512 32-bit registers.

If ext-DEVID.FORMAT has the value 0x1, ext-ROMENTRY<n> are 256 64-bit registers.

Attributes

Width

32

Component

ROM table

Register offset

0x0

Access type

Read

R

Write

RESERVED

Reset value

0000 0000 0000 0001 0000 xxx0 0000 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-126: ext_romentry0 bit assignments

Table B-213: ROMENTRY0 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	0x00010
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		If a component occupies more than a single 4KB block, OFFSET points to the 4KB block which contains the Peripheral ID and Component ID registers for the component.	
		Negative values of OFFSET are permitted, using two's complement.	
		0Ь00000000000010000	
		Core Debug	
[11:9]	RESO	Reserved	RES0
[8:4]	POWERID	The power domain ID of the component. This field supports up to 32 power domains using values 0x00 to 0x1F.	0b00000
[3]	RESO	Reserved	RES0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	0b0
		0ь0	
		A power domain ID is not provided.	

Bits	Name	Description	Reset
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	0b11
		0b11	
		The ROM Entry is present.	

B.6.2 ROMENTRY1, Class 0x9 ROM Table Entries

A Class 0x9 ROM Table contains up to 512 ROM Table entries. Each entry that is present, ext-ROMENTRY<n>, provides the address offset of the address space of one CoreSight component, component 1, along with information about its power domain.

The series of ROM Table entries starts at the base address of the Class 0x9 ROM Table:

- The first entry, entry 0, has offset 0x000.
- ext-ROMENTRY<n> has the offset $0x000 + 1 \times 4$, where $0 \le 1 \le 511$.
- If the number of components, 1, is lower than the maximum supported number, 512, the offsets of the ROM Table entries are in the following range:
 - ROM Table entries representing components have offsets from 0x000 to (1-1)×4.
 - The ext-ROMENTRY<n> at offset 1×4, which has a PRESENT field with the value 0b00, indicates the end of the ROM Table.
- If the number of components is equal to the maximum supported number, the ROM Table entries have offsets from 0x000 to 0x7FC. If a ROM Table entry is present at offset 0x7FC, its PRESENT field must have a value of either 0b00 or 0b11, and it must be interpreted as the final entry of the ROM Table, even if its PRESENT field has the value 0b11.

A component that requires differentiation between external and internal accesses may provide two views, one for internal and one for external accesses. For these components, Arm strongly recommends that ROM Tables provide a pointer only to the external view.

Configurations

If ext-DEVID.FORMAT has the value 0x0, ext-ROMENTRY<n> are 512 32-bit registers.

If ext-DEVID.FORMAT has the value 0x1, ext-ROMENTRY<n> are 256 64-bit registers.

Attributes

Width

32

Component

ROM table

Register offset

0x4

Access type

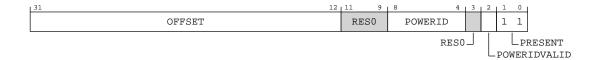
Read

R

Write

RESERVED

Reset value


0000 0000 0000 0010 0000 xxx0 0000 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-127: ext_romentry1 bit assignments

Table B-214: ROMENTRY1 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	0x00020
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		If a component occupies more than a single 4KB block, OFFSET points to the 4KB block which contains the Peripheral ID and Component ID registers for the component.	
		Negative values of OFFSET are permitted, using two's complement.	
		0b00000000000100000	
		Core PMU	
[11:9]	RESO	Reserved	RES0
[8:4]	POWERID	The power domain ID of the component. This field supports up to 32 power domains using values 0x00 to 0x1F.	0b00000
[3]	RES0	Reserved	RES0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	0b0
		0ხ0	
		A power domain ID is not provided.	

Bits	Name	Description	Reset
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	0b11
		0b11	
		The ROM Entry is present.	

B.6.3 ROMENTRY2, Class 0x9 ROM Table Entries

A Class 0x9 ROM Table contains up to 512 ROM Table entries. Each entry that is present, ext-ROMENTRY<n>, provides the address offset of the address space of one CoreSight component, component 2, along with information about its power domain.

The series of ROM Table entries starts at the base address of the Class 0x9 ROM Table:

- The first entry, entry 0, has offset 0x000.
- ext-ROMENTRY<n> has the offset $0x000 + 2\times4$, where $0 \le 2 \le 511$.
- If the number of components, 2, is lower than the maximum supported number, 512, the offsets of the ROM Table entries are in the following range:
 - ROM Table entries representing components have offsets from 0x000 to (2-1)×4.
 - The ext-ROMENTRY<n> at offset 2×4, which has a PRESENT field with the value 0b00, indicates the end of the ROM Table.
- If the number of components is equal to the maximum supported number, the ROM Table entries have offsets from 0x000 to 0x7FC. If a ROM Table entry is present at offset 0x7FC, its PRESENT field must have a value of either 0b00 or 0b11, and it must be interpreted as the final entry of the ROM Table, even if its PRESENT field has the value 0b11.

A component that requires differentiation between external and internal accesses may provide two views, one for internal and one for external accesses. For these components, Arm strongly recommends that ROM Tables provide a pointer only to the external view.

Configurations

If ext-DEVID.FORMAT has the value 0x0, ext-ROMENTRY<n> are 512 32-bit registers.

If ext-DEVID.FORMAT has the value 0x1, ext-ROMENTRY<n> are 256 64-bit registers.

Attributes

Width

32

Component

ROM table

Register offset

0x8

Access type

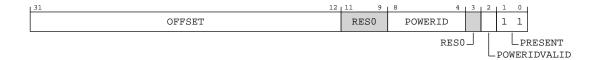
Read

R

Write

RESERVED

Reset value


0000 0000 0000 0011 0000 xxx0 0000 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-128: ext_romentry2 bit assignments

Table B-215: ROMENTRY2 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	0x00030
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		If a component occupies more than a single 4KB block, OFFSET points to the 4KB block which contains the Peripheral ID and Component ID registers for the component.	
		Negative values of OFFSET are permitted, using two's complement.	
		0b0000000000110000	
		Core trace unit	
[11:9]	RES0	Reserved	RES0
[8:4]	POWERID	The power domain ID of the component. This field supports up to 32 power domains using values 0x00 to 0x1F.	0b00000
[3]	RES0	Reserved	RES0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	0b0
		0b0	
		A power domain ID is not provided.	

