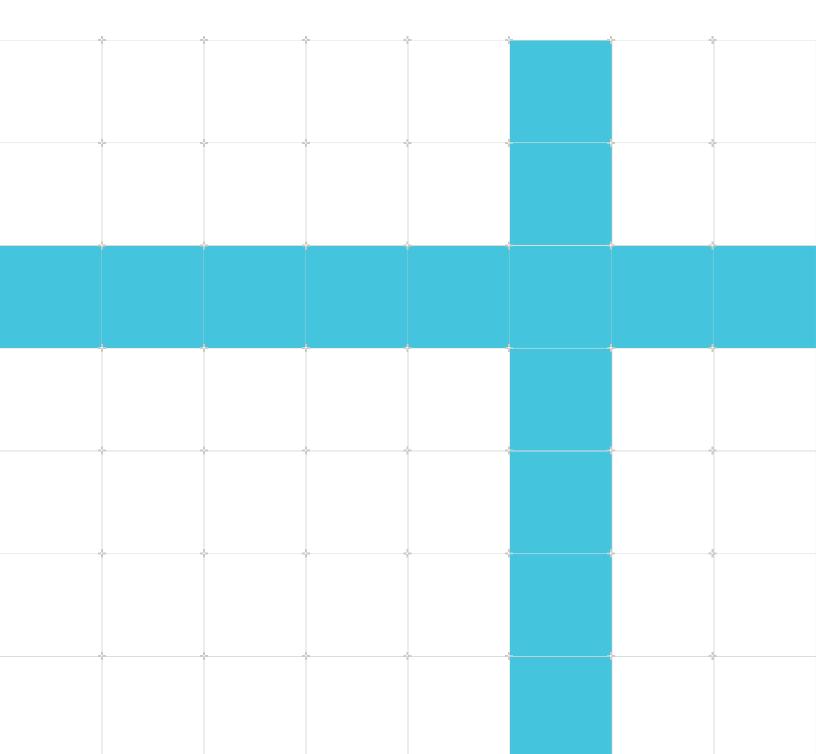


Arm[®] Compiler for Embedded FuSa


Version 6.16.2 LTS

Migration and Compatibility Guide

Non-Confidential

Issue 00

Copyright © 2021–2022 Arm Limited (or its affiliates). 102285_6.16.2LTS_00_en All rights reserved.

Arm[®] Compiler for Embedded FuSa **Migration and Compatibility Guide**

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue	Date	Confidentiality	Change
061601LTS-	15 September	Non-	Arm Compiler for Embedded FuSa 6.16.1 LTS
00	2021	Confidential	Release.
061602LTS-	27 April 2022	Non-	Arm Compiler for Embedded FuSa 6.16.2 LTS
00		Confidential	Release.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or [™] are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm[®] welcomes feedback on this product and its documentation. To provide feedback on the product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/ documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this document, email terms@arm.com.

Contents

List of Figures	
List of Tables	

1 Introduction	11
1.1 Conventions	11
1.2 Other information	12
2 Configuration and Support Information	
2.1 Support level definitions	
2.2 Compiler configuration information	1/
3 Migrating from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6	18
3.1 Migration overview	18
3.2 Toolchain differences	19
3.3 Default differences	20
3.4 Optimization differences	23
3.5 Backwards compatibility issues	24
3.6 Diagnostic messages	25
3.7 Migration example	27
4 Migrating from armcc to armclang	31
4.1 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Emb	
FuSa 6	
4.2 Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 stack protection behavior	
4.3 Command-line options for preprocessing assembly source code	
4.4 Inline assembly with Arm Compiler for Embedded FuSa 6	
4.5 Migrating architecture and processor names for command-line options	
4.6 Preprocessing a scatter file when linking with armlink	
4.7 Migrating predefined macros	51
5 Compiler Source Code Compatibility	52
5.1 Language extension compatibility: keywords	52
5.2 Language extension compatibility: attributes	55
5.3 Language extension compatibility: pragmas	58
5.4 Language extension compatibility: intrinsics	61
5.5 Diagnostics for pragma compatibility	64
5.6 C and C++ implementation compatibility	66
5.7 Compatibility of C++ objects	69
6 Migrating from armasm to the armclang Integrated Assembler	71

6.1 Migration of assembler command-line options from armasm to the armclang interassembler	
6.2 Overview of differences between armasm and GNU syntax assembly code	76
6.3 Comments	78
6.4 Labels	79
6.5 Numeric local labels	79
6.6 Functions	81
6.7 Sections	82
6.8 Symbol naming rules	84
6.9 Numeric literals	
6.10 Operators	
6.11 Alignment	
6.12 PC-relative addressing	87
6.13 A32 and T32 instruction substitutions	
6.14 A32 and T32 pseudo-instructions	
6.15 Conditional directives	90
6.16 Data definition directives	90
6.17 Instruction set directives	92
6.18 Miscellaneous directives	93
6.19 Symbol definition directives	94
6.20 Migration of armasm macros to integrated assembler macros	95
7 Changes Between Different Versions of Arm Compiler for Embedded FuSa 6	
7.1 Summary of changes between Arm Compiler 6.6 LTM and Arm Compiler for Embedde 6.16LTS.	
7.2 Compiling with -mexecute-only generates an empty .text section	109
8 Code Examples	112
8.1 Example startup code for Arm Compiler 5 project	112
8.2 Example startup code for Arm Compiler for Embedded FuSa 6 project	114
9 Licenses	117
9.1 Apache License	117
A Arm Compiler for Embedded FuSa Migration and Compatibility Guide Changes	121
A.1 Changes for the Arm Compiler for Embedded FuSa Migration and Compatibility Guide	121

List of Figures

Figure 2-1: Integration boundaries in Arm Compiler for Embedded FuSa 6......15

List of Tables

Table 2-1: FlexNet versions1	_7
Table 3-1: List of compilation tools1	.9
Table 3-2: Differences in defaults	20
Table 3-3: Optimization settings	23
Table 3-4: Command-line changes2	28
Table 4-1: Comparison of compiler command-line options in Arm Compiler 5 and Arm Compiler for Embedded FuSa 63	31
Table 4-2: Architecture selection in Arm Compiler 5 and Arm Compiler for Embedded FuSa 64	-6
Table 4-3: Processor selection in Arm Compiler 5 and Arm Compiler for Embedded FuSa 64	ŀ7
Table 5-1: Keyword language extensions in Arm Compiler 5 and Arm Compiler for Embedded FuSa 65	52
Table 5-2: Migrating thepacked keyword5	54
Table 5-3: Support fordeclspec attributes	6
Table5-4:Migrating_attribute_((at(address)))andzero-initialized_attribute((section("name")))	57
Table 5-5: Pragma language extensions that must be replaced5	8
Table 5-6: Compiler intrinsic support in Arm Compiler for Embedded FuSa 66	2
Table 5-7: Pragma diagnostics	5
Table 5-8: C and C++ implementation detail differences6	6
Table 6-1: Comparison of command-line options in armasm and the armclang integrated assembler7	'2
Table 6-2: Operator translation	36
Table 6-3: A32 and T32 instruction substitutions supported by armasm	38
Table 6-4: A32 and T32 pseudo-instruction migration8	39
Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential	

Table 6-5: Conditional directive translation	90
Table 6-6: Data definition directives translation	91
Table 6-8: Instruction set directives translation	92
Table 6-9: Miscellaneous directives translation	93
Table 6-10: Symbol definition directives translation	95
Table 6-11: Comparison of macro directive features provided by armasm and the armclang integrated assembler	96
Table 6-12: NOT EQUALS assertion	98
Table 6-13: Unsigned integer division macro - armasm syntax implementation	99
Table 6-14: Unsigned integer division macro - GNU syntax implementation	00
Table 6-15: Assembly-time diagnostics macro - armasm syntax implementation	01
Table 6-16: Assembly-time diagnostics macro - GNU syntax implementation	01
Table 6-17: Conditional loop macro - armasm syntax implementation	02
Table 6-18: Conditional loop macro - GNU syntax implementation	03
Table A-1: Changes between 6.16.1 LTS and 6.16.2 LTS	21
Table A-2: Changes between 6.6 LTM and 6.16.1 LTS12	21

1 Introduction

The Arm[®] Compiler for Embedded FuSa Migration and Compatibility Guide provides migration and compatibility information for users moving from older versions of Arm Compiler to Arm Compiler for Embedded FuSa 6.

1.1 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm[®] Glossary for more information: developer.arm.com/glossary.

Typographic conventions

Arm documentation uses typographical conventions to convey specific meaning.

Convention	Use	
italic	Citations.	
bold	Interface elements, such as menu names.	
	Signal names.	
	Terms in descriptive lists, where appropriate.	
monospace	Text that you can enter at the keyboard, such as commands, file and program names, and source code.	
monospace bold	Language keywords when used outside example code.	
monospace <u>underline</u>	A permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.	
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments.	
	For example:	
	MRC p15, 0, <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>	
SMALL CAPITALS	Terms that have specific technical meanings as defined in the <i>Arm[®] Glossary</i> . For example, IMPLEMENTATION DEFINED , IMPLEMENTATION SPECIFIC , UNKNOWN , and UNPREDICTABLE .	
Caution	Recommendations. Not following these recommendations might lead to system failure or damage.	
Warning	Requirements for the system. Not following these requirements might result in system failure or damage.	

Convention	Use
Danger	Requirements for the system. Not following these requirements will result in system failure or damage.
Note	An important piece of information that needs your attention.
■ · · · · · · · · · · · · · · · · · · ·	A useful tip that might make it easier, better or faster to perform a task.
Remember	A reminder of something important that relates to the information you are reading.

1.2 Other information

See the Arm website for other relevant information.

- Arm[®] Developer.
- Arm[®] Documentation.
- Technical Support.
- Arm[®] Glossary.

2 Configuration and Support Information

A summary of the support levels and FlexNet versions supported by the Arm compilation tools.

2.1 Support level definitions

This describes the levels of support for various Arm[®] Compiler for Embedded FuSa 6 features.

Arm Compiler for Embedded FuSa 6 is built on Clang and LLVM technology. Therefore, it has more functionality than the set of product features described in the documentation. The following definitions clarify the levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler for Embedded FuSa 6 features, and intends to support users to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/support.

Identification in the documentation

All features that are documented in the Arm Compiler for Embedded FuSa 6 documentation are product features, except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features

Product features are suitable for use in a production environment. The functionality is well-tested, and is expected to be stable across feature and update releases.

- Arm intends to give advance notice of significant functionality changes to product features.
- If you have a support and maintenance contract, Arm provides full support for use of all product features.
- Arm welcomes feedback on product features.
- Any issues with product features that Arm encounters or is made aware of are considered for fixing in future versions of Arm Compiler for Embedded FuSa.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

- Arm endeavors to document known limitations on beta product features.
- Beta product features are expected to eventually become product features in a future release of Arm Compiler for Embedded FuSa 6.

- Arm encourages the use of beta product features, and welcomes feedback on them.
- Any issues with beta product features that Arm encounters or is made aware of are considered for fixing in future versions of Arm Compiler for Embedded FuSa.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

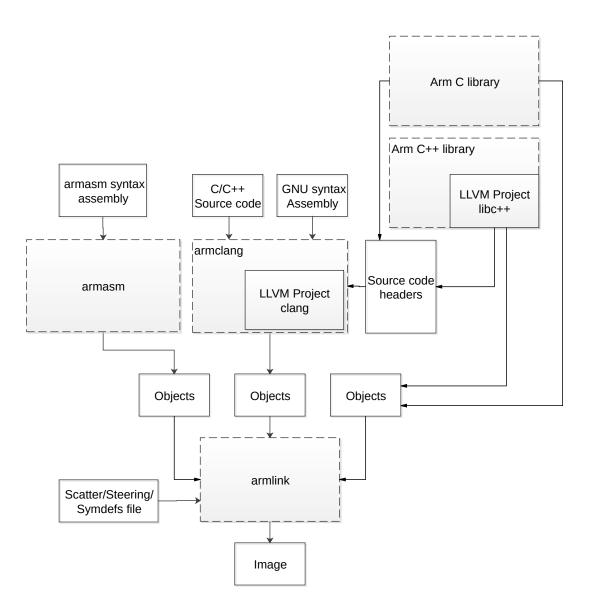
- Arm endeavors to document known limitations of alpha product features.
- Arm encourages the use of alpha product features, and welcomes feedback on them.
- Any issues with alpha product features that Arm encounters or is made aware of are considered for fixing in future versions of Arm Compiler for Embedded FuSa.

Community features

Arm Compiler for Embedded FuSa 6 is built on LLVM technology and preserves the functionality of that technology where possible. This means that there are additional features available in Arm Compiler that are not listed in the documentation. These additional features are known as community features. For information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with [COMMUNITY].

- Arm makes no claims about the quality level or the degree of functionality of these features, except when explicitly stated in this documentation.
- Functionality might change significantly between feature releases.
- Arm makes no guarantees that community features will remain functional across update releases, although changes are expected to be unlikely.


Some community features might become product features in the future, but Arm provides no roadmap for this. Arm is interested in understanding your use of these features, and welcomes feedback on them. Arm supports customers using these features on a best-effort basis, unless the features are unsupported. Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in future releases.

Guidance on use of community features

There are several factors to consider when assessing the likelihood of a community feature being functional:

• The following figure shows the structure of the Arm Compiler for Embedded FuSa 6 toolchain:

The dashed boxes are toolchain components, and any interaction between these components is an integration boundary. Community features that span an integration boundary might have significant limitations in functionality. The exception to this is if the interaction is codified in one of the standards supported by Arm Compiler for Embedded FuSa 6. See Application Binary Interface (ABI). Community features that do not span integration boundaries are more likely to work as expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long time in other toolchains, are likely to be mature. The functionality of new features, such as support for new language features, is likely to be less mature and therefore more likely to have limited functionality.

Deprecated features

A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler for Embedded FuSa. Arm does not make any guarantee regarding the testing or maintenance of deprecated features. Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, refer to the Arm Compiler for Embedded FuSa documentation and Release Notes.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not to function correctly, or are not intended for use with Arm Compiler for Embedded FuSa 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of unsupported features or use-cases for community features. The known limitations on community features are listed in Community features.

List of known unsupported features

The following is an incomplete list of unsupported features, and might change over time:

- The Clang option -stdlib=libstdc++ is not supported.
- C++ static initialization of local variables is not thread-safe when linked against the standard C++ libraries. For thread-safety, you must provide your own implementation of thread-safe functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++ libraries.

- Use of C11 library features is unsupported.
- Any community feature that is exclusively related to non-Arm architectures is not supported.
- Compilation for targets that implement architectures older than Armv7 or Armv6-M is not supported.
- The long double data type is not supported for AArch64 state because of limitations in the current Arm C library.
- C complex arithmetic is not supported, because of limitations in the current Arm C library.
- C++ complex numbers are supported with float and double types, but not long double type because of limitations in the current Arm C library.

2.2 Compiler configuration information

Summarizes the FlexNet versions supported by the Arm compilation tools.

FlexNet versions in the compilation tools

Different versions of Arm[®] Compiler for Embedded FuSa support different versions of FlexNet.

The FlexNet versions in the compilation tools are:

Table 2-1: FlexNet versions

Compilation tools version	Windows	Linux
Arm Compiler 6.7 and later, including Arm Compiler for Embedded FuSa 6.16LTS	11.14.1.0	11.14.1.0
Arm Compiler 6.01 and later	11.12.1.0	11.12.1.0
Arm Compiler 6.00	11.10.1.0	11.10.1.0

Related information

Arm software product license management

3 Migrating from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6

Provides an overview of the differences between Arm[®] Compiler 5 and Arm Compiler for Embedded FuSa 6.

3.1 Migration overview

Migrating from Arm[®] Compiler 5 to Arm Compiler for Embedded FuSa 6 requires the use of new command-line options and might also require changes to existing source files.

Arm Compiler for Embedded FuSa 6 is based on the modern LLVM compiler framework. Arm Compiler 5 is not based on the LLVM compiler framework. Therefore migrating your project and source files from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6 requires you to be aware of:

- Differences in the command-line options when invoking the compiler.
- Differences in the adherence to language standards.
- Differences in compiler specific keywords, attributes, and pragmas.
- Differences in optimization and diagnostic behavior of the compiler.

Even though these differences exist between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6, it is possible to migrate your projects from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6 by modifying your command-line arguments and by changing your source code if required.

Arm Compiler 5 does not support processors based on Armv8 and later architectures. Migrating to Arm Compiler for Embedded FuSa 6 enables you to generate highly efficient code for processors based on Armv8 and later architectures.

Related information

Optimization differences on page 23 Diagnostic messages on page 25 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6 on page 31 Compiler Source Code Compatibility on page 52 Migrating projects from Arm Compiler 5 to Arm Compiler 6

3.2 Toolchain differences

Arm[®] Compiler 5 and Arm Compiler for Embedded FuSa 6 share many of the same compilation tools. However, the main difference between the two toolchains is the compiler tool **armclang**, which is based on Clang and LLVM.

The table lists the individual compilation tools and the toolchain they apply to.

Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Function	
armcc	armclang	armclang Compiles C and C++ language source files, including inline assembly.	
armcc	armclang	armclang Preprocessor.	
armasm	armasm	Legacy assembler for assembly language source files written in armasm syntax. Use the armclang integrated assembler for all new assembly files.	
Not available	armclang . This is also called the armclang integrated assembler.	Assembles assembly language source files written in GNU assembly syntax.	
fromelf	fromelf	Converts Arm ELF images to binary formats and can also generate textual information about the input image, such as its disassembly and its code and data size.	
armlink	armlink	Combines the contents of one or more object files with selected parts of one or more object libraries to produce an executable program.	
armar	armar	Enables sets of ELF object files to be collected together and maintained in archives or libraries.	

Arm Compiler for Embedded FuSa 6 uses the compiler tool **armclang** instead of armcc. The command-line options for **armclang** are different to the command-line options for armcc. These differences are described in Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6.

Arm Compiler for Embedded FuSa 6 includes the legacy assembler **armasm**, which you can use to assemble your older assembly language source files if they are written in **armasm** syntax. Arm recommends that you write new assembly code using the GNU assembly syntax, which you can assemble using the **armclang** integrated assembler. You can also migrate existing assembly language source files from **armasm** syntax to GNU syntax, and then assemble them using the **armclang** integrated assembler. For more information see Migrating from armasm to the armclang Integrated Assembler.

Related information

Migrating projects from Arm Compiler 5 to Arm Compiler 6

3.3 Default differences

Some compiler and assembler options are different between Arm[®] Compiler 5 and Arm Compiler for Embedded FuSa 6, or have different default values.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The following table lists these differences.

Table 3-2: Differences in defaults

Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes	Further information
hide_all	-fvisibility=hidden	These defaults are similar but – fvisibility=hidden does not affect extern declarations or symbol references. In Arm Compiler for Embedded FuSa 6, symbols in the final image are hidden if the reference or the definition is hidden. Therefore the visibility of the reference alone does not determine the visibility of the symbol, as it does in Arm Compiler 5.	hide_all for Arm Compiler 5 -fvisibility for Arm Compiler 6

Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes	Further information
apcs=/hardfp or apcs=/softfp	-mfloat-abi=softfp	 The default floating-point linkage in Arm Compiler 5 depends on the specified processor. If the processor has floating-point hardware, then Arm Compiler 5 uses hardware floating-point linkage. If the processor does not have floating-point hardware, then Arm Compiler 5 uses software floating-point linkage. In Arm Compiler for Embedded FuSa 6, the default is always software floating-point linkage for AArch32 state. For AArch64 state, Arm Compiler for Embedded FuSa 6 always uses hardware linkage. For AArch32 state, the - mfloat-abi option also controls the type of floating-point instructions that the compiler uses: -mfloat-abi=softfp uses hardware floating-point linkage. -mfloat-abi=soft to use software floating-point linkage. -mfloat-abi=hard uses hardware floating-point instructions and hardware floating-point instructions and hardware floating-point linkage. 	apcs (armcc) for Arm Compiler 5 -mfloat-abi for Arm Compiler 6
image.axf	a.out	Default name for the executable image if none of -o, -c, -E, or - S are specified on the command- line.	-o for Arm Compiler 5 -o for Arm Compiler 6
enum_is_int is disabled by default	-fno-short-enums	enum_is_int is disabled by default in Arm Compiler 5, so the smallest data type that can hold the enumerator values is usedfno-short-enums is the default in Arm Compiler for Embedded FuSa 6, so the size of the enumeration type is at least 32 bits.	enum_is_int for Arm Compiler 5 -fno-short-enums for Arm Compiler 6

Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes	Further information
-02	-00	Arm Compiler 5 uses high optimization (-O2) and optimizes for reduced code size (-Ospace) by default, rather than optimizing for performance (-Otime). Arm Compiler for Embedded FuSa 6 uses minimum optimization (- 00) by default, and the choice of code size versus performance is controlled by the optimization level.	-Onum for Arm Compiler 5 -Olevel for Arm Compiler 6 Optimization differences.
apcs=/nointerwork	apcs=/interwork	In Arm Compiler 5, armasm does not specify by default that code in the input file can safely interwork between A32 and T32. In Arm Compiler for Embedded FuSa 6, armasm specifies interworking by default for AArch32 targets that support A32 and T32 instruction sets.	apcs (armasm) for Arm Compiler 5 apcs for Arm Compiler 6
C++03	C++14	In Arm Compiler 5, the default C++ source language mode is C++03. In Arm Compiler for Embedded FuSa 6, the default C ++ source language mode is C+ +14. You can override the default source language with -std in Arm Compiler for Embedded FuSa 6.	cpp for Arm Compiler 5 -std for Arm Compiler 6
С90	C11 [COMMUNITY]	In Arm Compiler 5, the default C source language mode is C90. In Arm Compiler for Embedded FuSa 6, the default C source language mode is C11 [COMMUNITY]. You can override the default source language with -std in Arm Compiler for Embedded FuSa 6.	c90 for Arm Compiler 5 -std for Arm Compiler 6
no_exceptions	-fexceptions or -fno- exceptions	In Arm Compiler 5, C++ exceptions are disabled by default (no_exceptions). In Arm Compiler for Embedded FuSa 6, C++ exceptions are enabled by default (- fexceptions) for C++ sources, or disabled by default (-fno- exceptions) for C sources.	no_exceptions for Arm Compiler 5 -fexceptions, -fno-exceptions for Arm Compiler 6
wchar16	-fno-short-wchar	In Arm Compiler 5, the size of wchar_t is 2 bytes by default (wchar16). In Arm Compiler for Embedded FuSa 6, the size of wchar_t is 4 bytes by default (- fno-short-wchar).	wchar16 for Arm Compiler 5 fno-short-wchar for Arm Compiler 6

Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes	Further information
split_sections (is disabled by default)	-ffunction-sections	In Arm Compiler 5, functions are not put into separate ELF sections by default (split_sections is disabled). In Arm Compiler for Embedded FuSa 6, each function is put into a separate ELF section by default (-ffunction-sections).	split_sections for Arm Compiler 5 ffunction-sections for Arm Compiler 6

3.4 Optimization differences

Arm[®] Compiler for Embedded FuSa 6 provides more performance optimization settings than are present in Arm Compiler 5. However, the optimizations that are performed at each optimization level might differ between the two toolchains.

