
Arm® Instruction Set
Version 1.0

Reference Guide

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.
100076_0100_00_en

Arm® Instruction Set
Reference Guide
Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0100-00 25 October 2018 Non-Confidential First Release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 Arm® Instruction Set

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Instruction Set

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
Arm® Instruction Set Reference Guide

Preface
About this book 42

Part A Instruction Set Overview

Chapter A1 Overview of the Arm® Architecture
A1.1 About the Arm® architecture .. A1-48
A1.2 Differences between the A64, A32, and T32 instruction sets A1-49
A1.3 Changing between AArch64 and AArch32 states A1-50
A1.4 Advanced SIMD A1-51
A1.5 Floating-point hardware A1-52

Chapter A2 Overview of AArch32 state
A2.1 Changing between A32 and T32 instruction set states A2-54
A2.2 Processor modes, and privileged and unprivileged software execution A2-55
A2.3 Processor modes in Armv6-M, Armv7-M, and Armv8-M A2-56
A2.4 Registers in AArch32 state .. A2-57
A2.5 General-purpose registers in AArch32 state A2-59
A2.6 Register accesses in AArch32 state A2-60
A2.7 Predeclared core register names in AArch32 state A2-61
A2.8 Predeclared extension register names in AArch32 state A2-62
A2.9 Program Counter in AArch32 state A2-63
A2.10 The Q flag in AArch32 state .. A2-64

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential

A2.11 Application Program Status Register A2-65
A2.12 Current Program Status Register in AArch32 state A2-66
A2.13 Saved Program Status Registers in AArch32 state A2-67
A2.14 A32 and T32 instruction set overview A2-68
A2.15 Access to the inline barrel shifter in AArch32 state A2-69

Chapter A3 Overview of AArch64 state
A3.1 Registers in AArch64 state .. A3-72
A3.2 Exception levels A3-73
A3.3 Link registers A3-74
A3.4 Stack Pointer register .. A3-75
A3.5 Predeclared core register names in AArch64 state A3-76
A3.6 Predeclared extension register names in AArch64 state A3-77
A3.7 Program Counter in AArch64 state A3-78
A3.8 Conditional execution in AArch64 state A3-79
A3.9 The Q flag in AArch64 state .. A3-80
A3.10 Process State .. A3-81
A3.11 Saved Program Status Registers in AArch64 state A3-82
A3.12 A64 instruction set overview A3-83

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMD .. B1-88
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state B1-89
B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state B1-91
B1.4 Views of the Advanced SIMD register bank in AArch32 state B1-93
B1.5 Views of the Advanced SIMD register bank in AArch64 state B1-94
B1.6 Differences between A32/T32 and A64 Advanced SIMD instruction syntax B1-95
B1.7 Load values to Advanced SIMD registers B1-97
B1.8 Conditional execution of A32/T32 Advanced SIMD instructions B1-98
B1.9 Floating-point exceptions for Advanced SIMD in A32/T32 instructions B1-99
B1.10 Advanced SIMD data types in A32/T32 instructions B1-100
B1.11 Polynomial arithmetic over {0,1} .. B1-101
B1.12 Advanced SIMD vectors .. B1-102
B1.13 Normal, long, wide, and narrow Advanced SIMD instructions B1-103
B1.14 Saturating Advanced SIMD instructions .. B1-104
B1.15 Advanced SIMD scalars .. B1-105
B1.16 Extended notation extension for Advanced SIMD in A32/T32 code B1-106
B1.17 Advanced SIMD system registers in AArch32 state .. B1-107
B1.18 Flush-to-zero mode in Advanced SIMD B1-108
B1.19 When to use flush-to-zero mode in Advanced SIMD B1-109
B1.20 The effects of using flush-to-zero mode in Advanced SIMD B1-110
B1.21 Advanced SIMD operations not affected by flush-to-zero mode B1-111

Chapter B2 Floating-point Programming
B2.1 Architecture support for floating-point B2-114
B2.2 Extension register bank mapping for floating-point in AArch32 state B2-115
B2.3 Extension register bank mapping in AArch64 state B2-117
B2.4 Views of the floating-point extension register bank in AArch32 state B2-118

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 6
Non-Confidential

B2.5 Views of the floating-point extension register bank in AArch64 state B2-119
B2.6 Differences between A32/T32 and A64 floating-point instruction syntax B2-120
B2.7 Load values to floating-point registers B2-121
B2.8 Conditional execution of A32/T32 floating-point instructions B2-122
B2.9 Floating-point exceptions for floating-point in A32/T32 instructions B2-123
B2.10 Floating-point data types in A32/T32 instructions B2-124
B2.11 Extended notation extension for floating-point in A32/T32 code B2-125
B2.12 Floating-point system registers in AArch32 state .. B2-126
B2.13 Flush-to-zero mode in floating-point .. B2-127
B2.14 When to use flush-to-zero mode in floating-point .. B2-128
B2.15 The effects of using flush-to-zero mode in floating-point B2-129
B2.16 Floating-point operations not affected by flush-to-zero mode B2-130

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
C1.1 Conditional instructions C1-134
C1.2 Conditional execution in A32 code .. C1-135
C1.3 Conditional execution in T32 code .. C1-136
C1.4 Condition flags C1-137
C1.5 Updates to the condition flags in A32/T32 code C1-138
C1.6 Floating-point instructions that update the condition flags C1-139
C1.7 Carry flag C1-140
C1.8 Overflow flag C1-141
C1.9 Condition code suffixes C1-142
C1.10 Condition code suffixes and related flags C1-143
C1.11 Comparison of condition code meanings in integer and floating-point code C1-144
C1.12 Benefits of using conditional execution in A32 and T32 code C1-146
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code C1-147
C1.14 Optimization for execution speed .. C1-150

Chapter C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary C2-156
C2.2 Instruction width specifiers .. C2-161
C2.3 Flexible second operand (Operand2) C2-162
C2.4 Syntax of Operand2 as a constant .. C2-163
C2.5 Syntax of Operand2 as a register with optional shift C2-164
C2.6 Shift operations C2-165
C2.7 Saturating instructions C2-168
C2.8 ADC C2-169
C2.9 ADD C2-171
C2.10 ADR (PC-relative) C2-174
C2.11 ADR (register-relative) C2-176
C2.12 AND C2-178
C2.13 ASR C2-180
C2.14 B .. C2-182
C2.15 BFC C2-184
C2.16 BFI C2-185
C2.17 BIC .. C2-186
C2.18 BKPT C2-188

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential

C2.19 BL .. C2-189
C2.20 BLX, BLXNS C2-190
C2.21 BX, BXNS C2-192
C2.22 BXJ C2-194
C2.23 CBZ and CBNZ C2-195
C2.24 CDP and CDP2 C2-196
C2.25 CLREX .. C2-197
C2.26 CLZ C2-198
C2.27 CMP and CMN .. C2-199
C2.28 CPS C2-201
C2.29 CRC32 C2-203
C2.30 CRC32C .. C2-204
C2.31 CSDB .. C2-205
C2.32 DBG C2-207
C2.33 DCPS1 (T32 instruction) C2-208
C2.34 DCPS2 (T32 instruction) C2-209
C2.35 DCPS3 (T32 instruction) C2-210
C2.36 DMB C2-211
C2.37 DSB C2-213
C2.38 EOR C2-215
C2.39 ERET C2-217
C2.40 ESB C2-218
C2.41 HLT C2-219
C2.42 HVC C2-220
C2.43 ISB C2-221
C2.44 IT C2-222
C2.45 LDA C2-225
C2.46 LDAEX C2-226
C2.47 LDC and LDC2 .. C2-228
C2.48 LDM C2-230
C2.49 LDR (immediate offset) C2-232
C2.50 LDR (PC-relative) .. C2-234
C2.51 LDR (register offset) .. C2-236
C2.52 LDR (register-relative) C2-238
C2.53 LDR, unprivileged C2-240
C2.54 LDREX .. C2-242
C2.55 LSL .. C2-244
C2.56 LSR C2-246
C2.57 MCR and MCR2 .. C2-248
C2.58 MCRR and MCRR2 C2-249
C2.59 MLA C2-250
C2.60 MLS C2-251
C2.61 MOV .. C2-252
C2.62 MOVT .. C2-254
C2.63 MRC and MRC2 .. C2-255
C2.64 MRRC and MRRC2 C2-256
C2.65 MRS (PSR to general-purpose register) C2-257
C2.66 MRS (system coprocessor register to general-purpose register) C2-259
C2.67 MSR (general-purpose register to system coprocessor register) C2-260
C2.68 MSR (general-purpose register to PSR) C2-261

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential

C2.69 MUL C2-263
C2.70 MVN .. C2-264
C2.71 NOP C2-266
C2.72 ORN (T32 only) C2-267
C2.73 ORR .. C2-268
C2.74 PKHBT and PKHTB .. C2-270
C2.75 PLD, PLDW, and PLI C2-272
C2.76 POP C2-274
C2.77 PUSH .. C2-275
C2.78 QADD .. C2-276
C2.79 QADD8 .. C2-277
C2.80 QADD16 .. C2-278
C2.81 QASX .. C2-279
C2.82 QDADD C2-280
C2.83 QDSUB C2-281
C2.84 QSAX .. C2-282
C2.85 QSUB .. C2-283
C2.86 QSUB8 .. C2-284
C2.87 QSUB16 .. C2-285
C2.88 RBIT .. C2-286
C2.89 REV C2-287
C2.90 REV16 C2-288
C2.91 REVSH .. C2-289
C2.92 RFE C2-290
C2.93 ROR .. C2-292
C2.94 RRX C2-294
C2.95 RSB C2-296
C2.96 RSC C2-298
C2.97 SADD8 .. C2-300
C2.98 SADD16 .. C2-302
C2.99 SASX C2-304
C2.100 SBC C2-306
C2.101 SBFX C2-308
C2.102 SDIV .. C2-309
C2.103 SEL C2-310
C2.104 SETEND C2-312
C2.105 SETPAN .. C2-313
C2.106 SEV C2-314
C2.107 SEVL C2-315
C2.108 SG C2-316
C2.109 SHADD8 C2-317
C2.110 SHADD16 C2-318
C2.111 SHASX .. C2-319
C2.112 SHSAX .. C2-320
C2.113 SHSUB8 .. C2-321
C2.114 SHSUB16 .. C2-322
C2.115 SMC .. C2-323
C2.116 SMLAxy C2-324
C2.117 SMLAD .. C2-326
C2.118 SMLAL C2-327

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 9
Non-Confidential

C2.119 SMLALD .. C2-328
C2.120 SMLALxy C2-329
C2.121 SMLAWy C2-331
C2.122 SMLSD .. C2-332
C2.123 SMLSLD .. C2-333
C2.124 SMMLA C2-334
C2.125 SMMLS C2-335
C2.126 SMMUL C2-336
C2.127 SMUAD C2-337
C2.128 SMULxy C2-338
C2.129 SMULL .. C2-339
C2.130 SMULWy C2-340
C2.131 SMUSD C2-341
C2.132 SRS C2-342
C2.133 SSAT C2-344
C2.134 SSAT16 C2-345
C2.135 SSAX C2-346
C2.136 SSUB8 C2-348
C2.137 SSUB16 C2-350
C2.138 STC and STC2 .. C2-352
C2.139 STL C2-354
C2.140 STLEX C2-355
C2.141 STM C2-357
C2.142 STR (immediate offset) C2-359
C2.143 STR (register offset) .. C2-361
C2.144 STR, unprivileged C2-363
C2.145 STREX .. C2-365
C2.146 SUB C2-367
C2.147 SUBS pc, lr C2-370
C2.148 SVC C2-372
C2.149 SWP and SWPB C2-373
C2.150 SXTAB C2-374
C2.151 SXTAB16 C2-376
C2.152 SXTAH C2-378
C2.153 SXTB C2-380
C2.154 SXTB16 C2-382
C2.155 SXTH C2-383
C2.156 SYS C2-385
C2.157 TBB and TBH .. C2-386
C2.158 TEQ C2-387
C2.159 TST C2-389
C2.160 TT, TTT, TTA, TTAT C2-391
C2.161 UADD8 .. C2-393
C2.162 UADD16 .. C2-395
C2.163 UASX C2-397
C2.164 UBFX C2-399
C2.165 UDF C2-400
C2.166 UDIV C2-401
C2.167 UHADD8 C2-402
C2.168 UHADD16 C2-403

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 10
Non-Confidential

C2.169 UHASX .. C2-404
C2.170 UHSAX .. C2-405
C2.171 UHSUB8 C2-406
C2.172 UHSUB16 C2-407
C2.173 UMAAL .. C2-408
C2.174 UMLAL .. C2-409
C2.175 UMULL .. C2-410
C2.176 UQADD8 C2-411
C2.177 UQADD16 C2-412
C2.178 UQASX C2-413
C2.179 UQSAX C2-414
C2.180 UQSUB8 C2-415
C2.181 UQSUB16 C2-416
C2.182 USAD8 .. C2-417
C2.183 USADA8 .. C2-418
C2.184 USAT C2-419
C2.185 USAT16 C2-420
C2.186 USAX C2-421
C2.187 USUB8 .. C2-423
C2.188 USUB16 .. C2-425
C2.189 UXTAB C2-426
C2.190 UXTAB16 C2-428
C2.191 UXTAH .. C2-430
C2.192 UXTB C2-432
C2.193 UXTB16 C2-434
C2.194 UXTH C2-435
C2.195 WFE .. C2-437
C2.196 WFI C2-438
C2.197 YIELD .. C2-439

Chapter C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions C3-445
C3.2 Summary of shared Advanced SIMD and floating-point instructions C3-448
C3.3 Interleaving provided by load and store element and structure instructions C3-449
C3.4 Alignment restrictions in load and store element and structure instructions C3-450
C3.5 FLDMDBX, FLDMIAX C3-451
C3.6 FSTMDBX, FSTMIAX C3-452
C3.7 VABA and VABAL C3-453
C3.8 VABD and VABDL C3-454
C3.9 VABS C3-455
C3.10 VACLE, VACLT, VACGE and VACGT C3-456
C3.11 VADD C3-457
C3.12 VADDHN C3-458
C3.13 VADDL and VADDW C3-459
C3.14 VAND (immediate) C3-460
C3.15 VAND (register) C3-461
C3.16 VBIC (immediate) .. C3-462
C3.17 VBIC (register) C3-463
C3.18 VBIF .. C3-464
C3.19 VBIT .. C3-465

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 11
Non-Confidential

C3.20 VBSL C3-466
C3.21 VCADD C3-467
C3.22 VCEQ (immediate #0) C3-468
C3.23 VCEQ (register) C3-469
C3.24 VCGE (immediate #0) C3-470
C3.25 VCGE (register) C3-471
C3.26 VCGT (immediate #0) C3-472
C3.27 VCGT (register) C3-473
C3.28 VCLE (immediate #0) .. C3-474
C3.29 VCLS C3-475
C3.30 VCLE (register) C3-476
C3.31 VCLT (immediate #0) .. C3-477
C3.32 VCLT (register) .. C3-478
C3.33 VCLZ C3-479
C3.34 VCMLA .. C3-480
C3.35 VCMLA (by element) C3-481
C3.36 VCNT C3-482
C3.37 VCVT (between fixed-point or integer, and floating-point) C3-483
C3.38 VCVT (between half-precision and single-precision floating-point) C3-484
C3.39 VCVT (from floating-point to integer with directed rounding modes) C3-485
C3.40 VCVTB, VCVTT (between half-precision and double-precision) C3-486
C3.41 VDUP .. C3-487
C3.42 VEOR .. C3-488
C3.43 VEXT C3-489
C3.44 VFMA, VFMS .. C3-490
C3.45 VFMAL (by scalar) C3-491
C3.46 VFMAL (vector) C3-492
C3.47 VFMSL (by scalar) C3-493
C3.48 VFMSL (vector) C3-494
C3.49 VHADD C3-495
C3.50 VHSUB .. C3-496
C3.51 VLDn (single n-element structure to one lane) C3-497
C3.52 VLDn (single n-element structure to all lanes) .. C3-499
C3.53 VLDn (multiple n-element structures) C3-501
C3.54 VLDM .. C3-503
C3.55 VLDR C3-504
C3.56 VLDR (post-increment and pre-decrement) .. C3-505
C3.57 VLDR pseudo-instruction .. C3-506
C3.58 VMAX and VMIN C3-507
C3.59 VMAXNM, VMINNM .. C3-508
C3.60 VMLA C3-509
C3.61 VMLA (by scalar) C3-510
C3.62 VMLAL (by scalar) C3-511
C3.63 VMLAL C3-512
C3.64 VMLS (by scalar) C3-513
C3.65 VMLS C3-514
C3.66 VMLSL C3-515
C3.67 VMLSL (by scalar) C3-516
C3.68 VMOV (immediate) C3-517
C3.69 VMOV (register) .. C3-518

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 12
Non-Confidential

C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)
... C3-519

C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) C3-520
C3.72 VMOVL C3-521
C3.73 VMOVN C3-522
C3.74 VMOV2 C3-523
C3.75 VMRS .. C3-524
C3.76 VMSR .. C3-525
C3.77 VMUL .. C3-526
C3.78 VMUL (by scalar) C3-527
C3.79 VMULL .. C3-528
C3.80 VMULL (by scalar) C3-529
C3.81 VMVN (register) C3-530
C3.82 VMVN (immediate) .. C3-531
C3.83 VNEG .. C3-532
C3.84 VORN (register) C3-533
C3.85 VORN (immediate) .. C3-534
C3.86 VORR (register) C3-535
C3.87 VORR (immediate) .. C3-536
C3.88 VPADAL .. C3-537
C3.89 VPADD .. C3-538
C3.90 VPADDL .. C3-539
C3.91 VPMAX and VPMIN .. C3-540
C3.92 VPOP .. C3-541
C3.93 VPUSH .. C3-542
C3.94 VQABS .. C3-543
C3.95 VQADD C3-544
C3.96 VQDMLAL and VQDMLSL (by vector or by scalar) .. C3-545
C3.97 VQDMULH (by vector or by scalar) C3-546
C3.98 VQDMULL (by vector or by scalar) C3-547
C3.99 VQMOVN and VQMOVUN C3-548
C3.100 VQNEG C3-549
C3.101 VQRDMULH (by vector or by scalar) .. C3-550
C3.102 VQRSHL (by signed variable) C3-551
C3.103 VQRSHRN and VQRSHRUN (by immediate) C3-552
C3.104 VQSHL (by signed variable) C3-553
C3.105 VQSHL and VQSHLU (by immediate) C3-554
C3.106 VQSHRN and VQSHRUN (by immediate) .. C3-555
C3.107 VQSUB C3-556
C3.108 VRADDHN C3-557
C3.109 VRECPE C3-558
C3.110 VRECPS C3-559
C3.111 VREV16, VREV32, and VREV64 .. C3-560
C3.112 VRHADD C3-561
C3.113 VRSHL (by signed variable) .. C3-562
C3.114 VRSHR (by immediate) C3-563
C3.115 VRSHRN (by immediate) .. C3-564
C3.116 VRINT C3-565
C3.117 VRSQRTE C3-566
C3.118 VRSQRTS C3-567