Bits	Name	Description	Reset
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table.	0b11
		0b11	
		The ROM Entry is present.	

B.6.4 ROMENTRY3, Class 0x9 ROM Table Entries

A Class 0x9 ROM Table contains up to 512 ROM Table entries. Each entry that is present, ext-ROMENTRY<n>, provides the address offset of the address space of one CoreSight component, component 3, along with information about its power domain.

The series of ROM Table entries starts at the base address of the Class 0x9 ROM Table:

- The first entry, entry 0, has offset 0x000.
- ext-ROMENTRY<n> has the offset $0x000 + 3\times4$, where $0 \le 3 \le 511$.
- If the number of components, 3, is lower than the maximum supported number, 512, the offsets of the ROM Table entries are in the following range:
 - ROM Table entries representing components have offsets from 0x000 to (3-1)×4.
 - The ext-ROMENTRY<n> at offset 3×4, which has a PRESENT field with the value 0b00, indicates the end of the ROM Table.
- If the number of components is equal to the maximum supported number, the ROM Table entries have offsets from 0x000 to 0x7FC. If a ROM Table entry is present at offset 0x7FC, its PRESENT field must have a value of either 0b00 or 0b11, and it must be interpreted as the final entry of the ROM Table, even if its PRESENT field has the value 0b11.

A component that requires differentiation between external and internal accesses may provide two views, one for internal and one for external accesses. For these components, Arm strongly recommends that ROM Tables provide a pointer only to the external view.

Configurations

If ext-DEVID.FORMAT has the value 0x0, ext-ROMENTRY<n> are 512 32-bit registers.

If ext-DEVID.FORMAT has the value 0x1, ext-ROMENTRY<n> are 256 64-bit registers.

Attributes

Width

32

Component

ROM table

Register offset

0xC

Access type

Read

R

Write

RESERVED

Reset value

xxxx xxxx xxxx xxxx xxxx xxx0 0000 x0xx

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-129: ext_romentry3 bit assignments

Table B-216: ROMENTRY3 bit descriptions

Bits	Name	Description	Reset
[31:12]	OFFSET	The component address, relative to the base address of this ROM Table. The component address is calculated using the following equation:	20{x}
		Component Address = ROM Table Base Address + (OFFSET << 12).	
		If a component occupies more than a single 4KB block, OFFSET points to the 4KB block which contains the Peripheral ID and Component ID registers for the component.	
		Negative values of OFFSET are permitted, using two's complement.	
		оьооооооооооооо	
		ROM Entry is not present.	
		0ь000000000001000000	
		Core ELA	
[11:9]	RES0	Reserved	RES0
[8:4]	POWERID	The power domain ID of the component. This field supports up to 32 power domains using values 0x00 to 0x1F.	0000000
[3]	RES0	Reserved	RES0
[2]	POWERIDVALID	Indicates if the Power domain ID field contains a Power domain ID.	0b0
		060	
		A power domain ID is not provided.	

Bits	Name	Description	Reset
[1:0]	PRESENT	Indicates whether an entry is present at this location in the ROM Table. 0b00 The ROM entry is not present, and this ext-ROMENTRY3 is the final entry in the ROM Table. If PRESENT has this value, all other fields in this ext-ROMENTRY3 must be zero.	The reset values can be the following: 0b00,0b11, respective to the value.
		0b11	
		The ROM Entry is present.	

B.6.5 AUTHSTATUS, Authentication Status Register

AUTHSTATUS indicates whether certain functions are enabled.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

0xFB8

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-130: ext_authstatus bit assignments

Table B-217: AUTHSTATUS bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:6]	SNID	Secure Non-invasive Debug.	xx
		0ь00	
		Debug level is not supported.	
		0ь10	
		Supported and disabled. (SPIDEN SPNIDEN) & (DBGEN NIDEN) == FALSE.	
		0b11	
		Supported and enabled. (SPIDEN SPNIDEN) & (DBGEN NIDEN) == TRUE.	
[5:4]	SID	Secure Invasive Debug.	xx
		0ь00	
		Debug level is not supported.	
		0b10	
		Secure invasive debug disabled. (SPIDEN & DBGEN) == FALSE.	
		0b11	
		Secure invasive debug enabled. (SPIDEN & DBGEN) == TRUE.	
[3:2]	NSNID	Non-secure Non-invasive Debug.	xx
		0ь00	
		Debug level is not supported.	
		0b10	
		Supported and disabled. (NIDEN DBGEN) == FALSE.	
		0b11	
F4 01		Supported and enabled. (NIDEN DBGEN) == TRUE.	
[1:0]	NSID	Non-secure Invasive Debug.	xx
		0р00	
		Debug level is not supported.	
		0b10	
		Supported and disabled. DBGEN == FALSE.	
		0b11	
		Supported and enabled. DBGEN == TRUE.	

B.6.6 DEVARCH, Device Architecture Register

Identifies the architect and architecture of a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

OxFBC

Access type

RO

Reset value

0100 0111 0111 0000 0000 1010 1111 0111

Bit descriptions

Figure B-131: ext_devarch bit assignments

Table B-218: DEVARCH bit descriptions

Bits	Name	Description	Reset
[31:21]	ARCHITECT	Architect.	0b01000111011
		0ь01000111011	
		JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.	
[20]	PRESENT	Present.	0b1
		0b1	
		DEVARCH information present.	
[19:16]	REVISION	Revision.	000000
		0ь0000	
		Revision 0.	
[15:0]	ARCHID	Architecture ID.	0x0AF7
		0ь00001011110111	
		ROM Table v0. The debug tool must inspect ext-DEVTYPE and ext-DEVID to determine further information about the ROM Table.	

B.6.7 PIDR4, Peripheral Identification Register 4

Provide information to identify a CoreSight component.

Configurations

Width

32

Component

ROM table

Register offset

0xFD0

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0100

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-132: ext_pidr4 bit assignments

Table B-219: PIDR4 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	SIZE	ze of the component. RAZ . Log ₂ of the number of 4KB pages from the start of the component to the end of the omponent ID registers.	
		ь0000	
		A ROM Table occupies a single 4KB block of memory.	
[3:0]	DES_2	Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.	
		0ь0100	
		Arm Limited	

B.6.8 PIDRO, Peripheral Identification Register 0

Provide information to identify a CoreSight component.