The table compares the optimization settings and functions in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.

Description	Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes
Optimization levels for performance.	 -Otime -00 -Otime -01 -Otime -02 -Otime -03 	 -00 -01 -02 -03 -0fast -0max 	The Arm Compiler 5 -00 option is more similar to the Arm Compiler for Embedded FuSa 6 -01 option than the Arm Compiler for Embedded FuSa 6 - 00 option. The Arm Compiler for Embedded FuSa 6 -Omax option refers to maximum performance, with Link-Time Optimization (LTO) enabled.
Optimization levels for code size.	 -Ospace -00 -Ospace -01 -Ospace -02 -Ospace -03 	 -Os -Oz -Omin 	The Arm Compiler 5 -00 option is more similar to the Arm Compiler for Embedded FuSa 6 -01 option than the Arm Compiler for Embedded FuSa 6 - 00 option. The Arm Compiler for Embedded FuSa 6 -Omin option refers to minimum code size, with Link-Time Optimization (LTO) enabled
Default.	-Ospace -O2	-00	-
Best trade-off between image size, performance, and debug.	-Ospace -O2	-01	-

Table 3-3: Optimization settings

Description	Arm Compiler 5	Arm Compiler for Embedded FuSa 6	Notes
Highest optimization for performance.	-Otime -O3	-Omax-Ofast	The -Omax option uses Link- Time Optimization (LTO). If LTO is not appropriate for you, use - Ofast.
Highest optimization for code size.	-Ospace -03	-Omin-Oz	The -Omin option uses Link- Time Optimization (LTO). If LTO is not appropriate for you, use - Oz.

Arm Compiler for Embedded FuSa 6 provides an aggressive performance optimization option, – omax, which automatically enables a feature called Link-Time Optimization. For more information, see -flto.

At the opposite end of the spectrum, the -omin option in Arm Compiler for Embedded FuSa 6 is an aggressive code size optimization setting. This also enables Link-Time Optimization and aggressively removes unused code and data.

When using -omax or -omin , **armclang** can perform link-time optimizations that were not possible in Arm Compiler 5. In some cases these link-time optimizations can expose latent bugs in a program, which manifest as an image with different or unanticapted behavior. Therefore, an image built with Arm Compiler 5 might have a different behavior to the image built with Arm Compiler for Embedded FuSa 6.

For example, unused variables without the volatile keyword might be removed when using – omax or -omin in Arm Compiler for Embedded FuSa 6. If the unused variable is actually a volatile variable that requires the volatile keyword, then the removal of the variable can cause the generated image to behave unexpectedly. Since Arm Compiler 5 does not have these aggressive optimization settings, it might not have removed the unused variable, and the resulting image might behave as expected, and therefore the error in the code would be more difficult to detect.

Related information

-flto armclang option -O armclang option Effect of the volatile keyword on compiler optimization Optimizing across modules with link time optimization

3.5 Backwards compatibility issues

Some Arm[®] Compiler 5 options produce objects that are not compatible with Arm Compiler for Embedded FuSa 6.

SHF_COMDEF ELF sections

Linking with legacy objects that contain ELF sections with the legacy SHF_COMDEF ELF section flag is deprecated. Use the GRP_COMDAT ELF section group instead of the legacy SHF_COMDEF ELF section flag by:

- Replacing the COMDEF section attribute of the legacy armasm syntax AREA directive with the COMGROUP=symbol_name section attribute.
- Rebuilding incompatible legacy objects using one of the following:
 - Arm Compiler 5 but with the --dwarf3 option. Other incompatibilities might still exist.
 - Arm Compiler for Embedded FuSa 6.

Related information

AREA directive --dwarf3

3.6 Diagnostic messages

In general, **armclang** provides more precise and detailed diagnostic messages compared to **armcc**. Therefore you can expect to see more information about your code when using Arm[®] Compiler for Embedded FuSa 6, which can help you understand and fix your source more quickly.

armclang and **armcc** differ in the quality of diagnostic information they provide about your code. The following sections demonstrate some of the differences.

Assignment in condition

The following code is an example of **armclang** providing more precise information about your code. The error in this example is that the assignment operator, =, must be changed to the equality operator, ==.

```
//main.cpp:
#include <stdio.h>
int main()
{
    int a = 0, b = 0;
    if (a = b)
    {
        printf("Right\n");
    }
    else
    {
        printf("Wrong\n");
    }
    return 0;
}
```

Compiling this example with Arm Compiler 5 gives the message:

```
"main.cpp", line 6: Warning: #1293-D: assignment in condition if (a = b)
```

Compiling this example with Arm Compiler for Embedded FuSa 6 gives the message:

```
main.cpp:6:7: warning: using the result of an assignment as a condition without
parentheses[-Wparentheses]
```

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

armclang highlights the error in the code, and also suggests two different ways to resolve the error. The warning messages highlight the specific part which requires attention from the user.

When using **armclang**, it is possible to enable or disable specific warning messages. In the example above, you can enable this warning message using the - Wparentheses option, or disable it using the -Wno-parentheses option.

Automatic macro expansion

Another very useful feature of diagnostic messages in Arm Compiler for Embedded FuSa 6, is the inclusion of notes about macro expansion. These notes provide useful context to help you understand diagnostic messages resulting from automatic macro expansion.

Consider the following code:

```
//main.cpp:
#include <stdio.h>
#define LOG(PREFIX, MESSAGE) fprintf(stderr, "%s: %s", PREFIX, MESSAGE)
#define LOG_WARNING(MESSAGE) LOG("Warning", MESSAGE)
int main(void)
{
LOG_WARNING(123);
}
```

The macro LOG_WARNING has been called with an integer argument. However, expanding the two macros, you can see that the fprintf function expects a string. When the macros are close together in the code it is easy to spot these errors. These errors are not easy to spot if they are defined in different part of the source code, or in other external libraries.

Compiling this example with Arm Compiler 5 armcc main.cpp reports the message:

```
main.cpp", line 8: Warning: #181-D: argument is incompatible with corresponding
format string conversion
LOG_WARNING(123);
```

Compiling this example with Arm Compiler for Embedded FuSa 6 armclang --target=arm-armnone-eabi -march=armv8-a reports the message:

```
main.cpp:8:14: warning: format specifies type 'char *' but the argument has type
'int' [-Wformat]
LOG WARNING(123);
```

Arm[®] Compiler for Embedded FuSa Migration and Compatibility Guide

For more information, see Diagnostics for pragma compatibility.

When starting the migration from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6, you can expect additional diagnostic messages because **armclang** does not recognize some of the pragmas, keywords, and attributes that were specific to **armcc**. When you replace the pragmas, keywords, and attributes from Arm Compiler 5 with their Arm Compiler for Embedded FuSa 6 equivalents, the majority of these diagnostic messages disappear. You might require additional code changes if there is no direct equivalent for Arm Compiler for Embedded FuSa 6. For more information see Compiler Source Code Compatibility.

3.7 Migration example

This topic shows you the process of migrating an example code from Arm[®] Compiler 5 to Arm Compiler for Embedded FuSa 6.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

Compiling with Arm Compiler 5

For an example startup code that builds with Arm Compiler 5, see Example startup code for Arm Compiler 5 project.

To compile this example with Arm Compiler 5, enter:

armcc startup_ac5.c --cpu=7-A -c

This command generates a compiled object file for the Armv7-A architecture.

Compiling with Arm Compiler for Embedded FuSa 6

Try to compile the startup_ac5.c example with Arm Compiler for Embedded FuSa 6. The first step in the migration is to use the new compiler tool, **armclang**, and use the correct command-line options for **armclang**.

To compile this example with Arm Compiler for Embedded FuSa 6, enter:

```
armclang --target=arm-arm-none-eabi startup_ac5.c -march=armv7-a -c -O1 -std=c90
```

The following table shows the differences in the command-line options between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6:

Table 3-4: Command-line changes

Description	Arm Compiler 5	Arm Compiler for Embedded FuSa 6
Tool	armcc	armclang
Specifying an architecture	cpu=7-A	 -march=armv7-a target is a mandatory option for armclang.
		To generate A64 instructions for AArch64 state, specifytarget=aarch64- arm-none-eabi. To generate A32 / T32 instructions for AArch32 state, specify target=arm-arm-none-eabi (you must also specify -mthumb for T32 instructions).

Specify either an architecture (-march) or processor (-mcpu), but not both.

- • Optimization
 - The default optimization is -02.
 - The default optimization is -00. To get similar optimizations as the Arm Compiler 5 default, use -01.
- • Source language mode
 - The default source language mode for .c files is c90.
 - The default source language mode for .c files is gnu11 [COMMUNITY]. To compile for c90 in Arm Compiler for Embedded FuSa 6, use -std=c90.

Arm Compiler for Embedded FuSa 6 generates the following errors and warnings when trying to compile the example startup_ac5.c file in c90 mode:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

The following section describes how to modify the source file to fix these errors and warnings.

Modifying the source code for Arm Compiler for Embedded FuSa 6

You must make the following changes to the source code to compile with **armclang**.

• The return type of function main function cannot be void in standard C. Replace the following line:

_declspec(noreturn) void main(void)

With:

_declspec(noreturn) int main(void)

• The intrinsic <u>___enable_irq()</u> is not supported in Arm Compiler for Embedded FuSa 6. You must replace the intrinsic with an inline assembler equivalent. Replace the following line:

_enable_irq();

With:

```
_asm("CPSIE i");
```

• The #pragma import is not supported in Arm Compiler for Embedded FuSa 6. You must replace the pragma with an equivalent directive using inline assembler. Replace the following line:

#pragma import(__use_no_semihosting)

With:

_asm(".global __use_no_semihosting");

• In certain situations, **armclang** might remove infinite loops that do not have side-effects. You must use the volatile keyword to tell **armclang** not to remove such code. Replace the following line:

while(1);

With:

while(1) __asm volatile("");

4 Migrating from armcc to armclang

Compares Arm[®] Compiler for Embedded FuSa 6 command-line options to older versions of Arm Compiler.

4.1 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6

Arm[®] Compiler for Embedded FuSa 6 provides many command-line options, including most Clang command-line options and several Arm-specific options.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The following table describes the most common Arm Compiler 5 command-line options, and shows the equivalent options for Arm Compiler for Embedded FuSa 6.

More information about command-line options is available:

- The Arm Compiler for Embedded FuSa Reference Guide provides more information about the supported command-line options. The options described are fully supported, unless the level of support is indicated.
- For a full list of Clang command-line options, see the Clang and LLVM documentation.

Table 4-1: Comparison of compiler command-line options in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
allow_fpreg_for_nonfpdata, no_allow_fpreg_for_nonfpdata	-mimplicit-float, -mno-implicit-float [COMMUNITY]	Enables or disables the use of VFP and SIMD registers and data transfer instructions for non-VFP and non-SIMD data.
apcs=/nointerwork	No equivalent.	Disables interworking between A32 and T32 code. Interworking is always enabled in Arm Compiler for Embedded FuSa 6.
apcs=/ropi	-fropi	Enables or disables the generation of Read- Only Position Independent (ROPI) code.
apcs=/noropi	-fno-ropi	
apcs=/rwpi	-frwpi	Enables or disables the generation of Read Write Position Independent (RWPI) code.
apcs=/norwpi	-fno-rwpi	
arm	-marm	Targets the A32 instruction set. The compiler is permitted to generate both A32 and T32 code, but recognizes that A32 code is preferred.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6	Description
	option	
arm_only	No equivalent.	Enforces A32 instructions only. The compiler does not generate T32 instructions.
asm	-save-temps	Instructs the compiler to generate intermediate assembly files as well as object files.
bigend	-mbig-endian	Generates code for big-endian data.
-c	-c	Performs the compilation step, but not the link step.
c90	-xc -std=c90	Enables the compilation of C90 source code.
		-xc is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
c90gnu	-xc -std=gnu90	Enables the compilation of C90 source code with additional GNU extensions.
		-xc is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
c99	-xc -std=c99	Enables the compilation of C99 source code.
		-xc is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
c99gnu	-xc -std=gnu99	Enables the compilation of C99 source code with additional GNU extensions.
		-xc is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
cpp	-xc++ -std=c++03	Enables the compilation of C++03 source code.
		-xc++ is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
		The default C++ language standard is different between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
cppgnu	-xc++ -std=gnu++03	Enables the compilation of C++03 source code with additional GNU extensions.
		-xc++ is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
		The default C++ language standard is different between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.
cpp11	-xc++ -std=c++11	Enables the compilation of C++11 source code.
		-xc++ is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
		The default C++ language standard is different between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.
cpp11gnu	-xc++ -std=gnu++11	Enables the compilation of C++11 source code with additional GNU extensions.
		-xc++ is a positional argument and only affects subsequent input files on the command-line. It is also only required if the input files do not have the appropriate file extension.
		The default C++ language standard is different between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.
cpp_compat	No equivalent.	Compiles C++ code to maximize binary compatibility.
cpu=8-A.32	target=arm-arm-none-eabi - march=armv8-a	Targets Armv8-A and AArch32 state.
cpu 8-A.64	target=aarch64-arm-none-eab:	i Targets Armv8-A and AArch64 state. (Implies – march=armv8-a if -mcpu is not specified.)
cpu=7-A	target=arm-arm-none-eabi - march=armv7-a	Targets the Armv7-A architecture.
cpu=Cortex-M4	target=arm-arm-none-eabi - mcpu=cortex-m4	Targets the Cortex [®] -M4 processor.
cpu=Cortex-A15	target=arm-arm-none-eabi- mcpu=cortex-a15	Targets the Cortex -A15 processor.
-D	-D	Defines a preprocessing macro.
depend	-MF	Specifies a filename for the makefile dependency rules.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
depend_dir	No equivalent. Use –MF to specify each dependency file individually.	Specifies the directory for dependency output files.
depend_format=unix_escaped	-	Dependency file entries use UNIX-style path separators and escapes spaces with \\. This is the default in Arm Compiler for Embedded FuSa 6.
depend_system_headers, no_depend_system_headers	No direct equivalent to the standalone command-line option. However, see the Arm Compiler 5 entries in this table formd,md no_depend_system_headers, and mm.	Enables and disables the output of system include dependency lines when generating makefile dependency information using either the –M option or the ––md option.
depend_target	-MT	Changes the target name for the makefile dependency rule.
diag_error	-Werror	Turn compiler warnings into errors.
diag_style= <i>string</i>	No equivalent.	armclang produces diagnostic messages in the following format: source-file:line-number:char- number: description [diagnostic-
diag_suppress=foo	-Wno-foo	flag] Suppress warning message <i>foo</i> . The error or warning codes might be different between Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.
-E	-E	Executes only the preprocessor step.
enum_is_int	-fno-short-enums, -fshort-enums	Sets the minimum size of an enumeration type. By default Arm Compiler 5 does not set a minimum size. By default Arm Compiler for Embedded FuSa 6 uses -fno-short-enums to set the minimum size to 32-bit.
forceline	No equivalent.	Forces aggressive inlining of functions. Arm Compiler for Embedded FuSa 6 automatically decides whether to inline functions depending on the optimization level.
fpmode=std	-ffp-mode=std	Provides IEEE-compliant code with no IEEE exceptions, NaNs, and Infinities. Denormals are sign preserving. This is the default.
fpmode=fast	-ffp-mode=fast	Similar to the default behavior, but also performs aggressive floating-point optimizations and therefore it is not IEEE- compliant.
fpmode=ieee_full	-ffp-mode=full	Provides full IEEE support, including exceptions.
fpmode=ieee_fixed	There are no supported equivalent options.	There might be community features that provide these IEEE floating-point modes.
fpmode=ieee_no_fenv		

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
fpu	-mfpu	Specifies the target FPU architecture.
For example,fpu=fpv5_d16	For example, -mfpu=fpv5-d16	Note: fpu=none checks the source code for floating-point operations, and if any are found it produces an errormfpu=none prevents the compiler from using hardware- based floating-point functions. If the compiler encounters floating-point types in the source code, it uses software-based floating-point library functions. The option values might be different. For example fpv5_d16 in Arm Compiler 5 is equivalent to fpv5-d16 in Arm Compiler for Embedded FuSa 6, and targets the FPv5-D16 floating-point extension.
-I	-I	Adds the specified directories to the list of places that are searched to find included files.
global_reg= <i>reg_name</i>	-ffixed-rN	 Prevents the compiler from using the specified core register, unless the use is required for Arm ABI compliance. In Arm Compiler 5, <i>reg_name</i> is an integer starting from 1 to 8, which maps to registers R4 to R11. In Arm Compiler for Embedded FuSa 6, <i>N</i> is an integer starting from 6 to 11, which maps to registers R5 to R11.
ignore_missing_headers	-MG	Prints dependency lines for header files even if the header files are missing.
inline	Default at –02 and –03.	There is no equivalent of theinline option. Arm Compiler for Embedded FuSa 6 automatically decides whether to inline functions at optimization levels -02 and -03.
-J	-isystem	Adds the specified directories to the list of places that are searched to find included system header files.
-L	-Xlinker	Specifies command-line options to pass to the linker when a link step is being performed after compilation.
library_interface=armcc	This is the default.	Arm Compiler for Embedded FuSa 6 by default uses the Arm standard C library.
 -library_interface=lib Where lib is one of: * aeabi_clib aeabi_clib90 aeabi_clib99 	-nostdlib -nostdlibinc -fno- builtin	Specifies that the compiler output works with any ISO C library compliant with the Arm Embedded Application Binary Interface (AEABI).

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
<pre>library_interface=lib Where lib is not one of: * aeabi_clib aeabi_clib90 aeabi_clib99 </pre>	No equivalent.	Arm Compiler for Embedded FuSa 6 assumes the use of an AEABI compliant library.
• armcc licretry	No equivalent.	There is no equivalent of thelicretry option. The Arm Compiler for Embedded FuSa 6 tools automatically retry failed attempts to obtain a license.
list_macros	-E -dM	List all the macros that are defined at the end of the translation unit, including the predefined macros.
littleend	-mlittle-endian	Generates code for little-endian data.
lower_ropi, no_lower_ropi	-fropi-lowering, -fno-ropi-lowering	Enables or disables less restrictive C when generating <i>Read-Only Position Independent</i> (ROPI) code.
		Note: In Arm Compiler 5, whenacps=/ropi is specified,lower_ropi is not switched on by default. In Arm Compiler for Embedded FuSa 6, when -fropi is specified, -fropi- lowering is switched on by default.
lower_rwpi, no_lower_rwpi	-frwpi-lowering, -fno-rwpi-lowering	Enables or disables less restrictive C when generating <i>Read Write Position Independent</i> (RWPI) code.
 -M	-M	Instructs the compiler to produce a list of makefile dependency lines suitable for use by a make utility.
md	-MD	Creates makefile dependency files, including the system header files. In Arm Compiler 5, this is equivalent tomddepend_ system_headers.
mdno_depend_system_headers	-MMD	Creates makefile dependency files, without the system header files.
——mm	-MM	Creates a single makefile dependency file, without the system header files. In Arm Compiler 5, this is equivalent to -Mno_ depend_system_headers.
multifile,no_multifile	No direct equivalent. However, see Optimizing across modules with Link-Time Optimization in the Arm Compiler User Guide.	Enables and disables optimizations between multiple source files.
no_comment_section	-fno-ident	Removes the .comment section from object files.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
no_exceptions	-fno-exceptions	Disables the generation of code needed to support C++ exceptions.
		Note: For C++ code, Arm Compiler for Embedded FuSa 6 defaults to -fexceptions. As a result, there might be a large increase in the code size. If you use -fno_exceptions, then the code size is in the range of that created with Arm Compiler 5.
no_hide_all	-fvisibility=default	<pre>Sets the default visibility of ELF symbols to the specified option, unless overridden in the source with theattribute((visibility("type"))) attribute. The default is - fvisibility=hidden. Note: The behavior of the armclang option -fvisibility=hidden is different from that of the armcc option hide-all. With the armclang option -fvisibility=hidden, extern declarations are visible, and all other symbols are hidden. With the armcc optionhide- all, all symbols are hidden.</pre>
no_protect_stack	-fno-stack-protector	Explicitly disables stack protection. See Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 stack protection behavior for more information.
-rtti	-frtti	C++ onlyfrtti enables the generation of code that is needed to support <i>Run Time Type</i> <i>Information</i> (RTTI) features. This option is the default when compiling for C++.
		See -frtti, -fno-rtti
-no_rtti	-fno-rtti	C++ onlyfno-rtti disables the generation of code that is needed to support RTTI features.
		See -frtti, -fno-rtti
-0	-0	Specifies the name of the output file.
-Onum	-Onum	Specifies the level of optimization to be used when compiling source files. The default for Arm Compiler 5 is -02. The default for Arm Compiler for Embedded FuSa 6 is -00. For Arm Compiler for Embedded FuSa 6, Arm recommends -01 rather than -00 for best trade off between debug view codecize
		best trade-off between debug view, codesize, and performance. For more information, see Optimization differences.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6 option	Description
-Ospace	-0z /-0s	Performs optimizations to reduce image size at the expense of a possible increase in execution time.
-Otime	This is the default.	Performs optimizations to reduce execution time at the expense of a possible increase in image size.
		There is no equivalent of the -Otime option. Arm Compiler for Embedded FuSa 6 optimizes for execution time by default, unless you specify the -Os or -Oz options.
phony_targets	-MP	Emits dummy makefile rules.
preinclude	-include	Include the source code of a specified file at the beginning of the compilation.
protect_stack	-fstack-protector, -fstack-protector-strong	Enables stack protection on vulnerable functions. See Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 stack protection behavior for more information.
protect_stack_all	-fstack-protector-all	Enables stack protection on all functions. See Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 stack protection behavior for more information.
relaxed_ref_def	-fcommon	Places zero-initialized definitions in a common block.
retain	-0	The optimization level to use for the best code coverage might depend on your source code.
		In Arm Compiler 5 theretain option disables specific optimizations by name. There is no direct equivalent of this for Arm Compiler for Embedded FuSa 6.
		Instead you will need to select the optimization level which best suits your needs. See -O in the Arm Compiler Reference Guide for more information.
-S	-S	Outputs the disassembly of the machine code that the compiler generates.
		The output from this option differs between releases. Arm Compiler 5 produces output with armasm syntax while Arm Compiler for Embedded FuSa 6 produces output with GNU syntax.
show_cmdline	-v	Shows how the compiler processes the command-line. The commands are shown normalized, and the contents of any via files are expanded.