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 13
Non-Confidential

C3.119 VRSRA (by immediate) C3-568
C3.120 VRSUBHN C3-569
C3.121 VSDOT (vector) C3-570
C3.122 VSDOT (by element) C3-571
C3.123 VSHL (by immediate) .. C3-572
C3.124 VSHL (by signed variable) C3-573
C3.125 VSHLL (by immediate) .. C3-574
C3.126 VSHR (by immediate) C3-575
C3.127 VSHRN (by immediate) C3-576
C3.128 VSLI C3-577
C3.129 VSRA (by immediate) C3-578
C3.130 VSRI .. C3-579
C3.131 VSTM .. C3-580
C3.132 VSTn (multiple n-element structures) C3-581
C3.133 VSTn (single n-element structure to one lane) C3-583
C3.134 VSTR C3-585
C3.135 VSTR (post-increment and pre-decrement) .. C3-586
C3.136 VSUB C3-587
C3.137 VSUBHN C3-588
C3.138 VSUBL and VSUBW C3-589
C3.139 VSWP C3-590
C3.140 VTBL and VTBX .. C3-591
C3.141 VTRN C3-592
C3.142 VTST C3-593
C3.143 VUDOT (vector) C3-594
C3.144 VUDOT (by element) C3-595
C3.145 VUZP C3-596
C3.146 VZIP .. C3-597

Chapter C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions .. C4-601
C4.2 VABS (floating-point) C4-603
C4.3 VADD (floating-point) C4-604
C4.4 VCMP, VCMPE C4-605
C4.5 VCVT (between single-precision and double-precision) C4-606
C4.6 VCVT (between floating-point and integer) C4-607
C4.7 VCVT (from floating-point to integer with directed rounding modes) C4-608
C4.8 VCVT (between floating-point and fixed-point) C4-609
C4.9 VCVTB, VCVTT (half-precision extension) C4-610
C4.10 VCVTB, VCVTT (between half-precision and double-precision) C4-611
C4.11 VDIV .. C4-612
C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point) C4-613
C4.13 VJCVT C4-614
C4.14 VLDM (floating-point) .. C4-615
C4.15 VLDR (floating-point) C4-616
C4.16 VLDR (post-increment and pre-decrement, floating-point) C4-617
C4.17 VLLDM .. C4-618
C4.18 VLSTM .. C4-619
C4.19 VMAXNM, VMINNM (floating-point) .. C4-620
C4.20 VMLA (floating-point) C4-621

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 14
Non-Confidential

C4.21 VMLS (floating-point) C4-622
C4.22 VMOV (floating-point) C4-623
C4.23 VMOV (between one general-purpose register and single precision floating-point

register) C4-624
C4.24 VMOV (between two general-purpose registers and one or two extension registers)

... C4-625
C4.25 VMOV (between a general-purpose register and half a double precision floating-point

register) C4-626
C4.26 VMRS (floating-point) .. C4-627
C4.27 VMSR (floating-point) .. C4-628
C4.28 VMUL (floating-point) .. C4-629
C4.29 VNEG (floating-point) .. C4-630
C4.30 VNMLA (floating-point) .. C4-631
C4.31 VNMLS (floating-point) .. C4-632
C4.32 VNMUL (floating-point) C4-633
C4.33 VPOP (floating-point) .. C4-634
C4.34 VPUSH (floating-point) .. C4-635
C4.35 VRINT (floating-point) C4-636
C4.36 VSEL C4-637
C4.37 VSQRT .. C4-638
C4.38 VSTM (floating-point) .. C4-639
C4.39 VSTR (floating-point) C4-640
C4.40 VSTR (post-increment and pre-decrement, floating-point) C4-641
C4.41 VSUB (floating-point) C4-642

Chapter C5 A32/T32 Cryptographic Algorithms
C5.1 A32/T32 Cryptographic instructions .. C5-644

Part D A64 Instruction Set Reference

Chapter D1 Condition Codes
D1.1 Conditional execution in A64 code .. D1-648
D1.2 Condition flags D1-649
D1.3 Updates to the condition flags in A64 code D1-650
D1.4 Floating-point instructions that update the condition flags D1-651
D1.5 Carry flag D1-652
D1.6 Overflow flag D1-653
D1.7 Condition code suffixes D1-654
D1.8 Condition code suffixes and related flags D1-655
D1.9 Optimization for execution speed .. D1-656

Chapter D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order D2-662
D2.2 Register restrictions for A64 instructions D2-669
D2.3 ADC D2-670
D2.4 ADCS .. D2-671
D2.5 ADD (extended register) D2-672
D2.6 ADD (immediate) D2-674
D2.7 ADD (shifted register) D2-675
D2.8 ADDG .. D2-676

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 15
Non-Confidential

D2.9 ADDS (extended register) D2-677
D2.10 ADDS (immediate) .. D2-679
D2.11 ADDS (shifted register) D2-680
D2.12 ADR D2-681
D2.13 ADRP .. D2-682
D2.14 AND (immediate) D2-683
D2.15 AND (shifted register) D2-684
D2.16 ANDS (immediate) .. D2-685
D2.17 ANDS (shifted register) D2-686
D2.18 ASR (register) D2-687
D2.19 ASR (immediate) D2-688
D2.20 ASRV D2-689
D2.21 AT .. D2-690
D2.22 AUTDA, AUTDZA D2-692
D2.23 AUTDB, AUTDZB D2-693
D2.24 AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ D2-694
D2.25 AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ D2-695
D2.26 AXFlag D2-696
D2.27 B.cond D2-697
D2.28 B .. D2-698
D2.29 BFC D2-699
D2.30 BFI D2-700
D2.31 BFM D2-701
D2.32 BFXIL .. D2-702
D2.33 BIC (shifted register) D2-703
D2.34 BICS (shifted register) D2-704
D2.35 BL .. D2-705
D2.36 BLR D2-706
D2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ D2-707
D2.38 BR D2-708
D2.39 BRAA, BRAAZ, BRAB, BRABZ D2-709
D2.40 BRK D2-710
D2.41 BTI D2-711
D2.42 CBNZ D2-712
D2.43 CBZ D2-713
D2.44 CCMN (immediate) D2-714
D2.45 CCMN (register) .. D2-715
D2.46 CCMP (immediate) D2-716
D2.47 CCMP (register) .. D2-717
D2.48 CINC D2-718
D2.49 CINV D2-719
D2.50 CLREX .. D2-720
D2.51 CLS D2-721
D2.52 CLZ D2-722
D2.53 CMN (extended register) D2-723
D2.54 CMN (immediate) .. D2-725
D2.55 CMN (shifted register) D2-726
D2.56 CMP (extended register) D2-727
D2.57 CMP (immediate) .. D2-729
D2.58 CMP (shifted register) D2-730

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 16
Non-Confidential

D2.59 CMPP .. D2-731
D2.60 CNEG .. D2-732
D2.61 CRC32B, CRC32H, CRC32W, CRC32X .. D2-733
D2.62 CRC32CB, CRC32CH, CRC32CW, CRC32CX .. D2-734
D2.63 CSDB .. D2-735
D2.64 CSEL D2-737
D2.65 CSET D2-738
D2.66 CSETM D2-739
D2.67 CSINC D2-740
D2.68 CSINV D2-741
D2.69 CSNEG D2-742
D2.70 DC D2-743
D2.71 DCPS1 .. D2-744
D2.72 DCPS2 .. D2-745
D2.73 DCPS3 .. D2-746
D2.74 DMB .. D2-747
D2.75 DRPS .. D2-749
D2.76 DSB D2-750
D2.77 EON (shifted register) D2-752
D2.78 EOR (immediate) D2-753
D2.79 EOR (shifted register) D2-754
D2.80 ERET D2-755
D2.81 ERETAA, ERETAB .. D2-756
D2.82 ESB D2-757
D2.83 EXTR D2-758
D2.84 GMI D2-759
D2.85 HINT .. D2-760
D2.86 HLT D2-761
D2.87 HVC D2-762
D2.88 IC D2-763
D2.89 IRG .. D2-764
D2.90 ISB D2-765
D2.91 LDG D2-766
D2.92 LDGV D2-767
D2.93 LSL (register) D2-768
D2.94 LSL (immediate) .. D2-769
D2.95 LSLV D2-770
D2.96 LSR (register) .. D2-771
D2.97 LSR (immediate) D2-772
D2.98 LSRV D2-773
D2.99 MADD D2-774
D2.100 MNEG D2-775
D2.101 MOV (to or from SP) D2-776
D2.102 MOV (inverted wide immediate) .. D2-777
D2.103 MOV (wide immediate) D2-778
D2.104 MOV (bitmask immediate) D2-779
D2.105 MOV (register) D2-780
D2.106 MOVK D2-781
D2.107 MOVN D2-782
D2.108 MOVZ .. D2-783

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 17
Non-Confidential

D2.109 MRS .. D2-784
D2.110 MSR (immediate) .. D2-785
D2.111 MSR (register) D2-786
D2.112 MSUB .. D2-787
D2.113 MUL D2-788
D2.114 MVN .. D2-789
D2.115 NEG (shifted register) D2-790
D2.116 NEGS .. D2-791
D2.117 NGC .. D2-792
D2.118 NGCS .. D2-793
D2.119 NOP D2-794
D2.120 ORN (shifted register) D2-795
D2.121 ORR (immediate) .. D2-796
D2.122 ORR (shifted register) D2-797
D2.123 PACDA, PACDZA .. D2-798
D2.124 PACDB, PACDZB .. D2-799
D2.125 PACGA .. D2-800
D2.126 PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ D2-801
D2.127 PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ D2-802
D2.128 PSB D2-803
D2.129 RBIT .. D2-804
D2.130 RET D2-805
D2.131 RETAA, RETAB D2-806
D2.132 REV16 D2-807
D2.133 REV32 D2-808
D2.134 REV64 D2-809
D2.135 REV D2-810
D2.136 ROR (immediate) D2-811
D2.137 ROR (register) D2-812
D2.138 RORV .. D2-813
D2.139 SBC D2-814
D2.140 SBCS D2-815
D2.141 SBFIZ .. D2-816
D2.142 SBFM .. D2-817
D2.143 SBFX D2-818
D2.144 SDIV .. D2-819
D2.145 SEV D2-820
D2.146 SEVL D2-821
D2.147 SMADDL D2-822
D2.148 SMC .. D2-823
D2.149 SMNEGL D2-824
D2.150 SMSUBL D2-825
D2.151 SMULH D2-826
D2.152 SMULL .. D2-827
D2.153 ST2G D2-828
D2.154 STG D2-829
D2.155 STGP D2-830
D2.156 STGV D2-831
D2.157 STZ2G D2-832
D2.158 STZG D2-833

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 18
Non-Confidential

D2.159 SUB (extended register) D2-834
D2.160 SUB (immediate) D2-836
D2.161 SUB (shifted register) .. D2-837
D2.162 SUBG .. D2-838
D2.163 SUBP D2-839
D2.164 SUBPS .. D2-840
D2.165 SUBS (extended register) D2-841
D2.166 SUBS (immediate) D2-843
D2.167 SUBS (shifted register) D2-844
D2.168 SVC D2-845
D2.169 SXTB D2-846
D2.170 SXTH D2-847
D2.171 SXTW .. D2-848
D2.172 SYS D2-849
D2.173 SYSL D2-850
D2.174 TBNZ D2-851
D2.175 TBZ D2-852
D2.176 TLBI D2-853
D2.177 TST (immediate) D2-855
D2.178 TST (shifted register) D2-856
D2.179 UBFIZ .. D2-857
D2.180 UBFM .. D2-858
D2.181 UBFX D2-859
D2.182 UDIV D2-860
D2.183 UMADDL D2-861
D2.184 UMNEGL D2-862
D2.185 UMSUBL D2-863
D2.186 UMULH D2-864
D2.187 UMULL .. D2-865
D2.188 UXTB D2-866
D2.189 UXTH D2-867
D2.190 XAFlag D2-868
D2.191 WFE .. D2-869
D2.192 WFI D2-870
D2.193 XPACD, XPACI, XPACLRI D2-871
D2.194 YIELD .. D2-872

Chapter D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order .. D3-877
D3.2 CASA, CASAL, CAS, CASL, CASAL, CAS, CASL D3-883
D3.3 CASAB, CASALB, CASB, CASLB .. D3-884
D3.4 CASAH, CASALH, CASH, CASLH D3-885
D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL D3-886
D3.6 LDADDA, LDADDAL, LDADD, LDADDL, LDADDAL, LDADD, LDADDL D3-888
D3.7 LDADDAB, LDADDALB, LDADDB, LDADDLB D3-889
D3.8 LDADDAH, LDADDALH, LDADDH, LDADDLH .. D3-890
D3.9 LDAPR .. D3-891
D3.10 LDAPRB .. D3-892
D3.11 LDAPRH D3-893
D3.12 LDAR D3-894

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 19
Non-Confidential

D3.13 LDARB .. D3-895
D3.14 LDARH .. D3-896
D3.15 LDAXP D3-897
D3.16 LDAXR .. D3-898
D3.17 LDAXRB .. D3-899
D3.18 LDAXRH D3-900
D3.19 LDCLRA, LDCLRAL, LDCLR, LDCLRL, LDCLRAL, LDCLR, LDCLRL D3-901
D3.20 LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB D3-902
D3.21 LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH .. D3-903
D3.22 LDEORA, LDEORAL, LDEOR, LDEORL, LDEORAL, LDEOR, LDEORL D3-904
D3.23 LDEORAB, LDEORALB, LDEORB, LDEORLB .. D3-905
D3.24 LDEORAH, LDEORALH, LDEORH, LDEORLH D3-906
D3.25 LDLAR D3-907
D3.26 LDLARB .. D3-908
D3.27 LDLARH .. D3-909
D3.28 LDNP D3-910
D3.29 LDP D3-911
D3.30 LDPSW D3-912
D3.31 LDR (immediate) D3-913
D3.32 LDR (literal) D3-914
D3.33 LDR (register) D3-915
D3.34 LDRAA, LDRAB, LDRAB .. D3-916
D3.35 LDRB (immediate) D3-917
D3.36 LDRB (register) D3-918
D3.37 LDRH (immediate) D3-919
D3.38 LDRH (register) D3-920
D3.39 LDRSB (immediate) .. D3-921
D3.40 LDRSB (register) D3-922
D3.41 LDRSH (immediate) .. D3-923
D3.42 LDRSH (register) D3-924
D3.43 LDRSW (immediate) D3-925
D3.44 LDRSW (literal) D3-926
D3.45 LDRSW (register) .. D3-927
D3.46 LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL, LDSET, LDSETL D3-928
D3.47 LDSETAB, LDSETALB, LDSETB, LDSETLB .. D3-929
D3.48 LDSETAH, LDSETALH, LDSETH, LDSETLH D3-930
D3.49 LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL, LDSMAXAL, LDSMAX, LDSMAXL

... D3-931
D3.50 LDSMAXAB, LDSMAXALB, LDSMAXB, LDSMAXLB D3-932
D3.51 LDSMAXAH, LDSMAXALH, LDSMAXH, LDSMAXLH .. D3-933
D3.52 LDSMINA, LDSMINAL, LDSMIN, LDSMINL, LDSMINAL, LDSMIN, LDSMINL .. D3-934
D3.53 LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB D3-935
D3.54 LDSMINAH, LDSMINALH, LDSMINH, LDSMINLH D3-936
D3.55 LDTR D3-937
D3.56 LDTRB D3-938
D3.57 LDTRH .. D3-939
D3.58 LDTRSB .. D3-940
D3.59 LDTRSH .. D3-941
D3.60 LDTRSW D3-942

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 20
Non-Confidential

D3.61 LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL, LDUMAXAL, LDUMAX, LDUMAXL
... D3-943

D3.62 LDUMAXAB, LDUMAXALB, LDUMAXB, LDUMAXLB .. D3-944
D3.63 LDUMAXAH, LDUMAXALH, LDUMAXH, LDUMAXLH D3-945
D3.64 LDUMINA, LDUMINAL, LDUMIN, LDUMINL, LDUMINAL, LDUMIN, LDUMINL D3-946
D3.65 LDUMINAB, LDUMINALB, LDUMINB, LDUMINLB D3-947
D3.66 LDUMINAH, LDUMINALH, LDUMINH, LDUMINLH .. D3-948
D3.67 LDUR D3-949
D3.68 LDURB .. D3-950
D3.69 LDURH .. D3-951
D3.70 LDURSB D3-952
D3.71 LDURSH D3-953
D3.72 LDURSW D3-954
D3.73 LDXP D3-955
D3.74 LDXR D3-956
D3.75 LDXRB .. D3-957
D3.76 LDXRH .. D3-958
D3.77 PRFM (immediate) .. D3-959
D3.78 PRFM (literal) .. D3-961
D3.79 PRFM (register) D3-963
D3.80 PRFUM (unscaled offset) .. D3-965
D3.81 STADD, STADDL, STADDL D3-967
D3.82 STADDB, STADDLB D3-968
D3.83 STADDH, STADDLH D3-969
D3.84 STCLR, STCLRL, STCLRL D3-970
D3.85 STCLRB, STCLRLB .. D3-971
D3.86 STCLRH, STCLRLH D3-972
D3.87 STEOR, STEORL, STEORL D3-973
D3.88 STEORB, STEORLB D3-974
D3.89 STEORH, STEORLH .. D3-975
D3.90 STLLR D3-976
D3.91 STLLRB D3-977
D3.92 STLLRH D3-978
D3.93 STLR D3-979
D3.94 STLRB D3-980
D3.95 STLRH D3-981
D3.96 STLXP D3-982
D3.97 STLXR D3-984
D3.98 STLXRB .. D3-986
D3.99 STLXRH .. D3-987
D3.100 STNP D3-988
D3.101 STP D3-989
D3.102 STR (immediate) D3-990
D3.103 STR (register) D3-991
D3.104 STRB (immediate) D3-992
D3.105 STRB (register) D3-993
D3.106 STRH (immediate) D3-994
D3.107 STRH (register) D3-995
D3.108 STSET, STSETL, STSETL .. D3-996
D3.109 STSETB, STSETLB .. D3-997

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 21
Non-Confidential

D3.110 STSETH, STSETLH .. D3-998
D3.111 STSMAX, STSMAXL, STSMAXL .. D3-999
D3.112 STSMAXB, STSMAXLB .. D3-1000
D3.113 STSMAXH, STSMAXLH D3-1001
D3.114 STSMIN, STSMINL, STSMINL D3-1002
D3.115 STSMINB, STSMINLB .. D3-1003
D3.116 STSMINH, STSMINLH .. D3-1004
D3.117 STTR D3-1005
D3.118 STTRB D3-1006
D3.119 STTRH .. D3-1007
D3.120 STUMAX, STUMAXL, STUMAXL D3-1008
D3.121 STUMAXB, STUMAXLB D3-1009
D3.122 STUMAXH, STUMAXLH D3-1010
D3.123 STUMIN, STUMINL, STUMINL D3-1011
D3.124 STUMINB, STUMINLB .. D3-1012
D3.125 STUMINH, STUMINLH D3-1013
D3.126 STUR D3-1014
D3.127 STURB .. D3-1015
D3.128 STURH .. D3-1016
D3.129 STXP D3-1017
D3.130 STXR D3-1019
D3.131 STXRB .. D3-1021
D3.132 STXRH .. D3-1022
D3.133 SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL D3-1023
D3.134 SWPAB, SWPALB, SWPB, SWPLB D3-1024
D3.135 SWPAH, SWPALH, SWPH, SWPLH D3-1025

