
Authenticated Debug Access Control
1.0

Architecture & Technology Group

Document number: DEN 0101
Release Quality: Final
Issue Number: 1
Confidentiality: Non-confidential
Date of Issue: 18/05/2022

Copyright © 2022, Arm Limited. All rights reserved.

Contents

About this document iv
Release information iv
Arm Non-Confidential Document Licence (“Licence”) v
References vii
Terms and abbreviations viii
Potential for change xi
Conventions xiTypographical conventions xiNumbers xii
Pseudocode descriptions xii
Assembler syntax descriptions xii
Current status and anticipated changes xii
Feedback xiiFeedback on this book xii

1 Debug Access Control Architecture 13
1.1 About the Architecture 131.1.1 About Platform Security Architecture 131.1.2 Goals 131.1.3 Scope 14
1.2 System Architecture 141.2.1 System architecture overview 141.2.2 Target Architecture 161.2.3 Protocol Architecture 17
1.3 Security Model 181.3.1 About the Security Model 191.3.2 Authentication 201.3.3 Trust 201.3.4 Constraints 211.3.5 Examples 24

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page i

2 Specification 25
2.1 Common Elements 252.1.1 Conventions 252.1.2 Version Numbers 262.1.3 TLV Data Type 262.1.4 Type ID Registry 272.1.5 Key and Signature Types 30
2.2 Command Protocol 322.2.1 About the command protocol 322.2.2 Protocol state machine 332.2.3 Packets 332.2.4 Error Handling 34
2.3 Authentication Command Set 342.3.1 About the authentication commands 352.3.2 Authentication Commands 38
2.4 ADAC Token 442.4.1 About the ADAC Token 442.4.2 Format 442.4.3 Extensions 462.4.4 Rules 46
2.5 ADAC Certificate 472.5.1 About the ADAC Certificate 472.5.2 Format 482.5.3 Extensions 502.5.4 Rules 51
2.6 Life-cycle State Command Set 522.6.1 About the life-cycle state commands 522.6.2 Life-cycle State Commands 53
A Example System Architectures 55
A.1 Example Arm Architecture Externally-hosted Target 55A.1.1 Debugger Mailbox 56
B Link Layer 57
B.1 About the link layer 57
B.2 Link layers 57B.2.1 COM Encapsulation Protocol 57B.2.2 ACK Token 58B.2.3 Memory Window 59

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ii

C Cryptographic Support 61
C.1 General concepts 61C.1.1 Algorithm Agility 61C.1.2 Key Sizes 61C.1.3 Hash Function 61
C.2 ECDSA 61C.2.1 P-256 Curve 62C.2.2 P-521 Curve 62
C.3 RSA 63C.3.1 RSA 3072-bit keys 63C.3.2 RSA 4096-bit keys 63
C.4 EdDSA (tentative) 64C.4.1 Ed25519 Curve 64C.4.2 Ed448 Curve 64
C.5 ShangMi - SM2 (tentative) 65C.5.1 SM2 65
C.6 Secret key algorithms (tentative) 66C.6.1 CMAC with AES 66C.6.2 HMAC with SHA-256 66
D Security Risk Assessment 67
D.1 Threat Model 67D.1.1 Attack Surface and Adversarial Model 67D.1.2 Threats and Attacks 67D.1.3 Risks and Mitigations 68
E Changes in this document 70

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iii

About this document
Release information
The change history table lists the changes that have been made to this document.
Date Version Confidentiality Change

2022 May 1.0.1 final Non-confidential Final release with errata.
2022 Mar 1.0 final Non-confidential Final release.
2021 Oct 1.0 beta2 Non-confidential Draft proposal.
2021 Jun 1.0 beta1 Non-confidential Draft proposal.
2020 Oct 1.0 beta0 Non-confidential Draft proposal.
2020 Apr 0.1 Dev0 Confidential Draft proposal.

For a detailed list of changes, see Changes in this document on page 70.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iv

Authenticated Debug Access Control
Copyright © 2022, Arm Limited or its affiliates. All rights reserved. The copyright statement reflects thefact that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)
This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses itsintellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying theDocument you indicate that you agree to be bound by the terms of this Licence.
“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly orindirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.
This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of thisLicence between you and Arm.
Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in theDocument owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is not itself
compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual propertyembodied therein.
THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NOWARRANTIES, EXPRESS, IMPLIEDOR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORYQUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm maymake changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation withrespect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights,trade secrets, or other rights.
NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENTPERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, INCONNECTIONWITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDINGWITHOUT LIMITATION) (I) LICENSEE’S USE OFTHE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDERTHIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.
This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licenseeis in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon givingwritten notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or byArm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of thisLicence, all terms shall survive except for the licence grants.
Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Anytermination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shallautomatically terminate upon such Subsidiary ceasing to be a Subsidiary.
The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication ordisclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or anyportion thereof is not exported, directly or indirectly, in violation of such export laws.
This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between theEnglish version of this Licence and any translation, the terms of the English version of this Licence shall prevail.
The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or itssubsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page v

trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to usethe Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website athttps://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.
The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2022, Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vi

https://www.arm.com/company/policies/trademarks

References
This document refers to the following documents.
Ref Document

Number
Title

[RFC8032] IETF, Edwards-Curve Digital Signature Algorithm (EdDSA).https://tools.ietf.org/html/rfc8032
[RFC8017] IETF, ‘PKCS #1: RSA Cryptography Specifications Version 2.2’.https://tools.ietf.org/html/rfc8017
[RFC6979] IETF, Deterministic Usage of the Digital Signature Algorithm (DSA)and Elliptic Curve Digital Signature Algorithm (ECDSA), 08/2013.https://tools.ietf.org/html/rfc6979
[RFC4493] IETF, ‘The AES-CMAC Algorithm’.https://tools.ietf.org/html/rfc4493
[RFC2104] 10.17487 /RFC2104 IETF, ‘HMAC: Keyed-Hashing for Message Authentication’.https://tools.ietf.org/html/rfc2104
[RFC6234] IETF, ‘US Secure Hash Algorithms (SHA and SHA-based HMACand HKDF)’. https://tools.ietf.org/html/rfc6234
[X9.62-2005] ANSIX9.62-2005 American National Standards Institute’, ‘Public Key Cryptographyfor the Financial Services Industry: The Elliptic Curve DigitalSignature Algorithm (ECDSA)’, 11/2005. https://standards.globalspec.com/std/1955141/ANSI%20X9.62
[SECGv2] Standards for Efficient Cryptography Group, RecommendedElliptic Curve Domain Parameters.https://www.secg.org/sec2-v2.pdf
[IHI0076A] ARM IHI 0076A Arm Ltd, Advanced Communications Channel ArchitectureSpecification, 05/2018.https://developer.arm.com/documentation/ihi0076/a
[SDC600] 101130 / 0002 Arm Ltd, Arm® CoreSight™ SDC-600 Secure Debug ChannelTechnical Reference Manual, 05/2018.https://developer.arm.com/documentation/101130/0002/
[PSA-SM] ARM DEN 0079 Arm Ltd, Arm® Platform Security Architecture Security Model,02/2019. https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
[ISO-SM2] ISO ISO/IEC14888-3:2018 International Organization for Standardization, IT Securitytechniques – Digital signatures with appendix – Part 3: Discretelogarithm based mechanisms, 11/2018.https://www.iso.org/standard/76382.html

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vii

https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc4493
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6234
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://www.secg.org/sec2-v2.pdf
https://developer.arm.com/documentation/ihi0076/a
https://developer.arm.com/documentation/101130/0002/
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://developer.arm.com/architectures/security-architectures/platform-security-architecture/documentation
https://www.iso.org/standard/76382.html

Table 1 (continued)
Ref Document

Number
Title

[ISO-SM3] ISO ISO/IEC10118-3:2018 International Organization for Standardization, IT Securitytechniques – Hash-functions – Part 3: Dedicated hash-functions,10/2018. https://www.iso.org/standard/67116.html
[FIPS-186-4] 10.6028 /NIST.FIPS.186-4 National Institute of Standards and Technology, FederalInformation Processing Standards Publication (FIPS PUB) 186-4 –Digital Signature Standard (DSS), 07/2013.https://doi.org/10.6028/NIST.FIPS.186-4
[SP800-90A] 10.6028 /NIST.SP.800-90Ar1

‘National Institute of Standards and Technology’, NIST SpecialPublication 800-90A – Recommendation for Random NumberGeneration Using Deterministic Random Bit Generators (Revised),01/2012. https://doi.org/10.6028/NIST.SP.800-90Ar1
[SP800-38B] 10.6028 /NIST.SP.800-38B National Institute of Standards and Technology, NIST SpecialPublication 800-38B- Recommendation for Block Cipher Modes ofOperation: The CMAC Mode for Authentication, 05/2005.https://doi.org/10.6028/NIST.SP.800-38B
[SP800-107r1] 10.6028 /NIST.SP.800-107r1

National Institute of Standards and Technology’, NIST SpecialPublication 800-107r1 – Recommendation for Applications UsingApproved Hash Algorithms, 08/2012.https://doi.org/10.6028/NIST.SP.800-107r1
[Ed25519] Bernstein et al., Twisted Edwards curves, Africacrypt, 2008.https://eprint.iacr.org/2008/013.pdf
[Ed448] Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECCWorkshop, 2015. https://eprint.iacr.org/2015/625.pdf

Terms and abbreviations
This document uses the following terms and abbreviations.
Term Meaning

Access Port (AP) Access Port
ADAC See Authenticated Debug Access Control.
Advanced PeripheralBus (APB) Low speed, low complexity bus for peripherals.
AP See Access Port.
APB See Advanced Peripheral Bus.
API See Application Programming Interface.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page viii

https://www.iso.org/standard/67116.html
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-107r1
https://eprint.iacr.org/2008/013.pdf
https://eprint.iacr.org/2015/625.pdf

Table 2 (continued)
Term Meaning

ApplicationProgramming Interface(API)
A programmable software interface.

Authenticated DebugAccess Control (ADAC) The debug authentication protocol described in this document.
CMSIS Cortex Microcontroller Software Interface Standard – a vendor independenthardware abstraction layer for Cortex-M processors.
Completer The Completer is the party responding to the Requester in the protocol. ForADAC this is the device side.
DAP See Debug Access Port.
DCU See Debug Control Unit.
Debug Access Port(DAP) A block that acts as a Requester on a system bus and provides access to thebus from an external debugger.
Debug Client Software on the debug host that controls the debug link.
Debug Control Unit(DCU) Debug Control Unit
Debug Host The Requester component that performs debug operations on the debugtarget.
Debug Link The connection between debug host and debug target through over whichthe debug client performs debug operations.
Debug Port (DP) Debug Port
Debug Target The device-side component which is controlled by the debug host.
Debugger Mailbox Generic term for a communications channel between a debug host and asoftware agent running on the device being debugged. The actual hardwareIP consists of an AP on the debugger (external) side connected to an APBperipheral on the internal side.
DP See Debug Port.
IC Vendor (ICV) Silicon Partner (SiP).
ICV See IC Vendor.
IFR See Indexed Flash Region.
IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ix

Table 2 (continued)
Term Meaning

Indexed Flash Region(IFR) NXP term for reserved flash regions with special purposes. Usually notdirectly programmable by the OEM.
Joint Test Action Group(JTAG) An IEEE group focussed on silicon chip testing methods. Many debug andprogramming tools use a JTAG interface port to communicate withprocessors
JTAG See Joint Test Action Group.
Non-Secure ProcessingEnvironment (NSPE) Non-Secure Processing Environment
NSPE See Non-Secure Processing Environment.
OEM See Original Equipment Manufacturer.
Original EquipmentManufacturer (OEM) Original Equipment Manufacturer, the device owner.
PKI See Public Key Infrastructure.
Public KeyInfrastructure (PKI) Public Key Infrastructure
Requester The Requester is the party initiating the protocol. For ADAC this is the hostside.
Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified. See Arm®Platform Security Architecture Security Model [PSA-SM].
Root of Trust PublicKey (ROTPK) A public key programmed into immutable memory of a device.
RoT See Root of Trust.
ROTPK See Root of Trust Public Key.
SDA See Secure Debug Authenticator.
SDM See Secure Debug Manager.
Secure DebugAuthenticator (SDA) Component residing in the debug target that receives and verifies requeststo unlock debug access.
Secure Debug Manager(SDM) Component residing in the debug host that asks the Secure DebugAuthenticator for debug access.
Secure ProcessingEnvironment (SPE) Secure Processing Environment
Serial Wire Debug(SWD) A low pin-count physical interface for JTAG debugging on ARM-processors.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page x

Table 2 (continued)
Term Meaning

Silicon Partner (SiP) Silicon Partner
SiP See Silicon Partner.
SPE See Secure Processing Environment.
SWD See Serial Wire Debug.
UDE See Unprivileged Debug Extension.
Unprivileged DebugExtension (UDE) Unprivileged Debug Extension

Potential for change
The contents of this specification are subject to change.
In particular, the following may change:

∙ Feature addition, modification, or removal
∙ Parameter addition, modification, or removal
∙ Numerical values, encodings, bit maps

Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example http://infocenter.arm.com

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xi

http://infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Pseudocode descriptions
This book uses a form of pseudocode to provide precise descriptions of the specified functionality. Thispseudocode is written in a monospace font. The pseudocode language is described in the ArmArchitecture Reference Manual.