Arm Compiler 5 option	Arm Compiler for Embedded FuSa 6	Description
	option	
split_ldm	-fno-ldm-stm	Disables the generation of LDM and STM instructions.
		Note: While the armcc optionsplit_ldm limits the size of generated LDM/STM instructions, the armclang option -fno- ldm-stm disables the generation of LDM and STM instructions altogether.
split_sections	-ffunction-sections	Generates one ELF section for each function in the source file.
		In Arm Compiler for Embedded FuSa 6, – ffunction-sections is the default. Therefore, the merging of identical constants cannot be done by armclang . Instead, the merging is done by armlink . See Merging identical constants in the Arm Compiler Reference Guide for more information.
strict	-pedantic-errors	Generate errors if code violates strict ISO C and ISO C++.
strict_warnings	-pedantic	Generate warnings if code violates strict ISO C and ISO C++.
thumb	-mthumb	Targets the T32 instruction set.
no_unaligned_access,	-mno-unaligned-access,	Enables or disables unaligned accesses to data on Arm processors.
unaligned_access	-munaligned-access	
use_frame_pointer, no_use_frame_pointer	-fno-omit-frame-pointer,-fomit frame-pointer	 Controls whether a register is reserved for storing the stack frame pointer.
vectorize	-fvectorize	Enables or disables the generation of Advanced SIMD vector instructions directly from C or C++ code.
via	@file	Reads an additional list of compiler options from a file.
vla	No equivalent.	Support for variable length arrays. Arm Compiler for Embedded FuSa 6 automatically supports variable length arrays in accordance with the language standard.
vsn	version	Displays version information and license details. In Arm Compiler for Embedded FuSa 6 you can also usevsn.
wchar16,wchar32	-fshort-wchar,	Sets the size of wchar_t type.
	-fno-short-wchar	The default for Arm Compiler 5 iswchar16. The default for Arm Compiler for Embedded FuSa 6 is -fno-short-wchar.

Related information

armclang Command-line Options

Compiler-specific Function, Variable, and Type Attributes

Copyright $\ensuremath{\mathbb{O}}$ 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

The LLVM Compiler Infrastructure Project

4.2 Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 stack protection behavior

You can see which functions are protected and compare Arm[®] Compiler 5 protection with Arm Compiler for Embedded FuSa 6 protection after migration.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The behavior of armclang -fstack-protector and armclang -fstack-protector-strong is different from the behavior of the armcc --protect_stack option:

- With armcc --protect_stack, a function is considered vulnerable if it contains a char or wchar_t array of any size.
- With armclang -fstack-protector, a function is considered vulnerable if it contains at least one of the following:
 - A character array larger than 8 bytes.
 - An 8-bit integer array larger than 8 bytes.
 - A call to alloca() with either a variable size or a constant size bigger than 8 bytes.
- With armclang -fstack-protector-strong, a function is considered vulnerable if it contains:
 - An array of any size and type.
 - A call to alloca().
 - A local variable that has its address taken.

Arm recommends the use of -fstack-protector-strong.

When using Arm Compiler 5, the value of the variable <u>__stack_chk_guard</u> could change during the life of the program. With Arm Compiler for Embedded FuSa 6, a suitable implementation might set this variable to a random value when the program is loaded, before the first protected function is entered. The value must then remain unchanged during the life of the program.

Example

1. Create the file test.c containing the following code:

```
// test.c
#include <stdio.h>
#include <stdlib.h>
```

```
#include <string.h>
void *_stack_chk_guard = (void *)0xdeadbeef;
void _stack_chk_fail(void) {
    printf("Stack smashing detected.\n");
    exit(1);
}
static void copy(const char *p) {
    char buf[8];
    strcpy(buf, p);
    printf("Copied: %s\n", buf);
}
int main(void) {
    const char *t = "Hello World!";
    copy(t);
    printf("%s\n", t);
    return 0;
}
```

2. For Arm Compiler 5, search for branches to the <u>__stack_chk_fail()</u> function in the output from the <u>fromelf</u> -c command. The functions containing such branches are protected.

```
armcc -c --cpu=7-A --protect stack test.c -o test.o
fromelf -c test.o
. . .
    сору
                                 >@-.
        0x0000010:
                       e92d403e
                                            PUSH
                                                      \{r1-r5, lr\}
                                         MOV
LDR
        0x0000014:
                      e1a04000
                                    .0..
                                                      r4,r0
                                                      r0,[pc,#112] ;
        0x0000018:
                      e59f0070
                                  p...
   _stack_chk_guard = 0x90] = 0
0x0000001c: e5905000
                      e5905000
                                   .P..
.P..
                                            LDR
                                                      r5,[r0,#0]
                                                     r5,[sp,#8]
        0x0000020:
                      e58d5008
                                            STR
                      e1a01004
        0x0000024:
                                            MOV
                                                     r1,r4
                                    . . . .
        0x0000028:
                       e1a0000d
                                            MOV
                                                      r0,sp
                                    . . . .
                                                      strcpy
        0x0000002c:
                       ebfffffe
                                            BL
                                    . . . .
        0x0000030:
                                            MOV
                       e1a0100d
                                                      r1,sp
                                    . . . .
                                                      r0, {pc}+0x60 ; 0x94
        0x0000034:
                       e28f0058
                                   Χ...
                                            ADR
                       ebfffffe
        0x0000038:
                                            BL
                                                        2printf
                                    . . . .
                                                      r0,[sp,#8]
        0x000003c:
                      e59d0008
                                            LDR
                                    . . . .
                                   ..P.
        0x00000040:
                       e1500005
                                            CMP
                                                      r0,r5
                                                      {pc}+0x8 ; 0x4c
        0x0000044:
                       0a000000
                                            BEQ
                                    . . . .
                                         BL
        0x00000048:
                       ebffffe
                                                      __stack_chk_fail ; 0x0
                                    . . . .
 Section #1
        0x000004c:
                       e8bd803e
                                            POP
                                                      {r1-r5,pc}
                                    >...
. . .
```

3. For Arm Compiler for Embedded FuSa 6, use the **armclang** [COMMUNITY] -Rpass remark option.

You can also use the fromelf -c command and search the output for functions containing branches to the __stack_chk_fail() function.

Related information

Reference Guide: - Rpass

4.3 Command-line options for preprocessing assembly source code

The functionality of the --cpreproc and --cpreproc_opts command-line options in the version of **armasm** supplied with Arm[®] Compiler for Embedded FuSa 6 is different from the options used in earlier versions of **armasm** to preprocess assembly source code.

If you are using **armasm** to assemble source code that requires the use of the preprocessor, you must use both the --cpreproc and --cpreproc_opts options together. Also:

- As a minimum, you must include the **armclang** options --target and either -mcpu or -march in --cpreproc_opts.
- The input assembly source must have an upper-case extension .s.

If you have existing source files, which require preprocessing, and that have the lower-case extension .s, then to avoid having to rename the files:

- 1. Perform the preprocessing step separately using the **armclang** option -x assembler-with-cpp.
- 2. Assemble the preprocessed file without using the --cpreproc and --cpreproc_opts options.

Example using armclang -x

This example shows the use of the armclang -x option.

```
armclang --target=aarch64-arm-none-eabi -march=armv8-a -x assembler-with-cpp -E
test.s -o test preproc.s
armasm --cpu=8-A.64 test preproc.s
```

Example using armasm --cpreproc_opts

The options to the preprocessor in this example are --cpreproc_opts=--target=arm-arm-none-eabi, -mcpu=cortex-a9, -D, DEF1, -D, DEF2.

```
armasm --cpu=cortex-a9 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi,-
mcpu=cortex-a9,-D,DEF1,-D,DEF2 -I /path/to/includes1 -I /path/to/includes2 input.S
```


Ensure that you specify compatible architectures in the **armclang** options --target, -mcpu Or -march, and the **armasm** option --cpu.

Related information

- --cpreproc assembler option
- --cpreproc_opts assembler option

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential Mandatory armclang options -march armclang option -mcpu armclang option --target armclang option -x armclang option Preprocessing assembly code

4.4 Inline assembly with Arm Compiler for Embedded FuSa6

Inline assembly in Arm[®] Compiler for Embedded FuSa 6 must be written in GNU assembly syntax. Inline assembly in Arm Compiler 5 is written in **armasm** syntax. If you have inline assembly written in **armasm** syntax, you must modify the **armasm** syntax assembly to use GNU assembly syntax.

In Arm Compiler 5:

- You can use C variable names directly inside inline assembly statements.
- You do not have direct access to physical registers. You must use C or C++ variables names as operands, and the compiler maps them to physical register. You must set the value of these variables before you read them within an inline assembly statement.
- If you use register names in inline assembly code, they are treated as C or C++ variables. They do not necessarily relate to the physical register of the same name. If the register name is not declared as a C or C++ variable, the compiler generates a warning.

In Arm Compiler for Embedded FuSa 6:

- You cannot use C or C++ variable names directly inside inline assembly statements. You can map the physical registers to C or C++ variable names using operand mapping and constraints.
- You have direct access to physical registers. There is no need to set the value of the registers before you read them within inline assembly statements.
- If you use register names in inline assembly code, they are the physical register of the same name.

In Arm Compiler for Embedded FuSa 6 you cannot use C variable names directly within inline assembly. However, the GNU assembly syntax in Arm Compiler for Embedded FuSa 6 provides a way for mapping input and output operands to C variable names.

Arm Compiler 5 optimizes inline assembly, but Arm Compiler for Embedded FuSa 6 emits it exactly as written.

While Arm Compiler for Embedded FuSa 6 does not attempt to optimize the inline assembly instructions, it can remove a block of code containing inline assembly during optimization. The compiler is unaware of the content of the assembly, so might in some cases remove the block while attempting to remove unused code.

The volatile qualifier disables certain compiler optimizations that might otherwise lead to the compiler removing the code block. The volatile qualifier is optional. However, consider using it around your assembly code blocks to ensure the compiler does not remove them when compiling at any optimization level other than -00.

See the documentation of the volatile keyword in the Arm Compiler for Embedded FuSa User Guide for details.

For more information on writing inline assembly using __asm in armclang, see __asm.

For more information on GNU assembly syntax, see Overview of differences between armasm and GNU syntax assembly code.

Inline assembly example in Arm Compiler 5

The following example shows inline assembly code in Arm Compiler 5:

```
//foo.c:
int add(int i, int j)
{
    int res;
    ___asm
    (
      "ADD res, i, j \t\n"
      "SUB res, i, res \t\n"
    );
    return res;
```

}

The following example shows an alternative syntax for inline assembly code in Arm Compiler 5:

```
//foo.c:
int add(int i, int j)
{
    int res;
    ___asm
    {
        ADD res, i, j
        SUB res, i, res
    }
    return res;
}
```

Compile foo.c using armcc:

armcc foo.c -c -S -o foo.s

Arm Compiler 5 converts the example inline assembly code to:

```
;foo.s:
add PROC
ADD r1,r0,r1
```

SUB r0,r0,r1 BX lr ENDP

Inline assembly example in Arm Compiler for Embedded FuSa 6

The example below shows the equivalent inline assembly code in Arm Compiler for Embedded FuSa 6.

```
//foo.c:
int add(int i, int j)
{
    int res = 0;
    __asm
    (
        "ADD %[result], %[input_i], %[input_j] \t\n"
        "SUB %[result], %[input_i], %[result] \t\n"
        : [result] "=&r" (res)
        : [input_i] "r" (i), [input_j] "r" (j)
    );
    return res;
}
```

Compile foo.c using **armclang** with optimization level -o1:

armclang foo.c --target=arm-arm-none-eabi -march=armv8-a -O1 -c -S -o foo.s

Arm Compiler for Embedded FuSa 6 converts the example inline assembly code to:

Arm Compiler for Embedded FuSa 6 supports inline assembly using the __asm or asm keywords. However, the asm keyword is accepted only when:

- Used within C++ language source files.
- Used within C language source files without strict ISO C Standard compliance. For example, asm is accepted when using -std=gnu11.

The compiler supports the GNU form of inline assembly. The compiler does not support the Microsoft form of inline assembly. More detailed documentation of the asm construct is available at https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html.

Related information

armclang Inline Assembler

4.5 Migrating architecture and processor names for command-line options

There are minor differences between the architecture and processor names that Arm[®] Compiler for Embedded FuSa 6 recognizes, and the names that Arm Compiler 5 recognizes. Within Arm Compiler for Embedded FuSa 6, there are differences in the architecture and processor names that **armclang** recognizes and the names that **armasm**, **armlink**, and **fromelf** recognize. This topic shows the differences in the architecture and processor names for the different tools in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6.

The tables show the documented --cpu options in Arm Compiler 5 and their corresponding options for migrating your Arm Compiler 5 command-line options to Arm Compiler for Embedded FuSa 6.

The tables assume the default floating-point unit derived from the --cpu option in Arm Compiler 5. However, in Arm Compiler for Embedded FuSa 6, **armclang** selects different defaults for floating-point unit (VFP) and Advanced SIMD. Therefore, the tables also show how to use the **armclang** options -mfloat-abi and -mfpu to be compatible with the default floating-point unit in Arm Compiler 5. The tables do not provide an exhaustive list.

Table 4-2: Architecture selection in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6

armcc, armlink, armasm, and fromelf option in Arm Compiler 5	armclang option in Arm Compiler for Embedded FuSa 6	armlink, armasm, and fromelf option in Arm Compiler for Embedded FuSa 6	Architecture description
cpu=4	Not supported	Not supported	Armv4
cpu=4T	Not supported	Not supported	Armv4T
cpu=5T	Not supported	Not supported	Armv5T
cpu=5TE	Not supported	Not supported	Armv5TE
cpu=5TEJ	Not supported	Not supported	Armv5TEJ
cpu=6	Not supported	Not supported	Generic Armv6
сри=6-К	Not supported	Not supported	Armv6 -K
cpu=6-Z	Not supported	Not supported	Armv6 -Z
cpu=6T2	Not supported	Not supported	Armv6 T2
cpu=6-M	target=arm-arm-none- eabi -march=armv6-m	cpu=6S-M	Armv6-M
cpu=6S-M	target=arm-arm-none- eabi -march=armv6s-m	cpu=6S-M	Armv6 S-M

armcc, armlink, armasm, and fromelf option in Arm Compiler 5	armclang option in Arm Compiler for Embedded FuSa 6	armlink, armasm, and fromelf option in Arm Compiler for Embedded FuSa 6	Architecture description
cpu=7-A	target=arm-arm-none- eabi -march=armv7-a - mfloat-abi=soft	cpu=7-A.security	Armv7-A without VFP and Advanced SIMD.
cpu-/ A.Security			In Arm Compiler 5, security extension is not enabled with cpu=7-A but is enabled with cpu=7-A.security. In Arm Compiler for Embedded FuSa 6, armclang always enables the Armv7-A TrustZone security extension with -march=armv7- a. However, armclang does not generate an SMC instruction unless you specify it with an intrinsic or inline assembly.
cpu=7-R	target=arm-arm-none- eabi -march=armv7-r - mfloat-abi=soft	cpu=7-R	Armv7-R without VFP and Advanced SIMD
cpu=7-M	target=arm-arm-none- eabi -march=armv7-m	cpu=7-M	Armv7-M
cpu=7E-M	target=arm-arm-none- eabi -march=armv7e-m - mfloat-abi=soft	cpu=7E-M	Armv7 E-M

Table 4-3: Processor selection in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6

armcc, armlink, armasm, and fromelf option in Arm Compiler 5	armclang option in Arm Compiler for Embedded FuSa 6	armlink, armasm, and fromelf option in Arm Compiler for Embedded FuSa 6	Description
cpu=Cortex-A5	target=arm-arm-none- eabi -mcpu=cortex-a5 - mfloat-abi=soft	cpu=Cortex-A5.no_ neon.no_vfp	Cortex [®] -A5 without Advanced SIMD and VFP
cpu=Cortex-A5.neon	target=arm-arm-none- eabi -mcpu=cortex-a5 - mfloat-abi=hard	cpu=Cortex-A5	Cortex-A5 with Advanced SIMD and VFP
cpu=Cortex-A5.vfp	target=arm-arm-none- eabi -mcpu=cortex- a5 -mfloat-abi=hard - mfpu=vfpv4-d16	cpu=Cortex-A5.no_neon	Cortex-A5 with VFP, without Advanced SIMD
cpu=Cortex-A7	target=arm-arm-none- eabi -mcpu=cortex-a7 - mfloat-abi=hard	cpu=Cortex-A7	Cortex-A7 with Advanced SIMD and VFP
cpu=Cortex-A7.no_ neon.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-a7 - mfloat-abi=soft	cpu=Cortex-A7.no_ neon.no_vfp	Cortex-A7 without Advanced SIMD and VFP
cpu=Cortex-A7.no_neon	target=arm-arm-none- eabi -mcpu=cortex- a7 -mfloat-abi=hard - mfpu=vfpv4-d16	cpu=Cortex-A7.no_neon	Cortex-A7 with VFP, without Advanced SIMD

armcc, armlink, armasm, and fromelf option in Arm Compiler 5	armclang option in Arm Compiler for Embedded FuSa 6	armlink, armasm, and fromelf option in Arm Compiler for Embedded FuSa 6	Description
cpu=Cortex-A8	target=arm-arm-none- eabi -mcpu=cortex-a8 - mfloat-abi=hard	cpu=Cortex-A8	Cortex-A8 with VFP and Advanced SIMD
cpu=Cortex-A8.no_neon	target=arm-arm-none- eabi -mcpu=cortex-a8 - mfloat-abi=soft	cpu=Cortex-A8.no_neon	Cortex-A8 without Advanced SIMD and VFP
cpu=Cortex-A9	target=arm-arm-none- eabi -mcpu=cortex-a9 - mfloat-abi=hard	cpu=Cortex-A9	Cortex-A9 with Advanced SIMD and VFP
cpu=Cortex-A9.no_ neon.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-a9 - mfloat-abi=soft	cpu=Cortex-A9.no_ neon.no_vfp	Cortex-A9 without Advanced SIMD and VFP
cpu=Cortex-A9.no_neon	target=arm-arm-none- eabi -mcpu=cortex- a9 -mfloat-abi=hard - mfpu=vfpv3-d16-fp16	cpu=Cortex-A9.no_neon	Cortex-A9 with VFP but without Advanced SIMD
cpu=Cortex-A12	target=arm-arm-none- eabi -mcpu=cortex-a12 - mfloat-abi=hard	cpu=Cortex-A12	Cortex-A12 with Advanced SIMD and VFP
cpu=Cortex-A12.no_ neon.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-a12 - mfloat-abi=soft	cpu=Cortex-A12.no_ neon.no_vfp	Cortex-A12 without Advanced SIMD and VFP
cpu=Cortex-A15	target=arm-arm-none- eabi -mcpu=cortex-a15 - mfloat-abi=hard	cpu=Cortex-A15	Cortex-A15 with Advanced SIMD and VFP
cpu=Cortex-A15.no_ neon	target=arm-arm-none- eabi -mcpu=cortex- a15 -mfloat-abi=hard - mfpu=vfpv4-d16	cpu=Cortex-A15.no_neon	Cortex-A15 with VFP, without Advanced SIMD
cpu=Cortex-A15.no_ neon.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-a15 - mfloat-abi=soft	cpu=Cortex-A15.no_ neon.no_vfp	Cortex-A15 without Advanced SIMD and VFP
cpu=Cortex-A17	target=arm-arm-none- eabi -mcpu=cortex-a17 - mfloat-abi=hard	cpu=Cortex-A17	Cortex-A17 with Advanced SIMD and VFP
cpu=Cortex-A17.no_ neon.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-a17 - mfloat-abi=soft	cpu=Cortex-A17.no_ neon.no_vfp	Cortex-A17 without Advanced SIMD and VFP
cpu=Cortex-R4	target=arm-arm-none- eabi -mcpu=cortex-r4	cpu=Cortex-R4	Cortex-R4 without VFP
cpu=Cortex-R4F	target=arm-arm-none- eabi -mcpu=cortex-r4f - mfloat-abi=hard	cpu=Cortex-R4F	Cortex-R4 with VFP
cpu=Cortex-R5	target=arm-arm-none- eabi -mcpu=cortex-r5 - mfloat-abi=soft	cpu=Cortex-R5.no_vfp	Cortex-R5 without VFP
cpu=Cortex-R5F	target=arm-arm-none- eabi -mcpu=cortex-r5 - mfloat-abi=hard	cpu=Cortex-R5	Cortex-R5 with double precision VFP

armcc, armlink, armasm, and fromelf option in Arm Compiler 5	armclang option in Arm Compiler for Embedded FuSa 6	armlink, armasm, and fromelf option in Arm Compiler for Embedded FuSa 6	Description
cpu=Cortex-R5F-rev1. sp	target=arm-arm-none- eabi -mcpu=cortex- r5 -mfloat-abi=hard - mfpu=vfpv3xd	cpu=Cortex-R5.sp	Cortex-R5 with single precision VFP
cpu=Cortex-R7	target=arm-arm-none- eabi -mcpu=cortex-r7 - mfloat-abi=hard	cpu=Cortex-R7	Cortex-R7 with VFP
cpu=Cortex-R7.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-r7 - mfloat-abi=soft	cpu=Cortex-R7.no_vfp	Cortex-R7 without VFP
cpu=Cortex-R8	target=arm-arm-none- eabi -mcpu=cortex-r8 - mfloat-abi=hard	cpu=Cortex-R8	Cortex-R8 with VFP
cpu=Cortex-R8.no_vfp	target=arm-arm-none- eabi -mcpu=cortex-r8 - mfloat-abi=soft	cpu=Cortex-R8.no_vfp	Cortex-R8 without VFP
cpu=Cortex-M0	target=arm-arm-none- eabi -mcpu=cortex-m0	cpu=Cortex-M0	Cortex-M0
cpu=Cortex-M0plus	target=arm-arm-none- eabi -mcpu=cortex-m0plus	cpu=Cortex-M0plus	Cortex-M0+
cpu=Cortex-M1	target=arm-arm-none- eabi -mcpu=cortex-m1	cpu=Cortex-M1	Cortex-M1
cpu=Cortex-M3	target=arm-arm-none- eabi -mcpu=cortex-m3	cpu=Cortex-M3	Cortex-M3
cpu=Cortex-M4	target=arm-arm-none- eabi -mcpu=cortex-m4 - mfloat-abi=soft	cpu=Cortex-M4.no_fp	Cortex-M4 without VFP
cpu=Cortex-M4.fp	target=arm-arm-none- eabi -mcpu=cortex-m4 - mfloat-abi=hard	cpu=Cortex-M4	Cortex-M4 with VFP
cpu=Cortex-M7	target=arm-arm-none- eabi -mcpu=cortex-m7 - mfloat-abi=soft	cpu=Cortex-M7.no_fp	Cortex-M7 without VFP
cpu=Cortex-M7.fp.dp	target=arm-arm-none- eabi -mcpu=cortex-m7 - mfloat-abi=hard	cpu=Cortex-M7	Cortex-M7 with double precision VFP
cpu=Cortex-M7.fp.sp	target=arm-arm-none- eabi -mcpu=cortex- m7 -mfloat-abi=hard - mfpu=fpv5-sp-d16	cpu=Cortex-M7.fp.sp	Cortex-M7 with single precision VFP

Enabling or disabling architectural features in Arm Compiler for Embedded FuSa 6

Arm Compiler for Embedded FuSa 6, by default, automatically enables or disables certain architectural features such as the floating-point unit, Advanced SIMD, and Cryptographic extensions depending on the specified architecture or processor. For a list of architectural features, see -mcpu in the Arm Compiler for Embedded FuSa Reference Guide. You can override the defaults using other options.