Chapter D4 A64 Floating-point Instructions
D4.1 A64 floating-point instructions in alphabetical order D4-1029
D4.2 Register restrictions for A64 instructions D4-1032
D4.3 FABS (scalar) .. D4-1033
D4.4 FADD (scalar) D4-1034
D4.5 FCCMP D4-1035
D4.6 FCCMPE D4-1036
D4.7 FCMP .. D4-1038
D4.8 FCMPE D4-1040
D4.9 FCSEL D4-1042
D4.10 FCVT D4-1043
D4.11 FCVTAS (scalar) D4-1044
D4.12 FCVTAU (scalar) D4-1045
D4.13 FCVTMS (scalar) D4-1046
D4.14 FCVTMU (scalar) .. D4-1047
D4.15 FCVTNS (scalar) D4-1048
D4.16 FCVTNU (scalar) D4-1049
D4.17 FCVTPS (scalar) D4-1050
D4.18 FCVTPU (scalar) D4-1051
D4.19 FCVTZS (scalar, fixed-point) D4-1052
D4.20 FCVTZS (scalar, integer) D4-1054
D4.21 FCVTZU (scalar, fixed-point) D4-1055
D4.22 FCVTZU (scalar, integer) .. D4-1057

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 22
Non-Confidential

D4.23 FDIV (scalar) D4-1058
D4.24 FJCVTZS D4-1059
D4.25 FMADD D4-1060
D4.26 FMAX (scalar) D4-1061
D4.27 FMAXNM (scalar) D4-1062
D4.28 FMIN (scalar) D4-1063
D4.29 FMINNM (scalar) D4-1064
D4.30 FMOV (register) D4-1065
D4.31 FMOV (general) D4-1066
D4.32 FMOV (scalar, immediate) D4-1067
D4.33 FMSUB D4-1068
D4.34 FMUL (scalar) D4-1069
D4.35 FNEG (scalar) D4-1070
D4.36 FNMADD D4-1071
D4.37 FNMSUB D4-1072
D4.38 FNMUL (scalar) D4-1073
D4.39 FRINTA (scalar) D4-1074
D4.40 FRINTI (scalar) D4-1075
D4.41 FRINTM (scalar) D4-1076
D4.42 FRINTN (scalar) .. D4-1077
D4.43 FRINTP (scalar) .. D4-1078
D4.44 FRINTX (scalar) .. D4-1079
D4.45 FRINTZ (scalar) D4-1080
D4.46 FSQRT (scalar) D4-1081
D4.47 FSUB (scalar) D4-1082
D4.48 LDNP (SIMD and FP) D4-1083
D4.49 LDP (SIMD and FP) .. D4-1085
D4.50 LDR (immediate, SIMD and FP) D4-1087
D4.51 LDR (literal, SIMD and FP) D4-1089
D4.52 LDR (register, SIMD and FP) .. D4-1090
D4.53 LDUR (SIMD and FP) D4-1092
D4.54 SCVTF (scalar, fixed-point) D4-1093
D4.55 SCVTF (scalar, integer) D4-1095
D4.56 STNP (SIMD and FP) D4-1096
D4.57 STP (SIMD and FP) .. D4-1097
D4.58 STR (immediate, SIMD and FP) D4-1098
D4.59 STR (register, SIMD and FP) D4-1100
D4.60 STUR (SIMD and FP) D4-1102
D4.61 UCVTF (scalar, fixed-point) D4-1103
D4.62 UCVTF (scalar, integer) D4-1105

Chapter D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order D5-1110
D5.2 ABS (scalar) D5-1115
D5.3 ADD (scalar) .. D5-1116
D5.4 ADDP (scalar) .. D5-1117
D5.5 CMEQ (scalar, register) D5-1118
D5.6 CMEQ (scalar, zero) .. D5-1119
D5.7 CMGE (scalar, register) D5-1120
D5.8 CMGE (scalar, zero) .. D5-1121

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 23
Non-Confidential

D5.9 CMGT (scalar, register) D5-1122
D5.10 CMGT (scalar, zero) .. D5-1123
D5.11 CMHI (scalar, register) D5-1124
D5.12 CMHS (scalar, register) D5-1125
D5.13 CMLE (scalar, zero) D5-1126
D5.14 CMLT (scalar, zero) D5-1127
D5.15 CMTST (scalar) D5-1128
D5.16 DUP (scalar, element) D5-1129
D5.17 FABD (scalar) .. D5-1130
D5.18 FACGE (scalar) D5-1131
D5.19 FACGT (scalar) D5-1132
D5.20 FADDP (scalar) D5-1133
D5.21 FCMEQ (scalar, register) D5-1134
D5.22 FCMEQ (scalar, zero) D5-1135
D5.23 FCMGE (scalar, register) D5-1136
D5.24 FCMGE (scalar, zero) D5-1137
D5.25 FCMGT (scalar, register) D5-1138
D5.26 FCMGT (scalar, zero) .. D5-1139
D5.27 FCMLA (scalar, by element) .. D5-1140
D5.28 FCMLE (scalar, zero) D5-1142
D5.29 FCMLT (scalar, zero) D5-1143
D5.30 FCVTAS (scalar) D5-1144
D5.31 FCVTAU (scalar) D5-1145
D5.32 FCVTMS (scalar) D5-1146
D5.33 FCVTMU (scalar) D5-1147
D5.34 FCVTNS (scalar) D5-1148
D5.35 FCVTNU (scalar) D5-1149
D5.36 FCVTPS (scalar) D5-1150
D5.37 FCVTPU (scalar) D5-1151
D5.38 FCVTXN (scalar) D5-1152
D5.39 FCVTZS (scalar, fixed-point) D5-1153
D5.40 FCVTZS (scalar, integer) D5-1154
D5.41 FCVTZU (scalar, fixed-point) D5-1155
D5.42 FCVTZU (scalar, integer) D5-1156
D5.43 FMAXNMP (scalar) D5-1157
D5.44 FMAXP (scalar) D5-1158
D5.45 FMINNMP (scalar) D5-1159
D5.46 FMINP (scalar) .. D5-1160
D5.47 FMLA (scalar, by element) D5-1161
D5.48 FMLAL, (scalar, by element) D5-1163
D5.49 FMLS (scalar, by element) D5-1164
D5.50 FMLSL, (scalar, by element) D5-1166
D5.51 FMUL (scalar, by element) .. D5-1167
D5.52 FMULX (scalar, by element) .. D5-1169
D5.53 FMULX (scalar) D5-1171
D5.54 FRECPE (scalar) D5-1172
D5.55 FRECPS (scalar) D5-1173
D5.56 FRSQRTE (scalar) .. D5-1174
D5.57 FRSQRTS (scalar) .. D5-1175
D5.58 MOV (scalar) D5-1176

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 24
Non-Confidential

D5.59 NEG (scalar) D5-1177
D5.60 SCVTF (scalar, fixed-point) D5-1178
D5.61 SCVTF (scalar, integer) D5-1179
D5.62 SHL (scalar) D5-1180
D5.63 SLI (scalar) .. D5-1181
D5.64 SQABS (scalar) D5-1182
D5.65 SQADD (scalar) D5-1183
D5.66 SQDMLAL (scalar, by element) D5-1184
D5.67 SQDMLAL (scalar) .. D5-1185
D5.68 SQDMLSL (scalar, by element) D5-1186
D5.69 SQDMLSL (scalar) .. D5-1187
D5.70 SQDMULH (scalar, by element) .. D5-1188
D5.71 SQDMULH (scalar) D5-1189
D5.72 SQDMULL (scalar, by element) D5-1190
D5.73 SQDMULL (scalar) .. D5-1191
D5.74 SQNEG (scalar) D5-1192
D5.75 SQRDMLAH (scalar, by element) D5-1193
D5.76 SQRDMLAH (scalar) D5-1194
D5.77 SQRDMLSH (scalar, by element) D5-1195
D5.78 SQRDMLSH (scalar) D5-1196
D5.79 SQRDMULH (scalar, by element) D5-1197
D5.80 SQRDMULH (scalar) D5-1198
D5.81 SQRSHL (scalar) D5-1199
D5.82 SQRSHRN (scalar) D5-1200
D5.83 SQRSHRUN (scalar) D5-1201
D5.84 SQSHL (scalar, immediate) D5-1202
D5.85 SQSHL (scalar, register) D5-1203
D5.86 SQSHLU (scalar) D5-1204
D5.87 SQSHRN (scalar) .. D5-1205
D5.88 SQSHRUN (scalar) D5-1206
D5.89 SQSUB (scalar) D5-1207
D5.90 SQXTN (scalar) D5-1208
D5.91 SQXTUN (scalar) .. D5-1209
D5.92 SRI (scalar) D5-1210
D5.93 SRSHL (scalar) D5-1211
D5.94 SRSHR (scalar) D5-1212
D5.95 SRSRA (scalar) D5-1213
D5.96 SSHL (scalar) .. D5-1214
D5.97 SSHR (scalar) D5-1215
D5.98 SSRA (scalar) D5-1216
D5.99 SUB (scalar) .. D5-1217
D5.100 SUQADD (scalar) .. D5-1218
D5.101 UCVTF (scalar, fixed-point) D5-1219
D5.102 UCVTF (scalar, integer) D5-1220
D5.103 UQADD (scalar) .. D5-1221
D5.104 UQRSHL (scalar) .. D5-1222
D5.105 UQRSHRN (scalar) D5-1223
D5.106 UQSHL (scalar, immediate) D5-1224
D5.107 UQSHL (scalar, register) D5-1225
D5.108 UQSHRN (scalar) D5-1226

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 25
Non-Confidential

D5.109 UQSUB (scalar) D5-1227
D5.110 UQXTN (scalar) D5-1228
D5.111 URSHL (scalar) D5-1229
D5.112 URSHR (scalar) D5-1230
D5.113 URSRA (scalar) D5-1231
D5.114 USHL (scalar) D5-1232
D5.115 USHR (scalar) D5-1233
D5.116 USQADD (scalar) .. D5-1234
D5.117 USRA (scalar) D5-1235

Chapter D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order .. D6-1243
D6.2 ABS (vector) .. D6-1254
D6.3 ADD (vector) D6-1255
D6.4 ADDHN, ADDHN2 (vector) D6-1256
D6.5 ADDP (vector) D6-1257
D6.6 ADDV (vector) D6-1258
D6.7 AND (vector) D6-1259
D6.8 BIC (vector, immediate) D6-1260
D6.9 BIC (vector, register) D6-1261
D6.10 BIF (vector) D6-1262
D6.11 BIT (vector) D6-1263
D6.12 BSL (vector) .. D6-1264
D6.13 CLS (vector) .. D6-1265
D6.14 CLZ (vector) .. D6-1266
D6.15 CMEQ (vector, register) D6-1267
D6.16 CMEQ (vector, zero) D6-1268
D6.17 CMGE (vector, register) D6-1269
D6.18 CMGE (vector, zero) D6-1270
D6.19 CMGT (vector, register) D6-1271
D6.20 CMGT (vector, zero) D6-1272
D6.21 CMHI (vector, register) .. D6-1273
D6.22 CMHS (vector, register) D6-1274
D6.23 CMLE (vector, zero) .. D6-1275
D6.24 CMLT (vector, zero) D6-1276
D6.25 CMTST (vector) D6-1277
D6.26 CNT (vector) D6-1278
D6.27 DUP (vector, element) D6-1279
D6.28 DUP (vector, general) D6-1280
D6.29 EOR (vector) D6-1281
D6.30 EXT (vector) .. D6-1282
D6.31 FABD (vector) D6-1283
D6.32 FABS (vector) .. D6-1284
D6.33 FACGE (vector) D6-1285
D6.34 FACGT (vector) D6-1286
D6.35 FADD (vector) D6-1287
D6.36 FADDP (vector) D6-1288
D6.37 FCADD (vector) D6-1289
D6.38 FCMEQ (vector, register) .. D6-1290
D6.39 FCMEQ (vector, zero) D6-1291

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 26
Non-Confidential

D6.40 FCMGE (vector, register) .. D6-1292
D6.41 FCMGE (vector, zero) D6-1293
D6.42 FCMGT (vector, register) D6-1294
D6.43 FCMGT (vector, zero) D6-1295
D6.44 FCMLA (vector) D6-1296
D6.45 FCMLE (vector, zero) .. D6-1297
D6.46 FCMLT (vector, zero) D6-1298
D6.47 FCVTAS (vector) D6-1299
D6.48 FCVTAU (vector) D6-1300
D6.49 FCVTL, FCVTL2 (vector) .. D6-1301
D6.50 FCVTMS (vector) .. D6-1302
D6.51 FCVTMU (vector) .. D6-1303
D6.52 FCVTN, FCVTN2 (vector) D6-1304
D6.53 FCVTNS (vector) D6-1305
D6.54 FCVTNU (vector) D6-1306
D6.55 FCVTPS (vector) D6-1307
D6.56 FCVTPU (vector) D6-1308
D6.57 FCVTXN, FCVTXN2 (vector) .. D6-1309
D6.58 FCVTZS (vector, fixed-point) D6-1310
D6.59 FCVTZS (vector, integer) D6-1311
D6.60 FCVTZU (vector, fixed-point) D6-1312
D6.61 FCVTZU (vector, integer) .. D6-1313
D6.62 FDIV (vector) D6-1314
D6.63 FMAX (vector) D6-1315
D6.64 FMAXNM (vector) D6-1316
D6.65 FMAXNMP (vector) D6-1317
D6.66 FMAXNMV (vector) D6-1318
D6.67 FMAXP (vector) D6-1319
D6.68 FMAXV (vector) D6-1320
D6.69 FMIN (vector) .. D6-1321
D6.70 FMINNM (vector) D6-1322
D6.71 FMINNMP (vector) .. D6-1323
D6.72 FMINNMV (vector) .. D6-1324
D6.73 FMINP (vector) .. D6-1325
D6.74 FMINV (vector) .. D6-1326
D6.75 FMLA (vector, by element) .. D6-1327
D6.76 FMLA (vector) D6-1329
D6.77 FMLAL, (vector) D6-1330
D6.78 FMLS (vector, by element) .. D6-1331
D6.79 FMLS (vector) D6-1333
D6.80 FMLSL, (vector) D6-1334
D6.81 FMOV (vector, immediate) .. D6-1335
D6.82 FMUL (vector, by element) .. D6-1337
D6.83 FMUL (vector) D6-1339
D6.84 FMULX (vector, by element) D6-1340
D6.85 FMULX (vector) D6-1342
D6.86 FNEG (vector) D6-1343
D6.87 FRECPE (vector) D6-1344
D6.88 FRECPS (vector) D6-1345
D6.89 FRECPX (vector) D6-1346

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 27
Non-Confidential

D6.90 FRINTA (vector) .. D6-1347
D6.91 FRINTI (vector) D6-1348
D6.92 FRINTM (vector) D6-1349
D6.93 FRINTN (vector) .. D6-1350
D6.94 FRINTP (vector) .. D6-1351
D6.95 FRINTX (vector) .. D6-1352
D6.96 FRINTZ (vector) .. D6-1353
D6.97 FRSQRTE (vector) .. D6-1354
D6.98 FRSQRTS (vector) .. D6-1355
D6.99 FSQRT (vector) D6-1356
D6.100 FSUB (vector) D6-1357
D6.101 INS (vector, element) D6-1358
D6.102 INS (vector, general) D6-1359
D6.103 LD1 (vector, multiple structures) D6-1360
D6.104 LD1 (vector, single structure) .. D6-1363
D6.105 LD1R (vector) .. D6-1364
D6.106 LD2 (vector, multiple structures) D6-1365
D6.107 LD2 (vector, single structure) .. D6-1366
D6.108 LD2R (vector) .. D6-1367
D6.109 LD3 (vector, multiple structures) D6-1368
D6.110 LD3 (vector, single structure) .. D6-1369
D6.111 LD3R (vector) .. D6-1371
D6.112 LD4 (vector, multiple structures) D6-1372
D6.113 LD4 (vector, single structure) .. D6-1373
D6.114 LD4R (vector) .. D6-1375
D6.115 MLA (vector, by element) .. D6-1376
D6.116 MLA (vector) D6-1377
D6.117 MLS (vector, by element) .. D6-1378
D6.118 MLS (vector) D6-1379
D6.119 MOV (vector, element) .. D6-1380
D6.120 MOV (vector, from general) D6-1381
D6.121 MOV (vector) D6-1382
D6.122 MOV (vector, to general) D6-1383
D6.123 MOVI (vector) .. D6-1384
D6.124 MUL (vector, by element) .. D6-1386
D6.125 MUL (vector) D6-1387
D6.126 MVN (vector) D6-1388
D6.127 MVNI (vector) .. D6-1389
D6.128 NEG (vector) D6-1390
D6.129 NOT (vector) D6-1391
D6.130 ORN (vector) D6-1392
D6.131 ORR (vector, immediate) D6-1393
D6.132 ORR (vector, register) D6-1394
D6.133 PMUL (vector) D6-1395
D6.134 PMULL, PMULL2 (vector) D6-1396
D6.135 RADDHN, RADDHN2 (vector) .. D6-1397
D6.136 RBIT (vector) D6-1398
D6.137 REV16 (vector) D6-1399
D6.138 REV32 (vector) D6-1400
D6.139 REV64 (vector) D6-1401

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 28
Non-Confidential

D6.140 RSHRN, RSHRN2 (vector) D6-1402
D6.141 RSUBHN, RSUBHN2 (vector) D6-1403
D6.142 SABA (vector) D6-1404
D6.143 SABAL, SABAL2 (vector) .. D6-1405
D6.144 SABD (vector) D6-1406
D6.145 SABDL, SABDL2 (vector) D6-1407
D6.146 SADALP (vector) D6-1408
D6.147 SADDL, SADDL2 (vector) D6-1409
D6.148 SADDLP (vector) D6-1410
D6.149 SADDLV (vector) D6-1411
D6.150 SADDW, SADDW2 (vector) .. D6-1412
D6.151 SCVTF (vector, fixed-point) D6-1413
D6.152 SCVTF (vector, integer) D6-1414
D6.153 SDOT (vector, by element) D6-1415
D6.154 SDOT (vector) D6-1416
D6.155 SHADD (vector) D6-1417
D6.156 SHL (vector) .. D6-1418
D6.157 SHLL, SHLL2 (vector) D6-1419
D6.158 SHRN, SHRN2 (vector) D6-1420
D6.159 SHSUB (vector) D6-1421
D6.160 SLI (vector) D6-1422
D6.161 SMAX (vector) D6-1423
D6.162 SMAXP (vector) D6-1424
D6.163 SMAXV (vector) D6-1425
D6.164 SMIN (vector) .. D6-1426
D6.165 SMINP (vector) D6-1427
D6.166 SMINV (vector) D6-1428
D6.167 SMLAL, SMLAL2 (vector, by element) .. D6-1429
D6.168 SMLAL, SMLAL2 (vector) D6-1430
D6.169 SMLSL, SMLSL2 (vector, by element) .. D6-1431
D6.170 SMLSL, SMLSL2 (vector) D6-1432
D6.171 SMOV (vector) D6-1433
D6.172 SMULL, SMULL2 (vector, by element) D6-1434
D6.173 SMULL, SMULL2 (vector) D6-1435
D6.174 SQABS (vector) D6-1436
D6.175 SQADD (vector) .. D6-1437
D6.176 SQDMLAL, SQDMLAL2 (vector, by element) D6-1438
D6.177 SQDMLAL, SQDMLAL2 (vector) D6-1440
D6.178 SQDMLSL, SQDMLSL2 (vector, by element) D6-1441
D6.179 SQDMLSL, SQDMLSL2 (vector) D6-1443
D6.180 SQDMULH (vector, by element) D6-1444
D6.181 SQDMULH (vector) D6-1445
D6.182 SQDMULL, SQDMULL2 (vector, by element) D6-1446
D6.183 SQDMULL, SQDMULL2 (vector) .. D6-1448
D6.184 SQNEG (vector) .. D6-1449
D6.185 SQRDMLAH (vector, by element) D6-1450
D6.186 SQRDMLAH (vector) D6-1451
D6.187 SQRDMLSH (vector, by element) D6-1452
D6.188 SQRDMLSH (vector) D6-1453
D6.189 SQRDMULH (vector, by element) D6-1454