Assembler syntax descriptions
This book is not expected to contain assembler code or pseudo code examples.
Any code examples are shown in a monospace font.

Current status and anticipated changes
First draft, major changes and re-writes to be expected.

Feedback
Arm welcomes feedback on its documentation.
Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:
∙ The title (Authenticated Debug Access Control).
∙ The number and issue (DEN 0101 1.0.1).
∙ The page numbers to which your comments apply.
∙ The rule identifiers to which your comments apply, if applicable.
∙ A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xii

mailto:arm.psa-feedback@arm.com

1 Debug Access Control Architecture
1.1 About the Architecture
This chapter describes the goals and scope of the ADAC architecture. It contains the following sections:

∙ About Platform Security Architecture
∙ Goals
∙ Scope

1.1.1 About Platform Security Architecture

This document is one of a set of resources provided by Arm that can help organisations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.
1.1.2 Goals

Introducing security in debug is about making sure that only authorized people have access to select partsof firmware and hardware.
ADAC aims at making sure that debug capabilities do not become attack vectors. Debug security cannotbe an afterthought when designing an SoC and the kind of debug solution needed is driven by the threatmodels for the device use case.
The ADAC architecture is designed to be flexible to meet varying vendor needs, adaptable to work withmany different hardware and software components, and scalable from small embedded or IoT systems tocomplex server environments. At the same time, it strives to be simple and resilient against attack.
This requires:

∙ Strong authentication
∙ Partitioning firmware and hardware into fine-grained domains
∙ Enforcing debug limitations

ADAC needs to offer fine-grained access control of system resources, accessed through the debug port,across device lifecycle states.
This specification targets functional layers that sit above the physical debug link. As such, any securityaspects of the physical layer, including confidentiality and integrity, are out of scope for this document.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 13

https://www.psacertified.org/
https://developer.arm.com/platform-security-resources

1.1.3 Scope

The ADAC specification covers the following topics:
∙ Command protocol
∙ Debug authentication commands
∙ Certificate format
∙ Token format

The specification considers both device-level and application or software-level debug.
The specification does not cover enforcement of debug signals.

1.2 System Architecture
This chapter describes the overall architecture of ADAC. The contains the following sections:

∙ System architecture overview
∙ Target Architecture
∙ Protocol Architecture

1.2.1 System architecture overview

The high level ADAC system architecture is described by High level system block diagram.
It is composed of these two systems:

∙ Debug target: The system or subsystem containing the resources for which permission to debug isrequested through the secure debug protocol.
∙ Debug host: The device that initiates the debug session. It drives the authentication sequence andprovides credentials to the debug target.

The debug host and debug target are connected via a debug link. This is any interface from which thedebug host can perform debug operations on the target. This can be debug probe hardware driving a wireprotocol such as SWD or JTAG, self-hosted debug capability between cores in a multi-core device, theself-hosted debug capability of a single processor debugging itself, or any similar debug link.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 14

Debug TargetDebug Host

Credential
Provider

Debug Client

Secure Debug
Authenticator

Debugger
Mailbox

Secure Debug
Manager logical link

Local
Credentials

debug link

Figure 1 High level system block diagram
The following components are used to establish the communications channel over which authentication isperformed.

∙ Debug client: The component that drives the debug link between host and target (e.g., debuggersoftware).
∙ Debugger mailbox: Generic term for a communications endpoint, inside the debug target, where theSecure Debug Authenticator (see definition below) can receive commands. The key attribute is that adebugger mailbox is available even when debug access is otherwise restricted due to the devicesecurity lifecycle. However, there can be other temporal restrictions on when the Secure DebugAuthenticator is available to respond to requests.

The system architecture avoids placing requirements on the debug link and communications channel,except to define the debugger mailbox as the endpoint through which commands and responses aretransferred. This allows a common architecture to support both externally-hosted debug and self-hosteddebug.
For externally hosted debug, the debug link is typically in the form of a debug probe connected to the hostwith a high-bandwidth protocol such as USB or Ethernet.
The two primary components that implement this architecture are:

∙ Secure Debug Manager (SDM): Initiates the logical communications link with the Secure DebugAuthenticator on behalf of the debug client and manages the secure debug protocol. It receivescredentials from either a local or remote credential provider, and passes those credentials to theSecure Debug Authenticator. The debug client and SDM can communicate to allow a user to chooserequested permissions and credentials, or the selection of permissions and credentials can be fullyautomated.
∙ Secure Debug Authenticator (SDA): Accepts commands sent by the SDM via the debugger mailbox. Itissues an authentication challenge and validates the credentials provided in response. Uponsuccessful authentication, the SDA handles the hardware or software aspects of enabling debugaccess to target resources. In addition, upon request it can provide the SDM with information aboutthe debug target. This information can be used for discovery and identification purposes, to pass tothe credential provider, to present the user with data to make an informed decision when choosingcredentials, or other purposes.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 15

The SDM resides on the debug host, and the SDA resides on the debug target. The two componentsestablish a logical communications link between themselves. This logical link is routed through the debugclient, debug link, and debugger mailbox.
The SDA must be contained within a trusted domain. It can run from several possible execution contexts:

∙ Immutable Root of Trust (e.g., boot ROM)
∙ Mutable Root of Trust (e.g., updatable bootloader)
∙ Trusted runtime service

Each execution context has distinct properties and capabilities that can influence the debug authenticationsequence.
The execution context of the SDA is not required to be in the same system or PE over which it controlsaccess. For instance, an SDA can execute from a secure enclave and control access only for the systemoutside the enclave.
1.2.2 Target Architecture

Access Control

For discussion of the target architecture, these terms are defined:
∙ Access control signals: Logical signals that control debug access to hardware or software components,or modify the functionality of components during the time when debug access is enabled. The signalsthemselves are IMPLEMENTATION DEFINED and can be implemented in either hardware or software.
∙ Access control domain: The system or subsystem over which the SDA controls debug access via theaccess control signals. An access control domain can be hardware-defined, software-defined or acombination of both. It may only exist after a particular point in the boot process, such as in the casewhere the SDA is a trusted runtime service.

It is acceptable for a single SDA to control more than one access control domain. There can be more thanone access control domain in a debug target, and thus more than one SDA. The method of selecting theaccess control domain for which the SDM is authenticating is IMPLEMENTATION DEFINED.
These are several examples of functions that access control signals can serve:

∙ Control debug access to a CPU or a security or privilege level within a CPU.
∙ Control access to a system memory bus and/or resources accessible through such a bus.
∙ Control the availability of certain cryptographic keys in a hardware cryptography accelerator.
∙ Force the hiding of secrets in the root of trust.

The access control domains and methods used by the SDA to apply access control signals within thedomains are both IMPLEMENTATION DEFINED.
Target States

An access control domain can be in one of the following states:
∙ Locked: Default permissions as defined by the access control domain.
∙ Unlocked: This state is entered when any additional permission is granted.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 16

Handling Reset

Note:
Whether this section applies to an access control domain that only exists after the system boots to acertain stage is determined by the system architecture of the debug target.

There are two types of reset that impact the ADAC architecture:
∙ Cold Reset. Often called a Power-On Reset.
∙ Warm Reset.

It is not possible to have a Cold reset without also having a Warm reset.
Access control signals must be reset to defined state, dependent on the device’s security lifecycle state, ona Cold Reset. When in the Secured lifecycle state, a Cold reset should place the target in the Locked state.
If the target architecture allows, access control signals should remain unmodified through a Warm reset.This reduces the need for reauthenticating during target debug sessions. It can also allow for debug of theboot process. A target in the Unlocked state can temporarily disable debug access during boot following aWarm reset to ensure that execution of a boot ROM and/or other sensitive parts of the boot flow, such assecure boot, are protected.
1.2.3 Protocol Architecture

The ADAC specification defines the protocol used by the SDM to request debug access from the SDA.Several protocol layers are defined, as shown in Protocol layer stack.

Authentication Commands

Command Protocol

Link Layer

Debug Link

Figure 2 Protocol layer stack

Note that API layers are not included in this diagram.
The sections that follow describe each protocol layer in turn, from bottom up.
The bottom layer in the stack is the debug link, which was defined earlier.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 17

Link Layer

The link layer sits atop the debug link and provides guarantees upon which the Command Protocol layercan be built.
Because the link layer is dependent upon the specific debug link, this specification does not require anyone link layer. Several example link layers are documented in Link Layer.
Command Protocol

The purpose of the Command Protocol is to abstract the communication channel between host and target.
The Command Protocol provides a simple request/response mechanism suitable for implementing theAuthentication Command Set atop arbitrary link layers.
Vendors can extend the usefulness of the debugger mailbox by designing vendor-specific command setsthat reuse the Command Protocol.
The Command Protocol is documented in Command Protocol.
Authentication Command Set

The Authentication Command Set specifies a number of commands that implement ADAC. It defines theseaspects of the protocol:
∙ The command sequence used to perform authentication.
∙ Status and error codes.
∙ Common data types.
∙ The set of supported data formats that implement the trust mechanism (see Security Model).

The principal elements of the trust mechanism are the ADAC Token and ADAC Certificate formats. Otherauthentication and trust mechanisms or formats, either standard extensions or proprietary, can also beused.
The Authentication Command Set is documented in Authentication Command Set.

1.3 Security Model
This chapter describes the security model for ADAC. The contains the following sections:

∙ About the Security Model
∙ Authentication
∙ Trust
∙ Constraints
∙ Examples

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 18

1.3.1 About the Security Model

Scope

Physical access to the target device being required for debug link operation, the main objective is for thetarget to securely authenticate the host. Authentication of the target by the host is not in scope for thisdocument. Security of communications over the debug link, including confidentiality and integrity, are alsonot in scope for this document.
In order to simplify key management and improve security this specification focuses on asymmetric keycryptography.
Security Market Requirements

Use Cases
Use Cases in scope for ADAC are:

∙ Flash programming, e.g. for factory provisioning of code or credentials
∙ Loading code into RAM for immediate execution
∙ Memory upload/download
∙ Device configuration
∙ Extracting logs or any kind of data
∙ Recovery of bricked devices
∙ Tracing, both invasive and non-invasive
∙ Traditional run/stop debug during normal development

Stakeholders
Hardware and firmware vendors who want to protect device assets:

∙ Restrict peripheral setup and control
∙ Prevent firmware leakage or modifications
∙ Protect credentials from leakage or modification

Security Goals
Make sure the ADAC protocol cannot be abused to become a new attack vector, either by weakening itssecurity or by setting the device to a non-working state.
Assets and Actors
The ADAC protocol is designed as a challenge/response exchange meant to set a bit vector defining debugpermissions inside the target. The assets are the debug vector being negotiated.
The only actors considered in this analysis are the host and the target, as they are described in the protocol.
Trust boundaries
Host and target are considered trusted entities. Both host and target are required to hold credentialsinside secure areas, e.g. a smart card for the host, a Root of Trust for the target. Securing host and targetthemselves is out of scope for this analysis, and heavily relies on their implementation.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 19

The attack surface considered here is in the link between host and target.
Assumptions
Pre-provisioned keys
ADAC assumes that public keys of trusted authorities have been pre-provisioned on devices and areavailable to the ADAC target-side code. These keys are public but they should not be modifiable except invery specific cases, e.g. during a full update of the Root of Trust.
Error-free Link Layer
ADAC assumes the link layer used on debug ports is error-free. Unreliable link layers should be augmentedwith CRCs or similar error-correcting mechanisms to ensure proper delivery of messages withoutcorruption.
Random Number Generation
The ADAC protocol relies on a one-time random challenge issued by the target. This assumes the targethas access to enough entropy to generate enough unpredictable bits upon request.
1.3.2 Authentication
The default mechanism for authentication (see ADAC Token) relies on a challenge-response protocol. Thechallenge is used to protect against replay attacks.

Note:
The challenge vector can be:

∙ a cryptographically random value,
∙ a random value (low entropy),
∙ a combination of different elements that will make the challenge to be different whenperforming authentication on distinct devices and when performing multiple authentication onthe same device. Those elements can be (non-exhaustive list): - device unique constant values(e.g. serial number), - non-repeatable values (e.g. monotonic counter, secure time), - deviceconstant values with some entropy (e.g. MAC address, manufacturing date), - non-constantvalues (e.g. high-precision counter or clock).
The randomness, non-malleability and unpredictability of the challenge vector is importantto avoid the re-use of tokens for a given device or across devices. The options above arelisted in a generic order of preference that might not apply to all cases.

