
Arm® Development Studio
Version 2022.0

User Guide

Non-Confidential
Copyright © 2018–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
101470_2022.0_01_en

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Arm® Development Studio
User Guide

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1800-00 27 November
2018

Non-
Confidential

First release for Arm Development Studio

1800-01 18 December
2018

Non-
Confidential

Documentation update 1 for Arm Development Studio
2018.0

1800-02 31 January 2019 Non-
Confidential

Documentation update 2 for Arm Development Studio
2018.0

1900-00 11 April 2019 Non-
Confidential

Updated document for Arm Development Studio
2019.0

1901-00 15 July 2019 Non-
Confidential

Updated document for Arm Development Studio
2019.0-1

1910-00 1 November
2019

Non-
Confidential

Updated document for Arm Development Studio
2019.1

2000-00 20 March 2020 Non-
Confidential

Updated document for Arm Development Studio
2020.0

2000-01 3 July 2020 Non-
Confidential

Documentation update 1 for Arm Development Studio
2020.0

2010-00 28 October
2020

Non-
Confidential

Updated document for Arm Development Studio
2020.1

2021.0-
00

19 March 2021 Non-
Confidential

Updated document for Arm Development Studio
2021.0

2021.1-
00

9 June 2021 Non-
Confidential

Updated document for Arm Development Studio
2021.1

2021.1-
01

26 August 2021 Non-
Confidential

Documentation update 1 for Arm Development Studio
2021.1

2021.2-
00

10 November
2021

Non-
Confidential

Updated document for Arm Development Studio
2021.2

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Issue Date Confidentiality Change

2022.0-
00

29 March 2022 Non-
Confidential

Updated document for Arm Development Studio
2022.0 Beta

2022.0-
01

27 April 2022 Non-
Confidential

Updated document for Arm Development Studio
2022.0

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 589

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

Contents

List of Tables.. 17

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

1 Introduction...19
1.1 Conventions... 19
1.2 Other information...20

2 Debugging Embedded Systems..21
2.1 About endianness...21
2.2 About accessing AHB, APB, and AXI buses.. 21
2.3 About virtual and physical memory... 22
2.4 About address spaces..23
2.5 About debugging hypervisors..24
2.6 About debugging big.LITTLE systems... 25
2.7 About debugging bare-metal symmetric multiprocessing systems... 26
2.8 About debugging multi-threaded applications...28
2.9 About debugging shared libraries...29
2.10 About OS awareness.. 32
2.10.1 About debugging FreeRTOS.. 33
2.10.2 About debugging a Linux kernel...34
2.10.3 About debugging Linux kernel modules..35
2.10.4 About debugging ThreadX... 37
2.10.5 About debugging PikeOS..37
2.11 About debugging TrustZone enabled targets..40
2.12 About debugging a Unified Extensible Firmware Interface (UEFI)... 41
2.13 About debugging MMUs..41
2.14 About Debug and Trace Services Layer (DTSL)..43
2.15 About CoreSight Target Access Library.. 44
2.16 Debug and trace over functional I/O... 44
2.17 About debugging caches..46
2.18 About Arm Debugger support for overlays...48
2.19 Debugging a loadable kernel module..50
2.20 Useful commands for debugging a kernel module...53
2.21 Performance analysis of the threads application running on Arm Linux.......................................54

3 Controlling Target Execution.. 57
3.1 Overview: Breakpoints and Watchpoints... 57
3.2 Running, stopping, and stepping through an application.. 59
3.3 Working with breakpoints.. 61
3.4 Working with watchpoints... 62

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

3.5 Importing and exporting breakpoints and watchpoints...63
3.6 Viewing the properties of a breakpoint or a watchpoint..64
3.7 Associating debug scripts to breakpoints... 66
3.8 Conditional breakpoints.. 67
3.9 Assigning conditions to an existing breakpoint... 68
3.10 Conditional watchpoints...71
3.11 Assigning conditions to an existing watchpoint..72
3.12 Pending breakpoints and watchpoints.. 73
3.13 Setting a tracepoint... 74
3.14 Handling UNIX signals.. 75
3.15 Handling processor exceptions...77
3.16 Cross-trigger configuration.. 79
3.17 Using semihosting to access resources on the host computer... 80
3.18 Working with semihosting... 82
3.19 Configuring the debugger path substitution rules... 83

4 Working with the Target Configuration Editor.. 87
4.1 About the Target Configuration Editor..87
4.2 Target configuration editor - Overview tab... 88
4.3 Target configuration editor - Memory tab..90
4.4 Target configuration editor - Peripherals tab...92
4.5 Target configuration editor - Registers tab...94
4.6 Target configuration editor - Group View tab... 96
4.7 Target configuration editor - Enumerations tab.. 98
4.8 Target configuration editor - Configurations tab.. 98
4.9 Scenario demonstrating how to create a new target configuration file.. 101
4.9.1 Creating a memory map... 102
4.9.2 Creating a peripheral... 103
4.9.3 Creating a standalone register.. 104
4.9.4 Creating a peripheral register.. 105
4.9.5 Creating enumerations for use with a peripheral register.. 106
4.9.6 Assigning enumerations to a peripheral register...107
4.9.7 Creating remapping rules for a control register.. 108
4.9.8 Creating a memory region for remapping by a control register...109
4.9.9 Applying the map rules to the overlapping memory regions... 110
4.10 Creating a power domain for a target..112

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

4.11 Creating a Group list.. 114
4.12 Importing an existing target configuration file..115
4.13 Exporting a target configuration file... 118

5 Examining the Target... 120
5.1 Examining the target execution environment... 120
5.2 Examining the call stack...121
5.3 About trace support..122
5.4 About post-mortem debugging of trace data... 125

6 Debugging with Scripts... 127
6.1 Exporting Arm Debugger commands generated during a debug session..................................... 127
6.2 Creating an Arm Debugger script..127
6.3 Creating a CMM-style script...128
6.4 Support for importing and translating CMM scripts..129
6.4.1 Importing and translating a CMM script...130
6.4.2 Supported CMM commands for translations...130
6.5 About Jython scripts...131
6.6 Jython script concepts and interfaces.. 133
6.7 Creating Jython projects in Arm Development Studio... 134
6.7.1 Creating a new Jython project in Arm Development Studio... 134
6.7.2 Configuring an existing project to use the Arm Development Studio Jython interpreter..... 137
6.8 Creating a Jython script... 138
6.9 Running a script... 139
6.10 Use case scripts... 141
6.11 Metadata for use case scripts.. 141
6.12 Definition block for use case scripts.. 142
6.13 Defining the Run method for use case scripts...144
6.14 Defining the options for use case scripts..144
6.15 Defining the validation method for use case scripts...148
6.16 Example use case script definition..149
6.17 Multiple use cases in a single script... 150
6.18 usecase list command...151
6.19 usecase help command..152
6.20 usecase run command... 153

7 Running Arm Debugger from the operating system command-line or from a script..................156

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

7.1 Overview: Running Arm Debugger from the command-line or from a script.............................. 156
7.2 Command-line debugger options...157
7.3 Running a debug session from a script.. 166
7.4 Specifying a custom configuration database using the command-line..168
7.5 Capturing trace data using the command-line debugger... 170
7.6 Working with the debug server... 172
7.7 Arm Debugger command-line console keyboard shortcuts...174

8 Working with the Snapshot Viewer...176
8.1 About the Snapshot Viewer..176
8.2 Components of a Snapshot Viewer initialization file...178
8.3 Connecting to the Snapshot Viewer...181
8.4 Considerations when creating debugger scripts for the Snapshot Viewer...................................182

9 Platform Configuration.. 184
9.1 Platform Configuration and the Platform Configuration Editor (PCE)... 184
9.1.1 Platform Configuration in Development Studio.. 184
9.1.2 Platform Configuration Editor (PCE).. 187
9.1.3 PCE with ADIv6 Debug systems..188
9.1.4 Device hierarchy in the PCE view..191
9.2 Hardware targets..194
9.2.1 Hardware platform bring-up in Development Studio...194
9.2.2 Create a platform configuration..195
9.2.3 Edit a platform configuration...203
9.2.4 Add topology information for an autodetected Cortex-M3 processor...................................... 205
9.2.5 Manual platform configuration..212
9.2.6 Custom devices...214
9.2.7 Device configuration panel.. 214
9.2.8 Add core cluster components dialog box... 216
9.3 Model targets..217
9.3.1 Model platform bring-up in Development Studio...217
9.3.2 Set up environment variables for models not provided with Arm Development Studio........ 218
9.3.3 Launch a Fast Model for use with Arm Development Studio..219
9.3.4 Create a new model configuration...220
9.3.5 Model Configuration Editor... 227
9.4 Configuration database...230
9.4.1 Configuration Database panel... 230

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

9.4.2 Add a configuration database..232
9.4.3 Add a Platform Configuration to a Configuration Database.. 234
9.4.4 Add Arm debug hardware support to an existing platform configuration................................. 235

10 Using debug probes with Arm Development Studio... 237
10.1 Overview: Debug Probes and Arm Development Studio.. 237
10.2 Configure DSTREAM-HT trace using the Arm Development Studio Platform Configuration
Editor.. 238
10.2.1 Create a DSTREAM-HT enabled platform configuration..239
10.2.2 Customize the configuration usecase script for your target..246
10.2.3 Create debug configuration and connect to the target.. 247
10.2.4 Additional HSSTP target configuration setup..250
10.2.5 DSTREAM-HT trace probe configuration.. 252
10.2.6 Example HSSTP configurations provided with Arm Development Studio.............................. 254
10.3 Configure DSTREAM-XT debug and trace using the Arm Development Studio Platform
Configuration Editor..254
10.3.1 Create a DSTREAM-XT enabled platform configuration.. 255
10.3.2 DSTREAM-XT debug configuration...263
10.3.3 DSTREAM-XT trace configuration... 264
10.3.4 Create debug configuration and connect to the target.. 265
10.4 Debug Hardware configuration..268
10.4.1 Arm Debug and Trace Architecture...268
10.4.2 Hardware configurations created by the PCE...269
10.4.3 Configure your debug hardware unit for Platform Autodetection... 271
10.4.4 Third-party Debug Probe API... 274
10.4.5 Add a third-party debug probe...274
10.4.6 Add a debug connection over functional I/O... 279
10.4.7 DTSL Jython configuration file structure... 281
10.4.8 DTSL configuration execution flow... 287
10.4.9 Debug Adapter configuration in the PCE.. 290
10.4.10 Debug adapter advanced configuration options.. 292
10.4.11 DSTREAM-PT trace modes...298
10.4.12 Configure DSTREAM-PT trace mode... 300
10.5 DSTREAM dashboard...305
10.5.1 DSTREAM dashboard overview... 305
10.5.2 Connect to a DSTREAM unit remotely.. 307
10.5.3 DSTREAM Web API..309

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

10.5.4 DSTREAM-HT dashboard overview..312

11 Perspectives and Views.. 315
11.1 Perspectives in Arm Development Studio...315
11.2 App Console view... 317
11.3 Arm Asm Info view... 318
11.4 Arm assembler editor... 320
11.5 Breakpoints view..322
11.6 C/C++ editor.. 326
11.7 Commands view.. 330
11.8 Debug Control view..333
11.9 Stack view... 336
11.10 Disassembly view..339
11.11 Events view.. 344
11.12 Event Viewer Settings dialog box... 346
11.13 Expressions view... 350
11.14 Expression Inspector.. 354
11.15 Functions view...355
11.16 History view... 358
11.17 Memory view... 359
11.18 MMU/MPU view...369
11.19 Modules view...374
11.20 Registers view.. 376
11.21 NVIC Registers view...382
11.22 OS Data view...384
11.23 Overlays view...386
11.24 Cache Data view...387
11.25 Screen view.. 389
11.26 Scripts view.. 393
11.27 Target Console view...396
11.28 Target view... 397
11.29 Trace view...399
11.30 Trace Control view..404
11.31 Variables view.. 408
11.32 Timed Auto-Refresh Properties dialog box...414
11.33 Memory Exporter dialog box... 415

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

11.34 Memory Importer dialog box... 416
11.35 Fill Memory dialog box..417
11.36 Export Trace Report dialog box... 418
11.37 Trace Dump dialog box..421
11.38 Breakpoint Properties dialog box.. 422
11.39 Watchpoint Properties dialog box...426
11.40 Tracepoint Properties dialog box...427
11.41 Manage Signals dialog box..428
11.42 Functions Filter dialog box... 429
11.43 Script Parameters dialog box..430
11.44 Debug Configurations - Connection tab... 431
11.45 Debug Configurations - Files tab..435
11.46 Debug Configurations - Debugger tab.. 439
11.47 Debug Configurations - OS Awareness tab... 442
11.48 Debug Configurations - Arguments tab.. 443
11.49 Debug Configurations - Environment tab... 445
11.50 Debug Configurations - Export tab.. 446
11.51 DTSL Configuration Editor dialog box... 448
11.52 Probe Configuration dialog box...450
11.53 About the Remote System Explorer...451
11.54 Remote Systems view..451
11.55 Remote System Details view..452
11.56 Target management terminal for serial and SSH connections..453
11.57 Remote Scratchpad view...454
11.58 Remote Systems terminal for SSH connections.. 455
11.59 Terminal Settings dialog box...456
11.60 Debug Hardware Configure IP view...460
11.61 Debug Hardware Firmware Installer view...462
11.62 Connection Browser dialog box.. 465
11.63 Preferences dialog box...466
11.64 Properties dialog box... 468

12 File-based Flash Programming in Arm Development Studio... 470
12.1 About file-based flash programming in Arm Development Studio...470
12.2 Flash programming configuration.. 473
12.3 Creating an extension database for flash programming...475

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

12.4 About using or extending the supplied Arm Keil flash method..476
12.4.1 Adding flash support to an existing platform using an existing Keil flash algorithm............. 476
12.4.2 Adding flash support to an existing target platform using a new Keil flash algorithm..........477
12.5 About creating a new flash method... 478
12.5.1 About using the default implementation FlashMethodv1..478
12.5.2 About creating the flash method Python script... 479
12.6 About testing the flash configuration...482
12.7 About flash method parameters.. 483
12.8 About getting data to the flash algorithm...483
12.9 About interacting with the target..484
12.10 Flash programming CMSIS pack-based projects..492

13 Writing OS Awareness for Arm Debugger.. 497
13.1 About Writing operating system awareness for Arm Debugger.. 497
13.2 Creating an OS awareness extension...498
13.3 Implementing the OS awareness API... 500
13.4 Enabling the OS awareness.. 501
13.5 Implementing thread awareness.. 503
13.6 Implementing data views...505
13.7 Advanced OS awareness extension.. 507
13.8 Programming advice and noteworthy information.. 509

14 Debug and Trace Services Layer (DTSL)...511
14.1 Additional DTSL documentation and files... 511
14.2 Need for DTSL...512
14.2.1 SoC design complexity..512
14.2.2 Debug flexibility..513
14.2.3 Integrated tool solutions.. 513
14.2.4 Arm Debugger architecture before DTSL.. 514
14.2.5 Arm Debugger architecture after DTSL..515
14.2.6 Arm Debugger connection sequence showing where DTSL fits in.. 516
14.3 Arm Development Studio configuration database...516
14.3.1 Modifying Arm Development Studio configdb... 517
14.3.2 Configdb board files.. 518
14.3.3 About project_types.xml...518
14.3.4 About the keil-mcbstm32e.py script... 520
14.3.5 DTSL script.. 522

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

14.4 DTSL as used by Arm Debugger...523
14.4.1 Arm Development Studio debug session launcher..523
14.4.2 Connecting to DTSL..524
14.4.3 DTSL access from Debugger Jython scripts..525
14.5 Main DTSL classes and hierarchy..526
14.5.1 DTSL configuration objects... 526
14.5.2 DTSL device objects..527
14.5.3 CoreSight device component register IDs..528
14.5.4 DTSL trace source objects...528
14.5.5 DTSL trace capture objects... 530
14.5.6 Memory as seen by a core device...532
14.5.7 Physical memory access via CoreSight... 532
14.5.8 DTSL MEM-AP support... 534
14.5.9 Linking MEM-AP access to a core device..535
14.6 DTSL options.. 535
14.6.1 DTSL option classes.. 535
14.6.2 DTSL option example walk-through.. 536
14.6.3 Option names and hierarchy...539
14.6.4 Dynamic options.. 540
14.6.5 Option change notification.. 541
14.6.6 Option change notification example walk-through.. 541
14.7 DTSL support for SMP and AMP configurations...543
14.7.1 AMP systems and synchronized execution..543
14.7.2 Execution synchronization levels..544
14.7.3 Software synchronization... 544
14.7.4 Tight synchronization.. 545
14.7.5 Hardware synchronization..545
14.7.6 SMP states...545
14.7.7 Use of CTI for SMP execution synchronization..546
14.8 DTSL Trace.. 547
14.8.1 Platform trace generation.. 548
14.8.2 DTSL trace decoding...549
14.8.3 DTSL decoding stages.. 549
14.8.4 DTSL trace client read interface...551
14.8.5 Supporting multiple trace capture devices...551
14.8.6 Decoding STM STPv2 output...552

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

14.8.7 Example STM reading code...553
14.8.8 STM objects.. 554
14.8.9 DTSL client time-stamp synchronization support...555
14.9 Embedded Logic Analyzer (ELA).. 556
14.10 Using the ELA-500...559
14.10.1 Configure the ELA-500..559
14.10.2 Start and stop an ELA-500 trace capture... 560
14.10.3 Decode the trace capture... 560
14.11 Using the ELA-600...561
14.11.1 Configure the ELA-600..561
14.11.2 Start and stop an ELA-600 trace capture... 562
14.11.3 Decompress and decode an ELA-600 trace... 562
14.12 Extending the DTSL object model..566
14.12.1 Performing custom actions on connect... 566
14.12.2 Overriding device reset behavior...568
14.12.3 Adding a new trace capture device.. 569
14.13 Debugging DTSL Jython code within Arm Debugger.. 571
14.13.1 DTSL Jython syntax errors..572
14.13.2 Errors reported by the launcher panel... 572
14.13.3 Errors reported at connection time...573
14.13.4 DTSL Jython functional errors... 573
14.13.5 Walk-through of a DTSL debug session.. 574
14.13.6 Starting a second instance of Arm Development Studio for Jython debug......................... 574
14.13.7 Preparing the DTSL script for debug..575
14.13.8 Debugging the DTSL code..576
14.14 DTSL in stand-alone mode...576
14.14.1 Comparing Java with Jython for DTSL development..577
14.14.2 DTSL as used by a stand-alone Jython program... 577
14.14.3 Installing the Jython example within the Arm Development Studio IDE..............................578
14.14.4 Running the Jython program.. 578
14.14.5 Invoking the Jython program..579
14.14.6 About the Jython program..580
14.14.7 DTSL as used by a stand-alone Java program..581
14.14.8 Installing the Java example within the Arm Development Studio IDE.................................. 581
14.14.9 Running the Java program...582
14.14.10 Invoking the Java program..583

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Contents

14.14.11 About the Java program..583

15 Reference.. 584
15.1 About loading an image on to the target..584
15.2 About loading debug information into the debugger... 585
15.3 About passing arguments to main().. 587
15.4 Updating multiple debug hardware units...587
15.5 Standards compliance in Arm Debugger..589

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

List of Tables

List of Tables

Table 4-1: DMA map register SYS_DMAPSR0... 101

Table 4-2: Control bit that remaps an area of memory..102

Table 9-1: Architecture differences between ADIv5 and ADIv6.. 188

Table 9-2: Device hierarchy view contents...192

Table 9-3: Device configuration panel contents...216

Table 9-4: Add core cluster components dialog box contents..217

Table 9-5: Launch your model with the appropriate model connection interface.............. 220

Table 9-6: Model Configuration Editor contents..228

Table 9-7: Configuration Database panel contents... 231

Table 10-1: HSSTP trace configuration options... 252

Table 10-2: PCIe debug configuration options...263

Table 10-3: PCIe trace configuration options... 264

Table 10-4: Methods for setting up your configuration database..276

Table 10-5: CTM channels default configuration for synchronized execution and trace
triggering.. 289

Table 10-6: Debug Adapter tabs contents..292

Table 10-7: Debug adapter advanced configuration options.. 294

Table 10-8: DSTREAM dashboard features.. 306

Table 11-1: Perspectives in Arm Development Studio... 316

Table 11-2: Function icons..356

Table 11-3: Files tab options available for each Debug operation...436

Table 11-4: Debug Hardware Configure IP view contents.. 461

Table 14-1: CTI Signal Connections..546

Table 14-2: Comparison of features between ELA-500 and ELA-600................................. 556

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

List of Tables

Table 14-3: ELA Scripts..557

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Introduction

1 Introduction
This book describes how to use the debugger to debug Linux applications, bare-metal, Real-Time
Operating System (RTOS), and Linux platforms.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 589

https://developer.arm.com/glossary

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Introduction

Convention Use
Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 589

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2 Debugging Embedded Systems
Gives an introduction to debugging embedded systems.

2.1 About endianness
The term endianness is used to describe the ordering of individually addressable quantities, which
means bytes and halfwords in the Arm® architecture. The term byte-ordering can also be used
rather than endian.

If an image is loaded to the target on connection, the debugger automatically selects the
endianness of the image otherwise it selects the current endianness of the target. If the debugger
detects a conflict then a warning message is generated.

You can use the set endian command to modify the default debugger setting.

Related information
Arm Debugger commands

2.2 About accessing AHB, APB, and AXI buses
Arm®-based systems connect the processors, memories and peripherals using buses. Examples of
common bus types include AMBA High-performance Bus (AHB), Advanced Peripheral Bus (APB),
and Advanced eXtensible Interface (AXI).

In some systems, these buses are accessible from the debug interface. Where this is the case, then
Arm Debugger provides access to these buses when performing bare-metal or kernel debugging.
Buses are exposed within the debugger as additional address spaces. Accesses to these buses are
available irrespective of whether the processor is running or halted.

Within a debug session in Arm Debugger you can discover which buses are available using the info
 memory command. The address and description columns in the output of this command explain
what each address space represents and how the debugger accesses it.

You can use AHB:, APB:, and AXI: address prefixes for these buses anywhere in the debugger where
you normally enter an address or expression. For example, assuming that the debugger provides an
APB address space, then you can print the contents of address zero using the following command:

x/1 APB:0x0

When using address prefixes in expressions, you can also use address space parameters to specify
additional behavior. See Address space prefixes for information on how to do this.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Address-space-prefixes

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Each address space has a size, which is the number of bits that comprise the address. Common
address space size on embedded and low-end devices is 32-bits, higher-end devices that require
more memory might use > 32-bits. As an example, some devices based around Arm architecture
Armv7 make use of LPAE (Large Physical Address Extensions) to extend physical addresses on the
AXI bus to 40-bits, even though virtual addresses within the processor are 32-bits.

The exact topology of the buses and their connection to the debug interface is dependent on your
system. See the CoreSight™ specifications for your hardware for more information. Typically, the
debug access to these buses bypass the processor, and so does not take into account memory
mappings or caches within the processor itself. It is implementation dependent on whether
accesses to the buses occur before or after any other caches in the system, such as L2 or L3
caches. The debugger does not attempt to achieve coherency between caches in your system
when accessing these buses and it is your responsibility to take this into account and manually
perform any clean or flush operations as required.

For example, to achieve cache coherency when debugging an image with the processors level
1 cache enabled, you must clean and invalidate portions of the L1 cache prior to modifying any
of your application code or data using the AHB address space. This ensures that any existing
changes in the cache are written out to memory before writing to that address space, and that the
processor correctly reads your modification when execution resumes.

The behavior when accessing unallocated addresses is undefined, and depending on your system
can lead to locking up the buses. It is recommended that you only access those specific addresses
that are defined in your system. You can use the memory command to redefine the memory regions
within the debugger and modifying access rights to control the addresses. You can use the x
command with the <count> option to limit the amount of memory that is read.

Related information
About address spaces on page 23
Commands view on page 329
Arm Debugger commands
Address space prefixes
info memory command
info memory-parameters command

2.3 About virtual and physical memory
Processors that contain a Memory Management Unit (MMU) provide two views of memory, virtual
and physical. The virtual address is the address prior to address translation in the MMU, and the
physical address is the address after translation.

Normally when the debugger accesses memory, it uses virtual addresses. However, if the MMU is
disabled, then the mapping is flat and the virtual address is the same as the physical address.

To force the debugger to use physical addresses, prefix the addresses with P:.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Address-space-prefixes
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-memory
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-memory-parameters

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

For example:

P:0x8000
P:0+main creates a physical address with the address offset of main()

If your processor also contains TrustZone® technology, then you have access to Secure and Normal
worlds, each with their own separate virtual and physical address mappings. In this case, the
address prefix P: is not available, and instead you must use NP: for normal physical and SP: for
secure physical.

• Processors that are compliant with Arm® Architectures prior to Armv6 do not
support physical addressing in this manner. This includes the Arm7™ and Arm9™

family of processors.

• Physical address access is not enabled for all operations. For example, the Arm
hardware does not support setting breakpoints via a physical address.

When memory is accessed via a physical address, the caches are not flushed.
Hence, results might differ depending on whether you view memory through the
physical or virtual addresses (assuming they are addressing the same memory
addresses).

Related information
Commands view on page 329
Arm Debugger commands

2.4 About address spaces
An address space is a region of memory that is defined by specific attributes. For example, a
memory region can be Secure or Non-Secure.

You can refer to different address spaces in Arm® Debugger using address space prefixes. These
can be used for various debugging activities, such as:

• Setting a breakpoint in a specific memory space.

• Reading or writing memory.

• Loading symbols associated with a specific memory space.

See Address space prefixes for information on how to use an address space prefix
with the debug commands.

Arm Debugger also uses these prefixes when reporting the current memory space where the
execution stopped, for example:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Conformance-and-usage-rules-for-Arm-Debugger-commands/Address-space-prefixes

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• For address spaces in AArch32 targets (for example, processors based on Armv7):

Execution stopped in SVC mode at S:0x80000000

Execution stopped in SYS mode at breakpoint 1: S:0x80000BA8.

• For address spaces in AArch64 targets (for example, processors based on Armv8-A, Armv8-R
AArch64, or Armv9-A):

Execution stopped in EL3h mode at: EL3:0x0000000080001500

Execution stopped in EL1h mode at breakpoint 2.2: EL1N:0x0000000080000F6C

If the core is stopped in exception level EL3, the debugger cannot reliably determine whether the
translation regime at EL1/EL0 is configured for Secure or Non-secure access. This is because the
Secure Monitor can change this at run-time when switching between Secure and Non-secure
Worlds. Memory accesses from EL3, such as setting software breakpoints at EL1S: or EL1N:
addresses, might cause corruption or the target to lockup.

The memory spaces for the EL1 and EL0 exception levels have the same prefix because the same
translation tables are used for both EL0 and EL1. These translation tables are used for either
Secure EL1/EL0 or Non-secure EL1/EL0. The consequence of this is that if the core, in AArch64
state, is stopped in EL0 in secure state, then the debugger reports:

Execution stopped in EL0h mode at: EL1S:0x0000000000000000.

The reported EL1S: here refers to the memory space that is common to EL0 and
EL1. It does not refer to the exception level.

Related information
About accessing AHB, APB, and AXI buses on page 21
About virtual and physical memory on page 22
About debugging hypervisors on page 24

2.5 About debugging hypervisors
Arm® processors that support virtualization extensions have the ability to run multiple guest
operating systems beneath a hypervisor. The hypervisor is the software that arbitrates amongst the
guest operating systems and controls access to the hardware.

Arm Debugger provides basic support for bare-metal hypervisor debugging. When connected to a
processor that supports virtualization extensions, the debugger enables you to distinguish between
hypervisor and guest memory, and to set breakpoints that only apply when in hypervisor mode or
within a specific guest operating system.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

A hypervisor typically provides separate address spaces for itself as well as for each guest operating
system. Unless informed otherwise, all memory accesses by the debugger occur in the current
context. If you are stopped in hypervisor mode then memory accesses use the hypervisor memory
space, and if stopped in a guest operating system then memory accesses use the address space
of the guest operating system. To force access to a particular address space, you must prefix the
address with either H: for hypervisor or N: for guest operating system.

It is only possible to access the address space of the guest operating system that
is currently scheduled to run within the hypervisor. It is not possible to specify a
different guest operating system.

Similarly, hardware and software breakpoints can be configured to match on hypervisor or guest
operating systems using the same address prefixes. If no address prefix is used then the breakpoint
applies to the address space that is current when the breakpoint is first set. For example, if a
software breakpoint is set in memory that is shared between hypervisor and a guest operating
system, then the possibility exists for the breakpoint to be hit from the wrong mode, and in this
case the debugger may not recognize your breakpoint as the reason for stopping.

For hardware breakpoints only, not software breakpoints, you can additionally configure them to
match only within a specific guest operating system. This feature uses the architecturally defined
Virtual Machine ID (VMID) register to spot when a specific guest operating system is executing.
The hypervisor is responsible for assigning unique VMIDs to each guest operating system setting
this in the VMID register when that guest operating system executes. In using this feature, it is
your responsibility to understand which VMID is associated with each guest operating system
that you want to debug. Assuming a VMID is known, you can apply a breakpoint to it within the
Breakpoints view or by using the break-stop-on-vmid command.

When debugging a system that is running multiple guest operating systems, you can optionally
enable the set print current-vmid setting to receive notifications in the console when the
debugger stops and the current VMID changes. You can also obtain the VMID within Arm
Development Studio scripts using the $vmid debugger variable.

Related information
Commands view on page 329
Arm Debugger Commands

2.6 About debugging big.LITTLE systems
A big.LITTLE™ system is designed to optimize both high performance and low power consumption
over a wide variety of workloads. It achieves this by including one or more high performance

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

processors alongside one or more low power processors. The system transitions the workload
between the processors as necessary to achieve this goal.

big.LITTLE systems are typically configured in a Symmetric MultiProcessing (SMP) configuration. An
operating system or hypervisor controls which processors are powered up or down at any given
time and assists in migrating tasks between them.

For bare-metal debugging on big.LITTLE systems, you can establish an SMP connection within
Arm® Debugger. In this case all the processors in the system are brought under the control of the
debugger. The debugger monitors the power state of each processor as it runs and displays it in
the Debug Control view and on the command -line. Processors that are powered-down are visible
to the debugger but cannot be accessed.

For Linux application debugging on big.LITTLE systems, you can establish a gdbserver connection
within Arm Debugger. Linux applications are typically unaware of whether they are running on
a big processor or a little processor because this is hidden by the operating system. There is
therefore no difference within the debugger when debugging a Linux application on a big.LITTLE
system as compared to application debug on any other system.

Related information
Commands view on page 329
About debugging bare-metal symmetric multiprocessing systems on page 26
Arm Debugger Commands

2.7 About debugging bare-metal symmetric
multiprocessing systems

Arm® Debugger supports debugging bare-metal Symmetric MultiProcessing (SMP) systems. The
debugger expects an SMP system to meet the following requirements:

• The same ELF image running on all processors.

• All processors must have identical debug hardware. For example, the number of hardware
breakpoint and watchpoint resources must be identical.

• Breakpoints and watchpoints must only be set in regions where all processors have identical
memory maps, both physical and virtual. Processors with different instance of identical
peripherals mapped at the same address are considered to meet this requirement, as in the case
of the private peripherals of Arm multicore processors.

Configuring and connecting
To enable SMP support in the debugger you must first configure a debug session in the Debug
Configurations dialog box. Targets that support SMP debugging are identified by having SMP
mentioned in the Debug operation drop-down list.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Configuring a single SMP connection is all you require to enable SMP support in the debugger. On
connection, you can then debug all of the SMP processors in your system by selecting them in the
Debug Control view.

It is recommended to always use an SMP connection when debugging an SMP
system. Using a single-core connection instead of an SMP connection might result
in other cores halting on software breakpoints with no way to resume them.

Image and symbol loading
When debugging an SMP system, image and symbol loading operations apply to all the SMP
processors. For image loading, this means that the image code and data are written to memory
once through one of the processors, and are assumed to be accessible through the other
processors at the same address because they share the same memory. For symbol loading,
this means that debug information is loaded once and is available when debugging any of the
processors.

Running, stopping and stepping
When debugging an SMP system, attempting to run one processor automatically starts running
all the other processors in the system. Similarly, when one processor stops (either because you
requested it or because of an event such as a breakpoint being hit), then all processors in the
system stop.

For instruction level single-stepping (stepi and nexti commands), then the currently selected
processor steps one instruction. The exception to this is when a nexti operation is required to step
over a function call in which case the debugger sets a breakpoint and then runs all processors. All
other stepping commands affect all processors.

Depending on your system, there might be a delay between one processor running or stopping and
another processor running or stopping. This delay can be very large.

In rare cases, one processor might stop and one or more of the others fails to stop in response.
This can occur, for example, when a processor running code in secure mode has temporarily
disabled debug ability. When this occurs, the Debug Control view displays the individual state
of each processor (running or stopped), so that you can see which ones have failed to stop.
Subsequent run and step operations might not operate correctly until all the processors stop.

Breakpoints, watchpoints, and signals
By default, when debugging an SMP system, breakpoint, watchpoint, and signal (vector catch)
operations apply to all processors. This means that you can set one breakpoint to trigger when
any of the processors execute code that meets the criteria. When the debugger stops due to
a breakpoint, watchpoint, or signal, then the processor that causes the event is listed in the
Commands view.

Breakpoints or watchpoints can be configured for one or more processors by selecting the required
processor in the relevant Properties dialog box. Alternatively, you can use the break-stop-on-cores
command. This feature is not available for signals.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Examining target state
Views of the target state, including registers, call stack, memory, disassembly, expressions, and
variables contain content that is specific to a processor.

Views such as breakpoints, signals and commands are shared by all the processors in the SMP
system, and display the same contents regardless of which processor is currently selected.

Trace
When you are using a connection that enables trace support then you are able to view trace for
each of the processors in your system. By default, the Trace view shows trace for the processor
that is currently selected in the Debug Control view. Alternatively, you can choose to link a Trace
view to a specific processor by using the Linked: <context> toolbar option for that Trace view.
Creating multiple Trace views linked to specific processors enables you to view the trace from
multiple processors at the same time. The indexes in the Trace views do not necessarily represent
the same point in time for different processors.

Related information
About debugging big.LITTLE systems on page 25
About loading an image on to the target on page 584
About loading debug information into the debugger on page 585
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
Running, stopping, and stepping through an application on page 59
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408
Arm Debugger Commands

2.8 About debugging multi-threaded applications
The debugger tracks the current thread using the debugger variable, $thread. You can use this
variable in print commands or in expressions.

Threads are displayed in the Debug Control view with a unique ID that is used by the debugger
and a unique ID from the Operating System (OS), for example:

os_idle_demon #3 stopped (USR) (ID 255)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

where #3 is the unique ID used by the debugger, (USR) indicates the user mode, and ID 255 is the
ID from the OS.

A separate call stack is maintained for each thread and the selected stack frame is shown in bold
text. All the views in the Development Studio perspective are associated with the selected stack
frame and are updated when you select another frame.

Figure 2-1: Threading call stacks in the Debug Control view

Related information
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408

2.9 About debugging shared libraries
Shared libraries enable parts of your application to be dynamically loaded at runtime. You must
ensure that the shared libraries on your target are the same as those on your host. The code layout
must be identical, but the shared libraries on your target do not require debug information.

You can set standard execution breakpoints in a shared library but not until it is loaded by the
application and the debug information is loaded into the debugger. Pending breakpoints however,
enable you to set execution breakpoints in a shared library before it is loaded by the application.

When a new shared library is loaded the debugger re-evaluates all pending breakpoints, and those
with addresses that it can resolve are set as standard execution breakpoints. Unresolved addresses
remain as pending breakpoints.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

The debugger automatically changes any breakpoints in a shared library to a pending breakpoint
when the library is unloaded by your application.

You can load shared libraries in the Debug Configurations dialog box. If you have one library file
then you can use the Load symbols from file option in the Files tab.

Figure 2-2: Adding individual shared library files

Alternatively if you have multiple library files then it is probably more efficient to modify the search
paths in use by the debugger when searching for shared libraries. To do this you can use the
Shared library search directory option in the Paths panel of the Debugger tab.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Figure 2-3: Modifying the shared library search paths

For more information on the options in the Debug Configurations dialog box, use the dynamic help.

Related information
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Examining the call stack on page 121
Handling UNIX signals on page 75
Handling processor exceptions on page 77
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.10 About OS awareness
Arm® Development Studio provides support for a number of operating systems that can run on the
target. This is called OS awareness and it provides a representation of the operating system threads
and other relevant data structures.

The OS awareness support in Arm Debugger depends on the OS version and the processor
architecture on the target.

Arm Debugger provides OS awareness for:

• ThreadX 5.6, 5.7: Armv5, Armv5T, Armv5TE, Armv5TEJ, Armv6-M, Armv7-M, Armv7-R,
Armv7-A, Armv8-A.

• μC/OS-II 2.92: Armv6-M, Armv7-M, Armv7-R, Armv7-A.

• μC/OS-III 3.04: Armv6-M, Armv7-M, Armv7-R, Armv7-A.

• embOS 3.88: Armv5, Armv5T, Armv5TE, Armv5TEJ, Armv6-M, Armv7-M, Armv7-R, Armv7-A.

• Keil® CMSIS-RTOS RTX 4.7 and RTX 5: Armv6-M, Armv7-M, Armv7-R, Armv7-A, Armv8-M.

• FreeRTOS 10.2.1: Armv6-M, Armv7-M, Armv7-R, Armv7-A, Armv8-M.

• Freescale MQX 4.0: Freescale-based Cortex®-M4 and Cortex-A5 processors

• Quadros RTXC 1.0.2: Armv5, Armv5T, Armv5TE, Armv5TEJ, Armv7-M, Armv7-R, Armv7-A.

• Nucleus RTOS 2014.06: Armv5, Armv5T, Armv5TE, Armv5TEJ, Armv6-M, Armv7-M, Armv7-R,
Armv7-A.

• μC3 Standard: Armv7-R, Armv7-A.

• μC3 Compact: Armv6-M, Armv7-M.

• PikeOS 4.1, 4.2: Armv7-A, Armv7-R, Armv8-A.

• VxWorks 7: Armv7-A, Armv7-R, Armv8-A.

• By default, OS awareness is not present for an architecture or processor that is
not listed above.

• OS awareness support for newer versions of the OS depends on the scope of
changes to their internal data structures.

• OS awareness in Arm Debugger does not support the original non-CMSIS Keil
RTX.

• OS awareness for μC3 Standard requires you to set the vfp-flag parameter
based on the --fpu option that the μC3 Standard kernel was compiled with. You
can set this using the OS Awareness tab in the Debug Configurations dialog
box, or using the command set os vfp-flag. You can set the value to disabled,
vfpv3_16, or vfpv3_32.

The Linux kernels that Arm Debugger provides OS awareness for are:

• Linux 2.6.28, Armv7-A

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• Linux 2.6.38: Armv7-A

• Linux 3.0: Armv7-A

• Linux 3.11.0-rc6: Armv7-A

• Linux 3.13.0-rc3: Armv7-A

• Linux 3.6.0-rc6: Armv7-A

• Linux 3.7.0: Armv7-A

• Linux 3.9.0-rc3: Armv7-A

• Linux 3.11.0-rc6: Armv8-A

Later versions of Linux are expected to work on Armv7-A Armv8-A architectures.

2.10.1 About debugging FreeRTOS

FreeRTOS is an open-source real-time operating system.

Arm® Debugger provides the following support for debugging FreeRTOS:

• Supports FreeRTOS on Cortex®-M cores.

• View FreeRTOS tasks in the Debug Control view.

• View FreeRTOS tasks and queues in the RTOS Data view.

To enable FreeRTOS support in Arm Debugger, in the Debug Configuration dialog box, select
FreeRTOS in the OS tab. Debugger support is activated when FreeRTOS is initialized on the target
device.

Operating system support in the debugger is activated only when OS-specific debug
symbols are loaded. Ensure that the debug symbols for the operating system are
loaded before using any of the OS-specific views and commands.

When building your FreeRTOS image, ensure that the following compiler flags are set:

• -DportREMOVE_STATIC_QUALIFIER

• -DINCLUDE_xTaskGetIdleTaskHandle

• -DconfigQUEUE_REGISTRY_SIZE=n (where n >= 1)

If these flags are set incorrectly, FreeRTOS support might fail to activate in Arm Debugger See the
documentation supplied with FreeRTOS to view the details of these flags.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.10.2 About debugging a Linux kernel

Arm® Development Studio supports source level debugging of a Linux kernel. The Linux kernel (and
associated device drivers) can be debugged in the same way as a standard ELF format executable.
For example, you can set breakpoints in the kernel code, step through the source, inspect the call
stack, and watch variables.

User space parameters (marked __user) that are not currently mapped in cannot be
read by the debugger.

To debug the kernel:

1. Compile the kernel source using the following options:
CONFIG_DEBUG_KERNEL=y

Enables the kernel debug options.
CONFIG_DEBUG_INFO=y

Builds vmlinux with debugging information.
CONFIG_DEBUG_INFO_REDUCED=n

Includes full debugging information when compiling the kernel.
CONFIG_PERF_EVENTS=n

Disables the performance events subsystem. Some implementations of the performance
events subsystem internally make use of hardware breakpoints, disrupting the use of hardware
breakpoints set by the debugger. It is recommended to disable this option if you observe the
debugger failing to hit hardware breakpoints or failing to report kernel module load and unload
events.

If you are working with Arm Streamline, CONFIG_PERF_EVENTS must be
enabled.

Compiling the kernel source generates a Linux kernel image and symbol files which contain
debug information.

Be aware that:

• Other options might be required depending on the type of debugging
you want to perform. Check the kernel documentation for details.

• A Linux kernel is always compiled with full optimizations and inlining
enabled, therefore:

◦ Stepping through code might not work as expected due to the
possible reordering of some instructions.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

◦ Some variables might be optimized out by the compiler and therefore
not be available for the debugger.

2. Load the Linux kernel on to the target.

3. Load kernel debug information into the debugger.

If the Linux kernel you are debugging runs on multiple cores, then it is
recommended to select an SMP connection type when connecting the
debugger. Using a single-core connection instead of an SMP connection might
result in other cores halting on software breakpoints with no way to resume
them.

4. Debug the kernel as required.

Related information
About debugging Linux kernel modules on page 35
About debugging bare-metal symmetric multiprocessing systems on page 26
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Examining the call stack on page 121
Handling UNIX signals on page 75
Handling processor exceptions on page 77
Debug Configurations - Files tab on page 434
Debug Configurations - Debugger tab on page 438
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408
Configuring a connection to a Linux kernel

2.10.3 About debugging Linux kernel modules

Linux kernel modules provide a way to extend the functionality of the kernel, and are typically used
for things such as device and file system drivers. Modules can either be built into the kernel or
can be compiled as a loadable module and then dynamically inserted and removed from a running
kernel during development without having to frequently recompile the kernel. However, some
modules must be built into the kernel and are not suitable for loading dynamically. An example of a

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

built-in module is one that is required during kernel boot and must be available prior to the root file
system being mounted.

You can set source-level breakpoints in a module after loading the module debug information into
the debugger. For example, you can load the debug information using add-symbol-file modex.ko.
To set a source-level breakpoint in a module before it is loaded into the kernel, use break -p to
create a pending breakpoint. When the kernel loads the module, the debugger loads the symbols
and applies the pending breakpoint.

When debugging a module, you must ensure that the module on your target is the same as that
on your host. The code layout must be identical, but the module on your target does not require
debug information.

Built-in module
To debug a module that has been built into the kernel, the procedure is the same as for debugging
the kernel itself:

1. Compile the kernel together with the module.

2. Load the kernel image on to the target.

3. Load the related kernel image with debug information into the debugger

4. Debug the module as you would for any other kernel code.

Built-in (statically linked) modules are indistinguishable from the rest of the kernel code, so are not
listed by the info os-modules command and do not appear in the Modules view.

Loadable module
The procedure for debugging a loadable kernel module is more complex. From a Linux terminal
shell, you can use the insmod and rmmod commands to insert and remove a module. Debug
information for both the kernel and the loadable module must be loaded into the debugger. When
you insert and remove a module the debugger automatically resolves memory locations for debug
information and existing breakpoints. To do this, the debugger intercepts calls within the kernel to
insert and remove modules. This introduces a small delay for each action whilst the debugger stops
the kernel to interrogate various data structures.

A connection must be established and Operating System (OS) support enabled
within the debugger before a loadable module can be detected. OS support is
automatically enabled when a Linux kernel image is loaded into the debugger.
However, you can manually control this by using the set os command.

Related information
About debugging a Linux kernel on page 33
About debugging bare-metal symmetric multiprocessing systems on page 26
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Examining the call stack on page 121

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Handling UNIX signals on page 75
Handling processor exceptions on page 77
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408
Configuring a connection to a Linux kernel

2.10.4 About debugging ThreadX

ThreadX is a real-time operating system from Express Logic, Inc.

Arm® Debugger provides the following ThreadX RTOS visibility:

• Comprehensive thread list with thread status and objects on which the threads are blocked/
suspended.

• All major ThreadX objects including semaphores, mutexes, memory pools, message queues,
event flags, and timers.

• Stack usage for individual threads.

• Call frames and local variables for all threads.

To enable ThreadX support in Arm Debugger, in the Debug Configuration dialog box, select
ThreadX in the OS Awareness tab. ThreadX OS awareness is activated when ThreadX is initialized
on the target device.

2.10.5 About debugging PikeOS

Arm® Development Studio supports source level debugging of PikeOS.

From a debugging perspective, PikeOS consists of mainly these parts:

• PikeOS kernel.

• PikeOS System Software (PSSW).

• Applications which run on the operating system.

All these parts have separate symbol files and you must ensure that the symbols for the relevant
parts are loaded at the correct address spaces.

Debugging PikeOS after the MMU is enabled
1. Load the PikeOS image onto the target. You can use the Development Studio restore command

to load the image into the target RAM.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel
https://developer.arm.com/docs/101471/latest/arm-debugger-commands/arm-debugger-commands-listed-in-alphabetical-order/restore

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• The PikeOS image does not contain debug information, even if using the
PikeOS ELF boot strategy.

• Loading the image on to your target depends on your boot strategy and
target. Check the PikeOS documentation for instructions.

• If using the CODEO tool, the boot image is the output of an Integration
Project.

2. Load the kernel debug information. You can use the Development Studio add-symbol-file
command to load the kernel debug information into the debugger.

• The address space where the kernel runs might differ from the current
address space, especially if stopped during the boot process. Ensure that
the kernel debug image is loaded to the address space that the kernel
runs in, for example, EL1N.

• Do not enable OS awareness before the MMU is enabled. If you want
to debug PikeOS, before the MMU is enabled, see the Debugging PikeOS
before the MMU is enabled section later in this topic.

• The kernel debug image must exactly match the kernel with which the
loaded image was compiled. Loading this information is necessary for the
OS Awareness to function.

• If using the CODEO tool, you can determine the kernel that is used
from the PikeOS Kernel section of the Integration Project's Project
Configuration. The debug image is typically stored with a .elf or
.unstripped file extension.

3. Load the debug information for your application or the PikeOS System Software using the add-
symbol-file command. Ensure that they are loaded to the correct address space.

If using the CODEO tool, you can determine the location of files containing
debug information from the relevant sections of the Integration Project's
Project Configuration. The debug images are typically stored with a .elf or
.unstripped file extension.

This step is not required or used by the OS awareness, but improves your experience if you plan
to debug either of these components.

When debugging PikeOS, if you inspect unscheduled OS threads, their current
Program Counter might point to an address which is not currently mapped in by the
MMU.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/add-symbol-file

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Debugging PikeOS before the MMU is enabled
The initial enablement of the MMU is done by the Platform Support Package (PSP) during its early
initialization. The point at which the MMU is enabled differs by platform. Some PSPs provide
explicit symbols to mark the first virtual instructions, while others do not. To find the first point at
which the MMU is enabled, inspection of the specific platform's PSP is required.

The MMU is enabled by the time the PSP starts the kernel and the kernel entry point P4Main is
passed. When the MMU is enabled, it is safe to enable OS awareness.

The kernel debug image contains debug symbols for both the kernel and the PSP. All symbols have
virtual addresses and require the MMU to be enabled. The early PSP initialization occurs before the
MMU is enabled. To debug the early PSP initialization, load the kernel symbols with an offset so
that their offset virtual addresses align with their physical counterparts.

Since the MMU is currently off, Arm Debugger's OS support must be disabled before the kernel
debug symbols are loaded. This is to avoid the debugger from trying to read the kernel structures
before they are set up (and possibly resulting in Data Aborts). To disable OS awareness, enter set os
enabled off in the Development Studio Command view and click Submit or press Enter.

To calculate the required load offset, calculate the difference (P-V) between the physical start
address of the boot image (P) and the virtual start address of the kernel image (V).

For example, if the kernel is linked at virtual address 0x80000000 and is loaded at physical address
0x20000000, the offset is -0x60000000, which is 0x20000000 - 0x80000000 (P-V).

Early PSP initialization typically runs at a higher Exception level than the rest of
the kernel. You must take care to ensure that the offset symbols are also loaded
in the correct address space. An example of a full offset for an Armv8 target is
EL2N:-0xFFFFFF7F80000000.

See About loading debug information into the debugger for information on loading debug symbols
into the debugger.

When the MMU is enabled, the previously loaded debug information must be reloaded at the
unadjusted virtual addresses. To reload the debug information, first, enter file, symbol file in the
Development Studio Command view to discard currently loaded symbols. Then, use the add-
symbol-file command to load the kernel debug information into the debugger, but this time with
zero offset.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-os
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-os
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/file--symbol-file

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.11 About debugging TrustZone enabled targets
Arm® TrustZone® is a security technology designed into some Arm processors. For example, the
Cortex®-A class processors. It segments execution and resources such as memory and peripherals
into secure and normal worlds.

When connected to a target that supports TrustZone and where access to the secure world is
permitted, then the debugger provides access to both secure and normal worlds. In this case,
all addresses and address-related operations are specific to a single world. This means that any
commands you use that require an address or expression must also specify the world that they
apply to, with a prefix. For example N:0x1000 or S:0x1000.

Where:

N:
For an address in Normal World memory.

S:
For an address in Secure World memory.

If you want to specify an address in the current world, then you can omit the prefix.

When loading images and debug information it is important that you load them into the correct
world. The debug launcher panel does not provide a way to directly specify an address world for
images and debug information, so to achieve this you must use scripting commands instead. The
Debugger tab in the debugger launcher panel provides an option to run a debug initialization script
or a set of arbitrary debugger commands on connection. Here are some example commands:

• Load image only to normal world (applying zero offset to addresses in the image)

load myimage.axf N:0

• Load debug information only to secure world (applying zero offset to addresses in the debug
information)

file myimage.axf S:0

• Load image and debug information to secure world (applying zero offset to addresses)

loadfile myimage.axf S:0

When an operation such as loading debug symbols or setting a breakpoint needs to apply to both
normal and secure worlds then you must perform the operation twice, once for the normal world
and once for the secure world.

Registers such as $PC have no world. To access the content of memory from an address in a register
that is not in the current world, you can use an expression, N:0+$PC . This is generally not necessary
for expressions involving debug information, because these are associated with a world when they
are loaded.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Related information
Breakpoints view on page 322
Commands view on page 329
Disassembly view on page 339
Memory view on page 359
Modules view on page 373
Registers view on page 376
Variables view on page 408
Arm Debugger Commands
Arm Security Technology Building a Secure System using TrustZone Technology
Technical Reference Manual
Architecture Reference Manual

2.12 About debugging a Unified Extensible Firmware
Interface (UEFI)

UEFI defines a software interface to control the start-up of complex microprocessor systems. UEFI
on Arm allows you to control the booting of Arm®-based servers and client computing devices.

Arm Development Studio provides a complete UEFI development environment which enables you
to:

• Fetch the UEFI source code via the Eclipse Git plug-in.

• Build the source code using Arm Compiler for Embedded.

• Download the executables to a software model (a Cortex®-A9x4 FVP is provided with
Development Studio) or to a hardware target (available separately).

• Run/debug the code using Arm Debugger.

• Debug dynamically loaded modules at source-level using Jython scripts.

For more information, see this blog: UEFI Debug Made Easy

2.13 About debugging MMUs
Arm® Debugger provides various features to debug Memory Management Unit (MMU) related
issues.

A Memory Management Unit is a hardware feature that controls virtual to physical address
translation, access permissions, and memory attributes. The MMU is configured by system control
registers and translation tables stored in memory.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/technologies/trustzone
https://developer.arm.com/products/processors/cortex-a
https://developer.arm.com/products/architecture
https://community.arm.com/tools/b/blog/posts/uefi-debug-made-easy

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

A device can contain any number of MMUs. If a device has cascaded MMUs, then the output
address of one MMU is used as the input address to another MMU. A given translation depends on
the context in which it occurs and the set of MMUs that it passes through.

For example, a processor that implements the Armv7 hypervisor extensions, such as Cortex®-A15,
includes at least three MMUs. Typically one is used for hypervisor memory, one for virtualization
and one for normal memory accesses within an OS. When in hypervisor state, memory accesses
pass only through the hypervisor MMU. When in normal state, memory accesses pass first through
the normal MMU and then through the virtualization MMU. For more information see the Arm
Architecture Reference Manual.

Arm Debugger provides visibility of MMU translation tables for some versions of the Arm
architecture. To help you debug MMU related issues, Arm Debugger enables you to:

• Convert a virtual address to a physical address.

• Convert a physical address to a virtual address.

• View the MMU configuration registers and override their values.

• View the translation tables as a tree structure.

• View the virtual memory layout and attributes as a table.

You can access these features using the MMU view in the graphical debugger or using the MMU
commands from the command line.

Cache and MMU data in Arm Debugger
In some specific circumstances, Arm Debugger cannot provide a fully accurate view of the
translation tables due to its limited visibility of the target state.

The MMU hardware on the target performs a translation table walk by doing one or more
translation table lookups. These lookups require accessing memory by physical address (or
intermediate physical address for two stage translations). However, to read or modify translation
table entries, the CPU accesses memory by virtual address. In each of these cases, the accessed
translation table entries are permitted to reside in the CPU's data caches. This means that if a
translation table entry resides in a region of memory marked as write-back cacheable and the
CPU's data cache is enabled, then any modification to a translation table entry might not be written
to the physical memory immediately. This is not a problem for the MMU hardware, which has
awareness of the CPU's data caches.

To perform translation tables walks, Arm Debugger must also access memory by physical address. It
does this by disabling the MMU. Because the MMU is disabled, these memory accesses might not
take into account the contents of CPU's data caches. Hence these physical memory accesses might
return stale data.

To avoid stale translation tables entries in Arm Debugger:

• When walking translation tables where the debugger has data cache awareness, you can enable
cache-aware physical memory accesses. Use the command:

set mmu use-cache-for-phys-reads true

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• If you think that the translation table entries contain stale data, then you can use the debugger
to manually clean and invalidate the contents of the CPU caches. Use the command:

cache flush

Flushing large caches might take a long time.

Related information
MMU/MPU view on page 368
About debugging caches on page 45
mmu commands

2.14 About Debug and Trace Services Layer (DTSL)
Debug and Trace Services Layer (DTSL) is a software layer within the Arm® Debugger stack. It sits
between the debugger and the RDDI target access API.

DTSL takes responsibility for:

• Low level debugger component creation and configuration. For example, CoreSight™

component configuration, which can also involve live re-configuration.

• Target access and debug control.

• Capture and control of trace data with:

◦ in-target trace capture components, such as ETB

◦ off-target trace capture device, such as DSTREAM.

• Delivery of trace streams to the debugger or other 3rd party trace consumers.

DTSL is implemented as a set of Java classes which are typically implemented (and possibly
extended) by Jython scripts. A typical DTSL instance is a combination of Java and Jython.

A simple example of this is when DTSL connects to a simple platform containing a Cortex®-
A8, ETM, and ETB. When the DTSL connection is activated it runs a Jython script to create the
DTSL configuration. This configuration is populated with a Java Device object called Cortex-A8, a
TraceSource object called ETM, and a TraceCaptureDevice object called ETB. The debugger,or another
program using DTSL, can then access the DTSL configuration to retrieve these objects and perform
debug and trace operations.

DTSL Jython Scripting should not be confused with Arm Debugger Jython Scripting.
They both use Jython but operate at different levels within the software stack. It is
however possible for a debugger Jython Script to use DTSL functionality.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups/mmu

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Arm has made DTSL available for your own use so that you can create Java or Jython programs to
access and control the target platform.

For details, see the DTSL documents and files provided with Arm Development Studio here:

<installation_directory>/sw/DTSL

Related information
Debug and Trace Services Layer (DTSL) on page 511

2.15 About CoreSight Target Access Library
CoreSight™ on-target access library allows you to interact directly with CoreSight devices. This
supports use-cases such as enabling flight-recorder trace in a production system without the need
to connect an external debugger.

The library offers a flexible programming interface allowing a variety of use cases and
experimentation.

It also offers some advantages compared to a register-level interface. For example, it can:

• Manage any unlocking and locking of CoreSight devices via the lock register, OS Lock register,
programming bit, power-down bit.

• Attempt to ensure that the devices are programmed correctly and in a suitable sequence.

• Handle variations between devices, and where necessary, work around known issues. For
example, between variants of ETM/PTMs.

• Become aware of the trace bus topology and can generally manage trace links automatically.
For example enabling only funnel ports in use.

• Manage 'claim bits' that coordinate internal and external use of CoreSight devices.

For details, see the CoreSight example provided with Arm® Development Studio here:

<installation_directory>/examples/CoreSight_Access_Library.zip

2.16 Debug and trace over functional I/O
CoreSight™ SoC-600 introduces access standards to the debug memory space that enable access
using existing functional interfaces such as USB, ethernet, or PCIe, as an alternative to using the
traditional JTAG and Serial Wire Debug interfaces, to debug your target. It also introduces an
enhanced Embedded Trace Router (ETR) that supports high bandwidth streaming trace mode,
which you can use to offload trace data over the functional interfaces.

For an end-to-end debug and trace over functional interfaces solution with Arm® Development
Studio, you require the following software components:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• An on-target debug agent that provides an OS specific, or bare metal mechanism, to allow the
on-target agent access to the CoreSight SoC-600 components.

• Functional interface drivers, such as USB or PCIe, for both the host and target.

• A transport layer protocol.

• A standard debug and trace API to the debugger.

The on-target debug agent, the functional interface drivers, and the probes.xml file, are provided
by the SoC vendor.

Arm provides a standardized transport protocol that is agnostic of the physical link, called the
CoreSight Wire Protocol (CSWP), and APIs to the debugger; RDDI MEM-AP for debug, and RDDI
Streaming Trace for trace.

Although some of the software components are the responsibility of the SoC vendor, Arm provides
an end-to-end open-source package that contains reference implementations of the CSWP
protocol handlers, for both the host and target, and debug and trace API sets. For completeness,
Arm also provides an example implementation of a Linux-based on-target debug agent, and its
associated drivers.

You can find the open-source package here: https://github.com/ARM-software/coresight-wire-
protocol

You can optionally replace the Arm-provided CSWP transport protocol with a
protocol from the SoC vendor. You are responsible for the host and target protocol
handlers when using a protocol not provided by Arm.

A complete end-to-end solution results in an RDDI MEM-AP implementation for debug, and
an RDDI Streaming Trace implementation, both in the form of a shared library that is loaded by
Arm Debugger. These libraries are provided by the SoC or tool vendors. To associate the shared
libraries with your new connection type, you need a probe definition file, called probes.xml. All
dependencies of the APIs, including the transport protocol, drivers, and third-party libraries, must
either be included in the shared libraries or provided alongside them.

When you have configured and associated all of these software components, the result is a new
virtual probe. See Add a debug connection over functional I/O for details on how to implement a
virtual probe.

Related information
Add a debug connection over functional I/O on page 278
Add a third-party debug probe on page 274

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 589

https://github.com/ARM-software/coresight-wire-protocol
https://github.com/ARM-software/coresight-wire-protocol

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.17 About debugging caches
Arm® Debugger allows you to view contents of caches in your system. For example, L1 cache or
TLB cache.

You can either view information about the caches in the Cache Data view or by using the cache list
and cache print commands in the Commands view.

Figure 2-4: Cache Data view (showing L1 TLB cache)

Cache awareness is dependent on the exact device and connection method.

The Cache debug mode option in the DTSL Configuration Editor dialog box enables or disables
the reading of cache RAMs in the Cache Data view. Selecting this option enables the reading of
cache RAMs every time the target stops, if the Cache Data view is suitably configured.

Enabling the Preserve cache contents in debug state option in the DTSL Configuration Editor
preserves the cache contents while the core is stopped. If this option is disabled, there is no
guarantee that the cache contents will be preserved when the core is stopped.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

For the most accurate results, enable the Preserve cache contents in debug
state option in the DTSL Configuration Editor dialog box. When this option is
not enabled, the information presented might be less accurate due to debugger
interactions with the target.

Figure 2-5: DTSL Configuration Editor (Shown with cache read option enabled)

For processors based on the Armv8-A or Armv9-A architecture, there are
restrictions on cache preservation:

• Cache preservation is not possible when the MMU is configured to use the
short descriptor translation table format.

• When using the long descriptor translation table format, cache preservation is
possible but the TLB contents cannot be preserved.

You can either enable the options prior to connecting to the target from the Debug Configurations
dialog box, or after connecting from the Debug Control view context menu.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

On some devices, reading cache data can be very slow. To avoid issues, do not
enable DTSL options that are not required. Also, if not required, close any cache
views in the user interface.

You can use the Memory view to display the target memory from the perspective of the different
caches present on the target. On the command line, to display or read the memory from the
perspective of a cache, prefix the memory address with <cacheViewID=value>:. For the Cortex®-
A15 processor, possible values of cacheViewID are:

• L1I

• L1D

• L2

• L3

For example:

Display memory from address 0x9000 from the perspective of the L1D cache.
x/16w N<cacheViewID=L1D>:0x9000
Dump memory to myFile.bin, from address 0x80009000 from the perspective of the L2
 cache.
dump binary memory myFile.bin S<cacheViewID=L2>:0x80009000 0x10000
Append to myFile.bin, memory from address 0x80009000 from the perspective of the
 L3 cache.
append memory myFile.bin <cacheViewID=L3>:0x80009000 0x10000

Related information
Cache Data view on page 387
Memory view on page 359
DTSL Configuration Editor dialog box on page 447
cache list command
cache print command
memory command

2.18 About Arm Debugger support for overlays
Overlaying is a programming method that allows applications to share execution regions of memory
between different pieces of code at runtime. A piece of code can be transferred to the overlay
region to be executed when needed. This piece of code is replaced with another when needed.

Code does not need to be stored in memory and could reside in other storage such as off-
chip flash memory. Embedded systems, especially systems without support for virtual memory
addressing and systems with limited memory, sometimes use overlays.

An overlaid application consists of:

• Several overlays - These are blocks of code that are not resident in memory all the time.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/cache-list
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/cache-print
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/memory

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

• The overlay manager (must be part of the non-overlaid code) - The overlay manager takes care
of loading and unloading different overlays as they are needed.

• Several overlay regions - These are regions in memory that overlays are loaded into as needed.
Each overlay region can contain different overlays at different times.

• Some non-overlaid code - This is code that is permanently resident in memory.

• Data (both RO and RW) - Data is never overlaid.

As a developer, you must decide which functions from your application are used in overlays. You
must also decide which functions are used in the same overlay.

You can specify the functions to overlay by annotating the function declarations in your source
code. The annotation indicates which overlay each function must be in.

During compilation, the linker assigns overlays to a particular region. When overlays are loaded,
it can only be loaded into that region. The linker also detects direct calls between overlays, and
between overlays and non-overlaid code. The linker then redirects the calls through veneers, which
call the overlay manager to automatically load the target overlay.

Arm® Debugger automatically enables overlay support on the presence of linker generated tables
and functions as described by the following symbols:

• Region$$Count$$AutoOverlay

• LoadAddr$$Table$$AutoOverlay

• CurrLoad$$Table$$AutoOverlay

• __ARM_notify_overlay_loaded

After loading your overlay-enabled application in Arm Development Studio, you can work with
overlays from both the command-line console and from the user interface:

• To see detailed information about the currently loaded overlays and the functions within
each overlay, use the Overlays view. You can also use the info overlays command to view
information about the currently loaded overlays and functions within each overlay.

• To enable or disable overlay support, use the set overlays enabled command with the on, off, or
auto options. The default setting is auto.

See the overlay_manager example that is provided with Arm Development Studio for a reference
implementation of overlays.

Related information
Overlays view on page 386
Arm Compiler Software Development Guide: Overlay support
info overlays command
set overlays enabled command

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-overlays
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-overlays-enabled
https://developer.arm.com/documentation/100748/latest/Overlays/Overlay-support-in-Arm-Compiler-for-Embedded-6
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-overlays
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-overlays-enabled

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.19 Debugging a loadable kernel module
You can use Arm® Development Studio to develop and debug a loadable kernel module. Loadable
modules can be dynamically inserted and removed from a running kernel during development
without the need to frequently recompile the kernel.

About this task
This tutorial uses a simple character device driver modex.c which is part of the Armv7 Linux
application examples available in Arm Development Studio.

You can use modex.c to compile, run, and debug against your target. The readme.html in the
<installation_directory>/examples/docs/kernel_module contains information about customizing
this for your target.

If you are working with your own module, before you can debug it, you must ensure
that you:

• Unpack kernel source code and compile the kernel against exactly the same
kernel version as your target.

• Compile the loadable module against exactly the same kernel version as your
target.

• Ensure that you compile both images with debug information. The debugger
requires run-time information from both images when debugging the module.

Procedure
1. Create a new Debug Configuration.

a) From the main Arm Development Studio menu, select Run > Debug Configurations.
b) In the Debug Configurations dialog box, create a New Launch Configuration and give it a

name. For example, my_board.
c) In the Connection tab, select the target and platform and set up your target connection.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Figure 2-6: Typical connection settings for a Linux kernel/Device Driver Debug

d) In the Files tab, set up the debugger settings to load debug information for the Linux kernel
and the module.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Figure 2-7: Typical Files settings for a Linux kernel/Device Driver Debug

e) In the Debugger tab, select Connect only in the Run control panel.
f) Click Debug to connect the debugger to the target.

2. Configure and connect a terminal shell to the target. You can use the Remote System Explorer
(RSE) provided with Arm Development Studio.

3. Using RSE, copy the compiled module to the target:
a) On the host workstation, navigate to .../linux_system/kernel_module/stripped/

modex.ko file.
b) Drag and drop the module to a writeable directory on the target.

4. Using the terminal shell, insert the modex.ko kernel module.
a) Navigate to the location of the kernel module.
b) Execute the following command: insmodmodex.ko

The Modules view updates to display details of the loaded module.
5. To debug the module, set breakpoints, run, and step as required.
6. To modify the module source code:

a) Remove the module using commands as required in the terminal shell. For example: rmmod
 modex

b) Recompile the module.
c) Repeat steps 3 to 5 as required.

Results
OS modules loaded after connection are displayed in the Modules view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

When you insert and remove a module, the debugger stops the target and
automatically resolves memory locations for debug information and existing
breakpoints. This means that you do not have to stop the debugger and reconnect
when you recompile the source code.

Related information
Useful commands for debugging a kernel module on page 53

2.20 Useful commands for debugging a kernel module
A list of useful commands that you might want to use when debugging a loadable kernel module.

Useful terminal shell commands
lsmod
Displays information about all the loaded modules.

insmod
Inserts a loadable module.

rmmod
Removes a module.

Useful Arm Debugger commands
info os-modules
Displays a list of OS modules loaded after connection.

info os-log
Displays the contents of the OS log buffer.

info os-version
Displays the version of the OS.

info processes
Displays a list of processes showing ID, current state and related stack frame information.

set os-log-capture
Controls the capturing and printing of Operating System (OS) logging messages to the console.

Related information
Debugging a loadable kernel module on page 49

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

2.21 Performance analysis of the threads application
running on Arm Linux

Arm® Streamline is a graphical performance analysis tool. It captures a wide variety of statistics
about code running on the target and uses them to generate analysis reports. You can use these to
identify problem areas at system, process, and thread level, in addition to hot spots in the code.

Before you begin
This tutorial uses the threads_v7A example application to show how to use Arm Streamline to
capture and analyze profiling data from a Linux target. threads_v7A and threads_v8A are two of the
Arm Linux application examples that are provided with Arm Development Studio.

Before capturing the data, ensure that:

1. You have built the threads_v7A application.

2. You know the IP address or network name of the target. To find the IP address, you can use the
ifconfig application in a Linux console. The IP address is denoted by the inet addr.

3. The Linux kernel on the target is configured to work with Arm Streamline.

4. The gator daemon, gatord, is running on the target. If not, the simplest way to install and run
gatord on the target is to use the Setup Target… button in the Connection Browser dialog box.
The Connection Browser dialog box is accessible through the Streamline Data view by clicking
on the Browse for a target button.

5. SSH and gdbserver are running on the target.

• For more information about building and running the threads application on a
Linux target see the readme.html supplied in the same directory as the source
code for the example.

• For more information about how to configure your target for Arm Streamline,
see the Arm Streamline User Guide.

Procedure
1. Launch Arm Development Studio.
2. In the Remote Systems view, click and define a connection to the target
3. Launch the Arm Streamline application.
4. Specify the IP address or network name of the target in the Address field. Alternatively, use the

Browse for a target button, as shown in the following screenshot:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Figure 2-8: Streamline Data view

5. Click the Capture & analysis options button. In the Program Images section, select the threads
image from the workspace, then select Save.

6. In Arm DS select Run > Debug configurations... then select the threads-gdbserver debug
configuration. This configuration downloads the application to the target, starts gdbserver on
the target and starts executing the application, stopping at main().

7. Connect to the target either by clicking Debug in the Debug Configurations dialog box, or by
right-clicking on the connection in the Debug Control view and selecting Connect to target.

8. The program stops at main(). To start capturing data, switch to the Streamline application and
click . Give the capture file a unique name. The Live view opens in Streamline, displaying the
capture data in real time.

9. In Arm DS, click Continue to continue executing the code.
10. When the application terminates, in Arm Streamline, click to stop the capture.

Results
Arm Streamline automatically analyzes the capture data and produces a report, which it displays in
the Timeline view, as shown in the following screenshot:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging Embedded Systems

Figure 2-9: analysis report for the threads application

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3 Controlling Target Execution
Describes how to control the target when certain events occur or when certain conditions are met.

3.1 Overview: Breakpoints and Watchpoints
Breakpoints and watchpoints enable you to stop the target when certain events occur and when
certain conditions are met. When execution stops, you can choose to examine the contents of
memory, registers, or variables, or you can specify other actions to take before resuming execution.

Breakpoints
A breakpoint enables you to interrupt your application when execution reaches a specific address.
When execution reaches the breakpoint, normal execution stops before any instruction stored
there is executed.

Types of breakpoints:

• Software breakpoints stop your program when execution reaches a specific address.

Software breakpoints are implemented by the debugger replacing the instruction at the
breakpoint address with a special instruction. Software breakpoints can only be set in RAM.

• Hardware breakpoints use special processor hardware to interrupt application execution.
Hardware breakpoints are a limited resource.

You can configure breakpoint properties to make them:

• Conditional

Conditional breakpoints trigger when an expression evaluates to true or when an ignore counter
is reached. See Conditional breakpoints for more information.

• Temporary

Temporary breakpoints can be hit only once and are automatically deleted afterwards.

• Scripted

A script file is assigned to a specific breakpoint. When the breakpoint is triggered, then the script
assigned to it is executed.

• Memory region and the related access attributes.

• Hardware support provided by your target processor.

• Debug interface used to maintain the target connection.

• Running state if you are debugging an OS-aware application.

The Target view shows the breakpoint capabilities of the target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Considerations when setting breakpoints
Be aware of the following when setting breakpoints:

• The number of hardware breakpoints available depends on your processor. Also, there is a
dependency between the number of hardware breakpoints and watchpoints because they use
the same processor hardware.

• If an image is compiled with a high optimization level or contains C++ templates, then the
effect of setting a breakpoint in the source code depends on where you set the breakpoint. For
example, if you set a breakpoint on an inlined function in a C++ template, then a breakpoint
is created for each instance of that function or template. Therefore the target can run out of
breakpoint resources.

• Enabling a Memory Management Unit (MMU) might set a memory region to read-only. If
that memory region contains a software breakpoint, then that software breakpoint cannot be
removed. Therefore, make sure you clear software breakpoints before enabling the MMU.

• When debugging an application that uses shared objects, breakpoints that are set within a
shared object are re-evaluated when the shared object is unloaded. Those with addresses that
can be resolved are set and the others remain pending.

• If a breakpoint is set by function name, then only inline instances that have been already
demand loaded are found.

Watchpoints
A watchpoint is similar to a breakpoint, but it is the address of a data access that is monitored
rather than an instruction being executed. You specify a global variable or a memory address to
monitor. Watchpoints are sometimes known as data breakpoints, emphasizing that they are data
dependent. Execution of your application stops when the address being monitored is accessed by
your application. You can set read, write, or read/write watchpoints.

Considerations when setting watchpoints
Be aware of the following when setting watchpoints:

• Depending on the target, it is possible that a few additional instructions, after the instruction
that accessed the variable, might also be executed. This is because of pipelining effects in
the processor. This means that the address that your program stops at might not exactly
correspond with the instruction that caused the watchpoint to trigger.

• Watchpoints are only supported on scalar values.

• Watchpoints are only supported on global or static data symbols because they are always in
scope and at the same address. Local variables are no longer available when you step out of a
particular function.

• The number of watchpoints that can be set at the same time depends on the target and the
debug connection being used.

• Some targets do not support watchpoints.

Related information
Working with breakpoints on page 61
Working with watchpoints on page 62
Conditional breakpoints on page 66

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Pending breakpoints and watchpoints on page 73

3.2 Running, stopping, and stepping through an
application

Arm® Debugger enables you to control the execution of your application by sequentially running,
stopping, and stepping at the source or instruction level.

Once you have connected to your target, you can use the options on the stepping toolbar
Stepping Toolbar in the Debug Control view to run, interrupt, and step through the application.
See Debug Control for more information.

You can also use the Commands view to enter the execution control group of commands to control
application execution.

Figure 3-1: Debug Control view

• You must compile your code with debug information to use the source level
stepping commands. By default, source level calls to functions with no debug
information are stepped over. Use the set step-mode command to change this
default setting.

• Be aware that when stepping at the source level, the debugger uses temporary
breakpoints to stop execution at the specified location. These temporary
breakpoints might require the use of hardware breakpoints, especially when
stepping through code in ROM or Flash. If the available hardware breakpoint
resources are not enough, then the debugger displays an error message.

• Stepping on multicore targets are dependent on SMP/AMP and debugger
settings. See Overview: Debugging multi-core (SMP and AMP), big.LITTLE, and
multi-cluster targets for more information.

There are several ways to step through an application. You can choose to step:

• Source level or instruction level.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-step-mode
https://developer.arm.com/documentation/101469/latest/Introduction-to-Arm-Debugger/Overview--Debugging-multi-core--SMP-and-AMP---big-LITTLE--and-multi-cluster-targets
https://developer.arm.com/documentation/101469/latest/Introduction-to-Arm-Debugger/Overview--Debugging-multi-core--SMP-and-AMP---big-LITTLE--and-multi-cluster-targets

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

In source level debugging, you step through one line or expression in your source code. For
instruction level debugging, you step through one machine instruction. Use the Toggle stepping
mode button on the toolbar to switch between source and instruction level debugging
modes.

• Into, over, or out of all function calls.

If your source is compiled with debug information, using the execution control group of
commands, you can step into, step through, or step out of functions.

• Through multiple statements in a single line of source code, for example a for loop.

Toolbar options
Continue running the application - Click to start or resume execution.

Interrupt running the application - Click to pause execution.

Step through - Click to step through the code.

Step over - Click to step over code.

Step out - Click to continue running to the next line of code after the selected stack frame
finishes.

Toggle stepping mode - Click to change the stepping mode between source line and
instruction.

Examples
To step a specified number of times you must use the Commands view to manually execute one of
the stepping commands with a number.

For example:

steps 5 # Execute five source statements
stepi 5 # Execute five instructions

See Commands view for more information.

Related information
Examining the target execution environment on page 120
Examining the call stack on page 121
Handling UNIX signals on page 75
Handling processor exceptions on page 77
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups/Execution-control

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3.3 Working with breakpoints
The debugger allows you to set software or hardware breakpoints depending on the type of
memory available on your target.

To set a breakpoint, double-click in the left-hand marker bar of the C/C++ editor or the
Disassembly view at the position where you want to set the breakpoint. See Disassembly view for
more information.

To temporarily disable a breakpoint, in the Breakpoints view, select the breakpoint you want to
disable, and either clear the check-box or right-click and select Disable breakpoints. To enable
the breakpoint, either select the check-box or right-click and select Enable breakpoints. See
Breakpoints view for more information.

To delete a breakpoint, double-click on the breakpoint marker or right-click on the breakpoint and
select Toggle Breakpoint.The following figure shows how breakpoints are displayed in the C/C++
editor, the Disassembly view, and the Breakpoints view.

Additionally, you can view all breakpoints in your application in the Breakpoints view.

Figure 3-2: Viewing breakpoints

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3.4 Working with watchpoints
Watchpoints can be used to stop your target when a specific memory address is accessed by your
program.

• If monitoring a global variable, in the Variables view, right-click on a data symbol and select
Toggle Watchpoint to display the Add Watchpoint dialog box.

• If monitoring a memory address, in the Disassembly view, right-click on a memory address and
select Toggle Watchpoint to display the Add Watchpoint dialog box.

Figure 3-3: Setting a watchpoint on a data symbol

Setting a watchpoint
1. Select the required Access Type. You can choose:

• Read Read access watchpoint - To stop the target when a read access occurs.

• Write Write access watchpoint - To stop the target when a write access occurs.

• Access Read or Write access watchpoint - To stop the target when either a read or write
access occurs.

2. If you want to enable the watchpoint when it is created, select Enable.

The default is enabled, but if a conditional watchpoint exists, the watchpoint
is created disabled. Only one watchpoint can be enabled if a conditional
watchpoint exists.

3. Specify the width to watch at the given address, in bits. Accepted values are: 8, 16, 32, and 64 if
supported by the target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

This parameter is optional. The width defaults to:

• 32 bits for an address.

• The width corresponding to the type of the symbol or expression, if entered.

4. Expand Stop Condition and in the Expression field, enter a C-style expression. For example,
if your application code has a variable x, then you can specify: x == 10. If no expression is
specified, then the breakpoint or watchpoint condition is deleted.

5. Click OK to apply your selection.

If you created a watchpoint to monitor a global variable, you can view it in the Variables view. If
you created a watchpoint to monitor a memory address, you can view it in the Memory view.

Also, you can view all watchpoints and breakpoints in your application in the Breakpoints view.

Deleting a watchpoint
To delete a watchpoint, right-click a watchpoint and either select Remove Watchpoint or select
Toggle Watchpoint.

Disabling a watchpoint
To disable a watchpoint, right-click a watchpoint and select Disable Watchpoint to temporarily
disable it. To re-enable it, select Enable Watchpoint.

Related information
Assigning conditions to an existing watchpoint on page 71
Watchpoint Properties dialog box on page 426
awatch command
rwatch command
watch command
watch set property command

3.5 Importing and exporting breakpoints and watchpoints
You can import and export Arm® Development Studio breakpoints and watchpoints from within the
Breakpoints view. This makes it possible to reuse your current breakpoints and watchpoints in a
different workspace.

To import or export breakpoints and watchpoints to a settings file, use the options in the
Breakpoints view menu.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/awatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/rwatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch-set-property

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Figure 3-4: Import and export breakpoints and watchpoints

• All breakpoints and watchpoints shown in the Breakpoints view are saved.

• Existing breakpoints and watchpoints settings for the current connection are
deleted and replaced by the settings from the imported file.

3.6 Viewing the properties of a breakpoint or a watchpoint
Once a breakpoint or watchpoint is set, you can view its properties.

Viewing the properties of a breakpoint
There are several ways to view the properties of a breakpoint. You can:

• In the Breakpoints view, right-click a breakpoint and select Properties….

• In the Disassembly view, right-click a breakpoint and select Breakpoint Properties.

• In the code view, right-click a breakpoint and select Arm DS Breakpoints > Breakpoint
Properties.

This displays the Breakpoint Properties dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Figure 3-5: Viewing the properties of a breakpoint

Viewing the properties of a watchpoint
There are several ways to view the properties of a watchpoint. You can:

• In the Breakpoints view, right-click a watchpoint and select Properties….

• In the Variables view, right-click a watchpoint and select Watchpoint Properties.

This displays the Watchpoint Properties dialog box:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Figure 3-6: Watchpoint Properties

• Use the options available in the Type options to change the watchpoint type.

• If your target supports virtualization, enter a virtual machine ID in Break on Virtual Machine ID.
This allows the watchpoint to stop only at the virtual machine ID you specify.

3.7 Associating debug scripts to breakpoints
Using conditional breakpoints, you can run a script each time the selected breakpoint is triggered.
You assign a script file to a specific breakpoint, and when the breakpoint is hit, the script executes.

If using the user interface, use the Breakpoint Properties dialog box to specify your script. See
Breakpoint Properties for more information.

If using the command-line, use the break-script command to specify your script.

Be aware of the following when using scripts with breakpoints:

• If you assign a script to a breakpoint that has sub-breakpoints, the debugger attempts to
execute the script for each sub-breakpoint. If this happens, an error message is displayed. For
an example of sub-breakpoints, see Breakpoints view.

• Take care with commands you use in a script that is attached to a breakpoint. For example,
if you use the quit command in a script, the debugger disconnects from the target when the
breakpoint is hit.

• If you put the continue command at the end of a script, this has the same effect as setting the
Continue Execution option on the Breakpoint Properties dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/break-script
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/quit--exit
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/continue

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3.8 Conditional breakpoints
Conditional breakpoints have properties assigned to test for conditions that must be satisfied to
trigger the breakpoint. When the underlying breakpoint is hit, the specified condition is checked
and if it evaluates to true, then the target remains in the stopped state, otherwise execution
resumes.

For example, using conditional breakpoints, you can:

• Test a variable for a given value.

• Execute a function a set number of times.

• Trigger a breakpoint only on a specific thread or processor.

Breakpoints that are set on a single line of source code with multiple statements are assigned as
sub-breakpoints to a parent breakpoint. You can enable, disable, and view the properties of each
sub-breakpoint in the same way as a single statement breakpoint. Conditions are assigned to top
level breakpoints only and therefore affect both the parent breakpoint and sub-breakpoints.

See Assigning conditions to an existing breakpoint for an example. Also, see the details of the break
command to see how it is used to specify conditional breakpoints.

• Conditional breakpoints can be very intrusive and lower the performance if they
are hit frequently since the debugger stops the target every time the breakpoint
triggers.

• If you assign a script to a breakpoint that has sub-breakpoints, the debugger
attempts to execute the script for each sub-breakpoint. If this happens, an error
message is displayed. For an example of sub-breakpoints, see Breakpoints view.

Considerations when setting multiple conditions on a breakpoint
Be aware of the following when setting multiple conditions on a breakpoint:

• If you set a Stop Condition and an Ignore Count, then the Ignore Count is not decremented
until the Stop Condition is met. For example, you might have a breakpoint in a loop that is
controlled by the variable c and has 10 iterations. If you set the Stop Condition c==5 and the
Ignore Count to 3, then the breakpoint might not activate until it has been hit with c==5 for the
fourth time. It subsequently activates every time it is hit with c==5.

• If you choose to break on a selected thread or processor, then the Stop Condition and Ignore
Count are checked only for the selected thread or processor.

• Conditions are evaluated in the following order:

1. Thread or processor.

2. Condition.

3. Ignore count.

Related information
Arm assembler editor on page 319

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/break

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Breakpoints view on page 322
C/C++ editor on page 326
Commands view on page 329
Disassembly view on page 339
Expressions view on page 350
Memory view on page 359
Registers view on page 376
Variables view on page 408

3.9 Assigning conditions to an existing breakpoint
Using the options available on the Breakpoint Properties dialog box, you can specify different
conditions for a specific breakpoint.

About this task
For example, you can set a breakpoint to be applicable to only specific threads or processors,
schedule to run a script when a selected breakpoint is triggered, delay hitting a breakpoint, or
specify a conditional expression for a specific breakpoint.

Procedure
1. In the Breakpoints view, select the breakpoint that you want to modify and right-click to

display the context menu.
2. Select Properties… to display the Breakpoint Properties dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Figure 3-7: Breakpoint Properties dialog box

3. Breakpoints apply to all threads by default, but you can modify the properties for a breakpoint
to restrict it to a specific thread.
a) Select the Break on Selected Threads option to view and select individual threads.
b) Select the checkbox for each thread that you want to assign the breakpoint to.

If you set a breakpoint for a specific thread, then any conditions you set for
the breakpoint are checked only for that thread.

4. If you want to set a conditional expression for a specific breakpoint, then:
a) In the Stop Condition field, enter a C-style expression. For example, if your application code

has a variable x, then you can specify: x == 10.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

See the break command to see how it is used to specify conditional
breakpoints.

5. If you want the debugger to delay hitting the breakpoint until a specific number of passes has
occurred, then:
a) In the Ignore Count field, enter the number of passes. For example, if you have a loop that

performs 100 iterations, and you want a breakpoint in that loop to be hit after 50 passes,
then enter 50.

6. If you want to run a script when the selected breakpoint is triggered, then:
a) In the On break, runscript field, specify the script file.

Click File System… to locate the file in an external directory from the workspace or click
Workspace… to locate the file within the workspace.