For armclang:

- For AArch64 targets, you must use either -march or -mcpu to specify the architecture or processor and the required architectural features. You can use + [no] feature with -march or mcpu to override any architectural feature.
- For AArch32 targets, you must use either -march or -mcpu to specify the architecture or processor and the required architectural features. You can use -mfloat-abi to override floating-point linkage. You can use -mfpu to override floating-point unit, Advanced SIMD, and Cryptographic extensions. You can use +[no]feature with -march or -mcpu to override certain other architectural features.

For **armasm**, **armlink**, and **fromelf**, you must use the --cpu option to specify the architecture or processor and the required architectural features. You can use --fpu to override the floating-point unit and floating-point linkage. The --cpu option is not mandatory for **armlink** and **fromelf**, but is mandatory for **armasm**.

- In Arm Compiler 5, if you use the armcc option --fpu=none, the compiler generates an error if it detects floating-point code. This behavior is different in Arm Compiler for Embedded FuSa 6. If you use the armclang option mfpu=none, the compiler automatically uses software floating-point libraries if it detects any floating-point code. You cannot use the armlink option --fpu=none to link object files created using armclang.
- To link object files created using the **armclang** option -mfpu=none, you must set **armlink** option --fpu to an option that supports software floating-point linkage, for example --fpu=softvFP, rather than using --fpu=none.

Related information

- -mcpu (armclang) -march (armclang) -mfloat-abi (armclang) -mfpu (armclang) --target (armclang) --cpu (armlink) --fpu (armlink) --cpu (fromelf) --fpu (fromelf)
- --cpu (armasm)
- --fpu (armasm)

4.6 Preprocessing a scatter file when linking with armlink

Preprocessing a scatter file when linking with **armlink** in Arm[®] Compiler for Embedded FuSa 6 requires extra options.

The following shows the required change to the first line of the scatter file:

Arm Compiler 5

#!armcc -E

Arm Compiler for Embedded FuSa 6

#!armclang -E --target=arm-arm-none-eabi -mcpu=cortex-m7 -xc

The mandatory option --target specifies the target state, either AArch32 state, as shown in this example, or AArch64 state. See --target.

The option -mcpu specifies a processor, Cortex-M7 in this example. Alternatively, you can use -march to specify an architecture. See -mcpu or -march.

The option -x specifies the source language. See -x.

The option -E makes **armclang** only execute the preprocessor step. See -E.

4.7 Migrating predefined macros

The functionality of the Arm[®] Compiler 5 predefined macro <u>MODULE</u> is provded by the <u>FILE_NAME</u> macro in Arm Compiler for Embedded FuSa 6.

Related information

Predefined macros

5 Compiler Source Code Compatibility

Provides details of source code compatibility between Arm[®] Compiler for Embedded FuSa 6 and older armcc compiler versions.

5.1 Language extension compatibility: keywords

Arm[®] Compiler for Embedded FuSa 6 supports some keywords that are supported in Arm Compiler 5.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The following table lists some of the commonly used keywords that Arm Compiler 5 supports and shows whether Arm Compiler for Embedded FuSa 6 supports them using <u>__attribute__</u>. Replace any instances of these keywords in your code with the recommended alternative where available or use inline assembly instructions.

This table is not an exhaustive list of all keywords.

Table 5-1: Keyword language extensions in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6

Keyword supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 keyword or alternative
align(x)	attribute((aligned(x)))
alignof	alignof
ALIGNOF	alignof
Embedded assembly usingasm	Arm Compiler for Embedded FuSa 6 does not support theasm keyword on function definitions and declarations for embedded assembly. Instead, you can write embedded assembly using theattribute((naked)) function attribute. Seeattribute((naked)).
const	attribute((const)) Note: Older versions of armcc supported theconst keyword. The equivalent for this keyword in Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 isattribute((const)).
attribute((const))	attribute((const))

Keyword supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 keyword or alternative
forceinline	 For C90, useinline andattribute((always_inline)) For other source languages, use inline andattribute((always_inline)). Seeattribute((always_inline)).
global_reg(N)	Use the register andasm keywords for global named register variables using core registers. For example: register int Reg5asm("r5").
	In Arm Compiler for Embedded FuSa 6, you must also use the relevant -ffixed-rN armclang option. Alternatively, you can use equivalent inline assembler instructions.
inline(x)	inline The use of this keyword depends on the language mode.
int64	 You can use int64_t, which is a 64-bit integer type defined in the header file <stdint.h> (for C source files) or <cstdint> (for C ++ source files). You can also use long long, however, if you use long long in C90 mode, the compiler gives:</cstdint></stdint.h> a warning. an error, if you also use -pedantic-errors.
INTADDR	No equivalent.
irq	
packed for removing padding within structures.	attribute((packed)). This keyword provides limited functionality when compared topacked:
	 Theattribute((packed)) variable attribute applies to members of a structure or union. It does not apply to variables that are not members of a structure or union.
	•attribute((packed)) is not a type qualifier. Taking the address of a packed member can result in unaligned pointers, and usually the compiler generates a warning. Arm recommends upgrading this warning to an error when migrating code that usespacked. To upgrade the warning to error, use the armclang option -Werror=name.
	The placement of the attribute is different from the placement ofpacked. If your legacy code contains typedefpacked struct, then replace it with:
	<pre>typedef structattribute((packed))</pre>
packed as a type qualifier for unaligned access.	unaligned. This keyword provides limited functionality when compared to thepacked type qualifier.
	Theunaligned type qualifier can be used over a structure only when using typedef or when declaring a structure variable. This limitation does not apply when usingpacked in Arm Compiler 5. Therefore, there is no migration for legacy code that contains packed struct S{};.

Keyword supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 keyword or alternative
pure	attribute((const))
smc	Use inline assembler instructions or equivalent routine.
softfp	attribute((pcs("aapcs")))
svc	Use inline assembler instructions or equivalent routine.
svc_indirect	Use inline assembler instructions or equivalent routine.
svc_indirect_r7	Use inline assembler instructions or equivalent routine.
thread	thread
value_in_regs	attribute((value_in_regs))
weak	attribute((weak))
writeonly	No equivalent.
Named register variables for direct manipulation of a core register as if it were a C variable. For example:	Use the register andasm keywords for global named register variables using core registers.
register int R5asm("r5")	For example:
	register int Reg5asm("r5")
	In Arm Compiler for Embedded FuSa 6, you must also use the relevant armclang option, -ffixed-r <i>N</i> .
Named register variables for direct manipulation of a system register, other than core registers, as if it were a C variable. For example:	No equivalent. To access FPSCR, use the <u>vfp</u> status intrinsic or inline assembly instructions.
register int fpscrasm("fpscr").	

Migrating the __packed keyword from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6

The packed keyword in Arm Compiler 5 has the effect of:

- Removing the padding within structures.
- Qualifying the variable for unaligned access.

__attribute__((packed)) and __unaligned keyword. Depending on the use, you might need to replace __packed with both __attribute__((packed)) and __unaligned. The following table shows the migration paths for various uses of __packed.

Table 5-2: Migrating thepacked keyword

Arm Compiler 5	Arm Compiler for Embedded FuSa 6
packed int x;	unaligned int x;
packed int *x;	unaligned int *x;
int *packed x;	int *unaligned x;
unaligned int *packed x;	unaligned int *unaligned x;
<pre>typedefpacked struct S{} s;</pre>	<pre>typedefunaligned structattribute((packed)) S{} s;</pre>
packed struct S{};	There is no migration. Use a typedef instead.

Arm Compiler 5	Arm Compiler for Embedded FuSa 6
packed struct S{} s;	unaligned structattribute((packed)) S{} s; Subsequent declarations of variables of type struct S must use unaligned, for exampleunaligned struct S s2.
<pre>struct S{packed int a;}</pre>	<pre>struct S {attribute((packed))unaligned int a;}</pre>

Related information

-W

5.2 Language extension compatibility: attributes

Arm[®] Compiler for Embedded FuSa 6 supports some function, variable, and type attributes that were supported in Arm Compiler 5. Other attributes are not supported, or have an alternate implementation.

Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 support the following attributes. These attributes do not require modification in your code:

- __attribute__((aligned(x)))
- __attribute__((const))
- __attribute__((deprecated))
- __attribute__((noinline))
- ___declspec(noinline)
- __attribute__((nonnull))
- __attribute__((noreturn))
- __declspec(noreturn)
- __attribute__((nothrow))
- __declspec(nothrow)
- __attribute__((pcs("calling convention")))
- __attribute__((pure))
- __attribute__((unused))
- __attribute__((used))

- __attribute__((visibility))
- __attribute__((weak))
- __attribute__((weakref))

The following Arm Compiler 5 attributes are not supported by Arm Compiler for Embedded FuSa 6:

- __attribute__((nomerge))
- __attribute__((notailcall))

However, since Arm Compiler for Embedded FuSa 6 is built on LLVM technology and preserves the functionality of that technology where possible, you might consider using the following community (open-source Clang) features instead:

- __attribute__((nomerge))
- __attribute__((not_tail_called))

Community features are not supported by Arm and are used at your own risk. You are responsible for making sure that any generated code using community features is operating correctly. For more information, see Support level definitions.

Though Arm Compiler for Embedded FuSa 6 supports certain <u>__declspec</u> attributes, Arm recommends using <u>__attribute__</u> where available.

declspec supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 alternative
declspec(dllimport)	None. There is no support for BPABI linking models.
declspec(dllexport)	None. There is no support for BPABI linking models.
declspec(noinline)	attribute((noinline))
declspec(noreturn)	attribute((noreturn))
declspec(nothrow)	attribute((nothrow))
declspec(notshared)	None. There is no support for BPABI linking models.
declspec(thread)	thread

Table 5-3: Support for __declspec attributes

__attribute__((always_inline))

Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 support attribute ((always inline)). However, this attribute might require modification in your code.

When using Arm Compiler 5, <u>__attribute__((always_inline)</u>) affects the linkage of the function according to the inline semantics of the source language.

When using Arm Compiler for Embedded FuSa 6, <u>_attribute_((always_inline)</u>) does not affect the linkage of the function. To change the linkage according to the inline semantics, you must use the keyword inline or <u>_inline_</u> (for C90). For more information, see <u>_attribute_((always_inline)</u>).

__attribute__((section("name")))

Arm Compiler 5 and Arm Compiler for Embedded FuSa 6 support

__attribute__((section("name"))). However, this attribute might require modification in your code.

When using Arm Compiler 5, section names do not need to be unique. Therefore, you could use the same section name to create different section types.

Arm Compiler for Embedded FuSa 6 supports multiple sections with the same section name only if you specify a unique ID. You must ensure that different section types either:

- Have a unique section name.
- Have a unique ID, if they have the same section name.

If you use the same section name, for another section or symbol, without a unique ID, then **armclang** integrated assembler merges the sections and gives the merged section the flags of the first section with that name.

Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("name"))) from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6

Arm Compiler 5 supports the following attributes, which Arm Compiler for Embedded FuSa 6 does not support:

- __attribute__((at(address))) to specify the absolute address of a function or variable.
- __attribute__((at(address), zero_init)) to specify the absolute address of a zero-initialized variable.
- __attribute__((section(*name*), zero_init)) to place a zero-initialized variable in a zero-initialized section with the given *name*.
- __attribute__((zero_init)) to generate an error if the variable has an initializer.

The following table shows migration paths for these features using Arm Compiler for Embedded FuSa 6 supported features:

Table 5-4: Migrating	attribute_	_((at(address))) and z	ero-initialized _	_attribute_	_((section("name")))
----------------------	------------	------------------------	-------------------	-------------	----------------------

Arm Compiler 5 attribute	Arm Compiler for Embedded FuSa 6 attribute	Description
attribute((at(address)))	attribute((section(".ARMat_ <i>address</i> ")))	 armlink in Arm Compiler for Embedded FuSa 6 still supports the placement of sections in the form of .ARMat_address Note: The Arm Compiler for Embedded FuSa 6 attribute only supports a string to specify the section. To use an arithmetic expression, see Supporting arithmetic expressions in the at(address) attribute in Arm Compiler for Embedded FuSa 6.

Arm Compiler 5 attribute	Arm Compiler for Embedded FuSa 6 attribute	Description
attribute((at(<i>address</i>), zero_init))	attribute((section(".bss.ARMat_ <i>address</i> ")))	armlink in Arm Compiler for Embedded FuSa 6 supports the placement of zero-initialized sections in the form of .bss.ARMataddress. The .bss prefix is case-sensitive and must be all lowercase.
attribute((section(<i>name</i>), zero_init))	((section(".bss.name")))	name is a name of your choice. The .bss prefix is case-sensitive and must be all lowercase.
attribute((zero_init))	Arm Compiler for Embedded FuSa 6 by default places zero-initialized variables in a .bss section. However, there is no equivalent to generate an error when you specify an initializer.	If the variable has an initializer, Arm Compiler 5 generates an error. Otherwise, it places the zero-initialized variable in a .bss section.

Supporting arithmetic expressions in the at(address) attribute in Arm Compiler for Embedded FuSa 6

The at (address) attribute in Arm Compiler 5 supports arithmetic expressions to specify the section, for example:

```
my_variable_type my_variable __attribute__((at(0xE0001000 + MY_PREDEFINED_OFFSET)));
```

To do the equivalent in Arm Compiler for Embedded FuSa 6, you must use a pointer approach. For this Arm Compiler 5 example, change the code to:

```
static my_variable_type * const my_address = (my_variable_type *) (0xE0001000 +
    MY_PREDEFINED_OFFSET);
#define my_variable (*my_address)
```

Related information

Placing __at sections at a specific address

5.3 Language extension compatibility: pragmas

Arm[®] Compiler for Embedded FuSa 6 provides support for some pragmas that are supported in Arm Compiler 5. Other pragmas are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used pragmas that are supported by Arm Compiler 5 but are not supported by Arm Compiler for Embedded FuSa 6. Replace any instances of these pragmas in your code with the recommended alternative.

Table 5-5: Pragma language extensions that must be replaced

Pragma supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 alternative	
<pre>#pragma import (symbol)</pre>	asm(".global <i>symbol</i> \n\t");	

Pragma supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 alternative
<pre>#pragma anon_unions #pragma no_anon_unions</pre>	In C, anonymous structs and unions are a C11 extension which is enabled by default in armclang. If you specify the -pedantic option, the compiler emits warnings about extensions do not match the specified language standard. For example:
	armclangtarget=aarch64-arm-none-eabi -c - pedanticstd=c90 test.c test.c:3:5: warning: anonymous structs are a C11 extension [-Wc11-extensions]
	In C++, anonymous unions are part of the language standard, and are always enabled. However, anonymous structs and classes are an extension. If you specify the -pedantic option, the compiler emits warnings about anonymous structs and classes. For example:
	armclangtarget=aarch64-arm-none-eabi -c - pedantic -xc++ test.c test.c:3:5: warning: anonymous structs are a GNU extension [-Wgnu-anonymous-struct]
	Introducing anonymous unions, struct and classes using a typedef is a separate extension in armclang , which must be enabled using the -fms-extensions option.
#pragma arm #pragma thumb	armclang does not support switching instruction set in the middle of a file. You can use the command-line options -marm and - mthumb to specify the instruction set of the whole file.
#pragma arm section	#pragma clang section
	In Arm Compiler 5, the section types you can use this pragma with are rodata, rwdata, zidata, and code. In Arm Compiler for Embedded FuSa 6, the equivalent section types are rodata, data, bss, and text respectively.

Pragma supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 alternative
#pragma diag_default	The following pragmas provide equivalent functionality for diag_suppress, diag_warning, and diag_error:
<pre>#pragma diag_suppress</pre>	<pre>#pragma clang diagnostic ignored "-Wmultichar"</pre>
<pre>#pragma diag_remark</pre>	#pragma clang diagnostic warning "-Wmultichar"
<pre>#pragma diag_warning """""""""""""""""""""""""""""""""""</pre>	#pragma clang diagnostic error "-Wmultichar"
<pre>#pragma diag_error</pre>	<pre>Note: These pragmas use armclang diagnostic groups, which do not have a precise mapping to armcc diagnostic tags. armclang has no equivalent to diag_default or diag_remark. diag_default can be replaced by wrapping the change of diagnostic level with #pragma clang diagnostic push and #pragma clang diagnostic pop, or by manually returning the diagnostic to the default level. There is an additional diagnostic level supported in armclang, fatal, which causes compilation to fail without processing the rest of the file. You can set this as follows: #pragma clang diagnostic fatal "-Wmultichar"</pre>
#pragma exceptions_unwind	armclang does not support these pragmas.
<pre>#pragma no_exceptions_unwind</pre>	Use theattribute((nothrow)) function attribute instead.
#pragma GCC system_header	This pragma is supported by both armcc and armclang , but #pragma clang system_header is the preferred spelling in armclang for new code.
#pragma hdrstop	armclang does not support these pragmas.
#pragma no_pch	
<pre>#pragma import(use_no_semihosting)</pre>	armclang does not support these pragmas. However, in C code, you can replace these pragmas with:
<pre>#pragma import(use_no_semihosting_swi)</pre>	asm(".globaluse_no_semihosting\n\t");
<pre>#pragma inline #pragma no_inline</pre>	armclang does not support these pragmas. However, inlining can be disabled on a per-function basis using the attribute((noinline)) function attribute.
	The default behavior of both armcc and armclang is to inline functions when the compiler considers this worthwhile, and this is the behavior selected by using #pragma inline in armcc. To force a function to be inlined in armclang , use the attribute((always_inline)) function attribute.
#pragma Onum	armclang does not support changing optimization options within a file. Instead these must be set on a per-file basis using command-
#pragma Ospace	line options.
#pragma Otime	

Pragma supported by Arm Compiler 5	Recommended Arm Compiler for Embedded FuSa 6 alternative
#pragma pop	armclang does not support these pragmas. Therefore, you cannot push and pop the state of all supported pragmas.
#pragma push	However, you can push and pop the state of the diagnostic pragmas and the state of the pack pragma.
	To control the state of the diagnostic pragmas, use #pragma clang diagnostic push and #pragma clang diagnostic pop.
	To control the state of the pack pragma, use #pragma pack(push) and #pragma pack(pop).
<pre>#pragma softfp_linkage</pre>	armclang does not support this pragma. Instead, use the((pcs("aapcs"))) function attribute to set the calling convention on a per-function basis, or use the _mfloat-abi=soft command-line option to set the calling convention on a per-file basis.
#pragma no_softfp_linkage	armclang does not support this pragma. Instead, use the attribute((pcs("aapcs-vfp"))) function attribute to set the calling convention on a per-function basis, or use the -mfloat-abi=hard command-line option to set the calling convention on a per-file basis.
<pre>#pragma unroll[(n)]</pre>	armclang supports these pragmas.
<pre>#pragma unroll_completely</pre>	The default for #pragma unroll (that is, with no iteration count specified) differs between armclang and armcc :
	• With armclang , the default is to fully unroll a loop.
	• With armcc, the default is #pragma unroll(4).

Related information

Reference Guide: #pragma clang system_header

5.4 Language extension compatibility: intrinsics

Arm[®] Compiler for Embedded FuSa 6 provides support for some intrinsics that are supported in Arm Compiler 5.

The following table lists some of the commonly used intrinsics that are supported by Arm Compiler 5 and shows whether Arm Compiler for Embedded FuSa 6 supports them or provides an alternative. If there is no support in Arm Compiler for Embedded FuSa 6, you must replace them with suitable inline assembly instructions or calls to the standard library. To use the intrinsic in Arm Compiler for Embedded FuSa 6, you must include the appropriate header file. The ACLE intrinsics that are supported by Arm Compiler 5 are described in the Arm C Language Extensions 2.1. For more information on the ACLE intrinsics that are supported by Arm Compiler for Embedded FuSa 6, see the latest Arm C Language Extensions.

This is not an exhaustive list of all the intrinsics.

The intrinsics provided in <arm_compat.h> are only supported for AArch32.