The response to the challenge is a signed authentication token, also called the debug token in thisspecification. The key used to verify the signature must be trusted (see Trust).
1.3.3 Trust
In order to verify the signature of the authentication token, a (public) key is needed.
The simplest option has this key present on each device directly. This yields two extremes in terms ofmanagement options (or a combination of the two):

∙ Use the same key for all devices.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 20

∙ Use a different key for each device.
A chain of certificates links the key used to sign to the authentication token to a set of one or more trustedanchors (roots of trust). Based on the vendor needs, the chain can be of arbitrary length, ending in a keydirectly linked to a programmed root authority (e.g. hash of public key(s) programmed into OTP).
Adding intermediate steps in the certificate chain adds some overhead to the authentication process in theform of extra verification operations and increased data size. However, intermediate certificates also limitthe exposure of the most sensitive keys, allowing that those keys can be used less often and protectedwith added security (e.g., stored on offline/air-gapped systems or other physical protections).
This specification defines a certificate format (see ADAC Certificate) to build trust chains and offer theflexibility to deal with complex scenarios (see Constraints).

Leaf
Certificate

Root
Certificate

sign

sign

Intermediate
Certificate(s)

anchored

Trust
Root

Figure 3 Example chain of trust.

The diagram in Example chain of trust. shows an example trust chain composed of a leaf certificate, zeroor more intermediate certificates, ending in a root certificate. The certificate chain is anchored to thedevice’s root of trust.
1.3.4 Constraints

Each certificate in the chain can add constraints to the authentication process in order to limit the scope ofauthentication and restrict permissions that its holder can unlock. This allows granting a specific set ofprivileges to a specific set of targets to either exercise or optionally to delegate further by issuingsub-certificates.
Two types of constraints are supported:

∙ Scope-limiting constraints. Described below.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 21

∙ Permission-limiting constraints. See Permissions.
Scope-limiting constraints

Several scope-limiting features are included in each certificate:
∙ lifecycle: Limits to a specific lifecycle state.
∙ soc_class: Limits to specific vendor defined family of devices.
∙ soc_id: Limits to specific device.
∙ oem_constraint: Limits to devices with a matching static OEM constraint value.

Using certificate extensions it is possible to add other types of constraints (e.g. target_identity or
sw_partition_id).
All scope-limiting constraints have a neutral value to indicate no further restriction. Values for theseconstraints in certificates need to be consistent both with the target configuration and with all othercertificates in the certificate chain:

∙ The “expected value” of all the scope-limiting constraints listed above is derived from the target’sconfiguration and state in an IMPLEMENTATION DEFINED manner.
∙ The “effective value” of a given constraint is the non-neutral value specified by the certificate chain.
∙ If two or more distinct non-neutral values are present in the certificate chain, a failure is triggered. Inother words, only a single effective value is allowed.
∙ If a constraint’s effective value does not match its expected value, the target will reject theauthentication request.

Permissions

This specification supports two different permissions models:
∙ Logical permissions bits.
∙ Software partition permissions.

Permissions bitmap

For fine-grained access-control, this specification defines a standard mechanism to associate certificates inthe chain with a bitmap of logical permissions.
The debug host requests access to a set of permissions via the authentication token. The effectivepermissions are computed by masking requested permissions with permission-limiting constraints fromthe certificate chain. This mechanism allows for certification authorities to restrict permissions of issuedcertificates.
The exact semantics for the permissions is an IMPLEMENTATION DEFINED combination of SoC-specific accesscontrol signals.
Logical permissions do not necessarily map 1:1 to debug access signals. The Secure Debug Authenticatorimplementation can apply an IMPLEMENTATION DEFINED mapping operation to convert logical effectivepermissions to the debug access signals programmed then into system control registers. This allows for

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 22

compression of debug access signals into a simpler set of permissions, as well as to ensure a consistentsecurity configuration.
A value of 1 for a logical permission bit means that access is granted, while a value of 0 means that accessis denied.
Computing effective permissions

Definitions:
∙ Perm_req: Permissions vector requested by the debug host.
∙ Perm_mask: Mask of permissions allowed by the certificate chain to be enabled.
∙ Perm_eff: Final effective permissions after masking the requested permissions.
∙ Soc_mask: Static permissions mask value provided to the Secure Debug Authenticator.
∙ Soc_value: Static value used for permissions that, due to Soc_mask, are not allowed to be controlled viadebug authentication.
∙ Crt_count: Number of certificates in the chain. The leaf certificate is at index 0, and the rootcertificate is at index Crt_count - 1.

Soc_mask and Soc_value are static values passed to the Secure Debug Authenticator from an IMPLEMENTATION
DEFINED source. The intended use case is to allow the provisioning process of the target to set permanentrestrictions on permissions requested by the host, and further, to set the values for those permissions thatare restricted. These values can be programmed into an SoC’s OTP memory or another trusted memory,fixed in hardware, set at software development time, or can simply be set to 0 if unavailable or not desired.
Steps to compute the effective permissions:

∙ The host requests a set of debug signals (Perm_req).
∙ The target combines the permission masks present in the certificates of the trust chain (Perm_mask):

let Perm_mask = ~0 // Initialize to all 1s.
for n in 0..(Crt_count - 1)

let Perm_mask = Perm_mask & crt[n].permissions_mask

∙ Finally, the target computes the effective permissions (Perm_eff), merging with the SoC-programmedpermission constraints (Soc_mask and Soc_value):
let Perm_eff = (Perm_req & Perm_mask & Soc_mask) | (Soc_value & ~Soc_mask)

The effective debug signals (Sig_eff) will then be used by the Secure Debug Authenticator to alter thedebug configuration of the target system in an IMPLEMENTATION DEFINED manner.
Software partition permissions

Access to software partitions can also be requested in the authentication token, and restricted by thecertificate chain.
Each software partition is identified by a unique ID. The authentication token includes a list of zero ormore software partition IDs for which access is requested.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 23

Certificates also include a list of zero or more software partition IDs. The rules for interpretation are asfollows:
∙ If a partition ID appears in a certificate, then the certificate is declaring that debug access to thatsoftware partition can be granted if requested in the authentication token.
∙ If at least one software partition ID is listed anywhere in the certificate chain, then access to onlythose software partitions whose IDs are listed in the certificate chain can be granted.
∙ If no software partition IDs are are listed in the certificate chain, then debug access to softwarepartitions is not constrained, and access to any partition whose ID is listed in the authenticationtoken can be granted.

Other factors can influence whether permission to access a given software partition is granted. Forinstance, if the SoC-programmed permission constraints disallow any debugging of the SPE, then a requestfor debug access to an Application RoT partition must be disallowed. The interpretation of these additionalfactors and how they are applied (for instance, by hardware or software) is IMPLEMENTATION DEFINED.
The definition of software partition and the definition and size of software partition IDs is outside thescope of this specification.
1.3.5 Examples

The following scenarios illustrate some of the flexibility of the authentication mechanism combined withcertificates:
∙ Manufacturing equipment with a device-class certificate (and matching key stored in a hardwaresecurity module) is able to authenticate itself to the devices on the production line to initialize them(flash, credentials, root of trust. . .).
∙ A developer uses a device-locked certificate with a local key to debug their application on the device.
∙ A technician connects diagnostics equipment to a device, the authentication token is generated inthe cloud to unlock access and perform maintenance.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 24

2 Specification
2.1 Common Elements
This chapter covers common definitions and conventions used throughout the ADAC specification. Itcontains the following sections:

∙ Conventions
∙ Version Numbers
∙ TLV Data Type
∙ Type ID Registry
∙ Key and Signature Types

2.1.1 Conventions

Data encoding conventions

The size of all outer-level aggregate data types must be 32-bit word aligned.
All multi-byte scalar values must be encoded in little-endian byte order.
Non-scalar, untyped, multi-byte arrays are encoded as little-endian byte arrays. As an example, take thevalue “DDCCBBAA8877665544332211”, written as a big-endian hex string. The most-significant byte,bits [95:88], has the value 0xDD. It is encoded as the byte sequence:
[0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD]

This table shows the same encoded value in several formats:
Table 3 Array encoding

Word Number Bytes 32-bit Integer

0 [0x11 0x22 0x33 0x44] 0x44332211
1 [0x55 0x66 0x77 0x88] 0x88776655
2 [0xAA 0xBB 0xCC 0xDD] 0xDDCCBBAA

C language conventions

C structure definitions are used in this specification as a convenient syntax method for defining data types.However, the definitions should be considered pseudocode, as they can include non-conformant structmember definitions that are intended to better describe data sizes and relationships. In addition, allstructures are defined as if packed (i.e., alignment is set to 1 byte), and include explicit padding to ensurethe desired alignment of members.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 25

C99 standard scalar types such as uint32_t are used for all integer values.
The following macros are used in definitions.
// Round a size *n* up to the nearest *r* multiple.
#define ROUND_UP(n, r) (((n) + (r) - 1) / (r) * (r))

// Round a size *n* up to the nearest 32-bit word.
#define ROUND_TO_WORD(n) (ROUND_UP((n), sizeof(uint32_t)))

2.1.2 Version Numbers

Version numbers are used throughout the specification in order to allow for future changes whileremaining backwards compatible. The authentication protocol itself has a version. And each majoraggregate data type has a version number as its first member.
Version numbers consist of these two components:

∙ Major version: Must only be incremented when the data type is entirely redefined.
∙ Minor version: Must be incremented due to added or changed data type members, where themajority of the data type remains compatible.

Version numbers are encoded as a sequence of two 8-bit integers, with the major version first and minorversion following. A C structure definition follows.
struct adac_version {

uint8_t major;
uint8_t minor;

};

For example, version 1.2 is represented by the byte sequence [0x01 0x02].
Version number counting starts at version 1.0.
2.1.3 TLV Data Type

A simple Type-Length-Value (TLV) data type is used in multiple places throughout the specification.
Each value consists of a 32-bit header with type ID and length, followed by the value data. The size of theentire TLV instance must be rounded up to the nearest 32-bit word.
Each TLV instance consists of the following fields:

Table 4 TLV Fields
Name Bytes Description

(reserved) 2 Reserved for future use. Must be set to a value of 0.
Type ID 2 Unique identifier for the value type.
Length 4 Length of value in bytes. Does not include the size of any required padding.
Value n Value data. Must be padded with 0 to align on a 32-bit boundary

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 26

The C type definition for a TLV instance follows.
struct adac_tlv {

uint16_t _reserved;
uint16_t type_id;
uint32_t length_in_bytes;
uint8_t value[ROUND_TO_WORD(length_in_bytes)];

};

In standard usage within other data types, multiple TLV instances are placed back to back in avariable-length array. This construction is called a “TLV sequence”. Because the size of every TLV instanceis rounded up to be 32-bit aligned, all TLV instances naturally start on 32-bit boundaries. The total size ofthe TLV sequence is specified by another member of the parent data type.
TLV sequence elements should be ordered by type ID. More than one instance of a given type ID isallowed within a TLV sequence.
Nested TLV types are not used in this specification.
2.1.4 Type ID Registry

The type ID for values in TLV instances is a 16-bit value. Any type ID with bit 15 set is vendor-specific.This leaves room for 32768 possible standard type IDs. However, related type IDs are grouped intoconsecutive ranges, so the ID space is sparsely populated.
The following table contains the complete list of type IDs used for TLV instances in this specification.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 27

Table 5 Type ID Registry
ID Name Bytes Description

0x0000 null_type 0 Indicates “no data”
0x0001 adac_auth_version 2 Major and minor versions for ADAC. See TODO
0x0002 vendor_id 2 Vendor JEP106 ID
0x0003 soc_class 4 SoC class
0x0004 soc_id 16 SoC unique identifier
0x0005 target_identity n Cryptographic identity for the target
0x0006 hw_permissions_fixed 16 Value of hardware-fixed permissions
0x0007 hw_permissions_mask 16 Mask of permission bits allowed to be modified
0x0008 psa_lifecycle 2 Current lifecyle state
0x0009 sw_partition_id n Persistent, unique ID for a software partition
0x000A sda_id 1 Unique ID for the SDA on the target
0x000B sda_version n Vendor-specific SDA version
0x000C effective_permissions 16 Computed permissions vector
0x0100 token_formats 2 * n Array of supported debug token formats
0x0101 cert_formats 2 * n Array of token and certificate formats
0x0102 cryptosystems 1 * n List of TODO supported algorithms plus key sizes
0x0200 token_adac n ADAC token format
0x0201 cert_adac n ADAC certificate format
0x0202 rot_meta n Platform-specific metadata about the root of trust
0x8000 Start of vendor-specific value type IDs

Note:
Not all type IDs are accepted in all situations. The specification of each data type that uses TLV willcontain a list of accepted type IDs.

