
Learn the architecture - Generic Timer
Version 1.0

Non-Confidential
Copyright © 2019 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102379_0100_02_en



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Learn the architecture - Generic Timer

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-02 13 August 2019 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 28

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey


Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 28

mailto:terms@arm.com


Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Contents

Contents

1. Overview...........................................................................................................................................................6

2. Before you begin.............................................................................................................................................7

3. What is the Generic Timer?.........................................................................................................................8

4. The processor timers...................................................................................................................................10

5. System Counter.............................................................................................................................................17

6. External timers.............................................................................................................................................. 21

7. Example using Arm Development Studio...............................................................................................23

8. Check your knowledge............................................................................................................................... 26

9. Related information..................................................................................................................................... 27

10. Next steps....................................................................................................................................................28

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Overview

1. Overview
This guide introduces the Generic Timer, the timer framework for A-profile PEs. The guide
introduces the different components of the timer framework within a modern SoC and covers the
programming interfaces that are available to software.

The guide is targeted at developers writing low-level software to initialize or use the timers in an
Arm-based system. Users of this guide will usually be working on low-level code.

At the end of this guide, you can Check your knowledge. You will have learned the names and
purposes of the different components that make up the timer sub-system. You will be able to write
code to set up the timers in a bare metal environment. You will also be able to describe which
timers are present, based on the implemented architectural features.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Before you begin

2. Before you begin
We assume that you are familiar with the Arm exception model. If you are not, you might want to
first read our Arm v8-A Exception model guide.

This guide includes a short code example written in C and assembler. If you are unfamiliar with Arm
assembler syntax, you can review our Armv8-A Instruction Set Architecture (ISA) guide for a brief
introduction. The example requires Arm Development Studio. If you do not already have a copy,
you can download an evaluation copy.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 28

https://developer.arm.com/architectures/learn-the-architecture/exception-model
https://developer.arm.com/-/media/Files/downloads/Common%20Task%20Tutorials%20Samples/generic_timer.zip?revision=ba5a0be7-df5c-4e84-9845-a9fcdff1d41a&la=en&hash=ED642BD630A864E27ACEFA62842BD26CABBE460E
https://developer.arm.com/architectures/learn-the-architecture/aarch64-instruction-set-architecture
https://developer.arm.com/tools-and-software/embedded/arm-development-studio


Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

What is the Generic Timer?

3. What is the Generic Timer?
The Generic Timer provides a standardized timer framework for Arm cores. The Generic Timer
includes a System Counter and set of per-core timers, as shown in the following diagram:

Figure 3-1: System counter

The System Counter is an always-on device, which provides a fixed frequency incrementing
system count. The system count value is broadcast to all the cores in the system, giving the cores
a common view of the passage of time. The system count value is between 56 bits and 64 bits in
width, with a frequency typically in the range of 1MHz to 50MHz.

The Generic Timer only measures the passage of time. It does not report the time or
date. Usually, an SoC would also contain a Real-Time Clock (RTC) for time and date.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

What is the Generic Timer?

Each core has a set of timers. These timers are comparators, which compare against the broadcast
system count that is provided by the System Counter. Software can configure timers to generate
interrupts or events in set points in the future. Software can also use the system count to add
timestamps, because the system count gives a common reference point for all cores.

In this guide, we will explain the operation and configuration of both the timers and the System
Counter.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

4. The processor timers
This table shows the processor timers:

Timer name When is the timer present?

EL1 physical timer Always

EL1 virtual timer Always

Non-secure EL2 physical timer Implements EL2

Non-secure EL2 virtual timer Implements ARMv8.1-VHE

EL3 physical timer Implements EL3

Secure EL2 physical timer Implements ARMv8.4-SecEL2

Secure EL2 virtual timer Implements ARMv8.4-SecEL2

Count and frequency
The CNTPCT_EL0 system register reports the current system count value.

Reads of CNTPCT_EL0 can be made speculatively. This means that they can be read out of order
regarding the program flow. This could be important in some cases, for example comparing
timestamps. When the ordering of the counter read is important, an ISB can be used, as the
following code shows:

loop:           // Polling for some communication to indicate a requirement to read
                // the timer
  LDR X1, [X2]
  CBZ x1, loop
  ISB           // Without this, the CNTPCT could be read before the memory location
 in
                // [X2] has had the value 0 written to it
  MRS X1, CNTPCT_EL0

CNTFRQ_EL0 reports the frequency of the system count. However, this register is not populated by
hardware. The register is write-able at the highest implemented Exception level and readable at all
Exception levels. Firmware, typically running at EL3, populates this register as part of early system
initialization. Higher-level software, like an operating system, can then use the register to get the
frequency.