Take care with commands used in a script file that is attached to a
breakpoint. For example, if the script file contains the quit command, the
debugger disconnects from the target when the breakpoint is hit.

7. Select Continue Execution if you want to enable the debugger to automatically continue
running the application on completion of all the breakpoint actions. Alternatively, you can enter
the continue command as the last command in a script file, that is attached to a breakpoint.

8. Select Silent if you want to hide breakpoint information in the Commands view.
9. If required, specify a Virtual Machine ID (VMID).

You can only specify a Virtual Machine ID (VMID) if hardware virtualization is
supported by your target.

10. Once you have selected the required options, click OK to save your changes.

Related information
Arm assembler editor on page 319
Breakpoints view on page 322
C/C++ editor on page 326
Commands view on page 329
Disassembly view on page 339
Expressions view on page 350
Memory view on page 359
Registers view on page 376
Variables view on page 408

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/break

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3.10 Conditional watchpoints
Conditional watchpoints have properties that are assigned to test for conditions that must be
satisfied to trigger the watchpoint. When the conditional watchpoint is hit, the specified condition
is checked and if it evaluates to true, the watchpoint is triggered, and the target stops.

For example, using conditional watchpoints you can:

• Set a watchpoint to stop when accessing data from a memory region, but only when a variable
evaluates to a given value.

• On processors that implement virtualization extensions, you can set a watchpoint to trigger
only when running within a specific virtual machine (determined through its Virtual Machine ID
(VMID)).

• You can set a watchpoint to trigger only when a specific process is running, as defined by the
current Context ID. This feature is not available on Arm®v6 processors.

• Conditional watchpoints are not supported on gdbserver connections currently.

• You can create several conditional watchpoints, but when a conditional
watchpoint is enabled, no other watchpoints (regardless of whether they are
conditional) can be enabled.

• Conditional watchpoints can be intrusive and lower performance if they are
hit frequently since the debugger stops the target every time the watchpoint
triggers.

See Working with watchpoints for details about assigning a condition to watchpoint when creating
it. See Assigning conditions to an existing watchpoint for details about assigning conditions to an
existing watchpoint.

You can also use the awatch, rwatch, and watch commands to assign conditions to a watchpoint.

Considerations when creating conditional watchpoints
• If the instruction causing the trap occurred synchronously, then to evaluate a condition after

any state has changed (for example, a store to an address), the debugger steps the instruction
that caused the trap. The debugger then proceeds to evaluate the condition to see whether
to stop on the watchpoint. This is required so that a specific address can be watched and trap
immediately after a specific value is written to that address.

• Ignore count or core/thread specific watchpoints are not supported.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/awatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/rwatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

3.11 Assigning conditions to an existing watchpoint
Using the options available on the Breakpoint Properties dialog box, you can specify different
conditions for a specific watchpoint.

About this task
To specify the condition which must evaluate to true at the time the watchpoint is triggered for the
target to stop, use the Stop Condition field.

You can create several conditional watchpoints, but when a conditional watchpoint
is enabled, no other watchpoints (regardless of whether they are conditional) can be
enabled.

Procedure
1. In the Breakpoints view, select the watchpoint that you want to modify and right-click to

display the context menu.
2. Select Properties… to display the Watchpoint Properties dialog box.
3. If not selected, select Enabled.
4. Specify the width to watch at the given address, in bits. Accepted values are: 8, 16, 32, and 64

if supported by the target.
This parameter is optional. The width defaults to:

• 32 bits for an address.

• The width corresponding to the type of the symbol or expression, if entered.
5. Expand Stop Condition and in the Expression field, enter a C-style expression. For example, if

your application code has a variable x, then you can specify: x == 10.

Figure 3-8: Watchpoint Properties dialog box

6. Click OK, to apply the condition to the watchpoint.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Related information
Working with watchpoints on page 62
Watchpoint Properties dialog box on page 426
awatch command
rwatch command
watch command
watch set property command

3.12 Pending breakpoints and watchpoints
A pending breakpoint or watchpoint is one that exists in the debugger but is not active on the
target until some precondition is met, such as a shared library being loaded.

Breakpoints and watchpoints are typically set when debug information is available. Pending
breakpoints and watchpoints, however, enable you to set breakpoints and watchpoints before the
associated debug information is available.

When a new shared library is loaded, the debugger re-evaluates all pending breakpoints and
watchpoints. Breakpoints or watchpoints with addresses that can be resolved are set as standard
execution breakpoints or watchpoints and those with unresolved addresses remain pending. The
debugger automatically changes any breakpoints or watchpoints in a shared library to a pending
one when the library is unloaded by your application.

Manually setting a pending breakpoint or watchpoint
To manually set a pending breakpoint or watchpoint, you can use the -p option with any of these
commands:

advance

break

hbreak

tbreak

thbreak

watch

awatch

rwatch

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/awatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/rwatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch-set-property
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/advance
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/break
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/hbreak
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/tbreak
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/thbreak
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/watch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/awatch
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/rwatch

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

You can enter debugger commands in the Commands view. See Commands view
for more information.

Examples
break -p lib.c:20 # Sets a pending breakpoint at line 20 in lib.c
awatch -p *0x80D4 # Sets a pending read/write watchpoint on address 0x80D4

Resolving a pending breakpoint or watchpoint
You can force the resolution of a pending breakpoint or watchpoint. This might be useful, for
example, if you have manually modified the shared library search paths.

To resolve a pending breakpoint or watchpoint:

• If using the user interface, right-click on the pending breakpoint or watchpoint that you want to
resolve, and select Resolve.

• If using the command-line, use the resolve command.

Related information
Arm assembler editor on page 319
Breakpoints view on page 322
C/C++ editor on page 326
Commands view on page 329
Disassembly view on page 339
Expressions view on page 350
Memory view on page 359
Registers view on page 376
Variables view on page 408

3.13 Setting a tracepoint
Tracepoints are memory locations that are used to trigger behavior in a trace capture device when
running an application. A tracepoint is hit when the processor executes an instruction at a specific
address. Depending on the tracepoint type, trace capture is either enabled or disabled.

Tracepoints can be set from the following:

• Arm Assembler editor.

• C/C++ editor.

• Disassembly view.

• Functions view.

• Memory view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/resolve

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

• The instruction execution history panel in the Trace view.

Trace triggers are not supported on Cortex®-M series processors.

To set a tracepoint, right-click in the left-hand marker bar at the position where you want to set
the tracepoint and select either Toggle Trace Start Point, Toggle Trace Stop Point, or Toggle Trace
Trigger Point from the context menu. To remove a tracepoint, repeat this procedure on the same
tracepoint or delete it from the Breakpoints view. See About trace support for more information
about Trace Start, Stop, and Trigger Point.

Tracepoints are stored on a per connection basis. If the active connection is disconnected then
tracepoints can only be created from the source editor.

All tracepoints are visible in the Breakpoints view.

Related information
Arm assembler editor on page 319
Breakpoints view on page 322
C/C++ editor on page 326
Commands view on page 329
Disassembly view on page 339
Expressions view on page 350
Memory view on page 359
Registers view on page 376
Variables view on page 408

3.14 Handling UNIX signals
When debugging a Linux application you can configure the debugger to stop or report when a
UNIX signal is raised.

To manage UNIX signals in the debugger, either:

• Select Manage Signals from the Breakpoints toolbar or the view menu.

Select the individual Signal you want to Stop or Print information, and click OK. The results are
displayed in the Command view.

• Use the handle command and view the results in the Command view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

You can also use the info signals command to display the current signal handler
settings.

Figure 3-9: Manage signals dialog box (UNIX signals)

UNIX signals SIGINT and SIGTRAP cannot be debugged in the same way as other
signals because they are used internally by the debugger for asynchronous stopping
of the process and breakpoints respectively.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-signals

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Examples
If you want the application to ignore a signal, but log the event when it is triggered, then you must
enable stopping on a signal.

Ignoring a SIGHUP signal
In the following example, a SIGHUP signal occurs causing the debugger to stop and print a
message. No signal handler is invoked when using this setting and the debugged application ignores
the signal and continues to operate.

handle SIGHUP stop print # Enable stop and print on SIGHUP
 signal

Debugging a SIGHUP signal
The following example shows how to debug a signal handler.

To do this you must disable stopping on a signal and then set a breakpoint in the signal handler.
This is because if stopping on a signal is disabled then the handling of that signal is performed by
the process that passes signal to the registered handler. If no handler is registered then the default
handler runs and the application generally exits.

handle SIGHUP nostop noprint # Disable stop and print on SIGHUP
 signal

Related information
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Examining the call stack on page 121
Handling processor exceptions on page 77
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
Breakpoints view on page 322
Commands view on page 329
Manage Signals dialog box on page 428
Arm Debugger commands

3.15 Handling processor exceptions
Arm® processors handle exceptions by jumping to one of a set of fixed addresses known as
exception vectors.

Except for a Supervisor Call (SVC) or SecureMonitor Call (SMC), these events are not part of
normal program flow. The events can happen unexpectedly, perhaps because of a software bug.
For this reason, most Arm processors include a vector catch feature to trap these exceptions. This
is most useful for bare-metal projects, or projects at an early stage of development. When an

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

OS is running, it might use these exceptions for legitimate purposes, for example virtual memory
handling.

When vector catch is enabled, the effect is similar to placing a breakpoint on the selected vector
table entry. But in this case, vector catches use dedicated hardware in the processor and do not
use up valuable breakpoint resources.

The available vector catch events are dependent on the exact processor that you
are connected to.

To manage vector catch in the debugger, either:

• Select Manage Signals from the Breakpoints toolbar or the view menu to display the Manage
Signals dialog box.

For each individual signal that you want information, select either the Stop or Print option. The
Stop option stops the execution and prints a message. The Print option prints a message, but
continues execution. You can view these messages in the Commands view.

Figure 3-10: Manage Signals dialog box

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

• Use the handle command and view the results in the Commands view.

You can also use the info signals command to display the current handler settings.

Examples
Debugging an exception handler
If you want the debugger to catch the exception, log the event, and stop the application when the
exception occurs, then you must enable stopping on an exception. In the following example, a NON-
SECURE_FIQ exception occurs causing the debugger to stop and print a message in the Commands
view. You can then step or run to the handler, if present.

handle NON-SECURE_FIQ stop # Enable stop and print on a NON-SECURE_FIQ
 exception

Ignoring an exception
If you want the exception to invoke the handler without stopping, then you must disable stopping
on an exception.

handle NON-SECURE_FIQ nostop # Disable stop on a NON-SECURE_FIQ exception

Related information
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Examining the call stack on page 121
Handling UNIX signals on page 75
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
Breakpoints view on page 322
Commands view on page 329
Manage Signals dialog box on page 428
Arm Debugger commands

3.16 Cross-trigger configuration
In a multiprocessor system, when debug events from one processor are used to affect the debug
sessions of other processors, it is called cross-triggering. It is sometimes useful to control all

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/handle
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-signals
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

processors with a single debugger command. For example, stopping all cores when a single core
hits a breakpoint.

• Hardware cross-triggering

A hardware cross-triggering mechanism uses the cross-trigger network (composed of Cross
Trigger Interface (CTI) and Cross Trigger Matrix (CTM) devices) present in a multiprocessor
system. The advantage of using a hardware-based cross-triggering mechanism is low latency
performance.

• Software cross-triggering

In a software cross-triggering scenario, the mechanism is performed and managed by the
debugger. Using a software cross-triggering mechanism results in increased latency.

In Arm® Development Studio, the Platform Configuration Editor (PCE) generates support for
CTI-synchronized SMP and big.LITTLE debug operations platforms provided that sufficient and
appropriate cores, and CTI are available in the SoC. PCE also supports for transporting trace trigger
notifications across the cross-trigger network between trace sources and trace sinks.

CTI interfaces need to be programmed using the Debug and Trace Services Layer (DTSL)
capabilities in Development Studio. See the DTSL documentation or contact your support
representative for more information.

3.17 Using semihosting to access resources on the host
computer

Semihosting is a mechanism that enables code running on an Arm target or emulator to
communicate with and use the Input/Output facilities on a host computer. The host must be
running the emulator, or a debugger that is attached to the Arm target.

Examples of these facilities include keyboard input, screen output, and disk I/O. For example, you
can use this mechanism to enable functions in the C library, such as printf() and scanf(), to use
the screen and keyboard of the host instead of having a screen and keyboard on the target system.

This is useful because development hardware often does not have all the input and output facilities
of the final system. Semihosting enables the host computer to provide these facilities.

Semihosting is implemented by a set of defined software instructions, for example, SVCs, that
generate exceptions from program control. The application invokes the appropriate semihosting
call and the debug agent then handles the exception. The debug agent provides the required
communication with the host.

Semihosting uses stack base and heap base addresses to determine the location and size of the
stack and heap. The stack base, also known as the top of memory, is an address that is by default
64K from the end of the heap base. The heap base is by default contiguous to the application
code.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

The following figure shows a typical layout for an Arm target.

Figure 3-11: Typical layout between top of memory, stack, and heap

Stack

Heap

ZI data

RW
data

Application code
(RO +RW)

End of
application

Application
base

Heap
base

Heap
limit

0xFFFFFFFF

Stack base
(Top of

memory)

0x00000000

Semihosting support in Arm Development Studio
The suite of tools in Arm® Development Studio supports the latest semihosting specification for
both AArch64 and AArch32 states on both software models and real target hardware.

The Semihosting for AArch32 and AArch64 specification introduces support for semihosting in
mixed AArch64 and AArch32 systems by using HLT trap instructions in the A64, A32, and T32
instruction sets.

• In Arm Compiler v6.6 and later, to build a project using HLT-based semihosting, import the
symbol __use_hlt_semihosting. HLT-based semihosting libraries are then selected automatically
at link-time.

See Using the C and C++ libraries with an application in a semihosting environment section
in the Arm Compiler for Embedded Arm C and C++ Libraries and Floating-Point Support User
Guide for more information.

• In Fast Models and FVPs, semihosting is enabled when the semihosting-enable=true option
is set. See Configuring the model in the Fixed Virtual Platform (FVP) Reference Guide for more
information.

• In Arm Debugger, semihosting is enabled automatically when an image is loaded that contains
the special symbols __auto_semihosting or __semihosting_library_function, or if you
explicitly enable semihosting using the set semihosting enabled on command. See the set
semihosting command documentation for more information.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 589

https://developer.arm.com/documentation/100863/latest/
https://developer.arm.com/documentation/100073/latest/The-Arm-C-and-C---Libraries/Support-for-building-an-application-with-the-C-library/Using-the-C-and-C---libraries-with-an-application-in-a-semihosting-environment
https://developer.arm.com/documentation/100966/latest/Getting-Started-with-Fixed-Virtual-Platforms/Configuring-the-model
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-semihosting
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-semihosting

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Related information
About passing arguments to main() on page 587
Working with semihosting on page 82
Debug Configurations - Arguments tab on page 442
App Console view on page 316
Arm Debugger commands

3.18 Working with semihosting
Semihosting is supported by the debugger in both the command-line console and from the user
interface.

Enabling semihosting support
By default, semihosting support is disabled in the debugger. However, Arm® Debugger enables
semihosting automatically if either __auto_semihosting or __semihosting_library_function ELF
symbols are present in an image. Also, if the image is compiled with Arm Compiler 5.0 and later,
the linker automatically adds __semihosting_library_function to an image if it uses functions that
require semihosting.

In C code, you can create the ELF symbol by defining a function with the name
__auto_semihosting. To prevent this function generating any additional code or data in your image,
you can define it as an alias of another function. This places the required ELF symbol in the debug
information, but does not affect the code and data in the application image.

Examples
#include <stdio.h>
void __auto_semihosting(void) __attribute__((alias("main")));
//mark as alias for main() to declare
//semihosting ELF symbol in debug information only
int main(void){
 printf("Hello world\n");
 return 0;
}

Using semihosting from the command-line console
The input/output requests from application code to a host workstation running the debugger are
called semihosting messages. By default, all semihosting messages (stdout and stderr) are output
to the console. When using this console interactively with debugger commands , you must use the
stdin option to send input messages to the application.

By default, all messages are output to the command-line console, but you can choose to redirect
them when launching the debugger by using one or more of the following options:

--disable_semihosting

Disables all semihosting operations.

--disable_semihosting_console

Disables all semihosting operations to the debugger console.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-semihosting
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-semihosting
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/stdin

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

--semihosting_error=filename

Specifies a file to write stderr for semihosting operations.

--semihosting_input=filename

Specifies a file to read stdin for semihosting operations.

--semihosting_output=filename

Specifies a file to write stdout for semihosting operations.

Alternatively, you can disable semihosting in the console and use a separate telnet
session to interact directly with the application. During start up, the debugger
creates a semihosting server socket and displays the port number to use for the
telnet session.

See Command-line debugger options for more information.

Using semihosting from the user interface
The App Console view in the DS Debug perspective controls all the semihosting input/output
requests (stdin, stdout, and stderr) between the application code and the debugger.

Related information
About passing arguments to main() on page 587
Using semihosting to access resources on the host computer on page 80
Debug Configurations - Arguments tab on page 442
App Console view on page 316
Arm Debugger commands

3.19 Configuring the debugger path substitution rules
During the debugging process, the debugger attempts to open the corresponding source file when
execution stops at an address in the image or shared object.

About this task
The debugger might not be able to locate the source file when debug information is loaded
because:

• The path that is specified in the debug information is not present on your workstation, or that
path does not contain the required source file.

• The source file is not in the same location on your workstation as the image containing the
debug information. The debugger attempts to use the same path as this image by default.

Therefore, you must modify the search paths used by the debugger when it executes any of the
commands that look up and display source code.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Procedure
1. Open the Path Substitution dialog box.

• If a source file cannot be located, a warning is displayed in the C/C++ editor. Click the Set
Path Substitution option.

2. In the Debug Control view, select Path Substitution from the view menu.

You must be connected to your target to access the Path Substitution menu
option.

Figure 3-12: Set Path Substitution

3. Click on the required toolbar icons in the Path Substitution dialog box:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

Figure 3-13: Path Substitution dialog box

a) Add a path using the Edit Substitute Path dialog box.
Figure 3-14: Edit Substitute Path dialog box

b) Image Path - Enter the original path for the source files or Select… a compilation path.
c) Host Path - Enter the current location of the sources. Click File System… to locate the

source files in an external folder or click Workspace… to locate the source files in a
workspace project.

d) Click OK to accept the changes and close the dialog box.
4. Delete an existing path.

a) Select the path that you want to delete in the Path Substitution dialog box.
b)

Click Delete Path to delete the selected path.
c) Click OK to accept the changes and close the dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Controlling Target Execution

5. Edit an existing path.
a) Select the path that you want to edit in the Path Substitution dialog box.
b)

Click Edit Path to edit the path in the Edit Substitute Path dialog box.
c) Make your changes and click OK to accept the changes and close the dialog box.

6. Duplicate substitution rules.
a) Select the path that you want to duplicate in the Path Substitution dialog box.
b)

Click Duplicate substitution rules to display the Edit Substitute Path dialog box.
c) Make your changes and click OK to accept the changes and close the dialog box.
d) If required, you can change the order of the substitution rules.
e) Click OK to pass the substitution rules to the debugger and close the Path Substitution

dialog box.

Related information
About loading debug information into the debugger on page 585

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4 Working with the Target Configuration
Editor

Describes how to use the editor when developing a project for an Arm target.

4.1 About the Target Configuration Editor
The target configuration editor provides forms and graphical views to easily create and edit Target
Configuration Files (TCF) describing memory mapped peripheral registers present on a device.
It also provides import and export wizards for compatibility with the file formats used in μVision
System Viewer.

TCF files must have the file extension .tcf to invoke this editor.

If this is not the default editor, right-click on your source file in the Project Explorer view and select
Open With > Target Configuration Editor from the context menu.

The target configuration editor also provides a hierarchical tree using the Outline view. Click on an
entry in the Outline view to move the focus of the editor to the relevant tab and selected field. If
this view is not visible, select Window > Show View > Outline from the main menu.

To configure the target peripherals, you must provide the TCF files to Arm® Debugger before
connecting to the target. You can specify directories containing TCF files in the Debug
Configurations window by selecting Add peripheral description files from directory in the Files
tab.

Figure 4-1: Specifying TCF files in the Debug Configurations window

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98
Debug Configurations - Files tab on page 434
Scenario demonstrating how to create a new target configuration file on page 100

4.2 Target configuration editor - Overview tab
A graphical view showing general information about the current target and summary information
for all the tabs.

General Information
Consists of:

Unique Name
Unique board name (mandatory).

Category
Name of the manufacturer.

Inherits
Name of the board, memory region or peripheral to inherit data from. You must use the Includes
panel to populate this drop-down menu.

Endianness
Byte order of the target.

TrustZone
TrustZone support for the target. If supported, the Memory and Peripheral tabs are displayed with
a TrustZone Address Type field.

Power Domain
Power Domain support for the target. If supported, the Memory and Peripheral tabs are displayed
with a Power Domain Address Type field. Also, the Configurations tab includes an additional
Power Domain Configurations group.

Description
Board description.

Includes
Include files for use when inheriting target data that is defined in an external file. Populates the
Inherits drop-down menu.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

The Overview tab also provides a summary of the other tabs available in this view, together with
the total number of items defined in that view.

Figure 4-2: Target configuration editor - Overview tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98
About the Target Configuration Editor on page 87
Scenario demonstrating how to create a new target configuration file on page 100
Creating a power domain for a target on page 112

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4.3 Target configuration editor - Memory tab
A graphical view or tabular view that enables you to define the attributes for each of the block of
memory on your target. These memory blocks are used to ensure that your debugger accesses the
memory on your target in the right way.

Graphical view
In the graphical view, the following options are available:

View by Map Rule
Filter the graphical view based on the selected rule.

View by Address Type
Filter the graphical view based on secure or non-secure addresses. Available only when TrustZone
is supported. You can select TrustZone support in the Overview tab.

View by Power Domain
Filter the graphical view based on the power domain. Available only when Power Domain is
supported. You can select Power Domain support in the Overview tab.

Add button
Add a new memory region.

Remove button
Remove the selected memory region.

Graphical and tabular views
In both the graphical view and the tabular view, the following settings are available:

Unique Name
Name of the selected memory region (mandatory).

Name
User-friendly name for the selected memory region.

Description
Detailed description of the selected memory region.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default is an
absolute starting address of 0x0.

Offset
Offset that is added to the base address (mandatory).

Size
Size of the selected memory region in bytes (mandatory).

Width
Access width of the selected memory region.

Access
Access mode for the selected memory region.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Apply Map Rule (graphical view) Map Rule (tabular view)
Mapping rule to be applied to the selected memory region. You can use the Map Rules tab to
create and modify rules for control registers.

More… (tabular view)
In the tabular view, the … button is displayed when you select More… cell. Click the … button to
display the Context and Parameters dialog box.

Context
Debugger plug-in. If you want to pass parameters to a specific debugger, select a plug-in and enter
the associated parameters.

Parameters
Parameters associated with the selected debugger plug-in. Select the required debugger plug-in
from the Context drop-down menu to enter parameters for that debugger plug-in.

Figure 4-3: Target configuration editor - Memory tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Peripherals tab on page 92

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98
About the Target Configuration Editor on page 87
Creating a memory map on page 102
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110

4.4 Target configuration editor - Peripherals tab
A graphical view or tabular view that enables you to define peripherals on your target. They can
then be mapped in memory, for display and control, and accessed for block data, when available.
You define the peripheral in terms of the area of memory it occupies.

Graphical view
In the graphical view, the following options are available:

View by Address Type
Filter the graphical view based on secure or non-secure addresses. Available only when TrustZone
is supported. You can select TrustZone support in the Overview tab.

View by Power Domain
Filter the graphical view based on the power domain. Available only when Power Domain is
supported. You can select Power Domain support in the Overview tab.

Add button
Add a new peripheral.

Remove button
Remove the selected peripheral and, if required, the associated registers.

Graphical and tabular views
In both the graphical view and the tabular view, the following settings are available:

Unique Name
Name of the selected peripheral (mandatory).

Name
User-friendly name for the selected peripheral.

Description
Detailed description of the selected peripheral.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default is an
absolute starting address of 0x0.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Offset
Offset that is added to the base address (mandatory).

Size
Size of the selected peripheral in bytes.

Width
Access width of the selected peripheral in bytes

Access
Access mode for the selected peripheral.

Figure 4-4: Target configuration editor - Peripherals tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

About the Target Configuration Editor on page 87
Creating a peripheral on page 103

4.5 Target configuration editor - Registers tab
A tabular view that enables you to define memory mapped registers for your target. Each register
is named and typed and can be subdivided into bit fields (any number of bits) which act as
subregisters.

Unique Name
Name of the register (mandatory).

Name
User-friendly name for the register.

Base Address
Absolute address or the Name of the memory region to use as a base address. The default is an
absolute starting address of 0x0.

Offset
Offset that is added to the base address (mandatory).

Size
Size of the register in bytes (mandatory).

Access size
Access width of the register in bytes.

Access
Access mode for the selected register.

Description
Detailed description of the register.

Peripheral
Associated peripheral, if applicable.

The Bitfield button opens a table displaying the following information:

Unique Name
Name of the selected bitfield (mandatory).

Name
User-friendly name for the selected bitfield.

Low Bit
Zero indexed low bit number for the selected bitfield (mandatory).

High Bit
Zero indexed high bit number for the selected bitfield (mandatory).

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Access
Access mode for the selected bitfield.

Description
Detailed description of the selected bitfield.

Enumeration
Associated enumeration for the selected bitfield, if applicable.

Figure 4-5: Target configuration editor - Registers tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98
About the Target Configuration Editor on page 87
Creating a standalone register on page 104

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Creating a peripheral register on page 105
Assigning enumerations to a peripheral register on page 107
Creating enumerations for use with a peripheral register on page 106

4.6 Target configuration editor - Group View tab
A list view that enables you to select peripherals to be used by the debugger.

Group View List
Empty list that enables you to add frequently used peripherals to the debugger.

Add a new group
Creates a group that you can personalize with peripherals.

Remove the selected group
Removes a group from the list.

Available Peripheral List
A list of the available peripherals. You can select peripherals from this view to add to the Group
View List.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-6: Target configuration editor - Group View tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Registers tab on page 94
Target configuration editor - Enumerations tab on page 98
Target configuration editor - Configurations tab on page 98
About the Target Configuration Editor on page 87
Creating a Group list on page 113

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4.7 Target configuration editor - Enumerations tab
A tabular view that enables you to assign values to meaningful names for use by registers you have
defined. Enumerations can be used, instead of values, when a register is displayed in the Registers
view. This setting enables you to define the names associated with different values. Names defined
in this group are displayed in the Registers view, and can be used to change register values.

Register bit fields are numbered 0, 1, 2,… regardless of their position in the register.

For example, you might want to define ENABLED as 1 and DISABLED as 0 .

The following settings are available:

Unique Name
Name of the selected enumeration (mandatory).

Value
Definitions specified as comma separated values for selection in the Registers tab (mandatory).

Description
Detailed description of the selected enumeration.

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Configurations tab on page 98
About the Target Configuration Editor on page 87
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107

4.8 Target configuration editor - Configurations tab
A tabular view that enables you to:

• Define rules to control the enabling and disabling of memory blocks using target registers.
You specify a register to be monitored, and when the contents match a given value, a set of
memory blocks is enabled. You can define several map rules, one for each of several memory
blocks.

• Define power domains that are supported on your target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Memory Map Configurations group
The following settings are available in the Memory Map Configurations group:

Unique Name
Name of the rule (mandatory).

Name
User-friendly name for the rule.

Register
Associated control register (mandatory).

Mask
Mask value (mandatory).

Value
Value for a condition (mandatory).

Trigger
Condition that changes the control register mapping (mandatory).

Power Domain Configurations group
The Power Domain Configurations group

The following settings are available in this group, and all are mandatory:

Unique Name
Name of the power domain.

Wake-up Conditions
User-friendly name for the rule:

Register
An associated control register that you have previously created.

Mask
Mask value.

Value
Value for a condition.

Power State
The power state of the power domain:

• Active.

• Inactive.

• Retention.

• Off.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-7: Target configuration editor - Configuration tab

Mandatory fields are indicated by an asterisk. Toolbar buttons and error messages are displayed in
the header panel as appropriate.

Related information
Target configuration editor - Overview tab on page 88
Target configuration editor - Memory tab on page 89
Target configuration editor - Peripherals tab on page 92
Target configuration editor - Registers tab on page 94
Target configuration editor - Group View tab on page 96
Target configuration editor - Enumerations tab on page 98
About the Target Configuration Editor on page 87
Creating a standalone register on page 104
Creating remapping rules for a control register on page 108
Creating a power domain for a target on page 112

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4.9 Scenario demonstrating how to create a new target
configuration file

This is a fictitious scenario to demonstrate how to create a new Target Configuration File (TCF)
containing the following memory map and register definitions. The individual tasks required to
complete each step of this tutorial are listed below.

• Boot ROM: 0x0 - 0x8000

• SRAM: 0x0 - 0x8000

• Internal RAM: 0x8000 - 0x28000

• System Registers that contain memory mapped peripherals: 0x10000000 - 0x10001000

◦ A basic standalone LED register. This register is located at 0x10000008 and is used to write a
hexadecimal value that sets the corresponding bits to 1 to illuminate the respective LEDs.

Figure 4-8: LED register and bitfields

1Reserved

31 8 7 0

8 7 6 5 4 3 2

LED

◦ DMA map register. This register is located at 0x10000064 and controls the mapping of
external peripheral DMA request and acknowledge signals to DMA channel 0.

Table 4-1: DMA map register SYS_DMAPSR0

Bits [31:8] - Reserved. Use read-modify-write to
preserve value

Bit [7] Read/Write Set to 1 to enable mapping of external
peripheral DMA signals to the DMA
controller channel.

Bits [6:5] - Reserved. Use read-modify-write to
preserve value

Bits [4:0] Read/Write FPGA peripheral mapped to this
channel

b00000 = AACI Tx
b00001 = AACI Rx
b00010 = USB A
b00011 = USB B
b00100 = MCI 0

◦ The core module and LCD control register. This register is located at 0x1000000C and controls
a number of user-configurable features of the core module and the display interface on the
baseboard.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-9: Core module and LCD control register

LED

31 24 23 21 20 19 8 7 4 3 2 1 0

LCD control Reserved

Reserved
EBI_WP

RESET
REMAP

nMBDET
LED

This register uses bit 2 to control the remapping of an area of memory as shown in the
following table.

Table 4-2: Control bit that remaps an area of memory

Bits Name Access Function

[2] REMAP Read/Write 0 = Flash ROM at address 0 1
= SRAM at address 0.

• Clearing bit 2 (CM_CTRL = 0) generates the following memory map:

◦ 0x0000 - 0x8000 Boot_ROM

◦ 0x8000 - 0x28000 32bit_RAM

• Setting bit 2 (CM_CTRL = 1) generates the following memory map:

◦ 0x0000 - 0x8000 32bit_RAM_block1_alias

◦ 0x8000 - 0x28000 32bit_RAM

4.9.1 Creating a memory map

Describes how to create a new memory map.

Procedure
1. Add a new file with the .tcf file extension to an open project. The editor opens with the

Overview tab activated.
2. Select the Overview tab, enter a unique board name, for example: My-Dev-Board.
3. Select the Memory tab.
4. Click the Switch to table button in the top right of the view.
5. Enter the data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-10: Creating a Memory map

Results
On completion, you can switch back to the graphical view to see the color coded stack of memory
regions.

Related information
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Memory tab on page 89

4.9.2 Creating a peripheral

Describes how to create a peripheral.

Procedure
1. Select the Peripherals tab.
2. Click the Switch to table button in the top right of the view.
3. Enter the data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-11: Creating a peripheral

Related information
Creating a memory map on page 102
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Peripherals tab on page 92

4.9.3 Creating a standalone register

Describes how to create a basic standalone register.

Procedure
1. Select the Registers tab.
2. Enter the register data as shown in the figure.
3. Bitfield data is entered in a floating table associated with the selected register. Select the

Unique name field containing the register name, BRD_SYS_LED.
4. Click the Edit Bitfield button in the top right corner of the view.
5. In the floating Bitfield table, enter the data as shown in the following figure. If required, you

can dock this table below the register table by clicking on the title bar of the Bitfield table and
dragging it to the base of the register table.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-12: Creating a standalone register

6. On completion, close the floating table.

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Registers tab on page 94
Target configuration editor - Configurations tab on page 98

4.9.4 Creating a peripheral register

Describes how to create a peripheral register.

Procedure
1. Select the Registers tab, if it is not already active.
2. Enter the peripheral register and associated bitfield data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-13: Creating a peripheral register

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Registers tab on page 94

4.9.5 Creating enumerations for use with a peripheral register

Describes how to create enumerations for use with a peripheral.

About this task
Enumerations are textual names for numeric values. For more complex peripherals, you might find
it useful to create enumerations for particular peripheral bit patterns. This means that you can
assign a value to a peripheral by selecting from a list of enumerated values, rather than write the
equivalent hexadecimal value. (For example: Enabled/Disabled, On/Off).

Procedure
1. Select the Enumerations tab.
2. Enter the data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-14: Creating enumerations

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Registers tab on page 94
Target configuration editor - Enumerations tab on page 98

4.9.6 Assigning enumerations to a peripheral register

Describes how to assign enumerations to a peripheral register.

Procedure
1. Select the Registers tab.
2. Open the relevant Bitfield table for the DMA peripheral.
3. Assign enumerations as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-15: Assigning enumerations

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Registers tab on page 94
Target configuration editor - Enumerations tab on page 98

4.9.7 Creating remapping rules for a control register

Describes how to create remapping rules for the core module and LCD control register.

Procedure
1. Select the Configurations tab.
2. Enter the data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-16: Creating remapping rules

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating a memory region for remapping by a control register on page 109
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Configurations tab on page 98

4.9.8 Creating a memory region for remapping by a control register

Describes how to create a new memory region that can be used for remapping when bit 2 of the
control register is set.

Procedure
1. Select the Memory tab.
2. Switch to the table view by clicking on the relevant button in the top corner.
3. Enter the data as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-17: Creating a memory region for remapping by a control register

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Applying the map rules to the overlapping memory regions on page 110
Target configuration editor - Memory tab on page 89

4.9.9 Applying the map rules to the overlapping memory regions

Describes how to apply the map rules to the overlapping memory regions.

Procedure
1. Switch back to the graphic view by clicking on the relevant button in the top corner.
2. Select the overlapping memory region M32bit_RAM_block1_alias and then select

Remap_RAM_block1 from the Apply Map Rule drop-down menu as shown in the following
figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-18: Applying the Remap_RAM_block1 map rule

3. To apply the other map rule, you must select Remap_ROM in the View by Map Rule drop-
down menu at the top of the stack view.

4. Select the overlapping memory region Boot_ROM and then select Remap_ROM from the
Apply Map Rule drop-down menu as shown in the following figure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-19: Applying the Remap_ROM map rule

5. Save the file.

Related information
Creating a memory map on page 102
Creating a peripheral on page 103
Creating a standalone register on page 104
Creating a peripheral register on page 105
Creating enumerations for use with a peripheral register on page 106
Assigning enumerations to a peripheral register on page 107
Creating remapping rules for a control register on page 108
Creating a memory region for remapping by a control register on page 109
Target configuration editor - Memory tab on page 89

4.10 Creating a power domain for a target
Describes how to create a power domain configuration for your target.

Before you begin
Before you create a power domain configuration, you must first create a control register.

Procedure
1. Click on the Overview tab.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

2. Select Supported for the Power Domain setting.
3. Click on the Configurations tab.
4. Expand the Power Domain Configurations group.

Figure 4-20: Power Domain Configurations

5. Click New to create a new power domain.
6. Enter a name in the Unique Name field.
7. Set the following Wake-up Conditions for the power domain:

• Register - a list of registers you have previously created

• Mask

• Value

• Power State.

All settings are mandatory.

Related information
Creating a standalone register on page 104
Target configuration editor - Overview tab on page 88
Target configuration editor - Configurations tab on page 98

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4.11 Creating a Group list
Describes how to create a new group list.

Procedure
1. Click on the Group View tab.
2. Click Add a new group in the Group View List.
3. Select the new group.

You can create a subgroup by selecting a group and clicking Add.

4. Select peripherals and registers from the Available Peripheral List.
5. Press the Add button to add the selected peripherals to the Group View List.
6. Click the Save icon in the toolbar.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-21: Creating a group list

Related information
Target configuration editor - Group View tab on page 96

4.12 Importing an existing target configuration file
Describes how to import an existing target configuration file into the workspace.

Procedure
1. Select Import from the File menu.
2. Expand the Target Configuration Editor group.
3. Select the required file type.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-22: Selecting an existing target configuration file

4. Click on Next.
5. In the Import dialog box, click Browse… to select the folder containing the file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

Figure 4-23: Importing the target configuration file

6. By default, all the files that can be imported are displayed. If the selection panel shows more
than one file, select the files that you want to import.

7. Select the file that you want to automatically open in the editor.
8. In the Into destination folder field, click Browse… to select an existing project.
9. Click Finish. The new Target Configuration Files (TCF) is visible in the Project Explorer view.

Related information
Exporting a target configuration file on page 117

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

4.13 Exporting a target configuration file
Describes how to export a target configuration file from a project in the workspace to a C header
file.

About this task

Before using the export wizard, you must ensure that the Target Configuration File
(TCF) is open in the editor view.

Procedure
1. Select Export from the File menu.
2. Expand the Target Configuration Editor group.
3. Select C Header file.

Figure 4-24: Exporting to C header file

4. Click on Next.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Target Configuration Editor

5. By default, the active files that are open in the editor are displayed. If the selection panel shows
more than one file, select the files that you want to export.

6. Click Browse… to select a destination path.
7. If required, select Overwrite existing files without warning.
8. Click on Next.

Figure 4-25: Selecting the files

9. If the TCF file has multiple boards, select the board that you want to configure the data for.
10. Select the data that you want to export.
11. Select required export options.
12. Click Finish to create the C header file.

Related information
Importing an existing target configuration file on page 115

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

5 Examining the Target
This chapter describes how to examine registers, variables, memory, and the call stack.

5.1 Examining the target execution environment
During a debug session, you might want to display the value of a register or variable, the address
of a symbol, the data type of a variable, or the content of memory. The Development Studio
perspective provides essential debugger views showing the current values.

As you step through the application, all the views associated with the active connection are
updated. In the perspective, you can move any of the views to a different position by clicking on
the tab and dragging the view to a new position. You can also double-click on a tab to maximize or
reset a view for closer analysis of the contents in the view.

Figure 5-1: Target execution environment

Alternatively, you can use debugger commands to display the required information. In the
Commands view, you can execute individual commands or you can execute a sequence of
commands by using a script file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

Related information
Running, stopping, and stepping through an application on page 59
Examining the call stack on page 121
Handling UNIX signals on page 75
Handling processor exceptions on page 77
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35

5.2 Examining the call stack
The call stack, or runtime stack, is an area of memory used to store function return information
and local variables. As each function is called, a record is created on the call stack. This record is
commonly known as a stack frame.

The debugger can display the calling sequence of any functions that are still in the execution path
because their calling addresses are still on the call stack. However:

• When a function completes execution the associated stack frame is removed from the call stack
and the information is no longer available to the debugger.

• If the call stack contains a function for which there is no debug information, the debugger
might not be able to trace back up the calling stack frames. Therefore you must compile all your
code with debug information to successfully view the full call stack.

If you are debugging multi-threaded applications, a separate call stack is maintained for each
thread.

Use the Stack view to display stack information for the currently active connection in the Debug
Control view. All the views in the Development Studio perspective are associated with the current
stack frame and are updated when you select another frame. See Stack view for more information.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

Figure 5-2: Stack view showing information for a selectedcore

Related information
Running, stopping, and stepping through an application on page 59
Examining the target execution environment on page 120
Handling UNIX signals on page 75
Handling processor exceptions on page 77
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35

5.3 About trace support
Arm® Development Studio enables you to perform tracing on your application or system. Tracing
enables you to non-invasively capture, in real-time, the instructions and data accesses that were
executed. It is a powerful tool that enables you to investigate problems while the system runs
at full speed. These problems can be intermittent, and are difficult to identify through traditional
debugging methods that require starting and stopping the processor. Tracing is also useful when
trying to identify potential bottlenecks or to improve performance-critical areas of your application.

When a program fails, and the trace buffer is enabled, you can see the program history associated
with the captured trace. With this program history, it is easier to walk back through your program
to see what happened just before the point of failure. This is particularly useful for investigating
intermittent and real-time failures, which can be difficult to identify through traditional debug
methods that require stopping and starting the processor. The use of hardware tracing can

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

significantly reduce the amount of time required to find these failures, because the trace shows
exactly what was executed.

Trace triggers are not supported on Cortex®-M series processors.

Before the debugger can trace your platform, you must ensure that:

• You have a debug hardware agent, such as an Arm DSTREAM unit with a connection to a trace
stream.

• The debugger is connected to the debug hardware agent.

Trace hardware
Processor trace is typically provided by an external hardware block connected to the processor.
This is known as an Embedded Trace Macrocell (ETM) or Program Trace Macrocell (PTM) and is
an optional part of an Arm architecture-based system. System-on-chip designers might omit this
block from their silicon to reduce costs. Unless using start/stop debug to observe the trace data,
these blocks observe (but do not affect) the processor behavior and are able to monitor instruction
execution and data accesses.

There are two main problems with capturing trace. The first is that with very high processor clock
speeds, even a few seconds of operation can mean billions of cycles of execution. Clearly, to look
at this volume of information would be extremely difficult. The second problem is that data trace
requires very high bandwidth as every load or store operation generates trace information. This
is a problem because typically only a few pins are provided on the chip and these outputs might
be able to be switched at significantly lower rates than the processor can be clocked at. It is very
easy to exceed the capacity of the trace port. To solve this latter problem, the trace macrocell tries
to compress information to reduce the bandwidth required. However, the main method to deal
with these issues is to control the trace block so that only selected trace information is gathered.
For example, trace only execution, without recording data values, or trace only data accesses to a
particular peripheral or during execution of a particular function.

In addition, it is common to store trace information in an on-chip memory buffer, the Embedded
Trace Buffer (ETB). This alleviates the problem of getting information off-chip at speed, but has an
additional cost in terms of silicon area and also provides a fixed limit on the amount of trace that
can be captured.

The ETB stores the compressed trace information in a circular fashion, continuously capturing trace
information until stopped. The size of the ETB varies between chip implementations, but a buffer
of 8 or 16kB is typically enough to hold a several thousand lines of program trace.

Trace Ranges
Trace ranges enable you to restrict the capture of trace to a linear range of memory. A trace range
has a start and end address in virtual memory, and any execution within this address range is
captured. In contrast to trace start and end points, any function calls made within a trace range

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

are only captured if the target of the function call is also within the specified address range.
The number of trace ranges that can be enabled is determined by the debug hardware in your
processor.

When no trace ranges are set, trace data for all virtual addresses is captured. When any trace
ranges are set, trace capture is disabled by default, and is only enabled when within the defined
ranges.

You can configure trace ranges using the Ranges tab in the Trace view. The start and end address
for each range can either be an absolute address or an expression, such as the name of a function.
Be aware that optimizing compilers might rearrange or minimize code in memory from that in the
associated source code. This can lead to code being unexpectedly included or excluded from the
trace capture.

Trace Points
Trace points enable you to control precisely where in your program trace is captured. Trace points
are non-intrusive and do not require stopping the system to process. The maximum number of
trace points that can be set is determined by the debug hardware in your processor. To set trace
points in the source view, right-click in the margin and select the required option from the Arm DS
Breakpoints context menu. To set trace points in the Disassembly view, right-click on an instruction
and select the required option from the Arm DS Breakpoints context menu. Trace points are listed
in the Breakpoints view. The following types of trace points are available:

Trace Start Point
Enables trace capture when execution reaches the selected address.

Trace Stop Point
Disables trace capture when execution reaches the selected address

Trace Trigger Point
Marks this point in your source code so that you can more easily locate it in the Trace view.

Trace Start Points and Trace Stop Points enable and disable capture of trace respectively. Trace
points do not take account of nesting. For example, if you hit two Trace Start Points in a row,
followed by two Trace Stop Points, then the trace is disabled immediately when the first Trace Stop
Point is reached, not the second. With no Trace Start Points set then trace is enabled all the time by
default. If you have any Trace Start Points set, then trace is disabled by default and is only enabled
when the first Trace Start Point is hit.

Trace trigger points enable you to mark interesting locations in your source code so that you can
easily find them later in the Trace view. The first time a Trigger Point is hit a Trace Trigger Event
record is inserted into the trace buffer. Only the first Trigger Point to be hit inserts the trigger event
record. To configure the debugger so that it stops collecting trace when a trace trigger point is hit,
use the Stop Trace Capture On Trigger checkbox in the Properties tab of the Trace view.

This does not stop the target. It only stops the trace capture. The target continues
running normally until it hits a breakpoint or until you click the Interrupt icon in the
Debug Control view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

0%
The trace capture stops as soon as possible after the first trigger point is hit. The trigger event
record can be found towards the end of the trace buffer.

50%
The trace capture stops after the first trigger point is hit and an additional 50% of the buffer is
filled. The trigger event record can be found towards the middle of the trace buffer.

99%
The trace capture stops after the first trigger point is hit and an additional 99% of the buffer is
filled. The trigger event record can be found towards the beginning of the trace buffer.

Due to target timing constraints the trigger event record might get pushed out
of the trace buffer.

Being able to limit trace capture to the precise areas of interest is especially helpful when using a
capture device such as an ETB, where the quantity of trace that can be captured is very small.

Select the Find Trigger Event record option in the view menu to locate Trigger Event record in the
trace buffer.

Trace trigger functionality is dependent on the target platform being able to signal
to the trace capture hardware, such as ETB or DSTREAM, that a trigger condition
has occurred. If this hardware signal is not present or not configured correctly then
it might not be possible to automatically stop trace capture around trigger points.

Related information
About post-mortem debugging of trace data on page 125
Overview: Running Arm Debugger from the command-line or from a script on page 156
Command-line debugger options on page 157
Specifying a custom configuration database using the command-line on page 168

5.4 About post-mortem debugging of trace data
You can decode previously captured trace data. You must have files available containing the
captured trace, as well as any other files, such as configuration and images, that are needed to
process and decode that trace data.

Once the trace data and other files are ready, you configure the headless command-line debugger
to connect to the post-mortem debug configuration from the configuration database.

You can then inspect the state of the data at the time of the trace capture.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Examining the Target

• The memory and registers are read-only.

• You can add more debug information using additional files.

• You can also decode trace and dump the output to files.

The basic steps for post-mortem debugging using the headless command-line debugger are:

1. Generate trace data files.

2. Use --cdb-list to list the platforms and parameters available in the configuration database.

3. Use --cdb-entry to specify a platform entry in the configuration database.

4. If you need to specify additional parameters, use the --cdb-entry-param option to specify the
parameters.

At the Arm® Development Studio command prompt, enter debugger --help to
view the list of available options.

Related information
About trace support on page 122
Overview: Running Arm Debugger from the command-line or from a script on page 156
Command-line debugger options on page 157
Specifying a custom configuration database using the command-line on page 168

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6 Debugging with Scripts
Describes how to use scripts containing debugger commands to enable you to automate debugging
operations.

6.1 Exporting Arm Debugger commands generated during
a debug session

A full list of all the Arm® Debugger commands generated during the current debug session is
recorded in the History view. Before closing Eclipse, you can select the commands that you want in
your script file and click on Export the selected lines as a script file to save them to a file.

Figure 6-1: Commands generated during a debug session

6.2 Creating an Arm Debugger script
Shows a typical example of an Arm® Debugger script.

The script file must contain only one command on each line. Each command can be identified with
comments if required. The .ds file extension must be used to identify this type of script.

Filename: myScript.ds
Initialization commands
load "struct_array.axf" # Load image

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

file "struct_array.axf" # Load symbols
break main # Set breakpoint at main()
break *0x814C # Set breakpoint at address 0x814C
Run to breakpoint and print required values
run # Start running device
wait 0.5s # Wait or time-out after half a second
info stack # Display call stack
info registers # Display info for all registers
Continue to next breakpoint and print required values
continue # Continue running device
wait 0.5s # Wait or time-out after half a second
info functions # Displays info for all functions
info registers # Display info for all registers
x/3wx 0x8000 # Display 3 words of memory from 0x8000 (hex)
...
Shutdown commands
delete 1 # Delete breakpoint assigned number 1
delete 2 # Delete breakpoint assigned number 2

6.3 Creating a CMM-style script
Arm® Development Studio provides a small subset of CMM-style commands which you can use to
create a CMM-style script.

The debugger script file must conform to the following standards:

• The script file must contain only one command on each line. If necessary, you can add
comments using the // tags.

• The .cmm or .t32 file extension must be used to identify a CMM-style script.

After creating your script, you must use the Arm Debugger source command to load and run the
script.

The example below shows a typical CMM-style script.

Examples
// Filename: myScript.cmm
system.up ; Connect to target and device
data.load.elf "hello.axf" ; Load image and symbols
// Setup breakpoints and registers
break.set main /disable ; Set breakpoint and immediately disabled
break.set 0x8048 ; Set breakpoint at specified address
break.set 0x8060 ; Set breakpoint at specified address
register.set R0 15 ; Set register R0
register.set PC main ; Set PC register to symbol address
...
break.enable main ; Enable breakpoint at specified symbol
// Run to breakpoint and display required values
go ; Start running device
var.print "Value is: " myVar ; Display string and variable value
print %h r(R0) ; Display register R0 in hexadecimal
// Run to breakpoint and print stack
go ; Run to next breakpoint
var.frame /locals /caller ; Display all variables and function callers
...
// Shutdown commands
break.delete main ; Delete breakpoint at address of main()
break.delete 0x8048 ; Delete breakpoint at address
break.delete 0x8060 ; Delete breakpoint at specified address

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

system.down ; Disconnect from target

6.4 Support for importing and translating CMM scripts
You can use the import and translate CMM script feature in Arm® Development Studio to reuse
existing CMM scripts for your platform. After the translation is complete, the CMM script is
converted into a Jython script which you can then run in Development Studio.

During the CMM file import process in Development Studio:

• Translates and maps the CMM commands to their equivalent Jython commands or calls to the
Arm Debugger API.

If a CMM command translation is not supported, it is marked up as a stub function in the
resultant Jython script. Using the information contained in the stub function, you can implement
your own functionality for unsupported CMM commands.

See Supported CMM commands for translations for the list of commands that are currently
translated.

• Translates flow control statements in CMM such as IF, ELSE IF, ELSE, WHILE, and RePeaT to
their Jython equivalents.

• Also imports and process complex nested commands and functions, CMM variables, and
variable assignments. CMM subroutines that are specified with labels, ENTRY commands
for subroutine parameters, and RETURN statements to return values from subroutines are
converted directly to valid Jython subroutine syntax.

Logging and error handling
For every translated CMM script, the translation process also creates a log file and places it in the
same folder as the translated script file. The log contains a summary, the detailed breakdown of the
translated elements, and details of any errors, if any.

To view the log, right-click on the imported CMM script and select Show log for the translation of
<YourFilename.cmm>.

Related information
Scripts view on page 393
Importing and translating a CMM script on page 129
Supported CMM commands for translations on page 130

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.4.1 Importing and translating a CMM script

If you have existing CMM scripts for your platform, you can use the script import feature in Arm®

Development Studio to import and translate them.

Before you begin
• CMM scripts must have the .cmm extension to use the Development Studio script import

feature.

• Scripts are associated with a debug configuration. When importing or editing scripts, first select
the associated debug configuration for your target in the Debug Control view.

Procedure
1. To import a CMM script into Development Studio, in the Scripts view, click Import a script or

directory and select .

You can also drag and drop the script to be imported into the script view, either
from the Project Explorer view or your operating system file explorer.

2. Browse and select the CMM script that you want to import, and click Open.
3. Choose a location for the translated CMM script and click OK. To view the imported CMM

script, in the Scripts view, expand the CMM node and locate your script.

Related information
Supported CMM commands for translations on page 130
Scripts view on page 393

6.4.2 Supported CMM commands for translations

The following CMM commands are supported by the translation process.

• Break.Set - Set a breakpoint or watchpoint.

• Break.Delete - Delete an address or symbol breakpoint or watchpoint.

• pBreak.Delete - Delete a source level breakpoint or watchpoint.

• Core or Core.Select - Switch to the numbered core in the connection.

• Data.Load - Load an image.

• Data.Load.Elf - Load an ELF format file.

• Data.Load.Bin - Load a binary format file.

• Data.Load.auto - Load a file after automatically detecting the file format.

• Data.Long - Read a 32-bit value from memory.

• Data.Set - Write byte-wise to memory.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

• Go.Direct or Go - Continue to run the core (additionally set temporary breakpoints before
running).

• Print - Print the output.

• Register - Read a register.

• Register.Set - Write a register.

• System.ResetTarget or Sys.ResetTarget - Reset the target on the current connection.

• Wait - Wait until a specified condition is true or for a set time period.

For detailed descriptions and formats for these individual commands, check the documentation
provided with your debugger.

Related information
Support for importing and translating CMM scripts on page 129
Importing and translating a CMM script on page 129
Scripts view on page 393

6.5 About Jython scripts
Jython is a Java implementation of the Python scripting language. It provides extensive support
for data types, conditional execution, loops and organization of code into functions, classes and
modules, as well as access to the standard Jython libraries.

Jython is an ideal choice for larger or more complex scripts. These are important concepts that are
required in order to write a debugger Jython script.

The .py file extension must be used to identify this type of script.

Filename: myScript.py
import sys
from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException
Debugger object for accessing the debugger
debugger = Debugger()
Initialization commands
ec = debugger.getCurrentExecutionContext()
ec.getExecutionService().stop()
ec.getExecutionService().waitForStop()
in case the execution context reference is out of date
ec = debugger.getCurrentExecutionContext()
load image if provided in script arguments
if len(sys.argv) == 2:
 image = sys.argv[1]
 ec.getImageService().loadImage(image)
 ec.getExecutionService().setExecutionAddressToEntryPoint()
 ec.getImageService().loadSymbols(image)
 # we can use all the DS commands available
 print "Entry point: ",
 print ec.executeDSCommand("print $ENTRYPOINT")
 # Sample output:
 # Entry point: $8 = 32768
else:
 pass # assuming image and symbols are loaded

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

sets a temporary breakpoint at main and resumes
ec.getExecutionService().resumeTo("main") # this method is non-blocking
try:
 ec.getExecutionService().waitForStop(500) # wait for 500ms
except DebugException, e:
 if e.getErrorCode() == "JYI31": # code of "Wait for stop timed out" message
 print "Waiting timed out!"
 sys.exit()
 else:
 raise # re-raise the exception if it is a different error
ec = debugger.getCurrentExecutionContext()
def getRegisterValue(executionContext, name):
 """Get register value and return string with unsigned hex and signed
 integer, possibly string "error" if there was a problem reading
 the register.
 """
 try:
 value = executionContext.getRegisterService().getValue(name)
 # the returned value behaves like a numeric type,
 # and even can be accessed like an array of bytes, e.g. 'print value[:]'
 return "%s (%d)" % (str(value), int(value))
 except DebugException, e:
 return "error"
print Core registers on all execution contexts
for i in range(debugger.getExecutionContextCount()):
 ec = debugger.getExecutionContext(i)
 # filter register names starting with "Core::"
 coreRegisterNames = filter(lambda name: name.startswith("Core::"),
 ec.getRegisterService().getRegisterNames())
 # using Jython list comprehension get values of all these registers
 registerInfo = ["%s = %s" % (name, getRegisterValue(ec, name))
 for name in coreRegisterNames]
 registers = ", ".join(registerInfo[:3]) # only first three
 print "Identifier: %s, Registers: %s" % (ec.getIdentifier(), registers)
Output:
Identifier: 1, Registers: Core::R0 = 0x00000010 (16), Core::R1 =
 0x00000000 (0), Core::R2 = 0x0000A4A4 (42148)
...

Related information
Creating a new Jython project in Arm Development Studio on page 134
Configuring an existing project to use the Arm Development Studio Jython interpreter on page
137
Creating a Jython script on page 138
Running a script on page 139
Jython script concepts and interfaces on page 132
Script Parameters dialog box on page 430

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.6 Jython script concepts and interfaces
Summary of important Arm® Debugger Jython interfaces and concepts.

Imports
The debugger module provides a Debugger class for initial access to Arm Debugger, with further
classes, known as services, to access registers and memory. Here is an example showing the full set
of module imports that are typically placed at the top of the Jython script:

from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException

Execution Contexts
Most operations on Arm Debugger Jython interfaces require an execution context. The execution
context represents the state of the target system. Separate execution contexts exist for each
process, thread, or processor that is accessible in the debugger. You can obtain an execution
context from the Debugger class instance, for example:

Obtain the first execution context
debugger = Debugger()
ec = debugger.getCurrentExecutionContext()

Registers
You can access processor registers, coprocessor registers and peripheral registers using the
debugger Jython interface. To access a register you must know its name. The name can be
obtained from the Registers view in the graphical debugger. The RegisterService enables you to
read and write register values, for a given execution context, for example:

Print the Program Counter (PC) from execution context ec
value = ec.getRegisterService().getValue('PC')
print 'The PC is %s' %value

Memory
You can access memory using the debugger Jython interface. You must specify an address and
the number of bytes to access. The address and size can be an absolute numeric value or a
string containing an expression to be evaluated within the specified execution context. Here is an
example:

Print 16 bytes at address 0x0 from execution context ec
print ec.getMemoryService().read(0x0, 16)

DS Commands
The debugger jython interface enables you to execute arbitrary Arm Development Studio
commands. This is useful when the required functionality is not directly provided in the Jython
interface. You must specify the execution context, the command and any arguments that you want

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

to execute. The return value includes the textual output from the command and any errors. Here is
an example:

Execute the Arm Development Studio command 'print $ENTRYPOINT' and print the
 result
print ec.executeDSCommand('print $ENTRYPOINT')

Error Handling
The methods on the debugger Jython interfaces throw DebugException whenever an error
occurs. You can catch exceptions to handle errors in order to provide more information. Here is an
example:

Catch a DebugException and print the error message
try:
ec.getRegisterService().getValue('ThisRegisterDoesNotExist')
except DebugException, de:
print "Caught DebugException: %s" % (de.getMessage())

For more information on Arm Debugger Jython API documentation select Help Contents from the
Help menu.

6.7 Creating Jython projects in Arm Development Studio
To work with Jython scripts in Arm® Development Studio, the project must use Arm DS Jython
as the interpreter. You can either create a new Jython project in Development Studio with Arm
DS Jython set as the interpreter or configure an existing project to use Arm DS Jython as the
interpreter.

6.7.1 Creating a new Jython project in Arm Development Studio

Use these instructions to create a new Jython project and select Arm DS Jython as the interpreter.

Procedure
1. Select File > New > Project... from the main menu.
2. Expand the PyDev group.
3. Select PyDev Project.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Figure 6-2: PyDev project wizard

4. Click Next.
5. Enter the project name and select relevant details:

a) In Project name, enter a suitable name for the project.
b) In Choose the project type, select Jython.
c) In Interpreter, select Arm DS Jython.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Figure 6-3: PyDev project settings

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6. Click Finish to create the project.

Related information
Configuring an existing project to use the Arm Development Studio Jython interpreter on page
137
Creating a Jython script on page 138
Running a script on page 139
About Jython scripts on page 131
Jython script concepts and interfaces on page 132
Script Parameters dialog box on page 430

6.7.2 Configuring an existing project to use the Arm Development Studio
Jython interpreter

Use these instructions to configure an existing project to use Arm DS Jython as the interpreter.

Procedure
1. In the Project Explorer view, right-click the project and select PyDev > Set as PyDev Project

from the context menu.
2. From the Project menu, select Properties to display the properties for the selected project.

You can also right-click a project and select Properties to display the properties
for the selected project.

3. In the Properties dialog box, select PyDev-Interpreter/Grammar.
4. In Choose the project type, select Jython.
5. In Interpreter, select Arm DS Jython.
6. Click OK to apply these settings and close the dialog box.
7. Add a Python source file to the project.

The .py file extension must be used to identify this type of script.

Related information
Creating a new Jython project in Arm Development Studio on page 134
Creating a Jython script on page 138
Running a script on page 139
About Jython scripts on page 131
Jython script concepts and interfaces on page 132
Script Parameters dialog box on page 430

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.8 Creating a Jython script
Shows a typical workflow for creating and running a Jython script in the debugger.

Procedure
1. Create an empty Jython script file.
2. Right-click the Jython script file and select Open.
3. Add the following code to your file in the editor:

from arm_ds.debugger_v1 import Debugger
from arm_ds.debugger_v1 import DebugException

With this minimal code saved in the file you have access to auto-completion list
and online help. Arm recommends the use of this code to explore the Jython
interface.

Figure 6-4: Jython auto-completion and help

4. Edit the file to contain the desired scripting commands.
5. Run the script in the debugger.

Next steps
You can now view an entire Jython interface in the debugger. To open the source code that
implements a debugger object or interface, Ctrl+Click on the object or interface of interest.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Related information
Creating a new Jython project in Arm Development Studio on page 134
Configuring an existing project to use the Arm Development Studio Jython interpreter on page
137
Running a script on page 139
About Jython scripts on page 131
Jython script concepts and interfaces on page 132
Script Parameters dialog box on page 430

6.9 Running a script
Use the Scripts view to run a script in Arm® Development Studio. You can run a script file
immediately after the debugger connects to the target.

Procedure
1. To run a script from the Arm Development Studio IDE:

a) Launch Arm Development Studio IDE.
b) Configure a connection to the target.

Arm Debugger configurations can include the option to run a script file
immediately after the debugger connects to the target. To do this, in the
Debugger tab of the Development Studio Debug Configuration dialog
box, select the appropriate script file option. See Debug Configurations -
Debugger tab for more information.

c) Connect to the target.
2. After your target is up and running, select the scripts that you want to execute and click the

Execute Selected Scripts button.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Figure 6-5: Scripts view

Debugger views are not updated when commands issued in a script are
executed.

Related information
Exporting Arm Debugger commands generated during a debug session on page 127
Creating an Arm Debugger script on page 127
Creating a CMM-style script on page 128
Commands view on page 329
History view on page 358
Creating a new Jython project in Arm Development Studio on page 134
Configuring an existing project to use the Arm Development Studio Jython interpreter on page
137
Creating a Jython script on page 138
About Jython scripts on page 131
Jython script concepts and interfaces on page 132
Script Parameters dialog box on page 430

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.10 Use case scripts
Use case scripts provide an extension to existing scripts that can be used in Arm® Development
Studio.

Development Studio provides many pre-defined platform and model configurations in the
configuration database for connecting to and debugging a range of targets. The configuration
database can be extended using the Platform Configuration Editor or Model Configuration editor.

When a connection to a configuration is established, you can then run a use case script to invoke
custom behavior. You can use Jython and access the Arm Debug and Trace Services Layer (DTSL)
libraries and debugger APIs. You can use use case scripts to provide a complex trace configuration,
trace pin multiplexing or configure multiple CoreSight™ components within a single script.

Use case scripts provide a simple but highly configurable way to implement user-defined
functionality without having to write any boilerplate code for setting up, configuring and
maintaining a script. Use case scripts still have access to the full scripting APIs.

The benefits of use case scripts include:

Use case scripts work with Arm Development Studio
There are built-in functions within Development Studio to query, list, and run use case scripts
including those in configuration databases and platform specific scripts. Use case scripts are
analyzed and validated before they are run. A clear error message is reported if there are errors in
the construction of the script.

Built-in functionality
Use case scripts take a set of options to configure the values given to the script on the command
line and have a built-in mechanism to save and load sets of options. A trace configuration for a
particular target or a complex set of options to recreate a bug can be saved and loaded when the
script is run.

Flexibility
Use case scripts provide an easy way of changing the number of arguments, options, and names
of methods as the script develops. You can define positional arguments to use case scripts. It is
easy to add, remove or modify positional arguments. When running the script from the command
line, you must specify values for the positional arguments. Multiple use cases are supported within
a single use case script to allow sharing of common code, where each use case provides a single
piece of functionality.

6.11 Metadata for use case scripts
A use case definition block is a comment block that is usually at the start of the script.

The definition block can define various metadata:

• The title of the use case.

• A brief description of the use case.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

• Where the options must be retrieved from for the use case.

• The method to validate the use case.

• A multi-line help text which can provide usage text and a more verbose description of the use
case.

• The entry point to the use case.

Only the entry point is required to define a use case. Other metadata definitions are optional.

6.12 Definition block for use case scripts
Each use case definition block must begin with a USECASE header line to define the start of a use
case. Without the header, Arm® Development Studio does not recognize the script as a use case
script.

Tags describe the content of a use case. Each tag is surrounded by dollar ($) signs to distinguish
them from any other text. All tags are defined $<tag>$ <value> with the exception of the $Help$
tag. If a tag is defined in the use case definition block it can only be present once. Duplicate names
of tags are not accepted in a single use case.

Only the Run tag which describes the entry point or main method to the use case needs to be
defined for a valid use case. To report meaningful help when searching for use case scripts on the
Arm Development Studio command-line, it is recommended that you also define the $Title$ and
$Description$ tags in each use case.

Run
The Run tag specifies the name of the entry point to a single use case. When you run a use case
on the command line, it calls the method with the Run tag. For details of how to define the entry
point, and how to supply additional arguments to the method, see Defining the Run method for use
case scripts.

Example
...
Run mainMethod
...

Title
The $Title$ tag specifies the title in a use case definition block. This is a single line string which
is the title of this use case script and is displayed when searching for use case scripts on the
command-line.

Example
...
$Title$ Usecase Title
...

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Description
The $Description$ tag specifies the description in a use case definition block. This is a single line
string which is the description of this use case and is displayed when searching for use case scripts
on the command-line.

Example
...
$Description$ A brief description of this use case
...

Options
The $Options$ tag specifies a method within the use case script, which can be called to retrieve a
list of options. For a description of how to define the options function, and how to construct a list
of options, see Defining the options for use case scripts.

Example
...
$Options$ myOptions
...

Validation
The $Validation$ tag specifies the validation method in the use case definition block. You must
specify this to validate the options provided when the script is run. For a description of how to
define the validation function, see Defining the validation method for use case scripts.

Example
...
$Validation$ myValidation
...

Help
The use of $Help$ tags is slightly different from the use of other tags. The $Help$ tag enables
writing a multi-line block of text, which appears in the output when a user requests help about the
use case script. This can be used to provide usage description, parameters for the use case scripts,
or a more verbose help text.

To define a block of help text, enclose the block in $Help$ tags. Formatting, such as new lines and
spaces are preserved in the $Help$ block. Everything, including the definition of other tags, are
consumed within a $Help$ block. The $Help$ block must be completed before other tags or code is
defined.

Example
$Help$
This is part of the help text
...
$Help$

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.13 Defining the Run method for use case scripts
The method named in the Run tag must have at least one parameter, called options, which
provides access to the script options.

Examples
...
Run mainMethod
...

def mainMethod(options):
 print "Running the main method"

It is possible to define an entry point to the use case that requires more than one parameter. The
definition of the Run tag only defines the function name. The definition of the function within the
script defines how many parameters are needed.

Examples
...
Run main
...

main method with positional arguments
def main(options, filename, value):
 print "Running the main method"
 # Using the positional arguments supplied to the script.
 print "Using file: " + filename + " and value: " + value

In this example main requires two parameters, filename and value which must be supplied on the
command-line when the use case script is run.

6.14 Defining the options for use case scripts
Each use case has a list of options which specify a set of values which can be supplied on the
command-line to a particular use case to configure what values are supplied when use case is run.

When you define options, you can group or nest them to organize and provide a more descriptive
set of options.

The method which provides the options is defined with the $Options$ tag in a use case definition
block. The $Options$ tag provides the name of a method in the script which returns a single list of
options.

Examples
...

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

$Options$ myOptions
...

def myOptions():
 return [list_of_options]

It is important that the function that supplies the options takes no arguments and returns a list of
options in the same format as described below. If the $Options$ tag is defined, and the function
named in this tag is not present in the script or the function used to supply the options takes
arguments, then an error occurs when running the script.

There are five option types which can be used to define options to a use case script. These are:

• UseCaseScript.booleanOption

• UseCaseScript.enumOption

• UseCaseScript.radioEnumOption

• UseCaseScript.integerOption

• UseCaseScript.stringOption

All of these options require:

• A variable name, that is used to refer to the option in a use case script

• A display name

• A default value that must be of the same type as the defined option

UseCaseScript.booleanOption
Describes a boolean. Possible values are True or False.

UseCaseScript.integerOption
Describes a whole integer value such as: 4, 99 or 100001. In addition to the fields required by all
options, a minimum and a maximum value can be supplied which restricts the range of integers this
option allows. Additionally, an output format of the integer option can be defined, which can be
either decimal (base 10) or hexadecimal (base 16).

UseCaseScript.stringOption
Describes a string such as traceCapture or etmv4 which can be used, for example, to refer to the
CoreSight™ components in the current system by name.

UseCaseScript.enumOption, UseCaseScript.radioEnumOption
Both these describe enumerations. These can be used to describe a list of values that are allowed
for this option. Enumeration values can be strings or integers.

Examples
UseCaseScript.booleanOption(name="timestamps", displayName="Enable global

 timestamping", defaultValue=True)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Defines a boolean option 'timestamps' which is true by default.

UseCaseScript.stringOption(name="traceBuffer", "Trace Capture Method",
 defaultValue="none")

Defines a string option 'traceBuffer' with a default value 'none'.

UseCaseScript.integerOption(name="cores", displayName="Number of cores",
 defaultValue=1, min=1, max=16, format=UseCaseScript.DEC)

Defines an integer option 'cores' with a default value of 1, minimum value of 1 and maximum value
of 16. The output format is in decimal (base 10).

UseCaseScript.integerOption(name="retries", displayName="Attempts to retry",
 defaultValue=5, min=1, format=UseCaseScript.HEX)

Defines an integer option 'retries' with a default value of 5, minimum value of 1 and no maximum
value. The output will be in hexadecimal (base 16).

UseCaseScript.enumOption(name="contextid", displayName="Context ID Size", values =
 [("8", "8 bits"), ("16", "16 bits"), ("32", "32 bits")] , defaultValue="32")

Defines an enumeration 'contextid' with default value of '32', the values are restricted to members
of the enumeration: "8", "16" or "32".

Nesting Options
Options can be organized or grouped using the following:

• UseCaseScript.tabSet

• UseCaseScript.tabPage

• UseCaseScript.infoOption

• UseCaseScript.optionGroup

The groups are not associated with a value, and do not require a default. You can use the groups
with the option names to construct a complete set of options.

To specify the nesting of options, each option can include an optional childOptions keyword which
is a list of other options which are nested within this option. An example set of nested options can
be seen below.

Examples
The following example shows an options method, complete with a set of options.

def myOptions():
 return [
 UseCaseScript.optionGroup(
 name="options",
 displayName="Usecase Options",

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

 childOptions=[
 UseCaseScript.optionGroup(
 name="connection",
 displayName="Connection Options",
 childOptions=[
 UseCaseScript.integerOption(
 name="cores",
 displayName="Number of cores",
 defaultValue=1,
 min=1,
 max=16),
 UseCaseScript.stringOption(
 name="traceBuffer",
 displayName="Trace Capture Method",
 defaultValue="none"),
]
),
 UseCaseScript.enumOption(
 name="contextID",
 displayName="Context ID Size",
 values = [("8", "8 bits"), ("16", "16 bits"), ("32", "32 bits")] ,
 defaultValue="32"),
]
),
]

Options are accessed according to how they are nested within the list of options. In this example
there is a group called options with two child options:

options.contextID
This is an enumeration within the options group, and stores the value of the contextID in this
example.

options.connection
This is another group for nesting options. It does not store any value. It contains the options:

options.connection.cores
This is an integer that accesses cores variable.

options.connection.traceBuffer
This is a string that accesses traceBuffer variables in the list of options.

Using options in the script
The entry point and validation functions both take an options object, as the required first
parameter, which can be used to get and set the option values. The functions that are provided to
work with defined options are getOptionValue(<name>) and setOptionValue(<name>, <value>).

For the name of the option, use the full name, for example group.subgroup.variable. The value
must be of the correct type for the named variable, for example string, integer or a member of the
enumeration.

To find out the full name of the option, either see the definition of options in the use case script or
issue a usecase help <script_name.py> on the command-line.

DTSL Options
Options are defined in a similar way to the Debug and Trace Services Layer (DTSL) options, using
the same parameters and way of nesting child options.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

See DTSL options and the example usecase scripts in your Arm® Development Studio installation
for more information on how to construct a list of options.

6.15 Defining the validation method for use case scripts
The method defined using the $Validation$ tag names a method in the use case script which
provides validation for the use case.

The validation method takes a single parameter, called options , which can be used to access the
options supplied to the script.

The example shows a validation method called myValidation in the use case definition block. The
validation method is used to validate the set of options supplied to the use case script.

Examples
...
$Validation$ myValidation
...

def myValidation(options):
 # Get the options which define the start and end of a trace range
 # These options have been defined in the function defined in the $Options$ tag
 start = options.getOptionValue("options.traceRange.start")
 end = options.getOptionValue("options.traceRange.end")
 # Conditional check for validation
 if(start >= end):
 # Report a specific error in the use case script if the validation check
 fails
 UseCaseScript.error("The trace range start must be before the end")

It is important that the function that supplies the validation takes a single parameter, which is the
use case script object, used to access the options defined for use in the script.

If the $Validation$ tag is defined, and the method referred to in this tag is not present in the script
or the validation function takes the wrong number of arguments, an error occurs when running the
script.

Error reporting
This validation example throws an error specific to use case scripts. If validation is not successful,
for example start >= end, in our script, the Arm® Development Studio command-line displays:

UseCaseError: The trace range start must be before theend

It is possible not to use the built-in use case error reporting and throw a standard Jython or Java
error such as:

raise RuntimeError("Validation wasunsuccessful")

This displays an error in the Arm Development Studio command-line:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

RuntimeError: Validation was unsuccessful

However, it is recommended to use the built-in use case script error reporting so that a clear user-
defined error is raised that originates from the use case script.

6.16 Example use case script definition
This is an example of a complete use case script.

After a use case script is defined, you can use the command-line options in Arm® Development
Studio to query and execute the script when connected to a target.

Examples
"""
USECASE
$Title$ Display Title
$Description$ A brief description of this use case
Refers to a function called myOptions which returns a list of options
$Options$ myOptions
Refers to a function called myValidation which validates the options in the script
$Validation$ myValidation
$Help$
usage: usecase.py [options]
A longer description of this use case
And additional usage, descriptions of parameters and extra information.
...
...
$Help$
Function called mainMethod which defines the entry point to this usecase
Run mainMethod
"""

def myOptions():
 return [
 UseCaseScript.optionGroup(
 name="options",
 displayName="Usecase Options",
 childOptions=[
 UseCaseScript.optionGroup(
 name="connection",
 displayName="Connection Options",
 childOptions=[
 UseCaseScript.integerOption(
 name="cores",
 displayName="Number of cores",
 defaultValue=1,
 min=1,
 max=16),
 UseCaseScript.stringOption(
 name="traceBuffer",
 displayName="Trace Capture Method",
 defaultValue="none"),
]
),
 UseCaseScript.enumOption(
 name="contextID",
 displayName="Context ID Size",
 values = [("8", "8 bits"), ("16", "16 bits"), ("32", "32 bits")],
 defaultValue="32"),
]

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

),
]
def myValidation(options):
 print "Performing validation..."
 if(options.getOptionValue('options.connection.cores') > 8):
 UseCaseScript.error('Having more than 8 cores is not allowed for this
 usecase')
def mainMethod(options, address):
 print "Running the main method"
 print "The address supplied %s" % address

6.17 Multiple use cases in a single script
You can define multiple use cases within a single script. This is useful to allow use cases to share
common code, and each use case can provide a single piece of functionality.

Each use case requires its own use case definition block which begins with a USECASE header.
When defining use cases in the same script, they can share options and validation functions but the
entry point to each use case must be unique.

Multiple use case blocks can be defined as a single multi-line comment at the top of the script:

Examples
USECASE
...
...
Run mainMethod
USECASE
...
...
Run entry2

...
def mainMethod(options):
 print "Running the first main method"
...
def entry2(script, param1):
 print "Running the second main method"
...

Multiple use case blocks can be defined as separate blocks dispersed throughout the script:

Examples
USECASE
...
...
Run mainMethod

...
def mainMethod(options):
 print "Running the first main method"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

...

USECASE
...
...
Run entry2

...
def entry2(script, param1):
 print "Running the second main method"
...

There is no limit to how many use cases you can define in a single script.

6.18 usecase list command
The usecase list command allows the user to search for use case scripts in various locations.

The output reports the location searched for use cases and, if any use case scripts are found, prints
a table listing:

• The script name.

• Entry points to the script. Each entry point defines a single use case.

• The title of each use case.

• The description of each use case, if defined.

If a usecase list command is issued without any parameters on the command line, Arm®

Development Studio reports all the use case scripts it finds in the current directory.

A usecase list path/to/directory/ command lists any use case scripts it finds in the directory
specified. The usecase list command accepts relative paths to locations as well as tilde (~) as the
user home directory on Unix based systems.

Several use cases are shipped with Arm Development Studio and are found in the default
configuration database under /Scripts/usecase/. When creating a use case it can be added to /
Scripts/usecase/ in the default database, or a custom user database. These scripts are also listed
by the usecaselist -s command.

Use case scripts might be platform specific, and use cases can be defined as only visible for the
current target. A use case script created in the configuration database in /Boards/<Manufacturer>/
<Platform>/ is only visible when a connection is made to the <Manufacturer>/<Platform>
configuration.

usecase list -p lists all use case scripts associated with the current platform. For example,
if a connection was made to the configuration in /Arm FVP (Installed with Arm DS)/
VE_AEMv8x1/ and the usecase list-p was run, only use case scripts in this directory for the current
configuration are listed.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Issuing usecase list -a lists all scripts in the current working directory, in /Scripts/usecase/ in
the configuration database, and those for the current platform.

6.19 usecase help command
The usecase help command is available to print help on how to use the use case scripts and
information about the options available.

The syntax for running usecase help is:

usecase help [<flag>] <script_name> [<entry_point>]

Where:

<flag>

Is one of:

-p

To run a script for the current platform.

-s

To run a script in the /Scripts/usecase/ directory in the configuration database.

<entry_point>

Is the name of the entry point or main method defined in the use case. If a use case script defines
more than one entry point, then you must specify the <entry_point> parameter.

<script_name>

Is the name of the use case script.

Running use case help on a valid script prints:

• Text defined in a $Help$ block in the use case script.

• A set of built-in options that are defined in every use case script.

• A list of information about the options defined in this use case.

For each option the help text lists:

• The display name of the option.

• The unique option name for getting or setting options.

• The type of option, which is integer, string, boolean, or enumeration.

• The default value of the option.

For enumeration options, a list of the enumerated values are listed. For integer options, the
maximum and minimum values are displayed, if they have been specified.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

6.20 usecase run command
The usecase run command runs the script from the specified entry point.

The basic syntax for running a use case script from the command-line is:

usecase run <script_name> [<options>]

The options that you can use are defined in the method with the $Options$ tag of the current use
case within the script. You can get more information about them using the usecase help command.

The syntax for setting options on the command line is --options.name=value or --
options.namevalue. If you do not specify a value for an option explicitly, the option takes the
default value defined in the script.

The examples use options as the name of the top level group of options. However,
you can give a different name to the top level group of options in the use case
script.

When issuing the usecase run command, rather than specifying an absolute path to a script,
specify a -p or -s flag before the script name. For example, issue usecase run -p <script_name>
 [<options>] to run a use case script for the current platform.

If there is more than one use case defined in a single script, the entry point or main method to use
when running the script must be defined. For scripts with multiple use cases the syntax is usecase
 run <script_name> <entry_point> [<options>].

If the entry point to the use case accepts positional arguments, you must specify them on the
command-line when the script is run. For example, if the main method in the use case script
positional.py in the current working directory is defined as follows:

...
Run main
...
def main(script, filename, value):
 print("Running the main method")

The syntax to run the script is:

usecase run positional.py [<options>] <filename> <value>

Examples
usecase run myscript.py --options.enableETM=True --
options.enableETM.timestamping=True
 --options.traceCapture "DSTREAM"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Runs a use case script called myscript.py in the current working directory, setting the options
defined for this use case.

usecase run multipleEntry.py mainOne --options.traceCapture "ETR"

Runs a use case script called multipleEntry.py in the current working directory. The entry point to
this use case script is mainOne. A single option is specified after the entry point.

usecase run -s multipleScript.py mainTwo filename.txt 100

Runs a use case script in the /Scripts/usecase/ directory in the configuration database called
multipleScript.py in the current working directory. The entry point to this use case script is
mainTwo which defines two positional arguments. No options are supplied to the script.

Saving options
On the command-line, providing a long list of options might be tedious to type in every time the
script is run over different connections. A solution to this is to use the built-in functionality --save-
options.

For example, you can run the script usecase run <script_name> --<option1=...>, --
<option2=...> --save-options=</path/to/options.txt> where options.txt is the file in which
to save the options. This saves the options to this use case script, at runtime, to options.txt.

If you do not specify an option on the command-line, its default value is saved to the specified file.

Loading options
After saving options to a file, there is a similar mechanism for loading them back in. Issuing
usecase run <script_name> --load-options=<path/to/options.txt> loads the options in from
options.txt and, if successful, runs the script.

You can combine options by providing options on the command-line and loading them from a file.
Options from the command-line override those from a file.

Example:

The options file options.txt for myscript.py contains two option values:

• options.a=10.

• options.b=20.

Running usecase run myscript.py--load-options=options.txt results in options.a having the
value 10 and options.b having the value 20, loaded from the specified file. If an option is set on
the command-line, for example usecase run--options.b=99 --load-options=options.txt, it
overrides those options retrieved from the file. options.a takes the value 10, but options.b takes
the new value 99 provided on the command-line and not the one stored in the file. This is useful
for storing a standard set of options for a single use case and modifying only those necessary at
runtime.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debugging with Scripts

Showing options
When running a script, the user might want to see what options are being used, especially if the
options are loaded from an external file. The built-in option --show-options displays the name and
value of all options being used in the script when the script is run.

Examples
usecase run <script_name> --show-options

Prints out a list of the default options for this script.

usecase run <script_name> --option1=x, --option2=y --show-options

Prints out a list of options for the script, with updated values for option1 and option2.

usecase run <script_name> --load-options=<file> --show-options

Prints out a list of options taking their values from the supplied file. If an option is not defined in
the loaded file, its default value is printed.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

7 Running Arm Debugger from the
operating system command-line or from a
script

This chapter describes how to use Arm® Debugger from the operating system command-line or
from a script.

There are two ways to connect to a target using the command-line:

• Using the configDB entry, and specifying the cdb-entry.

• Using a pre-installed CMSIS pack, and specifying the cmsis-device.

7.1 Overview: Running Arm Debugger from the command-
line or from a script

Arm® Debugger can operate in a command-line only mode, with no graphical user interface.

This is very useful when automating debug and trace activities. By automating a debug session, you
can save significant time and avoid repetitive tasks such as stepping through code at source level.
This becomes particularly useful when you need to run multiple tests as part of regression testing.

This mode has the advantage of being extremely lightweight and therefore faster. However, by
extension, it also lacks the enhancements that a GUI brings when connecting to a target device
such as being able to see synchronization between your source code, disassembly, variables,
registers, and memory as you step through execution.

If you want, you can drive the operation of Arm Debugger with individual commands in an
interactive way. However, Arm Debugger when used from the command-line, is typically driven
from scripts. With Arm Debugger, you might first carry out the required debug tasks in the
graphical debugger. This generates a record of each debug task, which can then be exported from
the History view as a (.ds) script.

You can edit scripts using the Scripts view. Alternatively, a debug script can be written manually
using the Arm Debugger commands for reference.

Arm Development Studio also supports Jython (.py) scripts which provide more capability than
the native Arm DS scripting language. These can be loaded into Arm Debugger to automate the
debugger to carry out more complex tasks.

See Command-line debugger options for syntax and instructions on how to launch Arm Debugger
from the command line.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Related information
Command-line debugger options on page 157
Specifying a custom configuration database using the command-line on page 168

7.2 Command-line debugger options
You can use the armdbg command to run Arm® Debugger from the command-line without a
graphical user interface.

If you are using Windows, use the Arm Development Studio Command Prompt. On Linux, set the
required environment variables, and use the UNIX shell.

The commands listed in this topic are either generic and work with all connection types, or are for
use with CMSIS pack-based connections only. Those that are CMSIS-only are clearly indicated.

Connecting to a target
There are two ways to connect to a target using the command-line:

• Using a Configuration Database (configDB) entry, and specifying the cdb-entry.

• Using a pre-installed CMSIS pack, and specifying your cmsis-device.

When you have connected to your target, use any of the Arm Debugger commands
to access the target and start debugging.

For example, info registers displays all application level registers.

Syntax
Launch the command-line debugger using the following syntax:

armdbg [--option <arg>] ...

Where:

armdbg

Invokes the Development Studio command-line debugger.

--option <arg> or --option=<arg>
The debugger option and its arguments. This can either be to configure the command-line
debugger, or to connect to a target.

...

Additional options, if you need to specify any.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 589

https://developer.arm.com/documentation/101471/latest/

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Options
--browse

Browses for available connections and lists targets that match the connection type specified in the
configuration database entry.

You must specify --cdb-entry <arg> to use --browse.

--cdb-entry <arg>

Specifies a target from the configuration database that the debugger can connect to.