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 29
Non-Confidential

D6.190 SQRDMULH (vector) D6-1455
D6.191 SQRSHL (vector) .. D6-1456
D6.192 SQRSHRN, SQRSHRN2 (vector) D6-1457
D6.193 SQRSHRUN, SQRSHRUN2 (vector) .. D6-1458
D6.194 SQSHL (vector, immediate) D6-1459
D6.195 SQSHL (vector, register) D6-1460
D6.196 SQSHLU (vector) .. D6-1461
D6.197 SQSHRN, SQSHRN2 (vector) .. D6-1462
D6.198 SQSHRUN, SQSHRUN2 (vector) D6-1463
D6.199 SQSUB (vector) D6-1464
D6.200 SQXTN, SQXTN2 (vector) .. D6-1465
D6.201 SQXTUN, SQXTUN2 (vector) D6-1466
D6.202 SRHADD (vector) .. D6-1467
D6.203 SRI (vector) D6-1468
D6.204 SRSHL (vector) D6-1469
D6.205 SRSHR (vector) D6-1470
D6.206 SRSRA (vector) D6-1471
D6.207 SSHL (vector) D6-1472
D6.208 SSHLL, SSHLL2 (vector) .. D6-1473
D6.209 SSHR (vector) D6-1474
D6.210 SSRA (vector) D6-1475
D6.211 SSUBL, SSUBL2 (vector) D6-1476
D6.212 SSUBW, SSUBW2 (vector) D6-1477
D6.213 ST1 (vector, multiple structures) D6-1478
D6.214 ST1 (vector, single structure) .. D6-1481
D6.215 ST2 (vector, multiple structures) D6-1482
D6.216 ST2 (vector, single structure) .. D6-1483
D6.217 ST3 (vector, multiple structures) D6-1484
D6.218 ST3 (vector, single structure) .. D6-1485
D6.219 ST4 (vector, multiple structures) D6-1487
D6.220 ST4 (vector, single structure) .. D6-1488
D6.221 SUB (vector) D6-1490
D6.222 SUBHN, SUBHN2 (vector) .. D6-1491
D6.223 SUQADD (vector) D6-1492
D6.224 SXTL, SXTL2 (vector) D6-1493
D6.225 TBL (vector) D6-1494
D6.226 TBX (vector) .. D6-1495
D6.227 TRN1 (vector) D6-1496
D6.228 TRN2 (vector) D6-1497
D6.229 UABA (vector) D6-1498
D6.230 UABAL, UABAL2 (vector) D6-1499
D6.231 UABD (vector) D6-1500
D6.232 UABDL, UABDL2 (vector) D6-1501
D6.233 UADALP (vector) D6-1502
D6.234 UADDL, UADDL2 (vector) D6-1503
D6.235 UADDLP (vector) D6-1504
D6.236 UADDLV (vector) D6-1505
D6.237 UADDW, UADDW2 (vector) .. D6-1506
D6.238 UCVTF (vector, fixed-point) D6-1507
D6.239 UCVTF (vector, integer) .. D6-1508

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 30
Non-Confidential

D6.240 UDOT (vector, by element) D6-1509
D6.241 UDOT (vector) D6-1510
D6.242 UHADD (vector) D6-1511
D6.243 UHSUB (vector) D6-1512
D6.244 UMAX (vector) D6-1513
D6.245 UMAXP (vector) .. D6-1514
D6.246 UMAXV (vector) .. D6-1515
D6.247 UMIN (vector) .. D6-1516
D6.248 UMINP (vector) D6-1517
D6.249 UMINV (vector) D6-1518
D6.250 UMLAL, UMLAL2 (vector, by element) D6-1519
D6.251 UMLAL, UMLAL2 (vector) D6-1520
D6.252 UMLSL, UMLSL2 (vector, by element) D6-1521
D6.253 UMLSL, UMLSL2 (vector) D6-1522
D6.254 UMOV (vector) .. D6-1523
D6.255 UMULL, UMULL2 (vector, by element) D6-1524
D6.256 UMULL, UMULL2 (vector) D6-1525
D6.257 UQADD (vector) .. D6-1526
D6.258 UQRSHL (vector) .. D6-1527
D6.259 UQRSHRN, UQRSHRN2 (vector) D6-1528
D6.260 UQSHL (vector, immediate) .. D6-1529
D6.261 UQSHL (vector, register) D6-1530
D6.262 UQSHRN, UQSHRN2 (vector) .. D6-1531
D6.263 UQSUB (vector) .. D6-1533
D6.264 UQXTN, UQXTN2 (vector) .. D6-1534
D6.265 URECPE (vector) .. D6-1535
D6.266 URHADD (vector) D6-1536
D6.267 URSHL (vector) D6-1537
D6.268 URSHR (vector) .. D6-1538
D6.269 URSQRTE (vector) D6-1539
D6.270 URSRA (vector) D6-1540
D6.271 USHL (vector) D6-1541
D6.272 USHLL, USHLL2 (vector) .. D6-1542
D6.273 USHR (vector) D6-1543
D6.274 USQADD (vector) D6-1544
D6.275 USRA (vector) D6-1545
D6.276 USUBL, USUBL2 (vector) D6-1546
D6.277 USUBW, USUBW2 (vector) .. D6-1547
D6.278 UXTL, UXTL2 (vector) D6-1548
D6.279 UZP1 (vector) .. D6-1549
D6.280 UZP2 (vector) .. D6-1550
D6.281 XTN, XTN2 (vector) D6-1551
D6.282 ZIP1 (vector) D6-1552
D6.283 ZIP2 (vector) D6-1553

Chapter D7 A64 Cryptographic Algorithms
D7.1 A64 Cryptographic instructions D7-1556

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 31
Non-Confidential

List of Figures
Arm® Instruction Set Reference Guide

Figure A2-1 Organization of general-purpose registers and Program Status Registers A2-58
Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state ... B1-89
Figure B1-2 Extension register bank for Advanced SIMD in AArch64 state ... B1-91
Figure B2-1 Extension register bank for floating-point in AArch32 state ... B2-115
Figure B2-2 Extension register bank for floating-point in AArch64 state ... B2-117
Figure C2-1 ASR #3 .. C2-165
Figure C2-2 LSR #3 .. C2-166
Figure C2-3 LSL #3 ... C2-166
Figure C2-4 ROR #3 ... C2-166
Figure C2-5 RRX .. C2-167
Figure C3-1 De-interleaving an array of 3-element structures .. C3-449
Figure C3-2 Operation of doubleword VEXT for imm = 3 ... C3-489
Figure C3-3 Example of operation of VPADAL (in this case for data type S16) C3-537
Figure C3-4 Example of operation of VPADD (in this case, for data type I16) C3-538
Figure C3-5 Example of operation of doubleword VPADDL (in this case, for data type S16) C3-539
Figure C3-6 Operation of quadword VSHL.I64 Qd, Qm, #1 ... C3-572
Figure C3-7 Operation of quadword VSLI.64 Qd, Qm, #1 .. C3-577
Figure C3-8 Operation of doubleword VSRI.64 Dd, Dm, #2 ... C3-579
Figure C3-9 Operation of doubleword VTRN.8 ... C3-592
Figure C3-10 Operation of doubleword VTRN.32 ... C3-592

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 33
Non-Confidential

List of Tables
Arm® Instruction Set Reference Guide

Table A2-1 AArch32 processor modes .. A2-55
Table A2-2 Predeclared core registers in AArch32 state ... A2-61
Table A2-3 Predeclared extension registers in AArch32 state .. A2-62
Table A2-4 A32 instruction groups .. A2-68
Table A3-1 Predeclared core registers in AArch64 state ... A3-76
Table A3-2 Predeclared extension registers in AArch64 state .. A3-77
Table A3-3 A64 instruction groups .. A3-83
Table B1-1 Differences in syntax and mnemonics between A32/T32 and A64 Advanced SIMD instructions

... B1-95
Table B1-2 Advanced SIMD data types ... B1-100
Table B1-3 Advanced SIMD saturation ranges ... B1-104
Table B2-1 Differences in syntax and mnemonics between A32/T32 and A64 floating-point instructions B2-

120
Table C1-1 Condition code suffixes ... C1-142
Table C1-2 Condition code suffixes and related flags ... C1-143
Table C1-3 Condition codes .. C1-144
Table C1-4 Conditional branches only ... C1-147
Table C1-5 All instructions conditional ... C1-148
Table C2-1 Summary of instructions ... C2-156
Table C2-2 PC-relative offsets ... C2-174
Table C2-3 Register-relative offsets .. C2-176
Table C2-4 B instruction availability and range ... C2-182
Table C2-5 BL instruction availability and range ... C2-189

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 35
Non-Confidential

Table C2-6 BLX instruction availability and range ... C2-190
Table C2-7 BX instruction availability and range ... C2-192
Table C2-8 BXJ instruction availability and range ... C2-194
Table C2-9 Permitted instructions inside an IT block .. C2-223
Table C2-10 Offsets and architectures, LDR, word, halfword, and byte .. C2-232
Table C2-11 PC-relative offsets ... C2-234
Table C2-12 Options and architectures, LDR (register offsets) ... C2-237
Table C2-13 Register-relative offsets .. C2-238
Table C2-14 Offsets and architectures, LDR (User mode) .. C2-240
Table C2-15 Offsets and architectures, STR, word, halfword, and byte .. C2-359
Table C2-16 Options and architectures, STR (register offsets) ... C2-361
Table C2-17 Offsets and architectures, STR (User mode) .. C2-364
Table C3-1 Summary of Advanced SIMD instructions .. C3-445
Table C3-2 Summary of shared Advanced SIMD and floating-point instructions C3-448
Table C3-3 Patterns for immediate value in VBIC (immediate) ... C3-462
Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane) C3-

497
Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes) C3-

499
Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures) C3-501
Table C3-7 Available immediate values in VMOV (immediate) ... C3-517
Table C3-8 Available immediate values in VMVN (immediate) ... C3-531
Table C3-9 Patterns for immediate value in VORR (immediate) ... C3-536
Table C3-10 Available immediate ranges in VQRSHRN and VQRSHRUN (by immediate) C3-552
Table C3-11 Available immediate ranges in VQSHL and VQSHLU (by immediate) C3-554
Table C3-12 Available immediate ranges in VQSHRN and VQSHRUN (by immediate) C3-555
Table C3-13 Results for out-of-range inputs in VRECPE .. C3-558
Table C3-14 Results for out-of-range inputs in VRECPS .. C3-559
Table C3-15 Available immediate ranges in VRSHR (by immediate) .. C3-563
Table C3-16 Available immediate ranges in VRSHRN (by immediate) ... C3-564
Table C3-17 Results for out-of-range inputs in VRSQRTE .. C3-566
Table C3-18 Results for out-of-range inputs in VRSQRTS .. C3-567
Table C3-19 Available immediate ranges in VRSRA (by immediate) .. C3-568
Table C3-20 Available immediate ranges in VSHL (by immediate) ... C3-572
Table C3-21 Available immediate ranges in VSHLL (by immediate) ... C3-574
Table C3-22 Available immediate ranges in VSHR (by immediate) .. C3-575
Table C3-23 Available immediate ranges in VSHRN (by immediate) .. C3-576
Table C3-24 Available immediate ranges in VSRA (by immediate) ... C3-578
Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures) C3-581
Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane) C3-

583
Table C3-27 Operation of doubleword VUZP.8 .. C3-596
Table C3-28 Operation of quadword VUZP.32 .. C3-596
Table C3-29 Operation of doubleword VZIP.8 ... C3-597
Table C3-30 Operation of quadword VZIP.32 .. C3-597
Table C4-1 Summary of floating-point instructions .. C4-601
Table C5-1 Summary of A32/T32 cryptographic instructions .. C5-644
Table D1-1 Condition code suffixes ... D1-654
Table D1-2 Condition code suffixes and related flags ... D1-655
Table D2-1 Summary of A64 general instructions ... D2-662

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 36
Non-Confidential

Table D2-2 ADD (64-bit general registers) specifier combinations .. D2-673
Table D2-3 ADDS (64-bit general registers) specifier combinations ... D2-678
Table D2-4 SYS parameter values corresponding to AT operations ... D2-690
Table D2-5 CMN (64-bit general registers) specifier combinations ... D2-724
Table D2-6 CMP (64-bit general registers) specifier combinations ... D2-728
Table D2-7 SYS parameter values corresponding to DC operations .. D2-743
Table D2-8 SYS parameter values corresponding to IC operations .. D2-763
Table D2-9 SUB (64-bit general registers) specifier combinations .. D2-835
Table D2-10 SUBS (64-bit general registers) specifier combinations ... D2-842
Table D2-11 SYS parameter values corresponding to TLBI operations .. D2-853
Table D3-1 Summary of A64 data transfer instructions ... D3-877
Table D4-1 Summary of A64 floating-point instructions .. D4-1029
Table D5-1 Summary of A64 SIMD scalar instructions .. D5-1110
Table D5-2 DUP (Scalar) specifier combinations ... D5-1129
Table D5-3 FCMLA (Scalar) specifier combinations .. D5-1141
Table D5-4 FCVTZS (Scalar) specifier combinations .. D5-1153
Table D5-5 FCVTZU (Scalar) specifier combinations .. D5-1155
Table D5-6 FMLA (Scalar, single-precision and double-precision) specifier combinations D5-1162
Table D5-7 FMLS (Scalar, single-precision and double-precision) specifier combinations D5-1165
Table D5-8 FMUL (Scalar, single-precision and double-precision) specifier combinations D5-1168
Table D5-9 FMULX (Scalar, single-precision and double-precision) specifier combinations D5-1170
Table D5-10 MOV (Scalar) specifier combinations .. D5-1176
Table D5-11 SCVTF (Scalar) specifier combinations .. D5-1178
Table D5-12 SQDMLAL (Scalar) specifier combinations ... D5-1184
Table D5-13 SQDMLAL (Scalar) specifier combinations ... D5-1185
Table D5-14 SQDMLSL (Scalar) specifier combinations ... D5-1186
Table D5-15 SQDMLSL (Scalar) specifier combinations ... D5-1187
Table D5-16 SQDMULH (Scalar) specifier combinations .. D5-1188
Table D5-17 SQDMULL (Scalar) specifier combinations ... D5-1190
Table D5-18 SQDMULL (Scalar) specifier combinations ... D5-1191
Table D5-19 SQRDMLAH (Scalar) specifier combinations .. D5-1193
Table D5-20 SQRDMLSH (Scalar) specifier combinations .. D5-1195
Table D5-21 SQRDMULH (Scalar) specifier combinations .. D5-1197
Table D5-22 SQRSHRN (Scalar) specifier combinations .. D5-1200
Table D5-23 SQRSHRUN (Scalar) specifier combinations ... D5-1201
Table D5-24 SQSHL (Scalar) specifier combinations .. D5-1202
Table D5-25 SQSHLU (Scalar) specifier combinations ... D5-1204
Table D5-26 SQSHRN (Scalar) specifier combinations .. D5-1205
Table D5-27 SQSHRUN (Scalar) specifier combinations .. D5-1206
Table D5-28 SQXTN (Scalar) specifier combinations ... D5-1208
Table D5-29 SQXTUN (Scalar) specifier combinations ... D5-1209
Table D5-30 UCVTF (Scalar) specifier combinations .. D5-1219
Table D5-31 UQRSHRN (Scalar) specifier combinations .. D5-1223
Table D5-32 UQSHL (Scalar) specifier combinations ... D5-1224
Table D5-33 UQSHRN (Scalar) specifier combinations .. D5-1226
Table D5-34 UQXTN (Scalar) specifier combinations ... D5-1228
Table D6-1 Summary of A64 SIMD Vector instructions ... D6-1243
Table D6-2 ADDHN, ADDHN2 (Vector) specifier combinations .. D6-1256
Table D6-3 ADDV (Vector) specifier combinations .. D6-1258
Table D6-4 DUP (Vector) specifier combinations .. D6-1279