Timer registers
Each timer has the following three system registers:

Register Purpose

<timer>_CTL_EL<x> Control register

<timer>_CVAL_EL<x> Comparator value

<timer>_TVAL_EL<x> Timer value

In the register name, <timer> identifies which timer is being accessed. The following table shows
the possible values:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

Timer Register prefix EL<x>

EL1 physical timer CNTP EL0

EL1 virtual time CNTV EL0

Non-secure EL2 physical timer CNTHP EL2

Non-secure EL2 virtual timer CNTHV EL2

EL3 physical timer CNTPS EL1

Secure EL2 physical timer CNTHPS EL2

Secure EL2 virtual timer CNTHVS EL2

For example, CNTP_CVAL_EL0 is the Comparator register of the EL1 physical timer.

Test yourself
What is the name of the control register for the EL3 physical timer and Non-secure EL2
virtual timer?

Accessing the timers
For some timers, it is possible to configure which Exception levels can access the timer:

EL1 Physical and Virtual Timers: EL0 access to these timers is controlled by CNTKCTL_EL1. EL2
Physical and Virtual Timers: When HCR_EL2.{TGE,E2H}=={1,1}, EL0 access to these timers is
controlled by CNTKCTL_EL2. These timers were added as part of the support for the Armv8.1-A
Virtualization Host Extension, which is beyond the scope of this guide EL3 physical timer: S.EL1
and S.EL2 access to this timer is controlled by SCR_EL3.ST.

Configuring a timer
There are two ways to configure a timer, either using the comparator (CVAL) register, or using the
timer (TVAL) register.

The comparator register, CVAL, is a 64-bit register. Software writes a value to this register and the
timer triggers when the count reaches, or exceeds, that value, as you can see here:

Timer Condition Met: CVAL <= System Count

The timer register, TVAL, is a 32-bit register. When software writes TVAL, the processor reads the
current system count internally, adds the written value, and then populates CVAL:

CVAL = TVAL + System Counter 
Timer Condition Met: CVAL <= System Count

You can see this populating of CVAL in software. If you read the current system count, write 1000
to TVAL, and then read CVAL, you will see that CVAL is approximately 1000 + system count. The
count is approximate, because time will move on during the instruction sequence.

Reading TVAL back will show it decrementing down to 0, while the system count increments. TVAL
reports a signed value, and will continue to decrement after the timer fires, which allows software
to determine how long ago the timer fired. TVAL and CVAL gives software two different models for
how to use the timer. If software needs a timer event in X ticks of the clock, software can write X

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

to TVAL. Alternatively, if software wants an event when the system count reaches Y, software can
write Y to CVAL.

Remember that TVAL and CVAL are different ways to program the same timer. They are not two
different timers.

Interrupts
Timers can be configured to generate an interrupt. The interrupt from a core’s timer can only
be delivered to that core. This means that the timer of one core cannot be used to generate an
interrupt that targets a different core.

The generation of interrupts is controlled through the CTL register, using these fields:

• ENABLE - Enables the timer.

• IMASK - Interrupt mask. Enables or disables interrupt generation.

• ISTATUS - When ENABLE==1, reports whether the timer is firing (Cval <= System Count).

To generate an interrupt, software must set ENABLE to 1 and clear IMASK to 0. When the timer fires
(CVAL <= System Count), an interrupt signal is asserted to the interrupt controller. In Armv8-A
systems, the interrupt controller is usually a Generic Interrupt Controller (GIC).

The interrupt ID (INTID) that is used for each timer is defined by the Server Base System
Architecture (SBSA), shown here:

Timer SBSA recommended INTID

EL1 Physical Timer 30

EL1 Virtual Timer 27

Non-secure EL2 Physical Timer 26

Non-secure EL2 Virtual Timer 28

EL3 Physical Timer 29

Secure EL2 Physical Timer 20

Secure EL2 Virtual Timer 19

These INTIDs are in the Private Peripheral Interrupt (PPI) range. These INTIDs are
private to a specific core. This means that each core sees its EL1 physical timer as
INTID 30. This is described in more detail in our Generic Interrupt Controller guide.