Use arg to specify the target configuration. arg is a string, concatenated using entries in each level
of the configuration database. The syntax of arg is:

"Manufacturer::Platform::Project type::Execution environment::Activity::Connection

 type"

Use --cdb-list to determine the entries in the configuration database that the debugger can
connect to. You can specify partial entries, such as "Arm" or "Arm::Versatile Express A9x4", and
press Enter to view the next possible entries.

For example, to connect to an Arm Versatile Express A9x4 target using DSTREAM-ST and a USB
connection, first use --cdb-list to identify the entries in the configuration database within Arm,
enter:

armdbg --cdb-entry "Arm::Versatile Express A9x4::Bare Metal Debug::Bare Metal
 SMP Debug of all cores::Debug Cortex-A9x4 SMP::DSTREAM-ST" --cdb-entry-param
 "Connection=USB:000271"

--cdb-entry-param <arg>

Specifies connection parameters for the debugger:

• Use arg to specify the parameters and their values.

• Use --cdb-list to identify the parameters the debugger needs. Parameters that the debugger
might need are:
Connection

Specifies the TCP address or the USB port number of the debug adapter to connect to.
Address

Specifies the address for a gdbserver connection.
Port

Specifies the port for a gdbserver connection.
dtsl_options_file

Specifies a file containing the DTSL options.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Snapshot File

Specifies a Snapshot file to load from the file system.
model_params

Specifies parameters for a model connection. The model parameters depend on the specific
model that the debugger connects to. See the documentation on the model for the parameters
and how to configure them. The debugger uses the default model parameter values if you do
not specify them.
model_connection_address

Specifies the connection address and port for an already running model. Enter the TCP/IP
address and port to connect in the format ipaddress:port. The default connection address
is 127.0.0.1 and port 7100. This parameter works as a pair with the connect_existing_model
parameter.
connect_existing_model

Specifies whether the model is running locally or remotely. The default value for this parameter
is false. Change to true if you are connecting to a model running on your local host.

To connect to models running on the local host, you must first launch the
model with the --iris-server switch before connecting to it. To connect
to a model running on a remote host, you must first launch the model with
the --iris-server --iris-allow-remote switches before connecting to it
remotely.

Use --cdb-entry-param for each parameter:

--cdb-entry-param "Connection=TestTarget" --cdb-entry-param

 "dtsl_options_file=my_dtsl_settings.dtslprops"

Group model_params together in one --cdb-entry-param parameter. Use spaces to separate the
pairs of parameters and values, for example:

--cdb-entry-param model_params="-C cluster.cpu0.semihosting-enable=1 -C

 cluster.cpu0.semihosting-cmd_line='hello world!'"

--cdb-list filter

Lists the entries in the configuration database. This option does not connect to any target.

The configuration database has a tree data structure, where each entry has entries within it. --cdb-
list identifies the entries in each level of the database. The levels are:

1. Manufacturer

2. Platform

3. Project type

4. Execution environment

5. Activity

6. Connection type

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Use filter to specify the entries in each level, to identify the target and how to connect
to it. filter is a string concatenated using entries in successive levels of the configuration
database. The full syntax of filter is: "Manufacturer::Platform::Project type::Execution
 environment::Activity::Connection type".

If you specify an incomplete filter, then --cdb-list shows the entries in the next level of the
configuration database. So if you do not specify a filter, --cdb-list shows the Manufacturer
entries from the first level of the configuration database. If you specify a filter using entries from
the first and second levels of the database, then --cdb-list shows the Project type entries within
the specified Platform. If you specify the complete filter then --cdb-list lists the parameters
that need to be specified using --cdb-list-param.

• The entries in the configuration database are case-sensitive.

• Connection type refers to DSTREAM, so there is no Connection type
when connecting to a model.

To list all first level entries in the configuration database, use:

armdbg --cdb-list

For example, to list all the configuration database entries for the manufacturer NXP, use:

armdbg --cdb-list="NXP"

--cdb-root <arg>

Specifies additional configuration database locations in addition to the debugger's default
configuration database.

• To specify more than one configuration database, you must separate the
directory paths using a colon (:) for Linux systems or a semicolon (;) for
Windows systems.

• The order in which configuration database roots are specified is important
when the same information is available in different databases. That is, the
data in the location typed last (nearest to the end of full command-line)
overrides data in locations before it.

• If you do not need any data from the default configuration database, use
the additional command-line option --cdb-root-ignore-default to tell
the debugger not to use the default configuration database.

--cmsis-device <search-term>|<exact-device>

Specify the CMSIS device you are connecting to. You can also use this option to browse for CMSIS
devices. For use with CMSIS pack-based connections only.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

The CMSIS pack associated with your device must be installed before you run
this command.

For example, to browse for a device that contains "musca" in the device name, use:

--cmsis-device musca

You can also specify the exact device you want to connect to. The device name has the following
format:

<packfile>:<family>:<sub-family>:<device>:<processor>

You can use wildcards (*) in any part of the name.

For example:

--cmsis-device Musca_A1_BSP:ARM Cortex M33:Musca:Cortex-M33-0

--continue_on_error= true | false

Specifies whether the debugger stops the target and exits the current script when an error occurs.

The default is --continue_on_error=false.

--disable-semihosting

Disables semihosting operations.

--disable_semihosting_console

Disables all semihosting operations to the debugger console.

--enable-semihosting

Enables semihosting operations.

-h or --help
Displays a summary of the main command-line options.

-b=<filename> or --image=<filename>
Specifies the image file for the debugger to load when it connects to the target.

--interactive

Specifies interactive mode that redirects standard input and output to the debugger from the
current command-line console, for example, Windows Command Prompt or Unix shell.

This is the default if no script file is specified.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

--launch-config <path>

Start a debug connection using the command-line launch configuration file specified in <path>.

For example:

armdbg --launch-config "C:\Workspace\debugconfiguration.cli"

You can create a command-line launch configuration using the Export tab in the Debug
Configurations dialog box.

--launch-config-connect-only true | false

Specifies that the debugger only connect to the target when using the --launch-config option.
The default is --launch-config-connect-only false.

You can use --image and --stop_on_connect option in combination with the --launch-config-
connect-only option.

For example:

• To connect to the target without performing any other actions (such as loading images or
running initialization scripts) as specified in the debug configuration file, enter:

armdbg --launch-config "C:\Workspace\debugconfiguration.cli" --launch-config-
connect-only true

• To connect to the target and load an image without performing any other actions (such as
running initialization scripts) as specified in the debug configuration file, enter:

armdbg --launch-config "C:\Workspace\debugconfiguration.cli" --launch-
config-connect-only true --image "C:\Arm_DS_Workspace\fireworks_Cortex-
A77\fireworks_Cortex-A77.axf"

--log_config=<arg>

Specifies the type of logging configuration to output runtime messages from the debugger.

The arg can be:

info - Output messages using the predefined INFO level configuration. This level does not output
debug messages. This is the default.

debug - Output messages using the predefined DEBUG level configuration. This option outputs both
INFO level and DEBUG level messages.

filename - Specifies a user-defined logging configuration file to customize the output of messages.
The debugger supports <log4j> configuration files.

--log_file=<filename>

Specifies an output file to receive runtime messages from the debugger. If this option is not used,
then output messages are redirected to the console.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

--log-debug-sequences

If your CMSIS pack files define debug sequences, specify this option if you want the debugger to
log the sequences that get executed during the debug process, to the console. For use with CMSIS
pack-based connections only.

--probe "<probe-name>"

Specify the probe you want to connect to. For use with CMSIS pack-based connections only.

The probe name can be one of the following:

• ULINKpro™

• ULINKpro D

• ULINK2

• ULINK-Plus

• CMSIS-DAP

• Cadence Virtual Debug

• FTDI MPSSE JTAG

• ST-Link

• Your own third-party debug probe. If you use this option, you must specify the probe name as
it is defined in the probe definition file.

--run-control <option>

Specifies what to do when you connect to a target. The options are as follows:

connect-only - Connect to the target and then stop running. entrypoint - Connect to the target
and run until the debugger reaches the image entry point. symbol:<symbol-to-stop-at> - Connect
to the target and run until the debugger hits the specified symbol.

--script=<filename>

Specifies a script file containing debugger commands to control and debug your target. You can
repeat this option if you have several script files. The scripts are run in the order specified and the
debugger quits after the last script finishes. Add the --interactive option to the command-line if
you want the debugger to remain in interactive mode after the last script finishes.

-e or --semihosting-error
Specifies a file to write semihosting stderr.

-i or --semihosting-input
Specifies a file to read semihosting stdin.

-o or --semihosting-output
Specifies a file to write semihosting stdout.

--stop_on_connect= true | false

Specifies whether the debugger stops the target when it connects to the target device. To leave the
target unmodified on connection, you must specify false. The default is --stop_on_connect=true.

--server

Specifies whether to start the debugger as a server to connect remotely.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

You cannot use the debugger interactively (using the --interactive option)
when using it as a server.

When started as a server, by default, the debugger allocates a free port and listens on all available
addresses.

You can specify an address or port by specifying them in the [addr:]port format.

For example:

• If you want to make the debugger listen on port 1234 on all available addresses, you can specify
them using the following forms of the command:

armdbg --cdb-entry ... --server 1234

armdbg --cdb-entry ... --server:1234

armdbg --cdb-entry ... --server *:1234.

• If you want to bind to a particular address, you can specify an address or host name using the
following forms of the command:

armdbg --cdb-entry ... --server localhost:1234

armdbg --cdb-entry... --server 10.2.2.2:1234

See Working with the debug server for more information.

--target <location>

The location of the CMSIS device you are connecting to. This can be a web address, a USB ID, or
an SDF file. For use with CMSIS pack-based connections only.

--top_mem=address

Specifies the stack base, also known as the top of memory. Top of memory is only used for
semihosting operations.

--target-os=<name>

Specifies the operating system on the target. Use this option if you want to debug the operating
system on the target.

--target-os-list

Lists the operating systems that you can debug with Arm Debugger.

Specifying the --cdb-entry option is sufficient to establish a connection to a model.
However, to establish a connection in all other cases, such as, for Linux application
debug or when using the DSTREAM family of devices, you must specify both --
cdb-entry and --cdb-entry-param options.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

You must normally specify --cdb-entry when invoking the debugger for all other options to be
valid. The exception to this are:

• --cdb-list and --help do not require --cdb-entry.

• --cdb-root can be specified with either --cdb-list or --cdb-entry.

Examples
• To connect to an Arm FVP Cortex®-A9x4 model and specify an image to load, enter:

armdbg --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare Metal
 Debug::Debug Cortex-A9x4 SMP" --image "C:\\Arm_DS_Workspace\\fireworks_A9x4-FVP\
\fireworks-Cortex-A9x4-FVP.axf"

• To connect and load an image on a single Cortex-A53 core on the Arm Cortex-A72/Cortex®-
A53 big.LITTLE™ FVP running locally, enter:

armdbg --cdb-entry "Arm FVP::Base_A72x1_A53x1::Bare Metal Debug::Bare Metal
 Debug::Cortex-A53" --cdb-entry-param "connect_existing_model=true" --image "C:\
\Arm_DS_workspace\\fireworks_Armv8-A-FVP_AC6\\fireworks_Armv8-A-FVP_AC6.axf"

• To connect to a target and debug a Linux application, enter:

armdbg --cdb-entry "Linux Application Debug::Application Debug::Connections via
 gdbserver::gdbserver (TCP)::Connect to already running application" --cdb-entry-
param "gdb_address=TCP:10.5.196.50" --cdb-entry-param "gdb_port=5350"

For Linux application debug, the Download and debug application option is not
supported on the command-line debugger.

• To connect and debug a Linux kernel on Juno Arm Development Platform (r2) target using
DSTREAM-ST and a USB connection, enter:

armdbg --cdb-entry "Arm::Juno Arm Development Platform (r2)::Linux Kernel and/or
 Device Driver Debug::Linux Kernel Debug::Debug Cortex-A53x4 SMP::DSTREAM-ST" --
cdb-entry-param="Connection=USB:000271"

• To connect to a single Cortex-A15 core on the Versatile Express Cortex-A15x2+A7x3 target,
using DSTREAM and a TCP/IP connection, enter:

armdbg --cdb-entry "Arm Development Boards::Versatile_Express_V2P-CA15_A7::Bare
 Metal Debug::Bare Metal Debug::Debug Cortex-A15_0::DSTREAM" --cdb-entry-param
 "Connection=TCP:10.8.197.59"

• To connect to a single Cortex-M7 core on the Arm MPS2 FPGA prototyping board, using a
DSTREAM debug probe and a TCP/IP connection, enter.

armdbg --cdb-entry "Arm::Cortex-M Prototyping System (MPS2) Cortex-M7 (SMM-
M7)::Bare Metal Debug::Bare Metal Debug::Debug Cortex-M7::DSTREAM" --cdb-entry-
param "Connection=TCP:10.62.63.21"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

• To connect to a Juno Arm Development Platform (r0) big.LITTLE target, using DSTREAM and a
TCP/IP connection, enter:

armdbg --cdb-entry "Arm Development Boards::Juno Arm Development Platform
 (r0)::Bare Metal Debug::Bare Metal Debug::Debug Cortex-A57/Cortex-A53
 big.LITTLE::DSTREAM" --cdb-entry-param "Connection=TCP:10.2.194.40"

• To connect to a Snapshot file, enter:

armdbg --cdb-entry "Generic::Snapshot::View snapshot::View snapshot::View
 snapshot::Snapshot" --cdb-entry-param "Snapshot File=C:\\Arm_DS_Workspace\
\CoreSight_access\\example_captures\\Juno\\snapshot.ini"

You can also use the Connection parameter to connect to a Snapshot file. At the command
prompt, enter:

armdbg --cdb-entry "Generic::Snapshot::View snapshot::View snapshot::View
 snapshot::Snapshot" --cdb-entry-param "Connection=C:\\Arm_DS_Workspace\
\CoreSight_access\\example_captures\\Juno\\snapshot.ini"

• To disconnect a command-line debugger session, enter quit at the command prompt.

Related information
Arm Debugger command-line console keyboard shortcuts on page 174
Exporting Arm Debugger commands generated during a debug session on page 127
Using semihosting to access resources on the host computer on page 80

7.3 Running a debug session from a script
To automate a debug session from a script, create a text file with a .ds file extension and list, line-
by-line, the debugger commands that you want to execute. Then, use the debugger command to
run the script.

Debugger script format
The script is a text file with a .ds file extension. The debugger commands are listed one after the
other in the file.

Things to remember when you create a .ds script file.

• The script file must contain only one command on each line.

• If required, you can add comments using #.

• Commands are not case-sensitive.

• The .ds file extension must be used for an Arm® Debugger script.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

If you are using the Arm Development Studio graphical user interface (GUI) to
perform your debugging, a full list of all the Arm Debugger commands generated
during a debug session is recorded in the History view. You can select the
commands that you want in your script file and right-click and select Save selected
lines as a script… to save them to a file.

Examples
A simple sample script file is shown below:

Filename: myScript.ds
Initialization commands
load file "struct_array.axf" # Load image and symbols
break main # Set breakpoint at main()
break *0x814C # Set breakpoint at address 0x814C
Run to breakpoint and print required values
run # Start running device
wait 0.5s # Wait or time-out after half a second
info stack # Display call stack
info registers # Display info for all registers
Continue to next breakpoint and print required values
continue # Continue running device
wait 0.5s # Wait or time-out after half a second
info functions # Displays info for all functions
info registers # Display info for all registers
x/3wx 0x8000 # Display 3 words of memory from 0x8000 (hex)
delete 1 # Delete breakpoint number 1
delete 2 # Delete breakpoint number 2

Running an Arm Development Studio script
After creating the script, use the debugger command to run the script using the command-line
interface.

On Windows, use the Arm Development Studio Command Prompt. On Linux, set the required
environment variables, and use the UNIX shell.

There are two scenarios where you might run scripts:

• You have set up your target and it is connected to Development Studio.

In this case, use the source command to load your script.

• You are yet to configure the target and connect to it.

In this case, you have to use the appropriate debugger options and arguments to configure and
connect to your target. Along with the configuration options, use the --script=filename option
to run your script.

For example:

debugger --cdb-entry "Arm Development Boards::Versatile Express A9x4::Bare Metal
 Debug::Bare Metal SMP Debug of all cores::Debug Cortex-A9x4 SMP::DSTREAM"--cdb-
entry-param "Connection=TCP:10.5.20.64" --cdb-entry-param "dtsl_options_file=C:
\\Arm_DS_Workspace\\my_dtsl_settings.dtslprops" --script= C:\\Arm_DS_Workspace\
\my_script.txt

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

See Specifying a custom configuration database using the command-line and Capturing trace data
using the command-line debugger for examples of how debugger options and arguments are used.

7.4 Specifying a custom configuration database using the
command-line

Some targets might not be available in the default Arm® Development Studio configuration
database. For example, a custom target which is available only to you. In this case, you can specify
a custom configuration database which contains the details for your target.

About this task
Use the Arm Debugger command-line options to view the entries in your custom configuration
database and determine the connection names. Then, use additional commands and options to
specify the details of your configuration database and connect to your target.

Procedure
1. Launch an Arm Development Studio command-line console.

• On Windows, select Start > All Programs > Arm DS Command Prompt

• On Linux:

◦ Add the <install_directory>/bin directory to your PATH environment variable. If it is
already configured, then you can skip this step.

◦ Open a terminal.
2. List the entries in the user-specified configuration databases. Use the following syntax:

• On Windows, enter: :debugger --cdb-list--cdb-root path_to_cdb1[;path_to_cdb2].
For example, debugger --cdb-list --cdb-root C:\\Arm_DS_Workspace\
\MyConfigDB1;Arm_DS_Workspace\\MyConfigDB2.

• On Linux, enter: debugger --cdb-list --cdb-root path_to_cdb1[:path_to_cdb2].
For example, debugger --cdb-list --cdb-root \\Arm_DS_Workspace\
\MyConfigDB1:Arm_DS_Workspace\\MyConfigDB2.

Where:

debugger

Is the command to invoke Arm Debugger.

--cdb-list

Is the option to list the entries in the configuration database.

--cdb-root

Is the option to specify the path to one or more configuration databases.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

path_to_cdb1 and path_to_cdb2

Are the directory paths to the configuration databases.

Arm Debugger processes configuration databases from left to right. The
information from processed databases are replaced with information from
databases that are processed later.

For example, if you want to produce a modified Cortex®-A15 processor
definition with different registers, then those changes can be added to a new
database that resides at the end of the list on the command-line.

3. When you have determined the details of your target, use the following command-line syntax
to connect to the target in your custom configuration database:
debugger --cdb-entry "Manufacturer::Platform::Project type::Execution

 environment::Activity::Connection type" --cdb-root path_to_cdb1

For example, on Windows:

debugger --cdb-entry "ARM Development Boards::Versatile Express A9x4::Bare Metal

 Debug::Bare Metal SMP Debug of all cores::Debug Cortex-A9x4 SMP::DSTREAM" --cdb-

entry-param "Connection=USB:000271" --cdb-root C:\\Arm_DS_Workspace\\MyConfigDB1

Where:

debugger

Is the command to invoke Arm Debugger.

--cdb-entry

Specifies the target to connect to.

Manufacturer::Platform::Project type::Execution environment::Activity::Connection
 type

Correspond to the entries in your custom configuration database. The entries have a tree data
structure, where each entry has entries within it.

--cdb-root

Is the command to specify your custom configuration database.

path_to_cdb1

Is the directory path to your configuration database.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

• If you do not need any data from the default configuration database, use
the additional command line option --cdb-root-ignore-default to tell
the debugger not to use the default configuration database.

• To specify more than one configuration database, you must separate
the directory paths using a colon or semicolon for a Linux or Windows
system respectively.

• If connection parameters are required, specify them using the --cdb-
entry-param option.

Related information
Command-line debugger options on page 157
Overview: Running Arm Debugger from the command-line or from a script on page 156

7.5 Capturing trace data using the command-line
debugger

To capture trace data using the command-line debugger, you must enable the relevant trace
options in the Debug and Trace Services Layer (DTSL) configuration settings in Arm® Development
Studio.

About this task
For this task, it is useful to setup the DTSL options using the graphical interface of debugger.

When you have setup the DTSL options, the debugger creates a file that contains the DTSL
settings. You can then use this file when invoking the command-line debugger to perform trace
data capture tasks, for example, run a script which contain commands to start and stop trace
capture.

An example script file might contain the following commands:

loadfile C:\Arm_DS_Workspace\fireworks_panda\fireworks_panda.axf # Load an image to
 debug
start # Start running the image after setting a temporary
 breakpoint
wait # Wait for a breakpoint
trace start # Start the trace capture when the breakpoint is hit
advance plot3 # Set a temporary breakpoint at symbol plot3
wait # Wait for a breakpoint
trace stop # Stop the trace when the breakpoint at plot3 is hit
trace report FILE=report.txt # Write the trace output to report.txt
quit # Exit the headless debugging session

Procedure
1. Using the graphical interface of Arm Debugger, open the Debug Configurations dialog box for

your trace-capable target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

2. In the Connections tab, under DTSL options, click Edit to open the DTSL Configuration Editor
dialog box.
a) Select a Trace capture method in the Trace Buffer tab.
b) If required, select the relevant tab for your processor, and then select Enable core trace.
c) Click Apply to save the settings.

Figure 7-1: Enable trace in the DTSL options

These settings are stored in a *.dtslprops file in your workspace. The filename is shown in the
Name of configuration field in the dialog box. In this example, the settings are stored in the
default.dtslprops file.

3. Copy the DTSL settings file, for example default.dtslprops , from your workspace to a
different directory and change its name, for example to my_dtsl_settings.dtslprops.

4. Open the Arm DS Command Prompt. In the command prompt:
a) Use the --cdb-list command-line argument to identify your target name and

configuration.
b) Invoke the command-line debugger with your target name and configuration and specify

the DTSL options file using --cdb-entry-params.
For example:

debugger --cdb-entry "pandaboard.org::OMAP 4430::Bare Metal Debug::Bare
 Metal Debug::Debug Cortex-A9x2 SMP::RealView ICE" --cdb-entry-param
 "Connection=TestFarm-Panda-A9x2" --cdb-entry-param "dtsl_options_file=C:\
\Arm_DS_Workspace\\my_dtsl_settings.dtslprops"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Figure 7-2: Command-line debugger connection with DTSL options enabled.

Results
The debugger connects to your target. You can now issue commands to load and run an image,
and also to start and stop trace capture.

If you create a script file containing trace capture commands, you can specify this
script file when invoking the command-line debugger, for example:

debugger --cdb-entry "pandaboard.org::OMAP 4430::Bare Metal
 Debug::Bare MetalDebug::Debug Cortex-A9x2 SMP::RealView ICE" --
cdb-entry-param "Connection=TestFarm-Panda-A9x2" --cdb-entry-param
 "dtsl_options_file=C:\\Arm_DS_Workspace\\my_dtsl_settings.dtslprops"
 --script=C:\\Arm_DS_Workspace\\my_script.txt.

Related information
Overview: Running Arm Debugger from the command-line or from a script on page 156
Command-line debugger options on page 157
Debug Configurations - Connection tab on page 431
DTSL Configuration Editor dialog box on page 447

7.6 Working with the debug server
You can run Arm® Debugger as a server to connect remotely. You can then connect to the
debugger from a different host or from a different process on the same host using the Telnet
protocol.

Starting the debug server
Use the --server debugger option to start the debug server.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

For example, to start the debug server, connect to an Arm FVP Cortex®-A9x4 model, and specify
an image to load:

debugger --cdb-entry "Arm FVP::VE_Cortex_A9x4::Bare Metal Debug::Bare Metal
 Debug::Debug Cortex-A9x4 SMP" --image "C:\\Arm_DS_Workspace\\fireworks_A9-FVP_AC6\
\fireworks-Cortex-A9xN-FVP.axf" --server

By default, Arm Debugger assigns a free port and listens on all available addresses.

If necessary, you can bind a port and address by passing the [addr:]port parameters to the --
server command option.

For example:

• To listen on port 1234, you can use any of the following options:

debugger --cdb-entry "..." --server 1234
debugger --cdb-entry "..." --server :1234
debugger --cdb-entry "..." --server *:1234

• To bind to a particular address, you can specify an address or host name along with the port
name:

debugger --cdb-entry "..." --server localhost:1234
debugger --cdb-entry "..." --server 10.2.2.2:1234

Connecting a debug client
You can connect your client to an Arm Debugger server session using the Telnet protocol. To
connect to a debug server session using Telnet, use the Telnet open command.

For example:

• If you want to connect to a debug server session on the host 10.2.2.2 at port 1234, at the
Telnet prompt, enter:

open 10.2.2.2 1234

• If you want to connect to a debug server session on your local host at port 1234, at the Telnet
prompt, enter:

open localhost 1234

For details of Telnet commands, check the Telnet command documentation.

After connecting to the debug server, you can use the debugger commands to debug your
application.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 589

https://developer.arm.com/documentation/101471/latest/

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

You cannot use the debugger interactively (using the --interactive option) when
using it as a server.

Disconnecting a debug client
You can disconnect a debug client by closing the Telnet session. Closing the Telnet session only
disconnects the client, but does not stop the debug session.

You can reconnect to a debug session at later time by reopening a connection to the debug server.
When reconnected, the debug session resumes from where it was left off.

Stopping the debug server
To stop the debug server session:

• On the client use the quit command.

• On the debug server host, use the CTRL+C keys on your keyboard.

Related information
Command-line debugger options on page 157

7.7 Arm Debugger command-line console keyboard
shortcuts

Arm® Debugger provides editing features, a command history, and common keyboard shortcuts to
use when debugging from the command-line.

Each command you enter is stored in the command history. Use the UP and DOWN arrow keys to
navigate through the command history, to find and reissue a previous command.

To make editing commands and navigating the command history easier, you can use the following
keyboard shortcuts:

Ctrl+A
Move the cursor to the start of the line.

Ctrl+D
Quit the debugger console.

Ctrl+E
Move the cursor to the end of the line.

Ctrl+N
Search forward through the command history for the currently entered text.

Ctrl+P
Search back through the command history for the currently entered text.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Running Arm Debugger from the operating system command-line or
from a script

Ctrl+W
Delete the last word.

DOWN arrow
Navigate down through the command history.

UP arrow
Navigate up through the command history.

Related information
Command-line debugger options on page 157

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

8 Working with the Snapshot Viewer
This chapter describes how to work with the Snapshot Viewer.

8.1 About the Snapshot Viewer
Use the Snapshot Viewer to analyze a snapshot representation of the application state of one or
more processors in scenarios where interactive debugging is not possible.

To enable debugging of an application using the Snapshot Viewer, you must have the following
data:

• Register Values.

• Memory Values.

• Debug Symbols.

To do trace analysis, you must also have trace data.

If you are unable to provide all of this data, then the level of debug that is available is compromised.
Capturing this data is specific to your application, and no tools are provided to help with this. You
might have to install exception or signal handlers to catch erroneous situations in your application
and dump the required data out.

You must also consider how to get the dumped data from your device onto a workstation that is
accessible by the debugger. Some suggestions on how to do this are to:

• Write the data to a file on the host workstation using semihosting.

• Send the data over a UART to a terminal.

• Send the data over a socket using TCP/IP.

Register values
Register values are used to emulate the state of the original system at a particular point in time.
The most important registers are those in the current processor mode. For example, on an Arm®v4
architecture processor these registers are R0-R15 and also the Program Status Registers (PSRs):

• Current Program Status Register (CPSR)

• Application Program Status Register (APSR)

• Saved Program Status Register (SPSR).

Be aware that on many Arm processors, an exception, a data abort, causes a switch to a different
processor mode. In this case, you must ensure that the register values you use reflect the correct

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

mode in which the exception occurred, rather than the register values within your exception
handler.

If your application uses floating-point data and your device contains vector floating-point hardware,
then you must also provide the Snapshot Viewer with the contents of the vector floating-point
registers. The important registers to capture are:

• Floating-point Status and Control Register (FPSCR)

• Floating-Point EXCeption register (FPEXC)

• Single precision registers (S n)

• Double precision registers (D n)

• Quad precision registers (Q n).

Memory values
The majority of the application state is usually stored in memory in the form of global variables,
the heap and the stack. Due to size constraints, it is often difficult to provide the Snapshot Viewer
with a copy of the entire contents of memory. In this case, you must carefully consider the areas of
memory that are of particular importance.

If you are debugging a crash, the most useful information to find out is often the call stack, because
this shows the calling sequence of each function prior to the exception and the values of all the
respective function parameters. To show the call stack, the debugger must know the current stack
pointer and have access to the contents of the memory that contains the stack. By default, on Arm
processors, the stack grows downwards, you must provide the memory starting from the current
stack pointer and going up in memory until the beginning of the stack is reached. If you are unable
to provide the entire contents of the stack, then a smaller portion starting at the current stack
pointer is still useful because it provides the most recent function calls.

If your application uses global (extern or file static) data, then providing the corresponding
memory values enables you to view the variables within the debugger.

If you have local or global variables that point to heap data, then you might want to follow the
relevant pointers in the debugger to examine the data. To do this you must have provided the
contents of the heap to the Snapshot Viewer. Be aware that heap can often occupy a large
memory range, so it might not be possible to capture the entire heap. The layout of the heap in
memory and the data structures that control heap allocation are often specific to the application or
the C library, see the relevant documentation for more information.

To debug at the disassembly level, the debugger must have access to the memory values where
the application code is located. It is often not necessary to capture the contents of the memory
containing the code, because identical data can often be extracted directly from the image using
processing tools such as fromelf . However, some complications to be aware of are:

• Self-modifying code where the values in the image and memory can vary.

• Dynamic relocation of the memory address within the image at runtime.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

Debug symbols
The debugger requires debug information to display high-level information about your application,
for example:

• Source code.

• Variable values and types.

• Structures.

• Call stack.

This information is stored by the compiler and linker within the application image, so you must
ensure that you have a local debug copy of the same image that you are running on your device.
The amount of debug information that is stored in the image, and therefore the resulting quality of
your debug session, can be affected by the debug and optimization settings passed to the compiler
and linker.

It is common to strip out as much of the debug information as possible when running an image
on an embedded device. In such cases, try to use the original unstripped image for debugging
purposes.

Related information
Connecting to the Snapshot Viewer on page 180
Components of a Snapshot Viewer initialization file on page 178
Considerations when creating debugger scripts for the Snapshot Viewer on page 182

8.2 Components of a Snapshot Viewer initialization file
Describes the groups and sections used to create a Snapshot Viewer initialization file.

The Snapshot Viewer initialization file is a simple text file consisting of one or more sections that
emulate the state of the original system. Each section uses an <option>=<value> structure.

Before creating a Snapshot Viewer initialization file you must ensure that you have:

• One or more binary files containing a snapshot of the application that you want to analyze.

The binary files must be formatted correctly in accordance with the following
restrictions.

• Details of the type of processor.

• Details of the memory region addresses and offset values.

• Details of the last known register values.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

To create a Snapshot Viewer initialization file, you must add grouped sections as required from the
following list and save the file with .ini for the file extension.

[device]
A section for information about the processor or device. The following options can be used:

name
This is the name that is reported from RDDI and is used to identify the device. This value is
necessary and must be unique to each device.

class
The general type of device, for example core, or trace_source.

type
The specific device type, for example Cortex-A9, or ETM.

location
This describes how the agent that produced the snapshot locates the device.

[dump]
One or more sections for contiguous memory regions stored in a binary file. The following options
can be used:

file
Location of the binary file.

address
Memory start address for the specified region.

length
Length of the region. If none specified then the default is the rest of file from the offset value.

offset
Offset of the specified region from the start of the file. If none specified then the default is zero.

[regs]
A section for standard Arm register names and values, for example, 0x0.

Banked registers can be explicitly specified using their names from the Arm Architecture Reference
Manual, for example, R13_fiq. In addition, the current mode is determined from the Program
Status Registers (PSRs), enabling register names without mode suffixes to be identified with the
appropriate banked registers.

The values of the PSRs and PC registers must always be provided. The values of other registers are
only required if it is intended to read them from the debugger.

Consider:

[regs]
CPSR=0x600000D2 ; IRQ
SP=0x8000
R14_irq=0x1234

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

Reading the registers named SP, R13, or R13_irq all yield the value 0x8000.

Reading the registers named LR, R14, or R14_irq all yield the value 0x1234.

For more information about Snapshot Viewer file formats, see the documentation in
<installation_directory>\sw\debugger\snapshot.

Restrictions
The following restrictions apply:

• Consecutive bytes of memory must appear as consecutive bytes in one or more dump files.

• Address ranges representing memory regions must not overlap.

Examples
[device]
name=cpu_0
class=core
type=Cortex-A7 ; Selected processor
location=address:0x1200013000
; Location of a contiguous memory region stored in a dump file
[dump]
file="path/ dumpfile1.bin" ; File location (full path must be specified)
address=0x8000 ; Memory start address for specific region
length=0x0090 ; Length of region
 ; (optional, default is rest of file from offset)
; Location of another contiguous memory region stored in a dump file
[dump]
file="path/ dumpfile2.bin" ; File location
address=0x8090 ; Memory start address for specific region
offset=0x0024 ; Offset of region from start of file
 ; (optional, default is 0)
; Arm registers
[regs]
R0=0x000080C8
R1=0x0007C000
R2=0x0007C000
R3=0x0007C000
R4=0x00000363
R5=0x00008EEC
R6=0x00000000
R7=0x00000000
R8=0x00000000
R9=0xB3532737
R10=0x00008DE8
R11=0x00000000
R12=0x00000000
SP=0x0007FFF8
LR=0x0000808D
PC=0x000080B8

Related information
Considerations when creating debugger scripts for the Snapshot Viewer on page 182
About the Snapshot Viewer on page 176
Connecting to the Snapshot Viewer on page 180
Arm Architecture Reference Manual

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 589

https://developer.arm.com/products/architecture

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

8.3 Connecting to the Snapshot Viewer
Describes how to launch Arm® Debugger from a command-line console or Arm Development
Studio IDE, and connect to the Snapshot Viewer.

Before you begin
Before connecting, ensure that you have a Snapshot Viewer initialization file that contains static
information about a target at a specific point in time. For example, your file might contain the
contents of registers, memory, and processor state.

About this task
The Snapshot Viewer provides a virtual target that you can use to analyze a snapshot of a known
system state using the debugger.

Procedure
1. Connect to the Snapshot Viewer:

Connecting from Arm Development Studio Connecting from the command-line

a. Open the Debug Configurations dialog box. From the
Arm Development Studio menu, click Run -> Debug
Configurations.

b. Select or create a debug configuration under Generic
Arm C/C++ Application.

c. In the Connection tab, select Generic -> Snapshot ->
View snapshot -> View snapshot.

Figure 8-1: Connecting to the Snapshot
Viewer through Debug Configurations.

d. In the Connections section, add your Snapshot File.

e. Click Debug.

a. Launch Arm Debugger in the command-line console.

b. Use the --cdb-entry-param option to pass your
Snapshot Viewer initialization file to the debugger:

armdbg --cdb-entry
 "Generic::Snapshot::View
 snapshot::View snapshot::View
 snapshot::Snapshot" --cdb-entry-
param "Snapshot File=int.ini" --
script=int.cmm

2. Result: You can now analyze the data from your Snapshot Viewer initialization file using Arm
Debugger.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

Example 8-1: Example

To connect to a Snapshot file from the Arm Development Studio command-line, enter:

armdbg --cdb-entry "Generic::Snapshot::View snapshot::View snapshot::View
 snapshot::Snapshot" --cdb-entry-param "Snapshot File=C:\\Arm_DS_Workspace\
\CoreSight_access\\example_captures\\Juno\\snapshot.ini"

You can also use the Connection parameter to connect to a Snapshot file. At the command prompt,
enter:

armdbg --cdb-entry "Generic::Snapshot::View snapshot::View snapshot::View
 snapshot::Snapshot" --cdb-entry-param "Connection=C:\\Arm_DS_Workspace\
\CoreSight_access\\example_captures\\Juno\\snapshot.ini"

Related information
About the Snapshot Viewer on page 176
Components of a Snapshot Viewer initialization file on page 178
Considerations when creating debugger scripts for the Snapshot Viewer on page 182
Command-line debugger options on page 157
Arm Debugger command-line console keyboard shortcuts on page 174

8.4 Considerations when creating debugger scripts for the
Snapshot Viewer

The Snapshot Viewer uses an initialization file that emulates the state of the original system. The
symbols are loaded from the image using the data.load.elf command with the /nocode /noreg
arguments.

The snapshot data and registers are read-only and so the commands you can use
are limited.

The following example shows a script using CMM-style commands to analyze the contents of the
types_m3.axf image.

var.print "Connect and load symbols:"
system.up
data.load.elf "types_m3.axf" /nocode /noreg
;Arrays and pointers to arrays
var.print ""
var.print "Arrays and pointers to arrays:"
var.print "Value of i_array[9999] is " i_array[9999]
var.print "Value of *(i_array+9999) is " *(i_array+9999)
var.print "Value of d_array[1][5] is " d_array[1][5]
var.print "Values of *((*d_array)+9) is " *((*d_array)+9)
var.print "Values of *((*d_array)) is " *((*d_array))
var.print "Value of &d_array[5][5] is " &d_array[5][5]

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Working with the Snapshot Viewer

;Display 0x100 bytes from address in register PC
var.print ""
var.print "Display 0x100 bytes from address in register PC:"
data.dump r(PC)++0x100
;Structures and bit-fields
var.print ""
var.print "Structures and bit-fields:"
var.print "Value of values2.no is " values2.no
var.print "Value of ptr_values->no is " ptr_values->no
var.print "Value of values2.name is " values2.name
var.print "Value of ptr_values->name is " ptr_values->name
var.print "Value of values2.name[0] is " values2.name[0]
var.print "Value of (*ptr_values).name is " (*ptr_values).name
var.print "Value of values2.f1 is " values2.f1
var.print "Value of values2.f2 is " values2.f2
var.print "Value of ptr_values->f1 is " ptr_values->f1
var.print ""
var.print "Disconnect:"
system.down

Related information
Components of a Snapshot Viewer initialization file on page 178
About the Snapshot Viewer on page 176
Connecting to the Snapshot Viewer on page 180

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

9 Platform Configuration
In this section we describe how to configure your debug hardware units, hardware, and model
platforms in Development Studio.

9.1 Platform Configuration and the Platform Configuration
Editor (PCE)

This section describes platform configuration in Development Studio.

You can import and manage configurations for model and hardware platforms using the
Development Studio perspective.

To access the Development Studio perspective, from the main menu, select Window > Perspective
> Open Perspective > Other... > Development Studio.

To configure your platforms, use the Development Studio perspective to:

• Create a configuration database.

• View and configure hardware platforms in the Platform Configuration Editor (PCE).

• View and configure models in the Model Configuration Editor.

• Import custom model and hardware platform configurations into a configuration database.

• Create a launch configuration for a model or hardware platform configuration.

9.1.1 Platform Configuration in Development Studio

You can configure your hardware platform and model platform targets using the configuration
editors in the Development Studio perspective:

• The Platform Configuration Editor (PCE) enables you create or modify configurations and
connections for hardware target platforms. For more information, see Platform Configuration
Editor (PCE).

• The Model Configuration Editor enables you to to create or modify configurations and
connections for model target platforms. For more information, see Model Configuration Editor.

Use these views to configure debug and trace support information for targets through DSTREAM,
ULINK, or model connections.

If you are autodetecting hardware target information, sometimes it is not possible
for Development Studio to read all of the information that it needs from a platform.
This can be caused by a variety of issues which are described in Hardware platform
bring-up in Development Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

If you experience autodetection issues and know the details about the debug
system of the platform, use manual platform configuration. For more information,
see Manual platform configuration.

The configuration database in Development Studio stores the platform configuration and
connection settings in Development Studio. To extend the default Development Studio
configuration database, you can create platform configurations in user configuration databases.

If your platform configuration is already in the configuration database, you can use
the existing configuration to connect to the platform. For more information, see
Debugging Code. You do not have to use the Platform Configuration Editor unless
you want to modify the platform configuration.

To create a new configuration, Development Studio uses information from:

• A configuration file for a platform, created and saved using the Platform Configuration Editor
(PCE). See Create a platform configuration.

• A configuration file for a model that provides a CADI server, created and saved using the
Model Configuration Editor. The model can be already running or you can specify the path and
filename to the executable file. See Create a new model configuration.

You can create the following debug operations:

• Single processor and Symmetric Multi Processing (SMP) bare-metal debug for hardware and
models.

• Single processor and SMP Linux kernel debug for hardware.

• Linux application debug configurations for hardware.

• big.LITTLE™ configurations for cores that support big.LITTLE operation, such as Cortex®-A15
and Cortex-A7.

For more information on SMP, see Debugging SMP systems.

Debug and Trace Services Layer (DTSL) options are produced for hardware targets with a trace
subsystem. These can include:

• Selection of on-chip (Embedded Trace Buffer (ETB), Micro Trace Buffer (MTB), Trace Memory
Controller (TMC) or other on-chip buffer) or off-chip (DSTREAM trace buffer) trace capture.

• Cycle-accurate trace capture.

• Trace capture range.

• Configuration and capture of Instruction Trace Macrocell (ITM) and System Trace Macrocell
(STM) trace to be handled by the Development Studio Event Viewer.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 589

https://developer.arm.com/documentation/101469/latest/Debugging-code
https://developer.arm.com/documentation/101469/latest/Introduction-to-Arm-Debugger/Overview--Debugging-multi-core--SMP-and-AMP---big-LITTLE--and-multi-cluster-targets/Debugging-SMP-systems

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

The PCE does not create debug operations that configure non-instruction trace macrocells, except
for ITM and STM.

For SMP configurations, the Cross Trigger Interface (CTI) synchronization is used on targets where
a suitable CTI is present. A CTI produces a much tighter synchronization with a very low latency, in
the order of cycles. Synchronization without using a CTI has a much higher latency, but makes no
assumptions about implementation or usage.

The CTI must be fully implemented and connected in line with the Arm reference
designs. The CTI must not be used for any other purpose.

For multiplexed pins, you might have to manually configure off-chip Trace Port Interface Unit (TPIU)
trace, and also perform calibrations to handle signal timing issues.

Sometimes calibration needs to be performed even if the trace pins are not
multiplexed.

If you experience any problems or need to produce other configurations, contact your support
representative.

Related information
Platform Configuration Editor (PCE) on page 186
Hardware platform bring-up in Development Studio on page 194
Model Configuration Editor on page 227
Model platform bring-up in Development Studio on page 217
Add a configuration database on page 232
Debug Hardware Firmware Installer view on page 462
Debug Hardware Configure IP view on page 460

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 589

https://developer.arm.com/documentation/ddi0314/latest/Trace-Port-Interface-Unit

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

9.1.2 Platform Configuration Editor (PCE)

Use the Platform Configuration Editor (PCE) view to create or modify configurations and
connections for hardware target platforms.

Figure 9-1: The Platform Configuration Editor (PCE).

PCE enables you to easily specify the debug topology by defining the connections between the
various processors, CoreSight™ components, and debug IP on the platform. This enables Arm®

Debugger to create the DTSL script for the debug connection to the platform.

You can also use the PCE to:

• Review the devices on your development platform.

• Modify device information or add new devices that Arm Debugger was unable to autodetect.

• Configure your debug hardware unit and target-related features that are appropriate to
correctly debug on your development platform.

• Review or modify the debug activities for the various processors on the platform.

• Build and save the platform configuration to an RDDI configuration file which Arm Debugger
uses to connect to the target processors on your development platform.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

To autodetect the devices on the platform, Arm Debugger connects to the
platform. It does not maintain the connection to the target after reading the device
information.

Related information
Platform Configuration in Development Studio on page 184
Device hierarchy in the PCE view on page 190

9.1.3 PCE with ADIv6 Debug systems

The Arm Debug Interface (ADI) provides access to the debug components in your System on
Chip (SoC). The ADI is based on the IEEE 1149.1 JTAG interface, and it is compatible with the
CoreSight™ architecture.

The main components of the ADI are split between the Access Port (AP) architecture and the
Debug Port (DP) architecture.

The Debug and Access Port (DAP) is an implementation of the ADI.

ADIv6 introduces new functionality for AP and DAP devices, including the ability to nest AP
devices. To nest devices, you must specify a Base Address for each nested device. The Platform
Configuration Editor (PCE) in Arm Development Studio enables you to manually configure or edit a
platform configuration. See Manual platform configuration and Edit a platform configuration. In the
PCE, you can also use autodetection to automatically add the base addresses and any nesting of
AP devices. For more information, see Create a platform configuration.

Table 9-1: Architecture differences between ADIv5 and ADIv6

Architecture ADIv5 ADIv6

AP APv1 APv2 - this architecture is not backwards
compatible.

DP DPv2 DPv3 - this architecture is not backwards
compatible.

Example: Manually nest AP devices
To manually nest your AP devices, add them to the device tree using the Devices Panel. For each
nested device, you must specify its base address.

• You cannot mix and match AP types. If your configuration uses an APv1 device,
then your other devices must be APv1 as well. If using an APv2 device, then
your other devices must be APv2 devices.

• For ADIv6 systems, all AP devices must be APv2 devices.

• If a system has APv2 devices, all APv2 devices must have a base address.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

To specify a base address for a nested AP device:

1. Open the Devices Panel. In the PCE, click the Toggle Devices Panel icon at the top-right of the
Device hierarchy in the PCE view.

Figure 9-2: How to open the device browser

2. Add an ARMCS-DP device as the root device.

3. Drag-and-drop AP devices. Use the search box at the top of the Devices Panel to quickly locate
AP devices. Drag them to your device tree.

You can only add AP devices under the root ARMCS-DP device, and CSMEMAP
devices.

4. Specify the APv2 base addresses. For each nested APv2 device, in the Configuration Items
table specify the base address in the CORESIGHT_AP_ADDRESS field:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-3: Specifying a Base Address using the PCE

• If you input an invalid address, the PCE reverts the value to the previous
valid address (which might be the default).

• For an APv1 device, set the CoreSight AP index using the
CORESIGHT_AP_INDEX configuration item.

5. Save and build the platform. Select File > Save.

Related information
Platform Configuration Editor (PCE) on page 186
Create a platform configuration on page 195
Manual platform configuration on page 212
Edit a platform configuration on page 203

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

9.1.4 Device hierarchy in the PCE view

The device hierarchy in the PCE view shows the devices on the platform.

In the PCE view, you can add or remove devices to configure the platform for how you want to
debug it. This figure shows the device hierarchy of an example platform. Development Studio
might not autodetect all the devices on the platform. To use these undetected devices in the debug
session, you must add them to the device hierarchy and configure them.

Figure 9-4: Device hierarchy

If you do not need some of the autodetected devices, you can remove them from the device
hierarchy. To remove a device, right click on the device and select Remove Device.

Access
To access, either:

• In the Project Explorer, right-click on an SDF file, and select Open With > Platform
Configuration Editor.

• Double-click an SDF file (where the SDF association has not been overridden).

• In the Project Explorer, right-click, and select File > New > Platform Configuration. After
autodetection or manual configuration of a platform, the PCE view opens.

• Select File > New > Other... > Configuration Database > Platform Configuration. After
autodetection or manual configuration of a platform, the PCE view opens.

• The hardware connection dialog box provides the option to enter the Platform Configuration
Editor (PCE) at the final stages of new connection creation: File > New > Hardware
Connection. At the target selection step, click Add a new platform…. It can also be accessed at
the end of the target selection flow for a CMSIS device; click Target Configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Contents
The context menu for the device hierarchy contains:

Table 9-2: Device hierarchy view contents

Field Description

Toggle Devices Panel Shows or hides the Devices Panel which lists the devices that you
can add to the JTAG scan chain or device hierarchy.

Debug Adapter Shows the configuration for your debug hardware unit, for example,
a DSTREAM unit. For more information on the contents displayed,
see Debug Adapter configuration in the PCE.

Devices Shows the scan chain and device hierarchy of your platform. The
device hierarchy usually consists of one or more Debug Access
Ports (DAP). Each DAP consists of one or more Access Ports (AP).
Each AP shows the devices that have been detected through that
access port.

• Device Table - Shows information about the RDDI ID, device
name, type, family, class, AP Index, and Base Address.

• Component Connections - Shows component connection
information, including master, slave, and link type, details, and
origin.

Device Shows the device name, along with device and configuration
information. See Device configuration panel for more information.

Debug Activities Shows the type of debug activities you can perform on the target.
The debug activities are accessible from the Debug Configurations
dialog box when you want to start a debug session.

Enumerate APs Available for Debug Access Ports (DAP) on the device hierarchy.
This enumerates the Access Ports under the DAP.

Read CoreSight™ ROM Tables Reads the CoreSight ROM tables to obtain more information about
the devices from the various access ports. This might cause certain
devices on the platform to become unresponsive. If so, during
autodetection and after selecting your debug hardware Probe,
deselect Read CoreSight ROM Tables under the Autodetect tab in
the Debug Adapter pane.

Add Custom JTAG Device Adds a custom device to the JTAG scan chain.

Add core cluster components Opens a dialog box which you can use to add a cluster of cores
and their associated devices (ETM/PTM, CTI, and PMU) in
groups. If a base address is specified, then base addresses for
all components are set, and topology links are added between
all added components. If you select the option to add funnel
connections, all ETM/PTM devices are linked to the funnel specified
by the Funnel Base Address. If there is no device at this address, a
new funnel is created.

Autodetect Component Connections Starts the autodetection. It detects the connections between the
various components on the platform.

Add Link From This Device Adds a topology link between the selected device and another
device. The selected device is the link master. If no links from the
device can be created (for example, the device is already linked, or
there are no devices to which a valid link can be made) then this
menu item is not available.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Field Description
Add Link To This Device Adds a topology link between the selected device and another

device. The selected device is the link slave. If no links to the device
can be created (for example, the device is already linked, or there
are no devices from which a valid link can be made) then this menu
item is not available.

Remove Device Removes the device from the device hierarchy.

Usage
To add a device as a sibling or as a child, drag-and-drop from the Devices Panel to the appropriate
place in the device hierarchy.

Figure 9-5: Devices Panel

Any device that you add or remove from the hierarchy changes the topology of the SoC. You
must ensure that the topology is appropriate for your platform. After adding new devices, you can
configure the devices in the right-hand pane in the PCE view.

Related information
Platform Configuration Editor (PCE) on page 186
Debug Adapter configuration in the PCE on page 290
Add core cluster components dialog box on page 216

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

9.2 Hardware targets
This section describes how to configure hardware platforms in Development Studio.

9.2.1 Hardware platform bring-up in Development Studio

Effective debug and trace support requires that Arm® Debugger has the necessary information
about the platform it needs to debug.

The complexity of modern System-on-Chip (SoC) based platforms is increasing. The debugger
needs to know:

• What devices are present on the SoC.

• The type and configuration details of each device.

• The base addresses of the CoreSight™ components.

• The type and index of the Access Ports (AP) to access the various CoreSight components.

• How the different devices relate or connect to each other (their topology).

Development Studio automatically detects most of this information, enabling a simple and
efficient platform bring-up process for all Arm CoreSight-based SoCs. However, it is common that
Development Studio is unable to detect certain features on a complex SoC. The reasons might be:

• The SoC does not make the information available to the debugger.

• The information from the SoC might be missing when parts of the SoC are powered down.

• Devices inside the SoC might interfere with topology detection.

• JTAG routing or security devices might prevent Development Studio from discovering details of
physical JTAG devices.

• Debug or trace might be partially or fully disabled.

• Devices might be powered down, or their clocks might be disabled. This can make devices
unresponsive to requests for information, and can affect individual devices, entire clusters, or all
the devices in a ROM table.

• ROM tables might be missing, incomplete, or at the wrong address.

• Integration Test registers might not be fully implemented, or their operation might be limited by
other devices.

• The platform might contain unsupported devices.

• Component IDs are not recognized, or Development Studio does not know how to correctly
detect their connections. This might cause autodetection to fail.

Development Studio does not make any assumptions about the platform configuration. If
Development Studio has limited information about the platform, it can only provide limited debug
and trace functionality. This means that it is common for Arm Debugger to provide limited trace
functionality for certain processors on the platform. You can add to the automatically detected
platform configuration by manually providing data based on your knowledge of the SoC, for more

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

information see Manual platform configuration. Manual platform configuration enables you to
provide any missing parts of the topology definition and generate correct DTSL script.

Related information
Create a platform configuration on page 195
Edit a platform configuration on page 203
Manual platform configuration on page 212
Custom devices on page 214

9.2.2 Create a platform configuration

Use the New Platform dialog box in Development Studio to create debug configurations for
hardware platforms.

Before you begin
• If you autodetect your target, ensure you connect your debug adapter and targets, or that you

have the connection address.

• If you import from an existing RDDI configuration file, SDF file (*.rcf, *.rvc, *.sdf), CoreSight
Creator file (*.xml), or CMM script (*.cmm), ensure you have access to these files.

About this task

If you choose to autodetect your platform, depending on your target, you might
receive warnings and errors. If Development Studio is unable to detect the
connection information from the platform, no assumptions are made about how
the devices are connected. You must provide this information in the PCE view.
For more information on the possible causes, see Hardware platform bring-up in
Development Studio.

Procedure
1. Open the new project dialog box. In the Project Explorer, right-click, and select File > New >

Platform Configuration.
2. Select Configuration Database > Platform Configuration and then click Next .

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-6: Select create a platform configuration.

This shows the Create Platform Configuration dialog box.
3. Select a method to create the configuration for your platform and click Next.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-7: Platform creation options

Choose from:

• Automatic/simple platform detection

Arm recommends this option.

To automatically detect the devices present on your platform, use this option. After
autodetection, you can add more devices and specify how the devices are interconnected.

You must supply the details for the debug hardware adapter attached to your platform, or to
specify its Connection Address.

If you are using outdated firmware, Development Studio warns you during the platform
detection process. For example:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-8: Debug hardware firmware update notification during platform configuration

To update your debug hardware firmware, click Update.

• Advanced platform detection or manual creation

Gives you control over the individual stages that are involved in reading the device
information from your platform. For more information, see Manual platform configuration.

This option is useful to read certain device information that can make the
platform unresponsive.

• Import from an existing RDDI configuration file or SDF file (*.rcf, *.rvc, *.sdf), or CoreSight
Creator file (*.xml)

Use this option if you already have a configuration file for your platform.

Imports minimal information about the components available on your platform, such as the
base address. After importing, you can manually provide additional information and links
between the components to enable full debug and trace support.

• Import from a *.cmm file

Imports a platform configuration from a CMM script (*.cmm) file.

CMM scripts can contain target description information such as:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

◦ JTAG pre- and post- IR/DR bit information.

◦ Core types.

◦ Device base addresses.

◦ CoreSight topology information.

The PCE uses this information to create a Development Studio platform configuration,
complete with custom DTSL control tabs for trace configuration.

Some CMM scripts describe different targets (or different cores and trace devices in the same
target) depending on the value of parameters that are passed to the script. If a CMM script
requires parameters, enter them in the CMM script parameters field.

Figure 9-9: Enter CMM script parameters

To detect a new platform, ensure your debug hardware has the minimum
firmware version for the Arm® Development Studio version installed.

If autodetecting using Automatic/simple platform detection or Advanced platform detection
or manual creation (using Autodetect Platform in the Debug Adapter panel), Development
Studio connects to the platform and reads all the device information that it can from the
platform.

Depending on your target, you might receive warnings and errors. Where
Development Studio is unable to obtain this information from the platform,
no assumptions are made about how the devices are connected. You must
provide this information in the PCE view.

Debug functionality will succeed if all cores are correctly detected. Where
the connections between cores are not detected, debug will succeed but
trace and cross-triggering functionality might be limited or missing.

4. (Optional - Automatic/simple platform detection only) Save or edit your autodetected
configuration. The following list describes the next steps available for your autodetected
platform:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

• Save a Debug-Only Arm DS Platform Configuration

Saves a debug-only configuration to your configuration database.

• Save a Debug and Trace Arm DS Platform Configuration

Saves a debug and trace configuration to your configuration database. You can open this in
Development Studio later to modify it or you can use it to connect to and debug the platform
later.

• Edit platform in Arm DS Platform Configuration Editor

Saves the configuration to your configuration database and opens the PCE view.

In the PCE view, you can provide information about the platform that Development Studio
was unable to autodetect.

For more information, see Edit a platform configuration.

◦ All Development Studio platform configurations must be stored in a
configuration database.

◦ You can open the configurations in Development Studio later to
modify it or you can use it to connect to and debug the platform
later.

Select an option and click Next.

The New Platform dialog box opens.
5. Select an existing configuration database from the list, or create a new one. To create a new

configuration database, click Create New Database, provide a name for your new configuration
database in the prompt, then click OK to save your configuration database.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-10: Create new configuration database

6. Click Next >.
The Platform Information dialog box opens.

7. Enter the Platform Manufacturer, for example Arm. Enter the Platform Name, for example
Juno . Optionally, if you want to provide a URL link to information about the platform, enter it
in Platform Info URL.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

When you select a debug activity for the platform, the URL appears in the
Debug Configurations panel.

Figure 9-11: New platform information

8. Click Finish.
9. (Optional - Advanced platform detection or manual creation only) Complete your

configuration:

• Configure your debug hardware in Debug Adapter panel.

• Autodetect your platform. In Debug Adapter panel under Autodetect tab, click Autodetect
Platform.

Depending on your target, you might receive warnings and errors. Where
Development Studio is unable to obtain this information from the platform,
no assumptions are made about how the devices are connected. You must
provide this information in the PCE view.

Always review the information that has been collected before deciding
what further action to take. If Development Studio fails to read information,

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

it might be an indication of a deeper problem. For more information, see
Hardware platform bring-up in Development Studio.

• Check, edit, and save your configuration. If required, edit the configuration then select File >
Save.

Results
The Platform Configuration Editor (PCE) view opens in the right-hand panel. You can view the
configuration database and platform in the Project Explorer.

Related information
Manual platform configuration on page 212
Edit a platform configuration on page 203
Platform Configuration in Development Studio on page 184
Configuration Database panel on page 230

9.2.3 Edit a platform configuration

You can use the PCE view to identify missing component connections and to add them to your
platform configuration.

Before you begin
• You need a platform configuration available to edit.

• You need the topological information that describes your platform.

About this task
After you create a new platform configuration in Development Studio, you can review it in the
Platform Configuration Editor (PCE). Development Studio might not detect all the devices on
the platform or might not know how the devices are connected to each other. You can use the
Component Connections table in PCE to:

• Describe the relationship between the cross-triggers.

• Describe the trace topology, for example which trace source is connected to which trace sink.

Cross-triggering or trace might not work if the fields within the component
connections table are not correctly populated. When the CTI trigger links are not
detected, SMP debug reverts to use loose synchronization. Loose synchronization is
when the cores are being stopped separately by the debugger, instead of using the
Cross-Trigger Matrix.

For a more detailed description of the possible reasons Development Studio might not autodetect
your platform correctly, see Hardware platform bring-up in Development Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Procedure
1. Select Devices in the Device hierarchy in the PCE view.
2. Navigate to the component connection information. In the right-hand pane, select the

Component Connections tab.
3. Add a new component connection to a master or slave device:

a) Click Add Link. This shows the Add Link dialog box.
b) Select a device for the Master, the <master-device>, and select a device for the Slave, the

<slave-device>. Click Ok to add the component connection.

Depending on the device you add a component connection for, you might
have to specify additional parameters. For example:

• If you add a CTI as a master, then you must specify the trigger output
port.

• If you add a CTI as a slave, then you must specify the trigger input port.

• If you add a Trace Replicator as a master, then you must specify the
master interface.

• If you add a Trace Funnel as a slave, then you must specify the slave
interface.

The Component Connections tab shows the user-added component connections in the PCE
view.

4. Save the platform configuration. Select File > Save.
5. Customize the build. By default, CTI synchronization and trace are enabled. When CTI sync

is failing or causing problems, it is useful to disable these options. To build the platform
configuration without these options, deselect them in the Platform Builder tab in the
Properties dialog box and select Apply.

When starting from scratch with a complex system, to test the connection with your target and
debug your cores, you might prefer to disable trace in the configuration.

6. Build the platform configuration. Right-click the project in the Project Explorer view and select
Build Platform.

If the PCE suspects that some topology information is missing, a The system topology
(component connections) may not be correct dialog box appears. This can happen, for example,
if you are using trace components that do not have a programming model. If the dialog box
appears:

• Select Full Debug and Trace to regenerate the debug configuration files with full debug and
trace information.

• Select Debug Only to regenerate the debug configuration files that only contain the
configuration for a debug session without trace capability.

• Select Return to PCE to manually provide the component interconnect information.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

If you return to the PCE, check that the component interconnect information
is accurate. If required, edit the information, save the platform configuration,
and rebuild the platform configuration.

7. Select your platform and debug activity:
a) Open the Debug Configurations view. Right-click in the Project Explorer view and select

Debug As > Debug Configurations....
b) Select your platform and debug activity from the Connection tab in the Debug

Configurations dialog box.

To see your platform in the Debug Configurations list, your configuration
database must be specified in Window > Preferences. Expand Arm DS and
select Configuration Database.

8. Check your new device is trace capable for the <master-device> processor. In the Connection
tab in the Debug Configurations dialog box, click Edit on DTSL Options.

Related information
Hardware platform bring-up in Development Studio on page 194
Create a platform configuration on page 195
Manual platform configuration on page 212
Device hierarchy in the PCE view on page 190

9.2.4 Add topology information for an autodetected Cortex-M3 processor

If it is not added automatically, you can add topology information for an autodetected platform.
The following example shows you how to add trace topology information for an autodetected
Cortex®-M3 processor.

Before you begin
• You need a Cortex-M3 processor platform configuration available to edit.

• You need the topological information that describes your platform.

About this task
This example shows how to edit topology information for a specific platform configuration. See Edit
a platform configuration for general instructions on editing a platform configuration.

The figure shows the configuration of an example platform in the Platform Congiguration Editor
(PCE) view after autodetection in Development Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-12: Component Connections

The title bar of the PCE view warns about the information that autodetection was unable to
determine.

To get more information, click on the device in the device hierarchy.

When you select the Cortex-M3 processor, Arm® Debugger displays a warning message if there is
any missing information.

Figure 9-13: Missing trace macrocell

In this example, the Cortex-M3 processor does not have a trace macrocell associated with it.
Autodetection was unable to determine the topology information for it. The Device hierarchy in
the PCE view shows that the Cortex-M3 processor and the trace source, CSETM_6, are under the
same access port, CSMEMAP_2.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-14: Device hierarchy

The following procedure explains how to edit a platform configuration and add a component
connection between a Cortex-M3 processor and the Embedded Trace Macrocell (ETM):

Procedure
1. Select Devices in the Device hierarchy in the PCE view.
2. In the right-hand pane, select the Component Connections tab.
3. Add a new component connection:

a) Click Add Link. This shows the Add Link dialog box.
b) Select Cortex-M3 for the Master and select CSETM_6 for the Slave. To add the component

connection, click OK.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-15: Add Core Trace

c) Add slave connections. The PCE view shows that CSETM_6 does not have any slave
connections. The device hierarchy shows that there is a CSCTI_8 component under the
same access port. To add this component connection to CSETM_6, click Add Link and select
CSETM_6 for the Master, and CSCTI_8 for the Slave .
Figure 9-16: Add CTI Trigger

4. Save the platform configuration. Select File > Save.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-17: User added component connections

5. Customize the build. By default, Cross Trigger Interface (CTI) synchronization and trace are
enabled. When CTI sync or trace fails or causes problems, we recommend disabling these
options. To build the platform configuration without these options, click Build Configuration
and under Build Settings deselect the options. Save your configuration after making the
changes.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-18: Disable Trace or CTIs

When starting from scratch with a complex system, to test the connection
with your target and debug your cores, we recommend disabling trace in the
configuration.

6. Build the platform configuration:
a) Right-click the project in the Project Explorer view and select Build Platform.

Figure 9-19: Project Explorer

b) The system topology (component connections) may not be correct dialog box appears.
To regenerate the debug configuration files with the added CoreSight™ trace components,
select Full Debug and Trace.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-20: Full debug and trace

7. Select your platform and debug activity:
a) Open the Debug Configurations view. Right-click in the Project Explorer view and select

Debug As > Debug Configurations....
Figure 9-21: Debug Activities

b) Select your platform and debug activity from the Connection tab in the Debug
Configurations dialog box.

To see your new platform in the Debug Configurations list, you must specify
your configuration database in Window > Preferences. Expand Arm DS* and
select **Configuration Database.

8. Check your new device is trace capable for the <master-device> processor. From the
Connection tab in the Debug Configurations dialog box, click Edit on DTSL Options.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-22: DTSL Options

Related information
Hardware platform bring-up in Development Studio on page 194
Create a platform configuration on page 195
Edit a platform configuration on page 203
Manual platform configuration on page 212
Device hierarchy in the PCE view on page 190

9.2.5 Manual platform configuration

In Development Studio, you can manually configure platforms that are not detected automatically.

Before you begin
You will need the topological information that describes your platform.

About this task
To create a custom platform configuration, Development Studio uses the information that it reads
from the platform. However, sometimes it is not possible for Development Studio to read all of the
information that it needs from a platform. For more information, see Hardware platform bring-up in
Development Studio.

• Always review the information that has been collected before deciding what
further action to take. If Development Studio fails to read information, it might
be an indication of a deeper problem. For more information, see Hardware
platform bring-up in Development Studio.

• If you autoconfigure your platform, it can cause the target to stop and reset.
If you do not want to reset the target, you can manually create the platform
configuration using Development Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Procedure
1. To manually configure a platform configuration, create a new configuration database to

manually configure, or select an existing configuration database:

• To create a new configuration database, follow the instructions in Create a platform
configuration. In the New Platform dialog box, select Advanced platform detection or
manual creation.

On completion, the Platform Configuration Editor (PCE) opens.

• To select an existing configuration database, in the Project Explorer double-click on the
*.sdf file for the platform configuration to edit.

The Platform Configuration Editor (PCE) opens.
2. Add or edit the existing topology information for your platform. See the topology diagram for

your platform. When you know the topology, add the components using these steps:
a) Create the JTAG scan chain by adding all the devices that are on the scan chain. Drag-and-

drop devices to the scan chain from the device hierarchy into the Devices folder in the PCE
view. The devices must be in the correct order on the JTAG scan chain.

• For more information about using the device hierarchy, see Device
hierarchy in the PCE view.

• For more information about adding custom devices, see the
Custom devices topic.

b) Add your CoreSight™ devices or Cortex® processors to the device hierarchy. Before you
begin, you must add a CoreSight Debug Access Port (DAP), for example ARMCS-DP. For
each DAP, you must add the CoreSight Memory Access Ports (AP) that you need, for
example CSMEMAP. You must specify the correct index and type of each AP.

c) Add the Cortex processors and CoreSight devices to the correct AP on the correct DAP. To
do this, drag-and-drop them from the devices panel into the correct AP. As the CoreSight
devices are memory-mapped, you can add them in any order. However, you need to ensure
that the device type and ROM table base address are correct.

d) Specify how the devices connect to each other. Edit a platform configuration describes how
to do this.

Always review the information that has been collected before deciding what
further action to take. If Development Studio fails to read information, it
might be an indication of a deeper problem. For example, if Development
Studio fails to discover the base addresses because the devices are powered
down, it might not be possible to provide debug support. This can also
happen for manually configured platforms because powered down devices
are not responsive to Arm® Debugger. You might need to perform other
operations, such as enabling clocks or powering processor clusters, before
debug and trace are possible.

3. Save and build the *.sdf file. Click File > Save.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Results
When you next connect to a target through File > New > <|Hardware|Linux Application|Model>
Connection, the manually configured platform is visible as an available target.

Related information
Hardware platform bring-up in Development Studio on page 194
Create a platform configuration on page 195
Device configuration panel on page 214
Edit a platform configuration on page 203

9.2.6 Custom devices

You can add custom devices to the JTAG scan chain in the PCE.

To add a custom device, right-click on the Devices folder, and select Add Custom Device.

When you add a custom device, you must specify the correct JTAG Instruction Register (IR) length.
You can provide any name for the custom device. You cannot debug a custom device. However, if
you add the custom device in the correct order with the correct length, you will be able to debug
the supported devices in the same scan chain.

You cannot consolidate multiple custom devices on the scan chain. For example,
you cannot replace two custom devices with instructions lengths of 4 and 5 bits, by
a single custom device of instruction length 9 bits.

Related information
Manual platform configuration on page 212
Edit a platform configuration on page 203

9.2.7 Device configuration panel

The Device configuration panel in the PCE shows the configuration information for the devices on
your platform.

Edit an existing device within the Platform Configuration Editor (PCE) using the Device
configuration panel.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-23: The Device configuration panel in the PCE.

Access
You can access the panel using one of the following methods:

• In the Project Explorer, right-click on an *.sdf file, and select Open With > Platform
Configuration Editor. Select a device.

• Double-click an *.sdf file (where the *.sdf association has not been overridden), then select a
device.

• File > New > Other... > Configuration Database > Platform Configuration. At the end of the
wizard, you have the option to open the PCE to check or modify the platform. In the PCE,
select a device.

• The target connection wizard provides an option to enter the PCE: File > New > Hardware
Connection--> Add a new platform. In the PCE, select a device.

Contents

The Device configuration panel contains:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Table 9-3: Device configuration panel contents

Field Description

Device Details Shows the general information about the device. Fields include:

• Device Name

• Device Type

• Device Family

• Device Class

Configuration Items Shows the configuration items for the device. These are used by
Arm® Debugger to configure the device when connecting to the
target. Changing these configuration items affects the behavior of
the target.

Device Information Shows information about the device. The Arm Debugger uses this
information to generate the platform configuration. If you change
the device information, the platform configuration generated by
Arm Debugger changes, which might result in different debug and
trace options being available.

Related information
Add core cluster components dialog box on page 216
Edit a platform configuration on page 203
Manual platform configuration on page 212
Platform Configuration Editor (PCE) on page 186

9.2.8 Add core cluster components dialog box

Use the Add core cluster components dialog box to add cores to your platform configuration,
including the topology links.

Figure 9-24: Add core cluster components dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Access
Right-click a MEM-AP device (Memory Access Port device) in the Device hierarchy in the PCE view
and select Add core cluster components.

Contents
The Add core cluster components dialog box contains:

Table 9-4: Add core cluster components dialog box contents

Field Description

Core Type Select the core type.

Number of Cores Select the number of cores to add.

First Core Base Address Enter the base address of your first core.

Add additional core components Select the core components to add. Choose from:

• CSETM/CSPTM

• CSCTI

• CSPMU

Cluster Funnel Configure a cluster funnel, using:

• Add funnel connections - Select to add funnel connections.

• First Port - Select the number of the first port of the funnel to
which the ETM output is routed. Choose a port number from 0
to 7.

• Funnel Base Address - Enter the base address of the funnel.

Related information
Device hierarchy in the PCE view on page 190
Platform Configuration Editor (PCE) on page 186

9.3 Model targets
This section describes how to configure model platforms in Development Studio.

9.3.1 Model platform bring-up in Development Studio

To start a debug connection to a model, Arm® Debugger needs a model platform configuration. A
model platform configuration consists of:

• A dtsl_config_script.py file.

• A project_types.xml file.

• A cadi_config.xml file (if using Component Architecture Debug Interface (CADI) as the
connection interface) or a iris_config.xml file (if using Iris as the connection interface).

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

You do not need an *.sdf file.

When Development Studio connects to a running model, the Model Configuration Editor connects
to, and interrogates, the model for information about its devices. The information detected is
used to create an *.mdf file (Model Description File). The *.mdf file is used to generate the model
platform configuration, but it is not required for connection.

To enable a simple and efficient model platform bring-up process, Arm Debugger automatically
detects most of the model configuration information. However, Arm Debugger might not recognize
the core type of new models with custom or pre-released cores. To resolve this, open the *.mdf
file in Model Configuration Editor and change the unrecognized core types to core types that are
supported by Arm Debugger.

For more information on creating model configurations, follow the instructions in Create a new
model configuration. For more information about the Model Configuration Editor, see Model
Configuration Editor.

Related information
Create a new model configuration on page 220
Model Configuration Editor on page 227
Specifying a custom configuration database using the command-line on page 168
Configuring a connection to an external Fixed Virtual Platform (FVP) for bare-metal application
debug
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel
Configuring a connection to a bare-metal hardware target
Overview: Debug connections in Arm Debugger
Component Architecture Debug Interface Developer Guide
Iris Developer Guide

9.3.2 Set up environment variables for models not provided with Arm
Development Studio

Arm® Debugger provides built-in support for connecting to a large range of Arm Fast Models
products. To use any other simulation model with Arm Debugger, you must set up your host
operating system environment variables so that your models are available to Development Studio.

Before you begin
• You might require local administrator access on the host operating system to make any changes

to the system environment variables.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-application-using-gdbserver
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Overview--Debug-connections-in-Arm-Debugger
https://developer.arm.com/documentation/100963/latest/
https://developer.arm.com/documentation/101196/latest

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Procedure
1. Add the install_directory/bin directory to your PATH environment variable:

• For Windows, enter set PATH=<your model path>\bin;%PATH%.

• For Linux, enter export PATH=<your model path>/bin:$PATH.
2. Restart Development Studio.
3. Ensure that the modified path is available for future sessions:

• For Windows:
a. Right-click My Computer > Properties > Advanced system settings > Environment

Variables.

b. Under User Variables, either create a PATH variable with the value <your model path>
\bin, or append ;<your model path>\bin to any existing PATH variable.

• For Linux, set up the PATH in the appropriate shell configuration file. For example, in .bashrc
, add the line export PATH=<your model path>/bin:$PATH.

Results
The models are now available to be used with Development Studio.

Related information
Create a new model configuration on page 220
Launch a Fast Model for use with Arm Development Studio on page 219

9.3.3 Launch a Fast Model for use with Arm Development Studio

If you want to connect to an already running model using Arm® Development Studio, you need
to first launch the model with the appropriate model connection interface. You can launch a Fast
Models as a library file or as an executable.

Procedure
1. Launch your model and start the model connection interface server:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Table 9-5: Launch your model with the appropriate model connection interface

To launch models with Component Architecture Debug
Interface (CADI) as the model connection interface server:

To launch models with Iris as the model connection interface
server:

• If your model is a library file:

◦ On Windows, select Start > All Programs > Arm
Development Studio > Arm Development Studio
Command Prompt and enter, either:

▪ model_shell -m <your model path and
 name> -S

▪ <your model path and executable
 name> -S

◦ On Linux, open a new terminal and run: install_
directory /bin/model_shell -m <your
 model path and name> -S.

• If your model is an executable file, at the command
prompt, enter <your model path and name> -S.

• If your model is a library file:

◦ On Windows, select Start > All Programs > Arm
Development Studio > Arm Development Studio
Command Prompt and enter, either:

▪ model_shell -m <your model path and
 name> -I

▪ <your model path and executable
 name> -I

◦ On Linux, open a new terminal and run: install_
directory /bin/model_shell -m <your
 model path and name> -I.

• If your model is an executable file, at the command
prompt, enter <your model path and name> -I.

2. Connect to the running model using the Development Studio connection options.

• For more information about the options available with the model_shell
utility in Development Studio, enter model_shell --help at the
Development Studio command prompt.

• For more information about the switches available for either CADI or the
Iris model connection interfaces, see the Fast Models documentation.

Related information
Create a new model configuration on page 220
Set up environment variables for models not provided with Arm Development Studio on page
218

9.3.4 Create a new model configuration

Use the Model Configuration wizard in Development Studio to create debug configurations for
new models.

Before you begin
• If you are importing an existing model configuration file (*.mdf), ensure you have access to this

file.

• Some of the options below require you to launch your model before connecting to it. Before
using these options, ensure you have launched your model with the appropriate model
interface switches before attempting to connect to it.

Procedure
1. Open the Model Configuration wizard. From the main menu, select File > New > Other >

Model Configuration and click Next.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 589

https://developer.arm.com/documentation/100966/latest/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-25: Select Model Configuration wizard

2. Either:

• Select the configuration database where you want to add your model.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-26: Select a database for your new model configuration.

• Click Create New Database to create a new configuration database.

If you create a new database, enter a name at the prompt and click OK to save it.
3. Click Next. The Select Method for Connecting to Model dialog box opens.
4. Select a model interface for connecting to your model. You have two interface options -

Component Architecture Debug Interface (CADI) or Iris.

CADI model interface:
• To launch and connect to a specific model from your local file system using CADI:

a. Select the Launch and connect to a specific model option and click Next.
b. In the Model Selection from File System dialog box, click File to browse for a model and

select it.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-27: Select model from file system

c. Click Open, and then click Finish.

• To connect to a model running on the local host:

a. Select the Browse for model running on local host option and click Next.
b. Select the model you require from the listed models.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-28: Browse for model running on local host

c. Click Finish and connect to the model.
Iris model interface:

• To launch and connect to a specific model from your local file system using Iris:

a. Select the Launch and connect to a specific model option and click Next.
b. In the Model Selection from File System dialog box, click File to browse for a model and

select it.

c. Click Open, and then click Finish.

• To connect to a model running on the local host:

To connect to models running on the local host, you must launch the model
with the --iris-server switch before connecting to it.

a. Select the Browse for model running on local host option and click Next.
b. Select the model you require from the listed models.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-29: Browse for model running on local host

c. Click Finish and connect to the model.

• To connect to a model using its address and port number, running either on the local or a
remote host:

To connect to models running on the local host, you must first launch the
model with the --iris-server switch before connecting to it. To connect
to models running on a remote host, you must first launch the model with
the --iris-server --iris-allow-remote switches before connecting to it
remotely.

a. Select the Connect to model running on either local or remote host option and click
Next.

b. Enter the connection address and port number of the model.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-30: Connect to model running on either local or remote host

c. Click Finish.

The selected model is imported and the *.mdf created. The Model Configuration Editor opens
and loads the imported model file. You can view the configuration database and model in the
Project Explorer.

5. (Optional) Rename the Manufacturer Name and Platform Name, and if required, use the Model
Configuration Editor to complete the model configuration.

If you do not enter a Manufacturer Name, the platform is listed under Imported
in the Debug Configurations dialog box.

Next steps
Make any changes to the model in the Model Configuration Editor. To save the changes to the
model, click Save.

To import and rebuild the Development Studio configuration database, click Import.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Click Debug to open the Debug Configurations dialog box to create, manage, and run
configurations for this target.

Related information
Model Configuration Editor on page 227
Model platform bring-up in Development Studio on page 217
Launch a Fast Model for use with Arm Development Studio on page 219
FVP command-line options

9.3.5 Model Configuration Editor

Use the Model Configuration Editor to create or modify configurations and connections for model
target platforms.

In the Model Configuration Editor, you can add or remove executable devices to configure the
model for debug. This figure shows the Model Devices and Cluster Configuration of an example
model platform.

Figure 9-31: Model Devices and Cluster Configuration tab

Access the Model Configuration Editor
• Double-click an *.mdf file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 589

https://developer.arm.com/documentation/100966/latest/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

• In the Project Explorer, right-click on a *.mdf file, and select Open with > Platform
Configuration Editor.

• In the Project Explorer, right-click, and select File > New > Model Configuration. After
connecting to a model, the Model Configuration Editor opens.

• Select File > New > Other... > Configuration Database > Model Configuration. After selecting
a configuration database, and connecting to a model, you have the option to open the Model
Configuration Editor to check or modify the model.

• The target connection wizard provides the option to enter the Model Configuration Editor at
the final stages of new connection creation: File > New > Model Connection. At the target
selection step, click Add a new model….

Contents
The Model Configuration Editor contains:

Table 9-6: Model Configuration Editor contents

Field Description

Manufacturer Name Model platform manufacturer.

Platform Name Model platform name.

Model Devices and Cluster Configuration tab View and configure the devices in the model.

• The Executable Devices section lists the cores available within
the model. Add, remove, or edit the available cores.

• The Associations section lists the non-executable devices
within the model. Expand the associations to see the mapping
of the non-executable devices. Delete items from the
associations view or add items from the list of available non-
executable devices.

Note:
There are two important conventions for an Instance Name:

• Each name must be unique.

• For multi-cluster models, each name must be in the
clusterX.cpuY format.

Debug Connections tab View and configure the debug connections. Drag cores or clusters
from the Cores and Clusters section and drop them into the node
connection under Debug Activities. To enable Linux application
debug, select the Enable Linux Application Debug option.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Field Description
Model Launch Configuration tab View and configure the launch settings for a specific model:

• To enable options and provide the path of the model you want
to launch, select Launch and connect to a specific model.

• Model Interface shows the interface used for creating the
model configuration.

• To use the default launcher script, select Use Default Launcher
Script. To provide an alternative launch script, deselect the
option, and provide a script path in Launch Script.

• To provide model launch parameters, specify them in the
Model launch parameters panel. Click Parameters to display
available model launch parameters. Select the parameters to
use, and click OK to apply them.

• To provide model run-time parameters, specify them in the
Model run-time parameters panel.

Advanced Configuration tab View and select configure advanced configuration options:

• To create a model log, select the Enable Model Log option.

• To specify a RDDI log file, select the Enable RDDI Log option,
and specify the file path.

Note:
To enable RDDI logging, you must specify a RDDI Log file to use.

Save Saves the model configuration.

Import Imports configuration database files and adds the project to
Development Studio preferences.

Debug Launches the Development Studio Debug Configurations dialog
box.

Usage
Configure your model and connections in the Model Configuration Editor.

To save the changes to the configuration, click Save. To import the configuration database files and
add the projects to the Development Studio preferences, click Import.

Changes to an *.mdf file must be imported into the Development Studio
preferences to take effect.

To launch the Development Studio Debug Configurations dialog box, click Debug.

Related information
Create a new model configuration on page 220
Launch a Fast Model for use with Arm Development Studio on page 219
Set up environment variables for models not provided with Arm Development Studio on page
218

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

9.4 Configuration database
This section describes how to add, edit, and extend configuration databases in Development
Studio.

9.4.1 Configuration Database panel

Use the Configuration Database panel to manage the Development Studio configuration database
settings.

The Development Studio configuration database is made up of Default Configuration Databases
and User Configuration Databases.

In the Configuration Database panel you can add, remove, edit, and organize the default and user-
provided configuration databases. You can also rebuild the Development Studio configuration
database and test platforms.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Figure 9-32: Configuration Database panel

Access
Select Window > Preferences. In the Preferences dialog box, expand Arm DS and select
Configuration Database.

Contents
The Configuration Database panel contains:

Table 9-7: Configuration Database panel contents

Field Description

Default Configuration Databases Displays the default Development Studio configuration databases.

Note:
Arm recommends that you do not disable these.

User Configuration Databases Displays the user-provided configuration databases.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Field Description
Add Opens a dialog box to select a configuration database to add.

Edit Opens a dialog box to modify the name and location of the selected
configuration database.

Remove Removes the selected configuration database.

Up Moves the selected configuration database up the list.

Down Moves the selected configuration database down the list.

Rebuild database Rebuilds the Development Studio configuration database.

Test platforms… Enables you to test platforms and report any errors found. This is
useful when trying to determine why a platform configuration is not
loading correctly.

Restore Defaults Removes all the configuration databases that do not belong to the
Development Studio default system.

Apply Saves the current configuration database settings.

Usage
Development Studio configuration database reads and processes the default and user configuration
databases sequentially from top to bottom in the list. The information read in each configuration
database appends, or overwrites, the information read in the previous databases positioned above
it in the list. This means the information in the configuration database that is positioned at the
bottom of the list has the highest priority. The information in the configuration database that is
positioned at the top of the list has the lowest priority. For example, if you produced a modified
core definition with different registers, you would add it to the database at the bottom of the list so
that the Development Studio configuration database reads it last. Development Studio then uses
this information instead of the core definitions in the higher-positioned or default databases.

Ensure that you rebuild the Development Studio configuration database after you add, remove, or
edit any configuration databases. To rebuild the Development Studio configuration database, click
Rebuild database.

Related information
Add a configuration database on page 232
Add a Platform Configuration to a Configuration Database on page 234
Create a platform configuration on page 195
How do I add a custom components.xml file to an Arm Development Studio Configuration
Database

9.4.2 Add a configuration database

You can add configuration databases from other sources into your installation of Arm®

Development Studio.

Before you begin
You must have an existing configuration database.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 589

https://developer.arm.com/documentation/ka001053/latest/
https://developer.arm.com/documentation/ka001053/latest/

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Procedure
1. Open the Preferences dialog box. From the main menu, select Window > Preferences.
2. Expand Arm DS and select Configuration Database.
3. Add your new configuration database and configure the ordering:

a) Click Add. The Add configuration database location dialog box opens.
b) Enter a Name for the configuration database, for example, MyConfigDB.
c) Click Browse. Find and select the database, then click OK.
d) Click OK to close the Add configuration database location dialog box.

The new configuration database is listed as an option under User Configuration Databases.
e) (Optional) If required, change the order of the user configuration databases. Select the new

database and click Up or Down as required.

Development Studio processes the user configuration databases from
top to bottom, with the information in the lower databases replacing
information in the higher databases. For example, if you want to
produce a modified Cortex®-A15 processor definition with different
registers, add those changes to a new configuration database lower in
the list of user databases.

Figure 9-33: Reorder the configuration databases

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

Development Studio provides built-in databases containing a default set of
target configurations. You can enable or disable these databases, but you
cannot delete them.

4. Click Rebuild database to rebuild your Development Studio configuration database.
5. Click OK to close the dialog box and save the settings.

Results
You can view your new configuration database in the Connection tab of the Debug Configuration
dialog box, under the name specified in the procedure.

Related information
Create a platform configuration on page 195
Create a new model configuration on page 220
Add a Platform Configuration to a Configuration Database on page 234
Configuration Database panel on page 230

9.4.3 Add a Platform Configuration to a Configuration Database

You can add a new platform configuration to your Development Studio configuration database
by adding the platform to a user configuration database, then rebuilding the Development Studio
configuration database.