Detailed information of each type ID follows.
∙ adac_auth_version: The version number for the authentication protocol command set. Currentlydefined as version 1.0.
∙ cert_adac: The ADAC Certificate format.
∙ cert_formats: Array of 16-bit type IDs indicating which certificate formats are supported by thedebug target. In the current version of the specification, this may include cert_adac and rot_meta, plus

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 28

any vendor-specific formats.
∙ cryptosystems: Array of 8-bit cryptosystem IDs indicating those cryptosystems supported by thedebug target.
∙ effective_permissions: Permissions vector resulting from a successful authentication commandsequence. Note that this is the SDA’s view of effective permissions; it may not match actualpermissions allowed by the hardware in cases where the SDA is unable to determine whether apermission will be honored.
∙ hw_permissions_fixed: Bitfield setting the fixed value of any permissions bits whose corresponding bitin hw_permissions_mask is cleared.
∙ hw_permissions_mask: Hardware-defined permissions mask. When a permission bit is set to 0 in thisfield, it indicates that the hardware disallows modification of that permission via the authenticationprotocol—the permission is always fixed to the value of the corresponding bit in

hw_permissions_fixed.
∙ null_type: The ID 0x0000 is reserved and is used to represent “no data” or list termination in specialcases.
∙ psa_lifecycle: Represents the current lifecycle state of the PSA RoT. The state is represented by aninteger that is divided to convey a major state and a minor state. A major state is defined by[PSA-SM]. A minor state is optional, and is IMPLEMENTATION DEFINED. The PSA security lifecycle stateand implementation state are encoded in Trusted Firmware-M (<https://www.trustedfirmware.org>)as follows:

— version[15:8] – PSA security lifecycle state (see values below)
— version[7:0] – IMPLEMENTATION DEFINED state.

Table 6 PSA security lifecycle state values
Name Value

PSA_LIFECYCLE_UNKNOWN 0x0000

PSA_LIFECYCLE_ASSEMBLY_AND_TEST 0x1000

PSA_LIFECYCLE_PSA_ROT_PROVISIONING 0x2000

PSA_LIFECYCLE_SECURED 0x3000

PSA_LIFECYCLE_NON_PSA_ROT_DEBUG 0x4000

PSA_LIFECYCLE_RECOVERABLE_PSA_ROT_DEBUG 0x5000

PSA_LIFECYCLE_DECOMMISSIONED 0x6000

∙ rot_meta: Optional vendor-defined data required by a Secure Debug Authenticator to verify theprovided public root key matches the hardware Root of Trust Public Key (ROTPK).

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 29

https://www.trustedfirmware.org

∙ sda_id: 1-byte identifier for the Secure Debug Authenticator, unique within the scope of the targetdevice. Used to distinguish between SDAs on a target with multiple logical or physical SDAs. Thevalue is recommended to be a simple index, although if appropriate it can be a more complex valuewith target-specific meaning.
∙ sda_version: Version number of the SDA implementation represented as a UTF-8 encoded stringwith no terminating null byte. The version number should match the software version of the PSARoot of Trust within which the SDA is running.
∙ soc_class: Vendor-unique identifier for the SoC part number and revision. The layout and meaning ofany individual fields within soc_class is the responsibility of the vendor.
∙ soc_id: 128-bit identifier for the SoC. For a given root of trust, this value should be unique. This valueis not sensitive. It is tied to the hardware and does not change for the life of the physical SoC. Often,the ID is a serial number composed of die and wafer coordinates plus a random number programmedinto OTP memory by the silicon vendor. When combined with vendor_id and soc_class, the resultbecomes globally unique.
∙ sw_partition_id: This value uniquely identifies a software partition. The length and semantics of apartition ID value are not determined by this specification.
∙ target_identity: Cryptographic identity for the target. The length of this value depends upon thecryptosystem used for its construction. Might not be available in all circumstances. For instance, aboot ROM might not have access to the information required to construct this value.
∙ token_adac: The ADAC Token format.
∙ token_formats: Array of 16-bit type IDs indicating which token formats are supported by the debugtarget.
∙ vendor_id: JEDEC JEP106 vendor ID. Bits [6:0] hold the “Identity Code” value; bits [15:7] contain thecount of 0x7F Continuation Codes. For example, Arm’s vendor_id is 0x023B.

2.1.5 Key and Signature Types

The specification currently supports the following key types:
∙ ECDSA P-256 (see [P-256 Curve])
∙ ECDSA P-521 (see [P-521 Curve])
∙ RSA 3072 (see [RSA 3072-bit keys])
∙ RSA 4096 (see [RSA 4096-bit keys])
∙ Ed25519 (see [Ed25519 Curve])
∙ Ed448 (see [Ed448 Curve])
∙ SM2 (see [SM2])
∙ CMAC (see [CMAC with AES])

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 30

∙ HMAC (see [HMAC with SHA-256])
The specification currently supports the following signature types:

∙ ECDSA P-256 with SHA-256
∙ ECDSA P-521 with SHA-512
∙ RSA 3072 with SHA-256
∙ RSA 4096 with SHA-256
∙ Ed25519 with SHA-512
∙ Ed448 with SHAKE256
∙ SM2 with SM3
∙ CMAC with AES
∙ HMAC with SHA-256

Currently a given key type only supports one signature algorithm.
The list of accepted cryptosystem combinations and the unique constants for identifying each follows.
A cryptosystem ID is an 8-bit value. Vendor-defined cryptosystems are allowed by setting the MSB (bit 7)of the ID.

Table 7 Supported cryptosystems
ID Name Public Key Signature Algorithm

0x01 ECDSA_P256_SHA256 Elliptic Curve P-256 ECDSA with SHA-256
0x02 ECDSA_P521_SHA512 Elliptic Curve P-521 ECDSA with SHA-512
0x03 RSA_3072_SHA256 RSA (3072-bit key) RSA-PSS with SHA-256
0x04 RSA_4096_SHA256 RSA (4096-bit key) RSA-PSS with SHA-256
0x05 ED_25519_SHA512 Ed25519 EdDSA with SHA-512
0x06 ED_448_SHAKE256 Ed448 EdDSA with SHAKE256
0x07 SM_SM2_SM3 SM2 SM2 with SM3
0x08 CMAC_AES Nonce CMAC with AES
0x09 HMAC_SHA256 Nonce HMAC with SHA-256
0x80 Start of vendor-defined cryptosystems

The IDs listed above are used in several places:
∙ The cryptosystems value (see above).
∙ Signature algorithm ID in the ADAC Token header.
∙ Key and signature algorithm ID in the ADAC Certificate header.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 31

Cryptosystem Support

Debug targets are expected to support only one or a small number of related cryptosystems. For instance,a debug target might support only ECDSA_P256_SHA256, or could support both RSA_3072_SHA256 and
RSA_4096_SHA256.
It is likely that the debug host supports more cryptosystems than the target. On the other hand,vendor-specific implementations of the Secure Debug Manager can choose to implement only thosecryptosystems known to be supported by that vendor’s target-side implementation.

2.2 Command Protocol
This chapter specifies the generic high level command protocol. It contains the following sections:

∙ About the command protocol
∙ Protocol state machine
∙ Packets
∙ Request
∙ Response
∙ Error Handling

2.2.1 About the command protocol

The Debug Mailbox functionality can and has been implemented in many different ways. In order toabstract this implementation aspect, this document defines a command protocol. The link layer and wireprotocol are left to be implementation specific.
In order to support most existing debug mailbox solutions and not create additional requirements forfuture ones, the goal is for the command protocol to be extremely simple. This facilitates simpletarget-side software, which is important for constrained systems and execution environments such as aboot ROM. Critically, it also makes reasoning about the security aspects of an implementation much easier.
Key attributes of the command protocol:

∙ Variable size, word aligned packets.
∙ Simple request/response model.

Non-requirements:
∙ Error correction.
∙ Flow control.
∙ Multiple in-flight commands.
∙ Out of order packets.
∙ Fixed size packets.

The link layer is assumed to provide error correction and flow control where necessary. Some link layersadditionally provide their own packetization method.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 32

All packets are 32-bit word aligned. This easily supports debugger mailboxes that transfer either byte orword sized data. It is assumed that commands can easily arrange for word aligned parameters.
2.2.2 Protocol state machine

The following diagram depicts the state machine for the command protocol.

Idle

Sending Request Response Pending

Receiving Response

The states are labeled from the point of view of the debug host. For the debug target, the sending andreceiving roles are reversed.
In this protocol, the debug host is always the Requester and initiator of commands.
2.2.3 Packets

Request

A request consists of a two-word header word containing the command ID and request data length inbytes, followed by the optional request data. The complete request size must be word aligned; thus, thetwo least-significant bits of data_count must be zero.
A request must only be sent from the Idle protocol state.
The high bit (bit 15) of the command ID indicates a vendor-specific command.

Table 8 Request bytes
Word Byte 0 Byte 1 Byte 2 Byte 3

0 (0) (0) command[7:0] command[15:8]

1 data_count[7:0] data_count[15:8] data_count[23:16] data_count[31:24]

2 data

The C structure definition for a request is as follows:
struct request_packet {

uint16_t _reserved;
uint16_t command;
uint32_t data_count;
uint32_t data[];

};

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 33

Response

Similar to a request, a response packet has a two-word header containing the command status andresponse data byte count. Following the header is the optional response data. As with requests, the totalsize must be word aligned, and the two least-significant bits of data_count must be zero.
A response packet is always a reply to the most recent request. Because the protocol does not allow forout of order or asynchronous commands, there is no need to include a copy of the command ID in theheader or a sequence number.
The response to a command must be sent only in the Response Pending protocol state by the receiver ofthe request. No intervening packets, sent by either endpoint, are allowed between the request andresponse. Once the response is received, the protocol transitions back to the Idle state, and anotherrequest can be sent.

Table 9 Response bytes
Word Byte 0 Byte 1 Byte 2 Byte 3

0 (0) (0) status[7:0] status[15:8]

1 data_count[7:0] data_count[15:8] data_count[23:16] data_count[31:24]

2 data

The C structure definition for a response is as follows:
struct response_packet {

uint16_t _reserved;
uint16_t status;
uint32_t data_count;
uint32_t data[];

};

2.2.4 Error Handling

Error handling capabilities of the command protocol are intentionally limited. It is assumed that either amethod specific to the link layer or a system reset can be used to restore communications channelfunctionality in the event of an irrecoverable error.
The status value of 0x7FFF is reserved for unrecognized commands. If a request with an unrecognizedcommand ID is received by the target, it must reply with a response packet consisting of a status value of0x7FFF and no data words.
As a byte sequence, the error packet is:
[0x00 0x00 0xFF 0x7F 0x00 0x00 0x00 0x00]

2.3 Authentication Command Set
This chapter specifies the debug authentication commands and their parameters. It contains the followingsections:
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 34

∙ About the authentication commands
∙ Status codes
∙ Authentication response
∙ Authentication command sequence
∙ Authentication Commands
∙ Discovery
∙ Authentication Start
∙ Authentication Response
∙ Close Session
∙ Lock Debug

2.3.1 About the authentication commands

ADAC defines the following set of commands for performing debug authentication. These commands aredefined as a layer building on the Command Protocol.
All commands below must be implemented by the debug target. However, some commands can return astatus code indicating they are unsupported on the target or in the execution environment. This isdocumented per command.
Detailed specifications for each command follow in this chapter.

Table 10 Command Set
ID Constant Command Description

0x0001 ADAC_DISCOVERY_CMD Discovery Query target properties
0x0002 ADAC_AUTH_START_CMD AuthenticationStart Initiate authentication sequence;receive challenge
0x0003 ADAC_AUTH_RESPONSE_CMD AuthenticationResponse Send authentication data
0x0004 ADAC_CLOSE_SESSION_CMD Close Session Terminate command session
0x0005 ADAC_LOCK_DEBUG_CMD Lock Debug Lock debug access; restore systemto locked state

Additional command sets can be defined in further specifications.
Vendor-specific commands can be added by the integrator. All vendor-specific commands must have bit15 set in the command ID.
Currently defined versions of the ADAC protocol are as follows. The version is reported via theadac_auth_version value returned by the Discovery command.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 35

Table 11 Protocol Version
Version Description

1.0 Initial version

Status codes

The following table lists the complete set of status codes returned by the authentication commands.
Table 12 Status Codes

Status Constant Description

0x0000 ADAC_SUCCESS The command has succeeded without error
0x0001 ADAC_FAILURE The command has failed
0x0002 ADAC_NEED_MORE_DATA More data is required to complete the authentication
0x0003 ADAC_UNSUPPORTED The command is not supported by the target
0x7FFF ADAC_INVALID_COMMAND The command ID is unrecognized

The status code 0x7FFF is special in that it is not returned by a specific command but instead indicates anunrecognized command ID. See the Error Handling section of the command protocol for more information.
Authentication response

A complete authentication response consists of a sequence of separate cryptographically signed datastructures including one or more certificates and the debug token. It can additionally includevendor-specific credentials or cryptographic material required for the target to verify the certificate chainor debug token.
The certificate chain is required to be provided in order from root to leaf.
Response fragments

A response fragment is defined as one of the data structures composing the authentication response. Theprimary classes of response fragment are the debug token and certificate. Each class of response fragmenthas a set of valid formats in which it can be represented. Every supported response fragment format has aunique type ID.
The debug target is not required to support all possible response fragment formats, and indeed is expectedto only support a small subset. The debug host can use the Discovery command to query the target forsupported response fragment formats. This process is intended to be used as additional validation ratherthan for protocol negotiation.
Type IDs for accepted response fragment formats are listed in the following table.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 36

Table 13 Type IDs
Value Name Description

0x0200 token_adac ADAC Token format
0x0201 cert_adac ADAC Certificate format
0x0203 rot_meta Vendor-specific RoT metadata

Example authentication response

As an example, an authentication response can be constructed from this sequence of response fragments:
1. ADAC Certificate: Root certificate.
2. ADAC Certificate: Leaf certificate.
3. ADAC Token

The following diagram shows the relationships between the response fragments in this example.