The interrupts generated by the timer behave in a level-sensitive manner. This means that, once
the timer firing condition is reached, the timer will continue to signal an interrupt until one of the
following situations occurs:

• IMASK is set to one, which masks the interrupt.

• ENABLE is cleared to 0, which disables the timer.

• TVAL or CVAL is written, so that firing condition is no longer met.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

When writing an interrupt handler for the timers, it is important that software clears the interrupt
before deactivating the interrupt in the GIC. Otherwise the GIC will re-signal the same interrupt
again.

The operation and configuration of the GIC is beyond the scope of this guide.

Timer virtualization
Earlier, we introduced the different timers that are found in a processor. These timers can be
divided into two groups: virtual timers and physical timers.

Physical timers, like the EL3 physical timer, CNTPS, compare against the count value provided by the
System Counter. This value is referred to as the physical count and is reported by CNTPCT_EL0.

Virtual timers, like the EL1 Virtual Timer, CNTV, compare against a virtual count. The virtual count is
calculated as:

Virtual Count = Physical Count - <offset>

The offset value is specified in the register CNTVOFF_EL2, which is only accessible at EL2 or EL3.
This configuration is shown in the following diagram:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

Figure 4-1: System counter

If EL2 not implemented, the offset is fixed as 0. This means that the virtual and
physical count values are always the same.

The virtual count allows a hypervisor to show virtual time to a Virtual Machine (VM). For example,
a hypervisor could use the offset to hide the passage of time when the VM was not scheduled.
This means that the virtual count can represent time experienced by the VM, rather than wall clock
time.

Event stream
The Generic Timer can also be used to generate an event stream as part of the Wait for Event
mechanism. The WFE instruction puts the core into a low power state, with the core woken by an
event.

Details about the WFE mechanism are beyond the scope of this guide.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

There are several ways to generate an event, including:

• Executing the SEV (Send Event) instruction on a different core

• Clearing the Global Exclusive Monitor of the core

• Using the Event stream from the core’s the Generic Timer

The Generic Timer can be configured to generate a stream of events at a regular interval. One use
for this configuration is to generate a timeout. WFE is typically used when waiting for a resource
to become available, when the wait is not expected to be long. The event stream from the timers
means that the maximum time that the core will stay in the low power state is bounded.

An event stream can be generated from the physical count, CNTPCT_EL0, or from the virtual count,
CNTPVT_EL0:

CNTKCTL_EL1 - Controls event stream generation from CNTVCT_EL0 CNTKCTL_EL2 - Controls event
stream generation from CNTPCT_EL0

For each register, the controls are:

• EVNTEN Enables or disables the generation of events

• EVNTI Controls the rate of events

• EVNTDIR Controls when the event is generated

The control EVNTI specifies a bit position in the range 0 to 15. When the bit at the selected
position changes, an event is generated. For example, if EVNTI is set to 3 then an event is generated
when bit[3] of the count changes.

The control EVNTDIR controls whether the event is generated when the selected bit transitions from
1-to-0 or from 0-to 1.

Summary table
This table summarizes the information about the different timers discussed in this section:

Timer Registers Typically used by Trappable? Using counter INTID

EL1 Physical Timer CNTP_<>_EL0** EL0 and EL1 To EL2 CNTPCT_EL0 30

EL2 Non-secure Physical Timer CNTHP_<>_EL2 NS.EL2 CNTPCT_EL0 26

EL2 Secure Physical Timer CNTHPS_<>_EL2 S.EL2 CNTPCT_EL0 20

EL3 Physical Timer CNTPS_<>_EL1 S.EL1 and EL3 To EL3 CNTPCT_EL0 29

EL1 Virtual Timer CNTV_<>_EL0** EL0 and EL1 CNTPCT_EL0 27

EL2 Non-secure Virtual Timer CNTHV_<>_EL2 NS.EL2 CNTPCT_EL0 28

EL2 Secure Virtual Timer CNTHVS_<>_EL2 S.EL2 CNTPCT_EL0* 19

*For these timers, the virtual offset (CNTVOFFSET_EL2) always behaves as 0. Therefore, although
these timers compare against the virtual count value, they are in practice using the physical counter
value.