Before you begin
• You need the platform configuration files for the new platform.

Your platform configuration must include the *.sdf file, but might also include
files such as the dtsl_config_script.py and the project_types.xml files.

• You need to have an existing user configuration database to update to add the platform
configuration.

About this task

If you create a platform configuration using the PCE, Development Studio
automatically saves it to the configuration database you chose or create within the
New Platform wizard.

Procedure
1. Navigate to the user configuration database to update in your file system.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

2. Add the new platform configuration directory (containing the *.sdf file) to the Boards
directory.

3. Open the Configuration Database dialog box in Development Studio. Select Window >
Preferences. In the Preferences dialog box which opens, select Arm DS > Configuration
Database.

4. Rebuild the Development Studio configuration database. Ensure the updated user configuration
database is selected, and click Rebuild database.

If the updated user configuration database is not listed, follow the instructions in
Add a configuration database to add it as a new configuration database.

5. Click OK.

Results
You can view the new platform in the Connection tab of the Debug Configuration dialog box. The
new platform is listed under <Platform Manufacturer>/<Platform Name> as specified in the *.sdf
file.

Related information
Add a configuration database on page 232
Configuration Database panel on page 230
How do I add a custom components.xml file to an Arm Development Studio Configuration
Database

9.4.4 Add Arm debug hardware support to an existing platform
configuration

Support for the latest debug hardware systems from Arm is available in the latest releases of Arm®

Development Studio. Use the Platform Configuration Editor (PCE) in Arm Development Studio to
add the latest debug hardware system support to your existing platform configurations.

Before you begin
• Install the latest release of Arm Development Studio which contains support for the latest

debug hardware from Arm.

• You require an existing platform configuration.

◦ Your platform configuration must include the *.sdf file, but might
also include files such as the dtsl_config_script.py and the
project_types.xml files.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 589

https://developer.arm.com/documentation/ka001053/latest/
https://developer.arm.com/documentation/ka001053/latest/
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Platform Configuration

About this task

Generating a new platform configuration overwrites any DTSL scripts and
other platform files that might exist for your current configuration. Backup your
configuration if you have applied manual changes to your configuration.

Procedure
1. In the Project Explorer, right-click the *.sdf file, and select Open With > Platform Configuration

Editor.
2. Click Debug Activities to view hardware debug units supported by your version of Arm

Development Studio.
3. Select the debug units that you require support for in your platform configuration.
4. Build the platform configuration. Right-click the project in the Project Explorer view and select

Build Platform.
If your platform contains incomplete or invalid topology, a This platform contains warnings
dialog box appears. If the dialog box appears:

• Select Debug Only to regenerate the debug configuration files containing the configuration
for a debug session without trace capability.

• Select Full Debug and Trace to regenerate the debug configuration files with full debug and
trace information.

• Select Return to PCE to manually provide the missing information.

If you return to the PCE, check that the component interconnect information
is accurate. If required, edit the information, save the platform configuration,
and rebuild the platform configuration.

5. After the platform has built successfully, reapply any manual changes you had made to your
previous platform configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10 Using debug probes with Arm
Development Studio

In this section, we describe how to connect a debug probe between Arm® Development Studio
and your target to enable additional debug and trace functionality.

10.1 Overview: Debug Probes and Arm Development
Studio

Connect a debug probe between Arm® Development Studio and your target to enable additional
debug and trace functionality.

Supported probes
Arm Development Studio automatically recognizes the Arm DSTREAM family and Keil® ULINK™

family debug probes, as well as some third party probes. You can use other probes too, but they
require additional configuration for Arm Development Studio to recognize them.

The DSTREAM and ULINK probes implement JTAG and SWD interfaces that communicate with
the CoreSight™ debug components on your target.

• DSTREAM family:

◦ Arm DSTREAM-ST

◦ Arm DSTREAM-PT

◦ Arm DSTREAM-HT

◦ Arm DSTREAM-XT

Although the Arm DSTREAM probe is supported, it is discontinued and is no
longer available to purchase.

• ULINK family:

◦ Keil ULINK2

◦ Keil ULINKpro

◦ Keil ULINKpro D

◦ Keil ULINKplus

• Third party debug probes:

◦ ST-Link

◦ Cadence virtual debug

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 589

https://developer.arm.com/tools-and-software/embedded/debug-probes/dstream-family/dstream-st
https://developer.arm.com/tools-and-software/embedded/debug-probes/dstream-family/dstream-pt
https://developer.arm.com/tools-and-software/embedded/debug-probes/dstream-family/dstream-ht
https://developer.arm.com/tools-and-software/embedded/debug-probes/dstream-family/dstream-xt
https://www.keil.com/arm/ulink2/
https://www.keil.com/arm/ulinkpro/
https://www2.keil.com/mdk5/ulink/ulinkpro
https://www2.keil.com/mdk5/ulink/ulinkplus

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

◦ FTDI MPSSE JTAG

If you are using the FTDI MPSSE JTAG adapter on Linux, the OS
automatically installs an incorrect driver when you connect this adapter. For
details on how to fix this issue, see Troubleshooting: FTDI probe incompatible
driver error in the Arm Development Studio User Guide.

◦ USB Blaster II

If you are using the USB-Blaster debug units, Arm Debugger can
connect to Arria V SoC, Arria 10 SoC, Cyclone V SoC and Stratix
10 boards. To enable the connections, ensure that the environment
variable QUARTUS_ROOTDIR is set and contains the path to the Quartus
tools installation directory:

▪ On Windows, this environment variable is usually set by the
Quartus tools installer.

▪ On Linux, you might have to manually set the environment
variable to the Quartus tools installation path. For example, ~/
<quartus_tools_installation_directory>/qprogrammer.

For information on installing device drivers for USB-Blaster and USB-
Blaster II, consult your Quartus tools documentation.

Using a debug probe with Arm Development Studio
To use your debug probe with Arm Development Studio, you must add it to your debug
connection:

• If you are using a supported probe, Arm Development Studio automatically detects your
device when you plug it in. You can then configure your debug connection using the Debug
Configurations editor.

• If you are using a probe that is not listed as supported, you must provide Arm Development
Studio with its details. See Add a third-party debug probe for guidance on how to do this.

Related information
Arm Developer - Debug probes

10.2 Configure DSTREAM-HT trace using the Arm
Development Studio Platform Configuration Editor

Use the Platform Configuration Editor (PCE) in Arm® Development Studio to add support for the
DSTREAM-HT system to your platform configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 589

https://developer.arm.com/documentation/101469/latest/Troubleshoot-Arm-Development-Studio/FTDI-probe--Incompatible-driver-error
https://developer.arm.com/documentation/101469/latest/Troubleshoot-Arm-Development-Studio/FTDI-probe--Incompatible-driver-error
https://developer.arm.com/tools-and-software/embedded/debug-probes

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.2.1 Create a DSTREAM-HT enabled platform configuration

Use the New Platform dialog box in Development Studio to create a new platform configuration
with DSTREAM-HT support.

Before you begin
• Install the latest release of Arm® Development Studio which contains support for the latest

debug hardware from Arm.

• Ensure your DSTREAM-HT system has the latest firmware version installed.

• If you autodetect your target, ensure that you connect your debug adapter and targets, or that
you have the connection address.

• If you import an existing RDDI configuration file, SDF file (.rcf, *.rvc, *.sdf), CoreSight
Creator file (*.xml), or CMM script (*.cmm), ensure that you have access to these files.

About this task

Generating a new platform configuration overwrites any DTSL scripts and
other platform files that might exist for your current configuration. Backup your
configuration if you have an existing configuration and have applied manual changes
to your configuration.

Procedure
1. Open the new project dialog box. In the Project Explorer, right-click, and select File > New >

Other > Platform Configuration.
2. Select Configuration Database > Platform Configuration and then click Next to view the

Create Platform Configuration dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 589

https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-1: Select create a platform configuration.

3. Select a method to create the configuration for your platform and click Next.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-2: Platform creation options

Choose from:

• Automatic/simple platform detection

Arm recommends this option.

Automatically detects devices that are present on your platform, use this option. After
autodetection, you can add more devices and specify how the devices are interconnected.

• Advanced platform detection or manual creation

This option gives you control over the individual stages that are involved in reading the
device information from your platform. This option is useful, for example, to read certain
device information that might make the platform unresponsive. For more information, see
Manual platform configuration.

• Import from an existing RDDI configuration file or SDF file (*.rcf, *.rvc, *.sdf), or CoreSight
Creator file (*.xml)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Use this option if you already have a configuration file for your platform.

Imports minimal information about the components available on your platform, such as the
base address. After importing, you can manually provide additional information and links
between the components to enable full debug and trace support.

• Import from a *.cmm file

Imports a platform configuration from a CMM script (*.cmm) file.

CMM scripts can contain target description information such as:

◦ JTAG pre- and post- IR/DR bit information.

◦ Core types.

◦ Device base addresses.

◦ CoreSight topology information.

The PCE uses this information to create a Development Studio platform configuration,
complete with custom DTSL control tabs for trace configuration.

Depending on the value of parameters that are passed to the script, some CMM scripts
describe different targets, or different cores and trace devices in the same target. If a CMM
script requires parameters, enter them in the CMM script parameters field.

Figure 10-3: Enter CMM script parameters

If you are autodetecting using Automatic/simple platform detection or Advanced platform
detection or manual creation (using Autodetect Platform in **Debug Adapter panel),
Development Studio connects to the platform and reads all the device information that it can
from the platform.

Depending on your target, you might receive warnings and errors. When
Development Studio cannot obtain this information from the platform, it
does not make any assumptions about how the devices are connected. You
must provide this information in the PCE view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 242 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Debug functionality succeeds if all cores are correctly detected. Where the
connections between cores are not detected, debug succeeds, but trace and
cross-triggering functionality might be limited or missing.

4. (Optional - Automatic/simple platform detection only) Save or edit your autodetected
configuration. The following list describes the next steps available for your autodetected
platform:

• Save a Debug-Only Arm DS Platform Configuration

Saves a debug-only configuration to your configuration database.

• Save a Debug and Trace Arm DS Platform Configuration

Saves a debug and trace configuration to your configuration database. You can open this
in Development Studio later to modify it, or you can use it to connect to and debug the
platform later.

• Edit platform in Arm DS Platform Configuration Editor

Saves the configuration to your configuration database and opens the PCE view.

In the PCE view, you can provide information about the platform that Development Studio
was unable to autodetect.

For more information, see Edit a platform configuration.

◦ All Development Studio platform configurations must be stored in a
configuration database.

◦ You can open the configuration in Development Studio later to
modify it, or you can use it to connect to and debug the platform.

Select an option and click Next.

The New Platform dialog box opens.
5. Select an existing configuration database from the list, or create a new one. To create a new

configuration database, click Create New Database, provide a name for your new configuration
database in the prompt, then click OK to save your configuration database.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 243 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-4: Create new configuration database

6. Click Next >.
The Platform Information dialog box opens.

7. Enter the Platform Manufacturer, for example Renesas. Enter the Platform Name, for example
R-Car-M3-Salvator-X. Optionally, if you want to provide a URL link to information about the
platform, enter it in Platform Info URL.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 244 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

When you select a debug activity for the platform, the URL appears in the
Debug Configurations panel.

Figure 10-5: New platform information

8. Click Finish.
9. (Optional - Advanced platform detection or manual creation only) Complete your

configuration:

• Configure your debug hardware in Debug Adapter panel.

• Autodetect your platform. In Debug Adapter panel under Autodetect tab, click Autodetect
Platform.

Depending on your target, you might receive warnings and errors. When
Development Studio cannot obtain this information from the platform, it
does not make any assumptions about how the devices are connected. You
must provide this information in the PCE view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 245 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Always review the information that has been collected before deciding
what further action to take. If Development Studio fails to read information,
it might indicate a deeper problem. For more information, see Hardware
platform bring-up in Development Studio.

• Check, edit, and save your configuration. If required, edit the configuration then select File >
Save.

Results
The Platform Configuration Editor (PCE) view opens in the right-hand panel. You can view the
configuration database and platform in the Project Explorer.

Next steps
After successfully creating the platform configuration with DSTREAM-HT support, the next step is
to modify the configuration usecase scripts to accept target-specific values.

10.2.2 Customize the configuration usecase script for your target

After creating the platform configuration for your platform, you must customize the configuration
script to initialize and train the HSSTP trace link at connection time.

Before you begin
• You require a platform configuration for your target generated using the Platform Configuration

Editor (PCE) in Arm® Development Studio.

• You require your target SoC user documentation. As part of the steps below
you must modify the configureTargetHSSTPLink(memAccessDevice) and
startTargetHSSTPTraining(memAccessDevice) functions with target-specific values. Refer to
your target SoC documentation for the required values.

About this task
The HSSTP configuration that is generated by the PCE contains the hsstp_usecase.py file. The
contents of the file:

• Contains target-specific functions to initialize the HSSTP trace subsystem.

• Trains the HSSTP trace link at connection time.

• Initiates a training sequence.

• Finally, starts HSSTP trace output.

Procedure
1. In the Project Explorer, browse to the configuration database which contains the configuration

for the platform you require.
2. Locate the hsstp_usecase.py file and open it with your preferred text editor.
3. In the hsstp_usecase.py file contents, locate the

configureTargetHSSTPLink(memAccessDevice) and

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 246 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

startTargetHSSTPTraining(memAccessDevice) functions and modify it to the values specific to
your target.

Results
The configuration usecase script specific to your target is now ready to run.

Next steps
Run the script after you create a debug configuration for your application and target.

10.2.3 Create debug configuration and connect to the target

For DSTREAM-HT, create a debug hardware connection to your target to download, execute,
debug your application, and capture trace.

Before you begin
• Ensure that you have customized your configuration usecase script for your specific target.

• Ensure that your target is connected correctly to the DSTREAM-HT unit.

• Ensure that your target is powered on. Refer to the documentation supplied with the target for
more information.

• Ensure that the debug hardware probe connecting your target to your workstation is powered
on and working.

About this task
After customizing the configuration usecase script for your target, create a debug hardware
connection and connect to your hardware.

The following steps use the Renesas R-Car H3 target as an example, but
demonstrates the general concept. Refer to your target SoC documentation for any
specific values required by your target.

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.
2. In the Hardware Connection dialog box, specify the details of the connection:

a) In Debug Connection give the debug connection a name, for example
my_hsstp_connection and click Next.

b) In Target Selection select a target, for example Renesas > R-Car H3 and click Finish. This
completes the initial connection configuration and opens the Edit Configuration dialog.

3. To specify the target and connection settings, in the Edit Configuration dialog box:
a) Select the Connection tab.
b) In the Select target panel confirm the target that is selected.
c) In the Target Connection list, select DSTREAM Family.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 247 of 589

https://developer.arm.com/documentation/101760/latest/Set-up-your-DSTREAM-HT/DSTREAM-HT-system-boot-sequence
https://developer.arm.com/documentation/101760/latest/Set-up-your-DSTREAM-HT/DSTREAM-HT-system-boot-sequence

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

d) In the Connections area, enter the Connection name or IP address of your debug hardware
adapter. If your connection is local, click Browse and select the connection using the
Connection Browser.

e) In DSTL Options, click Edit to display the Debug and Trace Services Layer (DTSL)
Configuration for DSTREAM-HT dialog.

f) In the Trace Capture tab, set the Trace capture method as DSTREAM-HT 8GB Trace
Buffer
Figure 10-6: Edit the DTSL settings

g) Select the other trace settings you require.
h) Click OK to close the dialog box and return to the Edit Configuration dialog box.

4. Click the Files tab to specify your application and additional resources to download to the
target:
a) To load your application on the target at connection time, in the Target Configuration area,

specify your application in the Application on host to download field.
b) To debug your application at source level, select Load symbols.
c) To load additional resources, for example, additional symbols or peripheral description files

from a directory, add them in the Files area. Click + to add resources, click - to remove
resources.

5. Use the Debugger tab to configure debugger settings.
Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 248 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

a) In the Run control area:

• Specify if you want to Connect only to the target or Debug from entry point. If you want
to start debugging from a specific symbol, select Debug from symbol.

• To run target or debugger initialization scripts, select the relevant options and specify the
script paths.

• To specify at debugger start up, select Execute debugger commands options and specify
the commands.

b) The debugger uses your workspace as the default working directory on the host. To change
the default location, deselect the Use default option under Host working directory and
specify the new location.

c) In the Paths area, specify any directories on the host that contain your application files in
the Source search directory field.

d) To use additional resources, click Add resource (+) to add resources. Click Remove
resources (-) to remove resources.

6. [Optional] Use the Arguments tab to enter arguments that are passed to the main() function
of the application when the debug session starts. The debugger uses semihosting to pass
arguments to main().

7. [Optional] Use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply and then Debug to connect to the target and start debugging session.

Results
The trace is now setup for the HSSTP target. You can view the trace output in the Trace view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 249 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-7: Trace view HSSTP output

If your target requires additional setup, make changes to the hsstp_usecase.py in the Scripts view
and run the default component of the script.

10.2.4 Additional HSSTP target configuration setup

You can make additional changes to your target HSSTP configuration setup without disconnecting
from the target.

Before you begin
• Ensure that you have customized your configuration usecase script for your specific target.

• Ensure that your debug connection is set up and working.

About this task
For additional target HSSTP configuration changes, in the Scripts view, make your changes to
hsstp_usecase.py file. Then run the default component of the script. This initiates a training
sequence for your target and restarts the HSSTP trace output.

Procedure
1. Open the Scripts view, and locate the hsstp_usecase.py file that you modified for your target.
2. Make any additional changes that you require.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 250 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

3. Double-click the default stub to initiate the training sequence for your target and start HSSTP
trace output.

Figure 10-8: Scripts view HSSTP training

Results
You can view the status of the script execution in the Commands view.

Figure 10-9: Scripts execution status

Related information
Create a DSTREAM-HT enabled platform configuration on page 238

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 251 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.2.5 DSTREAM-HT trace probe configuration

As part of configuring trace for your hardware, you can configure HSSTP trace.

Configure the DSTREAM-HT trace probe using the Trace Configuration settings available in the
Platform Configuration Editor (PCE).

In PCE, select the configuration file, and then click Debug Adapter > Trace Configuration > Trace
Type > HSSTP

Figure 10-10: Trace Configuration tab

Table 10-1: HSSTP trace configuration options

Configuration item name Type Description and supported values

HSSTP_LANES Int32 Number of HSSTP lanes to use for trace.

Currently, support is provided for 1 and
2-lane Arm HSSTP/Serial-ETM trace.
Additional lane support is planned for later
Arm® Development Studio releases.

Supported values: 1-6.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 252 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Type Description and supported values
HSSTP_SPEED Str The HSSTP link speed to use.

Supported values:
• HSSTP_2_5Gbps

• HSSTP_3_0Gbps

• HSSTP_3_125Gbps

• HSSTP_4_25Gbps

• HSSTP_5_0Gbps

• HSSTP_6_0Gbps

• HSSTP_6_25Gbps

• HSSTP_8_0Gbps

• HSSTP_10_0Gbps

• HSSTP_10_3125Gbps

• HSSTP_12_0Gbps

• HSSTP_12_5Gbps

• HSSTP_SETM_1_5Gbps

• HSSTP_SETM_3_0Gbps

HSSTP_PROTOCOL Str The HSSTP protocol to use.

Supported values:
• HSSTP_PROTOCOL_Arm_HSSTP

• HSSTP_PROTOCOL_8_BIT_SETM

• HSSTP_PROTOCOL_16_BIT_SETM

• HSSTP_PROTOCOL_32_BIT_SETM

HSSTP_NDALT Str Data byte ordering of the transmitted data.

Supported values:
• HSSTP_NDALT_Disabled

• HSSTP_NDALT_Enabled

HSSTP_CONNECTOR Str The physical connector type.

Supported values:
• HSSTP_CONNECTOR_HSSTP

• HSSTP_CONNECTOR_SMA

HSSTP_RX_EQUALIZATION Str Rx equalization type

Supported values:
• RX_EQUALIZATION_DFE

• RX_EQUALIZATION_LPM

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 253 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Type Description and supported values
HSSTP_CRC Str Enable CRC check on HSSTP data.

Supported values:
• HSSTP_CRC_Disabled - Disable HSSTP

CRC checks (See HSSTP specification).

• HSSTP_CRC_Enabled - Enable HSSTP
CRC checks.

• HSSTP_CRC_Reversed - Enable HSSTP
bit reversed CRC checks (necessary on
some targets).

• HSSTP_CRC_Ignored - Ignores an
incorrectly implemented CRC.

10.2.6 Example HSSTP configurations provided with Arm Development
Studio

The latest releases of Arm® Development Studio provides HSSTP configuration examples.

You can locate these example target configurations in the Configuration Database under
<install_directory>/sw/debugger/configdb/Boards.

View the hsstp_usecase.py files in the example configurations to see how the
configureTargetHSSTPLink(memAccessDevice) and startTargetHSSTPTraining(memAccessDevice)
functions are implemented. Although the examples are target-specific, it demonstrates the general
concept of the modifications required for your platform.

Related information
Configuration database on page 229

10.3 Configure DSTREAM-XT debug and trace using the
Arm Development Studio Platform Configuration
Editor

Use the Platform Configuration Editor (PCE) in Arm® Development Studio to add support for the
DSTREAM-XT system to your platform configuration.

There are three use-cases for DSTREAM-XT:

• PCIe debug-only (no trace)

• JTAG/SWD debug with PCIe trace

• PCIe debug with PCIe trace

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 254 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

After you have created your platform configuration for DSTREAM-XT, you need to configure the
debug and/or trace configuration settings, depending on your use-case. You must configure these
settings before you create your debug connection and connect to your target.

10.3.1 Create a DSTREAM-XT enabled platform configuration

Use the New Platform dialog box in Development Studio to create a new platform configuration
with DSTREAM-XT support.

Before you begin
• Install the latest release of Arm® Development Studio which contains support for the latest

debug hardware from Arm.

You must install Arm Development Studio version 2021.1/2021.b or later.

• Ensure your DSTREAM-XT system has the latest firmware version installed.

◦ In Arm Development Studio, the latest firmware files are available at:
<Arm_Development_Studio_install_directory>/sw/debughw/firmware/

◦ You must use firmware version 7.6 or later to detect the XT probe.

• If you autodetect your target, ensure that you have either physically connected your debug
adapter and targets using USB, or that you have the connection address for a remote
connection using TCP.

• If you import an existing RDDI configuration file, SDF file (.rcf, *.rvc, *.sdf), CoreSight™

Creator file (*.xml), or CMM script (*.cmm), ensure that you have access to these files.

About this task

Generating a new platform configuration overwrites any DTSL scripts and
other platform files that might exist for your current configuration. Backup your
configuration if you have an existing configuration, and you have applied manual
changes to your configuration.

Procedure
1. In the Project Explorer, right-click, and select File > New > Other > Platform Configuration.
2. Select New > Platform Configuration and then click Next to view the Create Platform

Configuration dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 255 of 589

https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-11: Select create a platform configuration.

3. Select a method to create the configuration for your platform and click Next.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 256 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-12: Platform creation options

Choose from:

• Automatic/simple platform detection

Arm recommends this option.

Use this option to automatically detect devices that are present on your platform. After
autodetection, you can add more devices and specify how the devices are interconnected.

• Advanced platform detection or manual creation

This option gives you control over the individual stages that are involved in reading the
device information from your platform. This option is useful, for example, to read certain
device information that might make the platform unresponsive. For more information, see
Manual platform configuration.

• Import from an existing RDDI configuration file or SDF file (*.rcf, *.rvc, *.sdf), or CoreSight
Creator file (*.xml)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 257 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Use this option if you already have a configuration file for your platform.

Imports minimal information about the components available on your platform, such as the
base address. After importing, you can manually provide additional information and links
between the components to enable full debug and trace support.

• Import from a *.cmm file

Imports a platform configuration from a CMM script (*.cmm) file.

CMM scripts can contain target description information such as:

◦ JTAG pre- and post- IR/DR bit information.

◦ Core types.

◦ Device base addresses.

◦ CoreSight topology information.

The PCE uses this information to create a Development Studio platform configuration,
complete with custom DTSL control tabs for trace configuration.

Depending on the value of parameters that are passed to the script, some CMM scripts
describe different targets, or different cores and trace devices in the same target. If a CMM
script requires parameters, you can enter them in the CMM script parameters field.

Figure 10-13: Enter CMM script parameters

If you are autodetecting using Automatic/simple platform detection or Advanced platform
detection or manual creation (using Autodetect Platform in Debug Adapter panel),
Development Studio connects to the platform and reads all the device information that it can
collect from the platform.

Depending on your target, you might receive warnings and errors. When
Development Studio cannot obtain device information from the platform, it
does not make any assumptions about how the devices are connected. You
must provide this information in the PCE view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 258 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Debug functionality succeeds if all cores are correctly detected. Where the
connections between cores are not detected, debug succeeds, but trace and
cross-triggering functionality might be limited or missing.

4. (Optional - Automatic/simple platform detection only) Save or edit your autodetected
configuration. The following list describes the next steps available for your autodetected
platform:

• Save a Debug-Only Arm DS Platform Configuration

Saves a debug-only configuration to your configuration database.

• Save a Debug and Trace Arm DS Platform Configuration

Saves a debug and trace configuration to your configuration database. You can open this
in Development Studio later to modify it, or you can use it to connect to and debug the
platform later.

• Edit platform in Arm DS Platform Configuration Editor

Saves the configuration to your configuration database and opens the PCE view.

In the PCE view, you can provide information about the platform that Development Studio
was unable to autodetect.

For more information, see Edit a platform configuration.

◦ All Development Studio platform configurations must be stored in a
configuration database.

◦ You can open the configuration in Development Studio later to
modify it, or you can use it to connect to and debug the platform.

Select an option and click Next.

The New Platform dialog box opens.
5. Select an existing configuration database from the list, or create a new one. To create a new

configuration database, click Create New Database, provide a name for your new configuration
database in the prompt, then click OK to save your configuration database.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 259 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-14: Create new configuration database

6. Click Next >.
The Platform Information dialog box opens.

7. Enter the Platform Manufacturer and the Platform Name. Optionally, if you want to provide a
URL link to information about the platform, enter it in Platform Info URL.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 260 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

When you select a debug activity for the platform, the URL appears in the
Debug Configurations panel.

Figure 10-15: New platform information

8. Click Finish.
9. (Optional - Advanced platform detection or manual creation only) Complete your

configuration:

• Configure your debug hardware in Debug Adapter panel.

• Autodetect your platform. In Debug Adapter panel under Autodetect tab, click Autodetect
Platform.

Depending on your target, you might receive warnings and errors. When
Development Studio cannot obtain this information from the platform, it
does not make any assumptions about how the devices are connected. You
must provide this information in the PCE view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 261 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Always review the information that has been collected before deciding
what further action to take. If Development Studio fails to read information,
it might indicate a deeper problem. For more information, see Hardware
platform bring-up in Development Studio.

• Check, edit, and save your configuration. If required, edit the configuration then select File >
Save.

Results
The Platform Configuration Editor (PCE) view opens in the right-hand panel. You can view the
configuration database and platform in the Project Explorer.

Next steps
1. After successfully creating the platform configuration with DSTREAM-XT support, the next step

is to configure the debug or trace settings in the generated SDF file.

There are three ways to use DSTREAM-XT;

• PCIe debug-only (no trace)

• JTAG/SWD debug with PCIe trace

• PCIe debug with PCIe trace

The configuration items mentioned in DSTREAM-XT trace configuration are used by Arm
Development Studio to manage the PCIe link. Therefore, if you want to use any of the PCIe
link functionality for debug, you must modify both the DSTREAM-XT debug and DSTREAM-XT
trace configuration items. If you only want to use PCIe trace functionality, then you only need to
modify the DSTREAM-XT trace configuration items.

The use-cases and items to configure are as follows:

• PCIe debug-only (no trace): Configure all the items listed in DSTREAM-XT debug
configuration and DSTREAM-XT trace configuration

• JTAG/SWD debug with PCIe trace: Configure all the items listed in DSTREAM-XT trace
configuration

• PCIe debug with PCIe trace: Configure all the items listed in DSTREAM-XT debug
configuration and DSTREAM-XT trace configuration

2. When you have finished editing the configuration items in the SDF file, right-click the file and
select Build Platform.

3. The final item to edit, is the pcie_bringup.py script, to configure your link connection settings.

4. When you have finished editing these files, you can then Create debug configuration and
connect to the target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 262 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.3.2 DSTREAM-XT debug configuration

You can perform debug using PCIe with the DSTREAM-XT system.

Configure the DSTREAM-XT debug settings using the debug configuration settings available in the
Platform Configuration Editor (PCE).

In PCE, select the configuration file, and then click Debug Adapter > Probe Configuration > Probe
Type > DSTREAM-XT.

Figure 10-16: Probe Configuration tab

Table 10-2: PCIe debug configuration options

Configuration item name Description Value

PerformDebugVIAPCIe Perform debug using PCIe or using JTAG/
SWD.

If using PCIe to debug, select 1-True.
If using JTAG/SWD to debug, select 0-
False.

PCIeDebugBaseAddress The base address of the PCIe memory
access.

The base memory address. For example,
0x20000

PCIeDebugBaseAddressIs64Bit Select if the PCIe debug address is 32-bit or
64-bit

If 32-bit, select 0-False. If 64-bit, select
1-True.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 263 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Description Value
PCIeDebugBatchAccesses Select if the PCIe debug read and write

instructions to consecutive addresses
are batched together. This improves
performance. To use this feature, your target
must support read and write transactions
with length greater than one dword.

If the read and write must be batched,
select 1-True, else select 0-False.

10.3.3 DSTREAM-XT trace configuration

As part of configuring trace for your hardware, you can configure the trace over PCIe interface.

Configure the DSTREAM-XT trace settings using the Trace Configuration settings available in the
Platform Configuration Editor (PCE).

In PCE, select the configuration file, and then click Debug Adapter > Trace Configuration > Trace
Type > DSTREAM-XT

Figure 10-17: Trace Configuration tab

Table 10-3: PCIe trace configuration options

Configuration item name Description Value

PCIE_TARGET_DEVICE_TYPE The PCIe target device type. ENDPOINT/ROOT_PORT

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 264 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Description Value
PCIE_REFCLK PCIe reference clock frequency required by

the target.
PCIE_100_MHz/PCIE_125_MHz/PCIE_250_MHz

PCIE_LINK_WIDTH PCIe link width of the target. x1/x2/x4/x8

10.3.4 Create debug configuration and connect to the target

Before you begin
• Ensure that your target is available in the configuration database.

• Ensure that your target is connected correctly to the DSTREAM-XT unit.

• Ensure that your target is powered on. Refer to the documentation supplied with the target for
more information.

• Ensure that the debug hardware probe connecting your target to your workstation is powered
on and working.

About this task
This task describes the workflow for the JTAG/SWD debug with PCIe trace use-case.

After creating the platform configuration for your target, create a debug hardware connection and
connect to your hardware.

Procedure
1. From the Arm® Development Studio main menu, select File > New > Hardware Connection.
2. In the Hardware Connection dialog box, specify the details of the connection:

a) In Debug Connection give the debug connection a name, for example
my_dstream_xt_connection and click Next.

b) In Target Selection select your <Platform manufacturer> > <Platform name> and click
Finish. This completes the initial connection configuration and opens the Edit Configuration
dialog.

3. To specify the target and connection settings, in the Edit Configuration dialog box:
a) Select the Connection tab.
b) In the Select target panel, confirm the target that is selected.
c) In the Target Connection list, select DSTREAM Family.
d) In the Connections area, enter the Connection name or IP address of your debug hardware

adapter. If your connection is local, click Browse and select the connection using the
Connection Browser.

e) In DSTL Options, click Edit to display the Debug and Trace Services Layer (DTSL)
Configuration for DSTREAM-XT dialog.

f) In the Trace Capture tab, set the Trace capture method as DSTREAM-XT 16GB Trace
Buffer

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 265 of 589

https://developer.arm.com/documentation/102443/latest/Set-up-your-DSTREAM-XT-system/Connect-and-power-up-the-DSTREAM-XT-system
https://developer.arm.com/documentation/102443/latest/Set-up-your-DSTREAM-XT-system/Connect-and-power-up-the-DSTREAM-XT-system

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-18: Edit the DTSL settings

g) In the ETR tab, enable the Configure the system memory trace buffer to be used by the
CSTMC_2/ETR device checkbox, and then specify the Start address and Size in bytes.

h) Select any other trace settings you require.
i) Click OK to close the dialog box and return to the Edit Configuration dialog box.

4. Click the Files tab to specify your application and additional resources to download to the
target:
a) To load your application on the target at connection time, in the Target Configuration area,

specify your application in the Application on host to download field.
b) To debug your application at source level, select Load symbols.
c) To load additional resources, for example, additional symbols or peripheral description files

from a directory, add them in the Files area. Click + to add resources, click - to remove
resources.

5. Use the Debugger tab to configure debugger settings.
a) In the Run control area:

• Specify if you want to Connect only to the target or Debug from entry point. If you want
to start debugging from a specific symbol, select Debug from symbol.

• To run target or debugger initialization scripts, select the relevant options and specify the
script paths.

• To execute additional debugger commands after connecting, select Execute debugger
commands options. Specify the commands on separate lines in the text entry field.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 266 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

b) The debugger uses your workspace as the default working directory on the host. To change
the default location, deselect the Use default option under Host working directory and
specify the new location.

c) In the Paths area, specify any directories on the host that contain your application files in
the Source search directory field.

d) To use additional resources, click + to add resources. Click - to remove resources.
6. (Optional) Use the Arguments tab to enter arguments that are passed to the main() function

of the application when the debug session starts. The debugger uses semihosting to pass
arguments to main().

7. (Optional) Use the Environment tab to create and configure environment variables to pass into
the launch configuration when it is executed.

8. Click Apply and then Debug to connect to the target and start debugging session.

Results
The trace is now setup for the target. You can view the trace output in the Trace view.

Figure 10-19: Trace view output

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 267 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.4 Debug Hardware configuration
This section describes how to configure your debug hardware unit in Development Studio.

For information about the Debug Hardware Firmware Installer and Debug Hardware
Configure IP views, see Debug Hardware Firmware Installer view and Debug
Hardware Configure IP view.

10.4.1 Arm Debug and Trace Architecture

Modern Arm processors consist of several debug and trace components. Here, we describe what
some of the main components do and how they connect to each other.

Debug units, such as DSTREAM, use JTAG to connect directly to physical devices. To detect the
devices, the debug unit sends clock signals around the JTAG scan chain, which pass through all the
physical devices in sequence. The physical devices on the JTAG scan chain can include:

• Legacy Arm processors, such as Arm7™, Arm9™, and Arm11™ processors.

• Arm® CoreSight™ Debug Access Port (DAP).

• Custom devices that are not based on Arm.

Arm® Cortex® processors and CoreSight devices are not located directly on the JTAG scan chain.
Instead, Arm CoreSight Debug Access Ports provide access to CoreSight Memory Access Ports.
These Memory Access Ports provide access to additional JTAG devices or memory-mapped virtual
devices, such as Arm Cortex processors and CoreSight devices. Each virtual device provides
memory-mapped registers that a debugger can use to control and configure the device, or to read
information from it.

There are different types of CoreSight devices.

• Embedded Trace Macrocell (ETM) and Program Flow Trace Macrocell (PTM) are trace sources.
They attach directly to a Cortex processor and non-invasively generate information about the
operations performed by the processor. Each Cortex processor has a revision of ETM or PTM
that has specific functionality for that processor.

• Instrumentation Trace Macrocell (ITM) and System Trace Macrocell (STM) are trace sources.
They generate trace information about software and hardware events occurring across the
System-on-Chip.

• Embedded Trace Buffer (ETB), Trace Memory Controller (TMC), and Trace Port Interface Unit
(TPIU) are trace sinks. They receive trace information generated by the trace sources. Trace
sinks either store the trace information or route it to a physical trace port.

• Funnels and Replicators are trace links. They route trace information from trace sources to trace
sinks.

• Cross Trigger Interface (CTI) devices route events between other devices. The CTI network has a
variety of uses, including:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 268 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

◦ Halt processors when trace buffers become full.

◦ Route trace triggers.

◦ Ensure tight synchronization between processors. For example, when one processor in a
cluster halts, the other processors in the cluster halt with minimal latency.

A debugger needs the details of the physical JTAG scan chain, and the details of individual Cortex
processors and CoreSight devices, including:

• CoreSight AP index.

• ROM table base address.

• Device type.

• Revision.

• Implementation detail.

However, a debugger also needs to know how the devices are connected to each other. For
example, which processors are part of the same cluster, how the CTI network can pass event
information between devices, and the topology of the trace subsystem. Without this information,
a debugger might not be able to provide all of the control and configuration services that are
available. To provide this information to Development Studio, use the device hierarchy in the
Platform Configuration Editor (PCE). For more information, see Device hierarchy in the PCE view
and Device configuration panel. For instructions on configuring your debug hardware unit, see
Configure your debug hardware unit for Platform Autodetection.

Related information
Device hierarchy in the PCE view on page 190
Device configuration panel on page 214
Configure your debug hardware unit for Platform Autodetection on page 270
Overview: Arm CoreSight debug and trace components

10.4.2 Hardware configurations created by the PCE

The Development Studio Platform Configuration Editor (PCE) can create DTSL configurations from
system description files. You can create DTSL configurations manually in the PCE, or through the
wizard-based autodetection workflow.

After autodetecting your platform, check the system description within the PCE,
and add any missing information. For more information on platform configuration,
see Platform Configuration in Development Studio.

When you build a platform, three files are created as part of the debug configuration:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 269 of 589

https://developer.arm.com/documentation/101469/latest/Introduction-to-Arm-Debugger/Overview--Arm-CoreSight-debug-and-trace-components

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

system_description.sdf
The system description file has the same name as the platform described in its contents. For
example, a platform with the name Juno has an *.sdf file named Juno.sdf.

This file contains:

• Information about the devices present within the system.

• Details about the version and specific configuration of these devices.

• The topology information which describes their interconnections.

• Debug probe configuration settings.

• The information that is required to create and configure the DTSL configuration objects that are
used to debug the target.

Incomplete information within the *.sdf file might result in failing debug
connections or trace connections failing to produce valid trace. For example,
missing or incomplete information about ATB trace topology, CTI trigger
topology, or SMP connections not using CTI synchronization.

project_types.xml
Contains details about the debug activities that are available to Development Studio when
connecting to the target. For more information about this file, see About project_types.xml.

dtsl_config_script.py
This is the DTSL Jython script file. It is responsible for the instantiation of the configuration object
and all associated devices. The file is created using the information directly from the *.sdf file.

This Jython file enables you to add user-defined types, modify default trace and debug options, and
provide target-specific initialization, where required. For example, register writes to power up the
debug subsystem.

For more information about the structure of the DTSL Jython configuration file, see DTSL Jython
configuration file structure.

For more information about the DTSL configuration execution flow, see DTSL configuration
execution flow.

Related information
Platform Configuration in Development Studio on page 184
DTSL Jython configuration file structure on page 281
DTSL configuration execution flow on page 287

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 270 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.4.3 Configure your debug hardware unit for Platform Autodetection

To automatically detect the correct configuration for your platform, you must correctly configure
your debug hardware unit.

Before you begin
• You must know the target platform.

• You need the configuration information for your debug hardware unit, for example:

◦ Probe connection address (the connection address (TCP/USB) of the debug hardware unit).

◦ Clock speed (the JTAG clock speed of the target).

◦ The reset hold and delay times (hold: time in milliseconds the target is held in a hardware
reset state, delay: time in ms that the target waits after reset is released, before attempting
any other debugging operations).

◦ Drive strengths (to set the debug signals strengths from the debug hardware unit into the
target).

◦ Reset behavior during autodetection (controls whether a system reset can take place during
the autodetection process, for example, on some targets that have a board with a tap
controller a system reset may cause autodetection to fail).

◦ Cable pin configurations (some boards can have the CoreSight 20 connector pins laid out
differently, changing this option allows the debugger and target to communicate properly).

These configuration settings must be correct for your specific target platform.

For most cases, you can use the default settings.

• If you are using a third-party debug probe, add it using the instructions in Add a third-party
debug probe.

• You need an existing platform configuration to edit the debug hardware unit autodetection
configuration.

About this task
In the Autodetect tab of the Platform Configuration Editor (PCE), you can configure your debug
hardware unit and the settings that are used for autodetection. For example, to use JTAG or Serial
Wire Debug (SWD), and the clock speed.

Procedure
1. Navigate to the device hierarchy in the PCE. Double-click an existing *.sdf file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 271 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

For more information about the device hierarchy, see the Device hierarchy in
the PCE view topic.

2. Select Debug Adapter and click the Autodetect tab.

Figure 10-20: Autodetect settings

For more information about the Debug Adapter view, see the Debug Adapter
configuration in the PCE topic.

3. Set your probe Connection Address:
a) Choose a debug adapter type from the drop-down.
b) Provide a probe connection address, either:

• Manually enter a probe connection address.

• Click Browse and select a probe connection in the Connection Browser.
4. Expand Advanced Options and configure your debug hardware unit.

For more information about the advanced options, see the Debug Adapter configuration in the
PCE topic.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 272 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

• If you use a JTAG connection, you must set the JTAG type and clock
speed. Other important autodetection options are:

◦ The reset hold and delay times.

◦ Drive strengths.

◦ Reset behavior during autodetection.

◦ Cable pin configurations.

• If your target supports both JTAG and SWD, you must also enable Use
 SWJ Switching. Configure this setting, and other configuration options,
in the Probe Configurations tab.

• To configure the probe for an SWD connection, select the Probe
Configuration tab, change the ProbeMode item to SWD, and change the
SWJEnable item to True.

Figure 10-21: SWD connection

5. Check that the configuration information for your debug hardware unit is correct in each of the
Probe Configuration, Python Script, and Trace Configuration tabs.

Descriptions of the configuration options in the Debug Adapter view are
available in the Debug Adapter configuration in the PCE topic.

6. Click File > Save and save any configuration changes.

Next steps
Next, click Autodetect Platform. The debug hardware unit interrogates the scan chain at the
current clock speed. If the clock speed is too high, some devices on the scan chain might not be
detected. If you suspect that some devices on the scan chain are not being detected, decrease the
clock speed.

When platform autodetection has finished, review the detected configuration information and add
any missing topology links. Finally, rebuild the platform configuration.

For more information about creating and connecting to hardware platforms, see Hardware platform
bring-up in Development Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 273 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Related information
Add a third-party debug probe on page 274
Debug Adapter configuration in the PCE on page 290
Device hierarchy in the PCE view on page 190

10.4.4 Third-party Debug Probe API

Use the Debug Probe API package to add your debug probe to Arm® Debugger.

The Debug Probe API package is a working but non-optimized solution for you to modify as
required. It contains:

• A stubbed third-party probe solution that implements RDDI APIs, including the 'RDDI 3rd
Party' API. You can use this API as a starting point when integrating your probe with Arm
Development Studio.

• A reference CMSIS-DAP example is included, for demonstration purposes.

The API package is located in <installation_directory>/sw/debugger/DebugProbeAPI/.

Detailed instructions are available in the README_RDDI3rdParty.txt file, located in the
DebugProbeAPI directory.

After you have modified the package, you can then add your probe to Arm Debugger.

Related information
Add a third-party debug probe on page 274

10.4.5 Add a third-party debug probe

Create a probe configuration database entry, and then use the Platform Configuration Editor (PCE)
to add your third-party debug probe to Arm® Development Studio.

Before you begin
You need one of the following, provided by the probe vendor:

• Implementation files:

◦ A probe definition file. This file is an XML file that defines your probe name and the RDDI
library file. It might also contain config_items and capabilities.

◦ An RDDI library file. The probe vendor might provide both a Windows and a Linux variant of
the file:

▪ Windows: rddi_example_2.dll.

▪ Linux: librddi_example.so.2.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 274 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

To create your own third-party probe implementation files, see Third-party
Debug Probe API.

• A configuration database that contains these implementation files.

Procedure
1. Set up your configuration database using the files provided by the probe vendor. The method

for doing this varies, depending on your scenario.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 275 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Table 10-4: Methods for setting up your configuration database

You have the implementation files, but no configuration
database:

You have an existing configuration database:

a. (Optional) Create a configuration database:

Note:
This step is optional. If you want to edit an existing
configuration database to add a third-party debug
probe, you can jump to the next step.

1. In the Project Explorer view, right-click and select
New > Configuration Database.

2. Enter a name for your database, and click FINISH.

Result: A configuration database directory is added to
your workspace. It contains an empty directory called
Boards.

b. To store third-party probes, edit the configuration
database:

1. Navigate to your Development Studio workspace in
your file system. Locate and open the configuration
database to edit.

2. Create a Probes directory at the same level as the
Boards directory.

3. Open the Probes directory and add the probe
definition and the library files.

4. Rebuild your database. Open Development Studio
and select Window > Preferences > Arm DS >
Configuration Database, and click Rebuild database.

Warning:
This rebuilds all of your databases.

Figure 10-22: How to manually rebuild your
database

Import the database:

a. Right-click in the Project Explorer, and select Import...
> General > Existing Projects into Workspace, and click
Next.

b. Browse to the file and click OK to select.

c. Select the Copy projects into workspace checkbox, and
click Finish.

d. If your workspace is not configured to automatically build
projects, you must add the new database in your settings:

1. Select Window -> Preferences to open the
Preferences dialog box. Select Arm DS ->
Configuration Database.

2. Add your newly imported database to User
Configuration Databases and click Rebuild database.

Result: The database is imported into your workspace and
gets automatically rebuilt.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 276 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

• Rebuild your database every time you change the probe definition file.

• To get the probe to appear in the PCE, close and re-open any open *.sdf
files.

2. Detect the platform using the probe:

If you need to make any changes to the probe configuration values before
autodetecting your target, use manual platform configuration to connect to
your target. For more information on manual platform configuration, see Manual
platform configuration. Follow the manual configuration instructions and make
any probe configuration changes before you add or edit the existing topology
for your platform.

a) In the device hierarchy list, select Debug Adapter and then select the Autodetect tab.
b) Add the connection address for your probe. In the Connection Address field, select your

debug adapter type, and click Browse to display the Connection Browser dialog box. Select
your debug adapter.

c) To configure the settings for the selected probe, click Autodetect Platform.
Figure 10-23: Autodetect your platform using the PCE

If your platform is detected correctly, an Autodetection Complete message is displayed in
the Console view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 277 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

3. Open the activity settings for your platform:
a) In the device hierarchy panel, select the Debug Activities directory or select any of the

child nodes in the Debug Activities directory.
The Activity Settings panel opens.

Figure 10-24: Specify debug activities

b) Check that your new probe is selected. If not, select it, and it saves automatically.
4. Rebuild your platform. The PCE enables your probe in the platform configuration.

Related information
Third-party Debug Probe API on page 274
Configure your debug hardware unit for Platform Autodetection on page 270
Debug Adapter configuration in the PCE on page 290

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 278 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.4.6 Add a debug connection over functional I/O

Describes how to add a virtual debug connection that utilizes existing functional interfaces, such as
USB, ethernet, and PCIe.

Before you begin
• Make sure that you have all of the software components that are listed in Debug and trace over

functional I/O, and that they are loaded as follows:

◦ The debug agent must be running on your target.

◦ The functional interface drivers must be installed on your machine.

◦ You need a directory that is called Probes, that contains your probe definition file
(probes.xml), the library files that implement the debug API and CSWP protocol, and other
configuration files if needed. All of these files are provided by your SoC vendor.

Procedure
1. In Arm® Development Studio IDE, create a new Configuration Database connection:

a) File > New > Other > Configuration Database > Configuration Database.
b) Enter a name, and click Finish.

Result: The new database is listed in the Project Explorer.
2. Copy the configuration and library files into your new database:

a) Open the parent directory of the Probes directory.
b) Drag and drop the Probes directory into your new Configuration Database.

3. Rebuild your database:
a) Open the Configuration Database Preferences dialog box: Window > Preferences > Arm

DS > Configuration Database.
b) Select your new database, and click Rebuild database.
c) When it has finished rebuilding, click Apply and then OK to close the dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 279 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

4. Create a new platform configuration:
a) Open the Platform Configuration dialog box: File > New > Other > Configuration

Database > Platform Configuration.
b) In the Create Platform Configuration dialog box, select Automatic/simple platform

detection. Click Next.
c) In the Debug Adapter Connection dialog box, select your virtual probe from the

Connection Type drop-down, and click Next.
d) Providing there are no connection issues, in the Summary dialog box select Save a Debug

and Trace Platform Configuration and leave the Debug target after saving configuration
box unchecked. Click Next.

e) In the Platform Information dialog box, enter a descriptive Platform Manufacturer and
Platform Name, and then click Finish,

Result: The Platform Configuration Editor opens.
5. Configure your new platform. This is specific to your implementation. For further information,

see the documentation for your platform and debug architecture.
When you have finished, click Autodetect Platform.

Results
On completion, your new platform is listed as an available platform, when you create a new debug
configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 280 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Next steps
Now you can connect to your new virtual probe when you create a new debug configuration.

RDDI MEM-AP virtual probes are not available for CMSIS connections. Only RDDI-DAP
virtual probes are available for CMSIS connections.

When you create a new debug configuration that uses your new probe, there might be a few
differences, including:

• The Connection Address field might be disabled if it is not requirement by the implementation.
You can enable this in the probes.xml file, or using the Arm Development Studio IDE.

• You might need to explicitly tell your target to connect to your virtual probe. You can do this
using the Platform Configuration Editor.

• If you have configurable connection settings for your virtual probe, you can edit them using the
Probe Configuration button:

Related information
Debug and trace over functional I/O on page 44
Add a third-party debug probe on page 274
Probe Configuration dialog box on page 449

10.4.7 DTSL Jython configuration file structure

The DTSL configuration script (dtsl_config_script.py file) is executed when a connection to the
target is made, and is responsible for the instantiation and configuration of DTSL objects. These

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 281 of 589

https://developer.arm.com/documentation/101469/latest/Tutorials/Tutorial--Hello-World/Configure-your-debug-session

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

objects, along with the configuration object itself, are used by a debugger to control the debug and
trace of the target.

The Jython configuration object can be split into three distinct areas of functionality:

1. DTSL options provision

Options are provided through a static getOptionsList() function. Details of available option
types and their use can be found in DTSL options. For some smaller targets, no options are
appropriate, and this function returns an empty list. However, user-defined options might still be
added.

2. Device and trace capture initialization

All device and trace source instantiation is performed in the discoverDevices() function, and all
trace capture devices within the createTraceCapture() function.

3. Option call-back response

The optionValuesChanged() function is provided to allow the configuration to respond to
changes to DTSL options. See DTSL options for details.

Example of a configuration script
This example uses a trace-enabled big.LITTLE™ configuration. The target consists of two Cortex®-
A57 cores, and two Cortex-A53 cores.

from com.arm.debug.dtsl.configurations import ConfigurationBaseSDF
from com.arm.debug.dtsl.configurations import DTSLv1
from com.arm.debug.dtsl.components import FormatterMode
from com.arm.debug.dtsl.components import AXIAP
from com.arm.debug.dtsl.components import AHBAP
from com.arm.debug.dtsl.configurations import TimestampInfo
from com.arm.debug.dtsl.components import Device
from com.arm.debug.dtsl.configurations.options import IIntegerOption
from com.arm.debug.dtsl.components import CSTMC
from com.arm.debug.dtsl.components import TMCETBTraceCapture
from com.arm.debug.dtsl.components import DSTREAMSTStoredTraceCapture
from com.arm.debug.dtsl.components import DSTREAMTraceCapture
from com.arm.debug.dtsl.components import CSCTI
from com.arm.debug.dtsl.components import ETMv4TraceSource
from com.arm.debug.dtsl.components import CSTPIU
The lists below are used within discover devices to initialize core and SMP
 devices
clusterNames = ["Cortex-A53_SMP_0", "Cortex-A57_SMP_0"]
clusterCores = [["Cortex-A53_0", "Cortex-A53_1"], ["Cortex-A57_0", "Cortex-A57_1"]]
coreNames_cortexA57 = ["Cortex-A57_0", "Cortex-A57_1"]
coreNames_cortexA53 = ["Cortex-A53_0", "Cortex-A53_1"]
blCores = [["Cortex-A57_0", "Cortex-A57_1"], ["Cortex-A53_0", "Cortex-A53_1"]]
TRACE_RANGE_DESCRIPTION = '''Limit trace capture to the specified range. This is
 useful for restricting trace capture to an OS (e.g. Linux kernel)'''
Import core specific functions
import a57_rams
import a53_rams
class DtslScript(ConfigurationBaseSDF):
 @staticmethod
 def getOptionList():
 return [
 DTSLv1.tabSet("options", "Options", childOptions=
 [DTSLv1.tabPage("trace", "Trace Capture", childOptions=[
 DTSLv1.enumOption('traceCapture', 'Trace capture method',
 defaultValue="none",

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 282 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

 values = [("none", "None"), ("CSTMC", "On Chip Trace Buffer
 (CSTMC/ETF)"), ("DSTREAM", "DSTREAM 4GB TraceBuffer")],
 setter=DtslScript.setTraceCaptureMethod),
 DTSLv1.infoElement("traceOpts", "Trace Options", childOptions=[
 DTSLv1.integerOption('timestampFrequency', 'Timestamp
 frequency', defaultValue=25000000, isDynamic=False, description="This value will be
 used to set the Counter Base Frequency ID Register of the Timestamp generator.\nIt
 represents the number of ticks per second and is used to translate the timestamp
 value reported into anumber of seconds.\nNote that changing this value may not
 result in a change in the observed frequency."),
]),
 DTSLv1.infoElement("offChip", "Off-Chip Trace", childOptions=[
 DTSLv1.enumOption('tpiuPortWidth', 'TPIU Port Width',
 defaultValue="16",
 values = [("1", "1 bit"), ("2", "2 bit"), ("3", "3
 bit"), ("4", "4 bit"), ("5", "5 bit"), ("6", "6 bit"), ("7", "7 bit"), ("8", "8
 bit"), ("9", "9 bit"), ("10", "10 bit"), ("11", "11 bit"), ("12", "12 bit"),("13",
 "13 bit"), ("14", "14 bit"), ("15", "15 bit"), ("16", "16 bit")], isDynamic=False),
]),
])]
 +[DTSLv1.tabPage("Cortex-A53_SMP_0", "Cortex-A53", childOptions=[
 DTSLv1.booleanOption('coreTrace', 'Enable Cortex-A53 core
 trace', defaultValue=False,
 childOptions =
 # Allow each source to be enabled/disabled individually
 [DTSLv1.booleanOption('Cortex-A53_SMP_0_%d' % core,
 "Enable " + clusterCores[0][core] + " trace",defaultValue=True)
 for core in range(len(clusterCores[0]))] +
 [DTSLv1.booleanOption('timestamp', "Enable ETM
 Timestamps", description="Controls the output oftimestamps into the ETM output
 streams", defaultValue=True)] +
 [DTSLv1.booleanOption('contextIDs', "Enable ETM
 Context IDs", description="Controls the output ofcontext ID values into the ETM
 output streams", defaultValue=True)
] +

 [ETMv4TraceSource.cycleAccurateOption(DtslScript.getSourcesForCluster("Cortex-
A53_SMP_0"))] +
 [# Trace range selection (e.g. for linux kernel)
 DTSLv1.booleanOption('traceRange', 'Trace capture
 range',
 description=TRACE_RANGE_DESCRIPTION,
 defaultValue = False,
 childOptions = [
 DTSLv1.integerOption('start', 'Start address',
 description='Start address for trace
 capture',
 defaultValue=0,
 display=IIntegerOption.DisplayFormat.HEX),
 DTSLv1.integerOption('end', 'End address',
 description='End address for trace capture',
 defaultValue=0xFFFFFFFF,
 display=IIntegerOption.DisplayFormat.HEX)
])
]
),
])]
 +[DTSLv1.tabPage("Cortex-A57_SMP_0", "Cortex-A57", childOptions=[
 DTSLv1.booleanOption('coreTrace', 'Enable Cortex-A57 core
 trace', defaultValue=False,
 childOptions =
 # Allow each source to be enabled/disabled individually
 [DTSLv1.booleanOption('Cortex-A57_SMP_0_%d' % core,
 "Enable " + clusterCores[1][core] + " trace",defaultValue=True)
 for core in range(len(clusterCores[1]))] +
 [DTSLv1.booleanOption('timestamp', "Enable ETM
 Timestamps", description="Controls the output oftimestamps into the ETM output
 streams", defaultValue=True)] +
 [DTSLv1.booleanOption('contextIDs', "Enable ETM
 Context IDs", description="Controls the output ofcontext ID values into the ETM
 output streams", defaultValue=True)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 283 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

] +

 [ETMv4TraceSource.cycleAccurateOption(DtslScript.getSourcesForCluster("Cortex-
A57_SMP_0"))] +
 [# Trace range selection (e.g. for linux kernel)
 DTSLv1.booleanOption('traceRange', 'Trace capture
 range',
 description=TRACE_RANGE_DESCRIPTION,
 defaultValue = False,
 childOptions = [
 DTSLv1.integerOption('start', 'Start address',
 description='Start address for trace
 capture',
 defaultValue=0,
 display=IIntegerOption.DisplayFormat.HEX),
 DTSLv1.integerOption('end', 'End address',
 description='End address for trace capture',
 defaultValue=0xFFFFFFFF,
 display=IIntegerOption.DisplayFormat.HEX)
])
]
),
])]
)
]
 def __init__(self, root):
 ConfigurationBaseSDF.__init__(self, root)
 self.discoverDevices()
 self.createTraceCapture()
 # +----------------------------+
 # | Target dependent functions |
 # +----------------------------+
 def discoverDevices(self):
 '''Find and create devices'''
 #MemAp devices
 AXIAP(self, self.findDevice("CSMEMAP_0"), "CSMEMAP_0")
 AHBAP(self, self.findDevice("CSMEMAP_1"), "CSMEMAP_1")
 # The ATB stream ID which will be assigned to trace sources.
 streamID = 1
 self.cortexA57cores = []
 for coreName in (coreNames_cortexA57):
 # Create core
 coreDevice = a57_rams.A57CoreDevice(self, self.findDevice(coreName),
 coreName)
 self.cortexA57cores.append(coreDevice)
 self.addDeviceInterface(coreDevice)
 a57_rams.registerInternalRAMs(coreDevice)
 # Create CTI (if a CTI exists for this core)
 ctiName = self.getCTINameForCore(coreName)
 if not ctiName is None:
 coreCTI = CSCTI(self, self.findDevice(ctiName), ctiName)
 # Create Trace Macrocell (if a macrocell exists for this core -
 disabled by default - will enable with option)
 tmName = self.getTraceSourceNameForCore(coreName)
 if not tmName == None:
 tm = ETMv4TraceSource(self, self.findDevice(tmName), streamID,
 tmName)
 streamID += 2
 tm.setEnabled(False)
 self.cortexA53cores = []
 for coreName in (coreNames_cortexA53):
 # Create core
 coreDevice = a53_rams.A53CoreDevice(self, self.findDevice(coreName),
 coreName)
 self.cortexA53cores.append(coreDevice)
 self.addDeviceInterface(coreDevice)
 a53_rams.registerInternalRAMs(coreDevice)
 # Create CTI (if a CTI exists for this core)
 ctiName = self.getCTINameForCore(coreName)
 if not ctiName is None:
 coreCTI = CSCTI(self, self.findDevice(ctiName), ctiName)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 284 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

 # Create Trace Macrocell (if a macrocell exists for this core -
 disabled by default - will enable with option)
 tmName = self.getTraceSourceNameForCore(coreName)
 if not tmName == None:
 tm = ETMv4TraceSource(self, self.findDevice(tmName), streamID,
 tmName)
 streamID += 2
 tm.setEnabled(False)
 tmc = CSTMC(self, self.findDevice("CSTMC"), "CSTMC")
 tmc.setMode(CSTMC.Mode.ETF)
 tpiu = CSTPIU(self, self.findDevice("CSTPIU"), "CSTPIU")
 tpiu.setEnabled(False)
 tpiu.setFormatterMode(FormatterMode.CONTINUOUS)
 # Create and Configure Funnels
 self.createFunnel("CSTFunnel")
 self.setupCTISyncSMP()
 self.setupCTISyncBigLittle(blCores)
 def createTraceCapture(self):
 # ETF Devices
 etfTrace = TMCETBTraceCapture(self, self.getDeviceInterface("CSTMC"),
 "CSTMC")
 self.addTraceCaptureInterface(etfTrace)
 # DSTREAM
 self.createDSTREAM()
 self.addTraceCaptureInterface(self.DSTREAM)
 def createDSTREAM(self):
 self.DSTREAM = DSTREAMTraceCapture(self, "DSTREAM")
 # +--------------------------------+
 # | Callback functions for options |
 # +--------------------------------+
 def optionValuesChanged(self):
 '''Callback to update the configuration state after options are changed'''
 if not self.isConnected():
 self.setInitialOptions()
 self.updateDynamicOptions()
 def setInitialOptions(self):
 '''Set the initial options'''
 traceMode = self.getOptionValue("options.trace.traceCapture")
 coreTraceEnabled = self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace")
 for core in range(len(clusterCores[0])):
 thisCoreTraceEnabled = self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.Cortex-A53_SMP_0_%d" % core)
 tmName = self.getTraceSourceNameForCore(clusterCores[0][core])
 coreTM=self.getDeviceInterface(tmName)
 enableSource = coreTraceEnabled and thisCoreTraceEnabled
 self.setTraceSourceEnabled(tmName, enableSource)
 if(self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.traceRange")):
 coreTM.clearAllTraceRanges()
 coreTM.addTraceRange(self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.traceRange.start"),
 self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.traceRange.end"))
 coreTM.setTimestampingEnabled(self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.timestamp"))
 self.setContextIDEnabled(coreTM,
 self.getOptionValue("options.Cortex-
A53_SMP_0.coreTrace.contextIDs"),
 "32")
 coreTraceEnabled = self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace")
 for core in range(len(clusterCores[1])):
 thisCoreTraceEnabled = self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.Cortex-A57_SMP_0_%d" % core)
 tmName = self.getTraceSourceNameForCore(clusterCores[1][core])
 coreTM=self.getDeviceInterface(tmName)
 enableSource = coreTraceEnabled and thisCoreTraceEnabled
 self.setTraceSourceEnabled(tmName, enableSource)
 if(self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.traceRange")):

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 285 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

 coreTM.clearAllTraceRanges()
 coreTM.addTraceRange(self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.traceRange.start"),
 self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.traceRange.end"))
 coreTM.setTimestampingEnabled(self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.timestamp"))
 self.setContextIDEnabled(coreTM,
 self.getOptionValue("options.Cortex-
A57_SMP_0.coreTrace.contextIDs"),
 "32")
 if self.getOptions().getOption("options.trace.offChip.tpiuPortWidth"):

 self.setPortWidth(int(self.getOptionValue("options.trace.offChip.tpiuPortWidth")))
 if self.getOptions().getOption("options.trace.offChip.traceBufferSize"):

 self.setTraceBufferSize(self.getOptionValue("options.trace.offChip.traceBufferSize"))
 self.configureTraceCapture(traceMode)
 def updateDynamicOptions(self):
 '''Update the dynamic options'''
 for core in range(len(self.cortexA57cores)):
 a57_rams.applyCacheDebug(configuration = self,
 optionName = "options.rams.cacheDebug",
 device = self.cortexA57cores[core])
 a57_rams.applyCachePreservation(configuration = self,
 optionName =
 "options.rams.cachePreserve",
 device = self.cortexA57cores[core])
 for core in range(len(self.cortexA53cores)):
 a53_rams.applyCacheDebug(configuration = self,
 optionName = "options.rams.cacheDebug",
 device = self.cortexA53cores[core])
 a53_rams.applyCachePreservation(configuration = self,
 optionName =
 "options.rams.cachePreserve",
 device = self.cortexA53cores[core])
 def setTraceCaptureMethod(self, method):
 '''Simply call into the configuration to enable the trace capture device.
 CTI devices associated with the capture will also be configured'''
 self.enableTraceCapture(method)
 #Configurations may also contain static functions such as as this, which
 #allow the return of device instances via parameter-binding
 @staticmethod
 def getSourcesForCluster(cluster):
 '''Get the Trace Sources for a given coreType
 Use parameter-binding to ensure that the correct Sources
 are returned for the core type and cluster passed only'''
 def getClusterSources(self):
 return self.getTraceSourcesForCluster(cluster)
 return getClusterSources
 # +------------------------------+
 # | Target independent functions |
 # +------------------------------
 def postConnect(self):
 ConfigurationBaseSDF.postConnect(self)
 try:
 freq =
 self.getOptionValue("options.trace.traceOpts.timestampFrequency")
 except:
 return
 # Update the value so the trace decoder can access it
 tsInfo = TimestampInfo(freq)
 self.setTimestampInfo(tsInfo)
..

Related information
DTSL configuration execution flow on page 287
Hardware configurations created by the PCE on page 269

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 286 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.4.8 DTSL configuration execution flow

The DTSL script allows you to customize device behavior and configuration, and enables you to use
specialized implementations of DTSL devices and trace capture objects.

The execution flow of the script is:

Static option provision
The static function getOptionsList() is available so that a client can acquire a list of options
without instantiating the configuration. Details of how Arm® Debugger uses this function can be
found in DTSL options.

Script Construction
The constructor of a default (for example, PCE built) script calls two functions - discoverDevices()
and createTraceCapture().

The discoverDevices() function is responsible for the creation of all DTSL objects which
implement the IDevice interface. Configuration of the DTSL devices which are created by
default, is performed here. You can also initialize and configure any devices here. At this point, the
configuration is not connected, so it is important not to try to access the physical device. Most of
all objects that are created are not assigned to a field, but an IDeviceConnection interface for any
device can always be retrieved from the configuration using the getDeviceInterface(deviceName)
function. The getDeviceInterface(deviceName) function is provided by the ConfigurationBase
DTSL class, from which all DTSL configurations are derived. For example, self.funnel =
 getDeviceInterface("CSTFunnel_1").

To configure SMP, big.LITTLE™, and DynamIQ™ DTSL devices for synchronized execution debug,
the discoverDevices() function also, where appropriate for the target, makes internal calls to the
ConfigurationBaseSDF class.

Next, the constructor calls createTraceCapture(). Within this function, all trace capture
devices are created and added to the configuration. The capture devices are added to the
configuration using the function addTraceCaptureInterface(). The addTraceCaptureInterface()
function also configures the trace/formatter mode of the capture device, and disables it. If you
instantiate more devices here, they must implement the ITraceCapture interface and any specific
configuration which does not require a target connection. A target connection is a connection
that is not yet made at the point of initialization of the configuration object. Trace capture
devices are not assigned to a field, but can be acquired at any point after initialization using
getTraceCaptureDevices()[devicename]. For example, self.ETF =getTraceCaptureDevices()
["CSTMC_1"].

After the configuration is constructed, all DTSL objects should be created and configured so far as
they are ready to start interacting with the target.

Commit of option values
Immediately after construction, optionValuesChanged() is called to give the configuration an
opportunity to configure the DTSL devices. The DTSL devices are configured according to the
selected option values. Further information about how Arm Development Studio stores and uses
the option values can be found in DTSL options.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 287 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Connection and trace start
Now that the configuration and all devices are initialized correctly, connection to the target occurs.
If configured, trace starts for all enabled source and sink devices. The configuration, and also the
DTSL devices, provide overridable hooks. The overridable hooks are called at key events during
connection or tracing. For more information, see the following sections.

Adding connection-event functionality hooks
Overridable hooks are provided to perform any additional actions at key events during the
connection phase. These hooks can be added to the DTSL file and default behavior augmented, or
overridden completely, by omitting a call to the parent class. The following hooks are available:

postRDDIConnect()
Called immediately after an RDDI interface has been opened, but no connection to the debug
server has been made. This method can be overridden to perform low-level initialization of the
target. For example, a JTAG interface can be acquired and scans performed to unlock a TAP
Controller.

postDebugConnect()
Called immediately after a connection is made to the debug server. No target interaction has
occurred, but devices can be instantiated and connected here to perform any target initialization
which, if omitted, would cause the DTSL connection to fail. For example, writing through a DAP to
power debug components.

postConnect()
Called after the RDDI debug interface is opened, and all devices to which the configuration can
connect, are connected. Any connected devices can be used directly in this function.

preDisconnect()
Called immediately before the connection is closed. This is an opportunity to perform any target-
specific clean up after every debug session.

All the hooks above are also available on the individual DTSL device objects, which are called
as part of the configuration event-hooks, as described above. For further information and some
example uses of these hooks, see Performing custom actions on connect.

Adding trace-event functionality hooks
In addition to the connection hooks, the configuration also provides hooks for events related to
trace. The hooks apply both to the configuration as a whole (for example, called on configuration
once per event), and also to individual trace objects (for example, called once per event on all
ITraceDevice based objects).

preTraceStart()
No trace data is captured. The component or configuration performs any actions necessary before
capture is started.

traceStart()
Trace capture has started. The component or configuration performs actions to start trace data
production.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 288 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

postTraceStart()
The trace capture system is now capturing trace from all components that are configured to
produce it.

preTraceStop()
Called before trace stop.

traceStop()
Called at the point of stopping trace. Trace does not stop until the ancestor method is called.

postTraceStop()
Called after trace stop. No components are now producing trace.

Overriding script behavior
Modifying the synchronized execution method
Where configurations support synchronized debug of SMP/AMP cores, the discoverDevices()
function makes internal calls to setupCTISyncSMP(). If appropriate, it also makes internal calls
to setupCTISyncBigLittle(). This is known as hardware synchronization, and is described in
Hardware synchronization.

If you see any problems while debugging using these devices (for example, cores fail to restart), it is
possible to use a synchronization method which does not use the CTI devices. This might resolve
debug issues where CTI halt or restart is not working as expected. To use this method, you should
change the SMP setup calls to setupSimpleSyncSMP() and setupSimpleSyncBigLittle(). This is
'tight' synchronization, as described in Tight synchronization.

Changing the cores for big.LITTLE SMP debug
For targets which support big.LITTLE core configurations, the cores debugged by the big.LITTLE
device are identified at the top of the configuration file. For example:

blCores = [["Cortex-A57_0", "Cortex-A57_1"],["Cortex-A53_0"], ["Cortex-A53_1"]]

You might be required to modify cores that are considered for big.LITTLE SMP devices because
the Platform Configuration Editor groups all 'big' and 'LITTLE' cores into a single big.LITTLE SMP
device. You can add or remove cores from this list. Only cores of the same type can be added to
any single list, and all cores must support big.LITTLE configurations.

Overriding CTM channels
The CTM channels for synchronized execution and trace triggering are configured by default as:

Table 10-5: CTM channels default configuration for synchronized execution and trace triggering

Sync Stop Sync Start Trace Trigger

v8 systems 0 1 2

v7 systems 2 1 3

Function to override getCtmChannelStop() getCtmChannelStart() GetCtmChannelTrigger()

To modify the channel used for any of the triggers, you can add the appropriate function to the
script, and have it return the required channel number.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 289 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

For example:

def getCtmChannelStop(self):
 return 1

Subclassing existing DTSL classes and including user-defined classes
You can provide specialized implementations of trace devices which are instantiated in the
discoverDevices() or createTraceCapture() functions. For information related to the DTSL class
hierarchies and requirements for interface implementation of derived or specialized types, see Main
DTSL classes and hierarchy.

Related information
DTSL Jython configuration file structure on page 281
Hardware configurations created by the PCE on page 269

10.4.9 Debug Adapter configuration in the PCE

View configuration information for your debug adapter in the Platform Configuration Editor.

To see the configuration settings for your debug adapter, in the Platform Configuration Editor
view, under the device hierarchy, select Debug Adapter.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 290 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-25: Device Adapter tabs

Access
• In the Project Explorer, right-click on a .sdf file, and select Open With > Platform

Configuration Editor.
• Double-click a .sdf file (where the SDF association has not been overridden).

• In the Project Explorer, right-click, and select File > New > Platform Configuration. After
autodetection or manual configuration of a platform, the PCE view opens.

• Select File > New > Other... > Configuration Database > Platform Configuration. After
autodetection or manual configuration of a platform, the PCE view opens.

• Enter the PCE and access debug adapter settings at the final stages of creating a new
Hardware Connection. Select File > New > Hardware Connection. At the target selection step,
click Add a new platform… and follow the steps in the wizard.

• At the end of the target selection flow for a CMSIS device; click Target Configuration.

Contents
The Debug Adapter configuration tabs contain:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 291 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Table 10-6: Debug Adapter tabs contents

Tab Description

Autodetect Sets the autodetection configuration, using:

• Probe Connection - Add or browse for a connection address,
and choose whether to pass the connection address into the
SDF file.

• Debug System - Configure the clock speed and choose to use
adaptive clock if detected.

• Autodetect settings - Choose to allow system reset, enumerate
APs, read CoreSight™ ROM Tables, and more advanced options.

• Autodetect Platform - Run to autodetect the platform.

Probe Configuration View descriptions and set values for each probe configuration item.
For example, use the UserOut_nn configuration item to set User I/
O pin values for your debug adapter (where nn is the UserOut item
number as displayed). Locate and select the UserOut_nn item and
select either 0 - Low or 1 - High.

Python Script Adds a Python script to hook debug events and provide custom
behavior. This script is added to the configuration file as a
configuration item.

Trace Configuration Selects parallel or HSSTP trace type, view a description for each
trace type item, and configure the value set for each item.

Related information
Platform Configuration Editor (PCE) on page 186
Device hierarchy in the PCE view on page 190
Add core cluster components dialog box on page 216

10.4.10 Debug adapter advanced configuration options

Depending on the debug probe connected to your development platform, Arm® Development
Studio provides options to set values for each probe configuration item.

You can set the values in the Platform Configuration Editor (PCE) under Debug Adapter in the
Probe Configuration tab.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 292 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-26: Debug adapter advanced configuration example

The options available depend on the selected debug Probe Type.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 293 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Table 10-7: Debug adapter advanced configuration options

Configuration item name Supported probes Description and supported values

AllowICELatchSysRst DSTREAM family only Allow the debug probe to latch System
Reset.

True - This is the default. Your debug
hardware unit performs a nTRST reset
holding nSRST. When True, the debug
hardware unit can extend the time the
target controller holds the target in reset.
It uses the ResetHoldTime configuration
item to set the time that reset is held.
The debug hardware unit can then apply
breakpoint settings before the processor
starts execution. This option is useful for
debugging a target from reset. It allows
the unit to stop the processor on the first
instruction fetch after reset is released
by the unit. Setting the option True also
ensures that the Test Access Port (TAP)
state machine and associated debug logic is
properly reset.

False - When False, the breakpoint
settings only take effect after the processor
has already started execution, preventing
debugging of the handler.

UseDeprecatedSWJ DSTREAM family only Specify that your debug hardware unit
must use the deprecated SWJ switching
sequence. Use this item for older SWD-
compatible targets which use the SWJ
switching sequence.

nSRSTHighMode DSTREAM family only Set the drive strength to use when the reset
signal is in the high or inactive state.

You can set the strength to be one of the
following values: strong, weak high, or
not driven (tristate).

nSRSTLowMode DSTREAM family only Set the drive strength to use when the reset
signal is in the low or active state.

You can set the strength to be one of the
following values: strong, weak low, or
not driven (tristate).

nTRSTHighMode DSTREAM family only Reset mode used for the nTRST signal in
the high state.

nTRSTLowMode DSTREAM family only Set the drive strength to use when the reset
signal is in the low, or active state.

You can set the strength to be one of the
following values: strong, weak low, or
not driven (tristate).

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 294 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Supported probes Description and supported values
SWOMode DSTREAM family only Protocol used to carry SWO data. Depending

on the target mode, set to Manchester or
UART.

If the SWO Mode is set to UART, the debug
hardware unit can detect the SWO UART
Baud rate. This setting has no effect in
Manchester mode.

SWOBaudRate DSTREAM family only SWO UART Baud rate.

Specify the frequency of the incoming data.
If you set this to 0, the system attempts to
autodetect the baud rate.

UART mode in the SWO context also means
Non Return to Zero (NRZ) mode.

UserOut_nn DSTREAM family only Sets the state of the USER IO pins on the
DSTREAM family of debug probes.

Specify the User I/O pin values for your
debug adapter (where nn is the UserOut
item number as displayed). Locate and select
the UserOut_nn item and select either 0 -
 Low or 1 - High.

UserOut_P6_COAX DSTREAM family only User-defined hardware output pin 6 on
header, and output co-axial connector.

UserOut_DBGRQ DSTREAM family only User-defined hardware output to DBGRQ on
JTAG connector.

PowerFilterTime DSTREAM family only The power status filter.

Limit sending power status notification
messages.

DSTREAMCS20 DSTREAM family only DSTREAM CoreSight™ 20 Pin Configuration

JTAGAutoMaxFreq DSTREAM family only Set maximum frequency (Hz) used by the
JTAG auto tune process in DSTREAM-ST.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 295 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Supported probes Description and supported values
AllowTRST All probes Allow the debug probe to perform a

TAP Reset. A TAP reset performs a JTAG
state machine reset and resets any TAP
Controllers that are receiving commands
from the debug hardware unit.

True - This is the default. Your debug
hardware unit holds the nTRST line active
long enough to perform any post-reset
setup that might be required after a target-
initiated reset. Use the TRSTHoldTime
config item to extend the time the target is
held in reset.

False- Your debug hardware unit does not
assert the reset line. Note that post-reset
setup might not be complete before the
target starts to run.

To use JTAG state transitions to reset just
the state machine, set this item to False,
and use the DoSoftTRST item instead.

DoSoftTRST All probes Allow debug probe to perform a TAP reset
through JTAG state transitions.

Perform a JTAG sequence using the Test-
Logic-Reset to force a reset. This is done
in addition to asserting the nTRST line if
the AllowTRST configuration item is set to
True.

Note:
This option replaces DoSoftTAPReset.

ProbeMode All probes The debug interface mode.

You can set the interface that connects to
the target DAP to be either JTAG or SWD. If
set to SWD, your debug probe connects to
your target using the SWD protocol instead
of JTAG.

SWJEnable All probes Use SWJ to switch the target between SWD
and JTAG.

If a target supports both JTAG and SWD,
you must enable this setting before you
autoconfigure the target.

ResetHoldTime All probes nSRST hold time in milliseconds.

Specify the time in milliseconds the target is
held in a hardware reset state.

TRSTHoldTime All probes nTRST hold time in milliseconds.

Specify the time in milliseconds the target is
held in a hardware reset state.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 296 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Configuration item name Supported probes Description and supported values
PostResetDelay All probes nSRST post reset delay time in milliseconds.

Specify the time in milliseconds that the
debug probe must wait after the reset
is released, before attempting any other
debugging operation.

TRSTPostResetTime All probes nTRST post reset delay time in milliseconds.

Specify the time in milliseconds that the
debug probe must wait after the reset
is released, before attempting any other
debugging operations.

TRSTOnConnect All probes Perform TAP reset on connection to the first
available core.

Reset the target hardware by asserting the
nTRST signal when connecting to the first
available core in a debug session.

SRSTOnConnect All probes Perform SYS reset on connection to the first
available core.

Reset the target hardware by asserting the
nSRST signal when connecting to the first
available core in a debug session.

DoSoftTAPReset All probes Reset the JTAG logic in the target hardware
by forcing transitions within its state
machine. This is done in addition to holding
the nTRST TAP reset signal LOW.

Specify this option if nTRST is not
connected, or if the target hardware
requires that you force a reset of the JTAG
logic whenever resetting.

Note:
This option is deprecated. Arm
recommends using DoSoftTRST instead.

Linked_SRST_TRST All probes Set TRUE if the target hardware has the
nSRST and nTRST signals physically linked.

PythonScript All probes The python script to hook debug events and
provide custom behavior. You can specify
the python script in the Python script tab in
the PCE.

PowerUpGPR All probes Set the item to enable powerup using any
ROM table GPRs (ADIv6 debug systems
only).

Related information
Add a third-party debug probe on page 274
Debug Adapter configuration in the PCE on page 290
Configure your debug hardware unit for Platform Autodetection on page 270

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 297 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Device hierarchy in the PCE view on page 190

10.4.11 DSTREAM-PT trace modes

There are two trace modes available in DSTREAM-PT, store and forward mode, and streaming mode.

Store and forward mode
Store and forward mode is when the DSTREAM-PT probe uses its onboard storage buffer to hold
captured trace data. When the trace capture is completed, the data is then forwarded, on demand,
to the host machine.

If the onboard storage reaches the 8GB maximum capacity and there is still incoming trace data,
the buffer wraps.

Figure 10-27: store and forward mode diagram

Streaming mode
Streaming mode is when the DSTREAM-PT probe forwards trace data to the host machine, as it is
capturing trace.

When using streaming mode:

• The storage buffer is on the host machine, and can be any size. The Arm® Development Studio
IDE lists 128GB as the maximum size, but you can overwrite this in the DTSL script.

• Live decode of trace events (ITM/STM) is supported.

• Stop on trigger is not supported.

DSTREAM-PT streaming trace mode has an 8GB First-In, First-Out (FIFO) buffer in between the
target and the host. This stabilizes the transfer rate of trace data to the host machine. It also means
that the buffer does not overflow if there is a sudden burst of trace data from the target, or if the
host computer is temporarily distracted from receiving the incoming trace.

When you stop trace capture, DSTREAM-PT ensures that any data in the FIFO buffer gets drained
before the transfer completes. You can view the captured trace data in the Trace view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 298 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-28: streaming mode diagram

If the average rate of trace incoming from the target is higher than what the host
is receiving, the buffer eventually overflows when the 8GB FIFO is full. In this
situation, DSTREAM-PT stops capturing new trace, and the existing 8GB of trace
data in the FIFO is delivered to the host. If this happens, a warning message is
displayed in the Commands view.

Which mode to use
Both trace modes are suitable for most targets. However there are some situations when one mode
is preferable to the other:

Use store and forward mode when:

• Your target is producing fast trace.

• You are using a slow connection, such as ethernet rather than USB.

Use streaming mode when:

• You want to collect more than 8GB of trace data.

• You want to decode trace events live.

Related information
Configure DSTREAM-PT trace mode on page 299
Trace view on page 399
Trace Control view on page 404
Commands view on page 329
Events view on page 344
DTSL options on page 535
Configuring trace for bare-metal or Linux kernel targets

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 299 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-trace-for-bare-metal-or-Linux-kernel-targets

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.4.12 Configure DSTREAM-PT trace mode

Configure Arm® Development Studio to use either store and forward mode, or streaming mode,
when you are connecting to a DSTREAM-PT debug probe.

Before you begin
• You need a debug connection to a target that is connected to a DSTREAM-PT probe.

About this task
For more information on these modes, see DSTREAM-PT trace modes.

Procedure
1. Open the Debug and Trace Services Layer (DTSL) Configuration dialog box:

a) In the Debug Control view, right-click your connection and select Debug Configurations.
b) In the Connection tab, click the DTSL Options Edit button.

2. Select a trace mode from the Trace Buffer tab:

See the DSTREAM-PT trace modes topic for guidance on which off-chip trace
mode to use.

• To use the store and forward mode, select the DSTREAM-PT 8GB Trace Buffer option and
modify the TPIU port width if required.

• To use streaming mode, select the DSTREAM-PT Streaming Trace option:

a. Modify the TPIU port width if required.

b. Select a Host trace buffer size, that is, how much trace data you want to store on your
host machine.

Store and forward mode and streaming mode are for off-chip trace. If your target
has on-chip trace, you might see additional trace modes listed.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 300 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-29: Select a trace mode

3. Enable trace for your core. The DTSL Configuration dialog box shows the processors on the
target that are capable of trace:
a) Open the relevant processor tab, and select the Enable <core_name> core trace checkbox.
b) If your target supports ITM/STM trace, open the relevant ITM/STM tab and select the

Enable ITM/STM trace checkbox.
4. Click Apply and then OK to apply the settings and close the DTSL Configuration dialog box.
5. [Optional] Add the application that you want to run to generate trace data.

a) In the Debug Configurations window, open the Files tab.
b) In the Target Configuration section, the .axf file that you want to run.

6. [Optional] For targets that have an ITM/STM trace source, you can also view the trace events.
To enable this, you need to:

• Run application code that causes ITM/STM trace events.

• Configure the Events View settings for your target. See the ITM_Cortex-M4_MPS2
example in <installation-directory>/examples/Bare-metal_examples_Armv7/, which
describes how to configure the settings for the MPS2_M4 target.

7. Click Debug to start capturing trace.

Results
During the trace capture session, open the Trace View to see the live capture of the trace data:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 301 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-30: Trace view showing a trace data capture session

When you stop the capture session, the Trace View shows a list of executed instructions:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 302 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-31: Trace view showing captured trace data

If your target has an ITM/STM trace source, and you have enabled and configured trace events
decode:

• When using streaming mode, during trace capture open the Events View. Click the Live Decode
tab to see a list of events as they are received:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 303 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-32: Events view showing a trace data capture session with incoming trace events

• When using store and forward mode, live decode is not available. Instead, open the Events view
and when the capture session has stopped, you can see a list of all the trace events.

Figure 10-33: Events view showing captured trace events

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 304 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Related information
DSTREAM-PT trace modes on page 298
Trace view on page 399
Trace Control view on page 404
Commands view on page 329
Events view on page 344
Configuring trace for bare-metal or Linux kernel targets

10.5 DSTREAM dashboard
Use the DSTREAM dashboard to view the state of a remote connection to a DSTREAM or
DSTREAM-ST unit. Use the DSTREAM Web API to retrieve data from the remote unit.

10.5.1 DSTREAM dashboard overview

Use the DSTREAM dashboard to connect to a legacy DSTREAM or DSTREAM-ST unit remotely.