Configurations

Width

32

Component

ROM table

Register offset

0xFE0

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX O100 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-133: ext_pidr0 bit assignments

Table B-220: PIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RESO
[7:0]	PART_0	Part number, least significant byte.	0x4D
		0ь01001101	
		A715	

B.6.9 PIDR1, Peripheral Identification Register 1

Provide information to identify a CoreSight component.

Configurations

Width

32

Component

ROM table

Register offset

0xFE4

Access type

RO

Reset value

XXXX XXXX XXXX XXXX XXXX 1011 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-134: ext_pidr1 bit assignments

Table B-221: PIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	DES_0	Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.	0b1011
		0ь1011	
		Arm Limited	
[3:0]	PART_1	Part number, most significant nibble.	0b1101
		0ь1101	
		A715	

B.6.10 PIDR2, Peripheral Identification Register 2

Provide information to identify a CoreSight component.

Configurations

Width

32

Component

ROM table

Register offset

0xFE8

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 x011

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-135: ext_pidr2 bit assignments

Table B-222: PIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0
[7:4]	REVISION	Part major revision. Parts can also use this field to extend Part number to 16-bits.	0b0001
		0ь0001	
		r1p1	
[3]	JEDEC	RAO. Indicates a JEP106 identity code is used.	
[2:0]	DES_1	Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.	
		0ь011	
		Arm Limited	

B.6.11 PIDR3, Peripheral Identification Register 3

Provide information to identify a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

OxFEC

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-136: ext_pidr3 bit assignments

Table B-223: PIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0
[7:4]		Part minor revision. Parts using ext-PIDR2.REVISION as an extension to the Part number must use this field as a major revision number.	
		0b0001 r1p1	
[3:0]	CMOD	Customer modified. Indicates someone other than the Designer has modified the component.	000000
		0ь0000	

B.6.12 CIDRO, Component Identification Register 0

Provide information to identify a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

0xFF0

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 1101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-137: ext_cidr0 bit assignments

Table B-224: CIDRO bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:0]	PRMBL_0	CoreSight component identification preamble.	0x0D
		0b00001101	
		CoreSight component identification preamble.	

B.6.13 CIDR1, Component Identification Register 1

Provide information to identify a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

0xFF4

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1001 0000

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-138: ext_cidr1 bit assignments

Table B-225: CIDR1 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RES0
[7:4]	CLASS	CoreSight component class.	0b1001
		0ь1001	
		CoreSight component.	
[3:0]	PRMBL_1	CoreSight component identification preamble.	000000
		0ь0000	
		CoreSight component identification preamble.	

B.6.14 CIDR2, Component Identification Register 2

Provide information to identify a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

0xFF8

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 0000 0101

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-139: ext_cidr2 bit assignments

Table B-226: CIDR2 bit descriptions

Bits	Name	Description	Reset
[31:8]	RES0	Reserved	RESO
[7:0]	PRMBL_2	CoreSight component identification preamble.	0x05
		0b00000101	
		CoreSight component identification preamble.	

B.6.15 CIDR3, Component Identification Register 3

Provide information to identify a CoreSight component.

Configurations

This register is available in all configurations.

Attributes

Width

32

Component

ROM table

Register offset

OxFFC

Access type

RO

Reset value

xxxx xxxx xxxx xxxx xxxx xxxx 1011 0001

Where the reset reads xxxx, see individual bits

Bit descriptions

Figure B-140: ext_cidr3 bit assignments

Table B-227: CIDR3 bit descriptions

Bits	Name	Description	Reset
[31:8]	RESO	Reserved	RES0
[7:0]	PRMBL_3	CoreSight component identification preamble.	0xB1
		0ъ10110001	
		CoreSight component identification preamble.	

Appendix C Document revisions

This appendix records the changes between released issues of this document.

C.1 Revisions

Changes between released issues of this book are summarized in tables.

The first table is for the first release. Then, each table compares the new issue of the book with the last released issue of the book. Release numbers match the revision history in Release Information on page 2.

Table C-1: Issue 0000-02

Change	Location
First Confidential alpha release for r0p0	-

Table C-2: Differences between issue 0000-02 and issue 0000-03

Change	Location
First Confidential beta release for r0p0	-
Added a reminder that this document does not include the complete list of registers	2. The Cortex-A715 core on page 22
Renamed MMU Translation Cache to L2 TLB	2.1 Cortex-A715 core features on page 22
Added a new topic on DSU-110 dependent features	2.3 DSU-110 dependent features on page 25
Added 'Enhanced PAN' and 'MTE Asymmetric Fault Handling' optional features	2.4 Supported standards and specifications on page 25
Added sections on SPE and AMU	3.1 Core components on page 31
Added links to TRBE, AMU, and SPE in the 'Related information' section	3.1 Core components on page 31
Renamed MMU Translation Cache to L2 TLB	6.4 Translation table walks on page 54
Added explanation of GRE	6.7 Memory behavior and supported memory types on page 57
Updated registers with the ERRO or ERRx prefix to ERR1 within the chapter	11. RAS Extension support on page 77
Updated register ERR0PFGCDN to ERR1PFGCDN and changed referenced manual for more information	11.5 Error injection on page 80
Added BFloat16 and Int8 Matrix Multiplication support	14. Advanced SIMD and floating-point support on page 86
Removed AArch64 Debug register summary section within the chapter	17. Debug on page 89
Added section	17.6 CoreSight component identification on page 94
Updated CommonEvent PMU events table	18.1 Performance monitors events on page 97
Minor changes	22. Statistical Profiling Extension Support on page 126
Added a reminder that this document does not include the complete list of registers	A. AArch64 registers on page 129
Updated the description of some registers	A. AArch64 registers on page 129
Removed Debug register	A. AArch64 registers on page 129

Change	Location
Added a reminder that this document does not include the complete list of registers	B. External registers on page 481
Updated the description of some registers	B. External registers on page 481