** Subjects to re-direction when HCR_EL2.E2H==1.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

The processor timers

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

System Counter

5. System Counter
In What is the Generic Timer?, we introduced the System Counter. The System Counter generates
the system count value that is distributed to all the cores in the system, as shown in the following
diagram:

Figure 5-1: System counter

The SoC implementer is responsible for the design of the System Counter. Usually, the System
Counter requires some initialization when a system boots up. Arm provides a recommended

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

System Counter

register interface for the System Counter, but you should check with your SoC implementer for
details of a specific implementation.

One physical system count value broadcasts to all cores. This means that all cores share the same
view of the passing of time. Consider the following example:

• Device A reads the current system count and adds it to a message as a timestamp, then sends
the message to Device B.

• When Device B receives the message, it compares the timestamp to the current system count.

In this example, the system count value that is seen by Device B can never be earlier than the
timestamp in the message.

The System Counter measures real time. This means that it cannot be affected by power
management techniques like Dynamic Voltage and Frequency Scaling (DVFS) or putting cores into
a lower power state. The count must continue to increment at its fixed frequency. In practice, this
requires the System Counter to be in an always-on power domain.

To save power, the System Counter can vary the rate at which it updates the count. For example,
the System Counter could update the count by 10 every 10th tick of the clock. This can be useful
when the connected cores are all in low power state. The system count still needs to reflect time
advancing, but power can be saved by broadcasting fewer counter updates.

Counter scaling
The option to scale the system count was introduced in Armv8.4-A. Instead of incrementing by one
on every tick of the clock, the count can increment by X, where X is configured by software during
system initialization. This feature allows the count to effectively increment faster or slower than the
frequency of the counter.

To support scaling, the System Counter internally expands the counter value to 88 bits, as you can
see in the following diagram:

Figure 5-2: bit integer part of count image

The count is represented as an 88-bit fixed point number, with 64 bits for the integer part and 24
bits for the fractional part. The integer portion of the count is what is reported by CNTPCT_EL0 on
the connected processors. The fractional part is used internally by the System Counter.

The increment amount comes from a 32-bit register called CNTSCR, and its format is shown below:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

System Counter

Figure 5-3: bit integer part

The increment value is split into an integer part of 8 bits and a fractional part of 24 bits.

When scaling is enabled, on every tick the count is incremented by the value in CNTSCR. For
example, if CNTSCR is set to 0x0180_0000, that means that the count increments by 1.5 (integer
part 0x01, fraction part 0x80_0000) on every tick. This is illustrated in the following table:

Tick Internal counter value
Integer part / Fractional part

Exported counter value

(Visible via CNTPCT_EL0)

0 0x0000_0000_0000_0000_0000_00 0x0000_0000_0000_0000

1 0x0000_0000_0000_0001_8000_00 0x0000_0000_0000_0001

2 0x0000_0000_0000_0003_0000_00 0x0000_0000_0000_0003

3 0x0000_0000_0000_0004_8000_00 0x0000_0000_0000_0004

4 0x0000_0000_0000_0006_0000_00 0x0000_0000_0000_0006

5 0x0000_0000_0000_0007_8000_00 0x0000_0000_0000_0007

6 0x0000_0000_0000_0009_0000_00 0x0000_0000_0000_0009

Scaling can only be configured while the System Counter is disabled. Changing whether scaling
is enabled, or the scaling factor, while the counter is running can result in unknown count values
being returned.

Basic programming
The guidance in this section assumes that the System Counter implements the recommended Arm
register interface.

The System Counter provides two register frames: CNTControlBase and CNTReadBase.

The register frame CNTControlBase is used to configure the System Counter and is Secure access
only on systems that support TrustZone. The registers in this frame are shown in the following
table:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

System Counter

Register Description

CNTCR Control register, includes:

• Counter enable

• Counter scaling enable (Armv8.4-A or later)

• Update frequency selection

• Halt-on-debug control. Stops the counter from incrementing when requested by debugger.

CNTSCR Increment value when using scaling (Armv8.4-A or later)

CNTID ID register, reports which features are implemented.

CNTSR Status register. Reports whether the timer is running or stopped.

CNTCV Reports the current count value.