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 37
Non-Confidential

Table D6-5 DUP (Vector) specifier combinations .. D6-1280
Table D6-6 EXT (Vector) specifier combinations ... D6-1282
Table D6-7 FCVTL, FCVTL2 (Vector) specifier combinations ... D6-1301
Table D6-8 FCVTN, FCVTN2 (Vector) specifier combinations .. D6-1304
Table D6-9 FCVTXN{2} (Vector) specifier combinations ... D6-1309
Table D6-10 FCVTZS (Vector) specifier combinations .. D6-1310
Table D6-11 FCVTZU (Vector) specifier combinations .. D6-1312
Table D6-12 FMLA (Vector, single-precision and double-precision) specifier combinations D6-1328
Table D6-13 FMLS (Vector, single-precision and double-precision) specifier combinations D6-1332
Table D6-14 FMUL (Vector, single-precision and double-precision) specifier combinations D6-1338
Table D6-15 FMULX (Vector, single-precision and double-precision) specifier combinations D6-1341
Table D6-16 INS (Vector) specifier combinations .. D6-1358
Table D6-17 INS (Vector) specifier combinations .. D6-1359
Table D6-18 LD1 (One register, immediate offset) specifier combinations ... D6-1361
Table D6-19 LD1 (Two registers, immediate offset) specifier combinations .. D6-1361
Table D6-20 LD1 (Three registers, immediate offset) specifier combinations D6-1361
Table D6-21 LD1 (Four registers, immediate offset) specifier combinations D6-1362
Table D6-22 LD1R (Immediate offset) specifier combinations .. D6-1364
Table D6-23 LD2R (Immediate offset) specifier combinations .. D6-1367
Table D6-24 LD3R (Immediate offset) specifier combinations .. D6-1371
Table D6-25 LD4R (Immediate offset) specifier combinations .. D6-1375
Table D6-26 MLA (Vector) specifier combinations .. D6-1376
Table D6-27 MLS (Vector) specifier combinations .. D6-1378
Table D6-28 MOV (Vector) specifier combinations .. D6-1380
Table D6-29 MOV (Vector) specifier combinations .. D6-1381
Table D6-30 MUL (Vector) specifier combinations .. D6-1386
Table D6-31 PMULL, PMULL2 (Vector) specifier combinations .. D6-1396
Table D6-32 RADDHN, RADDHN2 (Vector) specifier combinations ... D6-1397
Table D6-33 RSHRN, RSHRN2 (Vector) specifier combinations .. D6-1402
Table D6-34 RSUBHN, RSUBHN2 (Vector) specifier combinations ... D6-1403
Table D6-35 SABAL, SABAL2 (Vector) specifier combinations ... D6-1405
Table D6-36 SABDL, SABDL2 (Vector) specifier combinations .. D6-1407
Table D6-37 SADALP (Vector) specifier combinations .. D6-1408
Table D6-38 SADDL, SADDL2 (Vector) specifier combinations .. D6-1409
Table D6-39 SADDLP (Vector) specifier combinations ... D6-1410
Table D6-40 SADDLV (Vector) specifier combinations .. D6-1411
Table D6-41 SADDW, SADDW2 (Vector) specifier combinations ... D6-1412
Table D6-42 SCVTF (Vector) specifier combinations .. D6-1413
Table D6-43 SHL (Vector) specifier combinations ... D6-1418
Table D6-44 SHLL, SHLL2 (Vector) specifier combinations .. D6-1419
Table D6-45 SHRN, SHRN2 (Vector) specifier combinations ... D6-1420
Table D6-46 SLI (Vector) specifier combinations .. D6-1422
Table D6-47 SMAXV (Vector) specifier combinations ... D6-1425
Table D6-48 SMINV (Vector) specifier combinations .. D6-1428
Table D6-49 SMLAL, SMLAL2 (Vector) specifier combinations .. D6-1429
Table D6-50 SMLAL, SMLAL2 (Vector) specifier combinations .. D6-1430
Table D6-51 SMLSL, SMLSL2 (Vector) specifier combinations .. D6-1431
Table D6-52 SMLSL, SMLSL2 (Vector) specifier combinations .. D6-1432
Table D6-53 SMOV (32-bit) specifier combinations .. D6-1433
Table D6-54 SMOV (64-bit) specifier combinations .. D6-1433

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 38
Non-Confidential

Table D6-55 SMULL, SMULL2 (Vector) specifier combinations .. D6-1434
Table D6-56 SMULL, SMULL2 (Vector) specifier combinations .. D6-1435
Table D6-57 SQDMLAL{2} (Vector) specifier combinations .. D6-1438
Table D6-58 SQDMLAL{2} (Vector) specifier combinations .. D6-1440
Table D6-59 SQDMLSL{2} (Vector) specifier combinations .. D6-1441
Table D6-60 SQDMLSL{2} (Vector) specifier combinations .. D6-1443
Table D6-61 SQDMULH (Vector) specifier combinations .. D6-1444
Table D6-62 SQDMULL{2} (Vector) specifier combinations .. D6-1446
Table D6-63 SQDMULL{2} (Vector) specifier combinations .. D6-1448
Table D6-64 SQRDMLAH (Vector) specifier combinations ... D6-1450
Table D6-65 SQRDMLSH (Vector) specifier combinations ... D6-1452
Table D6-66 SQRDMULH (Vector) specifier combinations ... D6-1454
Table D6-67 SQRSHRN{2} (Vector) specifier combinations ... D6-1457
Table D6-68 SQRSHRUN{2} (Vector) specifier combinations ... D6-1458
Table D6-69 SQSHL (Vector) specifier combinations .. D6-1459
Table D6-70 SQSHLU (Vector) specifier combinations ... D6-1461
Table D6-71 SQSHRN{2} (Vector) specifier combinations .. D6-1462
Table D6-72 SQSHRUN{2} (Vector) specifier combinations ... D6-1463
Table D6-73 SQXTN{2} (Vector) specifier combinations ... D6-1465
Table D6-74 SQXTUN{2} (Vector) specifier combinations .. D6-1466
Table D6-75 SRI (Vector) specifier combinations .. D6-1468
Table D6-76 SRSHR (Vector) specifier combinations ... D6-1470
Table D6-77 SRSRA (Vector) specifier combinations ... D6-1471
Table D6-78 SSHLL, SSHLL2 (Vector) specifier combinations ... D6-1473
Table D6-79 SSHR (Vector) specifier combinations .. D6-1474
Table D6-80 SSRA (Vector) specifier combinations .. D6-1475
Table D6-81 SSUBL, SSUBL2 (Vector) specifier combinations .. D6-1476
Table D6-82 SSUBW, SSUBW2 (Vector) specifier combinations .. D6-1477
Table D6-83 ST1 (One register, immediate offset) specifier combinations ... D6-1479
Table D6-84 ST1 (Two registers, immediate offset) specifier combinations .. D6-1479
Table D6-85 ST1 (Three registers, immediate offset) specifier combinations D6-1479
Table D6-86 ST1 (Four registers, immediate offset) specifier combinations D6-1480
Table D6-87 SUBHN, SUBHN2 (Vector) specifier combinations ... D6-1491
Table D6-88 SXTL, SXTL2 (Vector) specifier combinations .. D6-1493
Table D6-89 UABAL, UABAL2 (Vector) specifier combinations .. D6-1499
Table D6-90 UABDL, UABDL2 (Vector) specifier combinations .. D6-1501
Table D6-91 UADALP (Vector) specifier combinations ... D6-1502
Table D6-92 UADDL, UADDL2 (Vector) specifier combinations ... D6-1503
Table D6-93 UADDLP (Vector) specifier combinations ... D6-1504
Table D6-94 UADDLV (Vector) specifier combinations ... D6-1505
Table D6-95 UADDW, UADDW2 (Vector) specifier combinations ... D6-1506
Table D6-96 UCVTF (Vector) specifier combinations .. D6-1507
Table D6-97 UMAXV (Vector) specifier combinations ... D6-1515
Table D6-98 UMINV (Vector) specifier combinations .. D6-1518
Table D6-99 UMLAL, UMLAL2 (Vector) specifier combinations .. D6-1519
Table D6-100 UMLAL, UMLAL2 (Vector) specifier combinations .. D6-1520
Table D6-101 UMLSL, UMLSL2 (Vector) specifier combinations .. D6-1521
Table D6-102 UMLSL, UMLSL2 (Vector) specifier combinations .. D6-1522
Table D6-103 UMOV (32-bit) specifier combinations .. D6-1523
Table D6-104 UMULL, UMULL2 (Vector) specifier combinations ... D6-1524

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 39
Non-Confidential

Table D6-105 UMULL, UMULL2 (Vector) specifier combinations ... D6-1525
Table D6-106 UQRSHRN{2} (Vector) specifier combinations ... D6-1528
Table D6-107 UQSHL (Vector) specifier combinations ... D6-1529
Table D6-108 UQSHRN{2} (Vector) specifier combinations .. D6-1531
Table D6-109 UQXTN{2} (Vector) specifier combinations ... D6-1534
Table D6-110 URSHR (Vector) specifier combinations ... D6-1538
Table D6-111 URSRA (Vector) specifier combinations ... D6-1540
Table D6-112 USHLL, USHLL2 (Vector) specifier combinations ... D6-1542
Table D6-113 USHR (Vector) specifier combinations .. D6-1543
Table D6-114 USRA (Vector) specifier combinations .. D6-1545
Table D6-115 USUBL, USUBL2 (Vector) specifier combinations .. D6-1546
Table D6-116 USUBW, USUBW2 (Vector) specifier combinations ... D6-1547
Table D6-117 UXTL, UXTL2 (Vector) specifier combinations ... D6-1548
Table D6-118 XTN, XTN2 (Vector) specifier combinations ... D6-1551
Table D7-1 Summary of A64 cryptographic instructions ... D7-1556

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 40
Non-Confidential

Preface

This preface introduces the Arm® Instruction Set Reference Guide.

It contains the following:
• About this book on page 42.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 41
Non-Confidential

 About this book
Arm® Instruction Set Reference Guide. This document contains an overview of the Arm architecture and
information on A32, T32, and A64 instruction sets. For assembler-specific features, such as additional
pseudo-instructions, see the documentation for your assembler.

 Using this book

This book is organized into the following chapters:

Part A Instruction Set Overview

Chapter A1 Overview of the Arm® Architecture
Gives an overview of the Arm architecture.

Chapter A2 Overview of AArch32 state
Gives an overview of the AArch32 state of Armv8.

Chapter A3 Overview of AArch64 state
Gives an overview of the AArch64 state of Armv8.

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
Describes Advanced SIMD assembly language programming.

Chapter B2 Floating-point Programming
Describes floating-point assembly language programming.

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
Describes condition codes and conditional execution of A32 and T32 code.

Chapter C2 A32 and T32 Instructions
Describes the A32 and T32 instructions supported in AArch32 state.

Chapter C3 Advanced SIMD Instructions (32-bit)
Describes Advanced SIMD assembly language instructions.

Chapter C4 Floating-point Instructions (32-bit)
Describes floating-point assembly language instructions.

Chapter C5 A32/T32 Cryptographic Algorithms
Lists the algorithms that A32 and T32 SIMD instructions support.

Part D A64 Instruction Set Reference

Chapter D1 Condition Codes
Describes condition codes and conditional execution of A64 code.

Chapter D2 A64 General Instructions
Describes the A64 general instructions.

Chapter D3 A64 Data Transfer Instructions
Describes the A64 data transfer instructions.

Chapter D4 A64 Floating-point Instructions
Describes the A64 floating-point instructions.

Chapter D5 A64 SIMD Scalar Instructions
Describes the A64 SIMD scalar instructions.

 Preface
 Using this book

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 42
Non-Confidential

Chapter D6 A64 SIMD Vector Instructions
Describes the A64 SIMD vector instructions.

Chapter D7 A64 Cryptographic Algorithms
Lists the algorithms that A64 SIMD instructions support.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

 Preface
 Glossary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 43
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html
mailto:errata@arm.com

• The title Arm Instruction Set Reference Guide.
• The number 100076_0100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 Other information

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 44
Non-Confidential

https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Part A
Instruction Set Overview

Chapter A1
Overview of the Arm® Architecture

Gives an overview of the Arm architecture.

It contains the following sections:
• A1.1 About the Arm® architecture on page A1-48.
• A1.2 Differences between the A64, A32, and T32 instruction sets on page A1-49.
• A1.3 Changing between AArch64 and AArch32 states on page A1-50.
• A1.4 Advanced SIMD on page A1-51.
• A1.5 Floating-point hardware on page A1-52.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-47
Non-Confidential

A1.1 About the Arm® architecture
The Arm architecture is a load-store architecture. The addressing range depends on whether you are
using the 32-bit or the 64-bit architecture.

Arm processors are typical of RISC processors in that only load and store instructions can access
memory. Data processing instructions operate on register contents only.

Armv8 is the next major architectural update after Armv7. It introduces a 64-bit architecture, but
maintains compatibility with existing 32-bit architectures. It uses two execution states:

AArch32

In AArch32 state, code has access to 32-bit general purpose registers.

Code executing in AArch32 state can only use the A32 and T32 instruction sets. This state is
broadly compatible with the Armv7‑A architecture.

AArch64

In AArch64 state, code has access to 64-bit general purpose registers. The AArch64 state exists
only in the Armv8 architecture.

Code executing in AArch64 state can only use the A64 instruction set.

Related information
Arm Architecture Reference Manual

A1 Overview of the Arm® Architecture
A1.1 About the Arm® architecture

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-48
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A1.2 Differences between the A64, A32, and T32 instruction sets
A64 instructions are 32 bits wide.

Armv8 introduces a new set of 32-bit instructions called A64, with new encodings and assembly
language. A64 is only available when the processor is in AArch64 state. It provides similar functionality
to the A32 and T32 instruction sets, but gives access to a larger virtual address space, and has some other
changes, including reduced conditionality.

Armv8 also defines an optional Crypto Extension. This extension provides cryptographic and hash
instructions in the A64 instruction set.

Related reference
A3.12 A64 instruction set overview on page A3-83

A1 Overview of the Arm® Architecture
A1.2 Differences between the A64, A32, and T32 instruction sets

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-49
Non-Confidential

A1.3 Changing between AArch64 and AArch32 states
The processor must be in the correct execution state for the instructions it is executing.

A processor that is executing A64 instructions is operating in AArch64 state. In this state, the
instructions can access both the 64-bit and 32-bit registers.

A processor that is executing A32 or T32 instructions is operating in AArch32 state. In this state, the
instructions can only access the 32-bit registers, and not the 64-bit registers.

A processor based on the Armv8 architecture can run applications built for AArch32 and AArch64 states
but a change between AArch32 and AArch64 states can only happen at exception boundaries.

Arm Compiler toolchain builds images for either the AArch32 state or AArch64 state. Therefore, an
image built with Arm Compiler toolchain can either contain only A32 and T32 instructions or only A64
instructions.

A processor can only execute instructions from the instruction set that matches its current execution
state. A processor in AArch32 state cannot execute A64 instructions, and a processor in AArch64 state
cannot execute A32 or T32 instructions. You must ensure that the processor never receives instructions
from the wrong instruction set for the current execution state.

Related reference
C2.20 BLX, BLXNS on page C2-190
C2.21 BX, BXNS on page C2-192

A1 Overview of the Arm® Architecture
A1.3 Changing between AArch64 and AArch32 states

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-50
Non-Confidential

A1.4 Advanced SIMD
Advanced SIMD is a 64-bit and 128-bit hybrid Single Instruction Multiple Data (SIMD) technology
targeted at advanced media and signal processing applications and embedded processors.

Advanced SIMD is implemented as part of an Arm-based processor, but has its own execution pipelines
and a register bank that is distinct from the general-purpose register bank.

Advanced SIMD instructions are available in both A32 and A64. The A64 Advanced SIMD instructions
are based on those in A32. The main differences are the following:
• Different instruction mnemonics and syntax.
• Thirty-two 128-bit vector registers, increased from sixteen in A32.
• A different register packing scheme:

— In A64, smaller registers occupy the low order bits of larger registers. For example, S31 maps to
bits[31:0] of D31.

— In A32, smaller registers are packed into larger registers. For example, S31 maps to bits[63:32] of
D15.

• A64 Advanced SIMD instructions support both single-precision and double-precision floating-point
data types and arithmetic.

• A32 Advanced SIMD instructions support only single-precision floating-point data types.

Related reference
Chapter B1 Advanced SIMD Programming on page B1-87

A1 Overview of the Arm® Architecture
A1.4 Advanced SIMD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-51
Non-Confidential

A1.5 Floating-point hardware
There are several floating-point architecture versions and variants.

The floating-point hardware, together with associated support code, provides single-precision and
double-precision floating-point arithmetic, as defined by IEEE Std. 754‑2008 IEEE Standard for
Floating-Point Arithmetic. This document is referred to as the IEEE 754 standard.

The floating-point hardware uses a register bank that is distinct from the Arm core register bank.

 Note

The floating-point register bank is shared with the SIMD register bank.

In AArch32 state, floating-point support is largely unchanged from VFPv4, apart from the addition of a
few instructions for compliance with the IEEE 754 standard.

The floating-point architecture in AArch64 state is also based on VFPv4. The main differences are the
following:
• In AArch64 state, the number of 128-bit SIMD and floating-point registers increases from sixteen to

thirty-two.
• Single-precision registers are no longer packed into double-precision registers, so register Sx is

Dx[31:0].
• The presence of floating-point hardware is mandated, so software floating-point linkage is not

supported.
• Earlier versions of the floating-point architecture, for instance VFPv2, VFPv3, and VFPv4, are not

supported in AArch64 state.
• VFP vector mode is not supported in either AArch32 or AArch64 state. Use Advanced SIMD

instructions for vector floating-point.
• Some new instructions have been added, including:

— Direct conversion between half-precision and double-precision.
— Load and store pair, replacing load and store multiple.
— Fused multiply-add and multiply-subtract.
— Instructions for IEEE 754-2008 compatibility.

Related concepts
B2.5 Views of the floating-point extension register bank in AArch64 state on page B2-119

A1 Overview of the Arm® Architecture
A1.5 Floating-point hardware

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A1-52
Non-Confidential

Chapter A2
Overview of AArch32 state

Gives an overview of the AArch32 state of Armv8.

It contains the following sections:
• A2.1 Changing between A32 and T32 instruction set states on page A2-54.
• A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55.
• A2.3 Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M on page A2-56.
• A2.4 Registers in AArch32 state on page A2-57.
• A2.5 General-purpose registers in AArch32 state on page A2-59.
• A2.6 Register accesses in AArch32 state on page A2-60.
• A2.7 Predeclared core register names in AArch32 state on page A2-61.
• A2.8 Predeclared extension register names in AArch32 state on page A2-62.
• A2.9 Program Counter in AArch32 state on page A2-63.
• A2.10 The Q flag in AArch32 state on page A2-64.
• A2.11 Application Program Status Register on page A2-65.
• A2.12 Current Program Status Register in AArch32 state on page A2-66.
• A2.13 Saved Program Status Registers in AArch32 state on page A2-67.
• A2.14 A32 and T32 instruction set overview on page A2-68.
• A2.15 Access to the inline barrel shifter in AArch32 state on page A2-69.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-53
Non-Confidential

A2.1 Changing between A32 and T32 instruction set states
A processor that is executing A32 instructions is operating in A32 instruction set state. A processor that
is executing T32 instructions is operating in T32 instruction set state. For brevity, this document refers to
them as the A32 state and T32 state respectively.

A processor in A32 state cannot execute T32 instructions, and a processor in T32 state cannot execute
A32 instructions. You must ensure that the processor never receives instructions of the wrong instruction
set for the current state.

The initial state after reset depends on the processor being used and its configuration.

To direct armasm to generate A32 or T32 instruction encodings, you must set the assembler mode using
an ARM or THUMB directive. Assembly code using CODE32 and CODE16 directives can still be assembled,
but Arm recommends you use the ARM and THUMB directives for new code.

These directives do not change the instruction set state of the processor. To do this, you must use an
appropriate instruction, for example BX or BLX to change between A32 and T32 states when performing a
branch.

Related reference
C2.20 BLX, BLXNS on page C2-190
C2.21 BX, BXNS on page C2-192

A2 Overview of AArch32 state
A2.1 Changing between A32 and T32 instruction set states

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-54
Non-Confidential

A2.2 Processor modes, and privileged and unprivileged software execution
The Arm architecture supports different levels of execution privilege. The privilege level depends on the
processor mode.

 Note

Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A2-1 AArch32 processor modes

Processor mode Mode number

User 0b10000

FIQ 0b10001

IRQ 0b10010

Supervisor 0b10011

Monitor 0b10110

Abort 0b10111

Hyp 0b11010

Undefined 0b11011

System 0b11111

User mode is an unprivileged mode, and has restricted access to system resources. All other modes have
full access to system resources in the current security state, can change mode freely, and execute
software as privileged.