Table 5-6: Compiler intrinsic support in Arm Compiler for Embedded FuSa 6

Intrinsic in Arm Compiler 5	Function	Support in Arm Compiler for Embedded FuSa 6	Header file for Arm Compiler for Embedded FuSa 6
breakpoint	Inserts a BKPT instruction.	Yes	arm_compat.h
cdp	Inserts a coprocessor instruction.	Yes. In Arm Compiler for Embedded FuSa 6, the equivalent intrinsic is <u>_arm_</u> cdp.	arm_acle.h
clrex	Inserts a CLREX instruction.	No	-
clz	Inserts a CLZ instruction or equivalent routine.	Yes	arm_acle.h
current_pc	Returns the program counter at this point.	Yes	arm_compat.h
current_sp	Returns the stack pointer at this point.	Yes	arm_compat.h
isb	Inserts ISB or equivalent.	Yes	arm_acle.h
disable_fiq	Disables FIQ interrupts (Arm®v7 architecture only). Returns previous value of FIQ mask.	Yes	arm_compat.h
disable_irq	Disable IRQ interrupts. Returns previous value of IRQ mask.	Yes	arm_compat.h
dmb	Inserts a DMB instruction or equivalent.	Yes	arm_acle.h
dsb	Inserts a DSB instruction or equivalent.	Yes	arm_acle.h
enable_fiq	Enables fast interrupts.	Yes	arm_compat.h
enable_irq	Enables IRQ interrupts.	Yes	arm_compat.h
fabs	Inserts a VABS or equivalent code sequence.	No. Arm recommends using the standard C library function fabs ().	-
fabsf	Single precision version offabs.	No. Arm recommends using the standard C library function fabsf().	-
force_stores	Flushes all external variables visible from this function, if they have been changed.	Yes	arm_compat.h
ldrex	Inserts an appropriately sized Load Exclusive instruction.	No. This intrinsic is deprecated in ACLE 2.0.	-
ldrexd	Inserts an LDREXD instruction.	No. This intrinsic is deprecated in ACLE 2.0.	-
ldrt	Inserts an appropriately sized user-mode load instruction.	No	-
memory_changed	Is similar toforce_stores, but also reloads the values from memory.	Yes	arm_compat.h

Intrinsic in Arm Compiler 5	Function	Support in Arm Compiler for Embedded FuSa 6	Header file for Arm Compiler for Embedded FuSa 6
nop	Inserts a NOP or equivalent instruction that will not be optimized away. It also inserts a sequence point, and scheduling barrier for side-effecting function calls.	Yes	arm_acle.h
pld	Inserts a PLD instruction, if supported.	Yes	arm_acle.h
pldw	Inserts a PLDW instruction, if supported (Arm [®] v7 architecture with MP).	No. Arm recommends usingpldx described in the ACLE document.	arm_acle.h
pli	Inserts a PLI instruction, if supported.	Yes	arm_acle.h
promise	Compiler assertion that the expression always has a nonzero value. If asserts are enabled then the promise is checked at runtime by evaluating <i>expr</i> using assert (<i>expr</i>).	Yes. However, you must #include <assert.h> to usepromise. promise has the same behavior as assert() unless at least one of NDEBUG or _DO_NOT_LINK_PROMISE_WITH_ASSERT is defined.</assert.h>	assert.h
qadd	Inserts a saturating add instruction, if supported.	Yes	arm_acle.h
qdbl	Inserts instructions equivalent to qadd (val, val), if supported.	Yes	arm_acle.h
qsub	Inserts a saturating subtract, or equivalent routine, if supported.	Yes	arm_acle.h
rbit	Inserts a bit reverse instruction.	Yes	arm_acle.h
rev	Insert a REV, or endian swap instruction.	Yes	arm_acle.h
return_address	Returns value of LR when returning from current function, without inhibiting optimizations like inlining or tailcalling.	No. Arm recommends using inline assembly instructions.	-
ror	Insert an ROR instruction.	Yes	arm_acle.h
schedule_barrier	Create a sequence point without effecting memory or inserting NOP instructions. Functions with side effects cannot move past the new sequence point.	Yes	arm_compat.h
semihost	Inserts an SVC or BKPT instruction.	Yes	arm_compat.h
sev	Insert a SEV instruction. Error if the SEV instruction is not supported.	Yes	arm_acle.h
sqrt	Inserts a VSQRT instruction on targets with a VFP coprocessor.	No	-
sqrtf	single precision version ofsqrt.	No	-

Intrinsic in Arm Compiler 5	Function	Support in Arm Compiler for Embedded FuSa 6	Header file for Arm Compiler for Embedded FuSa 6
ssat	Inserts an SSAT instruction. Error if the SSAT instruction is not supported.	Yes	arm_acle.h
strex	Inserts an appropriately sized Store Exclusive instruction.	No. This intrinsic is deprecated in ACLE 2.0.	-
strexd	Inserts a doubleword Store Exclusive instruction.	No. This intrinsic is deprecated in ACLE 2.0.	-
strt	Insert an appropriately sized STRT instruction.	No	-
swp	Inserts an appropriately sized SWP instruction.	Yes. However, the SWP instruction is deprecated, and Arm does not recommend the use ofswp.	arm_acle.h
usat	Inserts a USAT instruction. Error if the USAT instruction is not supported.	Yes	arm_acle.h
wfe	Inserts a WFE instruction. Error if the WFE instruction is not supported.	Yes	arm_acle.h
wfi	Inserts a WFI instruction. Error if the WFI instruction is not supported.	Yes	arm_acle.h
yield	Inserts a YIELD instruction. Error if the YIELD instruction is not supported.	Yes	arm_acle.h
Armv6 SIMD intrinsics	Inserts an Armv6 SIMD instruction.	No	-
ETSI intrinsics	35 intrinsic functions and 2 global variable flags specified in ETSI G729 used for speech encoding. These are provided in the Arm headers in dspfns.h.	No	-
C55x intrinsics	Emulation of selected TI C55x compiler intrinsics.	No	-
vfp_status	Reads the FPSCR.	Yes	arm_compat.h
FMA intrinsics	Intrinsics for fused-multiply-add on the Cortex [®] -M4 or Cortex-A5 processor in c99 mode.	No	-

5.5 Diagnostics for pragma compatibility

Older armcc compiler versions supported many pragmas which are not supported by **armclang**, but which could change the semantics of code. When **armclang** encounters these pragmas, it generates diagnostic messages.

The following table shows which diagnostics are generated for each pragma type, and the diagnostic group to which that diagnostic belongs. **armclang** generates diagnostics as follows:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

- Errors indicate use of an armcc pragma which could change the semantics of code.
- Warnings indicate use of any other armcc pragma which is ignored by armclang.
- Pragmas other than those listed are silently ignored.

Table 5-7: Pragma diagnostics

Pragma supported by older compiler versions	Default diagnostic type	Diagnostic group
<pre>#pragma anon_unions</pre>	Warning	armcc-pragma-anon-unions
<pre>#pragma no_anon_unions</pre>	Warning	armcc-pragma-anon-unions
#pragma arm	Error	armcc-pragma-arm
<pre>#pragma arm section [section_type_list]</pre>	Error	armcc-pragma-arm
<pre>#pragma diag_default tag[,tag,]</pre>	Error	armcc-pragma-diag
<pre>#pragma diag_error tag[,tag,]</pre>	Error	armcc-pragma-diag
<pre>#pragma diag_remark tag[,tag,]</pre>	Warning	armcc-pragma-diag
<pre>#pragma diag_suppress tag[,tag,]</pre>	Warning	armcc-pragma-diag
<pre>#pragma diag_warning tag[,tag,]</pre>	Warning	armcc-pragma-diag
<pre>#pragma exceptions_unwind</pre>	Error	armcc-pragma-exceptions-unwind
<pre>#pragma no_exceptions_unwind</pre>	Error	armcc-pragma-exceptions-unwind
#pragma GCC system_header	None	-
#pragma hdrstop	Warning	armcc-pragma-hdrstop
<pre>#pragma import symbol_name</pre>	Error	armcc-pragma-import
#pragma inline	Warning	armcc-pragma-inline
<pre>#pragma no_inline</pre>	Warning	armcc-pragma-inline
#pragma no_pch	Warning	armcc-pragma-no-pch
#pragma O <i>num</i>	Warning	armcc-pragma-optimization
#pragma once	None	-
#pragma Ospace	Warning	armcc-pragma-optimization
#pragma Otime	Warning	armcc-pragma-optimization
#pragma pack	None	-
#pragma pop	Error	armcc-pragma-push-pop
#pragma push	Error	armcc-pragma-push-pop
#pragma softfp_linkage	Error	armcc-pragma-softfp-linkage
<pre>#pragma no_softfp_linkage</pre>	Error	armcc-pragma-softfp-linkage
#pragma thumb	Error	armcc-pragma-thumb
#pragma weak <i>symbol</i>	None	-
#pragma weak symbol1 = symbol2	None	-

In addition to the above diagnostic groups, there are the following additional diagnostic groups:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

armcc-pragmas

Contains all of the above diagnostic groups.

unknown-pragmas

Contains diagnostics about pragmas which are not known to armclang, and are not in the above table.

pragmas

Contains all pragma-related diagnostics, including armcc-pragmas and unknown-pragmas.

Any non-fatal **armclang** diagnostic group can be ignored, upgraded, or downgraded using the following command-line options:

Suppress a group of diagnostics:

-Wno-diag-group

Upgrade a group of diagnostics to warnings:

-Wdiag-group

Upgrade a group of diagnostics to errors:

-Werror=diag-group

Downgrade a group of diagnostics to warnings:

-Wno-error=diag-group

Related information

Language extension compatibility: pragmas on page 58

5.6 C and C++ implementation compatibility

Arm[®] Compiler for Embedded FuSa 6 C and C++ implementation details differ from previous compiler versions.

The following table describes the C and C++ implementation detail differences.

Table 5-8: C and C++ implementation detail differences

Feature	Older versions of Arm Compiler	Arm Compiler for Embedded 6		
Integer operations				

Feature	Older versions of Arm Compiler	Arm Compiler for Embedded 6
Shifts	int <i>shifts</i> > 0 && < 127	Warns when shift amount > width of type.
	<pre>int left_shifts > 31 == 0</pre>	You can use the -Wshift-count-overflow option to suppress this warning.
	<pre>int right_shifts > 31 == 0</pre>	
	(for unsigned or positive)	
	<pre>int right_shifts > 31 == -1</pre>	
	(for negative)	
	long long <i>shifts</i> > 0 && < 63	
Integer division	Checks that the sign of the remainder matches the sign of the numerator	The sign of the remainder is not necessarily the same as the sign of the numerator.
	Floating-	point operations
Default standard	IEEE 754 standard, rounding to nearest representable value, exceptions disabled by default.	All facilities, operations, and representations guaranteed by the IEEE standard are available in single and double-precision. Modes of operation can be selected dynamically at runtime.
		This is equivalent to thefpmode=ieee_full option in older versions of Arm Compiler.
<pre>#pragma STDC FP_CONTRACT</pre>	<pre>#pragma STDC FP_CONTRACT</pre>	Might affect code generation.
	Unions, e	nums and structs
Enum packing	Enums are implemented in the smallest integral type of the correct sign to hold the range of the enum values, except for when compiling in C++ mode with enum_is_int.	By default enums are implemented as int, with long long used when required.
Allocation of bit- fields in containers	Allocation of bit-fields in containers.	A container is an object, aligned as the declared type. Its size is sufficient to contain the bit-field, but might be smaller or larger than the bit-field declared type.
Signedness of plain	Unsigned.	Signed.
bit-fields	Plain bit-fields declared without either the signed or unsigned qualifiers default to unsigned. Thesigned_bitfields option treats plain bit-fields as signed.	Plain bit-fields declared without either the signed or unsigned qualifiers default to signed. There is no equivalent to either thesigned_bitfields orno_signed_bitfields options.
	Arrays	s and pointers
Casting between integers and	No change of representation	Converting a signed integer to a pointer type with greater bit width sign-extends the integer.
pointers		Converting an unsigned integer to a pointer type with greater bit width zero-extends the integer.
		Misc C
<pre>sizeof(wchar_t)</pre>	2 bytes	4 bytes
size_t	Defined as unsigned int, 32-bit.	Defined as unsigned int in 32-bit architectures, and <i>sign>type></i> 64-bit in 64-bit architectures.

Feature	Older versions of Arm Compiler	Arm Compiler for Embedded 6
ptrdiff_t	Defined as signed int, 32-bit.	Defined as unsigned int in 32-bit architectures, and < <i>sign</i> >< <i>type</i> >64-bit in 64-bit architectures.
	1	Misc C++
C++ library	Rogue Wave Standard C++ Library	LLVM libc++ Library
		Note: When the C++ library is used in source code, there is limited compatibility between object code created with Arm Compiler for Embedded 6 and object code created with Arm Compiler 5. This also applies to indirect use of the C++ library, for example memory allocation or exception handling.
Implicit inclusion	If compilation requires a template definition from a template declared in a header file xyz.h, the compiler implicitly includes the file xyz.cc or xyz.CC.	Not supported.
Alternative template lookup algorithms	When performing referencing context lookups, name lookup matches against names from the instantiation context as well as from the template definition context.	Not supported.
Exceptions	Off by default, function unwinding on withexceptions by default.	On by default in C++ mode. Note: For C++ code, -fexceptions has a large increase in the code size. If you use -fno_exceptions, then the code size is in the range of that created with Arm Compiler 5.
	Т	ranslation
Diagnostics messages format	<pre>source-file, line-number : severity : error-code : explanation</pre>	<pre>source-file:line-number:char-number: description [diagnostic-flag]</pre>
	Er	vironment
Physical source file bytes interpretation	Current system locale dependent or set using thelocale command-line option.	UTF-8, either with or without the <i>Byte Order Mark</i> (BOM).

Related information

Language extension compatibility: keywords on page 52 Language extension compatibility: attributes on page 55 Language extension compatibility: pragmas on page 58

5.7 Compatibility of C++ objects

The compatibility of C++ objects compiled with Arm[®] Compiler 5 depends on the C++ libraries used.

Compatibility with objects compiled using Rogue Wave standard library headers

Arm Compiler for Embedded FuSa 6 does not support binary compatibility with objects compiled using the Rogue Wave standard library include files.

There are warnings at link time when objects are mixed. L6869w is reported if an object requests the Rogue Wave standard library. L6870w is reported when using an object that is compiled with Arm Compiler 5 with exceptions support.

The impact of mixing objects that have been compiled against different C++ standard library headers might include:

- Undefined symbol errors.
- Increased code size.
- Possible runtime errors.

If you have Arm Compiler for Embedded FuSa 6 objects that have been compiled with the legacy --stdlib=legacy_cpplib option then these objects use the Rogue Wave standard library and therefore might be incompatible with objects created using Arm Compiler 6.4 or later. To resolve these issues, you must recompile all object files with Arm Compiler 6.4 or later.

Compatibility with C++ objects compiled using Arm Compiler 5

The choice of C++ libraries at link time must match the choice of C++ include files at compile time for all input objects. Arm Compiler 5 objects that use the Rogue Wave C++ libraries are not compatible with Arm Compiler for Embedded FuSa 6 objects. Arm Compiler 5 objects that use C+ + but do not make use of the Rogue Wave header files can be compatible with Arm Compiler for Embedded FuSa 6 objects that use libc++ but this is not guaranteed.

Arm recommends using Arm Compiler for Embedded FuSa 6 for building the object files.

Compatibility of arrays of objects compiled using Arm Compiler 5

Arm Compiler for Embedded FuSa 6 is not compatible with objects from Arm Compiler 5 that use operator new[] and delete[]. Undefined symbol errors result at link time because Arm Compiler for Embedded FuSa 6 does not provide the helper functions that Arm Compiler 5 depends on. For example:

```
//construct.cpp:
class Foo
{
  public:
     Foo() : x_(new int) { *x_ = 0; }
     void setX(int x) { *x_ = x; }
     ~Foo() { delete x_; }
  private:
        int* x_;
};
```

Arm[®] Compiler for Embedded FuSa Migration and Compatibility Guide

```
void func(void)
{
    Foo* array;
    array = new Foo [10];
    array[0].setX(1);
    delete[] array;
}
```

If you build this example with the Arm Compiler 5 compiler, armcc, and link with the Arm Compiler for Embedded FuSa 6 linker, **armlink**, using:

```
armcc -c construct.cpp -Ospace -O1 --cpu=cortex-a9
armlink construct.o -o construct.axf
```

the linker reports:

```
Error: L6218E: Undefined symbol __aeabi_vec_delete (referred from construct.o).
Error: L6218E: Undefined symbol __aeabi_vec_new_cookie_nodtor (referred from
construct.o).
```

To resolve these linker errors, you must use the Arm Compiler for Embedded FuSa 6 compiler, **armclang**, to compile all C++ files that use the <code>new[]</code> and <code>delete[]</code> operators.

You do not have to specify --stdlib=libc++ for **armlink**, because this is the default and only option in Arm Compiler 6.4, and later.

Related information

6 Migrating from armasm to the armclang Integrated Assembler

Describes how to migrate assembly code from legacy **armasm** syntax to GNU syntax (used by **armclang**).

The **armasm** legacy assembler is out of scope for functional safety, and it has not been updated since Arm[®] Compiler 6.10. Also, **armasm** does not support:

- Armv8.4-A or later architectures.
- [BETA] Armv8-R AArch64 targets.
- Certain backported options in Armv8.2-A and Armv8.3-A.
- Assembling MVE or SVE instructions.
- Armv8.1-M.

6.1 Migration of assembler command-line options from armasm to the armclang integrated assembler

Arm[®] Compiler for Embedded FuSa 6 provides many command-line options, including most Clang command-line options as well as several Arm-specific options.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The following GNU assembly directives are [COMMUNITY] features:

- .eabi_attribute Tag_ABI_PCS_RO_data, value
- .eabi_attribute Tag_ABI_PCS_R9_use, value
- .eabi_attribute Tag_ABI_PCS_RW_data, value
- .eabi_attribute Tag_ABI_VFP_args, value
- .eabi_attribute Tag_CPU_unaligned_access, value
 - .ident
 - .protected
 - .section .note.GNU-stack, "x"
 - -Wa, --noexecstack

Copyright $\ensuremath{\mathbb{O}}$ 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

- -Wa,-L
- -Wa,-defsym,*symbol=value*

The following table describes the most common **armasm** command-line options, and shows the equivalent options for the **armclang** integrated assembler.

Additional information about command-line options is available:

- The Arm Compiler for Embedded FuSa Reference Guide provides more detail about the commandline options.
- For a full list of Clang command-line options, consult the Clang and LLVM documentation.

Table 6-1: Comparison of command-line options in armasm and the armclang integrated assembler

armasm option	armclang integrated assembler option	Description
arm_only	No equivalent.	Enforces A32 instructions only.
apcs=/nointerwork	No equivalent.	Specifies that the code in the input file can interwork between A32 and T32 safely. Interworking is always enabled in Arm Compiler for Embedded FuSa 6.
apcs=/ropi, apcs=/noropi	No direct equivalent.	With armasm , the options specify whether the code in the input file is Read-Only Position-Independent (ROPI) code.
		With the armclang integrated assembler, use the GNU assembly .eabi_attribute directive instead.
		To specify that the code is ROPI code, use the directive as follows:
		.eabi_attribute Tag_ABI_PCS_RO_data, 1
		The code is marked as not ROPI code by default.
apcs=/rwpi, apcs=/norwpi	No direct equivalent.	With armasm , the options specify whether the code in the input file is Read-Write Position-Independent (RWPI) code.
		With the armclang integrated assembler, use the GNU assembly .eabi_attribute directive instead.
		To specify that the code is RWPI code, use the directive as follows:
		.eabi_attribute Tag_ABI_PCS_R9_use, 1 .eabi_attribute Tag_ABI_PCS_RW_data, 2
		The code is marked as not RWPI code by default.

armasm option	armclang integrated assembler option	Description
apcs=/hardfp, apcs=/softfp	No direct equivalent.	With armasm , the options set attributes in the object file to request hardware or software floating-point linkage.
		With the armclang integrated assembler, use the GNU assembly .eabi_attribute directive instead.
		To request hardware floating-point linkage, use the directive as follows:
		.eabi_attribute Tag_ABI_VFP_args, 1
		To request software floating-point linkage, use the directive as follows:
		.eabi_attribute Tag_ABI_VFP_args, 0
checkreglist, diag warning=1206	This is the default.	Generates warnings if register lists in LDM and STM instructions are not provided in increasing register number order.
urag_warning=1200		Note: This warning cannot be suppressed or upgraded to an error.
comment_section,	No direct equivalent.	With armasm , the option controls the inclusion of a comment section .comment in object files.
no_comment_section		With the armclang integrated assembler, use the GNU assembly .ident directive to manually add a comment section.
debug,	-g	Instructs the assembler to generate DWARF debug tables.
-d		With armasm , the default format for debug tables is DWARF 3. Named local labels are not preserved in the object file, unless the keep option is used.
		With the armclang integrated assembler, the default format for debug tables is DWARF 4. Named local labels are always preserved in the object file. See the entry forkeep in this table for details.
diag_warning=1645	No equivalent.	With armasm , the option enables warnings about instruction substitutions.
		With the armclang integrated assembler, instruction substitution support is limited. Where it is not supported, the assembler generates an error message.
		Use the armasm warning when migrating code to find instructions being substituted and perform the substitution manually.

armasm option	armclang integrated assembler option	Description
diag_warning=1763	No equivalent.	With armasm , the option enables warnings about automatic generation of IT blocks when assembling T32 code (formerly Thumb code).
		With the armclang integrated assembler, automatic generation of IT blocks is disabled by default. The assembler generates an error message when assembling conditional instructions without an enclosing IT block. To enable automatic generation of IT blocks, use the command-line option – mimplicit-it=always or -mimplicit- it=thumb.
dllexport_all	No direct equivalent.	With armasm , the option gives all exported global symbols STV_PROTECTED visibility in ELF rather than STV_HIDDEN, unless overridden by source directives.
		With the armclang integrated assembler, use the GNU assembly .protected directive to manually give exported symbols STV_PROTECTED visibility.
execstack,	-Wa,noexecstack	With armasm , the option generates a .note.GNU- stack section marking the stack as either executable
no_execstack	No direct equivalent for	or non-executable.
	execstack.	With the armclang integrated assembler, the equivalent option can be used to generate a .note.GNU-stack section marking the stack as non-executable.
		To generate such a section and mark the stack as executable, use the GNU assembly .section directive as follows:
		.section .note.GNU-stack, "x"
		The command-line option -Wa,noexecstack overrides the use of the .section directive.
keep	No direct equivalent.	With armasm , the option instructs the assembler to keep named local labels in the symbol table of the object file, for use by the debugger.
		With the armclang integrated assembler, named local labels defined without using the GNU assembly local symbol name prefix .L are always preserved in the object file.
		Use the command-line option –Wa, –L to automatically preserve all named local labels defined using the GNU assembly local symbol name prefix.

armasm option	armclang integrated assembler option	Description
-M	-М	Instructs the assembler to produce a list of makefile dependency lines suitable for use by a make utility.
		Note: Only dependencies visible to the preprocessor are included. Files added using the GNU assembler syntax .incbin or .include directives (or armasm syntax INCBIN, INCLUDE, or GET directives) are not included. Note: With the armclang integrated assembler, using this option with -o outputs the makefile dependency lines to the file specified. An object file is not produced.
mm	-MM	Creates a single makefile dependency file, without the system header files.
		Note: Only dependencies visible to the preprocessor are included. Files added using the GNU assembler syntax .incbin or .include directives (or armasm syntax INCBIN, INCLUDE, or GET directives) are not included. Note: With the armclang integrated assembler, using this option with -o outputs the makefile dependency file to the file specified. An object file is not produced.
no_hide_all	-fvisibility=default	Gives all exported and imported global symbols STV_DEFAULT visibility in ELF rather than STV_HIDDEN, unless overridden using source directives.
predefine " <i>directive</i> ", pd " <i>directive</i> "	-Wa,-defsym,symbol=value	With armasm , the option instructs the assembler to pre-execute one of the SETA, SETL, or SETS directives as specified using <i>directive</i> .
		With the armclang integrated assembler, the option instructs the assembler to pre-define the symbol <i>symbol</i> with the value <i>value</i> . This GNU assembly .set directive can be used to change this value in the file being assembled.
reduce_paths, no_reduce_paths	No direct equivalent.	Windows systems impose a 260 character limit on file paths. Arm recommends that you avoid using long and deeply nested file paths, in preference to minimizing path lengths using the armasm option reduce_paths, which only works on 32-bit Windows systems.

armasm option	armclang integrated assembler option	Description
unaligned_access,	No direct equivalent.	With armasm , the options instruct the assembler to set an attribute in the object file to enable or disable
no_unaligned_access		the use of unaligned accesses.
		With the armclang integrated assembler, use the GNU assembly .eabi_attribute directive instead.
		To enable the use of unaligned access, use the directive as follows:
		.eabi_attribute Tag_CPU_unaligned_access, 1
		To disable the use of unaligned access, use the directive as follows:
		<pre>.eabi_attribute Tag_CPU_unaligned_access, 0</pre>
unsafe	No direct equivalent.	With armasm , the option enables instructions for architectures other than the target architecture to be assembled without error.
		With the armclang integrated assembler, use the GNU assembly .inst directive to generate such instructions.