When connected, you can view the status LEDs on the unit, restart the unit, access the API
documentation, and more.

If you are using DSTREAM-PT or DSTREAM-XT, you can only view information
about your DSTREAM-ST unit. If you are using a DSTREAM-HT, see DSTREAM-HT
dashboard overview.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 305 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-trace-for-bare-metal-or-Linux-kernel-targets

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-34: DSTREAM dashboard

Access the DSTREAM dashboard
Open a web browser and enter the IP address or hostname of your DSTREAM unit in the address
bar.

See Connect to a DSTREAM unit remotely for details on how to find this information for your unit.

Features
Table 10-8: DSTREAM dashboard features

Name Description

View the status of the unit The dashboard displays a visual representation of the status LEDs
that are physically present on the unit.

Restart the unit Remotely restart your unit.

Export data Export the host and firmware version details, in either plain text or
JSON format.

Access the API documentation Read how to access all the information that is presented on the
dashboard by using the Web APIs instead.

Using the DSTREAM dashboard
Restart the unit
1. Click the Restart DSTREAM button to restart the unit. A dialog asks you to confirm the action.

2. Wait a few seconds and then refresh the page.

Export data
• Use the Export section to select the type and data you want to export. You can export data

from the Host Details and the Firmware Version sections.
Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 306 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Access the API documentation
Click the API Documentation button and the documentation screen opens.

Figure 10-35: DSTREAM dashboard

To expand and collapse the sections that are exposed by the APIs, use the + and - buttons.

To return to the dashboard, use the X button in the top-right corner.

You can only access the API documentation when you have an active network
connection to a DSTREAM or DSTREAM-ST unit.

Related information
DSTREAM-HT dashboard overview on page 312
Connect to a DSTREAM unit remotely on page 307
DSTREAM Web API on page 309

10.5.2 Connect to a DSTREAM unit remotely

Connect to a legacy DSTREAM or DSTREAM-ST unit over a network.

Before you begin
• Your DSTREAM or DSTREAM-ST unit must use firmware version 7.4.0-1 or higher.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 307 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

• DSTREAM-HT dashboard functionality is available in DSTREAM-ST firmware version 7.8.0.1
and later.

• Your unit must be connected to a network.

About this task

If you are using DSTREAM-PT or DSTREAM-XT, you can only view information
about your DSTREAM-ST unit. If you are using a DSTREAM-HT, see DSTREAM-HT
dashboard overview.

Procedure
1. Get the IP address or host name of your unit:

a) Either open one of the following views in Arm® Development Studio:

• Debug Hardware Configure IP view.

• Debug Hardware Firmware Installer view.
b) Or open the Debug Configurations - Connection tab.
c) Copy the IP address or host name.

2. Open a web browser, and paste the IP address or host name into the address bar, and press
Enter.

Results
The DSTREAM dashboard opens, displaying the state of the specified unit.

Figure 10-36: DSTREAM dashboard

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 308 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Next steps
When connected, you can:

• View the state of the unit.

• Restart the unit.

For more information, see DSTREAM dashboard overview.

You can also interact with the unit using APIs. See DSTREAM Web API for more information.

Related information
DSTREAM dashboard overview on page 305
DSTREAM-HT dashboard overview on page 312
DSTREAM Web API on page 309

10.5.3 DSTREAM Web API

Retrieve information about your legacy DSTREAM or DSTREAM-ST unit in JSON format, using the
Web API.

• If you are using DSTREAM-PT or DSTREAM-XT, you can only view information
about your DSTREAM-ST unit. If you are using a DSTREAM-HT, see
DSTREAM-HT dashboard overview.

• To use the Web API and to access the API documentation, you require an active
network connection to your DSTREAM or DSTREAM-ST unit.

Syntax
URL: http://<dashboard-URL>/<request>

To get your dashboard URL, see Connect to a DSTREAM unit remotely.

Where request is one of the following:

cgi-bin/restart

Request a restart of the unit.

info.json

Request information about your unit.

led.json

Request the LED statuses of your unit.

To send these requests, you can use any of the following:

• A web browser.

• A command line utility, for example curl or wget.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 309 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

• An HTTP library of any programming language.

Decode the LED data
To decode the retrieved LED data, see the API documentation. It is available from the dashboard:

Figure 10-37: DSTREAM dashboard

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 310 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-38: DSTREAM Web API documentation

Example: Restart the DSTREAM unit
http://192.168.0.1/cgi-bin/restart

Restarts the unit.

Example: Request device information
http://192.168.0.1/info.json

Returns a JSON file, that contains information similar to:

{"Host Details":{"Hostname":"DSTREAM-

host","MAC":"00:01:02:03:04:05","IP":"192.168.0.1"},"Firmware Version":

{"Firmware":"1.2.3"}}

Example: Request the status of the LEDs
http://192.168.0.1/led.json

Returns a JSON file, that contains information similar to:

{"Sled":"1","Dled":"00000020","Tled":"00000000","Pled":"200","Fled":""}

Related information
Connect to a DSTREAM unit remotely on page 307
DSTREAM dashboard overview on page 305
DSTREAM-HT dashboard overview on page 312

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 311 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

10.5.4 DSTREAM-HT dashboard overview

Use the DSTREAM-HT dashboard to connect to a DSTREAM-HT system remotely.

In addition to the functionality listed in DSTREAM dashboard overview, with the DSTREAM-HT
dashboard you can also view:

• The status LEDs on the HSSTP probe.

• The Bit Error Rate (BER) on the incoming data stream, represented in the Data Eye View.

The DSTREAM-HT dashboard functionality is available in DSTREAM-ST firmware
version 7.8.0.1 and later.

DSTREAM-HT dashboard
To access the dashboard, open a web browser and enter the IP address or hostname of your
DSTREAM-HT system in the address bar. See Connect to a DSTREAM unit remotely for more
information.

Figure 10-39: DSTREAM-HT dashboard

Data Eye View
The Data Eye View shows the BER on an incoming data stream.

To access the View, click the Open Data Eye View button at the top right of the screen.

To generate a scan, click the Start Scan button, and wait a few minutes.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 312 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-40: Generate Data Eye

After it has finished generating, the graph appears automatically on the screen.

The selected Lane is highlighted dark blue.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 313 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Using debug probes with Arm Development Studio

Figure 10-41: DSTREAM-HT Data Eye View

Download Data Eye data
When the Data Eye has finished generating, you can download the data as a CSV file using the
DSTREAM Web API.

Syntax:

http://<dashboard-url>/lane<lane-number>.csv

Returns a CSV file containing Voltage, Rx Sampling Point, and the BER used for generating BER
Data Eye.

You must specify the <lane-number> for the data that you want to download.

Related information
DSTREAM dashboard overview on page 305
Connect to a DSTREAM unit remotely on page 307
DSTREAM Web API on page 309

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 314 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11 Perspectives and Views
Describes the perspective and related views in the Integrated Development Environment (IDE).

11.1 Perspectives in Arm Development Studio
Perspectives are preset configurations of views and editors in the Arm® Development Studio IDE.
Each perspective has its own menus and toolbars. By default, Arm Development Studio starts in
the Development Studio perspective.

Access other perspectives in Arm Development Studio
1. Go to Window > Perspective > Open Perspective > Other.... This opens the Open Perspective

dialog box.

2. Select the perspective that you want to open, and click OK.

Figure 11-1: Open Perspective dialog box

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 315 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Features
Table 11-1: Perspectives in Arm Development Studio

Perspective Description

Development Studio (default) The default perspective in Arm Development Studio. Use this
perspective for managing debug tasks. In this perspective, you can
do the following:

• Manage projects in the Project Explorer view.

• Manage debug connections in the Debug Control view.

• View and modify source code files in the Editor window.

• View debug output in the Console and Target Console views.

CMSIS-Pack Manager Use this perspective to manage CMSIS-Packs. In this perspective,
you can import packs and pack examples for various processors
and boards. For more information, see the CMSIS C/C++
Development User's Guide at Help > Help Contents > CMSIS C/C++
Development User's Guide.

Related information
Integrated Development Environment (IDE) Overview
Using the IDE

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 316 of 589

https://developer.arm.com/documentation/101469/latest/Introduction-to-the-Integrated-Development-Environment/Integrated-Development-Environment--IDE--Overview
https://developer.arm.com/documentation/101469/latest/Introduction-to-the-Integrated-Development-Environment/Using-the-IDE

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.2 App Console view
Use the App Console view to interact with the console I/O capabilities provided by the
semihosting implementation in the Arm C libraries. To use this feature, you must enable
semihosting support in the debugger.

Figure 11-2: App Console view

Default settings for this view, for example the maximum number of lines to display,
are controlled by the Arm® Debugger option in the Preferences dialog box. You can
access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively, you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Save Console Buffer
Saves the contents of the App Console view to a text file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 317 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Clear Console
Clears the contents of the App Console view.

Toggles Scroll Lock
Enables or disables the automatic scrolling of messages in the App Console view.

Bring to front when semihosting output is detected
Enabled by default. The debugger automatically changes the focus to this view when semihosting
output is detected.

Copy
Copies the selected text.

Paste
Pastes text that you have previously copied. You can paste text only when the application displays
a semihosting prompt.

Select All
Selects all text.

Related information
Using semihosting to access resources on the host computer on page 80
Working with semihosting on page 82
Perspectives and Views on page 315

11.3 Arm Asm Info view
Use the Arm Asm Info view to display the documentation for an Arm or Thumb® instruction.

When editing assembly language source files using the Arm Assembly or Disassembly editor, hover
your mouse over an instruction to access more information.

The related documentation appears in a pop-up window.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 318 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-3: Arm Asm Info pop-up

To open this information in the Arm Asm Info view, click .

Figure 11-4: Arm Asm Info view

To manually show this view:

1. Ensure that you are in the Development Studio perspective.

2. Select Window > Show View > Other... to open the Show View dialog box.

3. Select the Arm Asm Info view from the Arm Debugger group.

Related information
Perspectives and Views on page 315
Arm assembler editor on page 319

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 319 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.4 Arm assembler editor
Use the Arm assembler editor to view and edit Arm assembly language source code. It provides
syntax highlighting, code formatting, and content assist for auto-completion.

This editor also enables you to:

• Select an instruction or directive and press F3 to view the related Arm assembler reference
information.

• Set, remove, enable, or disable a breakpoint.

• Set or remove a trace start or stop point.

Figure 11-5: Assembler editor

In the left-hand margin of each editor tab you can find a marker bar that displays view markers
associated with specific lines in the source code.

To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.

Action context menu options
Right-click in the marker bar, or the line number column if visible, to display the action context
menu for the Arm assembler editor. The options available include:

Arm DS Breakpoints menu
The following breakpoint options are available:

Toggle Breakpoint
Adds or removes a breakpoint.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 320 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint.

Resolve Breakpoint
Resolves a pending breakpoint.

Disable Breakpoint, Enable Breakpoint
Disables or enables the selected breakpoint.

Toggle Trace Start Point
Sets or removes a trace start point.

Toggle Trace Stop Point
Sets or removes a trace stop point.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Breakpoint Properties…
Displays the Breakpoint Properties dialog box for the selected breakpoint. This enables you to
control breakpoint activation.

Default Breakpoint Type
The following breakpoint options are available:

Arm DS C/C++ Breakpoint
Select to use the Development Studio perspective breakpoint scheme. This is the default for the
Development Studio perspective.

The Default Breakpoint Type selected causes the top-level Toggle
Breakpoint menu in this context menu and the double-click action in the
left-hand ruler to toggle either CDT Breakpoints or Development Studio
Breakpoints. This menu is also available from the Run menu in the main menu
bar at the top of the C/C++, Debug, and Development Studio perspectives.

The menu options under Arm DS Breakpoints do not retain this setting and always refer to
Development Studio Breakpoints.

Show Line Numbers
Show or hide line numbers.

For more information on other options not listed here, see the dynamic help.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
Perspectives and Views on page 315

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 321 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Examining the target execution environment on page 120
Examining the call stack on page 121
Arm Asm Info view on page 318

11.5 Breakpoints view
Use the Breakpoints view to display the breakpoints, watchpoints, and tracepoints you have set in
your program.

It also enables you to:

• Disable, enable, or delete breakpoints, watchpoints, and tracepoints.

• Import or export a list of breakpoints and watchpoints.

• Display the source file containing the line of code where the selected breakpoint is set.

• Display the disassembly where the selected breakpoint is set.

• Display the memory where the selected watchpoint is set.

• Delay breakpoint activation by setting properties for the breakpoint.

• Control the handling and output of messages for all Unix signals and processor exception
handlers.

• Change the access type for the selected watchpoint.

Figure 11-6: Breakpoints view showing breakpoints and sub-breakpoints

Syntax of a breakpoint entry
A breakpoint entry has the following syntax:

<source_file>:<linenum> @ <function>+<offset> <address> [#<ID> <instruction_set>,

 ignore = <num>/<count>, <nHits> hits, (<condition>)]

where:

<source_file>:<linenum>

If the source file is available, the file name and line number in the file where the breakpoint is set,
for example main.c:44.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 322 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

<function>+<offset>

The name of the function in which the breakpoint is set and the number of bytes from the start of
the function. For example, main_app+0x12 shows that the breakpoint is 18 bytes from the start of
the main_app() function.

<address>

The address at which the breakpoint is set.

<ID>

The breakpoint ID number, #<N>. In some cases, such as in a for loop, a breakpoint might comprise a
number of sub-breakpoints. These are identified as <N>.<n>, where <N> is the number of the parent.
The syntax of a sub-breakpoint entry is:

<function>+<offset> <address> [#<ID>]

<instruction_set>

The instruction set of the instruction at the address of the breakpoint, A32 (Arm) or T32 (Thumb).

ignore = <num>/<count>

An ignore count, if set, where:

<num> equals count initially, and decrements on each pass until it reaches zero.

<count> is the value you have specified for the ignore count.

<nHits> hits

A counter that increments each time the breakpoint is hit. This is not displayed until the first hit.
If you set an ignore count, hits count does not start incrementing until the ignore count reaches
zero.

<condition>

The stop condition you have specified.

Syntax of a watchpoint entry
A watchpoint entry has the following syntax:

<name> <type> @ <address> [#<ID>]

where:

<name>

The name of the variable where the watchpoint is set.

<type>

The access type of the watchpoint.

<address>

The address at which the watchpoint is set.

<ID>

The watchpoint ID number.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 323 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Syntax of a tracepoint entry
A tracepoint entry has the following syntax:

<source_file>:<linenum>

where:

<source_file>:<linenum>

If the source file is available, the file name and line number in the file where the tracepoint is set.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: <context>

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively, you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Delete
Removes the selected breakpoints, watchpoints, and tracepoints.

Delete All
Removes all breakpoints, watchpoints, and tracepoints.

Go to File
Displays the source file containing the line of code where the selected breakpoint or tracepoint is
set. This option is disabled for a watchpoint.

Skip All Breakpoints
Deactivates all currently set breakpoints or watchpoints. The debugger remembers the enabled and
disabled state of each breakpoint or watchpoint, and restores that state when you reactivate them
again.

Show in Disassembly
Displays the disassembly where the selected breakpoint is set. This option is disabled for a
tracepoint.

Show in Memory
Displays the memory where the selected watchpoint is set. This option is disabled for a tracepoint.

Resolve
Re-evaluates the address of the selected breakpoint or watchpoint. If the address can be resolved,
the breakpoint or watchpoint is set, otherwise it remains pending.

Enable Breakpoints
Enables the selected breakpoints, watchpoints, and tracepoints.

Disable Breakpoints
Disables the selected breakpoints, watchpoints, and tracepoints.

Copy
Copies the selected breakpoints, watchpoints, and tracepoints. You can also use the standard
keyboard shortcut to do this.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 324 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Paste
Pastes the copied breakpoints, watchpoints, and tracepoints. They are enabled by default. You can
also use the standard keyboard shortcut to do this.

Select all
Selects all breakpoints, watchpoints, and tracepoints. You can also use the standard keyboard
shortcut to do this.

Properties…
Displays the Properties dialog box for the selected breakpoint, watchpoint or tracepoint. This
enables you to control activation or change the access type for the selected watchpoint.

View Menu
The following View Menu options are available:

New Breakpoints View
Displays a new instance of the Breakpoints view.

Import Breakpoints
Imports a list of breakpoints and watchpoints from a file.

Export Breakpoints
Exports the current list of breakpoints and watchpoints to a file.

Alphanumeric Sort
Sorts the list alphanumerically based on the string displayed in the view.

Ordered Sort
Sorts the list in the order they have been set.

Auto Update Breakpoint Line Numbers
Automatically updates breakpoint line numbers in the Breakpoints view when changes occur in the
source file.

Manage Signals
Displays the Manage Signals dialog box.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315
Examining the target execution environment on page 120
Examining the call stack on page 121

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 325 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.6 C/C++ editor
Use the C/C++ editor to view and edit C and C++ source code. It provides syntax highlighting,
code formatting, and content assist (Ctrl+Space) for auto-completion.

This editor also enables you to:

• View interactive help when hovering over C library functions.

• Set, remove, enable or disable a breakpoint.

• Set or remove a trace start or stop point.

Figure 11-7: C/C++ editor

In the left-hand margin of each editor tab you can find a marker bar that displays view markers
associated with specific lines in the source code.

To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.

If you have sub-breakpoints to a parent breakpoint then double-clicking on the
marker also deletes the related sub-breakpoints.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 326 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Action context menu options
Right-click in the marker bar, or the line number column if visible, to display the action context
menu for the C/C++ editor. The options available include:

Arm DS Breakpoints menu
The following breakpoint options are available:

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint at the selected address.

Resolve Breakpoint
Resolves a pending breakpoint at the selected address.

Enable Breakpoint
Enables the breakpoint at the selected address.

Disable Breakpoint
Disables the breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Breakpoint Properties…
Displays the Breakpoint Properties dialog box for the selected breakpoint. This enables you to
control breakpoint activation.

Default Breakpoint Type
The default type causes the top-level context menu entry, Toggle Breakpoint and the double-click
action in the marker bar to toggle either CDT Breakpoints or Development Studio Breakpoints.
When using Arm® Debugger you must select Arm DS C/C++Breakpoint. Development Studio
breakpoint markers are red to distinguish them from the blue CDT breakpoint markers.

Show Line Numbers
Shows or hides line numbers.

For more information on the other options not listed here, see the dynamic help.

Editor context menu
Right-click on any line of source to display the editor context menu for the C/C++ editor. The
following options are enabled when you connect to a target:

Set PC to Selection
Sets the PC to the address of the selected source line.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 327 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Run to Selection
Runs to the selected source line.

Show in Disassembly
This option:

1. Opens a new instance of the Disassembly view.

2. Highlights the addresses and instructions associated with the selected source line. A vertical bar
and shaded highlight shows the related disassembly.

Figure 11-8: Show disassembly for selected source line

Inspect
Selecting this option opens the Expression Inspector window, and allows you to monitor the
values of the highlighted variables or expressions, and manually enter variables or expressions to
monitor.

You must highlight the variable you want to inspect before invoking the menu,
otherwise the Inspect option is not available.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 328 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-9: Inspect the value of the highlighted variable

For more information on the other options not listed here, see the dynamic help.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
Expressions view on page 350
Perspectives and Views on page 315

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 329 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.7 Commands view
Use the Commands view to display Arm® Debugger commands and the messages output by the
debugger. It enables you to enter commands, run a command script, and save the contents of the
view to a text file.

Figure 11-10: Commands view

You can execute Arm Debugger commands by entering the command in the field provided, then
click Submit.

You must connect to a target to use this feature.

You can also use content assist keyboard combinations, provided by Eclipse, to display a list of Arm
Debugger commands. Filtering is also possible by entering a partial command. For example, enter
pr followed by the content assist keyboard combination to search for the print command.

To display sub-commands, you must filter on the top-level command. For example, enter info
followed by the content assist keyboard combination to display all the info sub-commands.

See Development Studio perspective keyboard shortcuts in the Related reference section for
details about specific content assist keyboard combinations available in Arm Debugger.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 330 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

To access the default settings for this view, select Window then Preferences. From
here, you can specify settings such as the default location for script files, or the
maximum number of lines to display.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default setting.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list, you might have to select it first in the Debug Control view.

Save Console Buffer
Saves the contents of the Commands view to a text file.

Clear Console
Clears the contents of the Commands view.

Toggles Scroll Lock
Enables or disables the automatic scrolling of messages in the Commands view.

Bring to front when a command is executed
Disabled by default. When enabled, the debugger automatically changes the focus to this view
when a command is executed.

Script menu
A menu of options that enable you to manage and run command scripts:

<Recent scripts list>
A list of the recently run scripts.

<Recent favorites list>
A list of the scripts you have added to your favorites list.

Run Script File…
Displays the Open dialog box to select and run a script file.

Organize Favorites…
Displays the Scripts view, where you can organize your scripts.

Show Command History View
Displays the History view.

Copy
Copies the selected commands. You can also use the standard keyboard shortcut to do this.

Paste
Pastes the command that you have previously copied into the Command field. You can also use the
standard keyboard shortcut to do this.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 331 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Select all
Selects all output in the Commands view. You can also use the standard keyboard shortcut to do
this.

Save selected lines as a script…
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the script file to
your favorites list. Click OK to add the script to your favorites list. Favorites are displayed in the
Scripts view.

Execute selected lines
Runs the selected commands.

New Commands View
Displays a new instance of the Commands view.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315
Development Studio perspective keyboard shortcuts
Arm Debugger commands listed in alphabetical order

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 332 of 589

https://developer.arm.com/documentation/101469/latest/Introduction-to-Arm-Development-Studio/Development-Studio-perspective-keyboard-shortcuts
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.8 Debug Control view
Use the Debug Control view to display target connections with a hierarchical layout of running
cores, threads, or user-space processes.

Figure 11-11: Debug Control view

This view enables you to:

• Connect to and disconnect from a target.

• View a list of running cores, threads, or user-space processes as applicable.

• Load an application image onto the target.

• Load debug information when required by the debugger.

• Look up stack information.

• Start, run, and stop the application.

• Continue running the application after a breakpoint is hit or the target is suspended.

• Control the execution of an image by sequentially stepping through an application at the source
or instruction level.

• Modify the search paths used by the debugger when it executes any of the commands that
look up and display source code.

• Set the current working directory.

• Reset the target.

Some of the views in the Development Studio perspective are associated with currently selected
execution context. Each associated view is synchronized depending on your selection.

On Linux Kernel connections, the hierarchical nodes Active Threads and All Threads are displayed.
Active Threads shows each thread that is currently scheduled on a processor. All Threads shows
every thread in the system, including those presently scheduled on a processor.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 333 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

On gdbserver connections, the hierarchical nodes Active Threads and All Threads are displayed,
but the scope is limited to the application under debug. Active Threads shows only application
threads that are currently scheduled. All Threads shows all application threads, including ones that
are currently scheduled.

Connection execution states are identified with different icons and background highlighting and are
also displayed in the status bar.

When working with threads, note that the current active thread is always highlighted, as shown in
the following figure:

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Collapse All
Collapses all expanded items.

Display Cores/Display Threads
Click to toggle between viewing cores or threads. This option is only active for bare-metal
connections with OS awareness enabled.

Connect to Target
Connects to the selected target using the same launch configuration settings as the previous
connection.

Disconnect from Target
Disconnects from the selected target.

Remove Connection
Removes the selected target connection from the Debug Control view.

Remove All Connections
Removes all target connections from the Debug Control view, except any that are connected to the
target.

Debug from menu
This menu lists the different actions that you can perform when a connection is established.

Reset menu
This menu lists the different types of reset that are available on your target.

Continue
Continues running the target.

A Connect only connection might require setting the PC register to the start
of the image before running it.

Interrupt
Interrupts the target and stops the current application.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 334 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Step Source Line, Step Instruction
This option depends on the stepping mode selected:

• If source line mode is selected, steps at the source level including stepping into all function calls
where there is debug information.

• If instruction mode is selected, steps at the instruction level including stepping into all function
calls.

Step Over Source Line, Step Over Instruction
This option depends on the stepping mode selected:

• If source line mode is selected, steps at the source level but stepping over all function calls.

• If instruction mode is selected, steps at the instruction level but stepping over all function calls.

Step Out
Continues running to the next instruction after the selected stack frame finishes.

Stepping by Source Line (press to step by instruction), Stepping by Instruction (press to step by
source line)
Toggles the stepping mode between source line and instruction.

The Disassembly view and the source editor view are automatically displayed when you step in
instruction mode.

The source editor view is automatically displayed when you step in source line mode. If the target
stops in code such as a shared library, and the corresponding source is not available, then the
source editor view is not displayed.

Debug Configurations…
Displays the Debug Configurations dialog box, with the configuration for the selected connection
displayed.

Launch in background
If this option is disabled, the Progress Information dialog box is displayed when the application
launches.

Show in Stack
Opens the Stack view, and displays the stack information for the selected execution context.

DTSL options
Opens the DTSL Configuration Editor dialog box to specify the DTSL options for the target
connection.

Reset Development Studio Views to 'Linked'
Resets Arm® Development Studio views to link to the selected connection in the Debug Control
view.

View CPU Caches
Displays the Cache Data view for a connected configuration.

View Menu
The following options are available:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 335 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Add Configuration (without connecting)…
Displays the Add Launch Configuration dialog box. The dialog box lists any configurations that are
not already listed in the DebugControl view.

Select one or more configurations, then click OK. The selected configurations are added to the
Debug Control view, but remain disconnected.

Load…
Displays a dialog box where you can select whether to load an image, debug information, an image
and debug information, or additional debug information. This option might be disabled for targets
where this functionality is not supported.

Set Working Directory…
Displays the Current Working Directory dialog box. Enter a new location for the current working
directory, then click OK.

Path Substitution…
Displays the Path Substitution and Edit Substitute Path dialog box.

Use the Edit Substitute Path dialog box to associate the image path with a source file path on the
host. Click OK. The image and host paths are added to the Path Substitution dialog box. Click OK
when finished.

Threads Presentation
Displays either a flat or hierarchical presentation of the threads in the stack trace.

Related information
Stack view on page 336
About debugging multi-threaded applications on page 28
About debugging Linux kernel modules on page 35
About debugging a Linux kernel on page 33
About debugging shared libraries on page 29

11.9 Stack view
Use the Stack view to display stack information for the currently active connection in the Debug
Control view. You can view stack information for cores, threads, or processes depending on the
selected execution context.

To view stack information:

1. In the Debug Control view, right-click the core, thread, or process that you want stack
information for, and select Show in Stack. This displays the stack information for the selected
execution context.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 336 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-12: Show in Stack

2. Stack information is gathered when the system is stopped.

Figure 11-13: Stack view showing information for a selected core

Some of the views in the Development Studio perspective are associated with the currently
selected stack frame. Each associated view is synchronized accordingly.

You can also:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 337 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Lock Stack view information display to a specific execution context
You can restrict Stack view information display to a specific execution context in your current
active connection. In the Stack view, click Linked: <context> and select the execution context to
lock. For example, in the below figure, Stack view is locked to the selected thread.

Figure 11-14: Stack view locked to a selected context

Show or hide the Local Variables panel

Click to show or hide the LocalVariables panel. You can interact with local variables as you
would in the Variables view. See Variables view for more information about working with variables.

Set function prototype display options

Click to set the function prototype display options. You can choose to show or hide function
parameter types or values.

Displaying a large number of function parameter values might slow the
debugger performance.

View more stack frames
To see more stack frames, click Fetch More Stack Frames to view the next set of stack frames.

By default, the Stack view displays five stack frames, and each additional fetch displays the next
five available frames.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 338 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

To increase the default depth of the stack frames to view, on the Stack view menu, click and
select the required stack depth. If you need more depth than the listed options, click Other and
enter the depth you require.

Increasing the number of displayed stack frames might slow the debugger
performance.

Refresh the view

To refresh or update the values in the view, click .

Show in Disassembly
Right-click a stack frame and select Show in Disassembly to open the Disassembly view and locate
the current instruction for that stack frame.

Show in Memory
Right-click a stack frame and select Show in Memory to open the Memory view and display the
memory location used to store that stack frame.

Step Out to This Frame
Right-click a stack frame and select Step Out to This Frame to run to the current instruction at the
selected stack frame.

Toolbar options
The following View Menu options are available:

New Stack View
Displays a new instance of the Stack view.

Freeze Data
Toggles the freezing of data in the currently selected execution context. This option prevents
automatic updating of the view. You can still use the Refresh option to manually refresh the view.

Update View When Hidden
Updates the view when it is hidden behind other views. By default, this view does not update
when hidden.

Related information
Debug Control view on page 332

11.10 Disassembly view
Use the Disassembly view to display a disassembly of the code in the running application.

It also enables you to:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 339 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Specify the start address for the disassembly. You can use expressions in this field, for example
$r3, or drag and drop a register from the Registers view into the Disassembly view to see the
disassembly at the address in that register.

• Select the instruction set for the view.

• Create, delete, enable or disable a breakpoint or watchpoint at a memory location.

• Freeze the selected view to prevent the values being updated by a running target.

Figure 11-15: Disassembly view

Gradient shading in the Disassembly view shows the start of each function.

Solid shading in the Disassembly view shows the instruction at the address of the current PC
register followed by any related instructions that correspond to the current source line.

In the left-hand margin of the Disassembly view you can find a marker bar that displays view
markers associated with specific locations in the disassembly code.

To set a breakpoint, double-click in the marker bar at the position where you want to set the
breakpoint. To delete a breakpoint, double-click on the breakpoint marker.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 340 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

If you have sub-breakpoints to a parent breakpoint then double-clicking on the
marker also deletes the related sub-breakpoints.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Next Instruction
Shows the disassembly for the instruction at the address of the program counter.

History
Addresses and expressions you specify in the Address field are added to the drop down box, and
persist until you clear the history list or exit Eclipse. If you want to keep an expression for later use,
add it to the Expressions view.

Address field
Enter the address for which you want to view the disassembly. You can specify the address as a
hex number or as an expression, for example $PC+256, $lr, or main.

Context menu options are available for editing this field.

Size field
The number of instructions to display before and after the location specified in the Address field.

Context menu options are available for editing this field.

Search
Searches through debug information for symbols.

View Menu
The following View Menu options are available:

New Disassembly View
Displays a new instance of the Disassembly view.

Instruction Set
The instruction set to show in the view by default. Select one of the following:

[Auto]
Auto detect the instruction set from the image.

A32 (Arm)
Arm instruction set.

T32 (Thumb)
Thumb® instruction set.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 341 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

T32EE (ThumbEE)
ThumbEE instruction set.

Byte Order
Selects the byte order of the memory. The default is Auto (LE).

Clear History
Clears the list of addresses and expressions in the History drop-down box.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option also disables and enables the Size and
Type fields. You can still use the Refresh option to manually refresh the view.

Action context menu
When you right-click in the left margin, the corresponding address and instruction is selected and
this context menu is displayed. The available options are:

Copy
Copies the selected address.

Paste
Pastes into the Address field the last address that you copied.

Select All
Selects all disassembly in the range specified by the Size field.

If you want to copy the selected lines of disassembly, you cannot use the Copy option on this
menu. Instead, use the copy keyboard shortcut for your host, Ctrl+C on Windows.

Run to Selection
Runs to the selected address

Set PC to Selection
Sets the PC register to the selected address.

Show in Source
If source code is available:

1. Opens the corresponding source file in the C/C++ source editor view, if necessary.

2. Highlights the line of source associated with the selected address.

Show in Registers
If the memory address corresponds to a register, then displays the Registers view with the related
register selected.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 342 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Show in Functions
If the memory address corresponds to a function, then displays the Functions view with the related
function selected.

Translate Address <address>
Displays the MMU view and translates the selected address.

Toggle Watchpoint
Sets or removes a watchpoint at the selected address.

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

Editing context menu options
The following options are available on the context menu when you select the Address field or Size
field for editing:

Cut
Copies and deletes the selected text.

Copy
Copies the selected text.

Paste
Pastes text that you previously cut or copied.

Delete
Deletes the selected text.

Select All
Selects all the text.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 343 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315

11.11 Events view
Use the Events view to view the output generated by the System Trace Macrocell (STM) and
Instruction Trace Macrocell (ITM) events.

Data is captured from your application when it runs. However, no data appears in the Events view
until you stop the application.

To stop the target, either click the Interrupt icon in the Debug Control view, or use the stop
command in the Commands view. When your application stops, any captured logging information
is automatically appended to the open views.

Figure 11-16: Events view (Shown with all ports enabled for an ETB:ITM trace source)

• Use the Event Viewer Settings dialog box to select a Trace Source as well as to
set up Ports (if ITM is the trace source) or Masters (if STM is the trace source)
to display in the view.

• To view the Live Decode tab and streaming trace data, you must enable the
Show live decode console option in the Event Viewer Settings dialog box.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 344 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list, you might have to select it first in the Debug Control view.

Clear Trace
Clears the debug hardware device buffer and all trace sources. The views might retain data, but
after clearing trace, refreshing the views clears them as well.

Start of page
Displays events from the beginning of the trace buffer.

Page back
Moves one page back in the trace buffer.

Page forward
Moves one page forward in the trace buffer.

End of page
Displays events from the end of the trace buffer.

View Menu
The following View Menu options are available:

New Events View
Displays a new instance of the Events view.

Find Global Timestamp…
Displays the Search by Timestamp dialog box which allows you to search through the entire trace
buffer. The search results opens up the page where the timestamp is found and selects the closest
timestamp.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Events Settings…
Displays the Settings dialog box where you can select a trace source and set options for the
selected trace source.

Open Trace Control View
Opens the Trace Control view.

DTSL Options…
Opens the DTSL Configuration Editor dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 345 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Events context menu
Advance / Go back local timestamp amount
Displays the Advance / Go back local timestamp dialog box which allows you to move forward
or backward from the current record by a local timestamp amount. A negative number indicates a
movement backward. The search moves forward or backward from the current record until the sum
of intervening local timestamps is equal to or exceeds the specified value.

Global Timestamps
Timestamps represent the approximate time when events are generated.

Synchronize Timestamps
Synchronizes all Trace and Events views to display data around the same timestamp.

Set Timestamp Origin
Sets the selected event record as the timestamp origin.

For a given connection, the timestamp origin is global for all Trace and Events
views.

Clear Timestamp Origin
Clears the timestamp origin.

Timestamp Format: Numeric
Sets the timestamp in numeric format. This is the raw timestamp value received from the ITM/STM
protocol.

Timestamp Format: (h:m:s)
Sets the timestamp in hours:minutes:seconds format.

Related information
Perspectives and Views on page 315
Event Viewer Settings dialog box on page 346
CoreSight
CoreSight System Trace Macrocell Technical Reference Manual
Armv7-M Architecture Reference Manual Documentation

11.12 Event Viewer Settings dialog box
Use the Event Viewer Settings dialog box to select a Trace Source as well as to set up Ports (if ITM
is the trace source) or Masters (if STM is the trace source) to display in the Events view.

General settings
Select a Trace Source
Selects the required trace source from the list.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 346 of 589

https://developer.arm.com/documentation/ddi0314/latest/
https://developer.arm.com/documentation/ddi0444/latest
https://developer.arm.com/documentation/ddi0403/latest

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Height
The number of lines to display per results page. The default is 100 lines.

Width
The number of characters to display per line. The default is 80 characters.

Import
Imports an existing Event Viewer Settings configuration file. This file contains details about the
Trace Source and Ports (in the case of ITM trace) or Masters and Channels (in the case of STM
trace) used to create the configuration.

Export
Exports the currently displayed Event Viewer Settings configuration to use with a different Events
view.

OK
Reorganizes the current channels into a canonical form, saves the settings, and closes the dialog
box.

Cancel
Enables you to cancel unsaved changes.

Figure 11-17: Event Viewer Settings (Shown with all Masters and Channels enabled for an
ETR:STM trace source)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 347 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

For ITM trace sources
Ports
Click to add or delete a Port.
Encoding
Select the type of encoding you want for the data associated with the port. The options available
are Binary, Text, and TAE.

Reset
Click Reset to display and enable all available Ports for the selected ITM trace source.

This clears any custom settings.

Clear
Click to clear all Ports.

Show local timestamps
Select to display local timestamps. Local timestamps are expressed as an interval since the last local
timestamp. Local timestamps are available for CoreSight™ ITM trace and M-profile ITM trace.

Show global timestamps (M-profile only)
Select to display global timestamps. Global timestamps are expressed as a 48-bit or 64-bit counter
value.

Show event counter wrapping (M-profile only)
Select to display event counter wrapping packets from the M-profile Data Watchpoint and Trace
(DWT) unit.

Show exception tracing (M-profile only)
Select to display exception trace packets from the M-profile DWT unit.

Show PC sampling (M-profile only)
Select to display PC sampling packets from the M-profile DWT unit.

Show data tracing (M-profile only)
Select to display data trace packets from the M-profile DWT unit.

Show live decode console
Select to display the Live Decode tab in the Events view. The Live Decode tab displays streaming
trace data from your target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 348 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-18: Events view - Live Decode tab

• To use the Live Decode tab, your target must support ITM or STM trace
and must be connected to a DSTREAM-ST unit.

• Live streaming data is read-only.

• If generating a large amount of ITM or STM trace, Arm recommends:

◦ Turning off Core Trace in the DSTL Options dialog box. This is to avoid
data overflow issues when a large amount of data is generated.

◦ Disabling some channels or ports to reduce data overload issues in the
Live Decode tab.

For STM trace sources
Masters
Click to add or delete Masters and Channels that you want to display in the Events view.

Masters are only available for STM trace.

Encoding
Select the type of encoding you want for the data associated with the channels. The options
available are Binary and Text.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 349 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Reset
Click Reset to display and enable all available Masters and Channels for the selected STM trace
source.

This clears any custom settings.

Clear
Click to clear all Masters and Channels.

Related information
Events view on page 344
CoreSight Components Technical Reference Manual
CoreSight System Trace Macrocell Technical Reference Manual
Armv7-M Architecture Reference Manual Documentation

11.13 Expressions view
Use the Expressions view to create and work with expressions.

Figure 11-19: Expressions view

You can:

Add expressions
Enter your expression in the Enter new expression here field and press Enter on your keyboard.
This adds the expression to the view and displays its value.

If your expression contains side-effects when evaluating the expression, the
results are unpredictable. Side-effects occur when the state of one or more
inputs to the expression changes when the expression is evaluated.

For example, instead of x++ or x+=1 you must use x+1 .

Edit expressions
You can edit the values of expressions in the Value field. Select the value and edit it.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 350 of 589

https://developer.arm.com/documentation/ddi0314/latest/
https://developer.arm.com/documentation/ddi0444/latest
https://developer.arm.com/documentation/ddi0403/latest

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Toolbar options
The following options are available from the toolbar menu:

Show all numerical values in hexadecimal

Click the button to change all numeric values to hexadecimal values. This works as a toggle and
your preference is saved across sessions.

Delete

In the Expressions view, select the expression you want to remove from view, and click to
remove the selected expression.

Add New Expression

Click the button to add a new expression.

Remove All Expressions

Click the button to remove all expressions.

Search

Click the button to search through all expressions.

Refresh Expressions View

Click the button to refresh or update the values in the view.

View Menu
The following View Menu options are available:

Link with
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

New Expressions View
Displays a new instance of the Expressions view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default, this view does
not update when hidden.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Context menu options
The following options are available from the context menu:

Copy
Copies the selected expression.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 351 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

To copy an expression for use in the Disassembly view or Memory view, first select the expression
in the Name field.

Paste
Pastes expressions that you have previously cut or copied.

Delete
Deletes the selected expression.

Select All
Selects all expressions.

Send to
Enables you to add register filters to an Expressions view. Displays a sub menu that enables you to
add to a specific Expressions view.

<Format list>
A list of formats you can use for the expression value. These formats are Binary, Boolean,
Hexadecimal, Octal, Signed Decimal, and Unsigned decimal.
Show in Registers
If the expression corresponds to a register, this displays the Registers view with that register
selected.

Show in Memory
Where enabled, this displays the Memory view with the address set to either:

• The value of the selected expression, if the value translates to an address, for example the
address of an array, &name

• The location of the expression, for example the name of an array, name.

The memory size is set to the size of the expression, using the sizeof keyword.

Show Dereference in Memory
If the selected expression is a pointer, this displays the Memory view with the address set to the
value of the expression.

Show in Disassembly
Where enabled, this displays the Disassembly view with the address set to the location of the
expression.

Show Dereference in Disassembly
If the selected expression is a pointer, this displays the Disassembly view, with the address set to
the value of the expression.

Translate Variable Address
Displays the MMU view and translates the address of the variable.

Toggle Watchpoint
Displays the Add Watchpoint dialog box to set a watchpoint on the selected variable, or removes
the watchpoint if one has been set.

Enable Watchpoint
Enables the watchpoint, if a watchpoint has been set on the selected variable.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 352 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Disable Watchpoint
Disables the watchpoint, if a watchpoint has been set on the selected variable.

Resolve Watchpoint
If a watchpoint has been set on the selected variable, this re-evaluates the address of the
watchpoint. If the address can be resolved the watchpoint is set, otherwise it remains pending.

Watchpoint Properties
Displays the Watchpoint Properties dialog box. This enables you to control watchpoint activation.

Column headers
Right-click on the column headers to select the columns that you want displayed:

Name
An expression that resolves to an address, such as main+1024, or a register, for example $R1.

Value
The value of the expression. You can modify a value that has a white background. A yellow
background indicates that the value has changed. This might result from you either performing a
debug action such as stepping or by you editing the value directly.

If you freeze the view, then you cannot change a value.

Type
The type associated with the value at the address identified by the expression.

Count
The number of array or pointer elements. You can edit a pointer element count.

Size
The size of the expression in bits.

Location
The address in hexadecimal identified by the expression, or the name of a register, if the expression
contains only a single register name.

Access
The access type of the expression.

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default.

All columns are displayed by default.

Examples
When debugging the Linux kernel, to view its internal thread structure,use these expressions:
For Arm®v8 in SVC mode, with 8K stack size:

(struct thread_info*)($SP_SVC &~0x1FFF)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 353 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

For Armv8 AArch64 in EL1, with 16K stack size:

(struct thread_info*)($SP_EL1 &~0x3FFF)

Related information
Expression Inspector on page 354
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
C/C++ editor on page 326
Perspectives and Views on page 315

11.14 Expression Inspector
The Expression Inspector is a light-weight version of the Expressions View. It allows you to
monitor the values of the highlighted variables or expressions, and manually enter variables or
expressions to monitor.

Instead of presenting the information in a view, the Expression Inspector is a floating window. You
can have multiple Expression Inspector windows open at one time.

To invoke the Expression Inspector, you need to highlight a variable or expression of interest in the
C/C++ editor view, then right-click anywhere in the view and select the Inspect option. If you have
not highlighted anything, the Inspect option is unavailable.

You can also manually enter variable names or expressions in the empty field at the bottom of the
list.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 354 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-20: Inspect the value of the highlighted variable

11.15 Functions view
Use the Functions view to display the ELF data associated with function symbols for the loaded
images. You can freeze the view to prevent the information being updated by a running target.

Figure 11-21: Functions view

Right-click on the column headers to select the columns that you want displayed:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 355 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Name
The name of the function.

Mangled Name
The C++ mangled name of the function.

Base Address
The function entry point.

Start Address
The start address of the function.

End Address
The end address of the function.

Size
The size of the function in bytes.

Compilation Unit
The name of the compilation unit containing the function.

Image
The location of the ELF image containing the function.

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default. The Name, StartAddress, End
 Address, Compilation Unit, and Image columns are displayed by default.

In the Functions view, the functions are represented as:

Table 11-2: Function icons

Icon Description Icon Description

Function Function with a breakpoint set

Static function Static function with a breakpoint
set

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Search
Searches the data in the current view for a function.

Copy
Copies the selected functions.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 356 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Select All
Selects all the functions in the view.

Run to Selection
Runs to the selected address.

Set PC to Selection
Sets the PC register to the start address of the selected function.

Show in Source
If source code is available:

1. Opens the corresponding source file in the C/C++ editor view, if necessary.

2. Highlights the line of source associated with the selected address.

Show in Memory
Displays the Memory view starting at the address of the selected function.

Show in Disassembly
Displays the Disassembly view starting at the address of the selected function.

Toggle Breakpoint
Sets or removes a breakpoint at the selected address.

Toggle Hardware Breakpoint
Sets or removes a hardware breakpoint at the selected address.

Toggle Trace Start Point
Sets or removes a trace start point at the selected address.

Toggle Trace Stop Point
Sets or removes a trace stop point at the selected address.

Toggle Trace Trigger Point
Starts a trace trigger point at the selected address.

View Menu
The following View Menu options are available:

New Functions View
Displays a new instance of the Functions view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 357 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Filters…
Displays the Functions Filter dialog box. This enables you to filter the functions displayed in the
view.

Related information
Perspectives and Views on page 315

11.16 History view
Use the History view to display a list of the commands generated during the current debug
session.

It also enables you to:

• Clear its contents.

• Select commands and save them as a script file. You can add the script file to your favorites list
when you click Save. Favorites are displayed in the Scripts view.

• Enable or disable the automatic scrolling of messages.

Figure 11-22: History view

Default settings for this view are controlled by a Arm® Debugger setting in the
Preferences dialog box. For example, the default location for script files. You can
access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 358 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Exports the selected lines as a script
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the script file to
your favorites list. Click OK to add the script to your favorites list. Favorites are displayed in the
Scripts view.

Clear Console
Clears the contents of the History view.

Toggles Scroll Lock
Enables or disables the automatic scrolling of messages in the History view.

Copy
Copies the selected commands.

Select All
Selects all commands.

Save selected lines as a script…
Displays the Save As dialog box to save the selected commands to a script file.

When you click Save on the Save As dialog box, you are given the option to add the script file to
your favorites list. Click OK to add the script to your favorites list. Favorites are displayed in the
Scripts view.

Execute selected lines
Runs the selected commands.

New History View
Displays a new instance of the History view.

Related information
Perspectives and Views on page 315

11.17 Memory view
Use the Memory view to display and modify the contents of memory.

This view enables you to:

• Specify the start address for the view, either as an absolute address or as an expression, for
example $pc+256. You can also specify an address held in a register by dragging and dropping
the register from the Registers view into the Memory view.

• Specify the display size of the Memory view in bytes, as an offset value from the start address.

• Specify the format of the memory cell values. The default is hexadecimal.

• Set the width of the memory cells in the Memory view. The default is 4 bytes.

• Display the ASCII character equivalent of the memory values.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 359 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Freeze the view to prevent it from being updated by a running target.

Figure 11-23: Memory view

The Memory view only provides the facility to modify how memory is displayed in this view. It
does not enable you to change the access width for the memory region. To control the memory
access width, you can use:

• The memory command to configure access widths for a region of memory, followed by the x
command to read memory according to those access widths and display the contents.

• The memory set command to write to memory with an explicit access width.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: <context>
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

History button
Addresses and expressions you specify in the Address field are added to the list, and persist until
you clear the history list. If you want to keep an expression for later use, add it to the Expressions
view.

Number of columns
The options enable you to resize the number of columns shown in the Memory view.

Fit to view
Select to resize the number of columns automatically.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 360 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/memory
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/memory-set

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

2, 4, 8, 16
Select the number of columns to display in the Memory view in a 2, 4, 8, or 16-column layout.

Custom
Select and specify the custom column layout you require.

To specify these values as default, set them under Window > Preferences > Arm DS > Debugger >
Memory View .

Timed auto refresh
Use the Timed Auto-Refresh option to specify an auto-refresh of the values in the view.

Start
Starts the timed auto-refresh.

Stop
Stops the timed auto-refresh.

Update Interval
Specifies the auto refresh interval in seconds.

Update When
Specifies when to refresh the view:

Running
Refreshes the view only while the target is running.

Stopped
Refreshes the view only while the target is stopped.

Always
Always refreshes the view.

When you select Running or Always, the Memory and Screen views
are only updated if the target supports access to that memory when
running. For example, some CoreSight targets support access to physical
memory at any time through the Debug Access Port (DAP) to the
Advanced High-performance Bus Access Port (AHB-AP) bridge. In those
cases, add the AHB: prefix to the address selected in the Memory or
Screen views. This type of access bypasses any cache on the processor
core, so the memory content returned might be different to the value
that the core reads.

Properties
Displays the Timed Auto-Refresh Properties dialog box where you can specify these options as
default.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 361 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Format
Click to cycle through the memory cell formats and cell widths, or select a format from the drop-
down menu. The default is hexadecimal with a display width of 4 bytes.

Use the Hide Base Prefix option to hide base prefixes where applicable.

For example:

• For hexadecimal values, this option hides the preceding 0x. The value 0xEA000016 is shown as
EA000016.

• For binary values, this option hides the preceding 0b. The value 0b00010110 is shown as
00010110.

• For octal values, this option hides the preceding 0. The value 035200000026 is shown as
35200000026.

Search
Searches through debug information for symbols.

Details panel
Show or hide the details panel, which displays the value of the selected memory cell in different
formats. Memory view with details panel

Figure 11-24: Memory view with details panel

Address field
Enter the address where you want to start viewing the target memory. Alternatively, you can enter
an expression that evaluates to an address.

Addresses and expressions you specify are added to the drop-down history list, and persist
until you clear the view history. If you want to keep an expression for later use, add it to the
Expressions view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 362 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Size field
The number of bytes to display.

View Menu
The following View Menu options are available:

New Memory View
Displays a new instance of the Memory view.

Show Tooltips
Toggles the display of tooltips on memory cell values.

Auto Alignment
Aligns the memory view to the currently selected data width.

Show Compressed Addresses
Shows the least significant bytes of the address that are not repeating.

Show Cache
Shows how the core views the memory from the perspective of the different caches on the
target. This is disabled by default. When showing cache, the view is auto-aligned to the cache-
line size. When showing cache, the memory view shows a column for each cache. If populated,
the cache columns display the state of each cache using the Modified/Owned/Exclusive/Shared/
Invalid(MOESI) cache coherency protocol notation.

Click on a cache column header or select a cache from the Cache Data menu to display the data as
viewed from that cache. The Memory (non-cached) option from the Cache Data menu shows the
data in memory, as if all caches are disabled.

Figure 11-25: Memory view with Show Cache option enabled

In multiprocessor systems, it is common to have caches dedicated to
particular cores. For example, a dual-core system might have per-core
L1 caches, but share a single L2 cache. Cache snooping is a hardware
feature that allows per-core caches to be accessed from other cores. In

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 363 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

such cases the Cache Data field shows all the caches that are accessible
to each core, whether directly or through snooping.

Byte Order
Selects the byte order of the memory. The default is Auto (LE).

Clear History
Clears the list of addresses and expressions in the History drop-down list.

Import Memory
Reads data from a file and writes it to memory.

Export Memory
Reads data from memory and writes it to a file.

Fill Memory
Writes a specific pattern of bytes to memory

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default, this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option also disables or enables the Address
and Size fields. You can still use the Refresh option to manually refresh the view.

Editing context menu options
The context menu of the column header enables you to toggle the display of the individual
columns.

Reset Columns
Displays the default columns.

Characters
Displays the Characters column.

The following options are available on the context menu when you select a memory cell value, the
Address field, or the Size field for editing:

Cut
Copies and deletes the selected value.

Copy
Copies the selected value.

Paste
Pastes a value that you have previously cut or copied into the selected memory cell or field.

Delete
Deletes the selected value.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 364 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Select All
Selects all the addresses.

The following additional options are available on the context menu when you select a memory cell
value:

Toggle Watchpoint
Sets or removes a watchpoint at the selected address. After a watchpoint is set, you can:

Enable Watchpoint
If disabled, enables the watchpoint at the selected address.

Disable Watchpoint
Disables the watchpoint at the selected address.

Remove Watchpoint
Removes the watchpoint at the selected address.

Watchpoint Properties
Displays and lets you change the watchpoint properties.

Translate Address <address>
Displays the MMU view and translates the address of the selected value in memory.

Memory view default preferences
You can specify default preferences to apply to the Memory view. Specifying default options
ensures that your preferences are applied across all debug connections.

To specify default options for the Memory view, set them under Window > Preferences > Arm DS
> Debugger > Memory View.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 365 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-26: Memory View preferences

Number of columns
The options enable you to resize the number of columns shown in the Memory view.

Fit to view
Select to resize the number of columns automatically.

2, 4, 8, 16
Select the number of columns to display in the Memory view in a 2, 4, 8, or 16-column layout.

Custom
Select and specify the custom column layout you require.

Data format
Specify the format of the memory cell values. The default is hexadecimal.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 366 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Data size
Set the width of the memory cells in the Memory view. The default is 4 bytes.

Hide base prefix for memory values
Select to hide the base prefix where applicable.

For example:

• For hexadecimal values, this option hides the preceding 0x. So the value 0xEA000016 is shown
as EA000016.

• For binary values, this option hides the preceding 0b. So the value 0b00010110 is shown as
00010110.

• For octal values, this option hides the preceding 0. So the value 035200000026 is shown as
35200000026.

Hide Characters column
Select to the hide the Characters column in the Memory view.

When this option is unselected, ASCII characters are shown in the Memory view: Show Characters
column in the Memory view

Figure 11-27: Show Characters column in the Memory view

Another way to toggle the visibility of the Characters column, is to right-click the context menu
and select or unselect the Characters option: Select Characters from context menu to show
theASCII characters

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 367 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-28: Select Characters from context menu to show the ASCII characters

Show tooltip
Select to control the display of tooltips on memory cell values.

Automatically align the memory addresses
Aligns the memory view to the currently selected data width.

Show compressed addresses
Shows the least significant bytes of the address that are not repeating.

Show details panel
Shows the details panel, which displays the value of the selected memory cell in different formats.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29
About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 368 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.18 MMU/MPU view
Use the MMU/MPU view to perform address translations or for an overview of the translation
tables and virtual memory map.

This view enables you to:

• Perform simple virtual to physical address translation.

• Perform simple physical to virtual address translation.

• Inspect and traverse MMU and MPU tables.

• See an overview of the virtual memory map.

• Freeze the view to prevent it from being updated by a running target.

MMU awareness is only supported on Arm®v7-A, Armv8-A, Armv8-R AArch64, and
Armv9-A architectures. MPU awareness is only supported on Armv8-M and Armv8-
R architectures.

MMU/MPU Translation tab
For targets that support address translations, the Translation tab enables you to translate:

• Virtual address to physical address.

• Physical address to one or more virtual addresses.

Figure 11-29: MMU/MPU Translation tab view

To perform an address translation in the Translation tab:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 369 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

1. Enter a physical or virtual address in the address field. You can also enter an expression that
evaluates to an address.

2. Select Physical to Virtual or Virtual to Physical depending on the translation type.

3. Click Translate to perform the address translation.

The Result shows the output address after the translation. The view also shows the details of the
translation regime and parameters. You can customize these parameters using the MMU Settings
dialog box.

MMU/MPU Tables tab
The Tables tab displays the content of tables used by the MMU or MPU. For targets with multiple
translation regimes, you can change the translation regime using the MMU Settings dialog box.

Figure 11-30: MMU/MPU Tables tab view

For targets which support address translation, the Tables tab contains the following columns:

Input Address
Specifies the input address to the translation table. This is usually the virtual address, but it can also
be an intermediate physical address.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 370 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Type
Specifies the type of entry in the translation table, for example Page Table, Section, Super Section,
Small Page, or Large Page.

Output Address
Specifies the output address from the translation table. This is usually the physical address, but it
can also be an intermediate physical address.

Attributes
Specifies the attributes for the memory region.

The Tables tab also provides additional information for each row of the translation table:

Descriptor Address
Specifies the address of the selected translation table location.

Descriptor Value
Specifies the content of the selected translation table location.

Input Address Range
Specifies the range of input addresses that are mapped by the selected translation table location.

Next-level Table Address
Specifies the Descriptor Address for the next level of lookup in the translation table.

For targets which do not support address translation, the Tables tab contains the following
columns:

Base
Specifies the base address of the region.

For Armv8-M targets which have an Implementation Defined Attribution
Unit (IDAU) region, you must define the IDAU region of your target before
the Tables tab can display region information. See setidau-region command
documentation for details.

Limit
Specifies the last address of the region.

Type
Specifies the region type.

Attributes
Specifies the memory attributes of the IDAU region.

MMU/MPU Memory Map tab view
The Memory Map tab provides a view of the virtual memory layout by combining the MMU or
MPU table entries that map contiguous regions of memory with a common memory type, for
example, cacheability, shareability, and access attributes.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 371 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-31: MMU/MPU Memory Map tab view

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: <context>
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list, you might have to select it first in the DebugControl view.

MMU settings
This enables you to change the translation regime and input parameters. It contains:

Figure 11-32: MMU settings

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 372 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

The MMU Settings dialog box contains:

Translation Regimes and Stages
Use this to select the translation you want the debugger to use. The field lists the translation
regimes and stages that the debugger is aware of. See the Arm Architecture Reference Manual for
more information on the translation regimes.

Select <Follow System> to let the debugger follow the current system state. If the current system
state has more than one translation stage, then Arm Debugger combines the translation stages
when using <Follow System>.

Use current translation settings
Use this to instruct the debugger to use the current translation settings for the selected translation.

Use custom translation settings
Use this to instruct the debugger to override the current translation settings.

Parameters
Use this to specify override values for custom settings. For example, you can change the address in
TTBR0 or TTBR1.

View Menu
The following View Menu options are available:

New MMU/MPU View
Displays a new instance of the MMU/MPU view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default, this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Coalesce Invalid Entries
Condenses the contiguous rows of faulty or invalid input addresses into a single row in the Tables
tab.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 373 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.19 Modules view
Use the Modules view to display a tabular view of the shared libraries and dynamically loaded
Operating System (OS) modules used by the application. It is only populated when connected to a
Linux target.

Figure 11-33: Modules view showing shared libraries

A connection must be established and OS support enabled within the debugger
before a loadable module can be detected. OS support is automatically enabled
when a Linux kernel image is loaded into the debugger. However, you can manually
control this by using the set os command.

Right-click on the column headers to select the columns that you want displayed:

Name
Displays the name and location of the component on the target.

Symbols
Displays whether the symbols are currently loaded for each object.

Address
Displays the load address of the object.

Size
Displays the size of the object.

Type
Displays the component type. For example, shared library or OS module.

Host File
Displays the name and location of the component on the host workstation.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 374 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default.

The Name, Symbols, Address, Type, and Host File columns are displayed by default.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Copy
Copies the selected data.

Select All
Selects all the displayed data.

Load Symbols
Loads debug information into the debugger from the source file displayed in the Host File column.
This option is disabled if the host file is unknown before the file is loaded.

Add Symbol File…
Opens a dialog box where you can select a file from the host workstation containing the debug
information required by the debugger.

Discard Symbols
Discards debug information relating to the selected file.

Show in Memory
Displays the Memory view starting at the load address of the selected object.

Show in Disassembly
Displays the Disassembly view starting at the load address of the selected object.

View Menu
The following View Menu options are available:

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Related information
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 375 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

About debugging a Linux kernel on page 33
About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315

11.20 Registers view
Use the Registers view to work with the contents of processor and peripheral registers available on
your target.

Figure 11-34: Registers view (with all columns displayed)

You can:

Browse registers available on your target
The Registers view displays all available processor registers on your target. Click and expand
individual register groups to view specific registers.

Click to collapse the registers tree.

If you want to refresh the Registers view, from the view menu click .

Search for a specific register
You can use the search feature in the Registers view to search for a specific register or group.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 376 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

If you know the name of the specific register or group you want to view, click to display the
search bar. Then, enter the name of the register or group you are looking for in the search bar. This
lists the registers and groups that match the text you entered.

For example, enter the text CP to view registers and groups with the text CP in their name.

Press Enter on your keyboard, or double-click the register or group in the search results to select it
in the Register view.

Figure 11-35: Registers - CP

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 377 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

You can also use CTRL+F on your keyboard to enable the search bar. You can
use the ESC key on your keyboard to close the search bar.

Toggle between numerical and hexadecimal values

Click the button to change all numeric values to hexadecimal values. This works as a toggle and
your preference is saved across sessions.

Create and manage register sets
You can use register sets to collect individual registers into specific custom groups.

To create a register set:

1.
In the Registers view, under Register Set, click All Registers and select .

2. In the Create or Modify Register Set dialog box:

• Give the register set a name in Set Name, for example Core registers. You can create
multiple register groups if needed.

• Select the registers you need in All registers, and click Add. Your selected registers appear
under Chosen registers.

• Click OK, to confirm your selection and close the dialog box.

3. The Registers view displays the specific register group you selected.

4. To switch between various register groups, click All Registers and select the group you want.

To manage a register set:

1.
In the Registers view, under Register Set, click All Registers and select .

2. In the Manage Register Sets dialog box:

• If you want to create a new register set, click New and create a new register set.

• If you want to edit an existing register set, select a register set, and click Edit.
• If you want to delete an existing register set, select a register set and click Remove.

3. Click OK to confirm your changes.

Modify the value of write access registers
You can modify the values of registers with write access by clicking in the Value column for the
register and entering a new value. Enable the Access column to view access rights for each register.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 378 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-36: Registers access rights

Drag and drop an address held in a register from the Registers view to other views
Drag and drop an address held in a register from this view into either the Memory view to see the
memory at that address, or into the Disassembly view to disassemble from that address.

Change the display format of register values
You can set the format of individual bits for Program Status Registers (PSRs).

Freeze the selected view to prevent the values being updated by a running target
Select Freeze Data from the view menu to prevent values updating automatically when the view
refreshes.

Toolbar and context menu options
The following options are available from the view or context menu:

Linked: <context>
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Copy
Copies the selected registers. If a register contains bitfields, you must expand the bitfield to copy
the individual bitfield values.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 379 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

It can be useful to copy registers to a text editor in order to compare the values when execution
stops at another location.

Select All
Selects all registers currently expanded in the view.

Show Memory Pointed to By <register name>
Displays the Memory view starting at the address held in the register.

Show Disassembly Pointed to By <register name>
Displays the Disassembly view starting at the address held in the register.

Translate Address in <register name>
Displays the MMU view and translates the address held in the register.

Send to <selection>
Displays a sub menu that enables you to add register filters to a specific Expressions view.

<Format list>
A list of formats you can use for the register values. These formats are Binary, Boolean,
Hexadecimal, Octal, Signed Decimal, and Unsigned decimal.
View Menu
The following View Menu options are available:

New Registers View
Creates a new instance of the Registers view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Editing context menu options
The following options are available on the context menu when you select a register value for
editing:

Undo
Reverts the last change you made to the selected value.

Cut
Copies and deletes the selected value.

Copy
Copies the selected value.

Paste
Pastes a value that you have previously cut or copied into the selected register value.

Delete
Deletes the selected value.

Select All
Selects the whole value.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 380 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Adding a new column header
Right-click on the column headers to select the columns that you want displayed:

Name
The name of the register.

Use $<register_name> to reference a register. To refer to a register that has bitfields, such as a PSR,
specify $<register_name>.<bitfield_name> . For example, to print the value of the M bitfield of the
CPSR, enter the following command in the Commands view:

print $CPSR.M

Value
The value of the register. A yellow background indicates that the value has changed. This might
result from you either performing a debug action such as stepping or by you editing the value
directly.

If you freeze the view, then you cannot change a register value.

Type
The type of the register value.

Count
The number of array or pointer elements.

Size
The size of the register in bits.

Location
The name of the register or the bit range for a bitfield of a PSR. For example, bitfield M of the
CPSR is displayed as $CPSR[4..0].

Access
The access mode for the register.

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default.

The Name , Value, Size, and Access columns are displayed by default.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
About debugging a Linux kernel on page 33
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 381 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

About debugging shared libraries on page 29
About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39
Perspectives and Views on page 315

11.21 NVIC Registers view
Use the NVIC Registers view to see an alternative view of the registers involved in the NVIC
exception/interrupt system.

• The NVIC Registers view is only enabled for Arm®v6-M and Armv7-M
architectures.

• You can also use the Registers view to view register information.

The NVIC Registers view updates when registers are changed by the debugger or are manually
changed through the command prompt or register view.

Each exception is in one of the following states:

Inactive
The exception is not active and not pending.

Active
An exception that is being serviced by the processor but has not completed. An exception handler
can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Pending
The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or
from software can change the state of the corresponding interrupt to pending.

Active and pending
The exception is being serviced by the processor and there is a pending exception from the same
source.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 382 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-37: NVIC Registers view

You can view:

Current exceptions and interrupts
A table showing the name and status of current exceptions and interrupts.

ID
ID of the exception or interrupt. Entries with an ID of up to, and including, 16 are the system
exceptions. The remaining entries are external interrupts extracted from the NVIC_* group of
system registers.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 383 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

This exact number will vary between platforms.

Name
Name of the exception or interrupt.

Source
Source of the exception or interrupt.

E
Enabled state of the exception or interrupt. The value 1 indicates True, 0 indicates False, and -
indicates not applicable.

P
Pending state of the exception or interrupt. The value 1 indicates True, 0 indicates False, and -
indicates not applicable.

A
Active state of the exception or interrupt. The value 1 indicates True, 0 indicates False, and -
indicates not applicable.

Priority
The priority of the exception or interrupt.

Application Interrupt and Reset Control
Displays the Application Interrupt and Register Control Register (AIRCR) information.

Interrupt Control State
Displays the Interrupt Control and State Register (ICSR) information.

Vector Table Offset
Displays the Vector Table Offset Register (VTOR) information.

The VTOR information is only available for Armv7-M architectures.

11.22 OS Data view
Use the OS Data view to display OS awareness information for RTOSs. You can view details about
tasks, semaphores, mutexes, and mailboxes.

See About OS awareness for information about OS awareness support in Arm® Development
Studio.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 384 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

The OS Data view is not used when debugging Linux applications. To view the
running threads information for Linux applications, use the Debug Control view.

To view information, select a table from the list.

Figure 11-38: OS Data view (showing Keil CMSIS-RTOS RTX Tasks)

Data in the OS Data view depends on the selected data source.

Toolbar and context menu options
Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the list, you might have to select it first in the Debug Control view.

Show linked data in other Data views
Shows selected data in a view that is linked to another view.

View Menu
This menu contains the following option:

New OS Data View
Displays a new instance of the OS Data view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default, this view does
not update when hidden.

Refresh
Refreshes the view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 385 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

If the data is frozen, the value of a variable cannot be changed.

Editing context menu options
The following options are available on the context menu when you select a variable value for
editing:

Copy
Copies the selected value.

Select All
Selects all text.

11.23 Overlays view
Use the Overlays view to interact with the currently loaded overlaid application.

Figure 11-39: Overlays view

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 386 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Using the Overlays view, you can:

View information about overlays
The Overlays view shows the ID and functions, the Load Address, Exec Address, and Size for each
overlay. It also shows if the overlay is Loaded or not.

Locate the function in the source
To locate the function in the source code and move to the Code Editor view, double-click a
function.

Toolbar options
The following View Menu options are available:

New Overlays View
Displays a new instance of the Overlays view.

Freeze Data
Toggles the freezing of data in the currently selected execution context. This option prevents
automatic updating of the view. You can still use the Refresh option to manually refresh the view.

Related information
About Arm Debugger support for overlays on page 48
info overlays command
set overlays enabled command

11.24 Cache Data view
Use the Cache Data view to examine the contents of the caches in your system. For example, L1
cache or TLB cache.

To access the Cache Data view, you must enable Cache debug mode in the DTSL Configuration
Editor dialog box.

Cache debug mode is only supported on certain target CPUs. For more information,
refer to your CPU documentation.

Select the cache you want to view from the CPU Caches menu.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 387 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-overlays
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/set-overlays-enabled

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-40: Cache Data view (showing L1 TLB cache)

Alternatively, you can use the cache list and cache print commands in the Commands view to
show information about the caches.

Cache awareness is dependent on the exact device and connection method.

Toolbar and context menu options
Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively, you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Show linked data in other Data views
Shows selected data in a view that is linked to another view.

View Menu
This menu contains the following options:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 388 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

New Cache Data View
Displays a new instance of the Cache Data view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Editing context menu options
The following options are available on the context menu when you right-click a value:

Copy
Copies the selected value.

Select All
Selects all text.

Related information
About debugging caches on page 45
DTSL Configuration Editor dialog box on page 447
Memory view on page 359
Debug commands: cache

11.25 Screen view
Use the Screen view to display the contents of the screen buffer.

This view enables you to:

• Configure when view updates should occur and the interval between updates.

• Freeze the view to prevent it being updated by the running target when it next updates.

• Set the screen buffer parameters appropriate for the target:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 389 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups/Cache

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-41: Screen buffer parameters

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 390 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-42: Screen view

Toolbar options
The following toolbar options are available:

Linked: <context>
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Timed auto refresh is off, Cannot update
Operation is as follows:

• If Timed auto-refresh is off mode is selected, the auto refresh is off.

• If the Cannot update mode is selected, the auto refresh is blocked.

Start
Starts auto-refreshing.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 391 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Stop
Stops auto-refreshing.

Update Interval
Specifies the auto-refresh interval, in seconds or minutes.

Update When
Specifies whether updates should occur only when the target is running or stopped, or always.

Properties
Displays the Timed Auto-Refresh Properties dialog box.

New Screen View
Creates a new instance of the Screen view.

Set screen buffer parameters
Displays the Screen Buffer Parameters dialog box. The dialog box contains the following
parameters:

Base Address
Sets the base address of the screen buffer.

Screen Width
Sets the width of the screen in pixels.

Screen Height
Sets the height of the screen in pixels.

Scan Line Alignment
Sets the byte alignment required for each scan line.

Pixel Type
Selects the pixel type.

Pixel Byte Order
Selects the byte order of the pixels within the data.

Click Apply to save the settings and close the dialog box.

Click Cancel to close the dialog box without saving.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default this view does
not update when hidden.

Refresh
Refreshes the view.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

The Screen view is not visible by default. To add this view:

1. Ensure that you are in the Development Studio perspective.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 392 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

2. Select Window > Show View to open the Show View dialog box.

3. Select Screen view.

Related information
Perspectives and Views on page 315

11.26 Scripts view
Use the Scripts view to work with scripts in Arm® Development Studio. You can create, run, edit,
delete, and configure parameters for the various types of scripts supported by Development
Studio.

• Scripts are dependent on a debug connection. To work with scripts, first create a
debug configuration for your target and select it in the Debug Control view.

• Debugger views are not updated when commands issued in a script are
executed.

Figure 11-43: Scripts view

Using the Scripts view, you can:

Create a script

To create a script, click to display the Save As dialog box. Give your script a name and
select the type of script you want. You can choose any of the following types:

• Debugger Script (*.ds)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 393 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Jython script (*.py)

• Text file (*.txt)

The script opens in the editor when you save it.

Import scripts

Click to view options for importing scripts.

Import an Arm DS or Jython script

To import a Development Studio or Jython script, click and browse
and select your file.

Import and translate a CMM script
To import and translate a CMM script:

1. Click and browse and select your file.

2. Click Open.

3. In the Translation Save Location dialog box, choose a location to store the translated file.

4. Click OK to translate the file and save it at the selected location.

Add additional use case script directories

To add more use case script directories, click and either enter the
folder location or click Browse to the script folder location.

To change the location for other scripts that are supported in Arm Debugger,
from the main menu, select Window > Preferences > Arm DS > Debugger >
Console . Then, select the Use a default script folder option, and either enter
the folder location or click Browse to the script folder location.

Execute your script

After connecting to your target, select your script and click to execute your script. You can also
double-click a script to run it.

When working with use case scripts, you must select the use case

configuration to run your script.

Edit your script

Select your script and click to open the script in the editor.

Delete your script

Select the script that you want to delete and click . Confirm if you want to delete the script
from the view, or if you want to delete from the disk, and click OK.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 394 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Refresh the script view

Click to refresh the view.

Configure script options

Select a script, and click to configure script options.

Recents and Favorites
After you run a script, you can easily access it again from the Recent list. The Scripts view stores
the five most recently run scripts. When you run a new script it appears at the top of the list.

Figure 11-44: Recent scripts

Add to Favorites
You can add your frequently accessed scripts to a list of favorites to easily access them later. To
add a script to the list of favorites, right-click the script, and select Add to favorites.

Figure 11-45: Add to favorites

Remove from favorites
To remove your scripts from the Favorites list, right-click a script and select Remove from
favorites.

Figure 11-46: Remove from favorites

To delete multiple scripts, select them with Ctrl+click and press the Delete key.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 395 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

You can also access your favorites and recently accessed scripts from the
Commands view.

Figure 11-47: Running scripts from the Commands view

Related information
Debugging with Scripts on page 127
Use case scripts on page 140
Running Arm Debugger from the operating system command-line or from a script on page 156
Support for importing and translating CMM scripts on page 129

11.27 Target Console view
Use the Target Console view to display messages from the target setup scripts.

Default settings for this view are controlled by Arm® Debugger options in the
Preferences dialog box. For example, the default location for the console log. You
can access these settings by selecting Preferences from the Window menu.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Save Console Buffer
Saves the contents of the Target Console view to a text file.

Clear Console
Clears the contents of the Target Console view.

Toggles Scroll Lock
Enables or disables the automatic scrolling of messages in the Target Console view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 396 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Bring to Front when target output is detected
Enabled by default. The debugger automatically changes the focus to this view when target output
is detected.

Copy
Copies the selected text.

Paste
Pastes text that you have previously copied.

Select All
Selects all text.

Related information
Perspectives and Views on page 315

11.28 Target view
Use the Target view to display the debug capabilities of the target, for example the types of
breakpoints it supports. It does not allow you to modify the capabilities.

Figure 11-48: Target view

Right-click on the column headers to select the columns that you want displayed:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 397 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Name
The name of the target capability.

Value
The value of the target capability.

Key
The name of the target capability. This is used by some commands in the Commands view.

Description
A brief description of the target capability.

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default.

The Name, Value, and Description columns are displayed by default.

The Target view is not visible by default. To add this view:

1. Ensure that you are in the Development Studio perspective.

2. Select Window > Show View > Target .

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list you might have to select it first in the Debug Control view.

Refresh the Target Capabilities
Refreshes the view.

View Menu
This menu contains the following option:

New Target View
Displays a new instance of the Target view.

Copy
Copies the selected capabilities. To copy the capabilities in a group such as Breakpoint
 capabilities, you must first expand that group.

This is useful if you want to copy the capabilities to a text editor to save them for future reference.

Select All
Selects all capabilities currently expanded in the view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 398 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Related information
Perspectives and Views on page 315

11.29 Trace view
Use the Trace view to display a graphical navigation chart that shows function executions with
a navigational timeline. In addition, the disassembly trace shows function calls with associated
addresses and if selected, instructions. Clicking on a specific time in the chart synchronizes the
Disassembly view.

When a trace has been captured, the debugger extracts the information from the trace stream and
decompresses it to provide a full disassembly, with symbols, of the executed code.

The left-hand column of the chart shows the percentages of the total trace for each function. For
example, if a total of 1000 instructions are executed and 300 of these instructions are associated
with myFunction() then this function is displayed with 30%.

In the navigational timeline, the color coding is a heat map showing the executed instructions and
the number of instructions each function executes in each timeline. The darker red color shows
more instructions and the lighter yellow color shows fewer instructions. At a scale of 1:1 however,
the color scheme changes to display memory access instructions as a darker red color, branch
instructions as a medium orange color, and all the other instructions as a lighter green color.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 399 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-49: Trace view with a scale of 100:1

The Trace view might not be visible by default. To add this view:

1. Ensure that you are in the Development Studio perspective.

2. Select Window > Show View > Trace.

The Trace view navigation chart contains several tabs:

• Trace tab shows the graphical timeline and disassembly.

• Capture Device tab gives information about the trace capture device and the trace buffer, and
allows you to configure the trace capture.

• Source tab gives information about the trace source.

• Ranges tab allows you to limit the trace capture to a specific address range.

The Trace tab also shows:

Buffer Size
Size of the trace buffer to store trace records. This is determined by the trace capture device. The
trace records can be instruction records or non-instruction records.

Buffer Used
Amount of the trace buffer that is already used for trace records.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 400 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Records in Page
The total number of instruction records and non-instruction records in the current Trace view.

Records Visible
The number of trace records visible in the disassembly area of the Trace view.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the**Debug Control** view. This is the default.
Alternatively you can link the view to a different connection or processor in a Symmetric
MultiProcessing (SMP) connection. If the connection you want is not shown in the drop-down list
you might have to select it first in the Debug Control view.

Updating view when hidden, Not updating view when hidden
Toggles the updating of the view when it is hidden behind other views. By default the view does
not update when it is hidden, which might cause loss of trace data.

Show Next Match
Moves the focus of the navigation chart and disassembly trace to the next matching occurrence for
the selected function or instruction.

Show Previous Match
Moves the focus of the navigation chart and disassembly trace to the previous matching
occurrence for the selected function or instruction.

Don't mark other occurrences - click to start marking****Mark other occurrences - click to stop
marking
When function trace is selected, marks all occurrences of the selected function with a shaded
highlight. This is disabled when instruction trace is selected.

Clear Trace
Clears the raw trace data that is currently contained in the trace buffer and the trace view.

Showing instruction trace - click to switch to functions, Showing function trace - click to switch
to instructions
Toggles the disassembly trace between instructions and functions.

Export Trace Report
Displays the Export Trace Report dialog box to save the trace data to a file.

Home
Where enabled, moves the trace view to the beginning of the trace buffer. Changes might not be
visible if the trace buffer is too small.

Page Back
Where enabled, moves the trace view back one page. You can change the page size by modifying
the Set Maximum Instruction Depth setting.

Page Forward
Where enabled, moves the trace view forward one page. You can change the page size by
modifying the Set Maximum Instruction Depth setting.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 401 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

End
Where enabled, moves the trace view to the end of the trace buffer. Changes might not be visible
if the trace buffer is too small.

Switch between navigation resolutions
Changes the timeline resolution in the navigation chart.

Switch between alternate views
Changes the view to display the navigation chart, disassembly trace or both.

Focus Here
At the top of the list, displays the function being executed in the selected time slot. The remaining
functions are listed in the order in which they are executed after the selected point in time. Any
functions that do not appear after that point in time are placed at the bottom and ordered by total
time.

Order By Total Time
Displays the functions ordered by the total time spent within the function. This is the default
ordering.

View Menu
The following View Menu options are available:

New Trace View
Displays a new instance of the Trace view.

Set Trace Page Size…
Displays a dialog box in which you can enter the maximum number of instructions to display in the
disassembly trace. The number must be within the range of 1,000 to 1,000,000 instructions.

Find Trace Trigger Event
Enables you to search for trigger events in the trace capture buffer.

Find Timestamp…
Displays a dialog box in which you can enter either a numeric timestamp as a 64 bit value or in the
h:m:s format.

Find Function…
Enables you to search for a function by name in the trace buffer.

Find Instruction by Address…
Enables you to search for an instruction by address in the trace buffer.

Find ETM data access in trace buffer…
Enables you to search for a data value or range of values in the trace buffer.

Find Instruction Index…
Enables you to search for an instruction by index. A positive index is relative to the start of the
trace buffer and a negative index is relative to the end.

DTSL Options…
Displays a dialog box in which you can add, edit, or choose a DTSL configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 402 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

This clears the trace buffer.

Open Trace Control View
Opens the Trace Control View.

Refresh
Discards all the data in the view and rereads it from the current trace buffer.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view.

Trace Filter Settings…
Displays a dialog box in which you can select the trace record types that you want to see in the
Trace view.

When your code hits a Trace stop point, the Trace tab shows:

Index
The number of instructions before the Trace stop point. The index at the Trace stop point is 0. The
index for the instruction immediately before that is -1, and so on.

Address
The address in memory of the instruction.

Opcode
The opcode for the instruction expressed in hexadecimal.

Detail
The disassembly of the instruction, trace events, and errors.

The unlabeled column (to the right of the Opcode column) displays symbols that give additional
information. For example, an exception, a backward branch, an instruction that was canceled before
completion, or an instruction that was not executed. Hover your mouse pointer over one of these
symbols to display context-sensitive help.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 403 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-50: Trace view for Cortex-M3 Thumb instructions

Related information
Perspectives and Views on page 315
Capturing trace data using the command-line debugger on page 170

11.30 Trace Control view
Use the Trace Control view to start or stop trace capture and clear the trace buffer on a specified
trace capture device.

The Trace Control view additionally displays information about the trace capture device, the trace
source used, the status of the trace, and the size of the trace buffer.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 404 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-51: Trace Control view

The trace capture device and trace sources available in the trace capture device are listed on the
left hand side of the view. Select any trace source to view additional information.

The following Trace Capture Device information is displayed in the view:

Trace Capture Device
The name of the trace capture device.

Capture Status
The trace capture status. On when capturing trace data, Off when not capturing trace data.

Trigger Position
The location of the trigger within the buffer.

This information is only available for hardware targets.

Buffer Size
The capacity of the trace buffer.

Buffer Used
The amount of trace data currently in the buffer.

Buffer Wrapped
The trace buffer data wraparound status.

Persistent Trace
The persistent trace data status.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 405 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

The following Trace Source information is displayed in the view:

Trace Source
The name of the selected trace source.

Source ID
The unique ID of the selected trace source.

Source Encoding
The trace encoding format.

Core
The core associated with the trace source.

Context IDs
The tracing context IDs availability status.

Cycle Accurate Trace
The cycle accurate trace support status.

Virtualization Extensions
The virtualization extensions availability status.

Timestamps
Timestamp availability status for the trace.

Timestamp Origin
Whether a timestamp origin for the trace is set or cleared. When set, timestamps are displayed as
offsets from the origin.

Trace Triggers
Trace triggers support status.

Trace Start Points
Trace start points support status.

Trace Stop Points
Trace stop points support status.

Trace Ranges
Trace ranges support status.

The information displayed varies depending on the trace source.

Trace Control view options
Start Capture
Click Start Capture to start trace capture on the trace capture device. This is the same as the trace
 start command.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 406 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Stop Capture
Click Stop Capture to stop trace capture on the trace capture device. This is the same as the trace
 stop command.

Clear Trace Buffer
Click Clear Trace Buffer to empty the trace buffer on the trace capture device. This is the same as
the trace clear command.

Start trace capture when target restarts (after a stop)
Select this option to automatically start trace capture after a target restarts after a stop.

Stop trace capture when target stops
Select this option to automatically stop trace capture when a target stops.

Stop trace capture on trigger
Select this option to stop trace capture after a trace capture trigger has been hit.

Post-trigger capture size
Use this option to control the percentage of the trace buffer that should be reserved for after a
trigger point is hit. The range is from 0 to 99.

The trace start and trace stop commands and the automatic start and stop trace
options act as master switches. Trace triggers cannot override them.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: context

Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a specific connection or processor in a Symmetric
MultiProcessing (SMP) connection. If the connection you want is not shown in the drop-down list,
you might have to select it first in the Debug Control view.

New Trace Control View
Select this option to open a new Trace Control view.

Refresh
Select this option to refresh the current Trace Control view.

DTSL Options…
Select this option to open the Debug and Trace Services Layer (DTSL) Configuration dialog box.
You can use this dialog box to configure additional debug and trace settings, such as, adding,
editing or choosing a DTSL connection configuration.

Trace Dump…
Select this option to open the Trace Dump dialog box. In this dialog box, you can configure and
export the raw trace data from the buffer and write it to a file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 407 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Related information
Perspectives and Views on page 315

11.31 Variables view
Use the Variables view to work with the contents of local, file static, and global variables in your
program.

Figure 11-52: Variables view

You can:

View the contents of variables that are currently in scope
By default, the Variables view displays all the local variables. It also displays the file static and
global variable folder nodes. You can add and remove variables from the view. Keep the set of
variables in the view to a minimum to maintain good debug performance.

Add a specific variable to the Variables view
If you know the name of the variable you want to view, enter the variable name in the Add
Variable field. This lists the variables that match the text you entered. For example, enter the text
nu to view variables with nu in their name. Double-click the variable to add it to the view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 408 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-53: How to add variables to the view

Add one or more variables
If you want to view all the available variables in your code, click Add to display the Add Variable
dialog box. Expand the required folders and filenames to see the variables they contain. Then select
one or more variables that you are interested in and click OK to add them to the Variables view.
Ctrl+A selects all the variables that are visible in the dialog. Selecting a filename or folder does not
automatically select its variables.

Figure 11-54: Add Global Variables dialog box

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 409 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Delete variables
You can remove the variables that you added from the variables view. In the Variables view, select

the variables you want to remove from the view, and click , or press Delete on your keyboard,
to remove the selected variables. If you want to reset the view to display the default variables

again, then from the view menu, select .

Search for a specific variable
You can use the search feature in the Variables view to search for a specific variable in view.

If you know the name of the specific variable, click to display the Search Variables dialog box.
Either enter the name of the variable you want or select it from the list.

Press Enter on your keyboard, or double-click the variable to select and view it in the Variables
view.

You can also use CTRL+F on your keyboard to display the Search Variables
dialog box.

Refresh view

To refresh or update the values in the view, click .

Toggle between numerical and hexadecimal values

Click to change all numeric values to hexadecimal values. This works as a toggle and your
preference is saved across sessions.

Modify the value of variables
You can modify the values of variables that have write access, by clicking in the Value column for
the variable and entering a new value. Enable the Access column to view access rights for each
variable.

Freeze the view to prevent the values being updated by a running target
Select Freeze Data from the view menu to prevent values updating automatically when the view
refreshes.

Drag and drop a variable from the Variables view to other views
Drag and drop a variable from this view into either the Memory view to see the memory at that
address, or into the Disassembly view to disassemble from that address.

Toolbar and context menu options
The following options are available from the toolbar or context menu:

Linked: <connection>
Links this view to the selected connection in the Debug Control view. This is the default.
Alternatively you can link the view to a different connection. If the connection you want is not
shown in the drop-down list, you might have to select it first in the Debug Control view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 410 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Copy
Copies the selected variables. To copy the contents of an item such as a structure or an array, you
must first expand that item.