Table C-3: Differences between issue 0000-03 and issue 0000-04

Change	Location
First Confidential limited access release for rOpO	-
Updated the pdf style including wider tables, notes presentation, tables numbering, figures numbering	Throughout document
Editorial changes	Throughout document
Removed a note and placed it in the dedicated cache memory chapters	2.2 Cortex-A715 core configuration options on page 24
Editorial changes to clarify the information (mainly adding some of the features name using 'FEAT_xxx' terminology)	2.4 Supported standards and specifications on page 25
Armv8.2-VPIPT, VMID-aware PIPT instruction cache feature not supported and removed from the list of optional features	2.4 Supported standards and specifications on page 25
Updated core components figure adding 'Dynamic branch predictor' and 'AMU' blocs	3.1 Core components on page 31
Added SHA-3 to the list of SHA functions supported by the Cryptographic Extension	3.1 Core components on page 31
Added SVE2 to the Scalable Vector Extension description	3.1 Core components on page 31
Removed EVENTIREQ signal from WFI state exit conditions	5.2.1 Wait for Interrupt and Wait for Event on page 40
Removed information on PDCORE0 and PDCORE1 that are not relevant	5.3 Power control on page 41
Updated the Caution note using the information previously located after the table	5.4 Core power modes on page 42
Editorial changes: added a link to registers	5.4.4 Full retention mode on page 44
Added chapter	5.5 Performance and power management on page 46
Added related information	5.6 Cortex-A715 core powerup and powerdown sequence on page 48
Added the values taken by 'x' to clarify TCR_Elx meaning	6.5 Hardware management of the Access flag and dirty state on page 55
Editorial changes to clarify the information on Misprogramming continuous hints	6.6 Responses on page 55
Added a note	8.1 L1 data cache behavior on page 63
Added section	8.2 Write streaming mode on page 64
Added L2 to the list of targeted caches	8.5 Data prefetching on page 66
Added a note	9.1 L2 cache on page 68
Added information	9.2 Support for memory types on page 69
Added chapter	10. Direct access to internal memory on page 71
Updated initial description	11.3 Fault detection and reporting on page 79
Updated initial description	13.1 Disable the GIC CPU interface on page 84
Added explanations	17. Debug on page 89
Added explanations	17.2.4 Breakpoints and watchpoints on page 93
	18.1 Performance monitors events on page 97
Removed 'ETM exported' column	10.1 Ferrormance monitors events on page 77

Change	Location
Removed events 0x001A and 0x0072 that are not supported anymore	18.1 Performance monitors events on page 97
Added events 0x818, 0x8129, 0x8136, 0x8137, 0x8162	18.1 Performance monitors events on page 97
Updated counters reference for Group 1 (10-12 instead of 0-2)	21. Activity Monitors Extension support on page 122
Updated the description of some registers	A. AArch64 registers on page 129
Removed AArch64 Statistical Profiling Extension registers	A. AArch64 registers on page 129
Updated accessibility code	A.1.1 AIDR_EL1, Auxiliary ID Register on page 130
Updated AMAIR_EL1 accessibility code	A.1.6 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2) on page 140
Updated accessibility code	A.1.7 LORID_EL1, LORegionID (EL1) on page 143
Updated AMAIR_EL1 accessibility code	A.1.8 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1) on page 144
Updated accessibility code	A.1.11 IMP_CPUACTLR_EL1, CPU Auxiliary Control Register on page 150
Updated accessibility code	A.1.12 IMP_CPUACTLR2_EL1, CPU Auxiliary Control Register on page 152
Updated accessibility code	A.1.13 IMP_CPUACTLR3_EL1, CPU Auxiliary Control Register on page 154
Updated accessibility code	A.1.14 IMP_CPUACTLR4_EL1, CPU Auxiliary Control Register on page 156
Added bits in the register description, and updated accessibility code	A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 158
Added bits in the register description, and updated accessibility code	A.1.16 IMP_CPUECTLR2_EL1, CPU Extended Control Register on page 166
Removed VPU_PWR_CTRL bit that is not supported, and updated accessibility code	A.1.17 IMP_CPUPWRCTLR_EL1, CPU Power Control Register on page 169
Updated accessibility code	A.1.18 IMP_CLUSTERACTLR_EL1, Cluster Auxiliary Control Register on page 172
IMP_ATCR_EL2 register added to AArch64 Generic system control registers	A.1.19 IMP_ATCR_EL2, CPU Auxiliary Translation Control Register on page 174
Added missing word (virtualization) to register name, and changed 'page table walks' to 'translation table walks'	A.1.20 IMP_AVTCR_EL2, CPU Auxiliary Virtualization Translation Control Register on page 178
Changed 'page table walks' to 'translation table walks'	A.1.21 IMP_ATCR_EL1, CPU Auxiliary Translation Control Register on page 181
Updated bits description	A.1.22 IMP_ISIDE_DATA0_EL3, RAMINDEX Instruction Data register 0 on page 184
Updated bits description	A.1.23 IMP_ISIDE_DATA1_EL3, RAMINDEX Instruction Data register 1 on page 186
Updated bits description	A.1.24 IMP_ISIDE_DATA2_EL3, RAMINDEX Instruction Data register 2 on page 188
Updated bits description	A.1.25 IMP_MMU_DATAO_EL3, RAMINDEX TLB Data register 0 on page 189
Updated bits description	A.1.26 IMP_MMU_DATA1_EL3, RAMINDEX TLB Data register 1 on page 193
Updated bits description	A.1.27 IMP_MMU_DATA2_EL3, RAMINDEX TLB Data register 2 on page 199