Applications that require task protection usually execute in User mode. Some embedded applications
might run entirely in any mode other than User mode. An application that requires full access to system
resources usually executes in System mode.

Modes other than User mode are entered to service exceptions, or to access privileged resources.

Code can run in either a Secure state or in a Non-secure state. Hypervisor (Hyp) mode has privileged
execution in Non-secure state.

Related concepts
A2.3 Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M on page A2-56
Related information
Arm Architecture Reference Manual

A2 Overview of AArch32 state
A2.2 Processor modes, and privileged and unprivileged software execution

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-55
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A2.3 Processor modes in Armv6-M, Armv7-M, and Armv8-M
The processor modes available in Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline are
Thread mode and Handler mode.

Thread mode is the normal mode that programs run in. Thread mode can be privileged or unprivileged
software execution. Handler mode is the mode that exceptions are handled in. It is always privileged
software execution.

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related information
Arm Architecture Reference Manual

A2 Overview of AArch32 state
A2.3 Processor modes in Armv6-M, Armv7-M, and Armv8-M

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-56
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A2.4 Registers in AArch32 state
Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In all Arm processors in AArch32 state, the following registers are available and accessible in any
processor mode:

• 15 general-purpose registers R0-R12, the Stack Pointer (SP), and Link Register (LR).
• 1 Program Counter (PC).
• 1 Application Program Status Register (APSR).

 Note

• SP and LR can be used as general-purpose registers, although Arm deprecates using SP other than as
a stack pointer.

Additional registers are available in privileged software execution. Arm processors have a total of 43
registers. The registers are arranged in partially overlapping banks. There is a different register bank for
each processor mode. The banked registers give rapid context switching for dealing with processor
exceptions and privileged operations.

The additional registers in Arm processors are:

• 2 supervisor mode registers for banked SP and LR.
• 2 abort mode registers for banked SP and LR.
• 2 undefined mode registers for banked SP and LR.
• 2 interrupt mode registers for banked SP and LR.
• 7 FIQ mode registers for banked R8-R12, SP and LR.
• 2 monitor mode registers for banked SP and LR.
• 1 Hyp mode register for banked SP.
• 7 Saved Program Status Register (SPSRs), one for each exception mode.
• 1 Hyp mode register for ELR_Hyp to store the preferred return address from Hyp mode.

 Note

In privileged software execution, CPSR is an alias for APSR and gives access to additional bits.

The following figure shows how the registers are banked in the Arm architecture.

A2 Overview of AArch32 state
A2.4 Registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-57
Non-Confidential

APSR

R12
SP
LR
PC

R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

‡ Exists only in Secure state.

User System Supervisor Abort Undefined IRQ FIQ
R0_usr
R1_usr
R2_usr
R3_usr
R4_usr
R5_usr
R6_usr
R7_usr
R8_usr
R9_usr
R10_usr
R11_usr
R12_usr
SP_usr
LR_usr
PC

CPSR
SPSR_svc SPSR_abt SPSR_irq SPSR_fiq

LR_svc LR_abt LR_irq LR_fiq
SP_svc SP_abt SP_irq SP_fiq

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq

LR_und
SP_und

SPSR_und

Monitor ‡

SPSR_mon

LR_mon
SP_mon

Application
level view System level view

Hyp †

SP_hyp

SPSR_hyp

† Exists only in Non-secure state.

ELR_hyp

Cells with no entry indicate that the User mode register is used.

Figure A2-1 Organization of general-purpose registers and Program Status Registers

In Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline based processors, SP is an alias
for the two banked stack pointer registers:
• Main stack pointer register, that is only available in privileged software execution.
• Process stack pointer register.

Related concepts
A2.5 General-purpose registers in AArch32 state on page A2-59
A2.9 Program Counter in AArch32 state on page A2-63
A2.11 Application Program Status Register on page A2-65
A2.13 Saved Program Status Registers in AArch32 state on page A2-67
A2.12 Current Program Status Register in AArch32 state on page A2-66
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related information
Arm Architecture Reference Manual

A2 Overview of AArch32 state
A2.4 Registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-58
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

A2.5 General-purpose registers in AArch32 state
There are restrictions on the use of SP and LR as general-purpose registers.

With the exception of Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline based
processors, there are 33 general-purpose 32-bit registers, including the banked SP and LR registers.
Fifteen general-purpose registers are visible at any one time, depending on the current processor mode.
These are R0-R12, SP, and LR. The PC (R15) is not considered a general-purpose register.

SP (or R13) is the stack pointer. The C and C++ compilers always use SP as the stack pointer. Arm
deprecates most uses of SP as a general purpose register. In T32 state, SP is strictly defined as the stack
pointer. The instruction descriptions in Chapter C2 A32 and T32 Instructions on page C2-151 describe
when SP and PC can be used.

In User mode, LR (or R14) is used as a link register to store the return address when a subroutine call is
made. It can also be used as a general-purpose register if the return address is stored on the stack.

In the exception handling modes, LR holds the return address for the exception, or a subroutine return
address if subroutine calls are executed within an exception. LR can be used as a general-purpose register
if the return address is stored on the stack.

Related concepts
A2.9 Program Counter in AArch32 state on page A2-63
A2.6 Register accesses in AArch32 state on page A2-60
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261

A2 Overview of AArch32 state
A2.5 General-purpose registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-59
Non-Confidential

A2.6 Register accesses in AArch32 state
16-bit T32 instructions can access only a limited set of registers. There are also some restrictions on the
use of special-purpose registers by A32 and 32-bit T32 instructions.

Most 16-bit T32 instructions can only access R0 to R7. Only a small number of T32 instructions can
access R8-R12, SP, LR, and PC. Registers R0 to R7 are called Lo registers. Registers R8-R12, SP, LR,
and PC are called Hi registers.

All 32-bit T32 instructions can access R0 to R12, and LR. However, apart from a few designated stack
manipulation instructions, most T32 instructions cannot use SP. Except for a few specific instructions
where PC is useful, most T32 instructions cannot use PC.

In A32 state, all instructions can access R0 to R12, SP, and LR, and most instructions can also access PC
(R15). However, the use of the SP in an A32 instruction, in any way that is not possible in the
corresponding T32 instruction, is deprecated. Explicit use of the PC in an A32 instruction is not usually
useful, and except for specific instances that are useful, such use is deprecated. Implicit use of the PC, for
example in branch instructions or load (literal) instructions, is never deprecated.

The MRS instructions can move the contents of a status register to a general-purpose register, where they
can be manipulated by normal data processing operations. You can use the MSR instruction to move the
contents of a general-purpose register to a status register.

Related concepts
A2.5 General-purpose registers in AArch32 state on page A2-59
A2.9 Program Counter in AArch32 state on page A2-63
A2.11 Application Program Status Register on page A2-65
A2.12 Current Program Status Register in AArch32 state on page A2-66
A2.13 Saved Program Status Registers in AArch32 state on page A2-67
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261

A2 Overview of AArch32 state
A2.6 Register accesses in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-60
Non-Confidential

A2.7 Predeclared core register names in AArch32 state
Many of the core register names have synonyms.

The following table shows the predeclared core registers:

Table A2-2 Predeclared core registers in AArch32 state

Register names Meaning

r0-r15 and R0-R15 General purpose registers.

a1-a4 Argument, result or scratch registers. These are synonyms for R0 to R3.

v1-v8 Variable registers. These are synonyms for R4 to R11.

SB Static base register. This is a synonym for R9.

IP Intra-procedure call scratch register. This is a synonym for R12.

SP Stack pointer. This is a synonym for R13.

LR Link register. This is a synonym for R14.

PC Program counter. This is a synonym for R15.

With the exception of a1-a4 and v1-v8, you can write the register names either in all upper case or all
lower case.

Related concepts
A2.5 General-purpose registers in AArch32 state on page A2-59

A2 Overview of AArch32 state
A2.7 Predeclared core register names in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-61
Non-Confidential

A2.8 Predeclared extension register names in AArch32 state
You can write the names of Advanced SIMD and floating-point registers either in upper case or lower
case.

The following table shows the predeclared extension register names:

Table A2-3 Predeclared extension registers in AArch32 state

Register names Meaning

Q0-Q15 Advanced SIMD quadword registers

D0-D31 Advanced SIMD doubleword registers, floating-point double-precision registers

S0-S31 Floating-point single-precision registers

You can write the register names either in upper case or lower case.

A2 Overview of AArch32 state
A2.8 Predeclared extension register names in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-62
Non-Confidential

A2.9 Program Counter in AArch32 state
You can use the Program Counter explicitly, for example in some T32 data processing instructions, and
implicitly, for example in branch instructions.

The Program Counter (PC) is accessed as PC (or R15). It is incremented by the size of the instruction
executed, which is always four bytes in A32 state. Branch instructions load the destination address into
the PC. You can also load the PC directly using data operation instructions. For example, to branch to the
address in a general purpose register, use:

MOV PC,R0

During execution, the PC does not contain the address of the currently executing instruction. The address
of the currently executing instruction is typically PC-8 for A32, or PC-4 for T32.

 Note

Arm recommends you use the BX instruction to jump to an address or to return from a function, rather
than writing to the PC directly.

Related reference
C2.14 B on page C2-182
C2.21 BX, BXNS on page C2-192
C2.23 CBZ and CBNZ on page C2-195
C2.157 TBB and TBH on page C2-386

A2 Overview of AArch32 state
A2.9 Program Counter in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-63
Non-Confidential

A2.10 The Q flag in AArch32 state
The Q flag indicates overflow or saturation. It is one of the program status flags held in the APSR.

The Q flag is set to 1 when saturation occurs in saturating arithmetic instructions, or when overflow
occurs in certain multiply instructions.

The Q flag is a sticky flag. Although the saturating and certain multiply instructions can set the flag, they
cannot clear it. You can execute a series of such instructions, and then test the flag to find out whether
saturation or overflow occurred at any point in the series, without having to check the flag after each
instruction.

To clear the Q flag, use an MSR instruction to read-modify-write the APSR:

 MRS r5, APSR
 BIC r5, r5, #(1<<27)
 MSR APSR_nzcvq, r5

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the Q flag,
use an MRS instruction.

 MRS r6, APSR
 TST r6, #(1<<27); Z is clear if Q flag was set

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261
C2.78 QADD on page C2-276
C2.128 SMULxy on page C2-338
C2.130 SMULWy on page C2-340

A2 Overview of AArch32 state
A2.10 The Q flag in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-64
Non-Confidential

A2.11 Application Program Status Register
The Application Program Status Register (APSR) holds the program status flags that are accessible in
any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to determine whether or
not to execute conditional instructions.

The APSR also holds:
• The Q (saturation) flag.
• The APSR also holds the GE (Greater than or Equal) flags. The GE flags can be set by the parallel

add and subtract instructions. They are used by the SEL instruction to perform byte-based selection
from two registers.

These flags are accessible in all modes, using the MSR and MRS instructions.

Related concepts
C1.1 Conditional instructions on page C1-134
Related reference
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261
C2.103 SEL on page C2-310

A2 Overview of AArch32 state
A2.11 Application Program Status Register

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-65
Non-Confidential

A2.12 Current Program Status Register in AArch32 state
The Current Program Status Register (CPSR) holds the same program status flags as the APSR, and
some additional information.

It holds:
• The APSR flags.
• The processor mode.
• The interrupt disable flags.
• Either:

— The instruction set state for the Armv8 architecture (A32 or T32).
— The instruction set state for the Armv7 architecture (A32 or T32).

• The endianness state.
• The execution state bits for the IT block.

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. Arm deprecates using an MSR instruction to change the
endianness bit (E) of the CPSR, in any mode. Each exception level can have its own endianness, but
mixed endianness within an exception level is deprecated.

The SETEND instruction is deprecated in A32 and T32 and has no equivalent in A64.

The execution state bits for the IT block (IT[1:0]) and the T32 bit (T) can be accessed by MRS only in
Debug state.

Related concepts
A2.13 Saved Program Status Registers in AArch32 state on page A2-67
Related reference
C2.44 IT on page C2-222
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261
C2.104 SETEND on page C2-312
C1.5 Updates to the condition flags in A32/T32 code on page C1-138

A2 Overview of AArch32 state
A2.12 Current Program Status Register in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-66
Non-Confidential

A2.13 Saved Program Status Registers in AArch32 state
The Saved Program Status Register (SPSR) stores the current value of the CPSR when an exception is
taken so that it can be restored after handling the exception.

Each exception handling mode can access its own SPSR. User mode and System mode do not have an
SPSR because they are not exception handling modes.

The execution state bits, including the endianness state and current instruction set state can be accessed
from the SPSR in any exception mode, using the MSR and MRS instructions. You cannot access the SPSR
using MSR or MRS in User or System mode.

Related concepts
A2.12 Current Program Status Register in AArch32 state on page A2-66

A2 Overview of AArch32 state
A2.13 Saved Program Status Registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-67
Non-Confidential

A2.14 A32 and T32 instruction set overview
A32 and T32 instructions can be grouped by functional area.

All A32 instructions are 32 bits long. Instructions are stored word-aligned, so the least significant two
bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bits long. Instructions are stored half-word aligned. Some
instructions use the least significant bit of the address to determine whether the code being branched to is
T32 or A32.

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a restricted
subset of the functionality of the A32 instruction set. Almost all T32 instructions were 16-bit. Together,
the 32-bit and 16-bit T32 instructions provide functionality that is almost identical to that of the A32
instruction set.

The following table describes some of the functional groupings of the available instructions.

Table A2-4 A32 instruction groups

Instruction group Description

Branch and control These instructions do the following:
• Branch to subroutines.
• Branch backwards to form loops.
• Branch forward in conditional structures.
• Make the following instruction conditional without branching.
• Change the processor between A32 state and T32 state.

Data processing These instructions operate on the general-purpose registers. They can perform operations such as addition,
subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can
also operate on the value in a single register, or on a value in a register and an immediate value supplied
within the instruction.

Long multiply instructions give a 64-bit result in two registers.

Register load and
store

These instructions load or store the value of a single register from or to memory. They can load or store a 32-
bit word, a 16-bit halfword, or an 8-bit unsigned byte. Byte and halfword loads can either be sign extended or
zero extended to fill the 32-bit register.

A few instructions are also defined that can load or store 64-bit doubleword values into two 32-bit registers.

Multiple register load
and store

These instructions load or store any subset of the general-purpose registers from or to memory.

Status register access These instructions move the contents of a status register to or from a general-purpose register.

A2 Overview of AArch32 state
A2.14 A32 and T32 instruction set overview

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-68
Non-Confidential

A2.15 Access to the inline barrel shifter in AArch32 state
The AArch32 arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate operations.

The second operand to many A32 and T32 data-processing and single register data-transfer instructions
can be shifted, before the data-processing or data-transfer is executed, as part of the instruction. This
supports, but is not limited to:
• Scaled addressing.
• Multiplication by an immediate value.
• Constructing immediate values.

32-bit T32 instructions give almost the same access to the barrel shifter as A32 instructions.

16-bit T32 instructions only allow access to the barrel shifter using separate instructions.

A2 Overview of AArch32 state
A2.15 Access to the inline barrel shifter in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-69
Non-Confidential

A2 Overview of AArch32 state
A2.15 Access to the inline barrel shifter in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A2-70
Non-Confidential

Chapter A3
Overview of AArch64 state

Gives an overview of the AArch64 state of Armv8.

It contains the following sections:
• A3.1 Registers in AArch64 state on page A3-72.
• A3.2 Exception levels on page A3-73.
• A3.3 Link registers on page A3-74.
• A3.4 Stack Pointer register on page A3-75.
• A3.5 Predeclared core register names in AArch64 state on page A3-76.
• A3.6 Predeclared extension register names in AArch64 state on page A3-77.
• A3.7 Program Counter in AArch64 state on page A3-78.
• A3.8 Conditional execution in AArch64 state on page A3-79.
• A3.9 The Q flag in AArch64 state on page A3-80.
• A3.10 Process State on page A3-81.
• A3.11 Saved Program Status Registers in AArch64 state on page A3-82.
• A3.12 A64 instruction set overview on page A3-83.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-71
Non-Confidential

A3.1 Registers in AArch64 state
Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In AArch64 state, the following registers are available:
• Thirty-one 64-bit general-purpose registers X0-X30, the bottom halves of which are accessible as

W0-W30.
• Four stack pointer registers SP_EL0, SP_EL1, SP_EL2, SP_EL3.
• Three exception link registers ELR_EL1, ELR_EL2, ELR_EL3.
• Three saved program status registers SPSR_EL1, SPSR_EL2, SPSR_EL3.
• One program counter.

All these registers are 64 bits wide except SPSR_EL1, SPSR_EL2, and SPSR_EL3, which are 32 bits
wide.

Most A64 integer instructions can operate on either 32-bit or 64-bit registers. The register width is
determined by the register identifier, where W means 32-bit and X means 64-bit. The names Wn and Xn,
where n is in the range 0-30, refer to the same register. When you use the 32-bit form of an instruction,
the upper 32 bits of the source registers are ignored and the upper 32 bits of the destination register are
set to zero.

There is no register named W31 or X31. Depending on the instruction, register 31 is either the stack
pointer or the zero register. When used as the stack pointer, you refer to it as SP. When used as the zero
register, you refer to it as WZR in a 32-bit context or XZR in a 64-bit context.

Related concepts
A3.2 Exception levels on page A3-73
A3.3 Link registers on page A3-74
A3.4 Stack Pointer register on page A3-75
A3.7 Program Counter in AArch64 state on page A3-78
A3.8 Conditional execution in AArch64 state on page A3-79
A3.11 Saved Program Status Registers in AArch64 state on page A3-82

A3 Overview of AArch64 state
A3.1 Registers in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-72
Non-Confidential

A3.2 Exception levels
The Armv8 architecture defines four exception levels, EL0 to EL3, where EL3 is the highest exception
level with the most execution privilege. When taking an exception, the exception level can either
increase or remain the same, and when returning from an exception, it can either decrease or remain the
same.

The following is a common usage model for the exception levels:

EL0
Applications.

EL1
OS kernels and associated functions that are typically described as privileged.

EL2
Hypervisor.

EL3
Secure monitor.

When taking an exception to a higher exception level, the execution state can either remain the same, or
change from AArch32 to AArch64.

When returning to a lower exception level, the execution state can either remain the same or change from
AArch64 to AArch32.

The only way the execution state can change is by taking or returning from an exception. It is not
possible to change between execution states in the same way as changing between A32 and T32 code in
AArch32 state.

On powerup and on reset, the processor enters the highest implemented exception level. The execution
state for this exception level is a property of the implementation, and might be determined by a
configuration input signal.

For exception levels other than EL0, the execution state is determined by one or more control register
configuration bits. These bits can be set only in a higher exception level.

For EL0, the execution state is determined as part of the exception return to EL0, under the control of the
exception level that the execution is returning from.

Related concepts
A3.3 Link registers on page A3-74
A3.11 Saved Program Status Registers in AArch64 state on page A3-82
A1.3 Changing between AArch64 and AArch32 states on page A1-50
A3.10 Process State on page A3-81

A3 Overview of AArch64 state
A3.2 Exception levels

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-73
Non-Confidential

A3.3 Link registers
In AArch64 state, the Link Register (LR) stores the return address when a subroutine call is made. It can
also be used as a general-purpose register if the return address is stored on the stack. The LR maps to
register 30. Unlike in AArch32 state, the LR is distinct from the Exception Link Registers (ELRs) and is
therefore unbanked.