6.2 Overview of differences between armasm and GNU syntax assembly code

armasm (for assembling legacy assembly code) uses armasm syntax assembly code.

armclang aims to be compatible with GNU syntax assembly code (that is, the assembly code syntax supported by the GNU assembler, as).

If you have legacy assembly code that you want to assemble with **armclang**, you must convert that assembly code from **armasm** syntax to GNU syntax.

The specific instructions and order of operands in your UAL syntax assembly code do not change during this migration process.

However, you need to make changes to the syntax of your assembly code. These changes include:

- The directives in your code.
- The format of labels, comments, and some types of literals.
- Some symbol names.
- The operators in your code.

The following examples show simple, equivalent, assembly code in both **armasm** and GNU syntax.

GNU syntax

```
// Simple GNU syntax example [1]
// Iterate round a loop 10 times, adding 1 to a register each time.
  .section .text,"ax"
                        // [2]
  .global main
  .balign 4
                      // [3]
// W5 = 100 [4]
// W4 = 0
main:
          w5,#0x64
 MOV
 MOV
         w4,#0
                         // branch to test loop
 B
          test loop
loop:
          w5,w5,#1
                         // Add 1 to W5
 ADD
        w4,w4,#1
                         // Add 1 to W4
 ADD
test loop:
 CM\overline{P}
                         // if W4 < 10, branch back to loop</pre>
           w4,#0xa
 BLT
           loop
                         // [5]
  .end
```

Example notes:

- [1] See Comments.
- [2] See Sections.
- [3] See Labels.
- [4] See Numeric literals.
- [5] See Miscellaneous directives.

armasm syntax

```
; Simple armasm syntax example
; Iterate round a loop 10 times, adding 1 to a register each time.
 AREA ||.text||, CODE, READONLY, ALIGN=2
 ENTRY
main PROC
          w5,#0x64 ; W5 = 100
w4,#0 ; W4 = 0
test_loop ; branch t
 MOV
 MOV
                          ; branch to test loop
 В
loop
 ADD
           w5,w5,#1
                          ; Add 1 to W5
           w4,w4,#1
                          ; Add 1 to W4
 ADD
test loop
 CM\overline{P}
           w4,#0xa
                           ; if W4 < 10, branch back to loop
 BLT
           loop
  ENDP
  END
```

Related information

Comments on page 78 Labels on page 79 Numeric local labels on page 79 Functions on page 81 Sections on page 82 Symbol naming rules on page 84 Numeric literals on page 84 Operators on page 85 Alignment on page 86 PC-relative addressing on page 87 Conditional directives on page 89 Data definition directives on page 90 Instruction set directives on page 92 Miscellaneous directives on page 92 Symbol definition directives on page 94 About the Unified Assembler Language

6.3 Comments

A comment identifies text that the assembler ignores.

armasm syntax

A comment is the final part of a source line. The first semicolon on a line marks the beginning of a comment except where the semicolon appears inside a string literal.

The end of the line is the end of the comment. A comment alone is a valid line.

For example:

```
; This whole line is a comment
; And also this line
myProc: PROC
MOV r1, #16 ; Load R0 with 16
```

GNU syntax

GNU syntax assembly code provides two different methods for marking comments:

• The /* and */ markers identify multiline comments:

```
/* This is a comment
that spans multiple
lines */
```

• The // marker identifies the remainder of a line as a comment:

MOV R0,#16 // Load R0 with 16

Related information

GNU Binutils - Using as: Comments

6.4 Labels

Labels are symbolic representations of addresses. You can use labels to mark specific addresses that you want to refer to from other parts of the code.

armasm syntax

A label is written as a symbol beginning in the first column. A label can appear either in a line on its own, or in a line with an instruction or directive. Whitespace separates the label from any following instruction or directive:

```
MOV R0,#16
loop SUB R0,R0,#1 ; "loop" is a label
CMP R0,#0
BGT loop
```

GNU syntax

A label is written as a symbol that either begins in the first column, or has nothing but whitespace between the first column and the label. A label can appear either in a line on its own, or in a line with an instruction or directive. A colon ":" follows the label (whitespace is allowed between the label and the colon):

```
MOV R0,#16
loop: // "loop" label on its own line
SUB R0,R0,#1
CMP R0,#0
BGT loop
```

```
MOV R0,#16
loop: SUB R0,R0,#1 // "loop" label in a line with an instruction
CMP R0,#0
BGT loop
```

Related information GNU Binutils - Using as: Labels

6.5 Numeric local labels

Numeric local labels are a type of label that you refer to by a number rather than by name. Unlike other labels, the same numeric local label can be used multiple times and the same number can be used for more than one numeric local label.

Legacy armasm syntax

A numeric local label is a number in the range 0-99, optionally followed by a scope name corresponding to a ROUT directive.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

%[F|B][A|T]n[routname]

Where:

- F and B instruct the assembler to search forwards and backwards respectively. By default, the assembler searches backwards first, then forwards.
- A and τ instruct the assembler to search all macro levels or only the current macro level respectively. By default, the assembler searches all macros from the current level to the top level, but does not search lower level macros.
- *n* is the number of the numeric local label in the range 0-99.
- *routname* is an optional scope label corresponding to a ROUT directive. If *routname* is specified in either a label or a reference to a label, the assembler checks it against the name of the nearest preceding ROUT directive. If it does not match, the assembler generates an error message and the assembly fails.

For example, the following code implements an incrementing loop:

1	MOV	r4,#1	; r4=1	
Ţ	ADD CMP BLT	r4,#0x5	<pre>; Local label ; Increment r4 ; if r4 < 5 ;branch backwards to local label "</pre>	1"

Here is the same example using a ROUT directive to restrict the scope of the local label:

```
routA
         ROUT
                              ; Start of "routA" scope
                  r4,#1
                              ; r4=1
         MOV
                              ; Local label
1routA
                  r4,r4,#1
                              ; Increment r4
         ADD
                              ; if r4 < 9...
         CMP
                  r4,#0x9
                              ; ... branch backwards to local label "1routA"
         BLT
                  %b1routA
                               ; Start of "routB" scope (and therefore end of "routA"
routB
         ROUT
 scope)
```

GNU syntax

A numeric local label is a number in the range 0-99.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

 $n\{f|b\}|n\{f|b\}$

Where:

- *n* is the number of the numeric local label in the range 0-99.
- f and b instruct the assembler to search forwards and backwards respectively. There is no default. You must specify one of f or b.

For example, the following code implements an incrementing loop:

```
MOV r4,#1 // r4=1

1: // Local label

ADD r4,r4,#1 // Increment r4

CMP r4,#0x5 // if r4 < 5...

BLT lb // ...branch backwards to local label "1"
```


GNU syntax assembly code does not provide mechanisms for restricting the scope of local labels.

Related information

GNU Binutils - Using as: Labels ROUT directive

6.6 Functions

Assemblers can identify the start of a function when producing DWARF call frame information for ELF.

armasm syntax

The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

The ENDFUNC directive marks the end of a function. ENDP is a synonym for ENDFUNC.

For example:

```
myproc PROC
; Procedure body
ENDP
```

GNU syntax

Use the .type directive to identify symbols as functions. For example:

```
.type myproc, "function"
myproc:
// Procedure body
```

GNU syntax assembly code provides the .func and .endfunc directives. However, these are not supported by **armclang**. **armclang** uses the .size directive to set the symbol size:

size myproc, .Lmyproc_end0-myproc

Functions must be typed to link properly.

Related information

GNU Binutils - Using as: .type

6.7 Sections

Sections are independent, named, indivisible chunks of code or data that are manipulated by the linker.

Legacy armasm syntax

The AREA directive instructs the assembler to assemble a new code or data section.

Section attributes within the AREA directive provide information about the section. Available section attributes include the following:

- CODE specifies that the section contains machine instructions.
- READONLY specifies that the section must not be written to.
- ALIGN=n specifies that the section is aligned on a 2^n byte boundary

For example:

AREA mysection, CODE, READONLY, ALIGN=3

The ALIGN attribute does not take the same values as the ALIGN directive. The ALIGN=n attribute on the AREA directive aligns on a 2^n byte boundary. The ALIGN n directive aligns on an n-byte boundary.

GNU syntax

The .section directive instructs the assembler to assemble a new code or data section.

Flags provide information about the section. Available section flags include the following:

- a specifies that the section is allocatable.
- x specifies that the section is executable.
- w specifies that the section is writable.
- s specifies that the section contains null-terminated strings.

For example:

.section mysection,"ax"

Not all **armasm** syntax AREA attributes map onto GNU syntax .section flags. For example, the **armasm** syntax ALIGN attribute corresponds to the GNU syntax .balign directive, rather than a .section flag:

```
.section mysection,"ax"
.balign 8
```

When using Arm[®] Compiler 5, section names do not need to be unique. Therefore, you could use the same section name to create different section types.

Arm Compiler for Embedded FuSa 6 supports multiple sections with the same section name only if you specify a unique ID. You must ensure that different section types either:

- Have a unique section name.
- Have a unique ID, if they have the same section name.

If you use the same section name for another section or symbol, without a unique ID, then **armclang** integrated assembler merges the sections and gives the merged section the flags of the first section with that name.


```
// stores both the code and data in one section
// uses the flags from the first section
.section "sectionX", "ax"
mov r0, r0
.section "sectionX", "a", %progbits
.word 0xdeadbeef
// stores both the code and data in one section
// uses the flags from the first section
.section "sectionY", "a", %progbits
.word 0xdeadbeef
.section "sectionY", "ax"
mov r0, r0
```

When you assemble the above example code with:

```
armclang --target=arm-arm-none-eabi -c -march=armv8-m.main
example_sections.s
```

The armclang integrated assembler:

- merges the two sections named sectionx into one section with the flags "ax".
- merges the two sections named sections into one section with the flags "a", %progbits.

Related information

GNU Binutils - Using as: .section

6.8 Symbol naming rules

armasm syntax assembly code and GNU syntax assembly code use similar, but different naming rules for symbols.

Symbol naming rules which are common to both **armasm** syntax and GNU syntax include:

- Symbol names must be unique within their scope.
- Symbol names are case-sensitive, and all characters in the symbol name are significant.
- Symbols must not use the same name as built-in variable names or predefined symbol names.

Symbol naming rules which differ between **armasm** syntax and GNU syntax include:

• **armasm** syntax symbols must start with a letter or the underscore character "_".

GNU syntax symbols must start with a letter, the underscore character "_", or a period ".".

• **armasm** syntax symbols use double bars to delimit symbol names containing non-alphanumeric characters (except for the underscore):

IMPORT ||Image\$\$ARM_LIB_STACKHEAP\$\$ZI\$\$Limit||

GNU syntax symbols do not require double bars:

.global Image\$\$ARM_LIB_STACKHEAP\$\$ZI\$\$Limit

Related information

GNU Binutils - Using as: Symbol Names

6.9 Numeric literals

armasm syntax assembly and GNU syntax assembly provide different methods for specifying some types of numeric literal.

Implicit shift operations

armasm syntax assembly allows immediate values with an implicit shift operation. For example, the MOVK instruction takes a 16-bit operand with an optional left shift. **armasm** accepts the instruction MOVK $\times 1$, $\#0 \times 40000$, converting the operand automatically to MOVK $\times 1$, $\#0 \times 4$, LSL #16.

GNU syntax assembly expects immediate values to be presented as encoded. The instruction MOVK x1, #0x40000 results in the following message: error: immediate must be an integer in range [0, 65535].

Hexadecimal literals

armasm syntax assembly provides two methods for specifying hexadecimal literals, the prefixes "&" and "Ox".

For example, the following are equivalent:

ADD r1, #0xAF ADD r1, #&AF

GNU syntax assembly only supports the "0x" prefix for specifying hexadecimal literals. Convert any "&" prefixes to "0x".

n_base-n-digits format

armasm syntax assembly lets you specify numeric literals using the following format:

n_base-n-digits

For example:

- 2_1101 is the binary literal 1101 (13 in decimal).
- 8_27 is the octal literal 27 (23 in decimal).

GNU syntax assembly does not support the $n_{base-n-digits}$ format. Convert all instances to a supported numeric literal form.

For example, you could convert:

ADD r1, #2_1101

to:

ADD r1, #13

or:

ADD r1, #0xD

Related information

GNU Binutils - Using as: Integers

6.10 Operators

armasm syntax assembly and GNU syntax assembly provide different methods for specifying some operators.

The following table shows how to translate **armasm** syntax operators to GNU syntax operators.

Table 6-2: Operator translation

armasm syntax operator	GNU syntax operator
:OR:	
:EOR:	^
:AND:	&
:NOT:	~
:SHL:	<<
:SHR:	>>
:LOR:	
:LAND:	& &
:ROL:	No GNU equivalent
:ROR:	No GNU equivalent

Related information

GNU Binutils - Using as: Infix Operators

6.11 Alignment

Data and code must be aligned to appropriate boundaries.

For example, The T32 pseudo-instruction ADR can only load addresses that are word aligned, but a label within T32 code might not be word aligned. You must use an alignment directive to ensure four-byte alignment of an address within T32 code.

An alignment directive aligns the current location to a specified boundary by padding with zeros or NOP instructions.

The integrated assembler sets a minimum alignment of 4 bytes for a .text section. However, if you define your own sections with the integrated assembler, then you must include the .balign directive to set the correct alignment. For a section containing T32 instructions, set the alignment to 2 bytes. For a section containing A32 instructions, set the alignment to 4 bytes.

armasm syntax

armasm syntax assembly provides the ALIGN n directive, where n specifies the alignment boundary in bytes. For example, the directive ALIGN 128 aligns addresses to 128-byte boundaries.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential **armasm** syntax assembly also provides the **PRESERVE8** directive. The **PRESERVE8** directive specifies that the current file preserves eight-byte alignment of the stack.

GNU syntax

GNU syntax assembly provides the .balign *n* directive, which uses the same format as ALIGN.

Convert all instances of ALIGN n to .balign n.

GNU syntax assembly also provides the .align *n* directive. However, the format of *n* varies from system to system. The .balign directive provides the same alignment functionality as .align with a consistent behavior across all architectures.

Convert all instances of preserve8 to .eabi_attribute Tag_ABI_align_preserved, 1.

Related information

GNU Binutils - Using as: ARM Machine Directives

6.12 PC-relative addressing

armasm syntax assembly and GNU syntax assembly provide different methods for performing PC-relative addressing.

armasm syntax

armasm syntax assembly provides the symbol ${pc}$ to let you specify an address relative to the current instruction.

For example:

ADRP x0, {pc}

GNU syntax

GNU syntax assembly does not support the ${pc}$ symbol. Instead, it uses the special dot "." character, as follows:

ADRP x0, .

Related information

GNU Binutils - Using as: The Special Dot Symbol

6.13 A32 and T32 instruction substitutions

In certain circumstances, if the value of an Operand2 constant is not available with a given instruction, but its logical inverse or negation is available, then **armasm** can produce an equivalent instruction with the inverted or negated constant. The **armclang** integrated assembler provides limited support for such substitutions.

Substitutions when using armasm

More information about the syntax of Operand2 constants is available in the Arm Instruction Set for Armv7 and earlier Arm architectures Reference Guide. The following table shows the instruction substitutions supported by **armasm**, based on the values of Operand2 constants for the A32 and T32 instruction sets. The equivalent instructions shown can be used manually with the **armclang** integrated assembler for instructions where automatic substitution is not supported.

Table 6-3: A32 and T32 instruction substitutions supported by armasm

A32 and T32 instruction	Equivalent instruction	Constant substitution method
ADC{S}{cond} {Rd}, Rn, #constant	$SBC{S}{cond} {Rd}, Rn, #~constant$	Logical inversion
$ADD{S}{cond} {Rd}, Rn, #constant$	$SUB{S}{cond} {Rd}, Rn, #-constant$	Negation
AND{S}{cond} Rd, Rn, #constant	BIC{S}{cond} Rd, Rn, #~constant	Logical inversion
BIC{S}{cond} Rd, Rn, #constant	AND{S}{cond} Rd, Rn, #~constant	Logical inversion
CMP{cond} Rn, #constant	CMN{cond} Rn, #-constant	Negation
CMN{cond} Rn, #constant	CMP{cond} Rn, #-constant	Negation
MOV{S}{cond} Rd, #constant	MVN{S}{cond} Rd, #~constant	Logical inversion
MVN{S}{cond} Rd, #constant	MOV{S}{cond} Rd, #~constant	Logical inversion
ORN{S}{cond} Rd, Rn, #constant	ORR{S}{cond} Rd, Rn, #~constant	Logical inversion
(T32 only)	(T32 only)	
ORR{S}{cond} Rd, Rn, #constant	ORN{S}{cond} Rd, Rn, #~constant	Logical inversion
(T32 only)	(T32 only)	
SBC{S}{cond} {Rd}, Rn, #constant	ADC $\{S\}$ $\{cond\}$ $\{Rd\}$, Rn, #~constant	Logical inversion
SUB{S}{cond} {Rd}, Rn, #constant	$ADD{S}{cond} {Rd}, Rn, #-constant$	Negation

To find instruction substitutions in code assembled using **armasm**, use the command-line option -- diag_warning=1645.

Substitutions when using armclang integrated assembler

The **armclang** integrated assembler is also able to produce valid equivalent instructions through substitution, by inverting or negating the specified immediate value. This applies to both assembly language source files and to inline assembly code in C and C++ language source files.

You can disable this substitution using the **armclang** option -mno-neg-immediates.

Related information

-mno-neg-immediates armclang option

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

6.14 A32 and T32 pseudo-instructions

armasm supports several A32 and T32 pseudo-instructions. The support for the pseudo-instructions varies with the **armclang** integrated assembler.

More information about the A32 and T32 pseudo-instructions is available in the *Arm Compiler Reference Guide*. The following table shows how to migrate the pseudo-instructions for use with the **armclang** integrated assembler:

Table 6-4: A32 and T32 pseudo-instruction migration

A32 and T32 pseudo-instruction	armclang integrated assembler equivalent	
ADRL{cond} Rd, label	No equivalent.	
	Use an ADR instruction if <i>label</i> is within the supported offset range.	
	Use an LDR pseudo-instruction if <i>label</i> is outside the supported offset range for an ADR instruction.	
CPY{cond} Rd, Rm	mov{cond} Rd, Rm	
LDR{cond}{.W} Rt, =expr	Identical.	
LDR{cond}{.W} Rt, =label_expr	Identical.	
MOV32{cond} Rd, expr	Use the following instruction sequence:	
	<pre>movw{cond} Rd, #:lower16:expr movt{cond} Rd, #:upper16:expr</pre>	
NEG{cond} Rd, Rm	rsbs{ <i>cond</i> } <i>Rd</i> , <i>Rm</i> , #0	
UND{cond}{.W} {#expr}	Use the following instruction for the A32 instruction set:	
	udf{c}{q} {#}imm	
	Use the following instruction for the T32 instruction set with 8-bit encoding:	
	udf{c}{q} {#}imm	
	Use the following instruction for the T32 instruction set with 16-bit encoding:	
	udf{c}.w {#}imm	

Related information

Reference Guide: ADRL pseudo-instruction

6.15 Conditional directives

Conditional directives specify conditions that control whether or not to assemble a sequence of assembly code.

The following table shows how to translate **armasm** syntax conditional directives to GNU syntax directives:

Table 6-5: Conditional directive translation

armasm syntax directive	GNU syntax directive
IF	.if family of directives
IF :DEF:	.ifdef
IF :LNOT::DEF:	.ifndef
ELSE	.else
ELSEIF	.elseif
ENDIF	.endif

In addition to the change in directives shown, the following syntax differences apply:

• In **armasm** syntax, the conditional directives can use forward references. This is possible as **armasm** is a two-pass assembler. In GNU syntax, forward references are not supported, as the **armclang** integrated assembler only performs one pass over the main text.

If a forward reference is used with the .ifdef directive, the condition will always fail implicitly. Similarly, if a forward reference is used with the .ifndef directive, the condition will always pass implicitly.