Debug Token

Leaf Certificate

Root Certificate

sign

signChallenge Vector

Figure 4 Example Authentication Response

The number of certificates used is a decision made by the customer to trade off security versus processingtime and management complexity. This example uses two certificates; three is also common. Use of asingle certificate is possible but not recommended.
As can be seen, the root certificate signs the leaf certificate. The leaf certificate then signs the debug tokenand challenge vector.
Note that the root certificate is tied to the target’s hardware root of trust. Normally the root certificatecontains the target’s ROTPK.
Authentication command sequence

The process of enabling debug access to system resources is accomplished by sending a sequence of thecommands defined in this chapter. Only some of the commands defined in this chapter are required as part

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 37

of the authentication sequence; the others are optionally used for gathering information about the targetor requesting a change in system state that does not require authentication.
The required sequence of commands for authentication is as follows.

1. Authentication Start: Host requests challenge from target.
2. Authentication Response (one or more): Host sends certificate chain (possibly other responsefragments) and debug token to target.

The number of Authentication Response commands sent is determined by the number of responsefragments from which the complete authentication response is constructed.
If Authentication Response returns the ADAC_NEED_MORE_DATA status code, then the target expects anotherAuthentication Response command to be sent in order to continue or complete the authenticationsequence.
Multiple authentication sequences are supported by the specification, but whether this is allowed is
IMPLEMENTATION DEFINED. This can be used for various purposes, such as to unlock more than one accesscontrol domain, potentially with multiple roots of trust, to gain access to more than one software partition,or other purposes.
More than one authentication sequence in parallel is not allowed. This means that once an authenticationsequence is started, no intervening commands are allowed to be issued until the sequence completessuccessfully or fails due to an error.
After all intended authentication sequences are complete, the Close Session command must be sent inorder terminate communications.

Note:
The benefits of issuing one command per response fragment are two-fold:
1. Reduced target memory requirements by supporting incremental processing.
2. Allows for the possibility of early error termination.

2.3.2 Authentication Commands

Discovery

The debug host requests information about the debug target using with this command.
The debug host can optionally include a list of type IDs for values requested from the target. Therequested ID list is discretionary; the target can reply with any set of values that is equal to or a super setof the requested values, excluding any values unavailable on the target or not recognized by the target.
If a requested ID list is not included, the target must reply with all available values.
Use of this command is optional and is not part of the required authentication command sequence. Morethan one Discovery command is allowed to be sent by the host.
Request

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 38

Command ID ADAC_DISCOVERY_CMD (0x0001)
Request Data Array of requested type IDs.

The request data is an optional array of requested type IDs, each a 16-bit half-word.
If the number of requested IDs is not even, then an extra null_type ID with value 0x0000 is appended toround up to the request data length to the next 32-bit word as required by the command protocol. If the
null_type ID is present in the requested ID array at any position other than the last, it terminatesprocessing of the array early.
The request sequence should be ordered by increasing ID value. If it is not, some values may be omittedfrom the results.
Response

Response Data TLV sequence
Possible status codes:

Table 16 Discovery status codes
Status Code Meaning

ADAC_SUCCESS (0x0000) A valid discovery response follows
ADAC_FAILURE (0x0001) Discovery failed

The response consists of a TLV sequence. The total size of the TLV sequence is indicated by the responsepacket header’s data_count field. This provides a simple mechanism for managing variable length values. Italso allows vendors to extend the response with custom information if needed.
Because this command is not critical to security of the overall protocol, and all response processinghappens on the host, the required parsing of TLVs is not a concern in regards to target vulnerabilities.
Possible response data type IDs:

Table 17 Discovery response data type IDs
Value Name

0x0001 adac_auth_version

0x0002 vendor_id

0x0003 soc_class

0x0004 soc_id

0x0005 target_identity

0x0006 hw_permissions_fixed

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 39

Table 17 (continued)
Value Name

0x0007 hw_permissions_mask

0x0008 psa_lifecycle

0x000A sda_id

0x0100 token_formats

0x0101 cert_formats

0x0102 cryptosystems

Vendor extension types are also allowed. The response sequence must be ordered by increasing ID value.
Example

// @+00 (12 bytes) psa_auth_version: 1.0
0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
// @+12 (12 bytes) vendor_id: {0x04, 0x3B} => 0x023B ("ARM Ltd.")
0x00, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x3B, 0x00, 0x00,
// @+24 (12 bytes) psa_lifecycle: PSA_LIFECYCLE_SECURED
0x00, 0x00, 0x08, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00,
// @+36 (12 bytes) token_formats: [{0x00, 0x02} (token_psa_debug)]
0x00, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,
// @+48 (12 bytes) cert_formats: [{0x01, 0x02} (cert_psa_debug)]
0x00, 0x00, 0x01, 0x01, 0x02, 0x00, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00,
// @+60 (12) bytes) cryptosystems: [ECDSA_P256_SHA256]
0x00, 0x00, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,

Authentication Start

The debug host sends this commands to start the authentication sequence. Its primary purpose is for thetarget to provide a random 256-bit challenge vector used to prevent replay attacks.
Request

Command ID ADAC_AUTH_START_CMD (0x0002)
Request Data None

Response

Response Data adac_auth_challenge struct
Possible status codes:

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 40

Table 20 Authentication Start response status codes
Status Code Meaning

ADAC_SUCCESS (0x0000) A valid challenge structure follows
ADAC_FAILURE (0x0001) Target is unable to send a challenge

The response data consists of the following versioned structure.
struct adac_auth_challenge_v1_0 {

struct adac_version format_version;
uint16_t _reserved;
uint8_t challenge_vector[32];

};

Note that the challenge_vector field is encoded as a multi-byte array, as described under Data encodingconventions.
Currently defined versions of this structure are as follows.

Table 21 Authentication Challenge Version
Version Description

1.0 Initial version

Authentication Response

This command is used to provide the debug token and additional credentials as part of a completeauthentication response to the target. One or more Authentication Response commands must occur toform the complete authentication response
This command will return an ADAC_NEED_MORE_DATA status code to indicate that further data is required tocomplete the authentication and thus further Authentication Response must be sent. This sequence willcontinue until all required data has been provided to allow the target to validate the trust chain and debugtoken.
The target validates the provided debug token. If validation fails, the ADAC_FAILURE status is returned.
Request

Command ID ADAC_AUTH_RESPONSE_CMD (0x0003)
Request Data adac_auth_fragment_header plus response fragment

The data for Authentication Response request phase consists of a 32-bit header specifying the type ID ofthe included response fragment followed by the entire response fragment for the debug token.
The C definition of the response is as follows:

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 41

struct adac_auth_fragment_header {
uint16_t fragment_type_id;
uint16_t _reserved;

};

struct adac_auth_fragment {
struct adac_auth_fragment_header header;
uint8_t data[];

};

Response

Response Data TLV sequence
Possible status codes:

Table 24 Authentication Response status codes
Status Code Meaning

ADAC_SUCCESS (0x0000) Authentication has succeeded. The authentication sequenceis complete.
ADAC_FAILURE (0x0001) Authentication failed
ADAC_NEED_MORE_DATA (0x0002) More data is required to complete the authenticationsequence

The response consists of a TLV sequence. The total size of the TLV sequence is indicated by the responsepacket header’s data_count field.
The target can optionally return data pertinent to the authentication status, either success or failure. Theprimary use case is to allow the target to return the effective permissions resulting from a successfulauthentication. Vendors can extend the response with custom information specific to their use cases andplatform if needed.
Possible response data type IDs:

Table 25 Authentication Response response data type IDs
Value Name

0x0009 sw_partition_id

0x000C effective_permissions

Vendor extension types are also allowed. The response sequence must be ordered by increasing ID value.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 42

Close Session

This command requests that the communications session between the Secure Debug Manager and theSecure Debug Authenticator be terminated.
Depending on the execution environment of the Secure Debug Authenticator, closing the session cancause system boot to continue. Any means of resuming execution is acceptable, including performing asystem reset. Note that if a system reset is used to resume execution, it should be performed after sendingthe response. Implementations should take link layer specifics into account to ensure a good likelihood ofthe response being delivered successfully.
Request

Command ID ADAC_CLOSE_SESSION_CMD (0x0004)
Request Data None

Response

Response Data None
Possible status codes:

Table 28 Authentication Close Session status codes
Status Code Meaning

ADAC_SUCCESS (0x0000) The communication session was closed.

Lock Debug

The Lock Debug command restores the the device’s debug access controls to the Locked state, given itscurrent lifecycle state.
Not all targets will have the capability to lock debug access after it is unlocked without going through aReset cycle (usually a Cold reset).
Request

Command ID ADAC_LOCK_DEBUG_CMD (0x0005)
Request Data None

Response

Response Data None
Possible status codes:
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 43

Table 31 Authentication Lock Debug status codes
Status Code Meaning

ADAC_SUCCESS (0x0000) Debug access is now locked
ADAC_FAILURE (0x0001) Debug access could not be locked because of the targetconfiguration, runtime state, or other conditions
ADAC_UNSUPPORTED (0x0004) Locking debug access is not supported by the target

The ADAC_FAILURE status should only be returned if the target does support restoring debug access locks atruntime in one or more configurations. If the target never supports the operation, then ADAC_UNSUPPORTEDmust be returned.

2.4 ADAC Token
This chapter specifies the structure of the binary debug authentication token. It contains the followingsections:

∙ About the ADAC Token
∙ Format
∙ Extensions
∙ Allowed Extension Types
∙ Rules

2.4.1 About the ADAC Token

The ADAC Token is part of the authentication mechanism defined for ADAC. A token is sent by the debughost in response to a challenge vector (sometimes called nonce) sent by the target, and is cryptographicallylinked to the challenge vector and Root of Trust.
The ADAC Token also contains debug access permissions requested by the debug host.
A proprietary binary token format is used in order simplify requirements for parsing.
2.4.2 Format

The components of a ADAC Token are the following:
∙ Header: The header contains all mandatory fields and the length of extensions in bytes. The size ofthe header remains constant for different cryptosystems.
∙ Extensions hash: Hash of Extensions sequence. The algorithm and length depend on the SignatureType field in Header. Value is all zeros if extensions length is zero.
∙ Signature: The signature is performed over Header and Extension Hash parts of the Token as well asthe challenge sent by the target.
∙ Extensions: TLV sequence of non-mandatory and vendor-specific fields.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 44

Mandatory fields contained in the header:
∙ format_version: See Version.
∙ signature_type: Cryptosystem ID specifying the algorithm used to generate the token’s signature, aswell as the extensions hash.
∙ requested_permissions: Bitfield of requested debug permissions. A set bit indicates a request for thepermission corresponding to that bit to be granted.