Returns only the integer portion of the count.

CNTFID<n> Reports the available update frequencies.

To enable the System Counter, software must select an update frequency and set the counter
enable.

CNTReadBase is a copy of CNTControlBase that only includes the CNTCV register. This means that
CNTReadBase only reports the current system count value. However, unlike CNTControlBase,
CNTReadBase is accessible to Non-secure accesses. This means that Non-secure software can read
the current count, but cannot otherwise configure the System Counter.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

External timers

6. External timers
In What is the Generic Timer?, we introduced the timers that are in the processor. A system can
also contain additional external timers. The following diagram shows an example of this:

Figure 6-1: Example additional external timer

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

External timers

The programming interface for these timers mirrors that of the internal timers, but these timers are
accessed via memory-mapped registers. The location of these registers is determined by the SoC
implementor, and should be reported in the datasheet for the SoC that you are working with.

Interrupts from the external memory-mapped timers will typically be delivered as Shared Peripheral
Interrupts (SPIs) by the GIC.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Example using Arm Development Studio

7. Example using Arm Development Studio
This section of the guide includes a short example, downloadable as a zip file, to demonstrate the
configuration of the System Counter and the generation of interrupts using TVAL and CVAL.

The example requires Arm Development Studio. If you do not already have a copy of Arm
Development Studio, you can download an evaluation copy.

The example includes a ReadMe.txt file which lists the included files, and instructions for building
and running the example.

Within main.c is the code for configuring the Timers. Going through main(), it starts with:

//
// Configure the interrupt controller
//
rd = initGIC();

// Secure Physical Timer (INTID 29)
setIntPriority(29, rd, 0);
setIntGroup(29, rd, 0);
enableInt(29);

// Non-secure EL1 Physical Timer (INTID 30)
setIntPriority(30, rd, 0);
setIntGroup(30, rd, 0);
enableInt(30, rd);

The previous code configures the GIC. The operation of the GIC is beyond the scope of this guide,
but configuring the GIC is necessary to generate timer interrupts.

The function initGIC() performs top-level initialization of the interrupt controller. The following
calls configure and enable the interrupt sources associated with the Secure physical timer and Non-
secure EL1 physical timer. Each interrupt is configured as follows:

• Group 0. This means the interrupt will be signaled as a FIQ.

• Priority 0. This is the highest priority value in the GIC architecture.

• Enabled. This allows the interrupt to be signaled to the core.

Next, the System Counter is initialized, as shown here:

//
// Configure and enable the System Counter
//
setSystemCounterBaseAddr(0x2a430000); // Address of the System Counter
initSystemCounter(SYSTEM_COUNTER_CNTCR_HDBG,
                  SYSTEM_COUNTER_CNTCR_FREQ0,
                  SYSTEM_COUNTER_CNTCR_nSCALE);
                  

The first call sets the location of the System Counter, so that the driver functions can access its
registers. This address is based on the Arm Base Platform Model. More information on this model’s
memory map can be found in the Fast Models Reference Manual.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 28

https://developer.arm.com/-/media/Files/downloads/Common%20Task%20Tutorials%20Samples/generic_timer.zip?revision=ba5a0be7-df5c-4e84-9845-a9fcdff1d41a&la=en&hash=ED642BD630A864E27ACEFA62842BD26CABBE460E
https://developer.arm.com/tools-and-software/simulation-models/fast-models/docs


Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Example using Arm Development Studio

The second call writes the CNTCR register. The code selects frequency update scheme 0, disables
scaling and sets the enable bit. After this point, the system count will start incrementing.

Next main() has the following:

//
// Configure timer
//

// Configure the Secure Physical Timer
// This uses the CVAL/comparator to set an absolute time for the timer to fire
current_time = getPhysicalCount();
setSEL1PhysicalCompValue(current_time + 10000);
setSEL1PhysicalTimerCtrl(CNTPS_CTL_ENABLE);

// Configure the Non-secure Physical Timer
// This uses the TVAL/timer to fire the timer in X ticks
setNSEL1PhysicalTimerValue(20000);
setNSEL1PhysicalTimerCtrl(CNTP_CTL_ENABLE);

The preceding code configures two of the timers:

• Sets up the Secure physical timer, CNTPS, using the CVAL.

• Sets up the Non-secure EL1 physical timer, CNTP, using TVAL.