Change	Location
Updated bits description	A.1.28 IMP_DSIDE_DATAO_EL3, RAMINDEX L1D Data register 0 on page 204
Updated bits description	A.1.29 IMP_DSIDE_DATA1_EL3, RAMINDEX L1D Data register 1 on page 206
Updated bits description	A.1.30 IMP_DSIDE_DATA2_EL3, RAMINDEX L1D Data register 2 on page 208
IMP_L2_DATAO_EL3 register added to AArch64 Generic system control registers	A.1.31 IMP_L2_DATA0_EL3, RAMINDEX L2 Data register 0 on page 210
IMP_L2_DATA2_EL3 register added to AArch64 Generic system control registers	A.1.32 IMP_L2_DATA2_EL3, RAMINDEX L2 Data register 2 on page 214
IMP_L2_DATA1_EL3 register added to AArch64 Generic system control registers	A.1.33 IMP_L2_DATA1_EL3, RAMINDEX L2 Data register 1 on page 216
Changed 'page table walks' to 'translation table walks'	A.1.35 IMP_ATCR_EL3, CPU Auxiliary Translation Control Register on page 220
Added FPCR register to the AArch64 generic system control registers	A.1.43 FPCR, Floating-point Control Register on page 233
Updated AFSRO_EL1 accessibility code	A.1.44 AFSRO_EL2, Auxiliary Fault Status Register 0 (EL2) on page 237
Updated AFSR1_EL1 accessibility code	A.1.45 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2) on page 240
Updated AFSRO_EL1 accessibility code	A.1.46 AFSRO_EL1, Auxiliary Fault Status Register 0 (EL1) on page 242
Updated AFSR1_EL1 accessibility code	A.1.47 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1) on page 245
Added AArch64 system instruction registers	A.3 AArch64 This register is a system instruction registers summary on page 253
Updated accessibility code	A.4.1 MIDR_EL1, Main ID Register on page 263
Updated accessibility code	A.4.2 MPIDR_EL1, Multiprocessor Affinity Register on page 265
Added fields description, and updated accessibility code	A.4.3 REVIDR_EL1, Revision ID Register on page 267
Changed description of all bits to 'Reserved'	A.4.12 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0 on page 284
Updated BF16 field description	A.4.15 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 on page 290
Updated accessibility code	A.4.19 CCSIDR_EL1, Current Cache Size ID Register on page 302
Updated accessibility code	A.4.20 CLIDR_EL1, Cache Level ID Register on page 304
Updated accessibility code	A.4.22 CSSELR_EL1, Cache Size Selection Register on page 309
Updated accessibility code	A.4.23 CTR_ELO, Cache Type Register on page 312
Updated accessibility code	A.4.24 DCZID_EL0, Data Cache Zero ID register on page 314
Updated accessibility code	A.4.26 IMP_CPUPPMPDPCR_EL1, Global PPMPDP Configuration Register on page 318
Added RAZ field, and updated accessibility code	A.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register on page 323

Change	Location
Updated reset values, fields descriptions, and accessibility code	A.5.2 PMCR_ELO, Performance Monitors Control Register on page 324
Added description for bits[31:0]	A.6.3 ICC_APORO_EL1, Interrupt Controller Active Priorities Group 0 Registers on page 352
Added ICV_APORO_EL1 register to the AArch64 GIC registers	A.6.4 ICV_APORO_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers on page 354
Added description for bits[31:0]	A.6.5 ICC_AP1R0_EL1, Interrupt Controller Active Priorities Group 1 Registers on page 356
Added ICV_AP1R0_EL1 register to the AArch64 GIC registers	A.6.6 ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers on page 358
Updated accessibility code	A.7.1 TRBIDR_EL1, Trace Buffer ID Register on page 367
Added description to SEL field	A.8.2 ERRSELR_EL1, Error Record Select Register on page 372
Added description to DE field	A.8.3 ERXFR_EL1, Selected Error Record Feature Register on page 374
Added description to ER and SERR fields	A.8.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register on page 382
Updated PADDR field description	A.8.6 ERXADDR_EL1, Selected Error Record Address Register on page 389
Updated MV and AV fields description	A.8.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register on page 392
Added OF and SYN fields, removed CDNEN field	A.8.8 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register on page 397
Added description to all fields	A.8.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0 on page 404
Updated all registers accessibility code	A.10 AArch64 Trace registers summary on page 431
Updated EXLEVEL_S_EL2 field description indicating value 0b1 meaning	A.10.5 TRCIDR3, ID Register 3 on page 439
Changed description of all bits to 'Reserved'	A.10.14 TRCAUXCTLR, Auxiliary Control Register on page 456
Added AArch64 MPAM registers	A.11 AArch64 Memory Partitioning and Monitoring registers summary on page 473
Updated the description of some registers	B. External registers on page 481
Removed External Cluster registers	B. External registers on page 481
Removed External CTI registers	B. External registers on page 481
Updated EX field description indicating value 0b1 meaning, and updated N field value to six	B.2.27 PMCFGR, Performance Monitors Configuration Register on page 514
Changed description of all bits to 'Reserved'	B.3.2 EDACR, External Debug Auxiliary Control Register on page 556
Changed description of all bits to 'Reserved'	B.5.1 TRCAUXCTLR, External Auxiliary Control Register on page 611
Updated EXLEVEL_S_EL2 field description indicating value 0b1 meaning	B.5.12 TRCIDR3, External ID Register 3 on page 626

Change	Location
Removed the following registers from the external ROM table registers:	B.6 External ROM table registers summary on page 662
• PRIDRO	
• IICTRL	
• CLAIMSET	
CLAIMCLR	
DEVAFF0	
DEVAFF1	
• LAR	
• LSR	
DEVID2	
DEVID1	
DEVID	
• DEVTYPE	
• PIDR5	
• PIDR6	
• PIDR7	
Removed POWERID field value, and indicated POWERIDVALID field value as 0b0	B.6.1 ROMENTRYO, Class 0x9 ROM Table Entries on page 663
Removed POWERID field value, and indicated POWERIDVALID field value as 0b0	B.6.2 ROMENTRY1, Class 0x9 ROM Table Entries on page 665
Removed POWERID field value, and indicated POWERIDVALID field value as 0b0	B.6.3 ROMENTRY2, Class 0x9 ROM Table Entries on page 667
Added POWERID field and description	B.6.4 ROMENTRY3, Class 0x9 ROM Table Entries on page 669

Table C-4: Differences between issue 0000-04 and issue 0100-05

Change	Location
First Confidential early access release for r1p0	-
Editorial changes	Throughout document
Theodul name changed to DSU-110	Throughout document
Replaced ETM with ETE or 'trace unit' where required	Throughout document
Added Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile. This document includes Embedded Trace Extension description.	Additional reading
Updated SVE document name	
Updated description and removed the number of cores in a cluster	2.1 Cortex-A715 core features on page 22
Updated title	2.2 Cortex-A715 core configuration options on page 24
Renamed features as per 'Feature names for A-profile' page in developer.arm.com website	2.4 Supported standards and specifications on page 25
Added FEAT_SPEv1p1, FEAT_Debugv8p4, FEAT_DoPD	
Updated the descriptions	2.6 Design tasks on page 29