The data layout for the token header is shown in the following table.
Table 32 Token Header

Word Byte 0 Byte 1 Byte 2 Byte 3

0 format_version.major format_version.minor signature_type (0)

1 extensions_bytes

2 requested_permissions[31:0]

3 requested_permisions[63:32]

4 requested_permisions[95:64]

5 requested_permisions[127:96]

The following C structures describe the token header.
struct adac_debug_auth_token_header_v1_0 {

struct adac_version format_version;
uint8_t signature_type;
uint8_t _reserved;
uint32_t extensions_bytes;
uint8_t requested_permissions[16];

};

struct adac_debug_token_v1_0 {
struct adac_debug_auth_token_header_v1_0 header;
uint8_t extensions_hash[HASH_LENGTH];
uint8_t signature[SIGNATURE_LENGTH];
// array of variable-length adac_tlv structs
uint8_t extension_data[ROUND_TO_WORDS(header.extensions_bytes)];

};

Currently defined versions of the adac_debug_token_v1_0 structure are as follows.
Table 33 Debug Token Version

Version Description

1.0 Initial version

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 45

2.4.3 Extensions

The extensions for a ADAC Token are structured as a TLV sequence. In the adac_debug_token_v1_0 struct,the extensions TLV sequence is placed in the extensions_data member.
The size of the extensions data is specified in the certificate header extensions_bytes member as a numberof bytes.
Allowed Extension Types

The following table lists those Type IDs that are accepted in the extensions data for a ADAC Certificate.Any extension value with a Type ID not included within this list will be ignored.
Table 34 Type IDs

Type ID Name Description

0x0005 target_identity Target identity
0x0009 sw_partition_id Software partition ID

All vendor-specific type IDs are allowed.
The sw_partition_id extension specifies a software partition to which access is granted. This extensionvalue can be included more than once, in which case access is granted to all listed software partitions.
2.4.4 Rules

Construction

The hash of the token extensions is computed as follows, using the hash algorithm identified by the
header.signature_type cryptosystem.:
extensions_hash = Hash(extensions_data)

The signature over the token is computed as follows. The signature algorithm used is specified by the
header.signature_type cryptosystem.:
signature = Sign(leaf_cert.private_key, header || extensions_hash || challenge_vector)

In the above expression, the symbol leaf_cert refers to the leaf certificate that signs the token.
The following diagram shows the inputs to the token signature algorithm.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 46

Header

Extensions Hash

Signature

Extensions

Hash
1

Sign3

4

2

6

Challenge Vector

5

Validation

The header.format_version member can be used to select an appropriate struct definition for parsing theentire header.
These members of the adac_debug_token_v1_0 struct must be validated before any further processing of thecertificate is performed:

∙ header.format_version

∙ header.signature_type

2.5 ADAC Certificate
This chapter specifies the structure of binary certificates used in ADAC. It contains the following sections:

∙ About the ADAC Certificate
∙ Format
∙ Extensions
∙ Allowed Extension Types
∙ Rules

2.5.1 About the ADAC Certificate
The high complexity of X.509v3 certificates, in addition to being costly (effort, code size, RAM, etc.), hasbeen the source of bugs and security issues.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 47

Due to the low bandwith of some of the underlying transports and the potential resource constraints ofthe target, this specification recommends the use of the alternative, purpose-built certificate formatdescribed in this chapter.
An ADAC Certificate is an element of the chain of trust. It also contains a set of optional constraintsapplied to debug authentication and debug permissions.
2.5.2 Format
The components of an ADAC Certificate are the following:

∙ Header: The header contains all fields and the length of the extensions in bytes. The size of theheader remains constant for all cryptosystems.
∙ Extensions hash: Hash over extensions data. Algorithm and length depend on Signature Type field inHeader. Value is all zeros if extensions length is zero.
∙ Public key: Content and length depend on Key Type field in Header.
∙ Signature: The signature is performed over Header, Extension Hash, and Public Key.
∙ Extensions: TLV sequence of non-mandatory and vendor-specific fields.

Fields contained in the header, all mandatory:
∙ format_version: See Version.
∙ signature_type: Cryptosystem ID for the algorithm used to generate the certificate’s signature andextensions hash.
∙ key_type: Cryptosystem ID indicating the algorithm and key size for the public key contained in thecertificate.
∙ role: Certificate role. Whether the certificate is a root, intermediate, or leaf certificate. The tablebelow lists accepted values.
∙ usage: Certificate usage. Specifies additional operational usage expressed by the certificate, if any.See the table below for defined usage values.
∙ lifecycle: Restricts authentication to a particular PSA lifecycle state. Encoding is the same as thepsa_lifecycle data type.
∙ oem_constraint: Customizable constraint bitfield. Semantics are defined by the integrator or OEMand used to apply additional constraints on authentication.
∙ extension_bytes: Size in bytes of the following (non-mandatory) extensions. If there are noextensions, this field must be set to zero.
∙ soc_id: Device unique ID. See the soc_id data type.
∙ soc_class: Vendor-defined device family ID. See the soc_class data type.
∙ permissions_mask: Bit mask limiting the permissions that can be requested in the ADAC Token. A setbit indicates that the permission corresponding to that bit position is allowed by the containingcertificate to be requested in the token. The full certificate chain and hardware-defined permissionsmask must be taken into account to determine the final permissions mask.

The data layout for the certificate header is shown in the following table.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 48

Table 35 Certificate Header
Word Byte 0 Byte 1 Byte 2 Byte 3

0 format_version.

major

format_version.

minor

signature_type key_type

1 role usage (0) (0)

2 lifecycle oem_constraint

3 extension_bytes

4 soc_class

5 soc_id[31:0]

6 soc_id[63:32]

7 soc_id[95:64]

8 soc_id[127:96]

9 permissions_mask[31:0]

10 permissions_mask[63:32]

11 permissions_mask[95:64]

12 permissions_mask[127:96]

The following C structures describe the certificate header:
struct adac_certificate_header_v1_0 {

struct adac_version format_version;
uint8_t signature_type;
uint8_t key_type;
uint8_t role;
uint8_t usage;
uint8_t _reserved[2];
uint16_t lifecycle;
uint16_t oem_constraint;
uint32_t extensions_bytes;
uint32_t soc_class;
uint8_t soc_id[16];
uint8_t permissions_mask[16];

};

struct adac_certificate_v1_0 {
struct adac_certificate_header_v1_0 header;
uint8_t extensions_hash[HASH_LENGTH];
uint8_t public_key[KEY_LENGTH];
uint8_t signature[SIGNATURE_LENGTH];
// array of variable-length adac_tlv structs
uint8_t extensions_data[ROUND_TO_WORDS(header.extensions_bytes)];

};

Currently defined versions of the adac_certificate_v1_0 structure are as follows.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 49

Table 36 Certificate Version
Version Description

1.0 Initial version
The role member of the header must have one of the following values.

Table 37 Role values
Value Constant Description

0x1 ADAC_ROLE_ROOT The certificate is a root certificate
0x2 ADAC_ROLE_INTERMEDIATE The certificate is intermediate
0x3 ADAC_ROLE_LEAF The certificate is a leaf certificate

The usage member of the header must have one of the following values.
Table 38 Usage values

Value Constant Description

0x0 ADAC_USAGE_NEUTRAL The certificate has no special usage.
0x1 ADAC_USAGE_STANDARD The certificate is only for authentication.
0x2 ADAC_USAGE_RMA The certificate moves the device to the RMA lifecyclestate.

2.5.3 Extensions

The extensions for an ADAC Certificate are structured as a TLV sequence. In the adac_certificate_v1_0struct, the extensions TLV sequence is placed in the extensions_data member.
The size of the extensions data is specified in the certificate header as a number of bytes.
Allowed Extension Types

The following table lists those Type IDs that are accepted in the extensions data for an ADAC Certificate.Any extension value with a Type ID not included within this list will be ignored.
Table 39 Allowed Extension Types

Type ID Name Description

0x0005 target_identity Target identity
0x0009 sw_partition_id Software partition ID

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 50

All vendor-specific type IDs are allowed.
The sw_partition_id extension specifies a software partition to which access is granted. This extensionvalue can be included more than once, in which case access is granted to all listed software partitions.
2.5.4 Rules

Construction

The hash of the certificate extensions is computed as follows, using the hash algorithm identified by the
header.signature_type cryptosystem.:
extensions_hash = Hash(extensions_data)

The signature over the certificate is computed as follows, using the signature algorithm specified by the
header.signature_type cryptosystem.:
signature = Sign(ca.private_key, header || extensions_hash || public_key)

In the above expression, the symbol ca refers to the signer certificate. For a root certificate, ca is the sameas the certificate being signed (self-signing).
The following diagram shows the inputs to the certificate signature algorithm.

Header

Extensions Hash

Public Key

Signature

Extensions

Sign

3

4

5

Hash1
6

2

Validation

The header.format_version member can be used to select an appropriate struct definition for parsing theentire header.
These members of the adac_certificate_v1_0 struct must be validated before any further processing of thecertificate is performed:

∙ header.format_version

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 51

∙ header.signature_type

∙ header.key_type

∙ header.role

∙ header.usage

∙ header.lifecycle

When processing the complete certificate chain, all non-zero values of a given constraint must be equal inevery certificate.
Constraints

When these members of the adac_certificate_v1_0 struct are set to all zero bits, they are ignored and donot constrain authentication.
∙ header.soc_id

∙ header.soc_class

∙ header.lifecycle

∙ header.oem_constraint

As defined for the psa_lifecycle data type, the header.lifecycle is composed of a major PSA state andminor IMPLEMENTATION DEFINED state. If header.lifecycle is non-zero, the major state must also be non-zeroand authentication is restricted to the specified major state. The minor state is always optional; ifnon-zero, authentication is restricted to the specified minor state in addition to the major state restriction.If the minor state is zero, then any minor state is allowed. A header.lifeycle value with a zero major stateand non-zero minor state is invalid.
The header.oem_constraint field is compared to the static OEM constraint value provided to the SecureDebug Authenticator by an IMPLEMENTATION DEFINED mechanism. If the two values match thenauthentication is not constrained, otherwise authentication fails.

2.6 Life-cycle State Command Set
This chapter specifies the life-cycle commands and their parameters. It contains the following sections:

∙ About the life-cycle state commands
∙ Status codes
∙ Life-cycle State Commands
∙ Change Life-cycle State

2.6.1 About the life-cycle state commands
ADAC defines the following set of commands related to life-cycle states. These commands are defined asa layer building on the Command Protocol.
All commands below are optional in this revision of the specification. However, some commands canreturn a status code indicating they are unsupported on the target or in the execution environment. This isdocumented per command.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 52

Detailed specifications for each command follow in this chapter.
Table 40 Life-Cycle state commands

ID Constant Command Description

0x0100 ADAC_LCS_CHANGE Change life-cycle state Change the life-cycle stateof the target

Status codes

The following table lists the complete set of status codes returned by the life-cycle state commands.
Table 41 Life-Cycle change return codes

Status Constant Description

0x0000 ADAC_SUCCESS The command has succeeded without error.
0x0001 ADAC_FAILURE The command has failed.
0x0003 ADAC_UNSUPPORTED The command is not supported by the target.
0x0004 ADAC_UNAUTHORIZED The command is not allowed in the currentauthentication state.
0x0005 ADAC_INVALID_PARAMETERS The command has invalid, inconsistent or missingparameters.
0x7FFF ADAC_INVALID_COMMAND The command ID is unrecognized.

The status code 0x7FFF is special in that it is not returned by a specific command but instead indicates anunrecognized command ID. See the Error Handling section of the command protocol for more information.
2.6.2 Life-cycle State Commands

Change Life-cycle State

The debug host sends this command to request debug target to change its life-cycle state.
Request

Command ID ADAC_LCS_CHANGE (0x0100)
Request data TLV sequence

The request data is a TLV sequence and must contain an entry of type psa_lifecycle. The requirements foraddtional entries and their type is IMPLEMENTATION DEFINED.
The request sequence should be ordered by increasing ID value. If it is not, some values may be omittedfrom the results.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 53

Response

Table 43 Life-cycle Transition Response status codes
Status code Description

ADAC_SUCCESS Life-cycle state transition successful.
ADAC_FAILURE Life-cycle state transition failed.
ADAC_UNSUPPORTED The command is not supported by the target
ADAC_UNAUTHORIZED Life-cycle change is not allowed by current authentication state.
ADAC_INVALID_PARAMETERS Life-cycle state change request is invalid.

The response consists of an optional TLV sequence. If present, it must contain an entry of typepsa_lifecycle.
Possible response value type IDs:
The response sequence must be ordered by increasing ID value.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 54

Appendix A: Example System Architectures
This chapter gives several examples of possible system architectures for ADAC. The contains the followingsections:
Example Arm Architecture Externally-hosted Target

A.1 Example Arm Architecture Externally-hosted Target
This section demonstrates an example mapping of this specification to the Arm architecture. The exampleshown here focuses on externally hosted debug.
Devices based on the Arm architecture vary considerably depending on the size and complexity of thedevice. However, there are a number of key components that any device with secure debug will have.These are shown in Example externally-hosted Arm target block diagram..

SoC

DP

PE Bus Matrix

MEM-AP

Debugger
Mailbox

Security
Control Block

Enable

CoreSight Authentication

APB
SWD/JTAG

Figure 5 Example externally-hosted Arm target block diagram.

As defined by the Arm® Debug Interface Architecture Specification (ADI), the external interface fordebugger access is called the Debug Port (DP). The SWJ-DP is an implementation that supports both SWDand JTAG wire protocols. The DP connects to one or more Access Port (AP) components. A device willhave at least one MEM-AP that provides the debugger with the ability to perform transactions on theinternal bus fabric and control system and PE-level debug logic.
A standard set of four debug access signals called CoreSight authentication signals are available forcontrolling the level of debug access for each PE:

∙ DBGEN: Invasive Non-secure debug access
∙ NIDEN: Non-invasive Non-secure debug access
∙ SPIDEN: Invasive Secure debug access, DBGEN must also be asserted

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 55

∙ SPNIDEN: Non-invasive Secure debug access, NIDEN or DBGEN must also be asserted
Not all systems will have all four authentication signals. For instance, a system that does not implement aSecure PE will not have SPIDEN and SPNIDEN.
A debug target in the Secured lifecycle state has these four standard authentication signals disabled bydefault.
In addition to the standard CoreSight authentication signals, each AP also has a its own enable signal. In aCortex-M system where the AP is routed through the PE, it is not strictly necessary to disable the AP inthe Secured lifecycle state. But in larger systems where a MEM-AP is directly connected to the bus fabric,it is a requirement.
Depending on the debug target’s system-level architecture, the debug access signals can be connected indifferent ways. For instance, a multicore device can expose the CoreSight authentication signals for eachPE, or they can be shared. In addition, the debug target can define additional, proprietary security controlsignals. As an example, a cryptographic accelerator peripheral can accept a signal that controls access toand use of device-unique key(s).
The Security Control Block is IP used by the Secure Debug Authenticator to modify the access controlsignals. Access to the Security Control Block is restricted to trusted software.