There are three Exception Link Registers, ELR_EL1, ELR_EL2, and ELR_EL3, that correspond to each
of the exception levels. When an exception is taken, the Exception Link Register for the target exception
level stores the return address to jump to after the handling of that exception completes. If the exception
was taken from AArch32 state, the top 32 bits in the ELR are all set to zero. Subroutine calls within the
exception level use the LR to store the return address from the subroutine.

For example when the exception level changes from EL0 to EL1, the return address is stored in
ELR_EL1.

When in an exception level, if you enable interrupts that use the same exception level, you must ensure
you store the ELR on the stack because it will be overwritten with a new return address when the
interrupt is taken.

Related concepts
A3.7 Program Counter in AArch64 state on page A3-78
Related reference
A3.5 Predeclared core register names in AArch64 state on page A3-76

A3 Overview of AArch64 state
A3.3 Link registers

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-74
Non-Confidential

A3.4 Stack Pointer register
In AArch64 state, SP represents the 64-bit Stack Pointer. SP_EL0 is an alias for SP. Do not use SP as a
general purpose register.

You can only use SP as an operand in the following instructions:
• As the base register for loads and stores. In this case it must be quadword-aligned before adding any

offset, or a stack alignment exception occurs.
• As a source or destination for arithmetic instructions, but it cannot be used as the destination in

instructions that set the condition flags.
• In logical instructions, for example in order to align it.

There is a separate stack pointer for each of the three exception levels, SP_EL1, SP_EL2, and SP_EL3.
Within an exception level you can either use the dedicated stack pointer for that exception level or you
can use SP_EL0, the stack pointer associated with EL0. You can use the SPSel register to select which
stack pointer to use in the exception level.

The choice of stack pointer is indicated by the letter t or h appended to the exception level name, for
example EL0t or EL3h. The t suffix indicates that the exception level uses SP_EL0 and the h suffix
indicates it uses SP_ELx, where x is the current exception level number. EL0 always uses SP_EL0 so
cannot have an h suffix.

Related concepts
A3.2 Exception levels on page A3-73
A3.10 Process State on page A3-81
Related reference
A3.1 Registers in AArch64 state on page A3-72

A3 Overview of AArch64 state
A3.4 Stack Pointer register

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-75
Non-Confidential

A3.5 Predeclared core register names in AArch64 state
In AArch64 state, the predeclared core registers are different from those in AArch32 state.

The following table shows the predeclared core registers in AArch64 state:

Table A3-1 Predeclared core registers in AArch64 state

Register names Meaning

W0-W30 32-bit general purpose registers.

X0-X30 64-bit general purpose registers.

WZR 32-bit RAZ/WI register. This is the name for register 31 when it is used as the zero register in a 32-bit context.

XZR 64-bit RAZ/WI register. This is the name for register 31 when it is used as the zero register in a 64-bit context.

WSP 32-bit stack pointer. This is the name for register 31 when it is used as the stack pointer in a 32-bit context.

SP 64-bit stack pointer. This is the name for register 31 when it is used as the stack pointer in a 64-bit context.

LR Link register. This is a synonym for X30.

You can write the register names either in all upper case or all lower case.
 Note

In AArch64 state, the PC is not a general purpose register and you cannot access it by name.

Related concepts
A3.3 Link registers on page A3-74
A3.4 Stack Pointer register on page A3-75
A3.7 Program Counter in AArch64 state on page A3-78
Related reference
A3.1 Registers in AArch64 state on page A3-72

A3 Overview of AArch64 state
A3.5 Predeclared core register names in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-76
Non-Confidential

A3.6 Predeclared extension register names in AArch64 state
You can write the names of Advanced SIMD and floating-point registers either in upper case or lower
case.

The following table shows the predeclared extension register names in AArch64 state:

Table A3-2 Predeclared extension registers in AArch64 state

Register names Meaning

V0-V31 Advanced SIMD 128-bit vector registers.

Q0-Q31 Advanced SIMD registers holding a 128-bit scalar.

D0-D31 Advanced SIMD registers holding a 64-bit scalar, floating-point double-precision registers.

S0-S31 Advanced SIMD registers holding a 32-bit scalar, floating-point single-precision registers.

H0-H31 Advanced SIMD registers holding a 16-bit scalar, floating-point half-precision registers.

B0-B31 Advanced SIMD registers holding an 8-bit scalar.

Related reference
A3.1 Registers in AArch64 state on page A3-72

A3 Overview of AArch64 state
A3.6 Predeclared extension register names in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-77
Non-Confidential

A3.7 Program Counter in AArch64 state
In AArch64 state, the Program Counter (PC) contains the address of the currently executing instruction.
It is incremented by the size of the instruction executed, which is always four bytes.

In AArch64 state, the PC is not a general purpose register and you cannot access it explicitly. The
following types of instructions read it implicitly:

• Instructions that compute a PC-relative address.
• PC-relative literal loads.
• Direct branches to a PC-relative label.
• Branch and link instructions, which store it in the procedure link register.

The only types of instructions that can write to the PC are:
• Conditional and unconditional branches.
• Exception generation and exception returns.

Branch instructions load the destination address into the PC.

Related reference
D2.27 B.cond on page D2-697
D2.28 B on page D2-698
D2.35 BL on page D2-705

A3 Overview of AArch64 state
A3.7 Program Counter in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-78
Non-Confidential

A3.8 Conditional execution in AArch64 state
In AArch64 state, the NZCV register holds copies of the N, Z, C, and V condition flags. The processor
uses them to determine whether or not to execute conditional instructions. The NZCV register contains
the flags in bits[31:28].

The condition flags are accessible in all exception levels, using the MSR and MRS instructions.

A64 makes less use of conditionality than A32. For example, in A64:
• Only a few instructions can set or test the condition flags.
• There is no equivalent of the T32 IT instruction.
• The only conditionally executed instruction, which behaves as a NOP if the condition is false, is the

conditional branch, B.cond.

Related reference
D1.3 Updates to the condition flags in A64 code on page D1-650
D2.109 MRS on page D2-784
D2.111 MSR (register) on page D2-786

A3 Overview of AArch64 state
A3.8 Conditional execution in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-79
Non-Confidential

A3.9 The Q flag in AArch64 state
In AArch64 state, you cannot read or write to the Q flag because in A64 there are no saturating
arithmetic instructions that operate on the general purpose registers.

The Advanced SIMD saturating arithmetic instructions set the QC bit in the floating-point status register
(FPSR) to indicate that saturation has occurred. You can identify such instructions by the Q mnemonic
modifier, for example SQADD.

Related reference
Chapter D5 A64 SIMD Scalar Instructions on page D5-1107
Chapter D6 A64 SIMD Vector Instructions on page D6-1237

A3 Overview of AArch64 state
A3.9 The Q flag in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-80
Non-Confidential

A3.10 Process State
In AArch64 state, there is no Current Program Status Register (CPSR). You can access the different
components of the traditional CPSR independently as Process State fields.

The Process State fields are:

• N, Z, C, and V condition flags (NZCV).
• Current register width (nRW).
• Stack pointer selection bit (SPSel).
• Interrupt disable flags (DAIF).
• Current exception level (EL).
• Single step process state bit (SS).
• Illegal exception return state bit (IL).

You can use MSR to write to:

• The N, Z, C, and V flags in the NZCV register.
• The interrupt disable flags in the DAIF register.
• The SP selection bit in the SPSel register, in EL1 or higher.

You can use MRS to read:
• The N, Z, C, and V flags in the NZCV register.
• The interrupt disable flags in the DAIF register.
• The exception level bits in the CurrentEL register, in EL1 or higher.
• The SP selection bit in the SPSel register, in EL1 or higher.

When an exception occurs, all Process State fields associated with the current exception level are stored
in a single register associated with the target exception level, the SPSR. You can access the SS, IL, and
nRW bits only from the SPSR.

Related concepts
A3.11 Saved Program Status Registers in AArch64 state on page A3-82
Related reference
D1.3 Updates to the condition flags in A64 code on page D1-650
D2.109 MRS on page D2-784
D2.111 MSR (register) on page D2-786

A3 Overview of AArch64 state
A3.10 Process State

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-81
Non-Confidential

A3.11 Saved Program Status Registers in AArch64 state
The Saved Program Status Registers (SPSRs) are 32-bit registers that store the process state of the
current exception level when an exception is taken to an exception level that uses AArch64 state. This
allows the process state to be restored after the exception has been handled.

In AArch64 state, each target exception level has its own SPSR:

• SPSR_EL1.
• SPSR_EL2.
• SPSR_EL3.

When taking an exception, the process state of the current exception level is stored in the SPSR of the
target exception level. On returning from an exception, the exception handler uses the SPSR of the
exception level that is being returned from to restore the process state of the exception level that is being
returned to.

 Note

On returning from an exception, the preferred return address is restored from the ELR associated with the
exception level that is being returned from.

The SPSRs store the following information:
• N, Z, C, and V flags.
• D, A, I, and F interrupt disable bits.
• The register width.
• The execution mode.
• The IL and SS bits.

Related concepts
A3.4 Stack Pointer register on page A3-75
A3.10 Process State on page A3-81

A3 Overview of AArch64 state
A3.11 Saved Program Status Registers in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-82
Non-Confidential

A3.12 A64 instruction set overview
A64 instructions can be grouped by functional area.

The following table describes some of the functional groupings of the instructions in A64.

Table A3-3 A64 instruction groups

Instruction
group

Description

Branch and control These instructions do the following:
• Branch to and return from subroutines.
• Branch backwards to form loops.
• Branch forward in conditional structures.
• Generate and return from exceptions.

Data processing These instructions operate on the general-purpose registers. They can perform operations such as addition,
subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can also
operate on the value in a single register, or on a value in a register and an immediate value supplied within the
instruction.

The addition and subtraction instructions can optionally left shift the immediate operand, or can sign or zero-
extend and shift the final source operand register.

A64 includes signed and unsigned 32-bit and 64-bit multiply and divide instructions.

Register load and
store

These instructions load or store the value of a single register or pair of registers from or to memory. You can
load or store a single 64-bit doubleword, 32-bit word, 16-bit halfword, or 8-bit byte, or a pair of words or
doublewords. Byte and halfword loads can either be sign-extended or zero-extended to fill the 32-bit register.
You can also load and sign-extend a signed byte, halfword or word into a 64-bit register, or load a pair of signed
words into two 64-bit registers.

System register
access

These instructions move the contents of a system register to or from a general-purpose register.

Related reference
Chapter D2 A64 General Instructions on page D2-657
Chapter D3 A64 Data Transfer Instructions on page D3-873

A3 Overview of AArch64 state
A3.12 A64 instruction set overview

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-83
Non-Confidential

A3 Overview of AArch64 state
A3.12 A64 instruction set overview

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. A3-84
Non-Confidential

Part B
Advanced SIMD and Floating-point Programming

Chapter B1
Advanced SIMD Programming

Describes Advanced SIMD assembly language programming.

It contains the following sections:
• B1.1 Architecture support for Advanced SIMD on page B1-88.
• B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89.
• B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state on page B1-91.
• B1.4 Views of the Advanced SIMD register bank in AArch32 state on page B1-93.
• B1.5 Views of the Advanced SIMD register bank in AArch64 state on page B1-94.
• B1.6 Differences between A32/T32 and A64 Advanced SIMD instruction syntax on page B1-95.
• B1.7 Load values to Advanced SIMD registers on page B1-97.
• B1.8 Conditional execution of A32/T32 Advanced SIMD instructions on page B1-98.
• B1.9 Floating-point exceptions for Advanced SIMD in A32/T32 instructions on page B1-99.
• B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100.
• B1.11 Polynomial arithmetic over {0,1} on page B1-101.
• B1.12 Advanced SIMD vectors on page B1-102.
• B1.13 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-103.
• B1.14 Saturating Advanced SIMD instructions on page B1-104.
• B1.15 Advanced SIMD scalars on page B1-105.
• B1.16 Extended notation extension for Advanced SIMD in A32/T32 code on page B1-106.
• B1.17 Advanced SIMD system registers in AArch32 state on page B1-107.
• B1.18 Flush-to-zero mode in Advanced SIMD on page B1-108.
• B1.19 When to use flush-to-zero mode in Advanced SIMD on page B1-109.
• B1.20 The effects of using flush-to-zero mode in Advanced SIMD on page B1-110.
• B1.21 Advanced SIMD operations not affected by flush-to-zero mode on page B1-111.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-87
Non-Confidential

B1.1 Architecture support for Advanced SIMD
Advanced SIMD is an optional extension to the Armv8 and Armv7 architectures.

All Advanced SIMD instructions are available on systems that support Advanced SIMD. In A32, some
of these instructions are also available on systems that implement the floating-point extension without
Advanced SIMD. These are called shared instructions.

In AArch32 state, the Advanced SIMD register bank consists of thirty-two 64-bit registers, and smaller
registers are packed into larger ones, as in Armv7.

In AArch64 state, the Advanced SIMD register bank includes thirty-two 128-bit registers and has a new
register packing model.

 Note

Advanced SIMD and floating-point instructions share the same extension register bank.

Advanced SIMD instructions in A64 are closely based on VFPv4 and A32, but with new instruction
mnemonics and some functional enhancements.

Related information
Floating-point support

B1 Advanced SIMD Programming
B1.1 Architecture support for Advanced SIMD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-88
Non-Confidential

https://developer.arm.com/docs/100073/0611/floating-point-support

B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state
The Advanced SIMD extension register bank is a collection of registers that can be accessed as either 64-
bit or 128-bit registers.

Advanced SIMD and floating-point instructions use the same extension register bank, and is distinct
from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 128-bit register Q0 is an alias for two consecutive 64-bit
registers D0 and D1. The 128-bit register Q8 is an alias for 2 consecutive 64-bit registers D16 and D17.

D0

D3

D31

D30

D1

D2

D14

D15

D16

D17

...

Q0

Q1

Q7

Q8

Q15

...

...

...

Figure B1-1 Extension register bank for Advanced SIMD in AArch32 state

 Note

If your processor supports both Advanced SIMD and floating-point, all the Advanced SIMD registers
overlap with the floating-point registers.

The aliased views enable half-precision, single-precision, and double-precision values, and Advanced
SIMD vectors to coexist in different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values, and Advanced SIMD vectors at different times.

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-89
Non-Confidential

Do not attempt to use overlapped 64-bit and 128-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
• D<2n> maps to the least significant half of Q<n>
• D<2n+1> maps to the most significant half of Q<n>.

For example, you can access the least significant half of the elements of a vector in Q6 by referring to
D12, and the most significant half of the elements by referring to D13.

Related concepts
B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state on page B1-91
B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118
B1.4 Views of the Advanced SIMD register bank in AArch32 state on page B1-93

B1 Advanced SIMD Programming
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-90
Non-Confidential

B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state
The extension register bank is a collection of registers that can be accessed as 8-bit, 16-bit, 32-bit, 64-bit,
or 128-bit.

Advanced SIMD and floating-point instructions use the same extension register bank, and is distinct
from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers.

D0

D31

S0

S1

S7

...

D1

D7

D8

...

V0

V1

V7

V8

V31

...

...

...

S8

S31

...

H0

H1

H7

...

H8

H31

...

B0

B1

B7

...

B8

B31

...

Figure B1-2 Extension register bank for Advanced SIMD in AArch64 state

The mapping between the registers is as follows:
• D<n> maps to the least significant half of V<n>
• S<n> maps to the least significant half of D<n>
• H<n> maps to the least significant half of S<n>
• B<n> maps to the least significant half of H<n>.

For example, you can access the least significant half of the elements of a vector in V7 by referring to D7.

Registers Q0-Q31 map directly to registers V0-V31.

Related concepts
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89

B1 Advanced SIMD Programming
B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-91
Non-Confidential

B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118
B1.4 Views of the Advanced SIMD register bank in AArch32 state on page B1-93

B1 Advanced SIMD Programming
B1.3 Extension register bank mapping for Advanced SIMD in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-92
Non-Confidential

B1.4 Views of the Advanced SIMD register bank in AArch32 state
Advanced SIMD can have different views of the extension register bank in AArch32 state.

It can view the extension register bank as:
• Sixteen 128-bit registers, Q0-Q15.
• Thirty-two 64-bit registers, D0-D31.
• A combination of registers from these views.

Advanced SIMD views each register as containing a vector of 1, 2, 4, 8, or 16 elements, all of the same
size and type. Individual elements can also be accessed as scalars.

In Advanced SIMD, the 64-bit registers are called doubleword registers and the 128-bit registers are
called quadword registers.

Related concepts
B1.5 Views of the Advanced SIMD register bank in AArch64 state on page B1-94
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89
B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118

B1 Advanced SIMD Programming
B1.4 Views of the Advanced SIMD register bank in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-93
Non-Confidential

B1.5 Views of the Advanced SIMD register bank in AArch64 state
Advanced SIMD can have different views of the extension register bank in AArch64 state.

It can view the extension register bank as:
• Thirty-two 128-bit registers V0-V31.
• Thirty-two 64-bit registers D0-D31.
• Thirty-two 32-bit registers S0-S31.
• Thirty-two 16-bit registers H0-H31.
• Thirty-two 8-bit registers B0-B31.
• A combination of registers from these views.

Related concepts
B1.4 Views of the Advanced SIMD register bank in AArch32 state on page B1-93
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89
B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118

B1 Advanced SIMD Programming
B1.5 Views of the Advanced SIMD register bank in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-94
Non-Confidential

B1.6 Differences between A32/T32 and A64 Advanced SIMD instruction syntax
The syntax and mnemonics of A64 Advanced SIMD instructions are based on those in A32/T32 but with
some differences.

The following table describes the main differences.

Table B1-1 Differences in syntax and mnemonics between A32/T32 and A64 Advanced SIMD instructions

A32/T32 A64

All Advanced SIMD instruction mnemonics begin with
V, for example VMAX.

The first letter of the instruction mnemonic indicates the data type of the
instruction. For example, SMAX, UMAX, and FMAX mean signed, unsigned,
and floating-point respectively. No suffix means the type is irrelevant and P
means polynomial.

A mnemonic qualifier specifies the type and width of
elements in a vector. For example, in the following
instruction, U32 means 32-bit unsigned integers:

VMAX.U32 Q0, Q1, Q2

A register qualifier specifies the data width and the number of elements in
the register. For example, in the following instruction .4S means 4 32-bit
elements:

UMAX V0.4S, V1.4S, V2.4S

The 128-bit vector registers are named Q0-Q15 and the
64-bit vector registers are named D0-D31.

All vector registers are named Vn , where n is a register number between 0
and 31. You only use one of the qualified register names Qn, Dn, Sn, Hn or
Bn when referring to a scalar register, to indicate the number of significant
bits.

You load a single element into one or more vector
registers by appending an index to each register
individually, for example:

VLD4.8 {D0[3], D1[3], D2[3], D3[3]}, [R0]

You load a single element into one or more vector registers by appending the
index to the register list, for example:

LD4 {V0.B, V1.B, V2.B, V3.B}[3], [X0]

You can append a condition code to most Advanced
SIMD instruction mnemonics to make them conditional.