This is useful if you want to copy variables to a text editor in order to compare the values when
execution stops at another location.

Select All
Selects all variables currently expanded in the view.

Show in Memory
Where enabled, displays the Memory view with the address set to either:

• The value of the selected variable, if the variable translates to an address, for example the
address of an array, &name

• The location of the variable, for example the name of an array, name.

The memory size is set to the size of the variable, using the sizeof keyword.

Show in Disassembly
Where enabled, displays the Disassembly view, with the address set to the location of the selected
variable.

Show in Registers
If the selected variable is currently held in a register, displays the Registers view with that register
selected.

Show Dereference in Memory
If the selected variable is a pointer, displays the Memory view with the address set to the value of
the variable.

Show Dereference in Disassembly
If the selected variable is a pointer, displays the Disassembly view, with the address set to the
value of the variable.

Translate Variable Address
Displays the MMU view and translates the address of the variable.

Toggle Watchpoint
Displays the Add Watchpoint dialog box to set a watchpoint on the selected variable, or removes
the watchpoint if one has been set.

Enable Watchpoint
Enables the watchpoint, if a watchpoint has been set on the selected variable.

Disable Watchpoint
Disables the watchpoint, if a watchpoint has been set on the selected variable.

Resolve Watchpoint
If a watchpoint has been set on the selected variable, re-evaluates the address of the watchpoint. If
the address can be resolved the watchpoint is set, otherwise it remains pending.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 411 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Watchpoint Properties
Displays the Watchpoint Properties dialog box. This enables you to control watchpoint activation.

Send to <selection>
Enables you to add variable filters to an Expressions view. Displays a sub menu that enables you to
specify an Expressions view.

<Format list>
A list of formats you can use for the variable value. These formats are Binary, Boolean,
Hexadecimal, Octal, Signed Decimal, and Unsigned decimal.
View Menu
The following ViewMenu options are available:

New Variables View
Displays a new instance of the Variables view.

Update View When Hidden
Enables the updating of the view when it is hidden behind other views. By default, this view does
not update when hidden.

Reset to default variables
Resets the view to show only the default variables.

Freeze Data
Toggles the freezing of data in the current view. This option prevents automatic updating of the
view. You can still use the Refresh option to manually refresh the view. You cannot modify the
value of a variable if the data is frozen.

If you freeze the data before you expand an item for the first time, for example an array, the view
might show Pending.... Unfreeze the data to expand the item.

Editing context menu options
The following options are available on the context menu when you select a variable value for
editing:

Undo
Reverts the last change you made to the selected value.

Cut
Copies and deletes the selected value.

Copy
Copies the selected value.

Paste
Pastes a value that you have previously cut or copied into the selected variable value.

Delete
Deletes the selected value.

Select All
Selects the value.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 412 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Adding a new column header
Right-click on the column headers to select the columns that you want to display:

Name
The name of the variable.

Value
The value of the variable.

Read-only values are displayed with a gray background. A value that you can edit is initially shown
with a white background. A yellow background indicates that the value has changed. This might
result from you either performing a debug action such as stepping or by you editing the value
directly.

If you freeze the view, then you cannot change a value.

Type
The type of the variable.

Count
The number of array or pointer elements.

Size
The size of the variable in bits.

Location
The address of the variable.

Access
The access mode for the variable.

Show All Columns
Displays all columns.

Reset Columns
Resets the columns displayed and their widths to the default.

Related information
Setting a tracepoint on page 74
Conditional breakpoints on page 66
Assigning conditions to an existing breakpoint on page 68
Pending breakpoints and watchpoints on page 73
About debugging multi-threaded applications on page 28
About debugging shared libraries on page 29
Perspectives and Views on page 315
About debugging a Linux kernel on page 33

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 413 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

About debugging Linux kernel modules on page 35
About debugging TrustZone enabled targets on page 39

11.32 Timed Auto-Refresh Properties dialog box
Use the Timed Auto-RefreshProperties dialog box to modify the update interval settings.

Update Interval
Specifies the auto refresh interval in seconds.

Update When
Specifies when to refresh the view:

Running
Refreshes the view only while the target is running.

Stopped
Refreshes the view only while the target is stopped.

Always
Always refreshes the view.

When you select Running or Always, the Memory and Screen views are only
updated if the target supports access to that memory when running. For example,
some CoreSight targets support access to physical memory at any time through
the Debug Access Port (DAP) to the Advanced High-performance Bus Access Port
(AHB-AP) bridge. In those cases, add the AHB: prefix to the address selected in the
Memory or Screen views. This type of access bypasses any cache on the CPU core,
so the memory content returned might be different to the value that the core reads.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 414 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-55: Timed Auto-Refresh properties dialog box

11.33 Memory Exporter dialog box
Use the Memory Exporter dialog box to generate a file containing the data from a specific region
of memory.

Memory Bounds
Specifies the memory region to export:

Start Address
Specifies the start address for the memory.

End Address
Specifies the inclusive end address for the memory.

Length in Bytes
Specifies the number of bytes.

Output Format
Specifies the output format:

• Binary. This is the default.

• Intel Hex-32.

• Motorola 32-bit (S-records).

• Byte oriented hexadecimal (Verilog Memory Model).

Export Filename
Enter the location of the output file in the field provided or click on:

• File System… to locate the output file in an external folder

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 415 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Workspace… to locate the output file in a workspace project.

Figure 11-56: Memory Exporter dialog box

11.34 Memory Importer dialog box
Use the Memory Importer dialog box to import data from a file into memory.

Offset to Embedded Address
Specifies an offset that is added to all addresses in the image prior to importing it. Some image
formats do not contain embedded addresses and in this case the offset is the absolute address to
which the image is imported.

Memory Limit
Enables you to define a region of memory that you want to import to:

Limit to memory range
Specifies whether to limit the address range.

Start
Specifies the minimum address that can be written to. Any address prior to this is not written to. If
no address is given then the default is address zero.

End
Specifies the maximum address that can be written to. Any address after this is not written to. If no
address is given then the default is the end of the address space.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 416 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Import File Name
Select Import file as binary image if the file format is binary.

Enter the location of the file in the field provided or click on:

• File System… to locate the file in an external folder

• Workspace… to locate the file in a workspace project.

Figure 11-57: Memory Importer dialog box

11.35 Fill Memory dialog box
Use the Fill Memory dialog box to fill a memory region with a pattern of bytes.

Memory Bounds
Specifies the memory region:

Start Address
Specifies the start address of the memory region.

End Address
Specifies the inclusive end address of the memory region.

Length in Bytes
Specifies the number of bytes to fill.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 417 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Data Pattern
Specifies the fill pattern and its size in bytes.

Fill size
Specifies the size of the fill pattern as either 1, 2, 4, or 8 bytes.

Pattern
Specifies the pattern with which to fill the memory region.

Figure 11-58: Fill Memory dialog box

11.36 Export Trace Report dialog box
Use the Export Trace Report dialog box to export a trace report.

Report Name
Enter the report location and name.

Base Filename
Enter the report name.

Output Folder
Enter the report folder location.

Browse
Selects the report location in the file system.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 418 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Include core
Enables you to add the core name in the report filename.

Include date time stamp
Enables you to add the date time stamp to the report filename.

Split Output Files
Splits the output file when it reaches the selected size.

Select source for trace report
Selects the required trace data.

Use trace view as report source
Instructions that are decoded in the Trace view.

Use trace buffer as report source
Trace data that is currently contained in the trace buffer.

When specifying a range, ensure that the range is large enough
otherwise you might not get any trace output. This is due to the trace
packing format used in the buffer.

Report Format
Configures the report.

Output Format
Selects the output format.

Include column headers
Enables you to add column headers in the first line of the report.

Select columns to export
Enables you to filter the trace data in the report.

Record Filters
Enables or disables trace filters.

Check All
Enables you to select all the trace filters.

Uncheck All
Enables you to unselect all the trace filters.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 419 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-59: Export Trace Report dialog box

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 420 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.37 Trace Dump dialog box
Use the Trace Dump dialog box to generate an output file containing the encoded trace data from
the buffer. You can also specify for metadata files to be created, which describe the trace sources
that produced that data.

Select Trace Capture Device
Select the trace capture device which should have its data dumped.

Select Trace Source
Select the trace source which should have its data dumped. You can select multiple sources.

Raw Dump for Devices
If selected, dump the data retrieved from RDDI, including any device-specific formatting.

If unselected, provides the target data captured in a format suitable for export. Typically, this is 16-
byte CoreSight frames with full frame syncs removed.

Dump Trace and Metadata
Dump both the trace data and the metadata.

Dump Trace Only
Dump the trace data only.

Dump Metadata Only
Dump the metadata only.

Base Directory
Full path to the base directory to write the output to.

Dump Directory
New directory to create within the Base Directory. The dump output is printed within this
directory.

Split Output Files
Maximum output file size before the output is split and written to multiple files.

Available options:

• Split Files at 1MB.

• Split Files at 32MB (FAT limit).

• Split Files at 512MB.

• Split Files at 1GB (default).

• Split Files at 2GB (FAT16 limit).

• Split Files at 4GB (FAT32 limit).

Help
Open the Show Contextual Help dialog box.

OK
Accept the current configure options and create the Trace Dump file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 421 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Cancel
Exit the Trace Dump dialog box.

Reset defaults
Reset all configuration options to their default values.

Figure 11-60: Trace Dump dialog box

11.38 Breakpoint Properties dialog box
Use the Breakpoint Properties dialog box to display the properties of a breakpoint.

It also enables you to:

• Set a stop condition and an ignore count for the breakpoint.

• Specify a script file to run when the breakpoint is hit.

• Configure the debugger to automatically continue running on completion of all the breakpoint
actions.

• Assign a breakpoint action to a specific thread or processor, if available.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 422 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-61: Breakpoint properties dialog box

Breakpoint information
The breakpoint information shows the basic properties of a breakpoint. It comprises:

Description
This shows:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 423 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• If the source file is available, the file name and line number in the file where the breakpoint is
set, for example calendar.c:34.

• The name of the function in which the breakpoint is set and the number of bytes from the start
of the function. For example, main+0x4 shows that the breakpoint is 4 bytes from the start of
the main() function.

• The address at which the breakpoint is set.

• A breakpoint ID number, #<N>. In some cases, such as in a for loop, a breakpoint might comprise
a number of sub-breakpoints. These are identified as <N>.<n>, where <N> is the number of the
parent.

• The instruction set at the breakpoint, A32 (Arm) or T32 (Thumb).

• An ignore count, if set. The display format is:

ignore = <num>/<count>

<num> equals <count> initially, and decrements on each pass until it reaches zero.

<count> is the value you have specified for the ignore count.

• A hits count that increments each time the breakpoint is hit. This is not displayed until the first
hit. If you set an ignore count, hits count does not start incrementing until the ignore count
reaches zero.

• The stop condition you have specified, for example i==3.

Host File Location
The location of the image on the host machine.

Compiled File Location
The path that the image was compiled with. This can be relative or absolute. This location might be
different from the host file location if you compile and debug the image on different machines.

Type
This shows:

• Whether or not the source file is available for the code at the breakpoint address, Source Level
if available or Address Level if not available.

• If the breakpoint is on code in a shared object, Auto indicates that the breakpoint is
automatically set when that shared object is loaded.

• If the breakpoint is Active, the type of the breakpoint, either Software Breakpoint or Hardware
 Breakpoint.

• The instruction set of the instruction at the address of the breakpoint, A32 (Arm) or T32
 (Thumb).

State
Indicates one of the following:

Active
The image or shared object containing the address of the breakpoint is loaded, and the breakpoint
is set.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 424 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Disabled
The breakpoint is disabled.

No Connection
The breakpoint is in an application that is not connected to a target.

Pending
The image or shared object containing the address of the breakpoint has not yet been loaded. The
breakpoint becomes active when the image or shared object is loaded.

Address
A dialog box that displays one or more breakpoint or sub-breakpoint addresses. You can use the
check boxes to enable or disable the breakpoints.

Breakpoint options
The following options are available for you to set:

Break on Selected Threads or Cores
Select this option if you want to set a breakpoint for a specific thread or processor. This option is
disabled if none are available.

Stop Condition
Specify a C-style conditional expression for the selected breakpoint. For example, to activate the
breakpoint when the value of x equals 10, specify x==10.

Ignore Count
Specify the number of times the selected breakpoint is ignored before it is activated.

The debugger decrements the count on each pass. When it reaches zero, the breakpoint activates.
Each subsequent pass causes the breakpoint to activate.

On break, run script
Specify a script file to run when the selected breakpoint is activated.

Take care with the commands you use in a script that are attached to a
breakpoint. For example, if you use the quit command in a script, the
debugger disconnects from the target when the breakpoint is hit.

Continue Execution
Select this option if you want to continue running the target after the breakpoint is activated.

Silent
Controls the printing of messages for the selected breakpoint in the Commands view.

Hardware Virtualization
Indicates whether Hardware Virtualization is supported.

Break on Virtual Machine ID
If Hardware Virtualization is supported, specify the VirtualMachine ID (VMID) of the guest
operating system to which the breakpoint applies.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 425 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.39 Watchpoint Properties dialog box
Use the Watchpoint Properties dialog box to display the properties of a watchpoint.

You can:

• View the Location at which the watchpoint is set.

• View the memory Address at which the watchpoint is set.

• View the Access Type of the watchpoint.

• Enable or disable the watchpoint.

• Set the Data Width.

• Specify a Stop Condition.

Figure 11-62: Watchpoint Properties dialog box

Location
The data location at which the watchpoint is set.

Address
The memory address at which the watchpoint is set.

Access Type
The type of access specified for the watchpoint.

Enabled
Select to enable watchpoint, deselect to disable watchpoint.

Data Width
Specify the width to watch at the given address, in bits. Accepted values are: 8, 16, 32, and 64 if
supported by the target. This parameter is optional.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 426 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

The width defaults to:

• 32 bits for an address.

• The width corresponding to the type of the symbol or expression, if entered.

Stop Condition
Specify the condition which must evaluate to true at the time the watchpoint is triggered for the
target to stop. Enter a C-style expression. For example, if your application code has a variable x,
then you can specify: x == 10.

You can create several conditional watchpoints, but when a conditional
watchpoint is enabled, no other watchpoints (regardless of whether they are
conditional) can be enabled.

11.40 Tracepoint Properties dialog box
Use the Tracepoint Properties dialog box to display the properties of a tracepoint.

Figure 11-63: Tracepoint Properties dialog box

The following types are available:

Trace Start Point
Enables trace capture when it is hit.

Trace Stop Point
Disables trace capture when it is hit.

Trace Trigger Point
Starts trace capture when it is hit.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 427 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Tracepoint behavior might vary depending on the selected target.

• The start and stop points for trace must always exist as a pair. Whenever you
set a start or stop point, also set its partnering stop or start point.

11.41 Manage Signals dialog box
Use the Manage Signals dialog box to control the handler (vector catch) settings for one or more
signals or processor exceptions.

To view the Manage Signals dialog box:

1. Select Manage Signals from the Breakpoints toolbar or the view menu.

2. Select the individual Signal you want to Stop or Print information, and click OK.

View the results in the Command view.

You can also use the info signals command to display the current signal handler
settings.

When a signal or processor exception occurs you can choose to stop execution, print a message, or
both. Stop and Print are selected for all signals by default.

When connected to an application running on a remote target using gdbserver, the
debugger handles Unix signals, but on bare-metal targets with no operating system
it handles processor exceptions.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 428 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/info-signals

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-64: Manage Signals dialog box

Related information
Handling UNIX signals on page 75
Handling processor exceptions on page 77
Breakpoints view on page 322

11.42 Functions Filter dialog box
Use the Functions Filter dialog box to filter the list of symbols that are displayed in the Functions
view.

You can filter functions by compilation unit or image and by function name.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 429 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-65: Function filter dialog box

11.43 Script Parameters dialog box
Use the Script Parameters dialog box to specify script parameters.

Script Parameters
Specifies parameters for the script in the text field. Parameters must be space-delimited.

Variables…
Opens the Select Variable dialog box, in which you can select variables that are passed to the
application when the debug session starts. For more information on Eclipse variables, use the
dynamic help.

Arm® Development Studio resolves Eclipse variables when you export a
debug configuration.

However, they are not resolved when you refer to them in a script, or when
using the Commands view.

Enable Verbose Mode
Checking this option causes the script to run in verbose mode. This means that each command in
the script is echoed to the Commands view.

OK
Saves the current parameters and closes the Script Parameters dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 430 of 589

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-exttools.htm
https://developer.arm.com/documentation/101470/latest/Perspectives-and-Views/Debug-Configurations---Export-tab
https://developer.arm.com/documentation/101470/latest/Perspectives-and-Views/Debug-Configurations---Export-tab
https://developer.arm.com/documentation/101470/latest/Perspectives-and-Views/Commands-view

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Cancel
Closes the Script Parameters dialog box without saving the changes.

Figure 11-66: Script Parameters dialog box

11.44 Debug Configurations - Connection tab
Use the Connection tab in the Debug Configurations dialog box to configure Arm® Debugger
target connections. Each configuration that you create is associated with a single target processor

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 431 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

or a cluster of architecturally similar processors (For example, a Symmetric Multi-Processing (SMP)
configuration).

Figure 11-67: Connection tab

If the development platform has multiple processors that are architecturally different (For example,
a Cortex®-A and Cortex-M), then you must create a separate configuration for each processor.

• Options in the Connection tab are dependent on the type of platform that you
select.

• When connecting to multiple targets, you cannot perform synchronization or
cross-triggering operations.

Select target
These options enable you to select the target manufacturer, board, project type, and debug
operation.

Target Connection
Configure the connection between the debugger and the target:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 432 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

RSE connection
A list of Remote Systems Explorer (RSE) configurations that you have previously set up. Select the
required RSE configuration from the list.

You must select an RSE connection to the target if your Linux application
debug operation is:

• Download and debug application

• Start gdbserver and debug target-resident application.

gdbserver (TCP)
Specify the target IP address or name and the associated port number for the connection between
the debugger and gdbserver.

The following options might also be available, depending on the debug operation you selected:

• Select the Use Extended Mode checkbox if you want to restart an application under debug. Be
aware that this might not be fully implemented by gdbserver on all targets.

• Select the Terminate gdbserver on disconnect checkbox to terminate gdbserver when you
disconnect from the target.

Only available when the selected target is Connect to already running
application.

• Select the Use RSE Host checkbox to connect to gdbserver using the RSE configured host.

gdbserver (serial)
Specify the local serial port and connection speed for the serial connection between the debugger
and gdbserver.

For model connections, details for gdbserver are obtained automatically from the target.

Select the Use Extended Mode option if you want to restart an application under debug. Be aware
that this might not be fully implemented by gdbserver on all targets.

Bare Metal Debug
Select your debug adapter from the list. In Connection, specify the host name, IP address, or the
fully qualified domain name (FQDN) of your debug hardware adapter. You can also click Browse…
to display all the available debug hardware adapters on your local subnet or USB connections.

Model parameters
Specify the parameters for launching your model.

The options available depend on the interface of your model. For Component Architecture Debug
Interface (CADI) models, you can specify Model parameters. For Iris models, you can either select
Launch a new model and specify the Model parameters, or select Connect to an already running
model and specify the Connection address of the model.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 433 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

See the Fast Models documentation for model parameters to use.

DTSL Options
Select Edit… to configure additional debug and trace settings.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 434 of 589

https://developer.arm.com/documentation/100964/latest/

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.45 Debug Configurations - Files tab
Use the Files tab in the Debug Configurations dialog box to select debug versions of the
application file and libraries on the host that you want the debugger to use. If required, you can
also specify the target file system folder to which files can be transferred.

Figure 11-68: Files tab (Shown with file system configuration for an application on a Fixed
Virtual Platform)

Options in the Files tab depend on the type of platform and debug operation that
you select.

Files
These options enable you to configure the target file system and select files on the host that you
want to download to the target or use by the debugger. The Files tab options available for each
Debug operation are:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 435 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Table 11-3: Files tab options available for each Debug operation

Download and
debug application

Debug target
resident
application

Connect to already
running gdbserver

Debug using
DSTREAM

Debug and ETB
Trace using
DSTREAM

Application on
host to download

Yes - - Yes Yes

Application on
target

- Yes - - -

Target download
directory

Yes - - - -

Target working
directory

Yes Yes - - -

Load symbols from
file

Yes Yes Yes Yes Yes

Other file on host
to download

Yes - - - -

Path to target
system root
directory

Yes Yes Yes - -

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

Files tab options summary
The options available on the Files tab depend on the debug operation you selected on the
Connection tab. The possible options are:

Application on host to download
Specify the application image file on the host that you want to download to the target:

• Enter the host location and file name in the field provided.

• Click File System… to locate the file in an external directory from the Development Studio
workspace.

• Click Workspace… to locate the file in a project directory or sub-directory within the
Development Studio workspace.

For example, to download the stripped (no debug) Gnometris application image, select the
gnometris/stripped/gnometris file.

Select Load symbols to load the debug symbols from the specified image.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 436 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Application on target
Specify the location of the application on the target. gdbserver uses this to launch the application.

For example, to use the stripped (no debug) Gnometris application image when using a model and
VFS is configured to mount the host workspace as /writeable on the target, specify the following
in the field provided: /writeable/gnometris/stripped/gnometris

Target download directory
If the target has a preloaded image, then you might have to specify the location of the
corresponding image on your host.

The debugger uses the location of the application image on the target as the default current
working directory. To change the default setting for the application that you are debugging, enter
the location in the field provided. The current working directory is used whenever the application
references a file using a relative path.

Load symbols from file
Specify the application image containing the debug information to load:

• Enter the host location and file name in the field provided.

• Click File System… to locate the file in an external directory from the workspace.

• Click Workspace… to locate the file in a project directory or sub-directory within the
workspace.

For example, to load the debug version of Gnometris you must select the gnometris application
image that is available in the gnometris project root directory.

Although you can specify shared library files here, the usual method is to specify a path to your
shared libraries with the Shared library search directory option on the Debugger tab.

Load symbols from file is selected by default.

Add peripheral description files from directory
A directory with configuration files defining peripherals that must be added before connecting to
the target. You can use either a .svd or a .tcf configuration file type for defining peripherals.

Other file on host to download
Specify other files that you want to download to the target. You can:

• Enter the host location and file name in the field provided.

• Click File System… to locate the file in an external directory from the workspace.

• Click Workspace… to locate the file in a project directory or sub-directory within the
workspace.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 437 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

For example, to download the stripped (no debug) Gnometris shared library to the target you can
select the gnometris/stripped/libgames-support.so file.

Path to target system root directory
Specifies the system root directory to search for shared library symbols.

The debugger uses this directory to search for a copy of the debug versions of target shared
libraries. The system root on the host workstation must contain an exact representation of the
libraries on the target root file system.

Target working directory
If this field is not specified, the debugger uses the location of the application image on the target as
the default current working directory. To change the default setting for the application that you are
debugging, enter the location in the field provided. The current working directory is used whenever
the application refers to a file using a relative path.

Remove this resource file from the list
To remove a resource from the configuration settings, click this button next to the resource that
you want to remove.

Add a new resource to the list
To add a new resource to the file settings, click this button and then configure the options as
required.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 438 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.46 Debug Configurations - Debugger tab
Use the Debugger tab in the Debug Configurations dialog box to specify the actions that you want
the debugger to do after connection to the target.

Figure 11-69: Debugger tab (Shown with settings for application starting point and search paths)

Run Control
These options enable you to define the running state of the target when you connect:

Connect only
Connect to the target, but do not run the application.

The PC register is not set and pending breakpoints or watchpoints are
subsequently disabled when a connection is established.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 439 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Debug from entry point
Run the application when a connection is established, then stop at the image entry point.

Debug from symbol
Run the application when a connection is established, then stop at the address of the specified
symbol. The debugger must be able to resolve the symbol. If you specify a C or C++ function
name, then do not use the () suffix.

If the symbol can be resolved, execution stops at the address of that symbol.

If the symbol cannot be resolved, a message is displayed in the Commands view warning that the
symbol cannot be found. The debugger then attempts to stop at the image entry point.

Run target initialization debugger script (.ds / .py)
Select this option to execute target initialization scripts (a file containing debugger commands)
immediately after connection. To select a file:

• Enter the location and file name in the field provided.

• Click on File System… to locate the file in an external directory from the workspace.

• Click on Workspace… to locate the file in a project directory or sub-directory within the
workspace.

Run debug initialization debugger script (.ds / .py)
Select this option to execute debug initialization scripts (a file containing debugger commands) after
execution of any target initialization scripts and also running to an image entry point or symbol, if
selected. To select a file:

• Enter the location and file name in the field provided.

• Click File System… to locate the file in an external directory from the workspace.

• Click Workspace… to locate the file in a project directory or sub-directory within the workspace.

You might have to insert a wait command before a run or continue command
to enable the debugger to connect and run the application to the specified
function.

Execute debugger commands
Enter debugger commands in the field provided if you want to automatically execute specific
debugger commands that run on completion of any initialization scripts. Each line must contain
only one debugger command.

Host working directory
The debugger uses the Eclipse workspace as the default working directory on the host. To change
the default setting for the application that you are debugging, deselect the Use default check box
and then:

• Enter the location in the field provided.

• Click File System… to locate the external directory.

• Click Workspace… to locate the project directory.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 440 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Paths
You can modify the search paths on the host used by the debugger when it displays source code.

Source search directory
Specify a directory to search for source files:

• Enter the location and file name in the field provided.

• Click File System… to locate the directory in an external location from the workspace.

• Click Workspace… to locate the directory within the workspace.

Shared library search directory
Specify a directory to search for shared libraries:

• Enter the location in the field provided.

• Click File System… to locate the directory in an external location from the workspace.

• Click Workspace… to locate the directory within the workspace.

Remove this resource file from the list
To remove a search path from the configuration settings, click this button next to the resource that
you want to remove.

Add a new resource to the list
To add a new search path to the configuration settings, click this button and then configure the
options as required.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 441 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.47 Debug Configurations - OS Awareness tab
Use the OS Awareness tab in the Debug Configurations dialog box to inform the debugger of
the Operating System (OS) the target is running. This enables the debugger to provide additional
functionality specific to the selected OS.

Figure 11-70: OS Awareness tab

Multiple options are available in the drop-down box and its content is controlled by the selected
platform and connection type in the Connection tab. OS awareness depends on having debug
symbols for the OS loaded within the debugger.

Linux OS awareness is not currently available in this tab, and remains in the
Connection tab as a separate debug operation.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 442 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.48 Debug Configurations - Arguments tab
If your application accepts command-line arguments to main(), specify them using the Arguments
tab in the Debug Configurations dialog box.

Figure 11-71: Arguments tab

The Arguments tab contains the following elements:

These settings only apply if the target supports semihosting and they cannot be
changed while the target is running.

Program Arguments
This panel enables you to enter the arguments. Arguments are separated by spaces. They are
passed to the target application unmodified except when the text is an Eclipse argument variable of
the form ${<var_name>} where Eclipse replaces it with the related value.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 443 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

For a Linux target, you might have to escape some characters using a backslash (\\) character. For
example, the @, (,), ", and # characters must be escaped.

Variables…
This button opens the Select Variable dialog box where you can select variables that are passed to
the application when the debug session starts. For more information on variables, use the dynamic
help.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

Related information
Using semihosting to access resources on the host computer on page 80
Working with semihosting on page 82

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 444 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.49 Debug Configurations - Environment tab
Use the Environment tab in the Debug Configurations dialog box to create and configure the
target environment variables that are passed to the application when the debug session starts.

Figure 11-72: Environment tab (Shown with environment variables configured for a Fixed Virtual
Platform)

The Environment tab contains the following elements:

The settings in this tab are not used for connections that use the Connect to
already running gdbserver debug operation.

Target environment variables to set
This panel displays the target environment variables in use by the debugger.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 445 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

New…
Opens the New Environment Variable dialog box where you can create a new target environment
variable.

For example, the Gnometris application is provided as a packaged example in Arm® Development
Studio. To debug the Gnometris application on a model, you must create a target environment
variable for the DISPLAY setting.

Figure 11-73: New Environment Variable dialog box

Edit…
Opens the Edit Environment Variable dialog box where you can edit the properties for the selected
target environment variable.

Remove
Removes the selected target environment variables from the list.

Apply
Save the current configuration. This does not connect to the target.

Revert
Undo any changes and revert to the last saved configuration.

Debug
Connect to the target and close the Debug Configurations dialog box.

Close
Close the Debug Configurations dialog box.

11.50 Debug Configurations - Export tab
An Arm® Development Studio debug launch configuration typically describes the target to connect
to, the communication protocol or probe to use, the application to load on the target, and debug
information to load in the debugger. Use the Export tab in the Debug Configurations dialog box
to export the current launch configuration to a format that can be used from the command-line
debugger.

On exporting, all Eclipse variables are replaced with their actual values so that the resulting file can
be used across multiple machines or workspaces. Path variables are resolved to their absolute path
values.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 446 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Arm Development Studio does not resolve Eclipse variables when scripting or using
the Commands view.

Figure 11-74: Export tab

Export a launch configuration to use at the command-line
1. Create a launch configuration with the required target, application, and image.

2. In the Export tab, of the Debug Configurations dialog box, click Export, and save the .cli file.

After exporting the file, use the --launch-config command-line debugger command to load the
launch configuration from the command-line debugger.

For example, on Windows platforms: debugger --launch-config "C:\Workspace
\debugconfiguration.cli"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 447 of 589

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-exttools.htm
https://developer.arm.com/documentation/101470/latest/Perspectives-and-Views/Commands-view

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.51 DTSL Configuration Editor dialog box
Use the Debug and Trace Services Layer (DTSL) Configuration Editor to configure additional debug
and trace settings. The configuration options available depend on the capabilities of the target.
Typically, they enable configuration of the trace collection method and the trace that is generated.

A typical set of configuration options might include:

Trace Capture
Select the collection method that you want to use for this debug configuration. The available trace
collection methods depend on the target and trace capture unit but can include Embedded Trace
Buffer (ETB)/Micro Trace Buffer (MTB) (trace collected from an on-chip buffer) or DSTREAM (trace
collected from the DSTREAM trace buffer). If no trace collection method is selected then no trace
can be collected, even if the trace capture for processors and Instruction Trace Macrocell (ITM) are
enabled.

Core Trace
Enable or disable trace collection. If enabled then the following options are available:

<Enable core n trace>

Specify trace capture for specific processors.

Cycle accurate trace
Enable or disable cycle accurate trace.

Trace capture range
Specify an address range to limit the trace capture.

ITM
Enable or disable trace collection from the ITM unit.

Named DTSL configuration profiles can be saved for later use.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 448 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-75: Configuration Editor (Shown with Trace capture method set to DSTREAM)

Related information
Cache Data view on page 387
About debugging caches on page 45
cache commands

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 449 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups/Cache

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.52 Probe Configuration dialog box
Edit and save configuration options for your probe using the Probe Configuration dialog box.

Figure 11-76: Probe Configuration dialog box

Access the Probe Configuration dialog box
To open the Probe Configuration dialog box:

1. In the Debug Configurations dialog box, select the Connections tab.

2. In Target Connection, select your probe and click Probe Configuration.

Your selected probe must contain user-configurable options for the Probe
Configuration option to appear.

Features
The options available depend on your probe. Check your hardware documentation for user-
configurable options for your probe.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 450 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Related information
Add a debug connection over functional I/O on page 278

11.53 About the Remote System Explorer
Use the Remote Systems Explorer (RSE) perspective to connect to and work with a variety of
remote systems.

It enables you to:

• Set up Linux SSH connections to remote targets using TCP/IP.

• Create, copy, delete, and rename resources.

• Set the read, write, and execute permissions for resources.

• Edit files by double-clicking to open them in the C/C++ editor view.

• Execute commands on the remote target.

• View and kill running processes.

• Transfer files between the host workstation and remote targets.

• Launch terminal views.

Useful RSE views that you can add to the Development Studio perspective are:

• Remote Systems.

• Remote System Details.

• Remote Scratchpad.

• Terminals.

To add an RSE view to the Development Studio perspective:

1. Ensure that you are in the Development Studio perspective. You can change perspective by
using the perspective toolbar or you can select Window > Perspective > Open Perspective
from the main menu.

2. Select Window > Show View > Other... to open the Show View dialog box.

3. Select the required view from the Remote Systems group.

4. Click OK.

11.54 Remote Systems view
The Remote Systems view is a hierarchical tree view of local and remote systems.

It enables you to:

• Set up a connection to a remote target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 451 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Access resources on the host workstation and remote targets.

• Display a selected file in the C/C++ editor view.

• Open the Remote System Details view and show the selected connection configuration details
in a table.

• Open the Remote Monitor view and show the selected connection configuration details.

• Import and export the selected connection configuration details.

• Connect to the selected target.

• Delete all passwords for the selected connection.

• Open the Properties dialog box and display the current connection details for the selected
target.

Figure 11-77: Remote Systems view

11.55 Remote System Details view
The Remote System Details view is a tabular view giving details about local and remote systems.

It enables you to:

• Set up a Linux connection to a remote target.

• Access resources on the host workstation and remote targets.

• Display a selected file in the C/C++ editor view.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 452 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Open the Remote Systems view and show the selected connection configuration details in a
hierarchical tree.

• Open the Remote Monitor view and show the selected connection configuration details.

• Import and export the selected connection configuration details.

• Connect to the selected target.

• Delete all passwords for the selected connection.

• Open the Properties dialog box and display the current connection details for the selected
target.

Figure 11-78: Remote System Details view

The Remote System Details view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.

2. Expand the Remote Systems group and select Remote System Details.

3. Click OK.

11.56 Target management terminal for serial and SSH
connections

Use the target management terminal to enter shell commands directly on the target without
launching any external application.

For example, you can browse remote files and folders by entering the ls or pwd commands in the
same way as you would in a Linux terminal.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 453 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-79: Terminal view

The Terminal view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.

2. Expand the Terminal group and select Terminal

3. Click OK.

4. In the Terminal view, click Settings.

5. Select the required connection type.

6. Enter the appropriate information in the Settings dialog box.

7. Click OK.

Related information
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel

11.57 Remote Scratchpad view
Use the Remote Scratchpad view as an electronic clipboard. You can copy and paste or drag and
drop useful files and folders into it for later use.

This enables you to keep a list of resources from any connection in one place.

Be aware that although the scratchpad only shows links, any changes made to a
linked resource also change it in the original file system.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 454 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-application-using-gdbserver
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-80: Remote Scratchpad

The Remote Scratchpad view is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.

2. Expand the Remote Systems group and select Remote Scratchpad.

3. Click OK.

11.58 Remote Systems terminal for SSH connections
Use the Remote Systems terminal to enter shell commands directly on the target without
launching any external application.

For example, you can browse remote files and folders by entering the ls or pwd commands in the
same way as you would in a Linux terminal.

Figure 11-81: Remote Systems terminal

This terminal is not visible by default. To add this view:

1. Select Window > Show View > Other... to open the Show View dialog box.

2. Expand the Remote Systems group and select Remote Systems.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 455 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

3. Click OK.

4. In the Remote Systems view:

a. Click on the toolbar icon Define a connection to remote system and configure a connection
to the target.

b. Right-click on the connection and select Connect from the context menu.

c. Enter the User ID and password in the relevant fields.

d. Click OK to connect to the target.

e. Right-click on Ssh Terminals.

5. Select Launch Terminal to open a terminal shell that is connected to the target.

11.59 Terminal Settings dialog box
Use the Terminal Settings dialog box to specify a connection type. You can select Telnet, Secure
SHell (SSH), or Serial.

View Settings
Enables you to specify the name and encoding for the Terminal.

View Title
Enter a name for the Terminal view.

Encoding
Select the character set encoding for the terminal.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 456 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Terminal Settings for Telnet
Figure 11-82: Terminal Settings (Telnet) dialog box

Host
The host to connect to.

Port
The port that the target is connected to:

• telnet. This is the default.

• tgtcons.

Timeout (sec)
The connection's timeout in seconds.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 457 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Terminal Settings for SSH
Figure 11-83: Terminal Settings (SSH) dialog box

Host
The host to connect to.

User
The user name.

Password
The password corresponding to the user.

Timeout (sec)
The connection's timeout in seconds. Defaults to 0.

KeepAlive (sec)
The connection's keep alive time in seconds. Defaults to 300.

Port
The port that the target is connected to. Defaults to 22.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 458 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Terminal Settings for Serial
Figure 11-84: Terminal Settings (Serial) dialog box

Port
The port that the target is connected to.

Baud Rate
The connection baud rate.

Data Bits
The number of data bits.

Stop Bits
The number of stop bits for each character.

Parity
The parity type:

• None. This is the default.

• Even.

• Odd.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 459 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

• Mark.

• Space.

Flow Control
The flow control of the connection:

• None. This is the default.

• RTS/CTS.

• Xon/Xoff.

Timeout (sec)
The connection's timeout in seconds.

11.60 Debug Hardware Configure IP view
Use the Debug Hardware Configure IP view to configure Ethernet and internet protocol settings
on the debug hardware units connected to the host workstation.

The configuration process depends on how the debug hardware unit is connected to the host
computer, and if your network uses Dynamic Host Configuration Protocol (DHCP). If your debug
hardware unit is connected to an Ethernet network or is directly connected to the host computer
using an Ethernet cross-over cable, you must configure the network settings before you can use
the unit for debugging.

You have to configure the network settings once for each debug hardware unit.

The following connections are possible:

• Your debug hardware unit is connected to your local network that uses DHCP. For this method,
you do not have to know the Ethernet address of the unit, but you must enable DHCP.

• Your debug hardware unit is connected to your local network that does not use DHCP. For this
method, you must assign a static IP address to the debug hardware unit.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 460 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Figure 11-85: Debug Hardware Configure IP view

Access
To access the Debug Hardware Configure IP view from the main menu, either:

• Select Window > Show View > Debug Hardware Configure IP.

• Select Window > Show View > Other... > Arm Debugger > Debug Hardware Configure IP.

Contents
Table 11-4: Debug Hardware Configure IP view contents

Field Description

Ethernet/MAC Address The Ethernet address/media access control (MAC) address of
the debug hardware unit. The address is automatically detected
when you click Browse and select the hardware. To enter the value
manually, select the Configure New option.

Browse… Displays the Connection Browser dialog box. Use it to browse and
select the debug hardware unit in your local network, or one that is
connected to a USB port on the host workstation.

Identify Click to visually identify your debug hardware unit using the
indicators available on the debug hardware. On DSTREAM, the
DSTREAM logo flashes during identification.

Restart Restarts the selected debug hardware unit.

Configure New Select this option to manually configure a debug hardware unit that
was not previously configured, or is on a different subnet.

Ethernet Type Select the type of Ethernet you are connecting to. Auto-Detect is
the default option. For DSTREAM devices, ensure that this is set to
Auto-Detect.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 461 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Field Description
TCP/IP Settings The following settings are available:

• Host Name - The name of the debug hardware unit. This must
contain only the alphanumeric characters (A to Z, a to z, and 0
to 9) and the '-' character. The name must be no more than 39
characters long.

• Get settings using DHCP - Enables or disables the Dynamic
Host Configuration Protocol (DHCP) on the debug hardware
unit. If you use DHCP, you must specify the hostname for your
debug hardware unit.

• IP Address - The static IP address to use.

• Default Gateway - The default gateway to use.

• Subnet Mask - The subnet mask to use.

Configure Click to apply changes to the debug hardware unit.

Related information
Debug Hardware Firmware Installer view on page 462
Connection Browser dialog box on page 465
Debug Hardware configuration on page 267

11.61 Debug Hardware Firmware Installer view
Use the Debug Hardware Firmware Installer view to update the firmware for your debug
hardware.

Firmware files for Arm debug hardware units typically contain:

Templates for devices supported by the debug hardware unit
Each template defines how to communicate with the device and the settings that you can
configure for that device. A firmware update might contain support for newer devices that the
debug hardware unit can now support.

Firmware updates and patches
Arm periodically releases updates and patches to the firmware that is installed on a debug
hardware unit. These updates or patches might extend the capabilities of your debug hardware, or
might fix an issue that has become apparent.

To access the Debug Hardware Firmware Installer view, from the main menu, select Window >
Show View > Other > Arm Debugger > Debug Hardware Firmware Installer.

Updating your debug hardware unit firmware using the Debug Hardware Firmware
Installer view
1. Connect your debug hardware to the host workstation.

2. From the main menu, select Window > Show View > Other > Arm Debugger > Debug
Hardware Firmware Installer to display the view.

3. In Select Debug Hardware, click Browse and select your debug hardware unit.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 462 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

4. Click Connect to your debug hardware unit. The current firmware status of your debug
hardware is displayed.

5. In Select Firmware Update File, click Browse and select the firmware file for your debug
hardware unit. When the file is selected, the dialog box shows the selected firmware update file
details. For example:

Figure 11-86: Debug Hardware Firmware Installer view

Arm® Development Studio only displays the firmware file applicable to your
debug hardware unit, so it is easy for you to select the correct firmware file.

6. Click Install. The firmware update process starts. When complete, a message is displayed
indicating the status of the update.

Debug Hardware Firmware Installer view options
Select Debug Hardware
The currently selected debug hardware. You can either enter the IP address or host name of the
debug hardware unit, or use the Browse button and select the debug hardware unit.

Browse
Click to display the Connection Browser dialog box. Use it to browse and select the debug
hardware unit in your local network or one that is connected to a USB port on the host
workstation.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 463 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Identify
Click to visually identify your debug hardware unit using the indicators available on the debug
hardware. On DSTREAM, the DSTREAM logo flashes during identification.

Connect
Click to connect to your debug hardware. When connected, the dialog box shows the current
firmware status.

Select Firmware Update File
Click Browse and select the firmware file. Development Studio only displays the firmware
applicable to your debug hardware unit. If you want to use a different firmware file, use the Browse
button and select the firmware file you need. When the file is selected, the dialog box shows the
selected firmware update file details.

In Development Studio, the latest firmware files are available at:
<install_directory>\sw\debughw\firmware\. If you want to choose a
different firmware file, click Browse and select the new location and file.

Clear
Click to clear the currently selected debug hardware and firmware file.

Install
Click to install the firmware file on the selected debug hardware.

Firmware file format
Firmware files have the following syntax: ARM-RVI-N.n.p-bld-type.unit

N.n.p
Is the version of the firmware. For example, 4.5.0 is the first release of firmware version 4.5.

bld
Is a build number.

type
Is either:

base
The first release of the firmware for version N.n.

patch
Updates to the corresponding N.n release of the firmware.

unit
Identifies the debug hardware unit, and is one of:

dstream
For a DSTREAM debug and trace unit.

dstream2
For the newer family of DSTREAM debug and trace units.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 464 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

rvi
For an RVI debug unit.

Related information
Debug Hardware Configure IP view on page 460
Connection Browser dialog box on page 465
Updating multiple debug hardware units on page 587

11.62 Connection Browser dialog box
Use the Connection Browser dialog box to browse for and select a debug hardware unit in
your local network or one that is connected to a USB port on the host workstation. When the
Connection Browser dialog box finds a unit, it is added to the list of available units.

To view the Connection Browser dialog box, click Browse from the Debug Hardware Configure IP
or Debug Hardware Firmware Installer views.

To connect to the debug hardware, select the hardware from the list, and click Select.

Figure 11-87: Connection Browser (Showing a USB connected DSTREAM)

• If debug hardware units do not appear in the list, check your network and setup
of your debug unit.

• Debug hardware units connected to different networks do not appear in the
Connection Browser dialog box. If you want to connect to a debug hardware
unit on a separate network, you must know the IP address of that unit.

• Any unit shown in light gray has responded to browse requests but does not
have a valid IP address. You cannot connect to that unit by TCP/IP until you
have configured it for use on your network.

• Only appropriate debug hardware units are shown.

Related information
Debug Hardware Configure IP view on page 460

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 465 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Debug Hardware Firmware Installer view on page 462

11.63 Preferences dialog box
You can customize your preferences using the Preferences dialog box.

Figure 11-88: Window preferences dialog box

To access the Preferences dialog box, select Preferences from the Window menu. Changes to
these preferences are only saved in the current workspace. If you want to copy your preferences
to another workspace, select File > Export... to open the Export wizard. Then select General >
Preferences and choose the location you want to export your preferences to.

The contents of the preferences hierarchy tree include the following groups:

General
Controls the workspace, perspectives, editors, build order, linked resources, file associations, path
variables, background operations, keyboard and mouse settings.

Arm DS
Controls the default Arm® Development Studio environment settings, presentation and formatting
for Development Studio editors and views, target configuration database search locations, and the

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 466 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

automatic checks for Development Studio product updates. You can also view Arm Development
Studio license information and launch the Preferences Wizard.

C/C++
Controls the C/C++ environment settings, CDT build variables, syntax formatting, and default
project wizard settings.

Help
Controls how the context help is displayed.

Install/Update
Controls the update history, scheduler, and policy.

Remote Systems
Controls the settings used by the Remote System Explorer.
Run/Debug
Controls the default perspectives, breakpoint, build, and launch settings before running and
debugging.

For more information on the other options not listed here, use the dynamic help.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 467 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

11.64 Properties dialog box
You can customize project settings using the Properties dialog box.

Figure 11-89: Project properties dialog box

To access the Properties dialog box select a project and then select Properties… from the Project
menu. Changes to the customized settings are saved in the project folder in your workspace.
You can also customize the C/C++ properties for a single file for example, if you want to apply a
specific compiler option to a file during the build.

If you specify different options for a single file, it overrides the options specified in
the project configuration panels that apply to all related source files.

The contents of the properties hierarchy tree for a project include the following:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 468 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Perspectives and Views

Resource
Displays the resource location, modification state, and file type.

Builders
Controls builders available for the selected project.

C/C++ Build
Controls the environment, build, and tool chain settings for the active configuration.

C/C++ General
Controls documentation, file types, indexer and path/symbol settings.

Project References
Controls project dependencies.

For more information on the other options not listed here, use the dynamic help.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 469 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

12 File-based Flash Programming in Arm
Development Studio

Describes the file-based flash programming options available in Arm® Development Studio.

12.1 About file-based flash programming in Arm
Development Studio

The Arm® Development Studio configdb platform entry for a board can contain a flash definition
section. This section defines one or more areas of flash, each with its own flash method and
configuration parameters.

Flash methods are implemented in Jython and are typically located within the configdb. Each flash
method is implemented with a specific technique of programming flash.

These techniques might involve:

• Running an external program supplied by a third party to program a file into flash.

• Copying a file to a file system mount point. For example, as implemented in the Arm Versatile
Express (VE) designs.

• Download a code algorithm into the target system and to keep running that algorithm on a data
set (typically a flash sector) until the entire flash device has been programmed.

You can use the Arm Debugger info flash command to view the flash
configuration for your board.

Examples of downloading a code algorithm into the target system are the Keil® flash programming
algorithms which are fully supported by Arm Debugger. For the Keil flash method, one of the
method configuration items is the algorithm to use to perform the flash programming. These
algorithms all follow the same top level software interface and so the same Keil flash method can
be used to program different types of flash. This means that Arm Debugger should be able to make
direct use of any existing Keil flash algorithm.

All flash methods which directly interact with the target should do so using the Arm
Debugger's DTSL connection.

Flash programming supported features
The file flash programming operations support the following features:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 470 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

• ELF files (.axf) programming into flash.

• ELF files containing multiple flash areas which can each be programmed into a flash device or
possible several different flash devices.

• Many and varied flash programming methods.

• All Keil flash programming algorithms.

• Target board setup and teardown to prepare it for flash programming.

• Arm Development Studio configuration database to learn about target flash devices and the
options required for flash programming on a specific board or system on chip.

• Default flash options modification.

• Graphical progress reporting within the IDE and on a text only type console when used with
the debugger outside the IDE, along with the ability to cancel the programming operation.

• A simple flash programming user interface where you can specify minimal configurations or
options.

• Displaying warning and error messages to the user.

An example, flash_example-FVP-A9x4, is provided with Arm Development
Studio. This example shows two ways of programming flash devices using Arm
Development Studio, one using a Keil Flash Method and the other using a Custom
Flash Method written in Jython. For convenience, the Cortex-A9x4 FVP model
supplied with Arm Development Studio is used as the target device. This example
can be used as a template for creating new flash algorithms. The readme.html
provided with the example contains basic information on how to use the example.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 471 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Arm Development Studio File Flash Architecture
Figure 12-1: File Flash Architecture

Related information
Flash commands

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 472 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-groups/flash

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

12.2 Flash programming configuration
Each target platform supported by Arm® Development Studio has an entry in the Arm
Development Studio configuration database. To add support for flash programming, a target's
platform entry in the database must define both the flash programming method and any required
parameters.

Configuration files
The target's platform entry information is stored across two files in the configuration database:

• project_types.xml - This file describes the debug operations supported for the platform
and may contain a reference to a flash configuration file. This is indicated by a tag such as
<flash_config>CDB://flash.xml</flash_config>.

• The CDB:// tag indicates a path relative to the target's platform directory which is usually
the one that contains the project_types.xml file. You can define a relative path above
the target platform directory using ../ . For example, a typical entry would be similar to
<flash_config>CDB://../../../Flash/STM32/flash.xml</flash_config>.

Using relative paths allows the flash configuration file to be shared between a number of targets
with the same chip and same flash configuration.

• The FDB:// tag indicates a path relative to where the Jython flash files (such as the
stm32_setup.py and keil_flash.py used in the examples) are located. For Arm Development
Studio installations, this is usually <installation_directory>/sw/debugger/configdb/Flash.

• A flash configuration .xml file. For example, flash.xml. This .xml file describes flash devices on
a target, including which memory regions they are mapped to and what parameters need to be
passed to the flash programming method.

A flash configuration must always specify the flash programming method to use, but can also
optionally specify a setup script and a teardown script. Setup and teardown scripts are used to
prepare the target platform for flash programming and to re-initialize it when flash programming
is complete. These scripts might be very specific to the target platform, whereas the flash
programming method might be generic.

Configuration file example
This example flash.xml is taken from the Keil® MCBSTM32E platform. It defines two flash devices
even though there is only one built-in flash device in the MCBSTM32E. This is because the two
flash sections, the main flash for program code and the option flash for device configuration, are
viewed as separate devices when programming.

Note how the flash method is set to the keil_flash.py script and how the parameters for that
method are subsequently defined.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--Copyright (C) 2012 ARM Limited. All rights reserved.-->
<flash_config
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.arm.com/flash_config"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 473 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

 xsi:schemaLocation="http://www.arm.com/flash_config flash_config.xsd">
 <devices>
 <!-- STM32F1xx has 2 flash sections: main flash for program code and
 option
 flash for device configuration. These are viewed as separate devices
 when programming -->
 <!-- The main flash device -->
 <device name="MainFlash">
 <programming_type type="FILE">
 <!-- Use the standard method for running Keil
 algorithms -->
 <method language="JYTHON" script="FDB://keil_flash.py"
 class="KeilFlash" method_config="Main"/>
 <!-- Target specific script to get target in a
 suitable state for programming -->
 <setup script="FDB://stm32_setup.py" method="setup"/>
 </programming_type>
 </device>
 <!-- The option flash device -->
 <device name="OptionFlash">
 <programming_type type="FILE">
 <method language="JYTHON" script="FDB://keil_flash.py"
 class="KeilFlash" method_config="Option"/>
 <setup script="FDB://stm32_setup.py" method="setup"/>
 </programming_type>
 </device>
 </devices>
 <method_configs>
 <!-- Parameters for programming the main flash -->
 <method_config id="Main">
 <params>
 <!-- Programming algorithm binary to load to target --
>
 <param name="algorithm" type="string" value="FDB://
algorithms/STM32F10x_512.FLM"/>
 <!-- The core in the target to run the algorithm -->
 <param name="coreName" type="string" value="Cortex-
M3"/>
 <!-- RAM location & size for algorithm code and write
 buffers -->
 <param name="ramAddress" type="integer"
 value="0x20000000"/>
 <param name="ramSize" type="integer" value="0x10000"/>
 <!-- Allow timeouts to be disabled -->
 <param name="disableTimeouts" type="string"
 value="false"/>
 <!-- Set to false to skip the verification stage -->
 <param name="verify" type="string" value="true"/>
 </params>
 </method_config>
 <!-- Parameters for programming the option flash -->
 <method_config id="Option">
 <params>
 <!-- Programming algorithm binary to load to target --
>
 <param name="algorithm" type="string" value="FDB://
algorithms/STM32F10x_OPT.FLM"/>
 <!-- The core in the target to run the algorithm -->
 <param name="coreName" type="string" value="Cortex-
M3"/>
 <!-- RAM location & size for algorithm code and write
 buffers -->
 <param name="ramAddress" type="integer"
 value="0x20000000"/>
 <param name="ramSize" type="integer" value="0x10000"/>
 <!-- Allow timeouts to be disabled -->
 <param name="disableTimeouts" type="string"
 value="false"/>
 <!-- Set to false to skip the verification stage -->
 <param name="verify" type="string" value="true"/>
 </params>

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 474 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

 </method_config>
 </method_configs>
</flash_config>

Related information
Creating an extension database for flash programming on page 475

12.3 Creating an extension database for flash
programming

In certain scenarios, it might not be desirable or possible to modify the default Arm® Development
Studio configuration database. In this case, you can create your own configuration databases and
use them to extend the default installed database.

Procedure
1. At your preferred location, create a new directory with the name of your choice for the

extension database.
2. In your new directory, create two subdirectories and name them Boards and Flash respectively.

a) In the Boards directory, create a subdirectory for the board manufacturer.
b) In the board manufacturer subdirectory, create another directory for the board.
c) In the Flash directory, create a subdirectory and name it Algorithms.

For example, for a manufacturer MegaSoc-Co who makes Acme-Board-2000, the directory
structure would look similar to this:

Boards
 \---> MegaSoc-Co
 \---> Acme-Board-2000
 project_types.xml
Flash
 \---> Algorithms
 Acme-Board-2000.flm
 Acme-Board-2000-Flash.py

3. From the main menu in Arm Development Studio, select Window > Preferences > Arm DS >
Configuration Database.
a) In the User Configuration Databases area, click Add.
b) In the Add configuration database location dialog box, enter the Name and Location of

your configuration database and click OK.
4. In the Preferences dialog box, click OK to confirm your changes.

In the project_types.xml file for your platform, any reference to a CDB:// location will resolve
to the Boards/<manufacturer>/<board> directory and any reference to a FDB:// location will
resolve to the Flash directory.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 475 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

12.4 About using or extending the supplied Arm Keil flash
method

Arm® Debugger contains a full implementation of the Keil® flash programming method. This might
be used to program any flash device supported by the Keil MDK product. It might also be used to
support any future device for which a Keil flash programming algorithm can be created.

For details on creating new Keil Flash Programming algorithms (these links apply to the Keil
μVision® product), see:

Algorithm Functions

Creating New Algorithms

To help with the creation of new Keil flash programming algorithms in Arm Development Studio,
Arm Debugger contains a full platform flash example for the Keil MCBSTM32E board. This can be
used as a template for new flash support.

An example, flash_example-FVP-A9x4, is provided with Arm Development
Studio. This example shows two ways of programming flash devices using Arm
Development Studio, one using a Keil Flash Method and the other using a Custom
Flash Method written in Jython. For convenience, the Cortex-A9x4 FVP model
supplied with Arm Development Studio is used as the target device. This example
can be used as a template for creating new flash algorithms. The readme.html
provided with the example contains basic information on how to use the example.

This section describes how to add flash support to an existing platform using an existing Keil flash
program, and how to add flash support to an existing platform using a new Keil flash algorithm.

12.4.1 Adding flash support to an existing platform using an existing Keil
flash algorithm

To use the Keil® MDK flash algorithms within Arm® Development Studio, the algorithm binary
needs to be imported into the target configuration database and the flash configuration files
created to reference the keil_flash.py script.

About this task
This example uses the flash configuration for the Keil MCBSTM32E board example in Flash
programming configuration as a template to add support to a board called the Acme-Board-2000
made by MegaSoc-Co.

Procedure
1. Copy the algorithm binary .FLM into your configuration database Flash/Algorithms directory.
2. Copy the flash configuration file from Boards/Keil/MCBSTM32E/keil-mcbstm32e_flash.xml to

Boards/MegaSoc-Co/Acme-Board-2000/flash.xml.
Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 476 of 589

https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html
https://arm-software.github.io/CMSIS_5/Pack/html/flashAlgorithm.html#CreateFPA

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

3. Edit the platform's project_types.xml to reference the flash.xml file by inserting
<flash_config>CDB://flash.xml</flash_config> below platform_data entry, for example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--Copyright (C) 2009-2012 ARM Limited. All rights reserved.-->
<platform_data xmlns="http://www.arm.com/project_type"
 xmlns:peripheral="http://com.arm.targetconfigurationeditor"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"type="HARDWARE"
 xsi:schemaLocation="http://www.arm.com/project_type../../../
Schemas/platform_data-1.xsd">
 <flash_config>CDB://flash.xml</flash_config>

4. Edit the devices section, and create a <device> block for each flash device on the target.

The method_config attribute should refer to a unique <method_config> block for
that device in the <method_configs> section.

5. Optionally, create and then reference any setup or teardown script required for your board. If
your board does not need these, then do not add these lines to your configuration.
<setup script="FDB://Acme-Board-2000-Flash.py" method="setup"/>
<teardown script="FDB://Acme-Board-2000-Flash.py" method="teardown"/>

6. Edit the method_configs section, creating a <method_config> block for each device.

• The value for the algorithm parameter should be changed to the path to
the algorithm copied in Step 1. The FDB:// prefix is used to indicate the
file can be found in the configuration database Flash directory.

• The coreName parameter must be the name of the core on the target that
runs the algorithm. This must be the same name as used in the <core>
definition within project_types.xml. For example, <core connection_id
 ="Cortex-M3" core_definition ="Cortex-M3"/>.

• The ramAddress and ramSize parameters should be set to an area of RAM
that the algorithm can be downloaded in to and used as working RAM.
It should be big enough to hold the algorithm, stack plus scratch areas
required to run the algorithm, and a sufficiently big area to download
image data. The other parameters do not normally need to be changed.

12.4.2 Adding flash support to an existing target platform using a new Keil
flash algorithm

Arm® Development Studio ships with a complete Keil® flash algorithm example for the STM32
device family. You can use this as a template for creating and building your new flash algorithm.

Locate the Bare-metal_examples_Armv7.zip file within the <installation_directory>/examples
directory. Extract it to your file system and then import the examples/flash_algo-STM32F10x
project into your Arm Development Studio workspace.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 477 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Using this as your template, create a new project, copy the content from the example into your
new project, and modify as needed.

When you have successfully built your .FLM file(s), follow the instructions in the Adding flash support
to an existing platform using an existing Keil flash algorithm topic.

Related information
Adding flash support to an existing platform using an existing Keil flash algorithm on page 476

12.5 About creating a new flash method
If the Keil® flash method is inappropriate for your requirements, you need to create a new custom
flash method for your use.

Programming methods are implemented in Jython (Python, utilizing the Jython runtime). The use of
Jython allows access to the DTSL APIs used by Arm® Debugger. Arm Development Studio includes
the PyDev tools to assist in writing Python scripts.

In an Arm Development Studio install, the configdb\Flash\flashprogrammer directory holds a
number of Python files which contain utility methods used in the examples.

This section describes a default implementation of
com.arm.debug.flashprogrammer.FlashMethodv1 and creating a flash method using a Python
script.

12.5.1 About using the default implementation FlashMethodv1

Flash programming methods are written as Python classes that are required to implement the
com.arm.debug.flashprogrammer.IFlashMethod interface. This interface defines the methods the
flash programming layer of Arm® Debugger might invoke.

See the flash_method_v1.py file in the <installation_directory>\sw
\debugger\configdb\Flash\flashprogrammer for a default implementation of
com.arm.debug.flashprogrammer.FlashMethodv1. This has empty implementations of all functions
- this allows a Python class derived from this object to only implement the required functions.

Running a flash programming method is split into three phases:

1. Setup - the setup() function prepares the target for performing flash programming. This might
involve:

• Reading and validating parameters passed from the configuration file.

• Opening a connection to the target.

• Preparing the target state, for example, to initialize the flash controller.

• Loading any flash programming algorithms to the target.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 478 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

2. Programming - the program() function is called for each section of data to be written. Images
might have multiple load regions, so the program() function might be called several times. The
data to write is passed to this function and the method writes the data into flash at this stage.

3. Teardown - the teardown() function is called after all sections have been programmed. At this
stage, the target state can be restored (for example, take the flash controller out of write mode
or reset the target) and any debug connection closed.

The setup() and teardown() functions are not to be confused with the target
platform optional setup() and teardown() scripts. The setup() and teardown()
functions defined in the flash method class are for the method itself and not the
board.

12.5.2 About creating the flash method Python script

For the purposes of this example the Python script is called example_flash.py.

Start by importing the objects required in the script:

from flashprogrammer.flash_method_v1 import FlashMethodv1
from com.arm.debug.flashprogrammer import TargetStatus

Then, define the class implementing the method:

class ExampleFlashWriter(FlashMethodv1):
 def __init__(self, methodServices):
 FlashMethodv1.__init__(self, methodServices)
 def setup(self):
 # perform any setup for the method here
 pass
 def teardown(self):
 # perform any clean up for the method here
 # return the target status
 return TargetStatus.STATE_RETAINED
 def program(self, regionID, offset, data):
 # program a block of data to the flash
 # regionID indicates the region within the device (as defined in the flash
 configuration file)
 # offset is the byte offset within the region
 # perform programming here
 # return the target status
 return TargetStatus.STATE_RETAINED

• The __init__ function is the constructor and is called when the class instance is
created.

• methodServices allows the method to make calls into the flash programmer - it
must not be accessed directly.

• FlashMethodv1 provides functions that the method can call while programming.

• The program() and teardown() methods must return a value that describes the
state the target has been left in.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 479 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

This can be one of:

◦ STATE_RETAINED - The target state has not been altered from the state when
programming started. In this state, the register and memory contents have
been preserved or restored.

◦ STATE_LOST - Register and memory contents have been altered, but a system
reset is not required.

◦ RESET_REQUIRED - It is recommended or required that the target be reset.

◦ POWER_CYCLE_REQUIRED - It is required that the target be manually power
cycled. For example, when a debugger-driven reset is not possible or not
sufficient to reinitialize the target.

Creating the target platform setup and teardown scripts
If the hardware platform requires some setup (operations to be performed before flash
programming) and/or teardown (operations performed after flash programming) functionality,
you must create one or more scripts which contain setup() and teardown() functions. These
can be in separate script files or you can combine them into a single file. This file must be placed
into the configdb Flash directory so that it can be referenced using a FDB:// prefix in the flash
configuration file.

For example, the contents of a single file which contains both the setup() and teardown()
functions would be similar to:

from com.arm.debug.flashprogrammer.IFlashClient import MessageLevel
from flashprogrammer.device import ensureDeviceOpen
from flashprogrammer.execution import ensureDeviceStopped
from flashprogrammer.device_memory import writeToTarget
def setup(client, services):
 # get a connection to the core
 conn = services.getConnection()
 dev = conn.getDeviceInterfaces().get("Cortex-M3")
 ensureDeviceOpen(dev)
 ensureDeviceStopped(dev)
 # Perform some target writes to enable flash programming
 writeToTarget(dev, FLASH_EN, intToBytes(0x81))
def teardown(client, services):
 # get a connection to the core
 conn = services.getConnection()
 dev = conn.getDeviceInterfaces().get("Cortex-M3")
 ensureDeviceOpen(dev)
 ensureDeviceStopped(dev)
 # Perform some target writes to disable flash programming
 writeToTarget(dev, FLASH_EN, intToBytes(0))

Creating the flash configuration file
To use the method to program flash, a configuration file must be created that describes the flash
device, the method to use and any parameters or other information required. This is an .xml file
and is typically stored in the same directory as the target's other configuration files (Boards/
<Manufacturer>/<Board name>) as it contains target-specific information.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flash_config

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 480 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.arm.com/flash_config"
 xsi:schemaLocation="http://www.arm.com/flash_config flash_config.xsd">
 <devices>
 <device name="Example">
 <regions>
 <region address="0x8000" size="0x10000">
 </regions>
 <programming_type type="FILE">
 <method language="JYTHON" script="FDB://example_flash.py"
 class="ExampleFlashWriter" method_config="Default"/>
 <setup script="FDB://file_target.py" method="setup"/>
 <teardown script="FDB://file_target.py" method="teardown"/>
 </programming_type>
 </device>
 </devices>
 <method_configs>
 <method_config id="Default">
 <params>
 <!-- Use last 2K of RAM -->
 <param name="ramAddress" type="integer" value="0x00100000"/>
 <param name="ramSize" type="integer" value="0x800"/>
 </params>
 </method_config>
 </method_configs>
</flash_config>

• The flash_config tag defines used XML spaces and schema. This does not usually need to
be changed. Under the flash_config tag, a devices tag is required. This contains a number of
device tags, each representing one flash device on the target. The device tag defines the name
of the device - this is the name reported by the info flash command and is used only when
programming to a specific device. It also defines a number of regions where the flash device
appears in the target's memory - the addresses of each region are matched against the address
of each load region of the image being programmed.

• The programming_type tag defines the programming method and setup/teardown scripts to be
used for a flash programming operation. Currently, only FILE is supported.

• The method tag defines the script which implements the programming method. Currently, only
JYTHON is supported for the language attribute. The script and class attributes define which
script file to load and the name of the class that implements the programming method within
the script. The method_config attributes define which set of parameters are used by the device.
This allows multiple devices to share a set of parameters.

• The programming_type may also have optional setup and teardown tags. These define a script
and a method within that script to call before or after flash programming.

• Within the method_configs tag, the parameters for each device are contained within
method_config tags.

• Parameters must have a unique name and a default value. You can override the value passed to
the method. See the help for the flash load command in Arm® Debugger.

• Where the configuration file references another file, for example, the script files, the FDB://
prefix indicates that the file is located in the Flash subdirectory of the configuration database. If
there are multiple databases, then the Flash subdirectory of each database is searched until the
file is found.

• The last file that needs to be changed is the project_types.xml file in the target's directory
to tell Arm Development Studio that the flash configuration can be found in the file

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 481 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

created above. The following line must be added under the top-level platform_data tag:
<flash_config>CDB://flash.xml</flash_config> The CDB:// prefix tells Arm Development
Studio that the flash.xml file is located in the same directory as the project_types.xml file.

12.6 About testing the flash configuration
With the files described in the previous sections in place, it should be possible to make a
connection to the target in Arm® Development Studio and inspect the flash devices available and
program an image. Although, with the files in their current form, no data will actually be written to
flash.

If Arm Development Studio is already open and project_types.xml is changed, it
will be necessary to rebuild the configuration database.

Within Arm Debugger, connect to your target system and enter info flash into the Commands
view. You should get an output similar to:

info flash
MainFlash
regions: 0x8000000-0x807FFFF
parameters: programPageTimeout: 100
 driverVersion: 257
 programPageSize: 0x400
 eraseSectorTimeout: 500
 sectorSizes: ((0x800, 0x00000000))
 valEmpty: 0xff
 type: 1
 size: 0x00080000
 name: STM32F10x High-density Flash
 address: 0x08000000
 algorithm: FDB://algorithms/STM32F10x_512.FLM
 coreName: Cortex-M3
 ramAddress: 0x20000000
 ramSize: 0x10000
 disableTimeouts: false
 verify: true

You can test the flash programming operation by attempting to program with a test ELF file.

flash load flashyprogram.axf
Writing segment 0x00008000 ~ 0x0000810C (size 0x10C)
Flash programming completed OK (target state has been preserved)

You can use any ELF (.axf) file which contains data within the configured address
range.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 482 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

12.7 About flash method parameters
Programming methods can take parameters that serve to change the behavior of the flash
programming operation.

Example parameters could be:

• The programming algorithm image to load, for example, the Keil® Flash Algorithm file.

• The location and size of RAM the method can use for running code, buffers, and similar items.

• Clock speeds.

• Timeouts.

• Programming and erase page sizes.

The default values of the parameters are taken from the flash configuration file.

You can override the parameters from the Arm® Development Studio command
line.

The programming method can obtain the value of the parameters with:

• getParameter(name) returns the value of a parameter as a string. The method can convert
this to another type, such as integers, as required. None is returned if no value is set for this
parameter.

• getParameters() returns a map of all parameters to values. Values can then be obtained with
the [] operator.

For example:

def setup(self):
 # get the name of the core to connect to
 coreName = self.getParameter("coreName")
 # get parameters for working RAM
 self.ramAddr = int(self.getParameter("ramAddress"), 0)
 self.ramSize = int(self.getParameter("ramSize"), 0)

12.8 About getting data to the flash algorithm
Data is passed to the program() function by the data parameter.

A data parameter is an object that provides the following functions:

• getSize() returns the amount of data available in bytes.

• getData(sz) returns a buffer of up to sz data bytes. This may be less, for example, at the end
of the data. The read position is advanced.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 483 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

• seek(pos) move the read position.

• getUnderlyingFile() gets the file containing the data. (None, if not backed by a file). This
allows the method to pass the file to an external tool.

The method can process the data with:

def program(self, regionID, offset, data):
 data.seek(0)
 bytesWritten = 0
 while bytesWritten < data.getSize():
 # get next block of data
 buf = data.getData(self.pageSize)
 # write buf to flash
 bytesWritten += len(buf)

12.9 About interacting with the target
To perform flash programming, the programming method might need to access the target.

The flash programmer provides access to the DTSL APIs for this and the programming method can
then get a connection with the getConnection() function of class FlashMethodv1.

This is called from the setup() function of the programming method. If there is already an open
connection, for example, from the Arm® Debugger, this will be re-used.

def setup(self):
 # connect to core
 self.conn = self.getConnection()

An example, flash_example-FVP-A9x4 , is provided with Arm Development
Studio. This example shows two ways of programming flash devices using Arm
Development Studio, one using a Keil® Flash Method and the other using a Custom
Flash Method written in Jython. For convenience, the Cortex-A9x4 FVP model
supplied with Arm Development Studio is used as the target device. This example
can be used as a template for creating new flash algorithms. The readme.html
provided with the example contains basic information on how to use the example.

Accessing the core
When interacting with the target, it might be necessary to open a connection to the core. If the
debugger already has an open connection, a new connection might not be always possible. A utility
function, ensureDeviceOpen(), is provided that will open the connection only if required. It will
return true if the connection is open and so should be closed after programming in the teardown()
function.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 484 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

To access the core's registers and memory, the core has to be stopped. Use the
ensureDeviceStopped() function to assist with this.

def setup(self):
 # connect to core & stop
 self.conn = self.getConnection()
 coreName = self.getParameter("coreName")
 self.dev = self.conn.getDeviceInterfaces().get(coreName)
 self.deviceOpened = ensureDeviceOpen(self.dev)
 ensureDeviceStopped(self.dev)
def teardown(self):
 if self.deviceOpened:
 # close device connection if opened by this script
 self.dev.closeConn()

Reading/writing memory
The core's memory can be accessed using the memWrite(), memFill(), and memRead() functions of
the dev object (IDevice).

from com.arm.rddi import RDDI
from com.arm.rddi import RDDI_ACC_SIZE
from jarray import zeros
...
 def program(self):
 ...
 self.dev.memFill(0, addr, RDDI_ACC_SIZE.RDDI_ACC_WORD,
 RDDI.RDDI_MRUL_NORMAL, False, words, 0)
 self.dev.memWrite(0, addr, RDDI_ACC_SIZE.RDDI_ACC_WORD,
 RDDI.RDDI_MRUL_NORMAL, False, len(buf), buf)
 ...
 def verify(self):
 ...
 readBuf = zeros(len(buf), 'b')
 self.dev.memRead(0, addr, RDDI_ACC_SIZE.RDDI_ACC_WORD,
 RDDI.RDDI_MRUL_NORMAL, len(readBuf), readBuf)
 ...

Utility routines to make the method code clearer are provided in device_memory:

from flashprogrammer.device_memory import writeToTarget, readFromTarget
...
 def program(self):
 ...
 writeToTarget(self.dev, address, buf)
 ...
 def verify(self):
 ...
 readBuf = readFromTarget(self.dev, addr, count)
 ...

Reading and writing registers
The core's registers can be read using the regReadList() and written using the regWriteList()
functions of Idevice.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 485 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

You must be careful to only pass integer values and not long values.

These registers are accessed by using numeric IDs. These IDs are target specific. For example, R0 is
register 1 on a Cortex®-A device, but register 0 on a Cortex-M device.

execution.py provides functions that map register names to numbers and allow reading or writing
by name.

• writeRegs(device, regs) writes a number of registers to a device. regs is a list of (name, value)
pairs.

For example:

writeRegs (self.dev, [("R0", 0), ("R1", 1234), ("PC", 0x8000)]

sets R0, R1, and PC (R15).

• readReg(device, reg) reads a named register.

For example:

value = readReg ("R0")

reads R0 and returns its value.

Running code on the core
The core can be started and stopped via the go() and stop() functions. Breakpoints can be
set with the setSWBreak() or setHWBreak() functions and cleared with the clearSWBreak() or
clearHWBreak() functions. As it may take some time to reach the breakpoint, before accessing the
target further, the script should wait for the breakpoint to be hit and the core stopped.

execution.py provides utility methods to assist with running code on the target.

To request the core to stop and wait for the stop status event to be received, and raise an error if
no event is received before timeout elapses stopDevice(device, timeout=1.0)

• To check the device's status and calls stopDevice() if it is not stopped.
ensureDeviceStopped(device, timeout=1.0):

• To start the core and wait for it to stop, forces the core to stop and raise an error if it
doesn't stop before timeout elapses. The caller must set the registers appropriately and
have set a breakpoint or vector catch to cause the core to stop at the desired address.
runAndWaitForStop(device, timeout=1.0):

• To set a software breakpoint at addr, start the core and wait for it to stop by
calling runAndWaitForStop(). The caller must set the registers appropriately.
runToBreakpoint(device, addr, bpFlags = RDDI.RDDI_BRUL_STD, timeout=1.0):

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 486 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Flash programming algorithms are often implemented as functions that are run on the target itself.
These functions may take parameters where the parameters are passed through registers.

funcCall() allows methods to call functions that follow AAPCS (with some restrictions):

• Up to the first four parameters are passed in registers R0-R3.

• Any parameters above this are passed via the stack.

• Only integers up to 32-bit or pointer parameters are supported. Floating point or 64-bit
integers are not supported.

• The result is returned in R0.

We can use the above to simulate flash programming by writing the data to RAM. See
example_method_1.py. This:

• Connects to the target on setup().

• Fills the destination RAM with 0s to simulate erase.

• Writes data to a write buffer in working RAM.

• Runs a routine that copies the data from the write buffer to the destination RAM.

• Verifies the write by reading from the destination RAM.

Loading programming algorithm images onto the target
Programming algorithms are often compiled into .elf images.

FlashMethodv1.locateFile() locates a file for example, from a parameter, resolving any FDB://
prefix to absolute paths.

symfile.py provides a class, SymbolFileReader, that allows the programming method to load an
image file and get the locations of symbols. For example, to get the location of a function:

load the algorithm image
algorithmFile = self.locateFile(self.getParameter('algorithm'))
algoReader = SymbolFileReader(algorithmFile)
Find the address of the Program() function
funcInfo = algoReader.getFunctionInfo()['Program']
programAddr = funcInfo['address']
if funcInfo['thumb']:
 # set bit 0 if symbol is thumb
 programAddr |= 1

image_loader.py provides routines to load the image to the target:

load algorithm into working RAM
algoAddr = self.ramAddr + 0x1000 # allow space for stack, buffers etc
loadAllCodeSegmentsToTarget(self.dev, algoReader, algoAddr)

If the algorithm binary was linked as position independent, the addresses of the symbols are
relative to the load address and this offset should be applied when running the code on the target:

programAddr += algoAddr

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 487 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

args = [writeBuffer, destAddr, pageSize]
funcCall(self.dev, programAddr, args, self.stackTop)

Progress reporting
Flash programming can be a slow process, so it is desirable to have progress reporting features. The
method can do this by calling operationStarted(). This returns an object with functions:

• progress() - update the reported progress.

• complete() - report the operation as completed, with a success or failure.

Progress reporting can be added to the program() function in the previous example:

def program(self, regionID, offset, data):
 # calculate the address to write to
 region = self.getRegion(regionID)
 addr = region.getAddress() + offset
 # Report progress, assuming erase takes 20% of the time, program 50%
 # and verify 30%
 progress = self.operationStarted(
 'Programming 0x%x bytes to 0x%08x' % (data.getSize(), addr),
 100)
 self.doErase(addr, data.getSize())
 progress.progress('Erasing completed', 20)
 self.doWrite(addr, data)
 progress.progress('Writing completed', 20+50)
 self.doVerify(addr, data)
 progress.progress('Verifying completed', 20+50+30)
 progress.completed(OperationResult.SUCCESS, 'All done')
 # register values have been changed
 return TargetStatus.STATE_LOST

The above example only has coarse progress reporting, only reporting at the end of each
phase. Better resolution can be achieved by allowing each sub-task to have a progress monitor.
subOperation() creates a child progress monitor.

Care should be taken to ensure completed() is called on the progress monitor when an error
occurs. Arm recommends you place a try: except: block around the code after a progress monitor
is created.

import java.lang.Exception
def program(self, regionID, offset, data):
 progress = self.operationStarted(
 'Programming 0x%x bytes to 0x%08x' % (data.getSize(), addr),
 100)
 try:
 # Do programming
 except (Exception, java.lang.Exception), e:
 # exceptions may be derived from Java Exception or Python Exception
 # report failure to progress monitor & rethrow
 progress.completed(OperationResult.FAILURE, 'Failed')
 raise

import java.lang.Exception - If you omit import and a Java exception is thrown,
you may get a confusing error report from Jython indicating that it cannot find the

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 488 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Java namespace. Further, the python line location indicated as the source of the
error will not be accurate.

Cancellation
If you wish to abort a long-running flash operation, programming methods can call isCancelled()
to check if the operation is canceled. If this returns true, the method stops programming.

The teardown() functions are still called.

Messages
The programming method can report messages by calling the following:

• warning() - reports a warning message.

• info() - reports an informational message.

• debug() - reports a debug message - not normally displayed.

Locating and resolving files
FlashMethodv1.locateFile() locates a file for example, from a parameter, resolving any FDB://
prefix to absolute paths.

This searches paths of all flash subdirectories of every configuration database configured in Arm
Development Studio.

For example:

<installation_directory>/sw/debugger/configdb/Flash/

c:\MyDB\Flash

Error handling
Exceptions are thrown when errors occur. Errors from the API calls made by the programming
method will be com.arm.debug.flashprogrammer.FlashProgrammerException (or derived from this).
Methods may also report errors using Python's raise keyword. For example, if verification fails:

compare contents
res = compareBuffers(buf, readBuf)
if res != len(buf):
 raise FlashProgrammerRuntimeException, "Verify failed at address: %08x" %
(addr + res)

If a programming method needs to ensure that a cleanup occurs when an exception is thrown, the
following code forms a template:

import java.lang.Exception

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 489 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

 ...
 try:
 # Do programming
 except (Exception, java.lang.Exception), e:
 # exceptions may be derived from Java Exception or Python Exception
 # report failure to progress monitor and rethrow
 # Handle errors here
 # Rethrow original exception
 raise
 finally:
 # This is always executed on success or failure
 # Close resources here

See the Progress handler section for example usage.

import java.lang.Exception - If you omit import and a Java exception is thrown,
you may get a confusing error report from Jython indicating that it cannot find the
Java namespace. Further, the python line location indicated as the source of the
error will not be accurate.

Running an external tool
Some targets may already have a standalone flash programming tool. It is possible to create
a Arm Debugger programming method to call this tool, passing it to the path of the image to
load. The following example shows how to do this, using the fromelf tool in place of a real flash
programming tool.

from flashprogrammer.flash_method_v1 import FlashMethodv1
from com.arm.debug.flashprogrammer.IProgress import OperationResult
from com.arm.debug.flashprogrammer import TargetStatus
import java.lang.Exception
import subprocess
class RunProgrammer(FlashMethodv1):
 def __init__(self, methodServices):
 FlashMethodv1.__init__(self, methodServices)
 def program(self, regionID, offset, data):
 progress = self.operationStarted(
 'Programming 0x%x bytes with command %s' % (data.getSize(), '
 '.join(cmd)),
 100)
 try:
 # Get the path of the image file
 file = data.getUnderlyingFile().getCanonicalPath()
 cmd = ['fromelf', file]
 self.info("Running %s" % ' '.join(cmd))
 # run command
 proc = subprocess.Popen(cmd, stdout=subprocess.PIPE)
 out, err = proc.communicate()
 # pass command output to user as info message
 self.info(out)
 progress.progress('Completed', 100)
 progress.completed(OperationResult.SUCCESS, 'All done')
 except (Exception, java.lang.Exception), e:
 # exceptions may be derived from Java Exception or Python Exception
 # report failure to progress monitor & rethrow
 progress.completed(OperationResult.FAILURE, 'Failed')
 raise
 return TargetStatus.STATE_RETAINED

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 490 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

os.environ can be used to lookup environment variables, for example, the location of a target's
toolchain:

programmerTool = os.path.join(os.environ['TOOLCHAIN_INSTALL'], 'flashprogrammer')

Setup and teardown
The flash configuration file can specify scripts to be run before and after flash programming. These
are termed setup and teardown scripts and are defined using setup and teardown tags. The setup
script should put the target into a state ready for flash programming.

This might involve one or more of:

• Reset the target.

• Disable interrupts.

• Disable peripherals that might interfere with flash programming.

• Setup DRAM.

• Enable flash control.

• Setup clocks appropriately.

The teardown script should return the target to a usable state following flash programming.

In both cases, it may be necessary to reset the target. The following code can be used to stop the
core on the reset vector.

This example code assumes that the core supports the RSET vector catch feature.

def setup(client, services):
 # get a connection to the core
 conn = services.getConnection()
 dev = conn.getDeviceInterfaces().get("Cortex-M3")
 ensureDeviceOpen(dev)
 ensureDeviceStopped(dev)
 dev.setProcBreak("RSET")
 dev.systemReset(0)
 # TODO: wait for stop!
 dev.clearProcBreak("RSET")

Other ways of providing flash method parameters
The flash configuration file can provide flash region information and flash parameter information
encoded into the XML. However, for some methods, this information may need to be extracted
from the flash algorithm itself.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 491 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Programming methods can extend any information in the flash configuration file (if any)
with address regions and parameters for the method by overriding a pair of class methods -
getDefaultRegions() and getDefaultParameters().

getDefaultParameters().
from com.arm.debug.flashprogrammer import FlashRegion
...
class ProgrammingMethod(FlashMethodv1):
...
 def getDefaultRegions(self):
 return [FlashRegion(0x00100000, 0x10000), FlashRegion(0x00200000, 0x10000)]
 def getDefaultParameters(self):
 params = {}
 params['param1'] = "DefaultValue1"
 params['param2'] = "DefaultValue2"
 return params

The above code defines two 64kB regions at 0x00100000 and 0x00200000 . Regions supplied by
this method are only used if no regions are specified for the device in the configuration file. The
above code defines 2 extra parameters. These parameters are added to the parameters in the
flash configuration. If a parameter is defined in both, the default value in the flash configuration
file is used. This region and parameter information can be extracted from the algorithm binary
itself (rather than being hard-coded as in the above example). The Keil algorithm images contain
a data structure defining regions covered by the device and the programming parameters for the
device. The Keil programming method loads the algorithm binary (specified by a parameter in the
configuration file) and extracts this information to return in these calls.

12.10 Flash programming CMSIS pack-based projects
Arm® Development Studio supports flash programming for CMSIS pack-based projects, including
the ability to flash both single and multiple images onto your target.

Before you begin
You require:

• A target with writable flash regions.

• A CMSIS pack for your target.

• One or more images that you want to load on to your target.

• An existing CMSIS C/C++ Application configuration. The Debug Configurations dialog box for a
CMSIS C/C++ Application configuration contains four tabs:

◦ Connection - Specify the probe type and connection address.

◦ Advanced - Specify the image(s) to flash to the target, including the reset options.

◦ Flash - Specify the flash algorithms and download options.

◦ OS Awareness - target-dependent. Arm Debugger has debug symbols that are loaded for
certain OSs. See About OS awareness for details.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 492 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Figure 12-2: CMSIS configuration dialog box

For this task, we are going to use the Advanced and Flash tabs.

About this task
When you create a CMSIS pack-based project, you can modify the debug configuration to:

• Specify one or more images to flash to the device.

• When flashing multiple images, specify which image provides the entry point.

• Specify how the target is reset during connection.

• Configure the flash algorithm.

Flashing single and multiple images follow the same process. This topic describes how to flash
multiple images using the IDE. You can also use the command-line to flash images using Arm
Debugger commands. To flash single images use flash load, and to flash multiple images use
flash load-multiple.

Procedure
1. Load your CMSIS pack-based project into Arm Development Studio, either by importing an

existing project , or by creating a new project.
2. Open the Debug Configurations dialog box.
3. Specify the images to flash to the target:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 493 of 589

https://developer.arm.com/documentation/101469/latest/Projects-and-examples-in-Arm-Development-Studio/Importing-and-exporting-projects/Import-an-existing-Eclipse-project
https://developer.arm.com/documentation/101469/latest/Projects-and-examples-in-Arm-Development-Studio/Importing-and-exporting-projects/Import-an-existing-Eclipse-project
https://developer.arm.com/documentation/101469/latest/Projects-and-examples-in-Arm-Development-Studio/Working-with-projects/Create-a-new-C-or-C---project

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

a) Select the Advanced tab
b) Add a new image by clicking the green + button. The Add new image dialog box opens,

where you can select an .axf image from your filesystem or from your workspace.