A.1.1 Debugger Mailbox

A type of debugger mailbox that fits well with the ADIv5 architecture is a special type of AP, composed oftwo sides. One side connects to the DP and is accessible by the debugger as an AP. The other side is astandard APB peripheral. The two sides are themselves connected and can perform byte or word transfersbidirectionally.
A similar debugger mailbox can be built for the ADIv6 architecture, but both sides of the debugger mailboxare APB Completers.
The Arm SDC-600 COM Port is an example of such an debugger mailbox. It is available in versions thatsupport both ADIv5 and ADIv6.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 56

Appendix B: Link Layer
This appendix documents several common link layer protocols used for ADAC communications channels.It contains the following sections:

∙ About the link layer
∙ Link layers
∙ COM Encapsulation Protocol
∙ ACK Token
∙ Memory Window

B.1 About the link layer
The link layer is the protocol layer specific to the communications channel implementation. The primarypurpose is to establish a common set of capabilities upon which the higher level protocols can build. It isfocused on delivery of packets between the two physical endpoints. Each different communicationchannel has its own specific link layer protocol.
The link layer provides some or all of these properties for the higher level protocol layers:

∙ Method to request and initiate communications
∙ Flow control
∙ Packetization

Some communication channels have an intrinsic link layer protocol that provides the required properties,and so do not require an additional link layer to be used.
This chapter describes several link layers used for common types of communications channels.

∙ COM Encapsulation Protocol for Arm SDC-600 COM Port.
∙ ACK token protocol for common types of proprietary debugger mailbox IP.
∙ Memory window protocol for devices using a restricted window into system memory.

B.2 Link layers
B.2.1 COM Encapsulation Protocol
The COM Encapsulation Protocol is a byte-oriented protocol for transferring data packets across a COMPort interface such as the Arm SDC-600. The protocol is fully defined in the Arm AdvancedCommunications Channel Architecture Specification [IHI0076A].
A protocol discovery sequence is defined as part of the COM Encapsulation Protocol. This allows thetarget to report a unique protocol ID to the host to declare its expected higher level protocol using amethod independent of the higher level protocol.
DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 57

For ADAC, the unique protocol ID is 4 bytes in length, and is defined as shown here:
Format Protocol ID

ASCII ADAC

Byte sequence [0x41 0x44 0x41 0x43]

Note:
This protocol ID is currently provisional.

Any other protocol ID response sent by the target indicates that a different command protocol is expected,and the host should behave accordingly.
The protocol discovery sequence as byte values are defined as follows. The indicated direction is relativeto the host being Requester.
Direction Protocol Data

Request IDR [0xA0]

Response IDA [0xA1]

Protocol ID [0x41 0x44 0x41 0x43]

END [0xAD]

The COM Encapsulation Protocol fully specifies the method of packetizing the higher level commandrequests and responses transferred by the ADAC Command Protocol.
Command protocol requests and replies must be sent in least-significant byte-first (LSB-first) order.
B.2.2 ACK Token

Some SoCs include a simple debugger mailbox that implements transfer of a single 32-bit word at a time ineither direction. Most often the hardware does not mandate a particular link layer protocol. For such IP,the ACK token protocol can be used to provide a software-implemented flow control mechanism. Analternative protocol is to make use of status flags in the IP registers, if provided.
In response to each request or reply data word, the other side must send an ACK Token, used for flowcontrol. The request and reply header words do not require an ACK Token to be sent; the reply acts as theACK for the request.
The upper 16-bits are set by the receiver (the side sending the ACK Token) with number of remainingwords expected to be sent. The lower 16-bits are always set to 0xA5A5. This value should be avoided fora valid command ID or command status value.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 58

Byte 0 Byte 1 Byte 2 Byte 3

0xA5 0xA5 remain_count[7:0] remain_count[15:8]

The C structure definition for a ACK Token is:
struct ack_token {

uint16_t token; /* must be set to 0xA5A5 */
uint16_t remain_count; /* remaining word count */

};

B.2.3 Memory Window

The memory window link layer is designed to be as simple as possible. Performance is not a key concern.The only requirement is that the memory window support both read and write.
enum {

MW_HOST_DONE = 0x12121212,
MW_TARGET_DONE = 0xEFEFEFEF,
MW_PATTERN1 = 0xFF00FF00,
MW_PATTERN2 = 0x00FF00FF

};

struct memory_window {
uint32t status[4];
uint32t message[];

};

Handshake

∙ The host initiates, writing to the status array the sequence [MW_PATTERN1, MW_PATTERN2, MW_PATTERN1,

MW_PATTERN2].
∙ The target acknowledges, writing to the status array the sequence [MW_PATTERN1, MW_PATTERN2,

MW_PATTERN1, MW_PATTERN2].
Message exchange

It is assumed that the Command Protocol and its sequence will be used.
∙ The host writes a Request packet in the message member.
∙ The host writes the MW_HOST_DONE value in the status[0] member.
∙ Reading the value MW_HOST_DONE in the status[0] member signals to the target that it can read theRequest packet from the message member.
∙ Once the Request packet is processed, the target writes Response packet in the message member.
∙ The target writes the MW_TARGET_DONE value in the status[0] member.
∙ Reading the value MW_TARGET_DONE in the status[0] member signals to the host that it can read theResponse packet from the message member.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 59

Note:
Both Request and Response packets encode their respective lengths.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 60

Appendix C: Cryptographic Support
This appendix documents cryptographic suites currently defined for ADAC. It contains the followingsections:

∙ General concepts
∙ ECDSA
∙ RSA
∙ EdDSA (tentative)
∙ ShangMi - SM2 (tentative)

C.1 General concepts
C.1.1 Algorithm Agility

Algorithm agility is an important feature of security protocols, which is the reason this specificationprovides a list of different families of asymmetric key cryptographic algorithms. That list of supportedalgorithms is extensible.
The specification (and reference implementation) recommends and only specifies solutions using the samealgorithm and key size. This due to security-sensitive nature of the operations and the constraints of thetarget-side implementations of the protocols. Supporting multiple cryptographic algorithms and key sizesadds complexity and code size.
C.1.2 Key Sizes

We have defined for each cryptographic algorithm two public key sizes one that matches the minimumpublicly recommended sizes, as well as higher level for high or long term assurance.
C.1.3 Hash Function

With each public key algorithm and key size is associated a hash function.

C.2 ECDSA
The Elliptic Curve Digital Signature Algorithm (ECDSA) as defined in [FIPS-186-4] and [X9.62-2005] usedin conjunction with the following curves:

∙ NIST P-256 curve (also designated secp256r1 in [SECGv2] or prime256v1 in [X9.62-2005])
∙ NIST P-521 curve (also designated secp521r1 in [SECGv2])

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 61

The public keys are encoded in uncompressed format (without the 0x04 typically used in formats that allowcompressed representations).
The signatures do not include the ASN.1 DER encoding.
We recommend using the deterministic variant of ECDSA (see [RFC6979]) for generating signature, this istransparent to the implementation on the target.
C.2.1 P-256 Curve

#define ECDSA_P256_PUBLIC_KEY_SIZE 64
#define ECDSA_P256_SIGNATURE_SIZE 64
#define ECDSA_P256_HASH_SIZE 32
#define ECDSA_P256_HASH_ALGORITHM PSA_ALG_SHA_256
#define ECDSA_P256_SIGN_ALGORITHM PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_256)

typedef struct {
certificate_header_t header;
uint8_t pubkey[ECDSA_P256_PUBLIC_KEY_SIZE]; // P-256 public key
uint8_t extensions_hash[ECDSA_P256_HASH_SIZE]; // SHA-256 hash
uint8_t signature[ECDSA_P256_SIGNATURE_SIZE]; // P-256 with SHA-256 signature
uint32_t extensions[];

} certificate_p256_p256_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[ECDSA_P256_HASH_SIZE]; // SHA-256 hash
uint8_t signature[ECDSA_P256_SIGNATURE_SIZE]; // P-256 with SHA-256 signature
uint32_t extensions[];

} token_p256_t;

C.2.2 P-521 Curve

#define ECDSA_P521_PUBLIC_KEY_SIZE 132
#define ECDSA_P521_SIGNATURE_SIZE 132
#define ECDSA_P521_HASH_SIZE 64
#define ECDSA_P521_HASH_ALGORITHM PSA_ALG_SHA_512
#define ECDSA_P521_SIGN_ALGORITHM PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_512)

typedef struct {
certificate_header_t header;
uint8_t pubkey[ROUND_TO_WORD(ECDSA_P521_PUBLIC_KEY_SIZE)]; // P-521 public key
uint8_t extensions_hash[ECDSA_P521_HASH_SIZE]; // SHA-512 hash
uint8_t signature[ROUND_TO_WORD(ECDSA_P521_SIGNATURE_SIZE)]; // P-521 with SHA-512 signature
uint32_t extensions[];

} certificate_p521_p521_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[ECDSA_P521_HASH_SIZE]; // SHA-512 hash
uint8_t signature[ECDSA_P521_SIGNATURE_SIZE]; // P-521 with SHA-512 signature

(continues on next page)

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 62

(continued from previous page)
uint32_t extensions[];

} token_p521_t;

C.3 RSA
RSA (see [RFC8017]) is included in specification.
This specification forces the the use of the value F4 (65537 in decimal, 0x10001 in hexadecimal) for exponent.
The public keys are encoded as the raw value of the modulus (without the leading zero mandated byASN.1 DER encoding).
Signatures use the Probabilistic Signature Scheme.
C.3.1 RSA 3072-bit keys

#define RSA_3072_PUBLIC_KEY_SIZE 384
#define RSA_3072_SIGNATURE_SIZE 384
#define RSA_3072_HASH_SIZE 32
#define RSA_3072_HASH_ALGORITHM PSA_ALG_SHA_256
#define RSA_3072_SIGN_ALGORITHM PSA_ALG_RSA_PSS(PSA_ALG_SHA_256)

typedef struct {
certificate_header_t header;
uint8_t pubkey[RSA_3072_PUBLIC_KEY_SIZE]; // RSA 3072-bit public key
uint8_t extensions_hash[RSA_3072_HASH_SIZE]; // SHA-256 hash
uint8_t signature[RSA_3072_SIGNATURE_SIZE]; // RSA with SHA-256 signature
uint32_t extensions[];

} certificate_rsa3072_rsa3072_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[RSA_3072_HASH_SIZE]; // SHA-256 hash
uint8_t signature[RSA_3072_SIGNATURE_SIZE]; // RSA with SHA-256 signature
uint32_t extensions[];

} token_rsa3072_t;

C.3.2 RSA 4096-bit keys

#define RSA_4096_PUBLIC_KEY_SIZE 512
#define RSA_4096_SIGNATURE_SIZE 512
#define RSA_4096_HASH_SIZE 32
#define RSA_4096_HASH_ALGORITHM PSA_ALG_SHA_256
#define RSA_4096_SIGN_ALGORITHM PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_SHA_256)

typedef struct {
certificate_header_t header;
uint8_t pubkey[RSA_4096_PUBLIC_KEY_SIZE]; // RSA 4096-bit public key
uint8_t extensions_hash[RSA_4096_HASH_SIZE]; // SHA-256 hash

(continues on next page)

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 63

(continued from previous page)
uint8_t signature[RSA_4096_SIGNATURE_SIZE]; // RSA with SHA-256 signature
uint32_t extensions[];

} certificate_rsa4096_rsa4096_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[RSA_4096_HASH_SIZE]; // SHA-256 hash
uint8_t signature[RSA_4096_SIGNATURE_SIZE]; // RSA with SHA-256 signature
uint32_t extensions[];

} token_rsa4096_t;

C.4 EdDSA (tentative)
Edwards-Curve Digital Signature Algorithm (EdDSA), see [RFC8032].
C.4.1 Ed25519 Curve

See [Ed25519].
#define EDDSA_ED25519_PUBLIC_KEY_SIZE 32
#define EDDSA_ED25519_SIGNATURE_SIZE 64
#define EDDSA_ED25519_HASH_SIZE 64
#define EDDSA_ED25519_HASH_ALGORITHM PSA_ALG_SHA_512
#define EDDSA_ED25519_SIGN_ALGORITHM PSA_ALG_ED25519PH

typedef struct {
certificate_header_t header;
uint8_t pubkey[ROUND_TO_WORD(EDDSA_ED25519_PUBLIC_KEY_SIZE)];
uint8_t extensions_hash[EDDSA_ED25519_HASH_SIZE];
uint8_t signature[ROUND_TO_WORD(EDDSA_ED25519_SIGNATURE_SIZE)];
uint32_t extensions[];