Change	Location
Updated L1 data memory page size description (4KB, 16KB, 64KB, 2MB)	3.1 Core components on page 31
Updated the core voltage domains and power domains figure	5.1 Voltage and power domains on page 38
Updated content	5.2.2 Low-power state behavior considerations on page 41
Added details and a Note	5.4.2 Off mode on page 44
Updated description of Full retention mode exit conditions	5.4.4 Full retention mode on page 44
Added information in the powerdown sequence	5.6 Cortex-A715 core powerup and powerdown sequence on page 48
L2 TLB Medium page, corrected typo in table (521MB instead of 512MB)	6.1 Memory Management Unit components on page 51
Updated last sentence	6.4 Translation table walks on page 54
Updated 'External aborts' description	6.6 Responses on page 55
Updated 'Conflict aborts' description	
 Throughout the chapter, added links to the registers instead of providing tables with redundant for the returned data. Updated descriptions information Added more details in fields description 	10. Direct access to internal memory on page 71
Updated the note	18.1 Performance monitors events on page 97
Updated description for events 0x0020, 0x0029, 0x002A, 0x002B, 0x0031, 0x0036, 0x0037, 0x0050, 0x0051, 0x0052, 0x0053, 0x0056, 0x0057, 0x0058, 0x0059, 0x0060, 0x0061, 0x400D, 0x400E, 0x400F, 0x4010, 0x4011, 0x4012, 0x4013	
Added event 0x8079	
Updated the explanation considering the trace unit throughout the chapter	19. Embedded Trace Extension support on page 112
Updated External memory-mapped access topic	21.1 Activity monitors access on page 122
Updated events AMEVCNTR10, AMEVCNTR11, and AMEVCNTR12 name and description	21.3 Activity monitors events on page 123
Added reset values to all registers	A. AArch64 registers on page 129
Added description for bits[55], [54:53], [52:47], and [40]	A.1.15 IMP_CPUECTLR_EL1, CPU Extended Control Register on page 158
Added bits description	A.1.22 IMP_ISIDE_DATAO_EL3, RAMINDEX Instruction Data register 0 on page 184
Added bits description	A.1.23 IMP_ISIDE_DATA1_EL3, RAMINDEX Instruction Data register 1 on page 186
Added bits description	A.1.24 IMP_ISIDE_DATA2_EL3, RAMINDEX Instruction Data register 2 on page 188
Added bits description	A.1.25 IMP_MMU_DATAO_EL3, RAMINDEX TLB Data register 0 on page 189
Added bits description	A.1.26 IMP_MMU_DATA1_EL3, RAMINDEX TLB Data register 1 on page 193
Added bits description	A.1.27 IMP_MMU_DATA2_EL3, RAMINDEX TLB Data register 2 on page 199
Added bits description	A.1.28 IMP_DSIDE_DATAO_EL3, RAMINDEX L1D Data register 0 on page 204

Change	Location
Added bits description	A.1.29 IMP_DSIDE_DATA1_EL3, RAMINDEX L1D Data register 1 on page 206
Added bits description	A.1.30 IMP_DSIDE_DATA2_EL3, RAMINDEX L1D Data register 2 on page 208
Added bits description	A.1.31 IMP_L2_DATA0_EL3, RAMINDEX L2 Data register 0 on page 210
Updated bits description	A.1.32 IMP_L2_DATA2_EL3, RAMINDEX L2 Data register 2 on page 214
Updated bits description	A.1.33 IMP_L2_DATA1_EL3, RAMINDEX L2 Data register 1 on page 216
Updated bits description	A.1.43 FPCR, Floating-point Control Register on page 233
Added bits description	A.3.1 RAMINDEX, RAMINDEX system instruction on page 254
Updated bits description for r1p0	A.4.1 MIDR_EL1, Main ID Register on page 263
Updated bits description	A.4.7 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0 on page 273
Added description for bits[35:12]	A.4.8 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 on page 276
Updated bits description	A.4.9 ID_AA64ZFRO_EL1, SVE Feature ID register 0 on page 278
Updated description for bits[11:8]	A.4.16 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0 on page 294
Added description for bits[61:32], and [27:24]	A.4.17 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1 on page 296
Changed FEAT_MTE to FEAT_MTE2	A.4.19 CCSIDR_EL1, Current Cache Size ID Register on page 302
Added description for bits[19:8]	A.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register on page 323
Updated bits description	A.5.2 PMCR_ELO, Performance Monitors Control Register on page 324
Updated description	A.5.3 PMCEIDO_ELO, Performance Monitors Common Event Identification register 0 on page 330
Updated description	A.5.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1 on page 337
Updated bits description	A.6.2 ICV_CTLR_EL1, Interrupt Controller Virtual Control Register on page 349
Added description for bit[28]	A.8.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register on page 392
Updated description for bits[18:6], and [31:28]	A.8.10 ERXMISCO_EL1, Selected Error Record Miscellaneous Register 0 on page 404
Updated description for bits[7:0]	A.9.4 AMCFGR_ELO, Activity Monitors Configuration Register on page 421
Updated description for bit[31]	A.10.4 TRCIDR2, ID Register 2 on page 437
Bit[23], LPOVERRIDE 0b0 value described	A.10.7 TRCIDR5, ID Register 5 on page 444
Updated description for bits[3:0]	A.10.16 TRCIDR1, ID Register 1 on page 461
Updated bits[19:16] description	A.10.17 TRCDEVARCH, Device Architecture Register on page 463
Added reset values to all registers	B. External registers on page 481
Updated bits description	B.2.27 PMCFGR, Performance Monitors Configuration Register on page 514