Any image found within the CMSIS C/C++ application project is
automatically added to the table when you first open the dialog box.

c) When the image is added to the table, use the checkboxes to:

• Select Download to tell Arm Debugger to load the image on to the target. If you do not
select this option, only the debug symbols are loaded.

Arm recommends that you select Download for all or none of your
images. If some images are set to download and some are not, previously
loaded image sections might get overwritten or cleared when you flash
the target. If there is a danger of this happening, a warning message is
shown at the top of the dialog box.

• Select the primary image. The primary image tells the debugger which of the images in the
table contains the entry point. This is used if you have selected Debug from entry point.

You must only have one primary image.

d) Remove an image by selecting it and clicking the red X button.
e) Refresh the list of images by clicking the yellow arrow button. You need to do this if you

have renamed or deleted any of the images, or if you have rebuilt any of the images since
adding them to the list.

• When you flash the target, if some images are set to download
and some are not, previously loaded image sections might get
cleared or overwritten.

• Images are validated to check if they exist. If the debugger cannot
find the image, it is highlighted red in the table.

• The target is reset before flashing the image(s). The Connect
and reset option specifies which type of reset occurs when it
reconnects.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 494 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Figure 12-3: Screenshot of the CMSIS configuration Advanced
tab dialog box

4. Specify the flash algorithms:
a) Select the Flash tab.

The Flash tab shows the flash algorithms that are used by Arm Debugger on connection
when flashing the target. Flash algorithms describe the flash devices on the target, and how
to download or erase applications in the flash sectors. Each algorithm has:

• A region start address

• A region size

• A RAM start address

• A RAM size

Flash algorithms are loaded directly from the CMSIS pack you are using. Packs can have
default and non-default algorithms. Default algorithms are loaded in the table when you first
open the configuration.

b) Add more algorithms by clicking the green + button below the table. The available
algorithms are displayed. To add your own algorithm, browse to the location in your file
system, or search for the algorithm using the text box at the bottom of the dialog box.

c) Remove an algorithm by selecting it and clicking the red X button,
d) Restore the default algorithm from the CMSIS pack by clicking the yellow arrow button.

Like images, flash algorithms are validated to check if they exist. If the debugger cannot find the
algorithm, it is highlighted red in the table. Additionally, flash algorithm ranges cannot overlap. If
this happens, an error is displayed.

5. Click Debug to close the dialog box, and start the debug session.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 495 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

File-based Flash Programming in Arm Development Studio

Results
Arm Debugger connects to the selected target. On connection, Arm Debugger performs these
steps:

• Resets the target using the method you selected.

• For new or changed images that are set to Download, runs the following command, where each
<image.axf> is an image and its parameters:

flash load-multiple <image1.axf> <image2.axf> <imageN.axf>

• Loads the symbols for all of the images sequentially.

• Resets the target again using the selected method.

• For any image regions that were not loaded by the flash load-multiple command:

◦ Runs the restore command, on the non-primary images, and sends them to RAM.

◦ Runs the load command on the primary image, sends it to RAM, and sets the entry point.

• Starts debugging from the entry-point or main method, depending on which option you
selected in the configuration.

Related information
Flash load command
Flash load-multiple command
Flash programming with Arm Debugger (video)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 496 of 589

https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/flash-load
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order/flash-load-multiple
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/learn/resources/media-articles/2019/04/flash-programming

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

13 Writing OS Awareness for Arm
Debugger

Describes the OS awareness feature available in Arm® Development Studio.

13.1 About Writing operating system awareness for Arm
Debugger

Arm® Debugger offers an Application Programming Interface (API) for third parties to contribute
awareness for their operating systems (OS).

The OS awareness extends the debugger to provide a representation of the OS threads - or tasks -
and other relevant data structures, typically semaphores, mutexes, or queues.

Thread-awareness, in particular, enables the following features in the debugger:

• Setting breakpoints for a particular thread, or a group of threads.

• Displaying the call stack for a specific thread.

• For any given thread, inspecting local variables and register values at a selected stack frame.

To illustrate different stages of the implementation, this chapter explains how to add support for a
fictional OS named myos.

The steps can be summarized as follows:

1. Create a new configuration database folder on your workstation to host the OS awareness
extension and add it to the Arm DS Preferences in Window > Preferences> Arm DS >
Configuration Database.

2. Create the files extension.xml and messages.properties so that the extension appears on the
OS Awareness tab in the Debug configuration dialog box.

3. Add provider.py and implement the awareness enablement logic.

4. Add contexts.py and implement the thread awareness.

5. Add tasks.py to contribute a table to the OS Data view, showing detailed information about
tasks.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 497 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

13.2 Creating an OS awareness extension
A debugger operating systems (OS) awareness extension enables the debugger to provide a
representation of the OS threads and other relevant data structures.

About this task
OS awareness extensions are created in the debugger configuration database. This procedure
describes how to create the folder structure and definition files for an OS awareness extension. All
files for an extension must be located in the configuration database OS/ folder, either in a folder or
at the root of a Java ARchive (JAR) file.

Procedure
1. Create a new configuration database folder containing an empty folder named OS (uppercase).
2. In the OS folder, do one of the following:

• Create a new folder for the OS awareness extension

• Create a JAR file
3. Add the following OS awareness extension files into the OS awareness extension folder or the

root of the JAR file:

• An extension.xml file to declare the OS awareness extension containing the following
information:

◦ The OS name, description, and, optionally, a logo to display in the OS Awareness
selection pane

◦ The root Python script or Java class providing the actual implementation

◦ The details of cores, architectures, or platforms this implementation applies to

The schema describing the structure of the extension.xml file can be found in the Arm DS
installation folder at sw/debugger/configdb/Schemas/os_extension.xsd.

• One or more message properties files that contain all user-visible strings and, optionally, the
translations of those strings. The file format is documented in messages.properties format.
The debugger searches for translations in the following order of language file names:

a. messages_<language code>_<country_code>.properties

b. messages_<language code>.properties

c. messages.properties

◦ Language codes: https://www.loc.gov/standards/iso639-2/php/English_list.php

◦ Country codes: https://www.iso.org/iso-3166-country-codes.html
4. In Arm® Development Studio:

a) Select Window > Preferences.
b) In the Preferences dialog, expand Arm DS and select Configuration Database.
c) Click Add and, in the Add configuration database location dialog box, enter:

• A name for the new configuration database in the Name field

• The path to the new configuration database folder in the Location field

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 498 of 589

https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load(java.io.Reader)
https://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.iso.org/iso-3166-country-codes.html

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

Example 13-1: Example: Create an extension

This example implementation creates a myos OS awareness extension that appears in the Arm
Development Studio Debug Configuration:

1. Create a mydb configuration database folder containing an OS folder and, in this folder, create a
new folder for the OS awareness extension:

<some folder>
 /mydb
 /OS
 /myos

2. Add the following files into the OS awareness extension folder:

• An extension.xml file with the following content:

<?xml version="1.0" encoding="UTF-8"?>
 <os id="myos" version="5.15" xmlns="http://www.arm.com/os_extension">
 <name>myos.title</name>
 <description>myos.desc</description>
 <provider>provider.py</provider>
</os>

The version attribute in the os element refers to the API version, which
is aligned with the version of Arm DS that the API was released with. You
must set the version attribute to the Arm DS version that the OS awareness
extension was developed in, or the lowest version that it was tested with.
The debugger does not display any extensions that require a higher version
number. However, as the API is backwards compatible, the debugger displays
extensions with earlier API versions. The OS awareness API in Arm DS is
backwards compatible with versions of the OS awareness API in DS-5. The
OS Awareness API versioning scheme in DS-5 matches the DS-5 product
versions. Therefore, the earliest API version is 5.15.

• A messages.properties file with the English language versions of all user-visible strings in the
myos OS awareness extension:

myos.title=My OS
myos.desc=This is My OS.
myos.help=Displays information about My OS.

3. In Arm Development Studio:

a. Select Window > Preferences.

b. In the Preferences dialog, expand Arm DS and select Configuration Database.

c. Click Add. In the Add configuration database location dialog box:

• In the Name field, enter My OS awareness extension

• in the Location field, enter the path to the mydb folder

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 499 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

This implementation is not complete and would cause errors if used for a debugger
connection.

13.3 Implementing the OS awareness API
The OS awareness API consists of callbacks that the debugger makes at specific times. For each
callback, the debugger provides a means for the implementation to retrieve information about the
target and resolve variables and pointers, through an expression evaluator.

The API exists primarily as a set of Java interfaces since the debugger itself is written in Java.
However, the debugger provides a Python interpreter and bindings to translate calls between
Python and Java, allowing the Java interfaces to be implemented by Python scripts. This section
and the next ones refer to the Java interfaces but explain how to implement the extension in
Python.

A Python implementation does not require any particular build or compilation
environment, as opposed to a Java implementation. However, investigating
problems within Python code is more difficult. You are advised to read the
Programming advice and noteworthy information section before starting to write
your own Python implementation.

The detailed Java interfaces to implement are available in the Arm DS installation folder under sw/
ide/plugins, within the com.arm.debug.extension.source_<version>.jar file.

You are encouraged to read the Javadoc documentation on Java interfaces as it
contains essential information that is not presented here.

The Java interface of immediate interest at this point is IOSProvider, in the package
com.arm.debug.extension.os. This interface must be implemented by the provider instance that
was left out with a todo comment in extension.xml.

First, add the simplest implementation to the configuration database entry:

<some folder>
 /mydb
 /OS
 /myos
 /extension.xml
 /messages.properties
 /provider.py

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 500 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

• extension.xml

<?xml version="1.0" encoding="UTF-8"?>
<os id="myos" version="5.15" xmlns="http://www.arm.com/os_extension">
 <name>myos.title</name>
 <description>myos.desc</description>
 <provider>provider.py</provider>
</os>

• provider.py

this script implements the Java interface IOSProvider
def areOSSymbolsLoaded(debugger):
 return False
def isOSInitialised(debugger):
 return False
def getOSContextProvider():
 return None
def getDataModel():
 return None

This is enough to make the OS awareness implementation valid. A debug configuration with this
OS awareness selected works, although this does not add anything on top of a plain bare-metal
connection. However, this illustrates the logical lifecycle of the OS awareness:

1. Ensure debug information for the OS is available. On loading symbols, the debugger calls
areOSSymbolsLoaded(); the implementation returns true if it recognizes symbols as belonging
to the OS, enabling the next callback.

2. Ensure the OS is initialized. Once the symbols for the OS are available, the debugger calls
isOSInitialised(), immediately if the target is stopped or whenever the target stops next.
This is an opportunity for the awareness implementation to check that the OS has reached
a state where threads and other data structures are ready to be read, enabling the next two
callbacks.

3. Retrieve information about threads and other data structures. Once the OS is initialized, the
debugger calls out to getOSContextProvider() and getDataModel() to read information
from the target. In reality, the debugger may call out to getOSContextProvider() and
getDataModel() earlier on, but does not use the returned objects to read from the target until
areOSSymbolsLoaded() and isOSInitialised() both returned true.

13.4 Enabling the OS awareness
The below implementation in provider.py, assumes myos has a global variable called tasks listing
the OS tasks in an array and another global variable scheduler_running indicating that the OS has
started scheduling tasks.

this script implements the Java interface IOSProvider
from osapi import DebugSessionException
def areOSSymbolsLoaded(debugger):
 return debugger.symbolExists("tasks") \
 and debugger.symbolExists("scheduler_running")
def isOSInitialised(debugger):
 try:
 result = debugger.evaluateExpression("scheduler_running")

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 501 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

 return result.readAsNumber() == 1
 except DebugSessionException:
 return False
def getOSContextProvider():
 return None
def getDataModel():
 return None

The osapi module in the import statement at the top of provider.py is a collection of wrappers
around Java objects and utility functions. The file osapi.py itself can be found in JAR file
com.arm.debug.extension_<version>.jar.

Connecting to a running target and loading symbols manually for the OS shows both
areOSSymbolsLoaded() and isOSInitialised() stages distinctly.

On connecting to the target running the OS, without loading symbols, the Debug Control view
displays Waiting for symbols to be loaded.

• After loading symbols for the OS, with the target still running, the Debug Control view
now displays Waiting for the target to stop. At this point, areOSSymbolsLoaded() has been
called and returned true, and the debugger is now waiting for the target to stop to call
isOSInitialised().

• As soon as the target is stopped, the Debug Control view updates to show the OS awareness is
enabled. At this point, isOSInitialised() has been called and returned true.

Both the Active Threads and All Threads folders are always empty until you implement thread
awareness using getOSContextProvider().

You can show the Cores folder by enabling the Always Show Cores option in
the View Menu of the Debug Control view.

• Another case is where areOSSymbolsLoaded() returns true but isOSInitialised() returns
false. This can happen, for instance, when connecting to a stopped target, loading both the
kernel image to the target and associated symbols in the debugger and starting debugging from
a point in time earlier than the OS initialization, for example, debugging from the image entry
point.

In this case, the Debug Control view shows Waiting for the OS to be initialised as
scheduler_running is not set to 1 yet, but symbols are loaded.

Without the call to isOSInitialised() the debugger lets the awareness implementation
start reading potentially uninitialized memory, which is why this callback exists. The debugger
keeps calling back to isOSInitialised() on subsequent stops until it returns true, and the OS
awareness can finally be enabled.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 502 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

13.5 Implementing thread awareness
Thread awareness is probably the most significant part of the implementation.

The corresponding call on the API is getOSContextProvider(), where context here means
execution context, as in a thread or a task. The API expects an instance of the Java interface
IOSContextProvider to be returned by getOSContextProvider(). This interface can be found
in package com.arm.debug.extension.os.context within the same JAR file as IOSProvider
mentioned earlier.

Given the following C types for myos tasks:

typedef enum {
 UNINITIALIZED = 0,
 READY
} tstatus_t ;
typedef struct {
 uint32_t id;
 char *name;
 volatile tstatus_t status;
 uint32_t stack[STACK_SIZE];
 uint32_t *sp;
} task_t;

And assuming the OS always stores the currently running task at the first element of the tasks
array, further callbacks can be implemented to return the currently running (or scheduled) task and
all the tasks (both scheduled and unscheduled) in a new contexts.py file:

<some folder>
 /mydb
 /OS
 /myos
 /extension.xml
 /messages.properties
 /provider.py
 /contexts.py

• provider.py

this script implements the Java interface IOSProvider
from osapi import DebugSessionException
from contexts import ContextsProvider
def areOSSymbolsLoaded(debugger):
 [...]
def isOSInitialised(debugger):
 [...]
def getOSContextProvider():
 # returns an instance of the Java interface IOSContextProvider
 return ContextsProvider()
def getDataModel():
 [...]

• contexts.py

from osapi import ExecutionContext
from osapi import ExecutionContextsProvider
this class implements the Java interface IOSContextProvider

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 503 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

class ContextsProvider(ExecutionContextsProvider):
 def getCurrentOSContext(self, debugger):
 task = debugger.evaluateExpression("tasks[0]")
 return self.createContext(debugger, task)
 def getAllOSContexts(self, debugger):
 tasks = debugger.evaluateExpression("tasks").getArrayElements()
 contexts = []
 for task in tasks:
 if task.getStructureMembers()["status"].readAsNumber() > 0:
 contexts.append(self.createContext(debugger, task))
 return contexts
 def getOSContextSavedRegister(self, debugger, context, name):
 return None
 def createContext(self, debugger, task):
 members = task.getStructureMembers()
 id = members["id"].readAsNumber()
 name = members["name"].readAsNullTerminatedString()
 context = ExecutionContext(id, name, None)
 return context

Although getOSContextSavedRegister() is not yet implemented, this is enough for the debugger to
now populate the Debug Control view with the OS tasks as soon as the OS awareness is enabled.

Decoding the call stack of the currently running task and inspecting local variables at specific
stack frames for that task works without further changes since the task's registers values are read
straight from the core's registers. For unscheduled tasks, however, getOSContextSavedRegister()
must be implemented to read the registers values saved by the OS on switching contexts. How to
read those values depends entirely on the OS context switching logic.

Here is the implementation for myos, based on a typical context switching routine for M-class
Arm processors where registers are pushed onto the stack when a task is switched out by the OS
scheduler:

from osapi import ExecutionContext
from osapi import ExecutionContextsProvider
STACK_POINTER = "stack pointer"
REGISTER_OFFSET_MAP = {"R4":0L, "R5":4L, "R6":8L, "R7":12L,
 "R8":16L, "R9":20L, "R10":24L, "R11":28L,
 "R0":32L, "R1":36L, "R2":40L, "R3":44L,
 "R12":48L, "LR":52L, "PC":56L, "XPSR":60L,
 "SP":64L}
this class implements the Java interface IOSContextProvider
class ContextsProvider(ExecutionContextsProvider):
 def getCurrentOSContext(self, debugger):
 [...]
 def getAllOSContexts(self, debugger):
 [...]
 def getOSContextSavedRegister(self, debugger, context, name):
 offset = REGISTER_OFFSET_MAP.get(name)
 base = context.getAdditionalData()[STACK_POINTER]
 addr = base.addOffset(offset)
 if name == "SP":
 # SP itself isn't pushed onto the stack: return its computed value
 return debugger.evaluateExpression("(long)" + str(addr))
 else:
 # for any other register, return the value at the computed address
 return debugger.evaluateExpression("(long*)" + str(addr))
 def createContext(self, debugger, task):
 members = task.getStructureMembers()
 id = members["id"].readAsNumber()
 name = members["name"].readAsNullTerminatedString()
 context = ExecutionContext(id, name, None)
 # record the stack address for this task in the context's

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 504 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

 # additional data; this saves having to look it up later in
 # getOSContextSavedRegister()
 stackPointer = members["sp"].readAsAddress()
 context.getAdditionalData()[STACK_POINTER] = stackPointer
 return context

The debugger can now get the values of saved registers, allowing unwinding the stack of
unscheduled tasks.

Enter info threads in the Commands view to display similar thread information as
displayed in the Debug Control view.

13.6 Implementing data views
Along with threads, OS awareness can provide arbitrary tabular data, which the debugger shows in
the OS Data view.

The corresponding callback on the API is getDataModel(). It must return an instance of the Java
interface com.arm.debug.extension.datamodel.IDataModel, which sources can be found in
com.arm.debug.extension.source_<version>.jar.

This section demonstrates how to implement a view, listing the tasks, including all available
information. The following additions to the implementation creates an empty Tasks table in the OS
Data view:

<some folder>
 /mydb
 /OS
 /myos
 /extension.xml
 /messages.properties
 /provider.py
 /contexts.py
 /tasks.py

• provider.py

this script implements the Java interface IOSProvider
from osapi import DebugSessionException
from osapi import Model
from contexts import ContextsProvider
from tasks import Tasks
def areOSSymbolsLoaded(debugger):
 [...]
def isOSInitialised(debugger):
 [...]
def getOSContextProvider():
 [...]
def getDataModel():
 # returns an instance of the Java interface IDataModel
 return Model("myos", [Tasks()])

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 505 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

• messages.properties

myos.title=My OS
myos.desc=This is My OS.
myos.help=Displays information about My OS.
tasks.title=Tasks
tasks.desc=This table shows all tasks, including uninitialized ones
tasks.help=Displays tasks defined within the OS and their current status.
tasks.id.title=Task
tasks.id.desc=The task identifier
tasks.name.title=Name
tasks.name.desc=The task name
tasks.status.title=Status
tasks.status.desc=The task status
tasks.priority.title=Priority
tasks.priority.desc=The task priority
tasks.sp.title=Stack pointer
tasks.sp.desc=This task's stack address

• tasks.py

from osapi import Table
from osapi import createField
from osapi import DECIMAL, TEXT, ADDRESS
this class implements the Java interface IDataModelTable
class Tasks(Table):
 def __init__(self):
 id = "tasks"
 fields = [createField(id, "id", DECIMAL),
 createField(id, "name", TEXT),
 createField(id, "status", TEXT),
 createField(id, "priority", DECIMAL),
 createField(id, "sp", ADDRESS)]
 Table.__init__(self, id, fields)
 def getRecords(self, debugger):
 records = [] # todo

The createField and Table.__init__() functions automatically build up the keys to look for at
run-time in the messages.properties file. Any key that is not found in messages.properties is
printed as is.

The above modifications create a new empty Tasks table.

To populate the table, getRecords() in tasks.py must be implemented:

from osapi import Table
from osapi import createField
from osapi import createNumberCell, createTextCell, createAddressCell
from osapi import DECIMAL, TEXT, ADDRESS
this class implements the Java interface IDataModelTable
 class Tasks(Table):
 def __init__(self):
 [...]
 def readTask(self, task, first):
 members = task.getStructureMembers()
 id = members["id"].readAsNumber()
 if (members["status"].readAsNumber() == 0):
 status = "Uninitialized"
 name = None
 sp = None
 priority = None
 else:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 506 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

 if (first):
 status = "Running"
 else:
 status = "Ready"
 name = members["name"].readAsNullTerminatedString()
 sp = members["sp"].readAsAddress()
 priority = members["priority"].readAsNumber()
 cells = [createNumberCell(id),
 createTextCell(name),
 createTextCell(status),
 createNumberCell(priority),
 createAddressCell(sp)]
 return self.createRecord(cells)
 def getRecords(self, debugger):
 records = []
 tasks = debugger.evaluateExpression("tasks").getArrayElements()
 first = True
 for task in tasks:
 records.append(self.readTask(task, first))
 first = False
 return records

The debugger command info myos tasks prints the same information in the
Commands view.

13.7 Advanced OS awareness extension
You can extend the OS awareness features by defining more parameters.

The OS awareness extension might sometimes be unable to determine all the necessary
information about the OS at runtime. There might be a compile option that controls the presence
of a feature which fundamentally changes how a section of the OS works, and this might be
undetectable at runtime. An example is whether the OS is compiled with hard or soft floating point
support.

In the majority of cases, these features can be detected at runtime. However in rare instances this
might not be possible. To deal with these cases, you can define parameters for the OS awareness
extension, which you can then specify at runtime. For example, you can inform the OS awareness
extension of the state of a compile flag. These parameters are then revealed to the debugger as
operating system settings which can be queried from within the OS awareness Python scripts.

This API feature is only available in API version 5.23 and later. You must change the
version attribute of the os element to prevent running in incompatible versions.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 507 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

The extension.xml file declares the OS awareness extension, as described in Creating an OS
awareness extension. You can define the additional parameters by adding to the os element in
extension.xml using the syntax that this example shows:

<parameter name="my-setting" description="myos.param.my_setting.desc" type="enum"
 default="enabled" help="myos.param.my_setting.help">
 <value name="enabled" description="myos.param.my_setting.enabled"/>
 <value name="disabled" description="myos.param.my_setting.disabled"/>
</parameter>

For this example, you must also add the following to message.properties:

myos.param.my_setting.desc=My setting
myos.param.my_setting.help=This is my setting
myos.param.my_setting.enabled=Enabled
myos.param.my_setting.disabled=Disabled

Each parameter has:

type
The only supported type is enum.

name
The string used to identify the parameter within the debugger. The string can contain alphanumeric
characters a - z, A - Z and 0 - 9. The string can also contain - and _ but must not contain whitespace
or any other special characters. The string must be unique among other parameters.

description
The localizable string shown in the GUI.

help
The localizable string shown in the parameter tooltip.

default
The name string corresponding to the default value of the parameter.

Each value has:

name
The string used to identify it within the debugger. The string can contain alphanumeric characters
a - z, A - Z and 0 - 9. The string can also contain - and _ but must not contain whitespace or any
other special characters. The string must be unique among other parameters.

description
The localizable string shown in the GUI.

How to set the parameter value in Arm Development Studio
When you define these parameter settings in the OS awareness extension, you can set the
parameter as an Operating System setting, either from the GUI or using the command-line. You can
change or view these parameters using the set os and showos commands respectively, for example
set os my-setting enabled.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 508 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

Arm® Debugger shows these settings in the OS Awareness tab in the Debug Configurations
dialog box

When using the command-line debugger the parameter is set to its default value
initially. It is then possible to manually change it after connecting to the target.

The parameters can be read from the OS awareness API using the getConnectionSetting method,
for example debugger.getConnectionSetting("os my-setting"). This returns the name string of
the selected value, or throws a DebugSessionException if the parameter does not exist.

13.8 Programming advice and noteworthy information
Investigating issues in Python code for an OS awareness extension can sometimes be difficult.

Here are a few recommendations to make debugging easier:

• Start Arm® Development Studio IDE from a console.

Python print statements go to the Eclipse process standard output/error streams, which are not
visible unless Arm Development Studio IDE is started from a console.

◦ On Linux, open a new terminal and run: <Arm DS installation folder>/bin/armds_ide

◦ On Windows, open command prompt and run: <Arm DS installation folder>\bin
\armds_idec

Note the trailing c in armds_idec.

• Turn on verbose error logging in the debugger.

Any errors in the parts of the OS awareness logic which provide information to the debugger
results in debugger errors being logged to the Commands view. Turning on verbose error
logging prints the full stack trace when such errors occur, including source file locations, which
can help identify the origin of the fault.

To turn on verbose error logging, execute the following command early in the debug session:

log config infoex

◦ An OS awareness implementation interacts at the deepest level with the
debugger, and some errors may cause the debugger to lose control of the
target.

◦ Semihosting is not available when OS awareness is in use.

• Any errors in the parts of the OS awareness logic which provide information to the debugger's
user interface results in errors being logged to the Eclipse log. The log can be found in your

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 509 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Writing OS Awareness for Arm Debugger

workspace as .metadata/.log. It contains full stack traces and timestamps for all such errors,
including source file locations.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 510 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14 Debug and Trace Services Layer (DTSL)
Describes the Arm® Debugger Debug and Trace Services Layer (DTSL).

DTSL is a software layer that sits between the debugger and the RDDI target access API. Arm
Debugger uses DTSL to:

• Create target connections.

• Configure the target platform to be ready for debug operations.

• Communicate with the debug components on the target.

As a power user of Arm Debugger, you might need to use DTSL:

• As part of new platform support.

• To extend the capabilities of Arm Debugger.

• To add support for custom debug components.

• To create your own Java or Jython programs which interact with your target.

14.1 Additional DTSL documentation and files
Additional DTSL documents and files are provided in <installation_directory>\sw\DTSL.

The following documents are useful for understanding DTSL. Make sure you have access to them.

DTSL object level documentation
DTSL is mainly written in Java, so the documentation takes the form of Javadoc files. The DTSL
Javadoc is provided as HTML files (inside com.arm.debug.dtsl.docs.zip). You can view the HTML
files directly in a browser, or use them from within the IDE.

Certain classes in the DTSL Javadocs are marked as Deprecated. These classes must not be used in
new DTSL code. They are only provided in the documentation in case you encounter them when
inspecting older DTSL code.

RDDI API documentation
DTSL is designed to use RDDI-DEBUG as its native target connection API. Some of the RDDI-
DEBUG API is therefore referred to from within DTSL. For completeness, the RDDI documentation
is included with the DTSL documentation.

The RDDI documentation is provided in HTML format in <installation_directory>\sw\debugger
\RDDI\docs\html. To access the documentation, open index.html.

Also, make sure you have access to DTSLExamples.zip. This contains example DTSL code, in
addition to the Arm® Development Studio configdb entries discussed in this document. This
document assumes that you have added the examples to your Arm Development Studio IDE by
importing the projects contained in this file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 511 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Related information
Arm Debug Interface Architecture Specification

14.2 Need for DTSL
DTSL addresses the growing complexity and customization of Arm-based SoCs using the
CoreSight™ Architecture. Before the creation of DTSL, most debug tools were designed at a time
when SoC debug architecture was much simpler. SoCs typically contained only one core, and if
multiple cores were used, they were of different types and were accessed by dedicated debug
channels. Debug tools designed during that time, including Arm debuggers, cannot easily be scaled
to more modern and complex debug architectures. DTSL is therefore designed to address several
problems which older debug tools cannot easily address.

14.2.1 SoC design complexity

The debugger must be able to handle complex SoC designs which contain many cores and many
debug components. For example, the following figure shows a relatively simple SoC design
containing many debug components:

Figure 14-1: A simple CoreSight Design

Such systems are continuing to become more complicated as time goes on. For example, SoC
designers might want to use multiple sub-systems which are accessed through multiple DAPs, but
which are linked by multiple Cross Trigger Interfaces (CTIs) so that they can still be synchronized.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 512 of 589

https://developer.arm.com/documentation/ihi0031/latest

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Each sub-system would have a similar design to that shown in the figure, but with shared CTIs and
possibly shared TPIU.

Because system designs are so complicated, and vary so greatly, DTSL is designed to provide
a layer of abstraction between the details of a particular system and the tools which provide
debugging functionality to the user. For example, a debug tool using DTSL knows that there is a
source of trace data for a particular core, and can access that data, but does not have to handle the
complexities of system configuration and tool set-up in order to get that data. It does not have to
know how to, for example, program up CoreSight Funnels, collect trace data from a DSTREAM, or
demultiplex the TPIU trace protocol.

14.2.2 Debug flexibility

DTSL is designed to address the problems associated with the following:

• SoC designers sometimes add their own components, which are not part of any Arm standard.
Debug tools might need to interact with these components to access the target.

• CoreSight™ designs can be very flexible, and early implementations might have design issues
that the debug tool needs to work around.

• CoreSight designs can contain components which can be interconnected in many ways.

14.2.3 Integrated tool solutions

CoreSight™ designs can contain shared debug resources which need to be managed and used from
multiple tools. For example, the system might be able to generate trace from several trace sources,
such as Arm cores + DSP. In legacy designs, the trace paths would be independent and each debug
tool would have its own connection to the respective sub-system. In a typical CoreSight system,
the trace data is merged by a Funnel component and delivered to a single trace storage device
though a single interface. The trace data is then uploaded and de-multiplexed. The trace data might
need to be delivered to several different debug tools, such as Arm Development Studio and DSP
Debug Tool.

DTSL addresses the tool integration problem that this situation raises.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 513 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.2.4 Arm Debugger architecture before DTSL

Before DTSL first became available, the early Arm® Debugger Software stack was as shown in the
following figure:

Figure 14-2: Debugger software stack before DTSL

From the bottom upwards, the components of the debug stack are:

RDDI-DEBUG API
The debugger uses this API as its standard native connection to a debug controller such as
DSTREAM, CADI Model, or gdbserver. There is an implementation of RDDI-DEBUG for each of the
supported types of debug controller.

RDDI-Router API
This API is identical to RDDI-DEBUG, but it is used to 'vector' the API calls to the appropriate
implementation. This is necessary because the debugger can support multiple connections and
connection types simultaneously.

jRDDI
This is a Java wrapper for the C RDDI-DEBUG API. It is not a true Java layer, but nominally it is the
lowest Java layer in the stack.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 514 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.2.5 Arm Debugger architecture after DTSL

After DTSL was introduced, the Arm® Debugger Software stack changed. It is now as shown in the
following figure:

Figure 14-3: Post DTSL

In addition to the layers that existed before DTSL, the stack now contains a DTSL layer which does
the following:

• Handles system initialization and DTSL-level component creation. This is controlled by DTSL
Jython scripts, which are typically contained in a platform configuration database (configdb).

Do not confuse DTSL Jython Scripting with Arm Debugger Jython Scripting.
Both of them use Jython, but they operate at different levels in the software
stack. However, a Debugger Jython Script can use DTSL functionality.

• Provides a common connection interface for several client programs.

• Delivers trace streams to several trace clients.

• Uses the existing native RDDI infrastructure.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 515 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Arm Debugger uses DTSL to communicate with the lower layers of the stack. DTSL provides a set
of named objects for the debugger (or another tool) to use. The object set consists of the following:

• Debug objects, which control core execution. Their interface looks very similar to the jRDDI and
RDDI-DEBUG interfaces.

• Trace source interfaces, which represent target components which can generate trace data.

• Trace capture interfaces, which are used to start and stop trace collection and to provide
notification events to clients.

• Other target components, such as other CoreSight™ devices or other third-party target devices.

• A Configuration and Connection interface, which instantiates and configures the DTSL objects
and queries the configuration to allow clients to discover which top level interfaces are present.

Related information
DTSL access from Debugger Jython scripts on page 524

14.2.6 Arm Debugger connection sequence showing where DTSL fits in

The sequence below outlines the Arm® Debugger connection sequence when connecting to a
target, and where DTSL fits in.

1. The user creates an Arm Development Studio launch configuration by selecting a platform
(board) and a debug operation from the Arm Development Studio configdb. The user also
specifies other debugger configuration parameters such as which file (.axf) to debug.

2. The user activates a launch configuration, either from the launch configuration editor or by
selecting a previously prepared launch configuration.

3. The debugger launcher code locates the platform (board) entry in the Arm Debugger
configdb and locates the DTSL configuration script. This script is run, and it creates the DTSL
configuration.

4. The debugger connects to the DTSL configuration created by the script. It locates, by name, the
object or objects identified by the debug operation specified in the configdb platform entry.
It uses these objects to access the target device, including access to memory, registers, and
execution state.

14.3 Arm Development Studio configuration database
All use cases of DTSL potentially require the use of the Arm® Development Studio configuration
database (configdb). Arm therefore recommends that you have a basic understanding of the
configuration database.

Arm Debugger uses a configuration database, called configdb, to store information on how to
connect to platforms. This information is split across several top-level locations in the database,
each of which can contain the following:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 516 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Board information
Manufacturer, name, list of SoCs, list of Flash, DTSL initialization Jython scripts.

SoC information
Core information. For example, a SoC may contain Cortex®-A9 + Cortex-M3.

Core information
Register sets for the core, and other information such as TrustZone support.

Flash information
Information on flash types and programming algorithms.

Common scripts (Jython)
Jython scripts which might be of use to several database entries.

This information is mainly stored as XML files, located in sub-directories of the top-level locations.

The configuration database is located at <installation_directory>\sw\debugger\configdb.

Arm Development Studio allows you to configure one or more extension configdb locations, which
are typically used to add more board definitions or flash support to Arm Development Studio.

14.3.1 Modifying Arm Development Studio configdb

The Arm® Development Studio configdb is usually installed into a read-only location, to prevent
accidental modification of the installed files. However, Arm Development Studio allows the user
to install configdb extensions, which can be in a writeable location. The configdb extensions can
also override the entries in the installed directories. To modify an installed configdb board entry
(directory), you need to copy the installed entry into your Documents folder or home directory,
modify it, and tell Arm Development Studio to add it as a configdb extension.

For example, to modify the Keil® MCBSTM32E platform files:

1. Create a configdb directory in your Documents folder or in another writeable location.

2. Create a Boards directory inside the configdb directory.

3. Copy the Keil/MSCSTM32E directory into the Boards directory.

4. Modify the copied configdb files.

5. Tell Arm Development Studio about the new configdb extension. To do this:

a. Select Window > Preferences .

b. Expand the Arm DS entry in the Preferences window.

c. Select the Configuration Database entry.

d. Click the Add… button to add the location of the new configuration database to the User
Configuration Databases list.

e. If you have modified any of the XML files in a configdb directory, you must tell Arm
Development Studio to rebuild the database by clicking the Rebuild database… button on
the Arm Development Studio Configuration Database preferences panel.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 517 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.3.2 Configdb board files

Within the configdb is the Boards directory. It contains one sub-directory for each board
manufacturer, and a boards.xml file which optionally provides human-readable display names for
boards.

For example, the Keil® MCBSTM32E platform is a simple STM32E (Cortex®-M3) MCU board. The
main configdb files are located in <installation-directory>\sw\debugger\configdb\Boards\Keil
\MCBSTM32E, and are as follows:

project_types.xml
This is the main XML file which describes the platform entry to Arm® Development Studio.

keil-mcbstm32e.py
This is the DTSL platform configuration and setup script, implemented in Jython.

keil-mcbstm32e.rvc
This is the DSTREAM RDDI configuration file for the platform. This file can have an extension of
either .rcf or .rvc. The Arm Development Studio Platform Configuration Editor usually creates
this file.

keil-mcbstm32e_flash.xml
This contains information on flash devices and algorithms, and their configuration parameters.

14.3.3 About project_types.xml

The project_types.xml file defines the project types supported for the platform. Debug operations
and activities, which refer to the other files in the platform directory, are defined for each project
type.

The following code is part of the project_types.xml file for the Keil® MCBSTM32E platform.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--Copyright (C) 2009-2013 ARM Limited. All rights reserved.-->
 <platform_data xmlns="http://www.arm.com/project_type" xmlns:peripheral="http://
com.arm.targetconfigurationeditor" xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="HARDWARE"
 xsi:schemaLocation="http://www.arm.com/project_type ../../../Schemas/
platform_data-1.xsd">
 <flash_config>CDB://keil-mcbstm32e_flash.xml</flash_config>
 <project_type_list>
 <project_type type="BARE_METAL">
 <name language="en">Bare Metal Debug</name>
 <description language="en">This allows a bare-metal debug connection.</
description>
 <execution_environment id="BARE_METAL">
 <name language="en">Bare Metal Debug</name>
 <description language="en">This allows a bare-metal debug connection.</
description>
 <param default="CDB://mcbstm32e.rvc" id="config_file" type="string"
 visible="false"/>
 <param default="CDB://mcbstm32e.py" id="dtsl_config_script" type="string"
 visible="false"/>
 <xi:include href="../../../Include/hardware_address.xml"/>
 <activity id="ICE_DEBUG" type="Debug">

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 518 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 <name language="en">Debug Cortex-M3</name>
 <xi:include href="../../../Include/ulinkpro_activity_description.xml"/>
 <xi:include href="../../../Include/ulinkpro_connection_type.xml"/>
 <core connection_id="Cortex-M3" core_ref="Cortex-M3" soc="st/stm32f103xx"/>
 <param default="DebugOnly" id="dtsl_config" type="string" visible="false"/>
 <xi:include href="../../../Include/ulinkpro_browse_script.xml"/>
 <xi:include href="../../../Include/ulinkpro_setup_script.xml"/>
 </activity>
 <activity id="ICE_DEBUG" type="Debug">
 <name language="en">Debug Cortex-M3</name>
 <xi:include href="../../../Include/dstream_activity_description_bm.xml"/>
 <xi:include href="../../../Include/dstream_connection_type.xml"/>
 <core connection_id="Cortex-M3" core_ref="Cortex-M3" soc="st/stm32f103xx"/>
 <param default="DSTREAMDebugAndTrace" id="dtsl_config" type="string"
 visible="false"/>
 <param default="options.traceBuffer.traceCaptureDevice"
 id="dtsl_tracecapture_option"
 type="string" visible="false"/>
 <param default="ITM" id="eventviewer_tracesource" type="string"
 visible="false"/>
 </activity>
 </execution_environment>
 </project_type>
 </project_type_list>
</platform_data>

The XML file declares a BARE_METAL project type. BARE_METAL is a term which describes a system
not running an OS, where the debug connection takes full control of the core. The file declares an
execution environment within the project type, and declares debug activities within that execution
environment. The code here shows only one debug activity, but each execution environment can
declare several debug activities. The debug activity shown here is a debug and trace session using a
DSTREAM target connection.

When Arm® Development Studio displays the debug session launcher dialog box, it scans the
entire configdb and builds a list of supported manufacturers and boards, and the supported project
types and debug activities, and lets the user choose which one they want to use. In the following
example, the user is assumed to have chosen the highlighted debug activity. When Arm Debugger
launches the debug session, it creates a DTSL configuration and passes it the {config_file,
 dtsl_config_script, dtsl_config} property set. These parameters are used as follows:

<config_file>

This value is passed to the RDDI-DEBUG connection DLL or so (Arm® Development Studio uses
RDDI-DEBUG as its target connection interface, and RDDI-DEBUG needs this file to tell it which
devices are in the target system).

<dtsl_config_script>

This value tells DTSL which Jython script to use to create the DTSL configuration used by the
debugger.

<dtsl_config>

The DTSL Jython script can contain several system configurations, defined by Jython class names
which in turn are derived from the DTSLv1 object. This value tells DTSL which class to create. The
MCBSTM32E Jython script contains two such classes, one for a debug and trace configuration
and one for a debug-only configuration. The class name used for the highlighted example is
DSTREAMDebugAndTrace, so in this example a Jython class named DSTREAMDebugAndTrace must exist
in the dtsl_config_script.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 519 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Some of these entries have a file location prefix of CDB://. This indicates that the location is within
the platform directory in the configuration database.

DTSL creates an instance of the referenced Jython class, which causes the def __init__(self,
 root) constructor to be run. After this constructor is run, the debugger expects to find a DTSL
Device object whose name is the same as the name given in the core setting in the debug activity.
In this example, therefore, the debugger expects to find a DTSL object named 'Cortex-M3', and it
directs all debug operation requests to this object.

14.3.4 About the keil-mcbstm32e.py script

The complete content of the keil-mcbstm32e.py file for the Keil® MCBSTM32E platform is
included in the DTSLExampleConfigdb project in DTSLExamples.zip. The important aspects of the
script are as follows:

• The script is written in Jython. Jython is an implementation of the Python language which
integrates tightly with Java. The integration is tight enough to allow the following:

◦ A Jython script can contain Python classes which Java can use, and which appear to Java as
though they were Java classes.

◦ A Jython script can contain Python classes which can sub-class Java classes.

◦ A Jython script can create Java class instances and use them. This is why the script contains
some import statements which import Java classes. Many of these classes are from the
com.arm.debug.dtsl package.

• DTSL creates an instance of a class named DSTREAMDebugAndTrace.

• The constructor __init__ creates all the DTSL objects required for the connection.

• The RDDI-DEBUG API, which is the native API used by the debugger for target access, assigns
each device a unique device index number. The script contains lines which find the index
number for a named device and assign that number to a variable. The following is an example
of such a line: devID = self.findDevice("Cortex-M3") This line assigns the RDDI device index
number for the named device 'Cortex-M3' to the variable devID.

• The script creates a ResetHookedDevice object, derived from Device, with the name 'Cortex-
M3'. This is an example of how Jython can extend the standard DTSL Java classes by sub-
classing them.

• The script creates an AHBCortexMMemAPAccessor and installs it into the Cortex®-M3 object
as a memory filter. This is how a custom named memory space is added to the core. When a
memory access is requested with an address prefixed by 'AHB', the access is redirected to the
AHBCortexMMemAPAccessor object which, in this case, uses the CoreSight™ AHB-AP to access
the memory.

• The script creates DTSL objects for the CoreSight components in the SoC.

• The script creates a DSTREAMTraceCapture object, which the debugger uses to read trace data.

• The script declares a set of options which provide user configuration data for the script. The
debug session launcher panel displays these options so that they can be set before making a

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 520 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

target connection. After the constructor is called, DTSL passes the option values to the class by
calling its optionValuesChanged() method.

from com.arm.debug.dtsl.configurations import DTSLv1
[snip]
class ResetHookedDevice(Device):
 def __init__(self, root, devNo, name):
 Device.__init__(self, root, devNo, name)
 self.parent = root
 def systemReset(self, resetType):
 Device.systemReset(self, resetType)
 # Notify root configuration
 self.parent.postReset()
class DSTREAMDebugAndTrace(DTSLv1):
 '''A top level configuration class which supports debug and trace'''
 @staticmethod
 def getOptionList():
 '''The method which specifies the configuration options which
 the user can edit via the launcher panel |Edit...| button
 '''
 return [
 DTSLv1.tabSet(
 name='options',
 displayName='Options',
 childOptions=[
 DSTREAMDebugAndTrace.getTraceBufferOptionsPage(),
 DSTREAMDebugAndTrace.getETMOptionsPage(),
 DSTREAMDebugAndTrace.getITMOptionsPage()
]
)
]
 @staticmethod
 def getTraceBufferOptionsPage():
 # If you change the position or name of the traceCapture
 # device option you MUST modify the project_types.xml to
 # tell the debugger about the new location/name
 return DTSLv1.tabPage(
 name='traceBuffer',
 displayName='Trace Buffer',
 childOptions=[
 DTSLv1.enumOption(
 name='traceCaptureDevice',
 displayName='Trace capture method',
 defaultValue='DSTREAM',
 values=[
 ('none', 'No trace capture device'),
 ('DSTREAM', 'DSTREAM 4GB Trace Buffer')
]
),
 DTSLv1.booleanOption(
 name='clearTraceOnConnect',
 displayName='Clear Trace Buffer on connect',
 defaultValue=True
),
 DTSLv1.booleanOption(
 name='startTraceOnConnect',
 displayName='Start Trace Buffer on connect',
 defaultValue=True
),
 DTSLv1.enumOption(
 name='traceWrapMode',
 displayName='Trace full action',
 defaultValue='wrap',
 values=[
 ('wrap', 'Trace wraps on full and continues to store data'),
 ('stop', 'Trace halts on full')
]
)
]

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 521 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

)
[snip]
 def __init__(self, root):
 '''The class constructor'''
 # base class construction
 DTSLv1.__init__(self, root)
 # create the devices in the platform
 self.cores = []
 self.traceSources = []
 self.reservedATBIDs = {}
 self.createDevices()
 self.setupDSTREAMTrace()
 for core in self.cores:
 self.addDeviceInterface(core)
 def createDevices(self):
create MEMAP
 devID = self.findDevice("CSMEMAP")
 self.AHB = CortexM_AHBAP(self, devID, "CSMEMAP")
 # create core
 devID = self.findDevice("Cortex-M3")
 self.cortexM3 = ResetHookedDevice(self, devID, "Cortex-M3")
 self.cortexM3.registerAddressFilters(
 [AHBCortexMMemAPAccessor("AHB", self.AHB, "AHB bus accessed via
 AP_0")])
 self.cores.append(self.cortexM3)
 # create the ETM disabled by default - will enable with option
 devID = self.findDevice("CSETM")
 self.ETM = V7M_ETMTraceSource(self, devID, 1, "ETM")
 self.ETM.setEnabled(False)
 self.traceSources.append(self.ETM)
 # ITM disabled by default - will enable with option
 devID = self.findDevice("CSITM")
 self.ITM = V7M_ITMTraceSource(self, devID, 2, "ITM")
 #self.ITM = M3_ITM(self, devID, 2, "ITM")
 self.ITM.setEnabled(False)
 self.traceSources.append(self.ITM)
 # TPIU
 devID = self.findDevice("CSTPIU")
 self.TPIU = V7M_CSTPIU(self, devID, "TPIU", self.AHB)
 # DSTREAM
 self.DSTREAM = DSTREAMTraceCapture(self, "DSTREAM")
 self.DSTREAM.setTraceMode(DSTREAMTraceCapture.TraceMode.Continuous)

14.3.5 DTSL script

The DTSL script defines the DTSL options using a set of static methods. The option definitions
must be available before creating an instance of the configuration class.

To display and modify the DTSL options before connecting, use the IDE launcher panel. To
display and modify the DTSL options during an Arm® Development Studio debug session, use the
command line or the Debug Control view.

In Windows 10, the DTSL options values are persisted in your workspace under the directory
C:\Users\<user>\Documents\ArmDS_Workspace\.metadata\.plugins\com.arm.ds\DTSL. In this
directory there is a sub-directory for the platform, in which there is another sub-directory for
the debug operation. Within the debug operation directory there are one or more .dtslprops
files, whose names match the names option sets in the DTSL Options dialog box. These files are

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 522 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

standard Java properties files. The following is the default properties file for the Keil® MCBSTM32E
Platform, Bare Metal Project, Debug and Trace Debug operation:

options.ETM.cortexM3coreTraceEnabled=true
options.ITM.itmTraceEnabled=true
options.ITM.itmTraceEnabled.itmowner=Target
options.ITM.itmTraceEnabled.itmowner.target.targetITMATBID=2
options.ITM.itmTraceEnabled.itmowner.debugger.DWTENA=true
options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[15\:8]=true
options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[23\:16]=true
options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[31\:24]=true
options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[7\:0]=true
options.ITM.itmTraceEnabled.itmowner.debugger.STIMENA=0xFFFFFFFF
options.ITM.itmTraceEnabled.itmowner.debugger.TSENA=true
options.ITM.itmTraceEnabled.itmowner.debugger.TSPrescale=none
options.traceBuffer.traceCaptureDevice.clearTraceOnConnect=true
options.traceBuffer.traceCaptureDevice.startTraceOnConnect=true
options.traceBuffer.traceCaptureDevice.traceWrapMode=wrap
options.traceBuffer.traceCaptureDevice=DSTREAM

The names of the options exactly match the name hierarchy defined in the DTSL script (see the full
DTSL script source code to create the configuration options).

When Arm Debugger displays the options, it calls the getOptionList() method in the DTSL
configuration class to retrieve a data description of the options. It matches these options with the
persisted values from the .dtslprops file and transforms this data into an interactive dialog type
display for the user. When the user saves the options, the .dtslprops file is updated. After the
DTSL configuration instance is created, DTSL calls the optionValuesChanged() method to inform
the instance of the configuration settings values. During the debug session, the user can change
any option which is marked with an isDynamic=True property.

Related information
DTSL options on page 535

14.4 DTSL as used by Arm Debugger

14.4.1 Arm Development Studio debug session launcher

After you have created a new debug connection, the debug session begins.

When the session starts running, Arm® Debugger first scans the entire Arm Development Studio
configdb, including the extension directories. It dynamically builds a list of supported manufacturers
and boards, along with the supported project types and debug activities. To build this list, Arm
Debugger refers to the project_types.xml files in each /Boards directory.

When built, the list is displayed in the Edit Configuration dialog box. You can then choose the
combination of manufacturer, board, project type, and debug activity you require.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 523 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

After you select the debug activity, Arm Debugger inspects the DTSL script dtsl_config_script,
and configuration class dtsl_config, for any DTSL options. If any DTSL options are specified, Arm
Debugger activates the Edit… button so that you can change the values for the DTSL options.

14.4.2 Connecting to DTSL

To use DTSL, a client must create a DTSLConnection object using the DTSL ConnectionManager
class (com.arm.debug.dtsl.ConnectionManager). ConnectionManager has static methods that
allow the DTSLConnection object to be created from a set of connection parameters. After a
ConnectionManager object is obtained, calling its connect() method creates the DTSLConfiguration
object which contains all the target component objects.

When the DTSL ConnectionManager class creates a new DTSLConnection, it assigns a unique key to
it. It constructs this key from the connection properties:

• dtsl_config_script: the absolute path to the DTSL Jython script.

• dtsl_config: the Jython DTSL class name.

• config_file: the absolute path to the RDDI configuration file.

• dtsl_config_options: optional DTSL options (a hash of the content of the DTSL options file).

• rddi_retarget_address: optional re-target address for the RDDI configuration.

• possibly other input.

If the DTSL ConnectionManager detects an attempt to connect to an already existing
DTSLConnection (that is, the connection key matches an existing DTSLConnection instance) then
DTSL returns the already existing instance. There can only be one DTSLConnection with any given
key.

A DTSLConnection can also be created by obtaining an existing DTSL instance key and requesting
a connection to that instance. Both Arm® Debugger and third-party Eclipse plugins can therefore
connect to an existing DTSLConnection instance. If Arm Debugger creates the DTSLConnection
instance for a platform, then a third-party plugin can connect to the same instance by one of two
methods:

• Use an identical set of connection properties.

• Arrange to get the DTSLConnection instance key from the debugger, and use that key to make
the connection.

DTSL reference-counts connections to a platform instance and only closes the DTSLConnection
instance when all clients have disconnected.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 524 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.4.3 DTSL access from Debugger Jython scripts

DTSL uses Jython scripting to create the DTSL configuration. The configuration typically stores
objects for each debug component in the target system.

Arm® Debugger also uses Jython scripting, but at a different level, to DTSL, in the debugger
software stack. In debugger scripting, the debugger provides an object interface to the debugger
features. For example, a debugger script can:

• load .axf files

• determine the current execution context

• read registers

• set breakpoints

• control execution

These operations cause operations on the objects in the DTSL configuration, but there is not
always a direct mapping from debugger operations to DTSL object operations. This is especially
true for SMP systems.

Sometimes, however, it makes sense for a debugger script to access low level DTSL objects.
For example, a user with in-depth CoreSight™ experience might want to manually program up a
PTM sequencer, or directly drive CTI inputs. In such cases, the debugger script can get the DTSL
configuration, locate the objects of interest and call their methods directly. Although this is a
very powerful feature, it must be used with care, because the debugger has no way of knowing
that such operations have taken place. In many cases this does not matter, especially if the DTSL
objects being used are not directly used by the debugger. However, more care is required when
directly accessing core objects used by the debugger.

The following is an example of how a debugger Jython script might get access to a DTSL object
called 'PTM':

from arm_ds.debugger_v1 import Debugger
from com.arm.debug.dtsl import ConnectionManager
from com.arm.debug.dtsl.interfaces import IConfiguration
Connect to Arm Debugger
debugger = Debugger()
assert isinstance(debugger, Debugger)
if not debugger.isConnected():
 return
Access the underlying DTSL configuration
dtslConnectionConfigurationKey = debugger.getConnectionConfigurationKey()
dtslConnection = ConnectionManager.openConnection(dtslConnectionConfigurationKey)
dtslConfiguration = dtslConnection.getConfiguration()
assert isinstance(dtslConfiguration, IConfiguration)
deviceList = dtslConfiguration.getDevices()
for device in deviceList:
 assert isinstance(device, IDevice)
 if device.getName() == "PTM":
 ...

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 525 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.5 Main DTSL classes and hierarchy
There are four basic types of object that DTSL exposes to the Debugger or third-party plugin:

• Connection and Configuration objects, which implement the IConnection and IConfiguration
interfaces respectively.

• Device objects, which implement the IDevice interface. Cores, and most CoreSight™

components, are of this type. If a device needs a connection type operation, which most
devices do, then it also implements IDeviceConnection (see the ConnectableDevice object).

• TraceSource objects, which typically implement both the IDevice and ITraceSource interfaces.
ETM and PTM objects are of this type.

• Trace capture devices, which typically implement the ITraceCapture interface. These objects
give access to a trace capture device such as a DSTREAM or an ETB.

14.5.1 DTSL configuration objects

The DTSLConnection object is the top-level DTSL object that allows access to all the other DTSL
objects using the platform configuration.

Specifically, the DTSLConnection allows access to the ConfigurationBase instance, for example
DTSLv1, which allows access to the rest of the DTSL objects. The content of the platform
configuration depends on the associated ConnectionParameters set.

Figure 14-4: DTSL Configuration class hierarchy

If the ConnectionParameters instance does not specify a DTSL configuration script, then an object
of type DefaultConfiguration is created. The configuration content is constructed by creating a
Device object for each device known to RDDI-DEBUG. For DSTREAM, this means that a Device
object is created for each device declared in the .rcf, .rvc, or .sdf files, but for other kinds of
RDDI this might come from a different data set. This allows for a simple connection to a platform
with direct connections to any target devices specified in the RDDI configuration file.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 526 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

If the ConnectionParameters instance does specify a DTSL configuration script, then that script is
run to create an instance of a configuration object derived from DTSLv1. When the configuration
script is run, it is expected to populate the configuration with the set of known device objects,
trace sources, and trace capture devices.

• Arm recommends using a configuration script to create a DTSL configuration,
because it allows much greater flexibility when creating devices.

• DTSLv1 is named as such to show that the configuration is using the V1
interface and object set. This is the current set. If Arm changes the interface
and object set, then it might start using DTSLv2. This allows Arm to maintain
backwards compatibility, but also to move forward with new or modified
interfaces.

There are two object hierarchies in use for DTSL configurations, that can be split into:

1. Configurations which use .rcf or .rvc files.

For these types of configurations, all information related to the topology of the system is
contained within the Jython configuration script, where managed devices, trace component
orders, and device configuration (For example, funnel port configuration) are all performed
explicitly within the script. The Arm® Development Studio Platform Configuration Editor
previously created all configurations which behaved in this way. For more details, see Arm DS
configuration database.

2. Configurations which use a .sdf file directly.

SDF files can contain all required information related to target device topology, and so
configurations which use them directly do not have large amounts of python configuration code,
and all this work is performed internally by the ConfigurationBaseSDF class. Configurations
created by the Arm Development Studio Platform Configuration Editor use a .sdf file as an
input. For more details, see Platform Configuration .

14.5.2 DTSL device objects

Device objects are used to interface to any target component that has an RDDI-DEBUG interface.
Such components are typically cores or CoreSight™ devices. All Device objects implement the
IDevice interface, which closely matches the RDDI-DEBUG native interface.

The following is a code sequence from a DTSL Jython script to create the Device object for a
Cortex®-A8 core:

1. devID = self.findDevice("Cortex-A8")
2. self.cortexA8 = ConnectableDevice(self, devID, "Cortex-A8")
3. self.addDeviceInterface(self.cortexA8)

Line 1 locates the device ID (RDDI-DEBUG device index number) for the named device from the
RDDI configuration. Line 2 creates the DTSL ConnectableDevice object. Line 3 adds the device
object to the DTSL configuration.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 527 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

The following figure shows part of the Device class hierarchy:

Figure 14-5: DTSL Device object hierarchy

The figure shows the main components used for cores and core clusters.

14.5.3 CoreSight device component register IDs

The documentation for a CoreSight component lists its component registers and their address
offsets. For example, the CoreSight™ STM component has a Trace Control and Status Register
called STMTCSR which has an offset of 0xE80. To access this register through the IDevice interface,
you need to know its register ID. To determine the ID, divide the documented offset by four. For
example, the register ID for the STMTCSR register is 0x3A0, which is 0xE80/4.

14.5.4 DTSL trace source objects

These objects represent sources of trace data within the platform. These could be Arm devices
such as:

• ETM

• PTM

• ITM

• STM

• MTB (previously known as BBB)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 528 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

• Custom trace components that output data onto the CoreSight™ ATB

These devices must implement the ITraceSource interface to be recognized as a trace source and
to provide ATB ID information. They typically also implement IDevice. Most of these types of
device only implement the register access methods from IDevice to allow configuration and control
of the device, and they usually have a partner class which defines the names of the registers
supported. For example, the STMTraceSource class has a partner class called STMRegisters which,
for convenience, defines the STM register set IDs and many of their bit fields.

The class hierarchy for trace source objects is shown in the following figure:

Figure 14-6: DTSL Trace Source class hierarchy

When implementing new trace source objects, you can choose to base them on TraceDevice,
ConnectableTraceDevice, TraceSource, or ConnectableTraceSource. The choice depends on

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 529 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

whether the source needs a connection, and whether it can identify itself in the trace stream
with a source ID. As shown in the figure, all the standard Arm trace sources are derived from
ConnectableTraceSource. This is because they are real devices which can be connected to for
configuration, and which have ATB IDs to identify themselves in the received trace stream.

The following is a typical code sequence from a DTSL Jython script to create an ETM trace source:

1. devID = self.findDevice("CSETM")
2. etmATBID = 1
3. self.ETM = ETMv3_3TraceSource(self, devID, etmATBID, "ETM")

Line 1 locates the CSETM device ID (RDDI-DEBUG device index number) from the RDDI
configuration. Line 2 assigns the ATB ID to be used for the ETM. Line 3 creates the DTSL
ETMv3_3TraceSource object and names it 'ETM'. If there are multiple ETMs in the platform, they
should have different names, such as 'ETM_1' and 'ETM_2', or 'ETM_Cortex-A8' and 'ETM_Cortex-
M3'.

After creating the trace source objects, you must inform any trace capture device about the set of
trace source objects to associate with it. This allows the client program to locate the ATB ID for the
source of interest and request delivery of trace data for that source.

Related information
DTSL trace capture objects on page 530

14.5.5 DTSL trace capture objects

Trace capture objects are responsible for storing and delivering trace data.

Some trace capture devices reside on the platform itself, such as CoreSight™ ETB, TMC/ETB, and
TMC/ETR. In other cases, trace capture devices capture data into an off-platform storage, such as
DSTREAM with its 4GB trace buffer.

The following image shows the on-chip trace class hierarchy and interfaces:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 530 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Figure 14-7: On-chip trace class hierarchy

The following image shows the off-chip trace class hierarchy and interfaces:

Figure 14-8: Off-chip trace class hierarchy

The following is a typical code sequence from a DTSL Jython script to create an ETB trace capture
device:

1. devID = self.findDevice("CSETB")
2. self.ETB = ETBTraceCapture(self, devID, "ETB")
3. self.ETB.setFormatterMode(FormatterMode.BYPASS)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 531 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

4. self.ETB.addTraceSource(self.ETM, self.coretexA8.getID())
5. self.addTraceCaptureInterface(self.ETB)
6. self.setManagedDevices([self.ETM, self.ETB])

Line 1 locates the ETB device ID (number) from the RDDI configuration (.rcf file or .rvc file). Line
2 creates the ETBTraceCapture object with the name 'ETB'. Line 3 configures the formatter mode
of the ETB. Line 4 adds an ETM object, such as that created by the code sequence in DTSL trace
source objects , to the set of trace sources to associate with the trace capturedevice. This should
be done for all trace source objects which deliver trace to the trace capture device. To associate
the ETM with a core, the code uses a version of the addTraceSource() method which allows it to
associate the core by its ID. Line 5 adds the trace capture device to the DTSL configuration. Line 6
tells DTSL to automatically manage connection and disconnection to and from the ETM and ETB
devices.

When a client program has a reference to the DTSL configuration object, it can query it for its set
of trace capture devices. For each trace capture device, it can find out which trace sources feed
into the trace capture device.

14.5.6 Memory as seen by a core device

When a DTSL configuration creates DTSL device objects for Arm cores, target memory can be
accessed by performing memory operations on the device objects. This is how Arm® Debugger
typically accesses memory during a debug session. However, such memory accesses have certain
characteristics and are restricted in certain ways:

• For most Arm cores, memory cannot be accessed through the core when the core is executing.

• For cores with an MMU, the address used to access memory through the memory access
methods of a device is the address as seen from the point of view of the core. This means that
if the MMU is enabled, then the address is a virtual address, and it undergoes the same address
translation as if it had been accessed by an instruction executed by the core. This is usually
what a DTSL client, such as a debugger, wants to happen, so that it can present the same view
of memory as that which the core sees when executing instructions.

• For cores with enabled caches, the data returned by the memory access methods of a device
is the same as would be returned by a memory access by an instruction executed on the core.
This means that if the data for the accessed address is currently in a cache, then the cached
data value is returned. This value might be different from the value in physical memory. This
is usually what a DTSL client, such as a debugger, wants to happen, so that it can present the
same view of memory as that which the core sees when executing instructions.

14.5.7 Physical memory access via CoreSight

Although CoreSight™ does not require it, most CoreSight implementations provide a direct way
to access the bus or buses of the target system. They do this by providing a Memory Access Port
(MEM-AP) which is accessed through the CoreSight DAP. There are several types of MEM-AP
depending on the type of the system bus. The three main types are APB-AP, AHB-AP, and AXI-

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 532 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

AP, which provide access to APB, AHB, and AXI bus types respectively. Each of these access ports
implements the CoreSight MEM-AP interface.

The following figure shows a simple, but typical, arrangement of MEM-APs:

Figure 14-9: MEM-AP Access Ports

To allow direct memory access through one of the MEM-APs, a DTSL configuration can create
device objects for the MEM-APs themselves. When the memory access methods are called on
such devices, the memory access is directed straight onto the system bus, completely bypassing
the core or cores.

The memory access is not processed by the core MMU (so there is no core MMU
address translation), and bypasses any cache in the core, which might result in a
different value being observed to that observed by the core.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 533 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.5.8 DTSL MEM-AP support

DTSL provides special classes for MEM-AP support. The following figure shows the class hierarchy:

Figure 14-10: MEM-AP Class Hierarchy

The image shows two main class trees. These are the MEM-AP tree and the DeviceMemoryAccessor
tree. The DTSL configuration typically creates objects for one or more of the MEM-AP class types,
suitably specialized for the actual bus type.

In the MCBSTM32E example, there is an AHB-AP which can be used to access memory directly.
In the case of Cortex®-M3, this bus is also used to access the CoreSight™ debug components, but
for non-Cortex-M cores it is more typical for there to be a separate APB-AP for debug component
access. The significant lines of the DTSL configuration script are similar to the following:

devID = self.findDevice("CSMEMAP")
self.AHB = CortexM_AHBAP(self, devID, "CSMEMAP")

In this case, the RDDI-DEBUG configuration has a device called CSMEMAP, which associates with
a CortexM_AHBAP DTSL object. This object is derived from a DTSL Device, and so has memory
access methods available.

If a client is aware of such DTSL devices, then it can use them to access memory directly.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 534 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.5.9 Linking MEM-AP access to a core device

Not all clients are directly aware of MEM-AP type devices. Arm® Debugger is an example of such
a client. To allow such clients to make use of MEM-AP devices, named address space filters can
be added to any DTSL Device object. The purpose of the address space filter is to tell the Device
object that, if it sees a memory access with a known address space name, it should carry out the
access through another DTSL device, rather than through the core. For example, we can add an
address space filter to the Cortex®-M3 DTSL Device which detects memory accesses to an address
with an address space of 'AHB'. When it detects such an access, it performs the access using the
AHB device, instead of going through the Cortex-M3. For Arm Debugger, this means that the user
can prefix an address with AHB: (for example, AHB:0x20000000), and the access is performed using
the AHB-AP.

The following code shows how the address space filter is added to the Cortex-M3 object:

devID = self.findDevice("CSMEMAP")
self.AHB = CortexM_AHBAP(self, devID, "CSMEMAP")
devID = self.findDevice("Cortex-M3")
self.cortexM3 = ResetHookedDevice(self, devID, "Cortex-M3")
self.cortexM3.registerAddressFilters(
 [AHBCortexMMemAPAccessor("AHB", self.AHB, "AHB bus accessed via AP_0")])

Any number of address filters can be added, but each filter name (Arm® Debugger address prefix)
must be unique.

To determine the supported address spaces for an object which implements IDevice, call the
getAddressSpaces() method. When a client matches against an address space, it can map the
address space to a rule parameter which is passed into the IDevice memory access methods. The
rule parameter is then used to direct the memory access to the appropriate device.

14.6 DTSL options
On many platforms, the debug components allow configuration of their properties. For example, in
some CoreSight™ PTM components, the generation of timestamps within the trace data stream can
be turned on or off. Such options are typically accessed and changed by using the DTSL objects
that were created as part of the DTSL configuration. For example, the DTSL PTMTraceSource object
has a setTimestampingEnabled() method to control timestamping. In this way, the DTSL objects
that a DTSL configuration holds can expose a set of configuration options that you might want to
modify. You might also want to create an initial option set to be applied at platform connection
time, and then change some of those options after connecting, during a debug session. For
example, this allows the PTM timestamp option to have a user setting applied at connection time,
while also allowing you to turn the timestamps on and off during a debug session.

14.6.1 DTSL option classes

To support the concept of DTSL options, a DTSL configuration can expose a set of option objects.
These objects allow a client to query the option set and their default values, and to modify the

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 535 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

option values before and after connecting. The option objects are arranged hierarchically, and
grouped in a way that allows them to be presented in a GUI. The option set must be available
before connecting, so the options are exposed by a static method getOptionList() on the DTSLv1
derived class within a Jython script.

The getOptionList() static method is not part of any defined Java interface.
The DTSL configuration script manager uses Jython introspection at run time to
determine whether the method exists.

The object set returned from getOptionList() should be an array of option objects. It is very
common to partition the set of options into logical groups, each of which has its own tab page
within a TabSet. Each tab page contains the options for its associated group.

The following image shows the supported options types and class hierarchy:

Figure 14-11: DTSL Option Classes

The DTSLv1 class provides many static helper methods for creating the options, and it is more
usual for these methods to be used rather than directly creating the objects.

14.6.2 DTSL option example walk-through

The following is a simplified example from the Keil® MCBSTM32E platform Jython script:

1. class DSTREAMDebugAndTrace(DTSLv1):
2. '''A top level configuration class which supports debug and trace'''
3.
4. @staticmethod
5. def getOptionList():
6. '''The method which specifies the configuration options which
7. the user can edit via the launcher panel |Edit...| button
8. '''
9. return [
10. DTSLv1.tabSet(
11. name='options',
12. displayName='Options',
13. childOptions=[
14. DSTREAMDebugAndTrace.getTraceBufferOptionsPage(),
15. DSTREAMDebugAndTrace.getETMOptionsPage(),

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 536 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

16. DSTREAMDebugAndTrace.getITMOptionsPage()
17.]
18.)
19.]

Line 4 marks the method as a static method of the containing class. This allows it to be called
before an instance of the class exists. It also implies that any methods that are called are also static
methods, because there is no self (this) associated with an instance of the class. Line 5 defines the
static method with the name getOptionList. If this static method is present, then the configuration
has options, otherwise it does not. Line 10 creates a TabSet object with name options, display
name 'Options', and an array of child options, which in this example are each created by calling
another static method.

You might find it helpful to provide child options using several static methods. This
prevents the nesting level of brackets from becoming too deep and difficult to
understand, and makes it easier for you to avoid using the wrong type of bracket in
the wrong place.

The following code extract shows the getTraceBufferOptionsPage method:

1. @staticmethod
2. def getTraceBufferOptionsPage():
3. return DTSLv1.tabPage(
4. name='traceBuffer',
5. displayName='Trace Buffer',
6. childOptions=[
7. DTSLv1.enumOption(
8. name='traceCaptureDevice',
9. displayName='Trace capture method',
10. defaultValue='none',
11. values=[
12. ('none', 'No trace capture device'),
13. ('DSTREAM', 'DSTREAM 4GB Trace Buffer')
14.]
15.),
16. DTSLv1.booleanOption(
17. name='clearTraceOnConnect',
18. displayName='Clear Trace Buffer on connect',
19. defaultValue=True
20.),
21. DTSLv1.booleanOption(
22. name='startTraceOnConnect',
23. displayName='Start Trace Buffer on connect',
24. defaultValue=True
25.),
26. DTSLv1.enumOption(
27. name='traceWrapMode',
28. displayName='Trace full action',
29. defaultValue='wrap',
30. values=[
31. ('wrap', 'Trace wraps on full and continues to store
 data'),
32. ('stop', 'Trace halts on full')
33.]
34.)
35.]
36.)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 537 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

The code uses nesting and indentation to help keep track of closing bracket types.

Line 3 creates a tab page named traceBuffer, which has an array of child options. These child
options are displayed on the tab page within a GUI. Working through the child options might help
you understand how they are displayed to the user. Line 7 creates an enum option. This is an
option whose value is one of a set of pre-defined values, and which is typically presented to the
user as a drop down list box. The list box shows the pre-defined values, and the user selects one of
them. The values are given as pairs of strings. The first string is the internal value, and the second
string is the text displayed to the user. Lines 16 to 21 create boolean options. These are options
which are true or false, or on or off, and are usually shown to the user as a check box GUI element.

The following image shows how Arm® Development Studio renders the tab set and tab page:

Figure 14-12: DSTREAM Trace Options

For more examples, see the full source code for the Keil example in the DTSLExampleConfigdb
project.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 538 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.6.3 Option names and hierarchy

All options are part of an option hierarchy. Starting at the outermost level, the TabSet object is
usually named 'options'. All other options are then created in a childOptions path, starting from
this outermost level. The name path for an option consists of all the internal names (not the display
names) in the hierarchy between the outermost level and the option in question, joined by the
. character. For example, in the previous code samples, the option which indicates the currently
selected trace capture device has the name path options.traceBuffer.traceCaptureDevice. The
components of this name path, joined by ., are as follows:

options
The internal name of the outermost TabSet.

traceBuffer
The internal name of the child option for the trace buffer tab page object.

traceCaptureDevice
The internal name of the EnumOption for the currently selected trace capture device.

The full path name is important for at least three reasons:

• It can be used from the Arm® Debugger command line, to read or modify the option value,
using the commands show dtsl-options or set dtsl-options.

• It can be used in the project_types.xml file to direct the Arm Debugger to relevant options,
such as which trace capture device to use (if any).

• It can be used in the getOptionValue and setOptionValue methods of the configuration, to
read or modify an option's value.

The full path option name is case sensitive.

Here is an example output from the show dtsl-options command to see the list of available DTSL
options and their current values.

Command: show dtsl-options
dtsl-options options.ETM.cortexM3coreTraceEnabled: value is
 "true"
dtsl-options options.ITM.itmTraceEnabled: value is
 "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner: value is
 "Target"
 (read
 only)
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.DWTENA: value
 is "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[15:8]: value
 is "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[23:16]: value
 is "true"

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 539 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[31:24]: value
 is "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.PRIVMASK.[7:0]: value
 is "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.STIMENA: value is
 "0xFFFFFFFF"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.TSENA: value
 is "true"
dtsl-options options.ITM.itmTraceEnabled.itmowner.debugger.TSPrescale: value
 is "none"
dtsl-options options.ITM.itmTraceEnabled.itmowner.target.targetITMATBID:value is "2"
 (read
 only)
dtsl-options options.traceBuffer.clearTraceOnConnect: value is
 "true"
 (read
 only)
dtsl-options options.traceBuffer.startTraceOnConnect: value is
 "true"
 (read
 only)
dtsl-options options.traceBuffer.traceCaptureDevice: value is
 "DSTREAM"
 (read
 only)
dtsl-options options.traceBuffer.traceWrapMode: value is
 "wrap"
 (read
 only)
dtsl-options options.ucProbe.ucProbeEnabled: value is
 "false"
dtsl-options options.ucProbe.ucProbeEnabled.PORT: value is
 "9930"
 (read
 only)

Here is an example of the set dtsl-options command to change the current value of any non
read-only option:

Command: set dtsl-options options.ITM.itmTraceEnabled false
DTSL Configuration Option "options.ITM.itmTraceEnabled" set to false

14.6.4 Dynamic options

Some option values can be modified dynamically, after connecting to the platform. For an Arm®

Development Studio Debug session, this means the option can be changed during the debug
session, using either the Arm Debugger command line or the DTSL Options… menu selection with
the Debug Control View.

Not all options can be modified after connecting. For example, the trace capture device cannot
typically change during the debug session, although the option to enable ITM trace can change.
Even if an option can be changed, it might not apply the change immediately. For example, most
trace-related dynamic options apply changes only when tracing is started or restarted.

To mark an option as dynamic, add the isDynamic=True parameter to the option constructor. For
example, the ITM option to generate timestamps could be created as follows:

DTSLv1.booleanOption(

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 540 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 name='TSENA',
 displayName = 'Enable differential timestamps',
 defaultValue=True,
 isDynamic=True
)

When Arm Debugger displays the options during a debug session, it only allows the dynamic
options to be changed. All the options are shown to the user, but the non-dynamic ones are grayed
out and cannot be changed.

14.6.5 Option change notification

Shortly after the DTSL configuration instance (the object derived from DTSLv1) is created, the
option values are given to the instance by calling its optionValuesChanged method. This method
inspects the current option values and configures the platform components accordingly.

The optionValuesChanged method is called after the constructor is called, but
before the DTSL components are connected to the target platform. This means that
the DTSL objects can be configured with their settings, but cannot send the settings
to the target components.

If the options are changed during a debug session, then the optionValuesChanged method is called
again, to inform the DTSL components that the options have changed.

Currently, the call to the optionValuesChanged method does not indicate which
options have changed. A future version of DTSL will address this.

14.6.6 Option change notification example walk-through

These Jython code snippets are from the Keil® MCBSTM32E platform Jython script and the
DSTREAMDebugAndTrace class:

1. def optionValuesChanged(self):
2. '''Callback to update the configuration state after options are changed.
3. This will be called:
4. * after construction but before device connection
5. * during a debug session should the user change the DTSL options
6. '''
7. obase = "options"
8. if self.isConnected():
9. self.updateDynamicOptions(obase)
10 else:
11 self.setInitialOptions(obase)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 541 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Line 1 declares the optionValuesChanged method, which is called to tell the DTSL components that
the options have changed. Line 7 assigns the top level options name path value. Lines 8 to 11 call
one of two methods depending on whether the configuration is connected yet.

1. def setInitialOptions(self, obase):
2. '''Takes the configuration options and configures the
3. DTSL objects prior to target connection
4. Param: obase the option path string to top level options
5. '''
6. if self.traceDeviceIsDSTREAM(obase):
7. self.setDSTREAMTraceEnabled(True)
8. self.setDSTREAMOptions(obase+".traceBuffer")
9. obaseETM = obase+".ETM"
10. obaseITM = obase+".ITM"
11. self.setETMEnabled(self.getOptionValue(
12. obaseETM+".cortexM3coreTraceEnabled"))
13. self.reservedATBIDs = {}
14. self.setITMEnabled(self.getOptionValue(obaseITM+".itmTraceEnabled"))
15. obaseITMOwner = obaseITM+".itmTraceEnabled.itmowner"
16. if self.debuggerOwnsITM(obaseITMOwner):
17. self.setITMOwnedByDebugger(True);
18. self.setITMOptions(obaseITMOwner+".debugger")
19. else:
20. self.setITMOwnedByDebugger(False);
21. self.reservedATBIDs["ITM"] =
22. self.getOptionValue(obaseITMOwner+".target.targetITMATBID")
23. self.updateATBIDAssignments()
24. else:
25. self.setDSTREAMTraceEnabled(False)
26. self.setETMEnabled(False)
27. self.setITMEnabled(False)

In this code example, note the following:

• The value for an option is retrieved using the self.getOptionValue method, which takes the
full option path name to the option value.

• The code builds up the full option path names, which allows the options to be moved more
easily. This can be seen in the way that the obaseITMOwner value is constructed and passed
to the self.setITMOptions method. This allows self.setITMOptions to be written without
having to hard code the full option name path into it. Instead, it only needs to know the path
extensions from the passed base to determine its option values.

For completeness, the following shows the dynamic option update method:

1. def updateDynamicOptions(self, obase):
2. '''Takes any changes to the dynamic options and
3. applies them. Note that some trace options may
4. not take effect until trace is (re)started
5. Param: obase the option path string to top level options
6. '''
7. if self.traceDeviceIsDSTREAM(obase):
8. obaseETM = obase+".ETM"
9. self.setETMEnabled(self.getOptionValue(
10. obaseETM+".cortexM3coreTraceEnabled"))
11. obaseITM = obase+".ITM"
12. if self.getOptionValue(obaseITM+".itmTraceEnabled"):
13. self.setITMEnabled(True)
14. obaseITMOwner = obaseITM+".itmTraceEnabled.itmowner"
15. if self.debuggerOwnsITM(obaseITMOwner):
16. self.setITMOptions(obaseITMOwner+".debugger")
17. else:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 542 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

18. self.setITMEnabled(False)

For the dynamic option changes, only the options marked as dynamic need inspecting.

The option values are passed on to the corresponding DTSL objects, but the option
changes might not be applied immediately. In many cases, the change only applies
when execution or trace is next started. Whether the option change is applied
immediately is determined by the implementation of the DTSL object.

14.7 DTSL support for SMP and AMP configurations
From the point of view of Arm® Debugger, Symmetric Multi Processing (SMP) refers to a set of
architecturally identical cores which are tightly coupled together and used as a single multi-core
execution block. From the point of view of the debugger, they must be started and halted together.

In larger systems, there may be several SMP sets, each of which is referred to as a cluster. Typically,
a cluster is a set of 4 cores in an SMP configuration. All cores in the SMP cluster also have the
same view of memory and run the same image.

From the point of view of Arm Debugger, Asymmetric Multi Processing (AMP) refers to a set of
cores which are operating in an uncoupled manner. The cores can be of different architectures
{Cortex®-A8, Cortex-M3}, or of the same architecture but not operating in an SMP configuration.
From the point of view of the debugger, it depends on the application whether the cores need to
be started or halted together.

From the point of view of DTSL, the cores in the set (SMP or AMP) are part of the same configdb
platform. Using project_types.xml, the platform exposes a set of debug operations which cover
the supported use cases. All of these use cases must be provided for by the same Jython DTSL
configuration class. This is because, although there can be multiple clients using DTSL (for example,
one debugger controlling a Cortex-A8 and another controlling a Cortex-M3), there is only one set
of target debug hardware (for example, only one TPIU). There must therefore be a single DTSL
instance in control of the debug hardware.

In SMP systems, there is usually a hardware mechanism which keeps the set of cores at the same
execution state. Some AMP systems must also have synchronized execution state, and the multi-
client, single DTSL instance architecture supports this. The single DTSL instance is always aware of
the target execution state, and can typically arrange for a single execution state between all AMP
cores.

14.7.1 AMP systems and synchronized execution

If a platform contains multiple cores, then when the first DTSL client connects, the DTSL
configuration creates devices for all of the cores. The client uses the devices for the cores it wants
to control. When a second client connects to the same platform, it must present an identical

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 543 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

set of connection parameters. The DTSL connection manager therefore returns the same DTSL
configuration instance that was created by the first client connection. The second client can use
the devices for the cores it wants to control. In this way, two clients can use the same DTSL
configuration instance, including any DTSL options.

If execution synchronization is not required, a simple DTSL configuration is enough, with core
execution state being independent. However, if synchronized execution state is required, then the
created object model must provide this. The execution synchronization can be implemented with
features in the hardware, or by creating a software object model hierarchy which arranges for a
shared execution state.

14.7.2 Execution synchronization levels

The level at which DTSL can perform synchronized execution status depends heavily on both
the execution controller (for example, the JTAG control box) and the on-chip debug hardware.
However, there are roughly three different levels (or qualities) of synchronization:

• Software synchronization

• Tight synchronization

• Hardware synchronization

14.7.3 Software synchronization

This is the lowest level or quality of synchronization. 'Software' refers to the DTSL software running
on the host debugger computer. At this level, the synchronization is of the following form:

Synchronized start
This is achieved by asking each device to start executing, by calling the go() method on each
device in turn.

Synchronized stop
This is achieved by asking each device to stop executing, by calling the stop() method
on each device in turn. If one device is seen to be stopped (by DTSL receiving a
RDDI_EVENT_TYPE.RDDI_PROC_STATE_STOPPED stopped event), then the DTSL configuration must
request all other devices to stop.

This synchronization is done on the host computer, so there can be hundreds of milliseconds
between each core actually stopping. Whether this is a problem depends on how the target
application handles other cores not responding (if they communicate with each other at all).

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 544 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.7.4 Tight synchronization

With tight synchronization, the execution controller (JTAG box such as DSTREAM) can manage the
synchronization. This can typically be further divided into several sub-levels of support:

• The execution controller supports the RDDI Debug_Synchronize() call. In this case, the
synchronized start and stop functionality is implemented in the execution controller. The
controller is much 'closer' to the target system, so it can typically synchronize down to sub-
millisecond intervals.

• The execution controller can define one or more sets of cores which form a cluster. When any
one of the cores in a set is seen to halt execution, the others are automatically halted. This
typically provides synchronized stop down to a sub-millisecond interval. DSTREAM supports
this technique.

• The execution controller supports Debug_Synchronize(), but cannot define clusters. In this
case, the DTSL configuration must be written so that if it sees any core in a synchronized group
as halted, it issues the RDDI Debug_Synchronize() call to halt the others in the group. In a
group of several devices, the time interval between the first halting and the others halting
may be hundreds of milliseconds, but the interval between the others halting is typically sub-
millisecond.

14.7.5 Hardware synchronization

With hardware synchronization, the target provides synchronization features on-chip. This is
typically the case for Arm® CoreSight™ systems that use the Cross Trigger Interface (CTI) to
propagate debug halt and go requests between cores. This ability relies on the hardware design
implementing this feature, and so might not be available on all CoreSight designs.

14.7.6 SMP states

For SMP systems, DTSL presents a single device to the client (see SMPDevice and its relations in
the DTSL Java docs), and the client controls execution state through this device. This SMPDevice
is a 'front' for the set of real devices which form an SMP group. When the SMPDevice reports the
execution state to the client, there is the possibility of inconsistent states. Ideally, for an SMP
group, all the cores have the same state, either executing or halted. In practice, this might not be
the case. To allow for this possibility, the SMPDevice can report an inconsistent state to the client
(debugger). This represents the case when not all cores are in the same state. Normally, DTSL
provides a time window within which it expects all cores to get into the same state. If all cores
become consistent within this time window, then DTSL reports a consistent state to the client,
otherwise it reports an inconsistent state. This allows the client to reflect the true state of the
system to the user, but still allows the state to be reported as consistent if consistency is achieved
at some future time.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 545 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.7.7 Use of CTI for SMP execution synchronization

Cross Trigger Interface (CTI) is part of the Arm Embedded Cross Trigger (ECT) system. Each
component in the system can have a CTI which allows inputs and outputs to be routed (or
channeled) between the components. The channeling is done by the CrossTrigger Matrix (CTM),
which is part of the ECT. The CTM supports a fixed number of channels onto which the CTIs can
output or input signals. There might be many signals in the system which can be routed between
components, and the CTIs can be told which signals to route by assigning them to a channel.

For example, in many systems, each core in the SMP group has a CTI connected to the following
signals:

Table 14-1: CTI Signal Connections

Name Direction Purpose

DBGTRIGGER Output from core to CTI Indicates that the core is going to enter
debug state (is going to stop executing)

EDBGRQ Input to core from CTI An external request for the core to enter
debug state (stop executing)

DBGRESTART Input to core from CTI An external request for the core to exit
debug state (start executing)

For synchronized execution to work, the DTSL configuration assigns two channels, one of which
is for stop requests and the other of which is for start requests. The CTI or CTIs are configured to
connect the above signals onto these channels.

Figure 14-13: Example use of CTI for H/W execution synchronization

With this configuration:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 546 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

• When a debug tool wants to halt all cores, it sends a CTI pulse. Sending a pulse from any CTI
onto the stop channel sends a EDBGRQ to all cores, which causes them to halt. This provides
the synchronized stop functionality for stop requests instigated by the debug tool.

• When any core halts (hits a breakpoint), the DBGTRIGGER signal outputs onto the stop
channel and sends a EDBGRQ signal to all the other cores, which causes them to halt. This
provides the synchronized stop functionality for breakpoints and watchpoints, for example.

• When all cores are ready to restart, sending a pulse from any CTI onto the start channel sends
a DBGRESTART signal to all cores. This provides the synchronized start functionality.