The code in main() then waits for both interrupts to be generated before exiting.

The interrupt handler is also within main.c:

void fiqHandler(void)
{
  uin32_t ID;

  // Read the IAR to get the INTID of the interrupt taken
  ID = readIARGrp0();

  printf("FIQ: Received INTID %d\n", ID);

  switch (ID)
  {
    case 29:
      setSEL1PhysicalTimerCtrl(0); // Disable timer to clear interrupt
      printf("FIQ: Secure Physical Timer\n");
      break;
    case 30:
      setNSEL1PhysicalTimerCtrl(0); // Disable timer to clear interrupt
      printf("FIQ: Non-secure EL1 Physical Timer\n");
      break;
    case 1023:
      printf("FIQ: Interrupt was spurious\n");
      return;
    default:
      printf("FIQ: Panic, unexpected INTID\n");
  }

  // Write EOIR to deactivate interrupt
  writeEOIGrp0(ID);

  flag++;
  return;
}

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Example using Arm Development Studio

The interrupt handler reads the Interrupt Acknowledge Register (IAR) of the GIC to get the ID
of the interrupt that has been taken. Based on the returned value, the handler then disables the
appropriate timer to clear the interrupt. An alternative approach would be to set IMASK, and mask
the interrupt, or update the comparator.

Finally, the interrupt handler writes the End of Interrupt Register (EOIR) of the GIC. This updates
the internal state machine of the GIC for the taken interrupt.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Check your knowledge

8. Check your knowledge
The following questions will help you test you knowledge:

CNTFRQ_EL0 is automatically set by hardware to report the frequency of the system count. True
or False?

FALSE. It is the responsibility of boot software in EL3 to populate the register with the
correct value.

Describe the two ways to configure a given timer.
• TVAL sets the timer to trigger in X ticks (where X is the written value).

• CVAL sets the comparator in the timer to an absolute value, the timer fires when the
count reaches that number.

In an interrupt handler, how can software clear a timer interrupt?
It can set IMASK (masking interrupts), it can clear ENABLE (disabling the timer) or update
CVAL/TVAL.

Do the Generic Timer interrupts have edge-triggered or level-sensitive semantics?
Level-sensitive

When the Generic Timer is used to generate an event stream, how is the rate of events
controlled?

EVNTI controls the rate of events by selecting which bit in the count must change for the
event to be generated. EVNTDIR controls whether it is a 0-to1 or a 1-to-0 transition of that bit
which triggers the event.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 28



Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0

Related information

9. Related information
Here are some resources related to material in this guide:

Arm Community (ask development questions, and find articles and blogs on specific topics from
Arm experts)

Here are some resources related to topics in this guide:

• Interrupts: The Generic Timer generates interrupts, which are handled by the GIC. For more
information on the operation of the GIC, and how to configure it, refer to our GIC guide which
is in development.

• Virtualization: Support for the Armv8.1-A Virtualization Host Extensions, and the topic of
virtualization generally, is discussed in our Virtualization guide.

• Event stream: This guide introduced the Generic Timer’s ability to generate an event stream as
part of the Wait for Event mechanism. More information on Wait for Event will be found in our
Synchronization guide that is in development.

• Example using Arm Development Studio: Learn about the memory map of the Arm Base
Platform Model.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 28

https://community.arm.com/
https://developer.arm.com/architectures/learn-the-architecture/aarch64-virtualization
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map


Learn the architecture - Generic Timer Document ID: 102379_0100_02_en
Version 1.0
Next steps

10. Next steps
The Generic Timer provides a common timer framework for Arm systems. In this guide, we have
learned about the different components of the Generic Timer and their programming interfaces.
You can put this learning into practice when you write your own code for low-level system
initialization.

We reference the Generic Interrupt Controller (GIC) in this guide. If you want to learn more, look
out for our series of guides on the GIC which are in development.

To keep learning about the Armv8-A architecture, see more in our series of guides.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 28

https://developer.arm.com/architectures/learn-the-architecture

	Learn the architecture - Generic Timer
	Contents
	1. Overview
	2. Before you begin
	3. What is the Generic Timer?
	4. The processor timers
	5. System Counter
	6. External timers
	7. Example using Arm Development Studio
	8. Check your knowledge
	9. Related information
	10. Next steps