• In **armasm** syntax, the maximum total nesting depth for directive structures such as IF...ELSE...ENDIF is 256. In GNU syntax, this limit is not applicable.

Related information

GNU Binutils - Using as: .if

6.16 Data definition directives

Data definition directives allocate memory, define data structures, and set initial contents of memory.

The following table shows how to translate **armasm** syntax data definition directives to GNU syntax directives:

This list only contains examples of common data definition assembly directives. It is not exhaustive.

Table 6-6: Data definition directives translation

armasm syntax directive	GNU syntax directive	Description
DCB	.byte	Allocate one-byte blocks of memory, and specify the initial contents.
DCW	.hword	Allocate two-byte blocks of memory, and specify the initial contents.
DCD	.word	Allocate four-byte blocks of memory, and specify the initial contents.
DCI	.inst	Allocate a block of memory in the code, and specify the opcode. In A32 code, this is a four-byte block. In T32 code, this can be a two-byte or four-byte block. .inst.n allocates a two-byte block and .inst.w allocates a four-byte block.
DCQ	.quad	Allocate eight-byte blocks of memory, and specify the initial contents.
SPACE	.org	Allocate a zeroed block of memory.
		The armasm syntax SPACE directive allocates a zeroed block of memory with the specified size. The GNU assembly .org directive zeroes the memory up to the given address. The address must be greater than the address at which the directive is placed. The following example shows the armasm syntax and GNU syntax methods of creating a 100-byte zeroed block of memory using these directives:
		<pre>; armasm syntax ; implementation start_address SPACE 0x100 // GNU syntax implementation start_address: .org start_address + 0x100</pre>
		Note: If label arithmetic is not required, the GNU assembly .space directive can be used instead of the .org directive. However, Arm recommends using the .org directive wherever possible.

The following examples show how to rewrite a vector table in both **armasm** and GNU syntax.

armasm <mark>syntax</mark>		GNU syntax	
_	DCD Prefetch_Handler DCD Abort Handler	Vectors: ldr pc, Reset_Addr ldr pc, Undefined_Addr ldr pc, SVC_Addr ldr pc, Prefetch_Addr ldr pc, Abort_Addr b . ldr pc, IRQ_Addr ldr pc, FIQ_Addr .balign 4 Reset_Addr: .word Reset_Handler Undefined_Addr: .word SVC_Handler Prefetch_Addr: .word SVC_Handler Prefetch_Addr: .word Prefetch_Handler IRQ_Addr: .word IRQ_Handler FIQ_Addr: word FIQ_Handler	// Reserved vector

Related information

GNU Binutils - Using as: .byte

6.17 Instruction set directives

Instruction set directives instruct the assembler to interpret subsequent instructions as either A32 or T32 instructions.

The following table shows how to translate **armasm** syntax instruction set directives to GNU syntax directives:

Table 6-8: Instruction set directives translation

armasm syntax directive	GNU syntax directive	Description
ARM or CODE32		Interpret subsequent instructions as A32 instructions.
THUMB or CODE16		Interpret subsequent instructions as T32 instructions.

Related information

GNU Binutils - Using as: ARM Machine Directives

6.18 Miscellaneous directives

Miscellaneous directives perform a range of different functions.

This topic includes descriptions of [COMMUNITY] features. See Support level definitions.

The following table shows how to translate **armasm** syntax miscellaneous directives to GNU syntax directives:

Table 6-9: Miscellaneous directives translation

armasm syntax directive	GNU syntax directive	Description
foo EQU 0x1C	.equ foo, 0x1C	Assigns a value to a symbol. Note the rearrangement of operands.
		.equ is a synonym for .set.
EXPORT StartHere	.global StartHere	Declares a symbol that can be used by the linker (that is, a symbol that is visible to the linker).
GLOBAL StartHere	.type StartHere, @function	<pre>armasm automatically determines the types of exported symbols. However, armclang requires that you explicitly specify the types of exported symbols using the .type directive.</pre> If the .type directive is not specified, the linker outputs warnings of the form: Warning: L6437W: Relocation #RELA:1 in test.o(.text) with respect to symbol Warning: L6318W: test.o(.text) contains branch to a non-code symbol symbol.
GET file	.include file	Includes a file within the file being assembled.
INCLUDE file		
IMPORT foo	.global foo	Provides the assembler with a name that is not defined in the current assembly.
INCBIN	.incbin	Includes a file within the file being assembled. The file is included verbatim. The assembler always emits a \$d (data) mapping symbol for the .incbin directive. [COMMUNITY]
INFO n, "string"	.warning "string"	The INFO directive supports diagnostic generation on either pass of the assembly (specified by <i>n</i>). The .warning directive does not let you specify a particular pass, because the armclang integrated assembler only performs one pass.

armasm syntax directive	GNU syntax directive	Description
ENTRY	armlinkentry=location	The ENTRY directive declares an entry point in an armasm legacy assembler file. armclang does not provide an equivalent directive. Use either the armclang option -e or the armlink option entry=location to specify the initial entry point directly to the linker. If you need additional entry points in other objects, then use the armlink option keep=section_id to identify them. This option ensures the sections for the additional entry points are not removed by unused section elimination.
END	.end	Marks the end of the assembly file.
PRESERVE8	.eabi_attribute Tag_ ABI_align_preserved, 1	Emits a build attribute which guarantees that the functions in the file preserve 8-byte stack alignment.
		Note: For armasm syntax assembly language source files, even if you do not specify the PRESERVE8 directive, armasm automatically emits the build attribute if all functions in the file preserve 8-byte stack alignment. For GNU syntax assembly language source files, the armclang integrated assembler does not automatically emit this build attribute. Therefore you must manually inspect and ensure that all functions in your GNU syntax assembly language source file preserve 8-byte stack alignment and then manually add the directive to the file.

Related information

-e

--entry=location

--keep=section_id (armlink)

GNU Binutils - Using as: .type

6.19 Symbol definition directives

In **armasm**, symbol definition directives declare and set arithmetic, logical, or string variables. In the GNU assembler syntax, these directives define ELF symbols. There are no direct GNU syntax equivalents for **armasm** variables.

The following table shows how to translate **armasm** syntax symbol definition directives to GNU syntax directives:

This list only contains examples of common symbol definition directives. It is not exhaustive.

armasm syntax directive	GNU syntax directive	Description
foo RN 11	foo .req r11	Define an alias foo for register R11.
foo QN q5.I32	foo .req q5	Define an I32 -typed alias foo for the quad-precision register Q5.
VADD foo, foo, foo	VADD.I32 foo, foo, foo	 When using the armasm syntax, you can specify a typed alias for quad-precision registers. The example defines an I32-typed alias foo for the quad-precision register Q5. When using GNU syntax, you must specify the type on the instruction rather than on the register. The example specifies the I32 type on the VADD instruction.
foo DN d2.I32	foo .req d2	Define an I32 -typed alias foo for the double- precision register D2.
VADD foo, foo, foo	VADD.I32 foo, foo, foo	When using the armasm syntax, you can specify a typed alias for double-precision registers. The example defines an I32-typed alias foo for the double-precision register D2. When using GNU syntax, you must specify the type on the instruction rather than on the register. The example specifies the I32 type on the VADD instruction.

Table 6-10: Symbol definition directives translation

Related information

GNU Binutils - Using as: ARM Machine Directives

6.20 Migration of armasm macros to integrated assembler macros

The **armclang** integrated assembler provides similar macro features to those provided by **armasm**. The macro syntax is based on GNU assembler macro syntax.

Additional information about macro features is available:

- The Arm Compiler for Embedded FuSa Reference Guide provides more detail about the macro directives supported, and examples of using macros.
- The GNU Binutils Using as document provides more detail about GNU assembly macro directives.

Macro directive features

The following table describes the most common **armasm** macro directive features, and shows the equivalent features for the **armclang** integrated assembler.

armasm feature	armclang integrated assembler feature	Description
MACRO,	.macro,	Directives to mark the start and end of the definition of a macro.
MEND directives	.endm directives	
{\$label} macro parameter	Use a normal macro parameter.	Optionally define an internal label to use within the macro.
{\$cond} macro parameter	Use a normal macro parameter.	Optionally define a condition code to use within the macro.
{ <pre>\$parameter{,\$parameter}} custom macro parameter specification</pre>	<pre>{parameter{:type}{,parameter{:type}}} custom macro parameter and parameter type specification</pre>	With armasm , any number of custom macro parameters can be defined. Unspecified parameters are substituted with an empty string.
		With the armclang integrated assembler, the custom macro parameters can optionally have a parameter type type. This can be either req or vararg. Unspecified parameters are substituted with an empty string.
		The req type specifies a required parameter. The assembler generates an error when instantiating a macro if a required parameter is missing and a default value is not available.
		The vararg type collects all remaining parameters as one parameter. It can only be used as the last parameter within the list of parameters for a given macro. Only one vararg parameter can be specified.
MEXIT directive	.exitm directive	Exit early from a macro definition.

armasm feature	armclang integrated assembler feature	Description
IF,	.if family of directives,	The directives allow conditional assembly of instructions.
ELSE,	and the .else,	With armasm , the conditional assembly
ELIF,	.elseif,	directives use a logical expression that evaluates to either TRUE or FALSE as
ENDIF conditional assembly directives	.endif directives	their controlling expression.
		With the armclang integrated assembler, multiple variants of the GNU assembly .if directive are available, referred to as the .if family of directives.
		For the .if and .elseif directives, the controlling expression is a logical expression that evaluates to either TRUE or FALSE.
		For other directives in the .if family of directives, the controlling expression is an implicit part of the directive used, and varies for each such directive.
WHILE,	.rept,	The directives allow a sequence of instructions or directives to be assembled repeatedly.
WEND directives	.endr directives	assembled repeatedly.
		With armasm , the WHILE directive uses a logical expression that evaluates to either TRUE or FALSE as its controlling expression. The sequence enclosed between a WHILE and WEND directive pair is assembled until the logical expression evaluates to FALSE.
		With the armclang integrated assembler, the GNU assembly .rept directive takes a fixed number of repetitions as a parameter. The sequence enclosed between a .rept and .endr directive pair is assembled the specified fixed number of times.
		To replicate the effect of using a logical expression to repeatedly assemble a code sequence, the .rept directive can be used within a macro. See the example provided later in this section.

armasm feature	armclang integrated assembler feature	Description
ASSERT directive	Use a combination of the .if family of directives and the .error directive.	With armasm , the ASSERT directive generates an error message during assembly if a given assertion is false. A logical expression that evaluates to TRUE or FALSE is used as the assertion. With the armclang integrated assembler, this functionality can be achieved by using a GNU assembly directive from the .if family of directives to conditionally display an error message during assembly using the GNU assembly .error directive.
		Macros can be created to simplify this process. See the example provided later in this section.

Notable differences between armasm macro syntax and GNU macro syntax

The following syntax restrictions apply to GNU macro syntax in addition to the differences due to macro directives:

- In **armasm** macro syntax, using the pipe character \1 as the parameter value when instantiating a macro selects the default value of the parameter. In GNU macro syntax, leaving the parameter value empty when instantiating a macro selects the default value of the parameter. If a default value is not specified in the macro definition, an empty string is used.
- In **armasm** macro syntax, a dot can be used between a parameter and subsequent text, or another parameter, if a space is not required in the expansion. In GNU macro syntax, a set of parentheses () can be used between a parameter and subsequent text, if a space is not required in the expansion. There is no need to separate a parameter from another subsequent parameter.
- Although the integrated assembler is case-insensitive to register names, the GNU assembly .ifc directive always performs a case-sensitive comparison. Manually check that the register names use the same case-sense when comparing them using the directive.

Migration of macro examples provided in the Arm Compiler for Embedded FuSa Reference Guide

Table 6-12: NOT EQUALS assertion

```
armasm syntax implementation

ASSERT arg1 <> arg2

GNU syntax implementation

/* Helper macro to replicate ASSERT <> directive
    functionality from armasm.
    Displays error if NE assertion fails. */
.macro assertNE arg1:req, arg2:req, message:req
.ifc \arg1, \arg2
    .error "\message"
.endm
```

Table 6-13: Unsigned integer division macro - armasm syntax implementation

The macro takes the following parameters:

\$Bot

The register that holds the divisor.

\$Top

The register that holds the dividend before the instructions are executed. After the instructions are executed, it holds the remainder.

\$Div

The register where the quotient of the division is placed. It can be NULL ("") if only the remainder is required.

\$Temp

A temporary register used during the calculation.

\$Lab \$Lab	ASSERT \$Top <> \$Temp ASSERT \$Bot <> \$Temp IF "\$Div" <> ""	: not all different : These three only matter if \$Div : is not null ("")
90		<pre>; Put divisor in \$Temp ; double it until ; 2 * \$Temp > \$Top ; The b means search backwards ; Omit next instruction if \$Div ; is null ; Initialize quotient</pre>
91	CMP \$Top, \$Temp	

Table 6-14: Unsigned integer division macro - GNU syntax implementation

The macro takes the following parameters:

Lab

A label to mark the start of the code. This parameter is required.

BotRegNum

The register number for the register that holds the divisor. This parameter is required.

TopRegNum

The register number for the register that holds the dividend before the instructions are executed. After the instructions are executed, it holds the remainder. This parameter is required.

DivRegNum

The register number for the register where the quotient of the division is placed. It can be NULL ("") if only the remainder is required. This parameter is optional.

TempRegNum

The register number for a temporary register used during the calculation. This parameter is required.

```
.macro DivMod Lab:req, DivRegNum, TopRegNum:req, BotRegNum:req, TempRegNum:req
assertNE \TopRegNum, \BotRegNum, "Top and Bottom cannot be the same register"
assertNE \TopRegNum, \TempRegNum, "Top and Temp cannot be the same register"
assertNE \BotRegNum, \TempRegNum, "Bottom and Temp cannot be the same register"
      .ifnb \DivRegNum
           assertNE \DivRegNum, \TopRegNum, "Div and Top cannot be the same register"
assertNE \DivRegNum, \BotRegNum, "Div and Bottom cannot be the same register"
assertNE \DivRegNum, \TempRegNum, "Div and Temp cannot be the same register"
     .endif
\Lab:
                                                                      // Put divisor in r\TempRegNum
     mov
                 r\TempRegNum, r\BotRegNum
                                                        lsr #1 // double it until
                 r\TempRegNum, r\TopRegNum,
     cmp
90:
                 r\TempRegNum, r\TempRegNum, lsl #1 // 2 * r\TempRegNum > r\TopRegNum
     movls
                 r\TempRegNum, r\TopRegNum,
                                                         lsr #1
     cmp
                                             // The 'b' means search backwards
// Omit next instruction if r\DivRegNum is null
                 90b
     bls
      .ifnb \DivRegNum
                                              // Initialize quotient
           mov r\DivRegNum, #0
      .endif
91:
                 r\TopRegNum, r\TempRegNum
                                                                           // Can we subtract r\TempRegNum?
     cmp
     subcs
                 r\TopRegNum, r\TopRegNum, r\TempRegNum // If we can, then do so
     .ifnb \DivRegNum
                                              // Omit next instruction if r\DivRegNum is null
           adc r\DivRegNum, r\DivRegNum, r\DivRegNum
                                                                          // Double r\DivRegNum
      .endif
                 r\TempRegNum, r\TempRegNum, lsr #1
     mov
                                                                     // Halve r\TempRegNum
                                                                      11
                 r\TempRegNum, r\BotRegNum
                                                                         and loop until
      cmp
                                                                      // less than divisor
                 91b
     bhs
      .endm
```

Notable differences from the **armasm** syntax implementation:

- A custom macro, assertNE, is used instead of the **armasm** directive ASSERT.
- Register numbers are used instead of registers as parameters. This is because the GNU assembly .ifc directive used for the assertNE assertions treats its operands as case-sensitive.
- The GNU assembly .ifnb directive is used to check if the parameter DivRegNum has been defined. In the **armasm** syntax implementation, the **armasm** directive IF is used.

Table 6-15: Assembly-time diagnostics macro - armasm syntax implementation

```
MACRO ; Macro definition
diagnose $param1="default" ; This macro produces
INFO 0,"$param1" ; assembly-time diagnostics
MEND ; (on second assembly pass)
; macro expansion
diagnose ; Prints blank line at assembly-time
diagnose | ; Prints "hello" at assembly-time
diagnose | ; Prints "default" at assembly-time
```

Table 6-16: Assembly-time diagnostics macro - GNU syntax implementation

```
// macro definition
.macro diagnose, param1="default"
.warning "\param1"
.endm
// macro instantiation
.section "diagnoseMacro", "ax"
diagnose "" // Prints a warning with an empty string at assembly-time
// Cannot print blank line as the .print directive is not supported
diagnose "hello" // Prints a warning with the message "hello" at assembly-time
diagnose // Prints a warning with the default message "default"
// at assembly-time
```

Notable differences from the **armasm** syntax implementation:

- It is not possible to print a blank line at assembly-time using the GNU assembly .warning directive. Only a warning with an empty
 message can be printed.
- The format of the diagnostic message displayed is different between **armasm** and the **armclang** integrated assembler.

With armasm, the diagnostic messages displayed at assembly-time by the macro example are:

```
"macros_armasm.S", line 11:
"macros_armasm.S", line 12: hello
"macros_armasm.S", line 13: default
```

With the **armclang** integrated assembler, the diagnostic messages displayed at assembly-time by the macro example are:

```
<instantiation>:1:1: warning:
.warning ""
^
macros_armclang.S:11:5: note: while in macro instantiation
diagnose ""
^
<instantiation>:1:1: warning: hello
.warning "hello"
^
macros_armclang.S:13:5: note: while in macro instantiation
diagnose "hello"
^
<instantiation>:1:1: warning: default
.warning "default"
^
macros_armclang.S:14:5: note: while in macro instantiation
diagnose
^
```

Table 6-17: Conditional loop macro - armasm syntax implementation

The macro takes the following parameters:

\$counter

The assembly-time variable for the loop counter. This parameter is required. The {**\$label**} parameter for the MACRO directive has been used for this parameter. If a normal macro parameter is used, the parameter cannot be instantiated as a label.

\$N

The maximum number of iterations for the loop. This parameter is required.

\$decr

The loop decrement value. This parameter is optional.

do

The text to which \$counter is appended in each iteration of the loop. This parameter is required.

```
MACRO
            WhileLoop $N, $decr="1", $do ; macro definition
$counter
           "$counter" <> ""
    ASSERT
                                         ; check that $counter has been specified
           "$N" <> ""
"$do" <> ""
                                         ; check that $N has been specified
    ASSERT
    ASSERT
                                         ; check that $do has been specified
            $counter
                                         ; create new local variable $counter
   GBLA
$counter
            SETA $N
                                         ; initialise $counter
    WHILE
            counter > 0
                                         ; loop while $counter > 0
                                         ; assemble in each iteration of the loop
            $do$counter
           SETA $counter-$decr
$counter
                                        ; decrement the counter by $decr
    WEND
    MEND
;
 macro instantiation
    AREA
           WhileLoopMacro,CODE
    THUMB
counter
           WhileLoop 10, 2, "mov r0, #"
    END
```

Table 6-18: Conditional loop macro - GNU syntax implementation

The macro takes the following parameters: counter The assembly-time variable for the loop counter. This parameter is required. Ν The maximum number of iterations for the loop. This parameter is required. decr The loop decrement value. This parameter is optional. do The text to which \counter is appended in each iteration of the loop. This parameter is required. /* Macro that inserts the \counter value at the end of all \do varargs, up to N times. */ .macro WhileLoop, counter:req, N:req, decr=1, do:vararg // loop up to \N times .rept \N .ifgt \counter // assemble only if \counter is greater than zero \do\counter .set \counter, \counter-\decr // decrement the counter by \decr .endif .endr .endm macro instantiation .section "WhileLoopMacro", "ax" WhileLoop counter, 10, 2, mov r0, #

Note:

The order in which the GNU assembly .ifgt, .endif, .rept, and .endr directives are used is important. Including the .endr directive as a statement within the .ifgtendif structure produces an error. Similarly, placing the .endif directive outside the .reptendr structure produces an error. The macro expansion produces the following code:

mov r0, #0xa
mov r0, #8
mov r0, #6
mov r0, #4
mov r0, #2

Notable differences from the **armasm** syntax implementation:

- In the **armasm** syntax implementation, the ASSERT directive is used to raise an error if a required parameter is missing. In the GNU syntax implementation, this can be achieved by using the parameter type req for required parameters in the macro definition.
- In the armasm syntax implementation, the macro instantiation uses a string as the value to the \$do parameter. The quotes are
 implicitly removed at assembly-time. Quotes are required as the parameter value contains spaces. In the GNU syntax implementation,
 this is achieved using the parameter type vararg for the \do parameter in the macro definition.
- In the GNU syntax implementation, the .reptendr structure is always evaluated \N times at assembly-time. This is because the .ifgtendif structure must be placed within the .reptendr structure. In the **armasm** syntax implementation, the WHILE...WEND structure is only evaluated the required number of times at assembly-time based on the controlling expression of the WHILE directive.

Related information

GNU Binutils - Using as: .error

7 Changes Between Different Versions of Arm Compiler for Embedded FuSa 6

A description of the changes that affect migration and compatibility between different versions of Arm[®] Compiler for Embedded FuSa 6.

• Arm does not guarantee the compatibility of C++ compilation units compiled with different major or minor versions of Arm Compiler for Embedded FuSa and linked into a single image. Therefore, Arm recommends that you always build your C++ code from source with a single version of the toolchain.

You can mix C++ with C code or C libraries.

• All C++ compilation units that are to be linked into a single image must be compiled with the same version of the C++ standard library ABI. If the ABI version changes between Arm Compiler for Embedded FuSa releases, then you must recompile your object files.

If you are unable to recompile some of your object files, then contact Arm Support at https://developer.arm.com/support.

The documentation changes for Arm Compiler 6.15 and later releases are listed in an appendix for each document.

7.1 Summary of changes between Arm Compiler 6.6 LTM and Arm Compiler for Embedded FuSa 6.16LTS

A summary of the changes between Arm[®] Compiler 6.6 LTM and Arm Compiler for Embedded FuSa 6.16LTS.

Added or changed features

- The Application Binary Interface (ABI) version used for the C++ library is now version 2. The change of ABI version has some consequences:
 - C++ objects or libraries built using Arm Compiler 6.15 or earlier are not guaranteed to be compatible with C++ objects or libraries built using Arm Compiler for Embedded FuSa 6.16LTS. Therefore, you might see link-time errors or, in rare circumstances, unexpected runtime behavior.