} certificate_ed255_ed255_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[EDDSA_ED25519_HASH_SIZE]; // SHA-512 hash
uint8_t signature[EDDSA_ED25519_SIGNATURE_SIZE]; // Ed25519 signature
uint32_t extensions[];

} token_ed255_t;

C.4.2 Ed448 Curve

See [Ed448].
#define EDDSA_ED448_PUBLIC_KEY_SIZE 57
#define EDDSA_ED448_SIGNATURE_SIZE 114
#define EDDSA_ED448_HASH_SIZE 64
#define EDDSA_ED448_HASH_ALGORITHM PSA_ALG_SHAKE256_512
#define ECDSA_ED448_SIGN_ALGORITHM PSA_ALG_ED448PH

(continues on next page)

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 64

(continued from previous page)
typedef struct {

certificate_header_t header;
uint8_t pubkey[ROUND_TO_WORD(EDDSA_ED448_PUBLIC_KEY_SIZE)];
uint8_t extensions_hash[EDDSA_ED448_HASH_SIZE];
uint8_t signature[ROUND_TO_WORD(EDDSA_ED448_SIGNATURE_SIZE)];
uint32_t extensions[];

} certificate_ed448_ed448_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[EDDSA_ED448_HASH_SIZE]; // SHAKE256 hash
uint8_t signature[EDDSA_ED448_SIGNATURE_SIZE]; // Ed448 signature
uint32_t extensions[];

} token_ed448_t;

C.5 ShangMi - SM2 (tentative)
SM2 is a set of elliptic curve based cryptographic algorithms including digital signature (see [ISO-SM2]).SM2 is used with the SM3 hash function (see [ISO-SM3]).
C.5.1 SM2

#define SM2_SM3_PUBLIC_KEY_SIZE 64
#define SM2_SM3_SIGNATURE_SIZE 64
#define SM2_SM3_HASH_SIZE 32
#define SM2_SM3_HASH_ALGORITHM PSA_ALG_SM3
#define SM2_SM3_SIGN_ALGORITHM PSA_ALG_SM2 // Not defined yet

typedef struct {
certificate_header_t header;
uint8_t pubkey[SM2_SM3_PUBLIC_KEY_SIZE]; // SM2 public key
uint8_t extensions_hash[SM2_SM3_HASH_SIZE]; // SM3 hash
uint8_t signature[SM2_SM3_SIGNATURE_SIZE]; // SM2 with SM3 signature
uint32_t extensions[];

} certificate_sm2sm3_sm2sm3_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[SM2_SM3_HASH_SIZE]; // SM3 hash
uint8_t signature[SM2_SM3_SIGNATURE_SIZE]; // SM2 with SM3 signature
uint32_t extensions[];

} token_sm2sm3_t;

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 65

C.6 Secret key algorithms (tentative)
C.6.1 CMAC with AES

CMAC with AES is authentication algorithm based on CMAC with the 128-bit Advanced EncryptionStandard (AES), see [SP800-38B] and [RFC4493].
#define CMAC_PUBLIC_KEY_SIZE 16
#define CMAC_SIGNATURE_SIZE 16
#define CMAC_HASH_SIZE 16
#define CMAC_HASH_ALGORITHM PSA_ALG_CMAC
#define CMAC_SIGN_ALGORITHM PSA_ALG_CMAC

typedef struct {
certificate_header_t header;
uint8_t pubkey[CMAC_PUBLIC_KEY_SIZE]; // Nonce
uint8_t extensions_hash[CMAC_HASH_SIZE]; // CMAC
uint8_t signature[CMAC_SIGNATURE_SIZE]; // CMAC
uint32_t extensions[];

} certificate_cmac_cmac_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[CMAC_HASH_SIZE]; // CMAC
uint8_t signature[CMAC_SIGNATURE_SIZE]; // CMAC
uint32_t extensions[];

} token_cmac_t;

C.6.2 HMAC with SHA-256

HMAC a mechanism for message authentication using cryptographic hash functions. See [RFC2104],[RFC6234] and [SP800-107r1].
#define HMAC_PUBLIC_KEY_SIZE 32
#define HMAC_SIGNATURE_SIZE 32
#define HMAC_HASH_SIZE 32
#define HMAC_HASH_ALGORITHM PSA_ALG_SHA_256
#define HMAC_SIGN_ALGORITHM PSA_ALG_HMAC(PSA_ALG_SHA_256)

typedef struct {
certificate_header_t header;
uint8_t pubkey[HMAC_PUBLIC_KEY_SIZE]; // Nonce
uint8_t extensions_hash[HMAC_HASH_SIZE]; // SHA-256 hash
uint8_t signature[HMAC_SIGNATURE_SIZE]; // HMAC-SHA-256
uint32_t extensions[];

} certificate_hmac_hmac_t;

typedef struct {
token_header_t header;
uint8_t extensions_hash[HMAC_HASH_SIZE]; // SHA-256 Hash
uint8_t signature[HMAC_SIGNATURE_SIZE]; // HMAC-SHA-256
uint32_t extensions[];

} token_hmac_t;

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 66

Appendix D: Security Risk Assessment
This appendix contains a simplified Security Risk Assessment for ADAC.
See chapter Security Model for more details about:

∙ Use Cases
∙ Stakeholders
∙ Security Goals
∙ Assets and Actors
∙ Trust Boundaries
∙ Assumptions

D.1 Threat Model
D.1.1 Attack Surface and Adversarial Model

The attack surface is limited to the link between the two sides of the protocol. Attackers are assumed tohave obtained access to that link, allowing them to read, modify, spoof, replay messages, or issuemalformed commands.
Out of scope: debug probes attached to connected devices that export the debug link layer.
D.1.2 Threats and Attacks

Attacks on protocols can insert, delete, swap, modify, or replay messages. The aim is to force an illegalstate change, swap bits of the debug vector, or disable the debug protection engine.
Another class of attacks is denial of service. Those attacks could exhaust resources on the target or disableenough functionalities to render it inoperable.
Message-based attacks

∙ Malformed _reserved fields should have no impact on exchanges since they are always fixed-sizedand not meant to be parsed.
∙ status fields can be modified to trigger inconsistencies in protocol exchanges, possibly leading todeadlocks.
∙ data_count can be modified to erroneous values, leading a peer to either wait for more incoming data,or to truncate the message.
∙ TLV fields should be analyzed with caution as their maximum size is defined on 32 bits, possiblyleading to peers expecting gigabytes of data in messages.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 67

ADAC messages are built as a status + payload structure containing potentially free-form TLV fields.Implementers should be cautious in parsing any data received from the host side.
Attacks on Credentials
ADAC credentials are signed, i.e. modifying any single bit should render the signature invalid and preventany successful authentication. Attacks on signature schemes can take two forms:

∙ Finding the private key associated to a known public key
∙ Finding collisions in the underlying hash function

ADAC is restricted to signature and hashing algorithms which have, at the time of writing, no such knownflaws. See chapter Key and Signature Types for more details. As long as the chosen algorithms are resistantto the above-mentioned attacks, it should not be possible to forge a signature or use an existing signaturefor another set of credentials.
The ADAC protocol requires credentials to be presented by the host starting from the root, up to possibleintermediate, and end with the leaf certificate. An attacker could abuse that convention to submit aseemingly infinite list of certificates to the target, possibly leading to resource exhaustion.
D.1.3 Risks and Mitigations

Denial of Service
Modifying messages or inserting garbage into an exchange is only likely to lead to an abortedauthentication. In the worst case, peers can both be waiting for their counterpart to send more data,leading to a deadlock.
Mitigation
Targets need to be defensive against any kind of data received from the host, aborting communicationearly whenever issues are met. The state machine does not include any error state. Failure should alwayslead back to the target listening for incoming requests.
Resource consumption
Forcing the target to generate a very large number of challenges may deplete its entropy source.
Mitigation
This can be thwarted with challenges based on a properly seeded DRBG, provided the target is not resetbefore saving the seed. Another way would be to rate-limit authentication attempts on the target side. Forexample: after three failed authentication attempts the target waits one minute before it agrees to enter anew authentication exchange, forcing an attacker to either wait or reset the device.
Triggering failures
Using malformed credentials to trigger errors in credential parsing on the target side, possibly leading towrong settings in the debug vector.
Mitigation
Credential parsing needs to be extremely strict about data sizes and bail out early in case of errors. Settingthe final debug vector should only happen after all credentials have been verified.
Weak cryptography

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 68

Cryptographic algorithms invariably get broken over time: new types of attacks, more powerful machinesused for brute force.
Mitigation
Adding support for multiple cryptosystems for authentication enables easy switching when necessary.Beyond that, firmware updates must be able to take care of replacing broken code and updating rootauthority credentials.

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 69

Appendix E: Changes in this document
Changes between 1.0.0 and 1.0.1:

∙ Replaced mentions of 32-bit word sizes with bytes
Changes from the previous 1.0-beta2 version:

∙ Changed documentation format
∙ Updated Reference table
∙ Moved and expanded terms and abbreviations
∙ Switched to inclusive terms
∙ Renamed namespace prefixes from SDP_ to ADAC_

∙ Added example for Discovery
∙ Added ADAC_USAGE_NEUTRAL to certificate usage
∙ Moved Security Risk Assessment to its own section in Appendix

DEN 01011.0.1 Copyright © 2022, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 70

	About this document
	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Pseudocode descriptions
	Assembler syntax descriptions
	Current status and anticipated changes
	Feedback
	Feedback on this book

	1 Debug Access Control Architecture
	1.1 About the Architecture
	1.1.1 About Platform Security Architecture
	1.1.2 Goals
	1.1.3 Scope

	1.2 System Architecture
	1.2.1 System architecture overview
	1.2.2 Target Architecture
	Access Control
	Target States
	Handling Reset

	1.2.3 Protocol Architecture
	Link Layer
	Command Protocol
	Authentication Command Set

	1.3 Security Model
	1.3.1 About the Security Model
	Scope
	Security Market Requirements

	1.3.2 Authentication
	1.3.3 Trust
	1.3.4 Constraints
	Scope-limiting constraints
	Permissions

	1.3.5 Examples

	2 Specification
	2.1 Common Elements
	2.1.1 Conventions
	Data encoding conventions
	C language conventions

	2.1.2 Version Numbers
	2.1.3 TLV Data Type
	2.1.4 Type ID Registry
	2.1.5 Key and Signature Types
	Cryptosystem Support

	2.2 Command Protocol
	2.2.1 About the command protocol
	2.2.2 Protocol state machine
	2.2.3 Packets
	Request
	Response

	2.2.4 Error Handling

	2.3 Authentication Command Set
	2.3.1 About the authentication commands
	Status codes
	Authentication response
	Authentication command sequence

	2.3.2 Authentication Commands
	Discovery
	Authentication Start
	Authentication Response
	Close Session
	Lock Debug

	2.4 ADAC Token
	2.4.1 About the ADAC Token
	2.4.2 Format
	2.4.3 Extensions
	Allowed Extension Types

	2.4.4 Rules
	Construction
	Validation

	2.5 ADAC Certificate
	2.5.1 About the ADAC Certificate
	2.5.2 Format
	2.5.3 Extensions
	Allowed Extension Types

	2.5.4 Rules
	Construction
	Validation
	Constraints

	2.6 Life-cycle State Command Set
	2.6.1 About the life-cycle state commands
	Status codes

	2.6.2 Life-cycle State Commands
	Change Life-cycle State

	A Example System Architectures
	A.1 Example Arm Architecture Externally-hosted Target
	A.1.1 Debugger Mailbox

	B Link Layer
	B.1 About the link layer
	B.2 Link layers
	B.2.1 COM Encapsulation Protocol
	B.2.2 ACK Token
	B.2.3 Memory Window
	Handshake
	Message exchange

	C Cryptographic Support
	C.1 General concepts
	C.1.1 Algorithm Agility
	C.1.2 Key Sizes
	C.1.3 Hash Function

	C.2 ECDSA
	C.2.1 P-256 Curve
	C.2.2 P-521 Curve

	C.3 RSA
	C.3.1 RSA 3072-bit keys
	C.3.2 RSA 4096-bit keys

	C.4 EdDSA (tentative)
	C.4.1 Ed25519 Curve
	C.4.2 Ed448 Curve

	C.5 ShangMi - SM2 (tentative)
	C.5.1 SM2

	C.6 Secret key algorithms (tentative)
	C.6.1 CMAC with AES
	C.6.2 HMAC with SHA-256

	D Security Risk Assessment
	D.1 Threat Model
	D.1.1 Attack Surface and Adversarial Model
	D.1.2 Threats and Attacks
	D.1.3 Risks and Mitigations

	E Changes in this document