The convention for DTSL configurations is that channel 0 is used for the stop channel and channel
1 is used for the start channel. DTSL configuration scripts usually allow this to be modified by
changing the following constants, which are assigned near the top of the configuration script:

CTM_CHANNEL_SYNC_STOP = 0 # use channel 0 for sync stop
CTM_CHANNEL_SYNC_START = 1 # use channel 1 for sync start

14.8 DTSL Trace
DTSL is designed to support many different trace capture devices, such as DSTREAM, ETB, TMC/
ETB and TMC/ETR. It is also possible to extend DTSL to support other trace capture devices. Each
of these capture devices can present its data to DTSL in a different format.

Within a platform, trace data can originate from several trace sources. This data is mixed together
into the data stream which the trace capture device collects. For simplicity, trace clients (software
packages which receive or read trace data from DTSL) are usually designed based on the
assumption that the only trace data they receive from the trace source is data which they know
how to decode. For example, if a trace client knows how to decode PTM data, then it only expects
to receive PTM data when it reads trace data from DTSL.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 547 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.8.1 Platform trace generation

The following figure shows a simplified diagram of trace generation within a platform. There are
several trace sources outputting trace data onto a trace bus. The bus takes the data through a
frame generator and outputs it to a trace capture device.

Figure 14-14: Trace Generation

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 548 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.8.2 DTSL trace decoding

To process the raw trace data from the trace capture device into a format which is suitable for
trace clients to consume, DTSL pushes the raw trace data through a pipeline of trace decoders. The
following image shows an example of this flow for DSTREAM trace data:

Figure 14-15: DTSL Trace Decoding Stages for DSTREAM

The number and type of the pipeline decoding blocks depends on the format of the trace capture
device and the trace data format. However, the final stage should always be to place client
compatible data (raw trace source data) into a DataSink, ready for the trace client to consume.

14.8.3 DTSL decoding stages

The minimal pipeline decoder does nothing to the data from the trace capture device, except
to write it into a DataSink for the trace client to read. You can use this pipeline when you know
that the data from the trace capture device is already in the format required by a trace client. For
example, if you have a disk file which contains raw PTM trace data (that is, the data exactly as
output from the PTM onto the system ATB, which you might have captured from a simulation),
then you can create a PTM-file-based trace capture device. The decoding pipeline would contain

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 549 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

only a DataSink, into which you would write the content of the file. The PTM trace client could
then read the PTM data directly from the DataSink.

For less straightforward pipelines, a chain of objects must be constructed, each of which must
implement the IDataPipelineStage interface.

Figure 14-16: DTSL Trace Pipeline Hierarchy

For Arm-based trace systems which use a TPIU Formatter (CoreSight™ ETB, TMC/ETB and TMC/
ETR), two further pipeline stages must be added. These are the SyncStripper and Deformatter
stages, which remove the TPIU sync frames and extract data for a particular trace source ID
respectively.

Figure 14-17: ETB Trace Decode Pipeline Stages

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 550 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

By implementing new pipeline stages, it is possible to provide trace support for any trace capture
device, as long as the final output stage can be reduced to data which is compatible with the
expectations of a trace client.

14.8.4 DTSL trace client read interface

Before a trace client can read trace data, it must get a TraceSourceReader object from the
trace capture device. In practice, this means querying the DTSL configuration for the correct
trace capture device, several of which might be available within a configuration, and calling the
borrowSourceReader() method to get an appropriate TraceSourceReader. Trace data can then be
retrieved from the TraceSourceReader. When it finishes reading trace data, the client must then
return the TraceSourceReader object to the trace capture device. This is so that the trace capture
device knows when there are no clients reading trace, and therefore when it is free to start, or
restart, trace collection.

14.8.5 Supporting multiple trace capture devices

A DTSL configuration can contain several trace capture devices. The following are some possible
reasons for this:

• The target platform contains several CoreSight™ ETB components.

• The target platform can output to an external DSTREAM device, in addition to an internal
CoreSight ETB.

In some cases, there can only be one active trace capture device. In this case, you can choose
whether to use the DSTREAM or the ETB. In other cases, there can be several trace capture
devices active at the same time. This is common when the platform contains multiple clusters of
cores, each of which outputs trace to its own CoreSight ETB.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 551 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Figure 14-18: Example of Multiple Trace Capture Devices

To allow trace clients to receive trace data from a trace source, the DTSL configuration can be told
about the association between a trace source and one or more trace capture devices. In the figure,
for example, the trace source named PTM_2 is associated with the trace capture device named
ETB_1. If a client wants to display the trace data for PTM_2, it can ask DTSL which trace capture
devices are associated with that trace source, and direct its trace read requests to the correct trace
capture device.

It is possible for a trace source to be associated with multiple trace capture devices,
such as an internal ETB and an external DSTREAM. In such cases, you might need
to provide more information to the client about which trace capture device to use
when reading trace data.

14.8.6 Decoding STM STPv2 output

The Arm STM CoreSight™ component generates a STPv2 compatible data stream as its output.
The STPv2 specification is a MIPI Alliance specification which is not publicly available. To allow
clients to consume STM output, DTSL has a built-in decoder which turns STPv2 into an STM object
stream.

To consume STM output, a client should do the following:

• Create an object which implements the ISTMSourceMatcher interface. This object tells the
decoder which STM master IDs and channel IDs to decode. The STM package includes three
implementations of the ISTMSourceMatcher interface. These are STMSourceMatcherRange,

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 552 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

STMSourceMatcherSet, and STMSourceMatcherSingle. If none of these implementations
covers your needs, you can also create a new class which implements the ISTMSourceMatcher
interface.

• Create an STMChannelReader object, specifying the trace capture device object and the source
matcher object.

• Create an object which implements the ISTMObjectReceiver interface, to receive the STM
objects.

• When trace data is available, get hold of an ISourceReader object. Pass this, along with
the ISTMObjectReceiver object, to the read method on the STMChannelReader object. The
read method decodes the trace into an STM object stream, and passes these objects to the
ISTMObjectReceiver.

Related information
DTSL trace client read interface on page 551

14.8.7 Example STM reading code

The following is some Java code which shows an example of STM Object reading. This could also
be implemented in Jython.

In this case, the STMTraceReader object implements the ISTMObjectReceiver interface itself. This
means that the code can pass the object to the STMChannelReader read method as the class to
receive the STMObject.

The example code creates an STMSourceMatcherRange object with a parameter set which matches
against all Masters and Channels.

The STPv2 packet protocol outputs a SYNC packet which allows the decoder to synchronize the
binary data stream to the start of a packet. When decoding arbitrary data streams, the decoder
needs to synchronize to the stream before starting to decode the STPv2 packets. Once the stream
is synchronized, there is no need to resynchronize, as long as contiguous data is being decoded.

The decoder has two ways to handle errors in the STPv2 packets stream:

• Throw an STMDecodeException or an STMParseException. The advantage of this method is
that the errors are detected immediately, but the disadvantage is that you cannot continue
processing STPv2 packets (there is no way to resume decoding after the last error position).

• Insert an STMDecodeError object into the generated STMObject set. The advantage of this
method is that the full data stream is decoded, but the disadvantage is that the error is not
processed by the client until the generated STMDecodeError is processed.

/**
 * Class to read STM trace data and to get it processed into a
 * text stream.
 */
public class STMTraceReader implements ISTMObjectReceiver {
 /**
 * The trace device - ETB or DSTREAM or
 */
 private ITraceCapture traceDevice;

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 553 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 /**
 * A list of STMObjects that gets generated for us
 */
 private List<STMObject> stmObjects;
[snip - other attribute declarations]
 public void decodeSTMTrace() {
 STMSourceMatcherRange stmSourceMatcher = new STMSourceMatcherRange(0, 128,
 0, 65535);
 STMChannelReader stmChannelReader = new STMChannelReader(
 "STM Example",
 this.traceDevice,
 stmSourceMatcher);
 ISourceReader reader = this.traceDevice.borrowSourceReader(
 "STM Reader", this.stmStreamID);
 if (reader != null) {
 try {
[snip - code to figure out if trace is contiguous from last read.]
 if (!traceDataIsContiguous) {
 stmChannelReader.reSync();
 }
[snip - code to figure out how much trace to read and from where. Also assign values
 to nextPos[] and readSize.]
 this.stmObjects.clear();
 try {
 stmChannelReader.read(nextPos[0], readSize, this, nextPos,
 reader);
 } catch (DTSLException e) {
 System.out.println("Caught DTSLException during STPv2 decode:");
 System.out.println(e.getLocalizedMessage());
 stmChannelReader.reSync();
 }
 }
 catch (DTSLException e) {
 System.out.println("DTSLException:");
 e.printStackTrace();
 }
 finally {
 /* Must return the trace reader to DTSL so that it knows we have
 finished reading
 */
 this.traceDevice.returnSourceReader(reader);
 }
 }
 }
 /* (non-Javadoc)
 * @see
 com.arm.debug.dtsl.decoders.stm.stmobjects.ISTMObjectReceiver#write(com.arm.debug.dtsl.decoders.stm.stmobjects.STMObject)
 */
 @Override
 public boolean write(STMObject stmObject) {
 this.stmObjects.add(stmObject);
 return true;
 }

14.8.8 STM objects

The following figure shows the STM object model. All objects generated by the decoder are
derived from STMObject. All STMObject s can contain a timestamp (STMTimestamp) if one was
generated, otherwise the timestamp attribute is null.

The most common form of object generated is the STMData objects, which can hold multiple 4-bit,
8-bit, 16-bit, 32-bit, or 64-bit data payloads. Each data packet can also have a marker attribute, in
which case it holds only one data payload.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 554 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Not all STM object types can be generated from an Arm STM component. {STMTime, STMXSync,
STMTrig, STMUser} are not generated in Arm STM output.

Figure 14-19: STM Object Model

14.8.9 DTSL client time-stamp synchronization support

Some trace sources have the concept of time-stamping certain trace records or events. If all trace
sources are using a common, synchronized time system, then is possible to synchronize all the
client trace displays about the same real-time location. To support this, DTSL allows trace clients
to request view synchronization at a particular time value. When DTSL receives such a request, it
passes it on to all registered trace clients. The trace clients can receive the request and reposition
their displays to show data at or around the requested time.

For a client to use the time-stamp synchronization facility, it must register an observer with the
DTSL configuration. An observer is an object which implements the ITraceSyncObserver interface.
See ConfigurationBase.registerTraceSyncObserver for details of how to register an observer.
If, after registering an observer, the trace client requests time-stamp synchronization, then the
observer receives an object. This object implements either the ITraceSyncEvent interface or
the ITraceSyncDetailedEvent interface. The ITraceSyncEvent interface only allows reading

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 555 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

the requested time value. The ITraceSyncDetailedEvent interface, however, extends this, by
identifying the trace capture device and buffer location which contained the time position from the
point of view of the requesting client. This might be useful to the receiving client as a hint to where
they can start searching for the time value in their own trace stream.

If a client wants to request other clients to synchronize to a time value, it must use one of the
ConfigurationBase.reportTraceSyncEvent methods.

14.9 Embedded Logic Analyzer (ELA)
This topic provides an overview the Embedded Logic Analyzer in the context of Arm®

Development Studio, and explains how to use it to capture trace data in Arm Development Studio.

Introduction to the ELA
The ELA is a component of CoreSight™ which provides low-level signal visibility into Arm IP and
third party IP.

The ELA allows you to monitor any signal that is part of an implementation-defined Signal
Group. This can include loads, stores, speculative fetches, cache activity, and transaction life
cycles. You can have multiple ELAs that monitor the various components of your SoC, providing
comprehensive insight into the workings of your system. In Arm Development Studio, you can
configure the ELA to trigger signal capture in response to an event, or you can configure it to cause
triggers elsewhere in your SoC to further your debug process.

Instruction tracing and the ELA offer similar functionality, however the way they work is different.
Instruction tracing offers a wide and shallow view of all the instructions that are executed, whereas
the ELA offers a narrow yet detailed view of the signals that it detects.

In terms of usage. you might want to use instruction tracing when there is a problem and you are
not sure of what is causing it, so you need to collect a large amount of data first. You might want
to use the ELA when you have a good guess as to what is causing a problem, and you want to
monitor specific signals in your IP.

There are two versions; ELA-500 and ELA-600.

Differences between ELA-500 and ELA-600
The ELA-600 features are a superset of the ELA-500 features. There are more Trigger States, and
in addition to SRAM, it also has an ATB trace interface. This means that, at hardware design time,
you have the option to either collect data on the ELA itself, or you can push it to your computer.
The table below highlights some of the key features of the ELA-500 and ELA-600. For a full list of
the features, see the documentation for each product.

Table 14-2: Comparison of features between ELA-500 and ELA-600

Feature ELA-500 ELA-600

Trigger states 5 8

Embedded RAM configuration Yes Yes

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 556 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Feature ELA-500 ELA-600
Data compression No Yes

ATB interface No Yes

Requirements for use
If you are using the ELA-500, or your ELA-600 is configured to capture trace data using the SRAM,
check that you have the following:

• A platform configuration that:

◦ Lists the relevant ELA trace components.

◦ If applicable, lists the CTIs and their connections.

• A JSON file that contains a list of the components of your IP and their corresponding signal
group connections. This file is available from the IP designer.

If your ELA-600 is configured to capture trace data using the ATB interface, check that you have
the following:

• A platform configuration that:

◦ Lists the relevant ELA trace components.

◦ Lists the component connections and their mapping between the ELA and its trace sink.

◦ If applicable, lists the CTIs and their connections.

• In the DTSL configuration view, you need to enable ELA trace, and setup and enable the trace
source and sink.

• A JSON file that contains a list of the components of your IP and their corresponding signal
group connections. This file is available from the IP designer.

ELA Scripts
Arm provides several python scripts with your Arm Development Studio installation. These allow
you to use and configure the ELA.

There are different scripts for ELA-500 and ELA-600:

Table 14-3: ELA Scripts

Script name Usage in ELA-500 Usage in ELA-600

ela_control.py Use this script to:

• Run and stop the ELA

• Print a summary of the ELA status registers.

• Read trace data from the ELA buffer.

• [ELA-600 only] Trace until the core stops.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 557 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Script name Usage in ELA-500 Usage in ELA-600
ela_example.py This script provides some usecase examples

that you can use in your own implementation.

These are:

• Periodic trace.

• Configure the ELA using signal groups.

• Decode the trace data.

This script works with the

example_ela_connections.json

file, and shows how the signal group
descriptions provided in the JSON file are
used for configuration and decoding registers.

-

ela_lowlevel.py Use this script to configure the trigger state
registers and the control registers.

-

ela_test.py Use this script to generate some random
trace data in the ELA buffer for testing
purposes.

-

process_trace.py - Use this script to:

• Decompress and decode trace data and decode
trace data from the buffer.

• Decompress and decode trace data and decode
trace data from a file.

• Dump trace data from the buffer into a file.

ela_setup.py - Use this script to:

• Configure the trigger state registers and the
control registers.

• Run a Periodic trace.

You can use this example function to check that your
ELA-600 is working properly with Arm Development
Studio.

Related information
Using the ELA-500 on page 558
Using the ELA-600 on page 561
Use case scripts on page 140
ELA-500 Product page
ELA-600 Product page
Using the CoreSight ELA-500 Embedded Logic Analyzer with Arm DS-5 tutorial

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 558 of 589

https://developer.arm.com/products/system-ip/coresight-debug-and-trace/coresight-components/coresight-ela-500-embedded-logic-analyzer
https://developer.arm.com/products/system-ip/coresight-debug-and-trace/coresight-components/coresight-ela-600-embedded-logic-analyzer
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/using-the-coresight-ela-500-embedded-logic-analyzer-with-arm-ds-5

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.10 Using the ELA-500
Start and stop a capture using the ELA-500, and decode the captured data. There is also an
example of the ELA-500 output, both before and after decoding.

Before you begin
For the ELA to correctly decode your captured data, you need:

• A JSON file that lists all the components of your SoC, and their addresses.

• To save the JSON file in the same location as your scripts.

• To update the JSON file name in ela_example.py.

Procedure
The designer of your target provides the JSON file. Alternatively you can use the provided
example_ela_connections.json file as a starting point, and manually add the information
for your target. You can find the information you need, such as the component IDs and their
addresses, in the ConfigDB entry for your target.

14.10.1 Configure the ELA-500

Import the scripts and configure the ELA-500 for use with Arm® Development Studio. This guide
provides a generic overview of the process, because each configuration is target-dependent. To
configure the ELA to work with your target, see the TRMs for both your target and the ELA-500.

Procedure
1. Import the scripts into Arm Development Studio as usecase scripts.

a) Open Arm Development Studio and import the ELA-500 examples file: File > Import > Arm
DS > Examples & Programming Libraries > Next.

b) Expand Examples and Debug and Trace Services Layer (DTSL), and select ELA-500.
c) Click Finish.
d) Open the Scripts view, right-click Use-case and select Add use case script directory.

If this option is inactive, connect to your target and the option will become active
e) Browse to your workspace, select the DTSLELA-500 folder, and click OK.

Arm Development Studio finds all the ELA scripts in that folder, and displays them under the
Use case list item.

2. Configure the ELA-500 using the Configuration Utility.
a) Expand ela_lowlevel.py, right-click Configure ELA and select Configure.
b) Under the Common tab, check Enable trace and click Apply.
c) Configure the Trigger States using the Trigger State {n} tabs. This configuration is target-

dependent. See the TRMs for the ELA-500 and for your target. For an example on what
this might look like, see the linked ELA-500 tutorial at the end of the introduction.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 559 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.10.2 Start and stop an ELA-500 trace capture

This topic describes how to start and stop a trace capture using the ELA-500 in Arm®

Development Studio.

Procedure
1. To start an ELA-500 trace capture:

a) Under the ela_control.py sub-menu, right-click Run ELA-500, and select Run
ela_control.py::Run ELA-500.

b) Run the target. The ELA-500 starts monitoring the specified signal groups running on the
target, waiting to respond to the specified trigger conditions.

2. To stop an ELA-500 trace capture:
a) Under the ela_control.py sub-menu, right-click Stop ELA-500, and select Run

ela_control.py::Stop ELA-500.

14.10.3 Decode the trace capture

Describes how to decode a trace capture when using the ELA-500 in Arm® Development Studio,
and provides some example output.

Before you begin
Check that your JSON file is specified in the ela_example.py file, as this is used by the Decode
trace data function. You must place your JSON file in the DTSLELA-500 directory.

Procedure
1. Under the ela_example.py sub-menu, right-click Decode trace data and select Configure.
2. Configure the Signal Groups. To see what each signal group refers to, refer to your target's

documentation.
3. Right-click Decode trace data and click Run.

Example 14-1: Example

The raw data captured by the ELA looks like this:

Data: state = 0, overwrite = 1, counter=1, data = 91930905BEA4C03504A897513488810B
Data: state = 2, overwrite = 0, counter=0, data = E8811839A529D159A318B9330FFC31D3
Data: state = 5, overwrite = 0, counter=0, data = 70D1B1DBACDA8AA69CECBFECD89EDAF
Data: state = 6, overwrite = 0, counter=0, data = 501BA4E34421DABAA1443FEF04814076
Data: state = 1, overwrite = 0, counter=2, data = C990BF4889DA7876E0A3178C9A80EEDC
Data: state = 6, overwrite = 1, counter=2, data = 7019FA1873659F1B600EF7BD72B58501

Decoding the data, based on the configured signal groups, turns it into something like this:

read 180 words
Data: state = 0, overwrite = 1, counter=1, data = 91930905BEA4C03504A897513488810B
 timestamp[48:0] = 0x12ea26911021L
 sleep = Running
 reset = In reset
 power_up = Power up
Data: state = 2, overwrite = 0, counter=0, data = E8811839A529D159A318B9330FFC31D3
Data: state = 5, overwrite = 0, counter=0, data = 70D1B1DBACDA8AA69CECBFECD89EDAF

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 560 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Data: state = 6, overwrite = 0, counter=0, data = 501BA4E34421DABAA1443FEF04814076
Data: state = 1, overwrite = 0, counter=2, data = C990BF4889DA7876E0A3178C9A80EEDC
 id = 0x17e9L
 status = Success
 data[31:0] = 0x44ed3c3bL
 r_w = Read
 address[63:0] = 0xe0a3178c9a80eedcL
Data: state = 6, overwrite = 1, counter=2, data = 7019FA1873659F1B600EF7BD72B58501

These code examples are for illustrative purposes only, to show the type of output you might
expect when using the ELA-500.

14.11 Using the ELA-600
Start and stop a capture using the ELA-600, and decode the captured data. There is also an
example of the ELA-600 output, both before and after decoding.

Before you begin
For the ELA to correctly decode your captured data, you need a JSON file that lists the Signal
Groups of your SoC, and their connections.

Procedure
The designer of your target provides the JSON file. Alternatively you can use the provided
axi_interconnect_mapping.json file as a starting point, and manually add the information for
your target. You can find the information you need in the ConfigDB entry for your target.

The ETR is enabled by default. If your ELA-600 is connected to a different trace
sink, you need to disable the ETR; see the Start and stop an ELA-600 trace
capture section for details on how to do this. You also need to configure your
trace sink in the Configuration Utility. See Configure the ELA-600 for details on
how to access the Configuration Utility.

14.11.1 Configure the ELA-600

Import the scripts and configure the ELA-600 for use with Arm® Development Studio. This guide
provides a generic overview of the process, because each configuration is target-dependent. To
configure the ELA to work with your target, see the TRMs for both your target and the ELA-600.

Procedure
1. Import the scripts into Arm Development Studio as usecase scripts:

a) Open Arm Development Studio and import the DTSL zip file: File > Import > Arm DS >
Examples & Programming Libraries > Next.

b) Expand Examples and Debug and Trace Services Layer (DTSL), and select ELA-600.
c) Click Finish.
d) Open the Scripts view, right-click Use-case and select Add use case script directory.

If this option is inactive, connect to your target and the option will become active.
e) Browse to your workspace, select the DTSLELA-600 folder, and click OK.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 561 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Arm Development Studio finds all the ELA scripts in that folder, and displays them under the
Use case list item.

2. Configure the ELA-600 using the Configuration Utility:
a) Expand ela_setup.py, right-click Configure ELA and select Configure.
b) Under the Common tab, configure the common registers of the ELA. One of the usual

settings is Enable trace. When you have done this, click Apply.
c) Configure the Trigger States using the Trigger State {n} tabs. This configuration is target-

dependent. See the TRMs for the ELA-600 and for your target. For an example on what
this might look like, see the linked ELA-600 tutorial at the end of the introduction.

14.11.2 Start and stop an ELA-600 trace capture

This topic describes how to start and stop a trace capture using the ELA-600 in Arm®

Development Studio.

Before you begin
The ETR is enabled by default. If you are not using the ETR as your trace sink, you must disable it in
two places as described in the following procedure.

Procedure
1. To start an ELA-600 trace capture:

a) Make sure your target is connected.
b) Under the ela_control.py sub-menu, right-click Run ELA-600, and select Run

ela_control.py::Run ELA-600.
c) Run the target. The ELA-600 starts monitoring the specified signal groups that are running

on the target, waiting to respond to the specified trigger conditions.
2. If your ELA-600 is not using the ETR as the trace sink, disable the ETR:

a) Right-click the Run ELA-600 script, select Configure, and deselect the Start the ETR when
the ELA-600 starts option.

b) Configure and enable your trace sink using the Configuration Utility. For configuration, see
Configure the ELA-600.

3. To stop an ELA-600 trace capture:
a) Under the ela_control.py sub-menu, right-click Stop ELA-600, and select Run

ela_control.py::Stop ELA-600.
4. If your ELA-600 is not using the ETR as the trace sink, disable the ETR:

a) Right-click the Stop ELA-600 script, select Configure, and deselect the Stop the ETR when
the ELA-600 stops option.

14.11.3 Decompress and decode an ELA-600 trace

This section describes the various ways to configure the ELA-600 to correctly decompress and
decode your trace capture, based on either an input source file or data coming from the buffer.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 562 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.11.3.1 Decompress and decode an ELA-600 trace from buffer source

Describes how to configure the ELA-600 to generate either the raw output of your trace capture,
or data that has been decoded and mapped to the components of your target, where the data is
coming from the buffer source.

Procedure
1. To generate the raw output of your capture:

a) In the Scripts view, expand ela_process_trace.py, right-click Decompress and decode ELA
trace and select Configure.

b) Under the General tab, make sure that Decompress trace is selected, and choose your
preferred output option.

c) If your trace data was processed with delta compression enabled, you will also need to go
to the Decompress tab and select the ELA trace captured with delta compression enabled
checkbox.

d) Click OK to save these settings.
e) Right-click Decompress and decode ELA trace, and select Run

ela_process_trace.py::Decompress and decode ELA trace.
The decompressed data captured by the ELA looks like this:

Trace data: trigger state = 0, overrun = 0,
 data=0x80300162000003481C00400028082D07
Trace data: trigger state = 0, overrun = 0,
 data=0xA0300162000002C81C00400000602675
Trace data: trigger state = 0, overrun = 0,
 data=0x80400162000006506C005881F7C02C74

2. To generate data that has been mapped to your target's components:
a) In the Scripts view, expand ela_process_trace.py, right-click Decompress and decode ELA

trace and select Configure.
b) Under the General tab, make sure that Decompress and decode trace is selected, and

choose your preferred output option.
c) If delta compression was enabled during the trace capture, under the Decompress tab,

check the ELA trace captured with delta compression enabled checkbox.
d) Under the Decode tab, specify your JSON file in the ELA trace mapping file field, and set

the State for each monitored signal group by using the drop-down menus.
e) Click OK to save these settings.
f) Right-click Decompress and decode ELA trace, and select Run

ela_process_trace.py::Decompress and decode ELA trace.
Decoding the data, based on the configured signal groups, turns it into something like this:

Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0x80300162000003481C00400028082D07
P1_VALID : 1'h1
P1_AXID : 12'h6
P1_addr : 42'hB1000000
P1non-secure : 1'h0 => secure
Type_P1 : 4'hD => Exclusive Read
P0_VALID : 1'h0
P0_AXID : 12'h40E
P0_addr : 42'h80005010
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h34
TTID_P0 : 6'h7

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 563 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0xA0300162000002C81C00400000602675
P1_VALID : 1'h1
P1_AXID : 12'h406
P1_addr : 42'hB1000000
P1non-secure : 1'h0 => secure
Type_P1 : 4'hB => Write Back, Writes Clean
P0_VALID : 1'h0
P0_AXID : 12'h40E
P0_addr : 42'h800000C0
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h19
TTID_P0 : 6'h35
Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0x80400162000006506C005881F7C02C74
P1_VALID : 1'h1
P1_AXID : 12'h8
P1_addr : 42'hB1000000
P1non-secure : 1'h1 => non-secure
Type_P1 : 4'h9 => Write No Snoop
P0_VALID : 1'h0
P0_AXID : 12'h836
P0_addr : 42'hB103EF80
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h31
TTID_P0 : 6'h34

14.11.3.2 Decompress and decode an ELA-600 trace from binary source file

Describes how to configure the ELA-600 to generate either the raw output of your trace capture,
or data that has been decoded and mapped to the components of your target, where the data is
coming from the binary source file.

Procedure
1. To generate the raw output from your source file:

a) In the Scripts view, expand ela_process_trace.py, right-click Decompress and decode
stored binary data and select Configure.

b) Under the General tab, select Decompress trace and specify the source file in the Binary
input file… field.

c) If your trace data was processed with delta compression enabled, you will also need to go
to the Decompress tab and select the ELA trace captured with delta compression enabled
checkbox.

d) Click OK to save these settings.
e) Right-click Decompress and decode stored binary data, and select Run

ela_process_trace.py::Decompress and decode stored binary data.
The decompressed data captured by the ELA looks like this:

Trace data: trigger state = 0, overrun = 0,
 data=0x80300162000003481C00400028082D07
Trace data: trigger state = 0, overrun = 0,
 data=0xA0300162000002C81C00400000602675
Trace data: trigger state = 0, overrun = 0,
 data=0x80400162000006506C005881F7C02C74

2. To decompress and decode the data from the source file:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 564 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

a) In the Scripts view, expand ela_process_trace.py, right-click Decompress and decode
stored binary data and select Configure.

b) Under the General tab, select Decompress and decode trace and specify the source file in
the Binary input file… field.

c) If delta compression was enabled during the trace capture, under the Decompress tab,
check the ELA trace captured with delta compression enabled checkbox.

d) Under the Decode tab, specify your JSON file in the ELA trace mapping file field, and set
the State for each monitored signal group by using the drop-down menus.

e) Click OK to save these settings
f) Right-click Decompress and decode stored binary data, and select Run

ela_process_trace.py::Decompress and decode stored binary data.
Decoding the data, based on the configured signal groups, turns it into something like this:

Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0x80300162000003481C00400028082D07
P1_VALID : 1'h1
P1_AXID : 12'h6
P1_addr : 42'hB1000000
P1non-secure : 1'h0 => secure
Type_P1 : 4'hD => Exclusive Read
P0_VALID : 1'h0
P0_AXID : 12'h40E
P0_addr : 42'h80005010
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h34
TTID_P0 : 6'h7
Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0xA0300162000002C81C00400000602675
P1_VALID : 1'h1
P1_AXID : 12'h406
P1_addr : 42'hB1000000
P1non-secure : 1'h0 => secure
Type_P1 : 4'hB => Write Back, Writes Clean
P0_VALID : 1'h0
P0_AXID : 12'h40E
P0_addr : 42'h800000C0
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h19
TTID_P0 : 6'h35
Trace type: Data, Trace Stream: 0, Overrun: 0, Data:
 0x80400162000006506C005881F7C02C74
P1_VALID : 1'h1
P1_AXID : 12'h8
P1_addr : 42'hB1000000
P1non-secure : 1'h1 => non-secure
Type_P1 : 4'h9 => Write No Snoop
P0_VALID : 1'h0
P0_AXID : 12'h836
P0_addr : 42'hB103EF80
P0non-secure : 1'h0 => secure
Type_P0 : 4'h2 => Read Shared, Read Clean, Read No Snoop Dirty
TTID_P1 : 6'h31
TTID_P0 : 6'h34

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 565 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.11.3.3 Dump ELA-600 trace data to binary source file

Describes how to transfer data from the ELA-600 buffer to a binary source file.

Procedure
1. In the Scripts view, expand ela_process_trace.py, right-click Dump ELA trace and select

Configure.
2. Specify a name for the Output file and click OK.
3. To generate the file, right-click Dump ELA trace and select Run ela_process_trace.py::Dump

ELA trace.

14.12 Extending the DTSL object model
For most platform configurations, the DTSL configuration class creates standard Java DTSL
components, such as CoreSight™ devices or Arm cores, represented as Device objects. Sometimes,
the behavior of these standard components needs to be changed, or new DTSL components need
to be created.

Arm® Debugger uses the Java components that the DTSL configuration script creates. Since there
is a high level of integration between Java and Jython, the DTSL configuration can create new
Jython objects which extend the standard Java DTSL objects. And Arm Debugger can also use
these Jython objects to access the target platform. This is because of the very tight integration
between Java and Jython. This way of modifying behavior is straightforward if you are familiar with
object oriented techniques, especially in Java. The only new technique might be the way in which
a Java object can by modified by extending it in Jython. This is possible because Jython code is
compiled down to Java byte code, so the system does not know whether the code was written in
Java or Jython.

14.12.1 Performing custom actions on connect

On some platforms, it might be necessary to configure the system to enable access by a debugger.
For example, some platforms have a scan chain controller that controls which devices are visible on
the JTAG scan chain.

On other platforms, it might be necessary to power up subsystems by writing control registers. The
DTSL configuration provides several hooks that can be overridden to perform such actions.

Each DTSL configuration class is derived from a parent class, usually DTSLv1 . The derived class
gets all the methods the parent class implements and can replace the methods of the parent class
to modify the behavior. When replacing a method, the original implementation can be called by
DTSLv1.<method_name>().

postRDDIConnect
This is called immediately after the RDDI interface has been opened. At this point, the RDDI
interface has been opened, but no connection to the debug server has been made. This method

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 566 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

should be implemented to perform low-level configuration, for example, using the JTAG interface
to configure a TAP controller to make debug devices visible on the JTAG scan chain.

1. class DtslScript(DTSLv1):
2. '''A top-level configuration class which supports debug and trace'''
3.
4. [snip]
5.
6. def postRDDIConnect(self):
7. DTSLv1.postRDDIConnect(self)
8. self.jtag_config()
9.
10. def jtag_config(self):
11. jtag = self.getJTAG()
12. pVer = zeros(1, 'i')
13. jtag.connect(pVer)
14. try:
15. jtag.setUseRTCLK(0)
16. jtag.setJTAGClock(1000000)
17. # perform target configuration JTAG scans here
18. finally:
19. jtag.disconnect()

postDebugConnect
This is called after the RDDI debug interface has been opened. At this point, the RDDI debug
interface has been opened, but no connection to any device has been made. This method should
be implemented to perform any configuration required to access devices. For example, writes using
a DAP to power on other components could be performed here.

1. class DtslScript(DTSLv1):
2. '''A top-level configuration class which supports debug and trace'''
3.
4. [snip]
5.
6. def postDebugConnect(self):
7. DTSLv1.postDebugConnect(self)
8. self.power_config()
9.
10. def power_config(self):
11. self.ahb.connect()
12. # power up cores
13. self.ahb.writeMem(0xA0001000, 1)
14. self.ahb.disconnect()

postConnect
This is called after the connection and all devices in the managed device list have been opened.
This method should be implemented to perform any other configuration that isn't required to be
done at an earlier stage, for example, trace pin muxing.

1. class DtslScript(DTSLv1):
2. '''A top-level configuration class which supports debug and trace'''
3.
4. [snip]
5.
6. def postConnect(self):
7. DTSLv1.postConnect(self)
8. self.tpiu_config()
9.
10. def tpiu_config(self):
11. # select trace pins
12. self.ahb.writeMem(0xB0001100, 0xAA)

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 567 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Related information
DTSL device objects on page 527

14.12.2 Overriding device reset behavior

For a DSTREAM class device, the default operation for a System Reset request is to drive nSRST on
the JTAG connector. On some platforms, this pin is not present on the JTAG connector. So, some
other method must be used to perform the reset.

Sometimes, the reset is performed by writing to another system component, such as a System
Reset Controller device. If this is not available, another approach is to cause a system watchdog
timeout, which in turn causes a system reset. Whichever approach is taken, the default reset
behavior must be modified. To override the default reset behavior, the resetTarget method can be
overridden to perform the necessary actions.

The following code sequence is an example of this:

1. from com.arm.debug.dtsl.components import ConnectableDevice
2. [snip]
3.
4. class DtslScript(DTSLv1):
5. '''A top-level configuration class which supports debug and trace'''
6.
7. [snip]
8.
9. def setupPinMUXForTrace(self):
10. '''Sets up the IO Pin MUX to select 4 bit TPIU trace'''
11. addrDBGMCU_CR = 0xE0042004
12. value = self.readMem(addrDBGMCU_CR)
13. value |= 0xE0 # TRACE_MODE=11 (4 bit port), TRACE_IOEN=1
14. self.writeMem(addrDBGMCU_CR, value)
15.
16. def enableSystemTrace(self):
17. '''Sets up the system to enable trace
18. For a Cortex-M3 system we must make sure that the
19. TRCENA bit (24) in the DEMCR registers is set.
20. NOTE: This bit is normally set by the DSTREAM Cortex-M3
21. template - but we set it ourselves here in case
22. no one connects to the Cortex-M3 device.
23. '''
24. addrDEMCR = 0xE000EDFC
25. bitTRCENA = 0x01000000
26. value = self.readMem(addrDEMCR)
27. value |= bitTRCENA
28. self.writeMem(addrDEMCR, value)
29.
30. def postReset(self):
31. '''Makes sure the debug configuration is re-instated
32. following a reset event
33. '''
34. if self.getOptionValue("options.traceBuffer.traceCaptureDevice") ==
 "DSTREAM":
35. self.setupPinMUXForTrace()
36. self.enableSystemTrace()
37.
38. def resetTarget(self, resetType, targetDevice):
39. # perform the reset
40. DTSLv1.resetTarget(self, resetType, targetDevice)
41. # perform the post-reset actions
42. Self.postReset()

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 568 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Line 38 declares the resetTarget method. This calls the normal reset method to perform the reset
and then calls the custom postReset method to perform the actions required after a reset.

The implementation of resetTarget in DTSLv1 is to call the systemReset method of the
targetDevice.

14.12.3 Adding a new trace capture device

Arm® Debugger has built in support for reading trace data from DSTREAM, ETB, TMC/ETM and
TMC/ETR devices. Adding support for a new trace capture device is not very difficult, however,
and can be done entirely with DTSL Jython scripts.

The DTSL trace capture objects class hierarchy shows that all DTSL trace capture objects are
derived from the ConnectableTraceCaptureBase class. This base class implements two interfaces,
ITraceCapture and IDeviceConnection. ITraceCapture defines all the methods that relate to
controlling and reading trace data from a capture device, and IDeviceConnection defines the
methods for a component that needs to be connected to. The ConnectableTraceCaptureBase class
contains stub implementations for all the methods in both interfaces.

To create a new trace capture class:

1. Create a new class derived from the ConnectableTraceCaptureBase class, or the
TraceCaptureBase class if appropriate.

2. Implement the class constructor, making sure to call the base class constructor in your
implementation.

3. Override the startTraceCapture() and stopTraceCapture() methods. The default
implementations of these methods throw an exception when DTSL calls them, so you must
override them to avoid this.

4. Override the getCaptureSize() method to return the size of raw trace data in the device.

5. Override the getSourceData() method to return trace data for a specified trace source.

6. If your trace device requires a connection, override the connect(), disconnect(), and
isConnected() methods.

7. In your platform DTSL Jython script, create an instance of your new trace capture device class
and add it to the DTSL configuration.

The following example Jython code implements a new trace capture device which reads its trace
data from an ETB dump file (the raw content of an ETB buffer). It is assumed that this code is in
FileBasedTraceCapture.py.

from java.lang import Math
from com.arm.debug.dtsl.impl import DataSink
from com.arm.debug.dtsl.impl import Deformatter
from com.arm.debug.dtsl.impl import SyncStripper
from com.arm.debug.dtsl.components import ConnectableTraceCaptureBase
from com.arm.debug.dtsl.configurations import ConfigurationBase
import sys
import os
import jarray
class FileBasedTraceCaptureDevice(ConnectableTraceCaptureBase):

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 569 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 '''
 Base class for a trace capture device which just returns
 a fixed data set from a file. The amount of trace data captured
 is just the size of the file.
 '''
 def __init__(self, configuration, name):
 '''Construction
 Params: configuration
 the top level DTSL configuration (the
 class you derived from DTSLv1)
 name
 the name for the trace capture device
 '''
 ConnectableTraceCaptureBase.__init__(self, configuration, name)
 self.filename = None
 self.fileOpened = False
 self.hasStarted = False
 self.trcFile = None
 def setTraceFile(self, filename):
 '''Sets the file to use as the trace data source
 Params: filename
 the file containing the trace data
 '''
 self.filename = filename
 def connect(self):
 '''We interpret connect() as an opening of the trace data file
 '''
 self.trcFile = file(self.filename, 'rb')
 self.fileOpened = True
 self.fileSize = os.path.getsize(self.filename)
 def disconnect(self):
 '''We interpret disconnect() as a closing of the trace data file
 '''
 if self.trcFile != None:
 self.trcFile.close()
 self.fileOpened = False
 self.fileSize = 0
 def isConnected(self):
 return self.fileOpened
 def startTraceCapture(self):
 self.hasStarted = True
 def stopTraceCapture(self):
 self.hasStarted = False
 def getMaxCaptureSize(self):
 return self.fileSize
 def setMaxCaptureSize(self, size):
 return self.getMaxCaptureSize()
 def getCaptureSize(self):
 return self.fileSize
 def getNewCaptureSize(self):
 return self.getCaptureSize()
 def hasWrapped(self):
 return True
class ETBFileBasedTraceCaptureDevice(FileBasedTraceCaptureDevice):
 '''
 Creates a trace capture device which returns ETB trace
 data from a file.
 '''
 def __init__(self, configuration, name):
 '''Construction
 Params: configuration
 the top level DTSL configuration (the
 class you derived from DTSLv1)
 name
 the name for the trace capture device
 '''
 FileBasedTraceCaptureDevice.__init__(self, configuration, name)
 def getSourceData(self, streamID, position, size, data, nextPos):
 '''Reads the ETB trace data from the file
 Params: streamID
 for file formats which contain multiple

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 570 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 streams, this identifies the stream for which
 data should be returned from
 position
 the byte index position to read from
 size
 the max size of data (in bytes) we should return
 data
 where to write the extracted data
 nextPos
 an array into which we set entry [0] to the
 next position to read from i.e. the position parameter
 value which will return data that immediately follows
 the last entry written into data
 '''
 # We assume that size is small enough to allow to read an entire
 # data block in one operation
 self.trcFile.seek(position)
 rawdata = jarray.array(self.trcFile.read(size), 'b')
 nextPos[0] = position+size
 dest = DataSink(0, 0, size, data)
 # We assume the file contains TPIU frames with sync sequences
 # Se we set up a processing chain as follows:
 # file data -> strip syncs -> de formatter -> to our caller
 deformatter = Deformatter(dest, streamID)
 syncStripper = SyncStripper(deformatter)
 syncStripper.forceSync(True)
 syncStripper.push(rawdata)
 syncStripper.flush()
 return dest.size()

We can use the new trace capture device in the platform DTSL Jython code:

from FileBasedTraceCapture import ETBFileBasedTraceCaptureDevice
[snip]
 self.etbFileCaptureDevice = ETBFileBasedTraceCaptureDevice(self, 'ETB(FILE)')
 self.etbFileCaptureDevice.setTraceFile('c:\\etbdump.bin')
 self.addTraceCaptureInterface(self.etbFileCaptureDevice)

We can add it to the configuration as though it were an ETB or DSTREAM device.

Related information
DTSL trace capture objects on page 530

14.13 Debugging DTSL Jython code within Arm Debugger
When Arm® Development Studio connects to a platform, it automatically loads the platform Jython
script and creates an instance of the configuration class. The Jython scripts which are shipped
with Arm Development Studio should not contain any errors, but if you create your own scripts, or
make modifications to the installed scripts, then you might introduce errors. These errors have two
common forms:

• Syntax or import errors

• Functional errors.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 571 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.13.1 DTSL Jython syntax errors

These can occur in two situations:

1. Attempting to change the DTSL options from within the Launcher Panel.

2. Attempting to connect Arm® Debugger to the platform.

14.13.2 Errors reported by the launcher panel

These errors usually appear in the area where the Edit… button for the DTSL options would
normally appear, replacing it with a message:

Figure 14-20: Launcher panel reporting DTSL Jython script error

To find the cause of the error, try inspecting the Error Log. If the Error Log is not visible, select
Window > Show View > Error Log to show it.

The following is an example of some Error Log text:

Python error in script \\\\NAS1\\DTSL\\configdb\\Boards\\Keil\\MCBSTM32E\\keil-
mcbstm32e.py at line 11: ImportError: cannot import name V7M_ETMTraceSource when
 creating configuration DSTREAMDebugAndTrace

After resolving any issues, close and reopen the Launcher Panel to make Arm® Development
Studio reinspect the Jython script. If an error still occurs, you get more entries in the Error Log. If
the error is resolved, then the Edit… button for the DTSL options will appear as normal.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 572 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.13.3 Errors reported at connection time

If you try to connect to a platform which contains an error in its Jython script, Arm® Development
Studio displays an error dialog box indicating the cause of the error:

Figure 14-21: Connection Error dialog box

Sometimes, the error message shown in the dialog box might not be helpful,
especially for run-time errors rather than syntax or import errors. Arm Development
Studio also places an entry in the Error Log, so that you can inspect the error after
dismissing the error dialog box. This error log entry might contain more information.
You can typically find this information by scrolling down the Exception Stack Trace
until you see the error reported at the point the Jython code was run.

After editing the Jython script to resolve any issues, try connecting again.

You do not need to tell Arm Development Studio that the configdb has changed
when you make changes only to Jython scripts.

14.13.4 DTSL Jython functional errors

If the Jython script error you are tracking down cannot be resolved by code inspection, then you
might need to use a Jython debugger. For some use cases, you can use the debugger which is
built in to Arm® Development Studio as part of PyDev. Other use cases, however, display modal
dialog boxes within Arm Development Studio, preventing the use of the same instance of Arm
Development Studio to debug the scripts. Arm therefore recommends that you use another

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 573 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

instance of Arm Development Studio, or another Eclipse installation which also contains the PyDev
plugin or plugins.

Although you can run multiple instances of the Arm Development Studio IDE at the
same time, the instances cannot use the same Workspace.

14.13.5 Walk-through of a DTSL debug session

Make sure that Arm® Development Studio is using your intended workspace.

The debug session involves modifying a DTSL Jython script, so make sure that you are using a
writeable copy of the Arm Development Studio configdb.

Related information
Modifying Arm Development Studio configdb on page 517

14.13.6 Starting a second instance of Arm Development Studio for Jython
debug

When you start a second instance of Arm® Development Studio, with the first instance still
running, you are asked to use a different workspace. Choose a suitable location for this second
workspace.

In this second instance of Arm Development Studio, switch to the PyDev perspective. To enable
the toolbar buttons that allow you to start and stop the PyDev debug server:

• Select Window > Customize Perspective... .

• Click the Command Groups Availability tab.

• Scroll down through the Available Command Groups and select the PyDev Debug entry.

• Click the Tool Bar Visibility tab.

• Make sure that the PyDev Debug entry, and the two End Debug Server and Start Debug Server
entries, are selected.

On the toolbar, you should see two new icons PyDev debug server start and stop icons to
stop and start the debug server.

Click the green P-bug icon to start the PyDev debug server. You should see a console view
reporting the port number on which the debugger is listening (5678 by default). The Arm
Development Studio instance is ready to accept remote debug connections.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 574 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

Switch to the Development Studio perspective. Arm Development Studio IDE does not
automatically switch to the Development Studio perspective when a connection is made to the
PyDev debugger. So if you do not switch to the Development Studio perspective yourself, then you
cannot notice the connection.

14.13.7 Preparing the DTSL script for debug

When a Jython script is being debugged, it is normally launched by PyDev, and PyDev can
optionally create a debug session for the script. When Arm® Development Studio launches the
Jython script, however, this does not happen. This is not a problem, however, because the script
itself can register with the PyDev debugger after it is launched. To do this in your script:

• Extend the import list for the script to import pydevd. If you are using a second Arm
Development Studio instance to host the PyDev debugger, then add the following to the top of
the DTSL script: import pydevd If you are using another Eclipse (non-Arm Development Studio)
to host the PyDev debugger, then import the pydevd from that Eclipse instance. Locate the
pydev plugin pysrc directory and add its path to the import path before importing pydevd.

For example, if the Eclipse is installed in C:\Users\<username>\eclipse , then the code would
be as follows:

import sys;
sys.path.append(r'C:\Users\<username>\eclipse\plugins
\org.python.pydev_2.7.4.2013051601\pysrc')
import pydevd

Where pydev_<xyz> depends on the version of pydev installed within Eclipse.

• Insert the following line at the location where you want the PyDev debugger to gain control
of the script: pydevd.settrace(stdoutToServer=True, stderrToServer=True) This causes a
break into the debugger at that location, and redirects all standard output from the script to
the debugger console. This allows you to place print statements into the script and see them in
the debugger, whereas normally Arm Development Studio would discard any such print output.
Good places to insert this statement are:

◦ In the constructor (__init__) for the DTSL configuration class.

◦ In the optionValuesChanged method.

The function documentation for the settrace call in pydev 2.7.4 is as follows:

def settrace(host=None, stdoutToServer=False, stderrToServer=False, port=5678,
 suspend=True, trace_only_current_thread=True):
 '''Sets the tracing function with the pydev debug function and initializes
 needed facilities.
 @param host: the user may specify another host, if the debug server is not in
 the
 same machine (default is the local host)
 @param stdoutToServer: when this is true, the stdout is passed to the debug
 server
 @param stderrToServer: when this is true, the stderr is passed to the debug
 server
 so that they are printed in its console and not in this process console.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 575 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

 @param port: specifies which port to use for communicating with the server (note
 that
 the server must be started in the same port).
 @note: currently it's hard-coded at 5678 in the client
 @param suspend: whether a breakpoint should be emulated as soon as this function
 is called.
 @param trace_only_current_thread: determines if only the current thread will be
 traced or all future threads will also have the tracing enabled.
 '''

Calls to the DTSL .settrace() function without an active debug server
produces errors. For example, you might see errors similar to Python error in
 script pyclasspath/Lib/socket.py at line 1,159: error: when creating

 configuration DtslScript

In this situation:

• Check if the debug server has crashed during your debug session. Restart debug
server if required.

• Check if you have removed the debug code from your script. It is good practice
to remove debug code from your script when you have finished debugging. Run
your script again after removing the debug code.

14.13.8 Debugging the DTSL code

In your main instance of Arm® Development Studio (not the PyDev debug instance), launch the
connection to the platform. When the DTSL script reaches the settrace call, the second Arm
Development Studio instance halts the execution of the script immediately after the call. This
allows you to use the PyDev debugger for tasks such as stepping through the code, examining
variables, and setting breakpoints. While you are debugging, your main Arm Development Studio
instance waits for the Jython script to complete.

14.14 DTSL in stand-alone mode
DTSL is commonly used by Arm® Debugger, both within the IDE and in the console version of
the debugger. However, it can also be used in 'stand-alone' mode, completely outside of the IDE.
This allows you to use the DTSL API to take care of the target connection and configuration when
writing your program. The rest of your program can concentrate on the main function of your
application.

DTSL is mainly written in Java and Jython. There are therefore two kinds of stand-alone program,
those written in Jython and those in Java. The DTSLExamples.zip file contains examples of both
kinds of program, which you can look at to help you decide the best route for your application. The
programs are easy to compare because they both do essentially the same things.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 576 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.14.1 Comparing Java with Jython for DTSL development

The advantages of Java are:

• The Javadoc for DTSL is directly available, which helps greatly when writing DTSL Java
programs in environments such as the Arm® Development Studio IDE, which is based on
Eclipse.

• Java programs seem to have faster start-up times than Jython programs.

• The Eclipse Java development environment might be considered more mature than the Python
PyDev Eclipse development environment.

The advantages of Jython are:

• There are probably more people familiar with Python than with Java.

• Python is not a statically-typed language. So it is easier to write Python code without always
having to create variables of specific types.

The disadvantages of Jython are:

• There is no DTSL Javadoc support, because the PyDev editor does not understand how to
extract the Javadoc information from the Java .jar files.

• Python is not a statically-typed language, so it is hard for the PyDev editor to know the type
of a variable. Using "assert isinstance(<variable>,<type>)" works around this to an extent,
and this code appears many times in the example. After the PyDev editor sees it, it knows the
type of the variable and so can provide code completion facilities. However, you still do not get
access to the Javadoc within the editor. If you want to access the Javadoc, you must do it by
some other method, such as through a web browser.

• Jython can be slower than Java. For example, if Jython is used as part of a trace decoding
pipeline, it can significantly slow down trace processing.

14.14.2 DTSL as used by a stand-alone Jython program

The example Jython application demonstrates how to do the following:

• Create a DTSL configuration instance for the requested platform.

• Connect to a core device, such as a Cortex®-M3 or other such Arm core.

• Perform the following operations:

◦ Get control of the core following a reset.

◦ Read and write registers on the core.

◦ Read and write memory through the core.

◦ Single step instructions on the core.

◦ Start and stop core execution.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 577 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

The example application connects to and controls the Arm core only. However, it can just as easily
connect to any of the devices in the configuration, such as CoreSight™ components (PTM or ETB),
and configure and control those devices as well.

The example is a complete stand-alone application. It cannot be run when a Arm
Debugger connection is made to the same target. However, a Arm Debugger Jython
script can access the DTSL configuration. If you do this, take care not to interfere
with the debugger.

14.14.3 Installing the Jython example within the Arm Development Studio
IDE

The DTSL Python example project requires that you have Jython and the PyDev plugin installed.

To download Jython, and for installation instructions, go to https://www.jython.org/. This document
is written with reference to Jython 2.5.3, but later versions should also work.

To download PyDev, and for installation instructions, go to https://pydev.org/. Make sure you
configure PyDev to know about the Jython version you have installed.

The example project DTSLPythonExample is in the DTSLExamples.zip file. You can import
DTSLPythonExample directly into your Arm® Development Studio workspace. You must also import
DTSL.zip into your workspace.

The example project also contains two launch configurations for running the program. One
configuration uses the Arm Development Studio configdb board specification, and the other refers
directly to the files in the configdb. The project contains a configdb extension, which contains the
Keil® MCBSTM32 entries compatible with this project.

If you use your own Eclipse (non Arm Development Studio) installation, then
you must set the Arm Development Studio installation location within the Arm
Development Studio preferences. This value is used within the provided launch
configurations.

The readme.txt file contained within the project has more information.

Related information
Additional DTSL documentation and files on page 511

14.14.4 Running the Jython program

To run the example in the IDE:

1. Import the supplied launch configurations.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 578 of 589

https://www.jython.org/
https://pydev.org/

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

2. Modify the program arguments to refer to your installed Arm® Development Studio location.

1. Run or debug the application.

To run the example use:

• dtslexample.bat from Windows

• dtslexample from Linux.

Before running the file, edit it and change the program parameters to suit the target system you are
connecting to. You might need to make the following changes:

• Change the location of jython.bat to match your Jython installation. Arm Development Studio
does contain part of a Jython installation, but it lacks the main jython.bat executable, so you
must install your own.

• Change the defined location of the Arm Development Studio workspace.

• Change the location of the Arm Development Studio configuration database to include the
database installed by Arm Development Studio and any further extensions you require (the
location within a workspace of DTSLExampleConfigdb\configdb is an extension required to run
the example).

• Change the connection address for the DSTREAM box to match your box. If you are using a
USB connection then the code --connectionAddress "USB" can be left unchanged, but if you
are using a TCP connection then you must change it to be of the form --connectionAddress
 "TCP:<host-name|ip-address>", for example --connectionAddress "TCP:DS-Tony" or --
connectionAddress "TCP:192.168.1.32".

• Change the manufacturer to match the directory name of your platform in the Boards sub-
directory of the Arm Development Studio config database.

• Change the board name to match the name of the board directory within the manufacturer
directory.

• Change the debug operation to match one of the activity names contained in a bare metal
debug section of the project_types.xml file. For example:

<activity id="ICE_DEBUG" type="Debug">

<name language="en">Debug Cortex-M3</name>

When you run the dtslexample.py script, it connects to the target and runs through a series of
register, memory, and execution operations. By default, the script assumes that there is RAM at
0x20000000, and that there is 64KB of it. This is correct for the Keil® MCBSTM32 board. To change
these values, use the --ramStart and --ramSize options.

14.14.5 Invoking the Jython program

For information on the full set of program arguments, run the program with the --help parameter.

There are two ways to invoke the program:

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 579 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

• Specify the DTSL connection properties directly, using the { --rddiConfigFile , --dtslScript,
--dtslClass, --connectionType, --connectionAddress, --device } parameters.

• Specify the Arm® Development Studio configdb parameters (equivalent to using the
Eclipse launcher) using the {--configdb, --manufacturer, --board, --debugOperation, --
connectionType, --connectionAddress } parameters, and let the program extract the DTSL
connection properties from the Arm Development Studio configdb.

14.14.6 About the Jython program

We provide a DTSL Eclipse project that contains an example Jython program.

• The main program is in the dtslexample.py source file.

• The project is set up to use the DTSL libraries from the DTSL Eclipse project.

• The DTSL interaction flow is as follows:

1. Connecting to DTSL. This involves forming the ConnectionParameters set and passing it to
the DTSL static ConnectionManager.openConnection() method. See the Python method
connectToDTSL() for details.

2. Accessing the DTSL connection configuration and locating the DTSL object with the name
requested in either:

◦ the --device parameter

◦ the core specified in the Arm® Development Studio configdb platform debug operation.

3. Connecting to the core located in step 2.

4. Performing the operations on the core, which is represented by a DTSL object that
implements the IDevice interface. The DTSL Javadoc lists the full set of operations available
on such an object. The example uses some of the more common operations, but does not
cover all of them.

5. Disconnecting from the core.

6. Disconnecting from DTSL.

• The IDevice interface is a Java interface, so there are some operations which take Java
parameters such as StringBuilder objects. This is not a problem for Jython because you can
create such Java objects within your Jython program. Most of the memory operations use Java
byte[] arrays to transport the data. Interfacing these between Jython and Java is relatively
simple, but be sure to inspect the example code carefully if you want to understand how to do
this.

• The IDevice Java interface wraps the RDDI-DEBUG C interface thinly, which means that many
of the RDDI constants are used directly rather than being wrapped. This is why the example
uses constants such as RDDI_ACC_SIZE.RDDI_ACC_DEF.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 580 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

14.14.7 DTSL as used by a stand-alone Java program

The example Java application shows you how to do the following:

• Create a DTSL configuration instance for the requested platform.

• Connect to a core device, such as a Cortex®-M3 or other such Arm core.

• Perform the following operations:

◦ Get control of the core following a reset.

◦ Read and write registers on the core.

◦ Read and write memory through the core.

◦ Single step instructions on the core.

◦ Start and stop core execution.

The example application connects to and controls the Arm core only. However, it can just as easily
connect to any of the devices in the configuration, such as CoreSight™ components (PTM or ETB),
and configure and control those devices as well.

The example is a complete stand-alone application. It cannot be run when a Arm
Debugger connection is made to the same target. However, a Arm Debugger Jython
script can access the DTSL configuration. If you do this, take care not to interfere
with the debugger.

14.14.8 Installing the Java example within the Arm Development Studio
IDE

The example project DTSLJavaExample is in the DTSLExamples.zip file. You can import
DTSLJavaExample directly into your Arm® Development Studio workspace. You must also import
DTSL.zip into your workspace. After importing it, change the project configuration to refer to your
DTSL library location:

1. Select the DTSLJavaExample within the Project Explorer, right click it, and select Properties.

2. Select 'Java Build Path' from the properties list.

3. Click the Libraries tab.

4. Replace all the referenced DTSL\libs.jar files with new entries which have the correct paths.

The example project also contains two launch configurations for running the program. One
configuration uses the Arm Development Studio configdb board specification, and the other refers
directly to the files in the configdb. The project contains a configdb extension, which contains the
Keil® MCBSTM32 entries compatible with this project.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 581 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

If you use your own Eclipse (non Arm Development Studio) installation, then
you must set the Arm Development Studio installation location within the Arm
Development Studio preferences. This value is used within the provided launch
configurations.

The readme.txt file contained within the project has more information.

Related information
Additional DTSL documentation and files on page 511

14.14.9 Running the Java program

To run the example in the IDE:

1. Import the supplied launch configurations.

2. Modify the program arguments to refer to your installed Arm® Development Studio location.

3. Run or debug the application.

To run the example use:

• dtslexample.bat from Windows

• dtslexample from Linux.

Before running the batch file, edit it and change the program parameters to suit the target system
you are connecting to. You might need to make the following changes:

• Change the defined location of the Arm Development Studio workspace.

• Change the location of the Arm Development Studio configuration database to include the
database installed by Arm Development Studio.

• Change the connection address for the DSTREAM box to match your box. If you are using a
USB connection then the code --connectionAddress "USB" can be left unchanged, but if you
are using a TCP connection then you must change it to be of the form --connectionAddress
 "TCP:<host-name|ip-address>", for example --connectionAddress "TCP:DS-Tony" or --
connectionAddress "TCP:192.168.1.32".

• Change the manufacturer to match the directory name of your platform in the Boards sub-
directory of the Arm Development Studio config database.

• Change the board name to match the name of the board directory within the manufacturer
directory.

• Change the debug operation to match one of the activity names contained in a bare metal
debug section of the project_types.xml file. For example:

<activity id="ICE_DEBUG" type="Debug">

<name language="en">Debug Cortex-M3<name>

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 582 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Debug and Trace Services Layer (DTSL)

When you run the DTSLExample.java program, it connects to the target and runs through a series
of register, memory, and execution operations. By default, the program assumes that there is RAM
at 0x20000000, and that there is 64KB of it. This is correct for the Keil® MCBSTM32 board. To
change these values, use the --ramStart and --ramSize options.

14.14.10 Invoking the Java program

For information on the full set of program arguments, run the program with the --help parameter.

There are two ways to invoke the program:

• Specify the DTSL connection properties directly, using the { --rddiConfigFile , --dtslScript,
--dtslClass, --connectionType, --connectionAddress, --device } parameters.

• Specify the Arm® Development Studio configdb parameters (equivalent to using the
IDE launcher) using the {--configdb, --manufacturer, --board, --debugOperation, --
connectionType, --connectionAddress } parameters, and let the program extract the DTSL
connection properties from the Arm Development Studio configdb.

14.14.11 About the Java program

We provide a DTSL Eclipse project that contains an example Java program.

• The main program is in the DTSLExample.java source file.

• The project is set up to use the DTSL libraries from the DTSL Eclipse project.

• The DTSL interaction flow is as follows:

1. Connecting to DTSL. This involves forming the ConnectionParameters set and passing it to
the DTSL static ConnectionManager.openConnection() method. See the connectToDTSL()
method for details.

2. Accessing the DTSL connection configuration and locating the DTSL object with the name
requested in either:

◦ the --device parameter

◦ the core specified in the Arm® Development Studio configdb platform debug operation.

3. Connecting to the core located in step 2.

4. Performing the operations on the core, which is represented by a DTSL object that
implements the IDevice interface. The DTSL Javadoc lists the full set of operations available
on such an object. The example uses some of the more common operations, but does not
cover all of them.

5. Disconnecting from the core.

6. Disconnecting from DTSL.

• The IDevice Java interface (used for all target devices) wraps the RDDI-DEBUG C interface
thinly, which means that many of the RDDI constants are used directly rather than being
wrapped. That is why the example uses constants such as RDDI_ACC_SIZE.RDDI_ACC_DEF.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 583 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

15 Reference
Lists other information that might be useful when working with Arm® Debugger.

15.1 About loading an image on to the target
Before you can start debugging your application image, you must load the files on to the target.
The files on your target must be the same as those on your local host workstation. The code layout
must be identical, but the files on your target do not require debug information.

You can manually load the files on to the target or you can configure a debugger connection to
automatically do this after a connection is established. Some target connections do not support
load operations and the relevant menu options are therefore disabled.

After connecting to the target you can also use the Debug Control view menu entry Load… to load
files as required. The following options for loading an image are available:

Load Image Only
Loads the application image on to the target.

Load Image and Debug Info
Loads the application image on to the target, and loads the debug information from the same image
into the debugger.

Load Offset
Specifies a decimal or hexadecimal offset that is added to all addresses within the image. A
hexadecimal offset must be prefixed with 0x.

Set PC to entry point
Sets the PC to the entry point when loading image or debug information so that the code runs
from the beginning.

Figure 15-1: Load File dialog box

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 584 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

Related information
About loading debug information into the debugger on page 585
Commands view on page 329
Configuring a connection to an external Fixed Virtual Platform (FVP) for bare-metal application
debug
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel
Configuring a connection to a bare-metal hardware target
Configuring an events view connection to a bare metal target
Arm Debugger commands

15.2 About loading debug information into the debugger
An executable image contains symbolic references, such as function and variable names, in addition
to the application code and data. These symbolic references are generally referred to as debug
information. Without this information, the debugger is unable to debug at the source level.

To debug an application at source level, the image file and shared object files must be compiled
with debug information, and a suitable level of optimization. For example, when compiling with
either the Arm or the GNU compiler you can use the following options:

-g -O0

Debug information is not loaded when an image is loaded to a target, but is a separate action. A
typical load sequence is:

1. Load the main application image.

2. Load any shared objects.

3. Load the symbols for the main application image.

4. Load the symbols for shared objects.

Loading debug information increases memory use and can take a long time. To minimize these
costs, the debugger loads debug information incrementally as it is needed. This is called on-demand
loading. Certain operations, such as listing all the symbols in an image, load additional data into the
debugger and therefore incur a small delay. Loading of debug information can occur at any time,
on-demand, so you must ensure that your images remain accessible to the debugger and do not
change during your debug session.

Images and shared objects might be preloaded onto the target, such as an image in a ROM device
or an OS-aware target. The corresponding image file and any shared object files must contain
debug information, and be accessible from your local host workstation. You can then configure a
connection to the target loading only the debug information from these files. Use the Load symbols
from file option on the debug configuration Files tab as appropriate for the target environment.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 585 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-application-using-gdbserver
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-an-Events-view-connection-to-a-bare-metal-target
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

After connecting to the target you can also use the view menu entry Load… in the Debug Control
view to load files as required. The following options for loading debug information are available:

Add Symbols File
Loads additional debug information into the debugger.

Load Debug Info
Loads debug information into the debugger.

Load Image and Debug Info
Loads the application image on to the target, and loads the debug information from the same image
into the debugger.

Load Offset
Specifies a decimal or hexadecimal offset that is added to all addresses within the image. A
hexadecimal offset must be prefixed with 0x.

Set PC to entry point
Sets the PC to the entry point when loading image or debug information so that the code runs
from the beginning.

The option is not available for the Add Symbols File option.

Figure 15-2: Load additional debug information dialog box

The debug information in an image or shared object also contains the path of the sources used to
build it. When execution stops at an address in the image or shared object, the debugger attempts
to open the corresponding source file. If this path is not present or the required source file is not
found, then you must inform the debugger where the source file is located. You do this by setting
up a substitution rule to associate the path obtained from the image with the path to the required
source file that is accessible from your local host workstation.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 586 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

Related information
About loading an image on to the target on page 584
Commands view on page 329
Configuring the debugger path substitution rules on page 83
Configuring a connection to an external Fixed Virtual Platform (FVP) for bare-metal application
debug
Configuring a connection to a Linux application using gdbserver
Configuring a connection to a Linux kernel
Configuring a connection to a bare-metal hardware target
Configuring an events view connection to a bare metal target
Arm Debugger commands

15.3 About passing arguments to main()
Arm® Debugger enables you to pass arguments to the main() function of your application.

You can use one of the following methods:

• Using the Arguments tab in the Debug Configuration dialog box.

• On the command-line (or in a script), you can use either:

◦ set semihosting args <arguments>

◦ run <arguments>.

Semihosting must be active for these to work with bare-metal images.

Related information
Using semihosting to access resources on the host computer on page 80
Working with semihosting on page 82
Debug Configurations - Arguments tab on page 442
Arm Debugger commands

15.4 Updating multiple debug hardware units
To update multiple debug hardware units, use the dbghw_batchupdater command line utility.

The command line utility, dbghw_batchupdater, enables you to:

• Install firmware on a group of DSTREAM units.

• View the firmware versions on a group of DSTREAM units.

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 587 of 589

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-an-external-Fixed-Virtual-Platform--FVP--for-bare-metal-application-debug
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-application-using-gdbserver
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-Linux-kernel
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-a-connection-to-a-bare-metal-hardware-target
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-an-Events-view-connection-to-a-bare-metal-target
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order
https://developer.arm.com/documentation/101471/latest/Arm-Debugger-commands/Arm-Debugger-commands-listed-in-alphabetical-order

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

The input to dbghw_batchupdater is a file containing a list of DSTREAM units. Each line in the
input file is a string that specifies a single DSTREAM connection. Firmware images are available
within a subdirectory of the Arm® Development Studio installation.

Syntax
dbghw_batchupdater -list <file>[-<option>]...

Where:

list <file>

Specifies the file containing a list of DSTREAM connection strings.

option:

Is one or more of the following:

log <file>

Specifies an output file to log the status of the update.

updatefile <file>

Specifies a file containing the path to the firmware.

i

Installs the firmware on the units. To install the firmware, you must also specify the updatefile
option.

v

Lists the firmware versions.

h

Displays help information. This is the default if no arguments are specified.

Examples
Input file C:\input_file.txt contains:
TCP:ds-sheep1
TCP:DS-Rhubarb

List firmware versions.
dbghw_batchupdater -list "C:\input_file.txt" -v
Versions queried on 2017-11-10 10:45:36
TCP:ds-sheep1: 4.18.0 Engineer build 3
TCP:DS-Rhubarb: 4.17.0 build 27

Install firmware on DSTREAMs
dbghw_batchupdater.exe -list 'C:\input_file.txt' -i -updatefile 'C:\Program
 Files\Arm\Development Studio <version>\sw\debughw\firmware\ARM-RVI-4.34.0-22-
base.dstream' -log out.log

Related information
Debug Hardware Configure IP view on page 460
Debug Hardware Firmware Installer view on page 462

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 588 of 589

Arm® Development Studio User Guide Document ID: 101470_2022.0_01_en
Version 2022.0

Reference

15.5 Standards compliance in Arm Debugger
Arm® Debugger conforms to various formats and protocols.

Executable and Linkable Format (ELF)
The debugger can read executable images in ELF format.

DWARF
The debugger can read debug information from ELF images in the DWARF 2, DWARF 3, and
DWARF 4 formats.

The DWARF 2 and DWARF 3 standards are ambiguous in some areas such as
debug frame data. This means that there is no guarantee that the debugger
can consume the DWARF produced by all third-party tools.

Trace Protocols
The debugger can interpret trace that complies with the Embedded Trace Macrocell (ETM) (v3 and
above), Instrumentation Trace Macrocell (ITM), and System Trace Macrocell (STM) protocols.

Related information
ELF for the Arm Architecture
DWARF for the Arm Architecture
The DWARF Debugging Standard
International Organization for Standardization

Copyright © 2018–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 589 of 589

https://developer.arm.com/documentation/ihi0044/latest/
https://developer.arm.com/documentation/ihi0040/latest/
https://dwarfstd.org/
https://www.iso.org/home.html

	Arm® Development Studio User Guide
	Contents
	List of Tables
	1 Introduction
	1.1 Conventions
	1.2 Other information

	2 Debugging Embedded Systems
	2.1 About endianness
	2.2 About accessing AHB, APB, and AXI buses
	2.3 About virtual and physical memory
	2.4 About address spaces
	2.5 About debugging hypervisors
	2.6 About debugging big.LITTLE systems
	2.7 About debugging bare-metal symmetric multiprocessing systems
	2.8 About debugging multi-threaded applications
	2.9 About debugging shared libraries
	2.10 About OS awareness
	2.10.1 About debugging FreeRTOS
	2.10.2 About debugging a Linux kernel
	2.10.3 About debugging Linux kernel modules
	2.10.4 About debugging ThreadX
	2.10.5 About debugging PikeOS

	2.11 About debugging TrustZone enabled targets
	2.12 About debugging a Unified Extensible Firmware Interface (UEFI)
	2.13 About debugging MMUs
	2.14 About Debug and Trace Services Layer (DTSL)
	2.15 About CoreSight Target Access Library
	2.16 Debug and trace over functional I/O
	2.17 About debugging caches
	2.18 About Arm Debugger support for overlays
	2.19 Debugging a loadable kernel module
	2.20 Useful commands for debugging a kernel module
	2.21 Performance analysis of the threads application running on Arm Linux

	3 Controlling Target Execution
	3.1 Overview: Breakpoints and Watchpoints
	3.2 Running, stopping, and stepping through an application
	3.3 Working with breakpoints
	3.4 Working with watchpoints
	3.5 Importing and exporting breakpoints and watchpoints
	3.6 Viewing the properties of a breakpoint or a watchpoint
	3.7 Associating debug scripts to breakpoints
	3.8 Conditional breakpoints
	3.9 Assigning conditions to an existing breakpoint
	3.10 Conditional watchpoints
	3.11 Assigning conditions to an existing watchpoint
	3.12 Pending breakpoints and watchpoints
	3.13 Setting a tracepoint
	3.14 Handling UNIX signals
	3.15 Handling processor exceptions
	3.16 Cross-trigger configuration
	3.17 Using semihosting to access resources on the host computer
	3.18 Working with semihosting
	3.19 Configuring the debugger path substitution rules

	4 Working with the Target Configuration Editor
	4.1 About the Target Configuration Editor
	4.2 Target configuration editor - Overview tab
	4.3 Target configuration editor - Memory tab
	4.4 Target configuration editor - Peripherals tab
	4.5 Target configuration editor - Registers tab
	4.6 Target configuration editor - Group View tab
	4.7 Target configuration editor - Enumerations tab
	4.8 Target configuration editor - Configurations tab
	4.9 Scenario demonstrating how to create a new target configuration file
	4.9.1 Creating a memory map
	4.9.2 Creating a peripheral
	4.9.3 Creating a standalone register
	4.9.4 Creating a peripheral register
	4.9.5 Creating enumerations for use with a peripheral register
	4.9.6 Assigning enumerations to a peripheral register
	4.9.7 Creating remapping rules for a control register
	4.9.8 Creating a memory region for remapping by a control register
	4.9.9 Applying the map rules to the overlapping memory regions

	4.10 Creating a power domain for a target
	4.11 Creating a Group list
	4.12 Importing an existing target configuration file
	4.13 Exporting a target configuration file

	5 Examining the Target
	5.1 Examining the target execution environment
	5.2 Examining the call stack
	5.3 About trace support
	5.4 About post-mortem debugging of trace data

	6 Debugging with Scripts
	6.1 Exporting Arm Debugger commands generated during a debug session
	6.2 Creating an Arm Debugger script
	6.3 Creating a CMM-style script
	6.4 Support for importing and translating CMM scripts
	6.4.1 Importing and translating a CMM script
	6.4.2 Supported CMM commands for translations

	6.5 About Jython scripts
	6.6 Jython script concepts and interfaces
	6.7 Creating Jython projects in Arm Development Studio
	6.7.1 Creating a new Jython project in Arm Development Studio
	6.7.2 Configuring an existing project to use the Arm Development Studio Jython interpreter

	6.8 Creating a Jython script
	6.9 Running a script
	6.10 Use case scripts
	6.11 Metadata for use case scripts
	6.12 Definition block for use case scripts
	6.13 Defining the Run method for use case scripts
	6.14 Defining the options for use case scripts
	6.15 Defining the validation method for use case scripts
	6.16 Example use case script definition
	6.17 Multiple use cases in a single script
	6.18 usecase list command
	6.19 usecase help command
	6.20 usecase run command

	7 Running Arm Debugger from the operating system command-line or from a script
	7.1 Overview: Running Arm Debugger from the command-line or from a script
	7.2 Command-line debugger options
	7.3 Running a debug session from a script
	7.4 Specifying a custom configuration database using the command-line
	7.5 Capturing trace data using the command-line debugger
	7.6 Working with the debug server
	7.7 Arm Debugger command-line console keyboard shortcuts

	8 Working with the Snapshot Viewer
	8.1 About the Snapshot Viewer
	8.2 Components of a Snapshot Viewer initialization file
	8.3 Connecting to the Snapshot Viewer
	8.4 Considerations when creating debugger scripts for the Snapshot Viewer

	9 Platform Configuration
	9.1 Platform Configuration and the Platform Configuration Editor (PCE)
	9.1.1 Platform Configuration in Development Studio
	9.1.2 Platform Configuration Editor (PCE)
	9.1.3 PCE with ADIv6 Debug systems
	9.1.4 Device hierarchy in the PCE view

	9.2 Hardware targets
	9.2.1 Hardware platform bring-up in Development Studio
	9.2.2 Create a platform configuration
	9.2.3 Edit a platform configuration
	9.2.4 Add topology information for an autodetected Cortex-M3 processor
	9.2.5 Manual platform configuration
	9.2.6 Custom devices
	9.2.7 Device configuration panel
	9.2.8 Add core cluster components dialog box

	9.3 Model targets
	9.3.1 Model platform bring-up in Development Studio
	9.3.2 Set up environment variables for models not provided with Arm Development Studio
	9.3.3 Launch a Fast Model for use with Arm Development Studio
	9.3.4 Create a new model configuration
	9.3.5 Model Configuration Editor

	9.4 Configuration database
	9.4.1 Configuration Database panel
	9.4.2 Add a configuration database
	9.4.3 Add a Platform Configuration to a Configuration Database
	9.4.4 Add Arm debug hardware support to an existing platform configuration

	10 Using debug probes with Arm Development Studio
	10.1 Overview: Debug Probes and Arm Development Studio
	10.2 Configure DSTREAM-HT trace using the Arm Development Studio Platform Configuration Editor
	10.2.1 Create a DSTREAM-HT enabled platform configuration
	10.2.2 Customize the configuration usecase script for your target
	10.2.3 Create debug configuration and connect to the target
	10.2.4 Additional HSSTP target configuration setup
	10.2.5 DSTREAM-HT trace probe configuration
	10.2.6 Example HSSTP configurations provided with Arm Development Studio

	10.3 Configure DSTREAM-XT debug and trace using the Arm Development Studio Platform Configuration Editor
	10.3.1 Create a DSTREAM-XT enabled platform configuration
	10.3.2 DSTREAM-XT debug configuration
	10.3.3 DSTREAM-XT trace configuration
	10.3.4 Create debug configuration and connect to the target

	10.4 Debug Hardware configuration
	10.4.1 Arm Debug and Trace Architecture
	10.4.2 Hardware configurations created by the PCE
	10.4.3 Configure your debug hardware unit for Platform Autodetection
	10.4.4 Third-party Debug Probe API
	10.4.5 Add a third-party debug probe
	10.4.6 Add a debug connection over functional I/O
	10.4.7 DTSL Jython configuration file structure
	10.4.8 DTSL configuration execution flow
	10.4.9 Debug Adapter configuration in the PCE
	10.4.10 Debug adapter advanced configuration options
	10.4.11 DSTREAM-PT trace modes
	10.4.12 Configure DSTREAM-PT trace mode

	10.5 DSTREAM dashboard
	10.5.1 DSTREAM dashboard overview
	10.5.2 Connect to a DSTREAM unit remotely
	10.5.3 DSTREAM Web API
	10.5.4 DSTREAM-HT dashboard overview

	11 Perspectives and Views
	11.1 Perspectives in Arm Development Studio
	11.2 App Console view
	11.3 Arm Asm Info view
	11.4 Arm assembler editor
	11.5 Breakpoints view
	11.6 C/C++ editor
	11.7 Commands view
	11.8 Debug Control view
	11.9 Stack view
	11.10 Disassembly view
	11.11 Events view
	11.12 Event Viewer Settings dialog box
	11.13 Expressions view
	11.14 Expression Inspector
	11.15 Functions view
	11.16 History view
	11.17 Memory view
	11.18 MMU/MPU view
	11.19 Modules view
	11.20 Registers view
	11.21 NVIC Registers view
	11.22 OS Data view
	11.23 Overlays view
	11.24 Cache Data view
	11.25 Screen view
	11.26 Scripts view
	11.27 Target Console view
	11.28 Target view
	11.29 Trace view
	11.30 Trace Control view
	11.31 Variables view
	11.32 Timed Auto-Refresh Properties dialog box
	11.33 Memory Exporter dialog box
	11.34 Memory Importer dialog box
	11.35 Fill Memory dialog box
	11.36 Export Trace Report dialog box
	11.37 Trace Dump dialog box
	11.38 Breakpoint Properties dialog box
	11.39 Watchpoint Properties dialog box
	11.40 Tracepoint Properties dialog box
	11.41 Manage Signals dialog box
	11.42 Functions Filter dialog box
	11.43 Script Parameters dialog box
	11.44 Debug Configurations - Connection tab
	11.45 Debug Configurations - Files tab
	11.46 Debug Configurations - Debugger tab
	11.47 Debug Configurations - OS Awareness tab
	11.48 Debug Configurations - Arguments tab
	11.49 Debug Configurations - Environment tab
	11.50 Debug Configurations - Export tab
	11.51 DTSL Configuration Editor dialog box
	11.52 Probe Configuration dialog box
	11.53 About the Remote System Explorer
	11.54 Remote Systems view
	11.55 Remote System Details view
	11.56 Target management terminal for serial and SSH connections
	11.57 Remote Scratchpad view
	11.58 Remote Systems terminal for SSH connections
	11.59 Terminal Settings dialog box
	11.60 Debug Hardware Configure IP view
	11.61 Debug Hardware Firmware Installer view
	11.62 Connection Browser dialog box
	11.63 Preferences dialog box
	11.64 Properties dialog box

	12 File-based Flash Programming in Arm Development Studio
	12.1 About file-based flash programming in Arm Development Studio
	12.2 Flash programming configuration
	12.3 Creating an extension database for flash programming
	12.4 About using or extending the supplied Arm Keil flash method
	12.4.1 Adding flash support to an existing platform using an existing Keil flash algorithm
	12.4.2 Adding flash support to an existing target platform using a new Keil flash algorithm

	12.5 About creating a new flash method
	12.5.1 About using the default implementation FlashMethodv1
	12.5.2 About creating the flash method Python script

	12.6 About testing the flash configuration
	12.7 About flash method parameters
	12.8 About getting data to the flash algorithm
	12.9 About interacting with the target
	12.10 Flash programming CMSIS pack-based projects

	13 Writing OS Awareness for Arm Debugger
	13.1 About Writing operating system awareness for Arm Debugger
	13.2 Creating an OS awareness extension
	13.3 Implementing the OS awareness API
	13.4 Enabling the OS awareness
	13.5 Implementing thread awareness
	13.6 Implementing data views
	13.7 Advanced OS awareness extension
	13.8 Programming advice and noteworthy information

	14 Debug and Trace Services Layer (DTSL)
	14.1 Additional DTSL documentation and files
	14.2 Need for DTSL
	14.2.1 SoC design complexity
	14.2.2 Debug flexibility
	14.2.3 Integrated tool solutions
	14.2.4 Arm Debugger architecture before DTSL
	14.2.5 Arm Debugger architecture after DTSL
	14.2.6 Arm Debugger connection sequence showing where DTSL fits in

	14.3 Arm Development Studio configuration database
	14.3.1 Modifying Arm Development Studio configdb
	14.3.2 Configdb board files
	14.3.3 About project_types.xml
	14.3.4 About the keil-mcbstm32e.py script
	14.3.5 DTSL script

	14.4 DTSL as used by Arm Debugger
	14.4.1 Arm Development Studio debug session launcher
	14.4.2 Connecting to DTSL
	14.4.3 DTSL access from Debugger Jython scripts

	14.5 Main DTSL classes and hierarchy
	14.5.1 DTSL configuration objects
	14.5.2 DTSL device objects
	14.5.3 CoreSight device component register IDs
	14.5.4 DTSL trace source objects
	14.5.5 DTSL trace capture objects
	14.5.6 Memory as seen by a core device
	14.5.7 Physical memory access via CoreSight
	14.5.8 DTSL MEM-AP support
	14.5.9 Linking MEM-AP access to a core device

	14.6 DTSL options
	14.6.1 DTSL option classes
	14.6.2 DTSL option example walk-through
	14.6.3 Option names and hierarchy
	14.6.4 Dynamic options
	14.6.5 Option change notification
	14.6.6 Option change notification example walk-through

	14.7 DTSL support for SMP and AMP configurations
	14.7.1 AMP systems and synchronized execution
	14.7.2 Execution synchronization levels
	14.7.3 Software synchronization
	14.7.4 Tight synchronization
	14.7.5 Hardware synchronization
	14.7.6 SMP states
	14.7.7 Use of CTI for SMP execution synchronization

	14.8 DTSL Trace
	14.8.1 Platform trace generation
	14.8.2 DTSL trace decoding
	14.8.3 DTSL decoding stages
	14.8.4 DTSL trace client read interface
	14.8.5 Supporting multiple trace capture devices
	14.8.6 Decoding STM STPv2 output
	14.8.7 Example STM reading code
	14.8.8 STM objects
	14.8.9 DTSL client time-stamp synchronization support

	14.9 Embedded Logic Analyzer (ELA)
	14.10 Using the ELA-500
	14.10.1 Configure the ELA-500
	14.10.2 Start and stop an ELA-500 trace capture
	14.10.3 Decode the trace capture

	14.11 Using the ELA-600
	14.11.1 Configure the ELA-600
	14.11.2 Start and stop an ELA-600 trace capture
	14.11.3 Decompress and decode an ELA-600 trace
	14.11.3.1 Decompress and decode an ELA-600 trace from buffer source
	14.11.3.2 Decompress and decode an ELA-600 trace from binary source file
	14.11.3.3 Dump ELA-600 trace data to binary source file

	14.12 Extending the DTSL object model
	14.12.1 Performing custom actions on connect
	14.12.2 Overriding device reset behavior
	14.12.3 Adding a new trace capture device

	14.13 Debugging DTSL Jython code within Arm Debugger
	14.13.1 DTSL Jython syntax errors
	14.13.2 Errors reported by the launcher panel
	14.13.3 Errors reported at connection time
	14.13.4 DTSL Jython functional errors
	14.13.5 Walk-through of a DTSL debug session
	14.13.6 Starting a second instance of Arm Development Studio for Jython debug
	14.13.7 Preparing the DTSL script for debug
	14.13.8 Debugging the DTSL code

	14.14 DTSL in stand-alone mode
	14.14.1 Comparing Java with Jython for DTSL development
	14.14.2 DTSL as used by a stand-alone Jython program
	14.14.3 Installing the Jython example within the Arm Development Studio IDE
	14.14.4 Running the Jython program
	14.14.5 Invoking the Jython program
	14.14.6 About the Jython program
	14.14.7 DTSL as used by a stand-alone Java program
	14.14.8 Installing the Java example within the Arm Development Studio IDE
	14.14.9 Running the Java program
	14.14.10 Invoking the Java program
	14.14.11 About the Java program

	15 Reference
	15.1 About loading an image on to the target
	15.2 About loading debug information into the debugger
	15.3 About passing arguments to main()
	15.4 Updating multiple debug hardware units
	15.5 Standards compliance in Arm Debugger