To make sure your C++ objects and libraries are compatible with Arm Compiler for Embedded FuSa 6.16LTS, you must rebuild all your C++ code with 6.16LTS.

If you cannot rebuild any of your C++ objects or libraries, then you must continue to use your previous Arm Compiler version.

- The behavior in how NaN values are treated when converting or truncating to float has changed. The signalling bit is not honored, resulting in a quiet NaN value.
- std::pointer_safety and std::get_pointer_safety() are no longer available
 in C++03. However, because the get_pointer_safety() function always returns
 pointer_safety::relaxed, you can either reimplement the function or avoid using it.
- The Arm C++ library implementation of std::deque<T> and std:queue<T> allocates memory in smaller chunks. This allocation results in lower memory usage when only a small part of a chunk is used, but more chunks might be needed which results in more memory allocations.
 - In Arm Compiler 6.15 and earlier versions, the number of elements per block is computed as follows:
 - If sizeof(T) < 256, each block can hold 4096/sizeof(T) elements.
 - Otherwise, each block can hold 16 elements.
 - For Arm Compiler for Embedded FuSa 6.16LTS and later versions, the formula is different:
 - If sizeof(T) < 8, each block can hold 64/sizeof(T) elements.
 - Otherwise, each block can hold 8 elements.
- Previously, when generating execute-only sections, the tools set the ELF section header flag to SHF_ARM_NOREAD. For compliance with changes to the Application Binary Interface (ABI) for the Arm Architecture, this behavior has changed. For execute-only (XO) sections, the tools now set the ELF section header flag to SHF_ARM_PURECODE. Therefore, you can now use the +xo section selector in a scatter file.
- Added support for the -ffp-mode=model option
- Added support for the generation of implicit IT blocks when assembling for T32 state.
- Previously, when compiling at -os, the compiler could over-align literal pools that are generated during vectorization to a 128-bit boundary. This behavior has been changed. The compiler now avoids adding excessive padding.
- Added support for _at sections that are named .bss.ARM.at<address>. **armlink** places the associated ZI data at the specified address.
- Added support for the Cortex[®]-A75 and Cortex-A55, and Cortex-M55 processors.
- When resolving the relocations of a branch instruction from a function with build attributes that include ~PRES8 to another function with build attributes that include REQ8, the linker no longer reports the following error by default:

Error: L6238E: <objname>(<secname>) contains invalid call from '~PRES8 (The user did not require code to preserve 8-byte alignment of 8-byte data objects)' function to 'REQ8 (Code was permitted to depend on the 8-byte alignment of 8-byte data items)' function <sym>.

- Previously, the inline assembler and integrated assembler provided limited support for instruction substitutions for the A32 and T32 instruction sets. Substitution occurs when a valid encoding does not exist for an instruction with a particular immediate, but an equivalent instruction that has the same result with the inverted or negated immediate is available. To disable this feature, use the option -mno-neg-immediates.
- Added support for #pragma clang section, **armclang** options -nostdlib and -nostdlibinc, and the __unaligned keyword.
- Added support for C++14 source language modes.
- Added support for the __attribute__((target("options"))) function attribute.
- The Arm implementation of the C++ standard library class std::random_device is different from the open-source libc++ implementation.
- Support has been added for the small and tiny code model types when compiling for AArch64 state.
 - -mcmodel=small to generate code for the small code model. The program and its statically defined symbols must be within 4GB of each other. This is the default code model.
 - -mcmodel=tiny to generate code for the tiny code model. The program and its statically defined symbols must be within 1MB of each other.

Alpha support has been added for the large code model when compiling for AArch64 state. Use the following option to compile for the large memory model:

• -mcmodel=large to generate code for the large code model. The compiler makes no assumptions about addresses and sizes of sections.

For more information, see -mcmodel in the Arm Compiler for Embedded FuSa Reference Guide.

Architecture support

- Added support for Armv8-M architecture-based targets.
- Added support for the Custom Datapath Extension (CDE), +cdecpN
- Added support for the Armv8.1-M architecture:
 - Assembly and intrinsics for the *M*-profile Vector Extension (MVE).
 - Support for automatic vectorization for MVE.
- Added support for half-precision floating-point multiply with add or multiply with subtract instructions for Armv8.2-A and later architectures.
- Added support for the optional Dot Product instructions in Armv8.2-A and Armv8.3-A.
- Added support for branch protection features for Armv8.3-A and later architectures.
- Added support for the Armv8.4-A architecture:
 - Added support for the optional Cryptographic Extension in Armv8.4-A.
- Added armclang inline assembler and integrated assembler support for the Armv8.5-A architecture, including support for:
 - The optional Memory Tagging Extension.
 - The optional Random Number Instructions.

- Added full support for the Armv8.6-A architecture:
 - Assembly and intrinsics for the BFloat16 Extension.
 - Assembly and intrinsics for the Matrix Multiplication Extension (MME).
- Added support for the Armv8.7-A architecture:
 - The HCRX_EL2 System register.
 - The wfet, wfit, dsbnxs, and tlbinxs instructions.
 - The Extended Event Filter of the Statistical Profiling Extension, that consists of an extra register in the Statistical Profiling Extension.
 - The Invalidate the Branch Record Buffer extension, +brbe.
 - The Accelerator Support Extension, +1s64, for 64-byte atomic loads and stores.
- [BETA] Added support for the Armv8-R AArch64 architecture.
- Added armclang inline assembler and integrated assembler support for the:
 - Speculation Barrier (SB) instruction in the AArch32 and AArch64 states.
 - Speculative Store Bypass Safe (SSBS) register and instructions in the AArch64 state.
 - Prediction Restriction by Context registers and instructions in the AArch64 state.
- Added support for options to support generation of code for protecting the stack with the Memory Tagging Extension:
 - armclang options -mmemtag-stack and -mno-memtag-stack
 - **armlink** option --library_security=v8.5a
- Added armclang options to support generation of code for protecting the stack with stack guard variables:
 - -fstack-protector
 - -fstack-protector-strong
 - -fstack-protector-all
- Added assembly support for:
 - Embedded Trace Extension (ETE)
 - Trace Buffer Extension (TRBE)
 - Scalable Vector Extension 2 (SVE2)
 - Transactional Memory Extension (TME).

Command-line option support

Support has been added for the following command-line options:

- Added support for the following **armclang** options:
 - -mbranch-protection
 - -ffixed-r<N>
 - -fident, -fno-ident
 - -mpixolib

- Added support for the following **armlink** options:
 - --dangling-debug-address=address
 - --library_security=protection
 - --pixolib
- -omin option for armclang and armlink.
- Compiling with -mexecute-only always generates an empty .text section that is read-only.
- Added support added for the register keyword.
- Added options to support the SysV dynamic linking model:

armclang options

```
-fpic, -fno-pic-fsysv, -fno-sysv-shared
```

armlink options

```
--dynamiclinker=name--import_unresolved, --no_import_unresolved--soname--sysv-- shared
```

- The **armclang** option -fsanitize replaces the **armclang** option -mmemtag-stack.
- Added support for the **fromelf** command-line option --coprocN=value.

Changes to default command-line options

The following are defaults for command-line options that have been added:

- -mcmodel=small is the default code model.
- -std=gnu++14 is the default source language mode for C++.
- -ffp-mode=std is the default level of floating-point standard compliance.

The following options are selected by default:

- -fdata-sections
- -ffunction-sections
- -fomit-frame-pointer
- -fvisibility=hidden

Deprecated features

The following features are deprecated:

- ____declspec attributes
- Support for ELF sections that contain the legacy SHF_COMDEF ELF section flag is deprecated.
- --reloc **armlink** option.
- Linking without the **armlink** option --base_platform and with a scatter file that contains the RELOC load region attribute is deprecated.
- **armclang** inline assembler and integrated assembler support for the SSBS register and instructions in the AArch64 state.

Removed features

The following features are no longer supported:

- **armlink** options --compress_debug and --no_compress_debug.
- **armlink** option --match=crossmangled.
- **armlink** options --strict_enum_size and --no_strict_enum_size.
- **armlink** options --strict_wchar_size and --no_strict_wchar_size.

7.2 Compiling with -mexecute-only generates an empty .text section

A change between Arm[®] Compiler 6.8 and Arm Compiler 6.9 means that compiling with – mexecute-only always generates an empty .text section that is read-only. That is, a section that does not have the shf_Arm_purecode attribute.

The linker normally removes the empty .text section during unused section elimination. However, the unused section elimination does not occur when:

- The image has no entry point.
- You specify one of the following linker options:
 - --no_remove
 - o --keep (<object-file-name>(.text))

If you use a scatter file to merge execute-only (XO) and read-only (RO) sections into a single executable region, then the XO sections lose the XO attribute and become RO.

When compiling with -fno-function-sections, all functions are placed in the .text section with the SHF_ARM_PURECODE attribute. As a result, there are two sections with the name .text, one with and one without the SHF_ARM_PURECODE attribute. You cannot select between the two .text sections by name. Therefore, you must use attributes as the selectors in the scatter file to differentiate between XO and RO sections.

Examples

The following example shows how Arm Compiler for Embedded FuSa 6 handles .text sections:

1. Create the file example.c containing:

```
void foo() {}
int main() {
  foo();
}
```

2. Compile the program and examine the object file with **fromelf**.

```
armclang --target=arm-arm-none-eabi -mcpu=Cortex-M3 -mexecute-only -c -o example.o example.c
```

fromelf example.o

The output shows that section #2 is the empty RO .text section:

```
...
** Section #1 '.strtab' (SHT_STRTAB)
Size : 148 bytes
 * Section #2<sup>*</sup>'.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
Size : 0 bytes (alignment 4)
Address: 0x00000000
** Section #3 '.text.foo' (SHT PROGBITS) [SHF ALLOC + SHF EXECINSTR +
SHF ARM PURECODE]
 Siz\overline{e} : \overline{2} bytes (alignment 4)
Address: 0x0000000
 * Section #4 '.ARM.exidx.text.foo' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER]
Size : 8 bytes (alignment 4)
Address: 0x00000000
Link to section #3 '.text.foo'
** Section #5 '.rel.ARM.exidx.text.foo' (SHT REL)
Size : 8 bytes (alignment 4)
Symbol table #13 '.symtab'
1 relocations applied to section #4 '.ARM.exidx.text.foo'
** Section #6 '.text.main' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
SHF ARM PURECODE]
Size : 10 bytes (alignment 4)
Address: 0x00000000
. . .
```

3. Create the file example.scat containing:

```
LR_XO 0x10000
{
    ER_MAIN_FOO 0x10000
    {
        example.o(.text*)
    }
}
LR_2 0x20000
{
    ER_REST 0x20000
    {
        *(+RO, +ZI)
    }
ARM_LIB_STACKHEAP 0x80000 EMPTY -0x1000 {}
}
```

4. Create an image file with **armlink** and examine the image file with **fromelf**:

```
armlink --scatter example.scat -o example_scat.axf example.o
fromelf example_scat.axf
```

The output shows that section #1 has the SHF_ARM_PURECODE attribute:

```
** Section #1 'ER_MAIN_FOO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
SHF_ARM_PURECODE]
Size : 16 bytes (alignment 4)
Address: 0x00010000
** Section #2 'ER_REST' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
Size : 604 bytes (alignment 4)
Address: 0x00020000
...
```

5. Repeat the link again with the linker option --no_remove and examine the image file with **fromelf**.

```
armlink --scatter example.scat --no_remove -o example_scat.axf example.o
fromelf example_scat.axf
```

The output shows that section #1 does not have the SHF_ARM_PURECODE attribute:

- 6. To ensure that the sections remain as execute-only, either:
 - Change the scatter file to use the XO attribute selector as follows:

```
LR_XO 0x10000
{
    ER_MAIN_FOO 0x10000
    {
        example.o(+XO)
    }
}
LR_2 0x20000
{
    ER_REST 0x20000
    {
          *(+RO, +ZI)
    }
    ARM_LIB_STACKHEAP 0x80000 EMPTY -0x1000 {}
}
```

• Explicitly place sections in their execution regions. However, compiling with -fno-function sections generates two .text sections with different attributes:

```
armclang --target=arm-arm-none-eabi -mcpu=Cortex-M3 -mexecute-only -fno-
function-sections -c -o example.o example.c
fromelf example.o
...
** Section #1 '.strtab' (SHT_STRTAB)
Size : 107 bytes
** Section #2 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
Size : 0 bytes (alignment 4)
Address: 0x00000000
** Section #3 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
SHF_ARM_PURECODE]
Size : 14 bytes (alignment 4)
Address: 0x00000000
...
```

In this case, differentiating the sections by name only is not possible. If unused section elimination does not remove the empty .text sections, the attribute selectors are required to place the sections in different output sections.

8 Code Examples

Provides source code examples for Arm[®] Compiler 5 and Arm Compiler for Embedded FuSa 6.

8.1 Example startup code for Arm Compiler 5 project

This is an example startup code that compiles without errors using Arm[®] Compiler 5.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6. This code requires other modifications for use in a real application.

```
// startup ac5.c:
 * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
   limitations under the License.
 * /
 /*---
   Definitions
                                                                    _____*/
#define USR_MODE 0x10 // User mode
#define FIQ_MODE 0x11 // Fast Interrupt Request mode
#define IRQ_MODE 0x12 // Interrupt Request mode
#define SVC_MODE 0x13 // Supervisor mode
#define ABT_MODE 0x17 // Abort mode
#define UND_MODE 0x18 // Undefined Instruction mode
#define SYS_MODE 0x1F // System mode
/*
  Internal References
void Vectors (void) __attribute__ ((section("RESET")));
void Reset Handler(void);
extern int printf(const char *format, ...);
   declspec(noreturn) void main (void)
      enable irq();
   printf("Starting main\n");
   while(1);
#pragma import ( use no semihosting)
                                                              _____
  *____
                                 _____
  Exception / Interrupt Handler
                                                   _____
void Undef_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void SVC Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void DAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void IRQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void FIQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
```

/*_____ Exception / Interrupt Vector Table -----* / ___asm void Vectors(void) { IMPORT Undef Handler IMPORT SVC_Handler IMPORT PAbt_Handler IMPORT DAbt_Handler IMPORT IRQ Handler IMPORT FIQ_Handler PC, =Reset_Handler PC, =Undef_Handler LDR LDR PC, =SVC_Handler LDR PC, =PAbt_Handler PC, =DAbt_Handler LDR LDR NOP LDR PC, =IRQ Handler PC, =FIQ Handler LDR /*____ Reset Handler called on controller reset asm void Reset Handler(void) { // Mask interrupts CPSID if // Put any cores other than 0 to sleep p15, 0, R0, c0, c0, 5 // Read MPIDR R0, R0, #3 MRC ANDS goToSleep WFINE BNE goToSleep // Reset SCTLR Settings // Read CP15 System Control register // Clear I bit 12 to disable I Cache // Clear C bit 2 to disable D Cache // Clear M bit 0 to disable MMU p15, 0, R0, c1, c0, 0 R0, R0, #(0x1 << 12) R0, R0, #(0x1 << 2) p15, 0, R0, c1, c0, 0 MRC BIC BIC BIC R0, R0, #0x1 // Clear Z bit 11 to disable branch prediction
// Clear V bit 13 to disable hivecs
// Write value back to CP15 System Control R0, R0, #(0x1 << 11) R0, R0, #(0x1 << 13) BIC BIC p15, 0, R0, c1, c0, 0 MCR register ISB // Configure ACTLR // Read CP15 Auxiliary Control Register MRC p15, 0, r0, c1, c0, 1 r0, r0, #(1 << 1) // Enable L2 prefetch hint (UNK/WI since r4p1) p15, 0, r0, c1, c0, 1 // Write CP15 Auxiliary Control Register ORR MCR // Set Vector Base Address Register (VBAR) to point to this application's vector table LDR R0, =Vectors p15, 0, R0, c12, c0, 0 MCR // Setup Stack for each exceptional mode IMPORT |Image\$\$FIQ STACK\$\$ZI\$\$Limit| IMPORT |Image\$\$IRQ STACK\$\$ZI\$\$Limit| IMPORT |Image\$\$SVC_STACK\$\$ZI\$\$Limit| IMPORT |Image\$\$ABT_STACK\$\$ZI\$\$Limit| IMPORT |Image\$\$UND_STACK\$\$ZI\$\$Limit| IMPORT |Image\$\$ARM LIB STACK\$\$ZI\$\$Limit| CPS #0x11 SP, =|Image\$\$FIQ_STACK\$\$ZI\$\$Limit|
#0x12 LDR CPS LDR SP, =|Image\$\$IRQ STACK\$\$ZI\$\$Limit| #0x13 CPS SP, =|Image\$\$SVC STACK\$\$ZI\$\$Limit| LDR CPS #0x17 LDR SP, =|Image\$\$ABT STACK\$\$ZI\$\$Limit| CPS #0x1B LDR SP, =|Image\$\$UND STACK\$\$ZI\$\$Limit| #0x1F CPS SP, =|Image\$\$ARM LIB STACK\$\$ZI\$\$Limit| LDR // Call SystemInit IMPORT SystemInit ΒL SystemInit

```
// Unmask interrupts
CPSIE if
// Call main
IMPORT main
BL main
}
/*-----
Default Handler for Exceptions / Interrupts
*------*/
void Default Handler(void) {
    while(I);
}
```

Related information

Apache License on page 117

8.2 Example startup code for Arm Compiler for Embedded FuSa 6 project

This is an example startup code that compiles without errors using Arm[®] Compiler for Embedded FuSa 6.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6. This code requires other modifications for use in a real application.

```
// startup ac6.c:
 Copyright (c) 2009-2017 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
 not use this file except in compliance with the License.
* You may obtain a copy of the License at
* www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
* /
/*-----
  Definitions
____* /
 Internal References
* void Vectors (void) __attribute__ ((naked, section("RESET")));
void Reset_Handler (void) __attribute__ ((naked));
extern int printf(const char *format, ...);
                                                                 ____* /
 declspec(noreturn) int main (void)
```

asm("CPSIE i"); printf("Starting main\n"); while(1) __asm volatile(""); } _asm(".global __use_no_semihosting"); 7*---Exception / Interrupt Handler * ___ _____* / /*--Exception / Interrupt Vector Table ----*/ void Vectors(void) { asm volatile("LDR PC, =Reset_Handler \n" PC, =Undef_Handler \n" "LDR PC, =SVC_Handler PC, =PAbt_Handler PC, =DAbt_Handler \n" "LDR "LDR \n" "LDR \n" \n" "NOP PC, =IRQ_Handler PC, =FIQ_Handler "LDR \n" "LDR \n"); } /*-----Reset Handler called on controller reset -----*/ void Reset Handler(void) {
 __asm volatile(77 Mask interrupts "CPSID if \n" \n" // Read MPIDR \n" \n" "goToSleep: WFINE \n" "BNE \n" goToSleep // Reset SCTLR Settings "MRC p15, 0, R0, c1, c0, 0 \n" // Read CP15 System Control register "BIC \n" R0, R0, #(0x1 << 12)// Clear I bit 12 to disable I Cache "BIC R0, R0, #(0x1 << 2)\n" // Clear C bit 2 to disable D Cache "BIC RO, RO, #0x1 // Clear M bit 0 to disable \n" MMU "BIC R0, R0, #(0x1 << 11)\n" // Clear Z bit 11 to disable branch prediction "BIC \n" // Clear V bit 13 to disable RO, RO, #(0x1 << 13) hivecs "MCR \n" // Write value back to CP15 p15, 0, R0, c1, c0, 0 System Control register "ISB \n" // Configure ACTLR "MRC p15, 0, r0, c1, c0, 1 \n" // Read CP15 Auxiliary Control Register "ORR r0, r0, #(1 << 1) \n" // Enable L2 prefetch hint (UNK/WI since r4p1) "MCR p15, 0, r0, c1, c0, 1 \n" // Write CP15 Auxiliary Control Register // Set Vector Base Address Register (VBAR) to point to this application's vector table R0, =Vectors "LDR \n" "MCR p15, 0, R0, c12, c0, 0 \n" // Setup Stack for each exceptional mode

"LDR // Call "BL // Unma. "CPSIE // Call	main	\n" \n" \n" \n" \n" \n" \n" \n" \n" \n"	
		\n" \n"	
/* Default *	Handler for Exceptions / Interrupts		* /
void Defa while(1 }	ult_Handler(void) {		,

Related information

Apache License on page 117

9 Licenses

Describes the Apache license.

9.1 Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

- 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
- 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
- 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
 - a. You must give any other recipients of the Work or Derivative Works a copy of this License; and
 - b. You must cause any modified files to carry prominent notices stating that You changed the files; and
 - c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
 - d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any

such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

- 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
- 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
- 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
- 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
- 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Appendix A Arm Compiler for Embedded FuSa Migration and Compatibility Guide Changes

Describes the technical changes that have been made to the Arm[®] Compiler for Embedded FuSa Migration and Compatibility Guide.

A.1 Changes for the Arm Compiler for Embedded FuSa Migration and Compatibility Guide

Changes that have been made to the Arm[®] Compiler for Embedded FuSa Migration and Compatibility Guide are listed with the latest version first.

Table A-1: Changes between 6.16.1 LTS and 6.16.2 LTS

Change	Topics affected
Clarified the information about image entry points and dealing with multiple entry points.	 Miscellaneous directives. Overview of differences between armasm and GNU syntax assembly code.
Removed the [COMMUNITY] indicator for the GNU assembly directives that are fully supported.	Migration of armasm macros to integrated assembler macros
Clarified the information about image entry points.	Miscellaneous directives.

Table A-2: Changes between 6.6 LTM and 6.16.1 LTS

Change	Topics affected
Updated information for -frtti, -fno-rtti.	 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded FuSa 6.
Added a note that armasm is not in the scope for functional safety.	• Migrating from armasm to the armclang Integrated Assembler.
Updated the table comparing command-line options in armasm and the integrated assembler. There is no direct equivalent for the reduce_paths,no_reduce_paths command-line options with the integrated assembler. Arm recommends that you avoid using long and deeply nested file paths on Windows.	• Migration of assembler command-line options from armasm to the armclang integrated assembler.
Added summary of changes between Arm Compiler 6.16 LTM and Arm Compiler for Embedded FuSa 6.16LTS.	• Summary of changes between Arm Compiler 6.6 LTM and Arm Compiler for Embedded FuSa 6.16LTS.