Change	Location
Updated description for bit[2]	B.2.28 PMCR_ELO, External Performance Monitors Control Register on page 516
Updated description	B.2.29 PMCEIDO, Performance Monitors Common Event Identification register 0 on page 519
Updated description	B.2.30 PMCEID1, Performance Monitors Common Event Identification register 1 on page 524
Updated description	B.2.31 PMCEID2, Performance Monitors Common Event Identification register 2 on page 528
Updated description	B.2.32 PMCEID3, Performance Monitors Common Event Identification register 3 on page 532
Updated description for bits[7:4]	B.2.40 PMPIDR2, Performance Monitors Peripheral Identification Register 2 on page 545
Updated bits description for r1p0	B.3.4 MIDR_EL1, External Main ID Register on page 560
Updated description for bits[7:4]	B.3.15 EDPIDR2, External Debug Peripheral Identification Register 2 on page 577
Updated description for bits[7:0]	B.4.9 AMCFGR, Activity Monitors Configuration Register on page 595
Updated bits description for r1p0	B.4.10 AMIIDR, Activity Monitors Implementation Identification Register on page 597
Updated description for bits[7:4]	B.4.16 AMPIDR2, Activity Monitors Peripheral Identification Register 2 on page 604
Updated bits description for TRCSTALLCTLR, Stall Control Register	B.4.2 TRCSTALLCTLR, Stall Control Register on page 520
Updated description for bits[3:0]	B.5.10 TRCIDR1, External ID Register 1 on page 622
Updated description for bit[31]	B.5.11 TRCIDR2, External ID Register 2 on page 624
Bit[23], LPOVERRIDE ObO value described	B.5.14 TRCIDR5, External ID Register 5 on page 630
Updated bits[19:16] description	B.5.20 TRCDEVARCH, External Device Architecture Register on page 639
Updated description for bits[7:4]	B.5.31 TRCPIDR2, Peripheral Identification Register 2 on page 654
Updated bits description	B.5.32 TRCPIDR3, Peripheral Identification Register 3 on page 656

Table C-5: Differences between issue 0100-05 and issue 0101-06

Change	Location
First Confidential early access release for r1p1	-
Editorial changes	Throughout document
Added FEAT_ECBHB	2.4 Supported standards and specifications on page 25
Added revision r1p1	2.7 Product revisions on page 30
Updated description	5.5.1 Maximum Power Mitigation Mechanism on page 46
Added a new topic	5.5.3 Dispatch block on page 48

Change	Location
Updated sequence description	5.6 Cortex-A715 core powerup and powerdown sequence on page 48
Added a new topic	5.6.1 Managing RAS fault and error interrupts during the core powerdown on page 49
Added a new topic	6.8 Page-based hardware attributes on page 58
Updated the section on 'Hardware data prefetcher'	8.5 Data prefetching on page 66
Updated description	9.2 Support for memory types on page 69
Updated description	10. Direct access to internal memory on page 71
Added <n> value for L2 = 128KB</n>	10.2 L2 cache encodings on page 74
Updated SECDED ECC description	11.1 Cache protection behavior on page 77
Updated decription	11.2 Error containment on page 78
Updated 'Uncontainable errors' section description	11.5 Error injection on page 80
Added chapter	12. Utility bus on page 82
Updated Peripheral ID value and Core revision	17.6 CoreSight component identification on page 94
Added following registers: IMP_CPUPSELR_EL3, IMP_CPUPCR_EL3, IMP_CPUPOR_EL3, IMP_CPUPOR2_EL3, IMP_CPUPMR2_EL3, IMP_CPUPFR_EL3	A.1 AArch64 Generic System Control registers summary on page 129
Updated reset values for register LORID_EL1	A.1 AArch64 Generic System Control registers summary on page 129
Added 'Access' topic to registers: AMAIR_EL2, AMAIR_EL1, IMP_ATCR_EL2, IMP_ATCR_EL1, AFSR0_EL2, AFSR1_EL2, AFSR0_EL1, AFSR1_EL1	A.1 AArch64 Generic System Control registers summary on page 129
Updated SLCID_IDX field description	A.1.34 IMP_CLUSTERCDBG_EL3, Cluster Cache Debug Register on page 217
Updated some fields description	A.2.1 IMP_CPUPPMCR_EL3, Global PPM Configuration Register on page 251
Updated reset values for registers: MIDR_EL1, ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64ZFR0_EL1, ID_AA64DFR0_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64MMFR2_EL1, GMID_EL1, DCZID_EL0, MPAMIDR_EL1	A.4 AArch64 Identification registers summary on page 262

Change	Location
Added 'Access' topic to register CCSIDR_EL1	A.4 AArch64 Identification registers summary on page 262
Updated some fields description	A.4.1 MIDR_EL1, Main ID Register on page 263
Updated CSV2_frac description	A.4.8 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 on page 276
Updated some fields description	A.4.15 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 on page 290
Updated some fields description	A.4.16 ID_AA64MMFRO_EL1, AArch64 Memory Model Feature Register 0 on page 294
Updated reset values and some fields description	A.5.1 PMMIR_EL1, Performance Monitors Machine Identification Register on page 323
Updated reset values, added IDCODE field, removed X field	A.5.2 PMCR_ELO, Performance Monitors Control Register on page 324
Added 'Access' topic to registers: ICC_APORO_EL1, ICV_APORO_EL1, ICC_AP1RO_EL1, ICV_AP1RO_EL1	A.6 AArch64 GIC system registers summary on page 344
Updated reset values	A.7.1 TRBIDR_EL1, Trace Buffer ID Register on page 367
Updated reset values for registers: ERRIDR_EL1, ERXFR_EL1, ERXPFGF_EL1	A.8 AArch64 RAS registers summary on page 370
Added 'Access' topic to registers: ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL1, ERXADDR_EL1, ERXPFGF_EL1, ERXPFGCTL_EL1, ERXPFGCDN_EL1, ERXMISCO_EL1, ERXMISC1_EL1, ERXMISC2_EL1, ERXMISC3_EL1	A.8 AArch64 RAS registers summary on page 370
Updated some fields description	A.8.3 ERXFR_EL1, Selected Error Record Feature Register on page 374
Updated some fields description	A.8.5 ERXSTATUS_EL1, Selected Error Record Primary Status Register on page 382
Updated most fields description	A.8.7 ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register on page 392

Change	Location
Added field CDNEN, removed fields SYN , MV, AV, PN, ER, CI, OF	A.8.8 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register on page 397
Updated reset values for registers: AMEVTYPER10_EL0, AMEVCNTR11_EL0, AMEVCNTR12_EL0, AMCFGR_EL0, AMEVCNTR00_EL0, AMEVCNTR01_EL0, AMEVCNTR02_EL0, AMEVCNTR03_EL0	A.9 AArch64 Activity Monitors registers summary on page 416
Added 'Access' topic to registers: AMEVTYPER10_EL0, AMEVCNTR11_EL0, AMEVCNTR12_EL0, AMEVCNTR00_EL0, AMEVCNTR01_EL0, AMEVCNTR02_EL0, AMEVCNTR03_EL0	A.9 AArch64 Activity Monitors registers summary on page 416
Updated reset values for registers: TRCIDR8, TRCIMSPECO, TRCIDR2, TRCIDR3, TRCIDR4, TRCIDR5, TRCIDR0, TRCIDR1	A.10 AArch64 Trace registers summary on page 431
Added 'Access' topic to register TRCAUXCTLR	A.10 AArch64 Trace registers summary on page 431
Updated description for fields SYSSTALL, STALLCTL	A.10.5 TRCIDR3, ID Register 3 on page 439
Updated some fields description	A.10.16 TRCIDR1, ID Register 1 on page 461
Added External MPMM registers	B.1 External MPMM registers summary on page 481
Added a set of Snapshot registers: from PMPCSSR (Offset 0x600) to PMSSCR (Offset 0x6F0)	B.2 External PMU registers summary on page 487
Updated reset values for registers: PMCFGR, PMCR_ELO, PMMIR, PMDEVID, PMPIDR4, PMPIDR0, PMPIDR1, PMPIDR2, PMPIDR3, PMCIDR1	B.2 External PMU registers summary on page 487
Added 'Accessibility' topic to registers: PMCFGR, PMCR_ELO, PMCEIDO, PMCEID1, PMCEID2, PMCEID3, PMMIR, PMDEVARCH, PMDEVID, PMDEVTYPE, PMPIDR0, PMPIDR1, PMPIDR2, PMPIDR3, PMPIDR4, PMCIDR0, PMCIDR1, PMCIDR2, PMCIDR3,	B.2 External PMU registers summary on page 487
Updated description for fields EX, N	B.2.27 PMCFGR, Performance Monitors Configuration Register on page 514
Replaced X field with RAZ/WI	B.2.28 PMCR_ELO, External Performance Monitors Control Register on page 516
Updated reset values for registers: MIDR_EL1, EDPFR, EDDFR, EDDEVARCH, EDDEVID1, EDDEVID, EDPIDR4, EDPIDR0, EDPIDR1, EDPIDR2, EDPIDR3, EDCIDR1	B.3 External Debug registers summary on page 554
Added 'Accessibility' topic to registers: EDRCR, EDACR, EDPRCR, MIDR_EL1, EDPFR, EDDFR, EDDEVARCH, EDDEVID2, EDDEVID1, EDDEVID, EDDEVTYPE, EDPIDR4, EDPIDR0, EDPIDR1, EDPIDR2, EDPIDR3, EDCIDR0, EDCIDR1, EDCIDR2, EDCIDR3	B.3 External Debug registers summary on page 554
Updated some fields description	B.3.3 EDPRCR, External Debug Power/Reset Control Register on page 558

Change	Location
Updated some fields description	B.3.4 MIDR_EL1, External Main ID Register on page 560
 Register has 2 offsets to access 64 bits: 0xD20 provides access to lower 32 bits, 0xD24 to upper 32 bits) Updated some fields description 	B.3.5 EDPFR, External Debug Processor Feature Register on page 561
Register has 2 offsets to access 64 bits: 0xD28 provides access to lower 32 bits, 0xD2C to upper 32 bits)	B.3.6 EDDFR, External Debug Feature Register on page 564
Updated some fields description	B.3.16 EDPIDR3, External Debug Peripheral Identification Register 3 on page 578
Updated reset values for registers: AMCGCR, AMCFGR, AMIIDR, AMDEVARCH, AMPIDR3, AMCIDR1	B.4 External AMU registers summary on page 585
Updated some fields description	B.4.10 AMIIDR, Activity Monitors Implementation Identification Register on page 597
Updated some fields description	B.4.17 AMPIDR3, Activity Monitors Peripheral Identification Register 3 on page 605
Removed TRCSTALLCTLR register that is not implemented	B.5 External ETE registers summary on page 610
Updated reset values for registers: TRCIDR8, TRCIMSPECO, TRCIDR0, TRCIDR1, TRCIDR2, TRCIDR3, TRCIDR4, TRCIDR5, TRCDEVTYPE, TRCPIDR3, TRCCIDR1	B.5 External ETE registers summary on page 610
Added 'Accessibility' topic to registers: TRCAUXCTLR, TRCIDR8, TRCIDR9, TRCIDR10, TRCIDR11, TRCIDR12, TRCIDR13, TRCIMSPECO, TRCIDR0, TRCIDR1, TRCIDR2, TRCIDR3, TRCIDR4, TRCIDR5, TRCIDR6, TRCIDR7, TRCITCTRL, TRCCLAIMSET, TRCCLAIMCLR, TRCDEVARCH, TRCDEVID2, TRCDEVID1, TRCDEVID, TRCDEVTYPE, TRCPIDR4, TRCPIDR5, TRCPIDR6, TRCPIDR7, TRCPIDR0, TRCPIDR1, TRCPIDR2, TRCPIDR3, TRCCIDR0, TRCCIDR1, TRCCIDR3	B.5 External ETE registers summary on page 610
Updated some fields description	B.5.12 TRCIDR3, External ID Register 3 on page 626
Updated some fields description	B.5.32 TRCPIDR3, Peripheral Identification Register 3 on page 656
Updated reset values for registers: ROMENTRY3, DEVARCH, PIDR4, PIDR0, PIDR1, PIDR2, PIDR3, CIDR0, CIDR1, CIDR2, CIDR3	B.6 External ROM table registers summary on page 662
Updated some fields description	B.6.4 ROMENTRY3, Class 0x9 ROM Table Entries on page 669
Updated some fields description	B.6.10 PIDR2, Peripheral Identification Register 2 on page 676
Updated some fields description	B.6.11 PIDR3, Peripheral Identification Register 3 on page 677

Table C-6: Differences between issue 0101-06 and issue 0101-07

Change	Location
Second early access release for r1p1	-
Updated product name	Throughout document