A64 has no conditionally executed floating-point or Advanced SIMD
instructions.

L, W and N suffixes indicate long, wide and narrow
variants of Advanced SIMD data processing
instructions. A32/T32 Advanced SIMD does not
include vector narrowing or widening second part
instructions.

L, W and N suffixes indicate long, wide and narrow variants of Advanced
SIMD data processing instructions. You can additionally append a 2 to
implement the second part of a narrowing or widening operation, for
example:

UADDL2 V0.4S, V1.8H, V2.8H ; take input from 4 high-
numbered lanes of V1 and V2

A32/T32 Advanced SIMD does not include vector
reduction instructions.

The V Advanced SIMD mnemonic suffix identifies vector reduction
instructions, in which the operand is a vector and the result a scalar, for
example:

ADDV S0, V1.4S

The P mnemonic qualifier which indicates pairwise
instructions is a prefix, for example, VPADD.

The P mnemonic qualifier is a suffix, for example ADDP.

Related concepts
B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100
B1.8 Conditional execution of A32/T32 Advanced SIMD instructions on page B1-98
B1.15 Advanced SIMD scalars on page B1-105
B1.13 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-103

B1 Advanced SIMD Programming
B1.6 Differences between A32/T32 and A64 Advanced SIMD instruction syntax

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-95
Non-Confidential

Related reference
C4.36 VSEL on page C4-637
D4.9 FCSEL on page D4-1042

B1 Advanced SIMD Programming
B1.6 Differences between A32/T32 and A64 Advanced SIMD instruction syntax

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-96
Non-Confidential

B1.7 Load values to Advanced SIMD registers
To load a register with a floating-point immediate value, use VMOV in A32 or FMOV in A64. Both
instructions exist in scalar and vector forms.

The A32 Advanced SIMD instructions VMOV and VMVN can also load integer immediates. The A64
Advanced SIMD instructions to load integer immediates are MOVI and MVNI.

Related reference
C3.57 VLDR pseudo-instruction on page C3-506
C4.22 VMOV (floating-point) on page C4-623
C3.68 VMOV (immediate) on page C3-517

B1 Advanced SIMD Programming
B1.7 Load values to Advanced SIMD registers

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-97
Non-Confidential

B1.8 Conditional execution of A32/T32 Advanced SIMD instructions
Most Advanced SIMD instructions always execute unconditionally.

You cannot use any of the following Advanced SIMD instructions in an IT block:
• VCVT{A, N, P, M}.
• VMAXNM.
• VMINNM.
• VRINT{N, X, A, Z, M, P}.
• All instructions in the Crypto extension.

In addition, specifying any other Advanced SIMD instruction in an IT block is deprecated.

Arm deprecates conditionally executing any Advanced SIMD instruction unless it is a shared Advanced
SIMD and floating-point instruction.

Related concepts
C1.2 Conditional execution in A32 code on page C1-135
C1.3 Conditional execution in T32 code on page C1-136
Related reference
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C1.9 Condition code suffixes on page C1-142

B1 Advanced SIMD Programming
B1.8 Conditional execution of A32/T32 Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-98
Non-Confidential

B1.9 Floating-point exceptions for Advanced SIMD in A32/T32 instructions
The Advanced SIMD extension records floating-point exceptions in the FPSCR cumulative flags.

It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
zero.

The descriptions of the Advanced SIMD instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts
B1.18 Flush-to-zero mode in Advanced SIMD on page B1-108
Related reference
Chapter B1 Advanced SIMD Programming on page B1-87
Related information
Arm Architecture Reference Manual

B1 Advanced SIMD Programming
B1.9 Floating-point exceptions for Advanced SIMD in A32/T32 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-99
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1.10 Advanced SIMD data types in A32/T32 instructions
Most Advanced SIMD instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in Advanced SIMD instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point. The following table shows the data types available in Advanced SIMD instructions:

Table B1-2 Advanced SIMD data types

8-bit 16-bit 32-bit 64-bit

Unsigned integer U8 U16 U32 U64

Signed integer S8 S16 S32 S64

Integer of unspecified type I8 I16 I32 I64

Floating-point number not available F16 F32 (or F) not available

Polynomial over {0,1} P8 P16 not available not available

The datatype of the second (or only) operand is specified in the instruction.
 Note

Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:
• If the description specifies I, you can also use the S or U data types.
• If only the data size is specified, you can specify a type (I, S, U, P or F).
• If no data type is specified, you can specify a data type.

Related concepts
B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100
B1.11 Polynomial arithmetic over {0,1} on page B1-101

B1 Advanced SIMD Programming
B1.10 Advanced SIMD data types in A32/T32 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-100
Non-Confidential

B1.11 Polynomial arithmetic over {0,1}
The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic.

The following rules apply:
• 0 + 0 = 1 + 1 = 0.
• 0 + 1 = 1 + 0 = 1.
• 0 * 0 = 0 * 1 = 1 * 0 = 0.
• 1 * 1 = 1.

That is, adding two polynomials over {0,1} is the same as a bitwise exclusive OR, and multiplying two
polynomials over {0,1} is the same as integer multiplication except that partial products are exclusive-
ORed instead of being added.

Related concepts
B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100

B1 Advanced SIMD Programming
B1.11 Polynomial arithmetic over {0,1}

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-101
Non-Confidential

B1.12 Advanced SIMD vectors
An Advanced SIMD operand can be a vector or a scalar. An Advanced SIMD vector can be a 64-bit
doubleword vector or a 128-bit quadword vector.

In A32/T32 Advanced SIMD instructions, the size of the elements in an Advanced SIMD vector is
specified by a datatype suffix appended to the mnemonic. In A64 Advanced SIMD instructions, the size
and number of the elements in an Advanced SIMD vector are specified by a suffix appended to the
register.

Doubleword vectors can contain:

• Eight 8-bit elements.
• Four 16-bit elements.
• Two 32-bit elements.
• One 64-bit element.

Quadword vectors can contain:
• Sixteen 8-bit elements.
• Eight 16-bit elements.
• Four 32-bit elements.
• Two 64-bit elements.

Related concepts
B1.15 Advanced SIMD scalars on page B1-105
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89
B1.16 Extended notation extension for Advanced SIMD in A32/T32 code on page B1-106
B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100
B1.13 Normal, long, wide, and narrow Advanced SIMD instructions on page B1-103

B1 Advanced SIMD Programming
B1.12 Advanced SIMD vectors

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-102
Non-Confidential

B1.13 Normal, long, wide, and narrow Advanced SIMD instructions
Many A32/T32 and A64 Advanced SIMD data processing instructions are available in Normal, Long,
Wide, Narrow, and saturating variants.

Normal operation

The operands can be any of the vector types. The result vector is the same width, and usually the
same type, as the operand vectors, for example:

VADD.I16 D0, D1, D2

You can specify that the operands and result of a normal A32/T32 Advanced SIMD instruction
must all be quadwords by appending a Q to the instruction mnemonic. If you do this, armasm
produces an error if the operands or result are not quadwords.

Long operation

The operands are doubleword vectors and the result is a quadword vector. The elements of the
result are usually twice the width of the elements of the operands, and the same type.

Long operation is specified using an L appended to the instruction mnemonic, for example:

VADDL.S16 Q0, D2, D3

Wide operation

One operand vector is doubleword and the other is quadword. The result vector is quadword.
The elements of the result and the first operand are twice the width of the elements of the second
operand.

Wide operation is specified using a W appended to the instruction mnemonic, for example:

VADDW.S16 Q0, Q1, D4

Narrow operation

The operands are quadword vectors and the result is a doubleword vector. The elements of the
result are half the width of the elements of the operands.

Narrow operation is specified using an N appended to the instruction mnemonic, for example:

VADDHN.I16 D0, Q1, Q2

Related concepts
B1.12 Advanced SIMD vectors on page B1-102

B1 Advanced SIMD Programming
B1.13 Normal, long, wide, and narrow Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-103
Non-Confidential

B1.14 Saturating Advanced SIMD instructions
Saturating instructions saturate the result to the value of the upper limit or lower limit if the result
overflows or underflows.

The saturation limits depend on the datatype of the instruction. The following table shows the ranges that
Advanced SIMD saturating instructions saturate to, where x is the result of the operation.

Table B1-3 Advanced SIMD saturation ranges

Data type Saturation range of x

Signed byte (S8) -27 <= x < 27

Signed halfword (S16) -215 <= x < 215

Signed word (S32) -231 <= x < 231

Signed doubleword (S64) -263 <= x < 263

Unsigned byte (U8) 0 <= x < 28

Unsigned halfword (U16) 0 <= x < 216

Unsigned word (U32) 0 <= x < 232

Unsigned doubleword (U64) 0 <= x < 264

Saturating Advanced SIMD arithmetic instructions set the QC bit in the floating-point status register
(FPSCR in AArch32 or FPSR in AArch64) to indicate that saturation has occurred.

Saturating instructions are specified using a Q prefix. In A32/T32 Advanced SIMD instructions, this is
inserted between the V and the instruction mnemonic, or between the S or U and the mnemonic in A64
Advanced SIMD instructions.

Related reference
C2.7 Saturating instructions on page C2-168

B1 Advanced SIMD Programming
B1.14 Saturating Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-104
Non-Confidential

B1.15 Advanced SIMD scalars
Some Advanced SIMD instructions act on scalars in combination with vectors. Advanced SIMD scalars
can be 8-bit, 16-bit, 32-bit, or 64-bit.

In A32/T32 Advanced SIMD instructions, the instruction syntax refers to a single element in a vector
register using an index, x, into the vector, so that Dm[x] is the xth element in vector Dm. In A64 Advanced
SIMD instructions, you append the index to the element size specifier, so that Vm.D[x] is the xth
doubleword element in vector Vm.

In A64 Advanced SIMD scalar instructions, you refer to registers using a name that indicates the number
of significant bits. The names are Bn, Hn, Sn, or Dn, where n is the register number (0-31). The unused
high bits are ignored on a read and set to zero on a write.

Other than A32/T32 Advanced SIMD multiply instructions, instructions that access scalars can access
any element in the register bank.

A32/T32 Advanced SIMD multiply instructions only allow 16-bit or 32-bit scalars, and can only access
the first 32 scalars in the register bank. That is, in multiply instructions:
• 16-bit scalars are restricted to registers D0-D7, with x in the range 0-3.
• 32-bit scalars are restricted to registers D0-D15, with x either 0 or 1.

Related concepts
B1.12 Advanced SIMD vectors on page B1-102
B1.2 Extension register bank mapping for Advanced SIMD in AArch32 state on page B1-89

B1 Advanced SIMD Programming
B1.15 Advanced SIMD scalars

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-105
Non-Confidential

B1.16 Extended notation extension for Advanced SIMD in A32/T32 code
armasm implements an extension to the architectural Advanced SIMD assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

 Note

Extended notation is not supported for A64 code.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the DN and QN directives to define names for typed and scalar registers.

Related concepts
B1.12 Advanced SIMD vectors on page B1-102
B1.10 Advanced SIMD data types in A32/T32 instructions on page B1-100
B1.15 Advanced SIMD scalars on page B1-105

B1 Advanced SIMD Programming
B1.16 Extended notation extension for Advanced SIMD in A32/T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-106
Non-Confidential

B1.17 Advanced SIMD system registers in AArch32 state
Advanced SIMD system registers are accessible in all implementations of Advanced SIMD.

For exception levels using AArch32, the following Advanced SIMD system registers are accessible in all
Advanced SIMD implementations:

• FPSCR, the floating-point status and control register.
• FPEXC, the floating-point exception register.
• FPSID, the floating-point system ID register.

A particular Advanced SIMD implementation can have additional registers. For more information, see
the Technical Reference Manual for your processor.

 Note

Advanced SIMD technology shares the same set of system registers as floating-point.

Related information
Arm Architecture Reference Manual

B1 Advanced SIMD Programming
B1.17 Advanced SIMD system registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-107
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B1.18 Flush-to-zero mode in Advanced SIMD
Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Flush-to-zero mode in Advanced SIMD always preserves the sign bit.

Advanced SIMD always uses flush-to-zero mode.

Related concepts
B1.20 The effects of using flush-to-zero mode in Advanced SIMD on page B1-110
Related reference
B1.19 When to use flush-to-zero mode in Advanced SIMD on page B1-109
B1.21 Advanced SIMD operations not affected by flush-to-zero mode on page B1-111

B1 Advanced SIMD Programming
B1.18 Flush-to-zero mode in Advanced SIMD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-108
Non-Confidential

B1.19 When to use flush-to-zero mode in Advanced SIMD
You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:
• IEEE 754 compliance is not a requirement for your system.
• The algorithms you are using sometimes generate denormalized numbers.
• Your system uses support code to handle denormalized numbers.
• The algorithms you are using do not depend for their accuracy on the preservation of denormalized

numbers.
• The algorithms you are using do not generate frequent exceptions as a result of replacing

denormalized numbers with 0.

You select flush-to-zero mode in one of the following ways:
• In A32 code, by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and VMSR

instructions.
• In A64 code, by setting the FZ bit in the FPCR to 1. You do this using the MRS and MSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B1.18 Flush-to-zero mode in Advanced SIMD on page B1-108
B1.20 The effects of using flush-to-zero mode in Advanced SIMD on page B1-110

B1 Advanced SIMD Programming
B1.19 When to use flush-to-zero mode in Advanced SIMD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-109
Non-Confidential

B1.20 The effects of using flush-to-zero mode in Advanced SIMD
In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:
• A denormalized number is treated as 0 when used as an input to a floating-point operation. The

source register is not altered.
• If the result of a single-precision floating-point operation, before rounding, is in the range -2-126 to

+2-126, it is replaced by 0.
• If the result of a double-precision floating-point operation, before rounding, is in the range -2-1022 to

+2-1022, it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts
B1.18 Flush-to-zero mode in Advanced SIMD on page B1-108
Related reference
B1.21 Advanced SIMD operations not affected by flush-to-zero mode on page B1-111

B1 Advanced SIMD Programming
B1.20 The effects of using flush-to-zero mode in Advanced SIMD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-110
Non-Confidential

B1.21 Advanced SIMD operations not affected by flush-to-zero mode
Some Advanced SIMD instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:
• Copy, absolute value, and negate (VMOV, VMVN, V{Q}ABS, and V{Q}NEG).
• Duplicate (VDUP).
• Swap (VSWP).
• Load and store (VLDR and VSTR).
• Load multiple and store multiple (VLDM and VSTM).
• Transfer between extension registers and AArch32 general-purpose registers (VMOV).

Related concepts
B1.18 Flush-to-zero mode in Advanced SIMD on page B1-108
Related reference
C3.9 VABS on page C3-455
C4.2 VABS (floating-point) on page C4-603
C3.41 VDUP on page C3-487
C3.54 VLDM on page C3-503
C3.55 VLDR on page C3-504
C3.69 VMOV (register) on page C3-518
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-519
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-520
C3.139 VSWP on page C3-590

B1 Advanced SIMD Programming
B1.21 Advanced SIMD operations not affected by flush-to-zero mode

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-111
Non-Confidential

B1 Advanced SIMD Programming
B1.21 Advanced SIMD operations not affected by flush-to-zero mode

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B1-112
Non-Confidential

Chapter B2
Floating-point Programming

Describes floating-point assembly language programming.

It contains the following sections:
• B2.1 Architecture support for floating-point on page B2-114.
• B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-115.
• B2.3 Extension register bank mapping in AArch64 state on page B2-117.
• B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118.
• B2.5 Views of the floating-point extension register bank in AArch64 state on page B2-119.
• B2.6 Differences between A32/T32 and A64 floating-point instruction syntax on page B2-120.
• B2.7 Load values to floating-point registers on page B2-121.
• B2.8 Conditional execution of A32/T32 floating-point instructions on page B2-122.
• B2.9 Floating-point exceptions for floating-point in A32/T32 instructions on page B2-123.
• B2.10 Floating-point data types in A32/T32 instructions on page B2-124.
• B2.11 Extended notation extension for floating-point in A32/T32 code on page B2-125.
• B2.12 Floating-point system registers in AArch32 state on page B2-126.
• B2.13 Flush-to-zero mode in floating-point on page B2-127.
• B2.14 When to use flush-to-zero mode in floating-point on page B2-128.
• B2.15 The effects of using flush-to-zero mode in floating-point on page B2-129.
• B2.16 Floating-point operations not affected by flush-to-zero mode on page B2-130.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-113
Non-Confidential

B2.1 Architecture support for floating-point
Floating-point is an optional extension to the Arm architecture. There are versions that provide additional
instructions.

The floating-point instruction set supported in A32 is based on VFPv4, but with the addition of some
new instructions, including the following:
• Floating-point round to integral.
• Conversion from floating-point to integer with a directed rounding mode.
• Direct conversion between half-precision and double-precision floating-point.
• Floating-point conditional select.

In AArch32 state, the register bank consists of thirty-two 64-bit registers, and smaller registers are
packed into larger ones, as in Armv7 and earlier.

In AArch64 state, the register bank includes thirty-two 128-bit registers and has a new register packing
model.

Floating point instructions in A64 are closely based on VFPv4 and A32, but with new instruction
mnemonics and some functional enhancements.

B2 Floating-point Programming
B2.1 Architecture support for floating-point

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-114
Non-Confidential

B2.2 Extension register bank mapping for floating-point in AArch32 state
The floating-point extension register bank is a collection of registers that can be accessed as either 32-bit
or 64-bit registers. It is distinct from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers. For example, the 64-bit register D0 is an alias for two consecutive 32-bit registers
S0 and S1. The 64-bit registers D16 and D17 do not have an alias.

D0

D3

D31

D30

S0

S1

S2

S3

S4

S5

S28

S29

S6

S7

S30

S31

...

D1

D2

D14

D15

D16

D17

...

...

Figure B2-1 Extension register bank for floating-point in AArch32 state

The aliased views enable half-precision, single-precision, and double-precision values to coexist in
different non-overlapped registers at the same time.

You can also use the same overlapped registers to store half-precision, single-precision, and double-
precision values at different times.

Do not attempt to use overlapped 32-bit and 64-bit registers at the same time because it creates
meaningless results.

The mapping between the registers is as follows:
• S<2n> maps to the least significant half of D<n>
• S<2n+1> maps to the most significant half of D<n>

For example, you can access the least significant half of register D6 by referring to S12, and the most
significant half of D6 by referring to S13.

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-115
Non-Confidential

Related concepts
B2.4 Views of the floating-point extension register bank in AArch32 state on page B2-118

B2 Floating-point Programming
B2.2 Extension register bank mapping for floating-point in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-116
Non-Confidential

B2.3 Extension register bank mapping in AArch64 state
The extension register bank is a collection of registers that can be accessed as 16-bit, 32-bit, or 64-bit. It
is distinct from the Arm core register bank.

The following figure shows the views of the extension register bank, and the overlap between the
different size registers.

D0

D31

S0

S1

S7

...

D1

D7

D8

...

...

S8

S31

...

H0

H1

H7

...

H8

H31

...

Figure B2-2 Extension register bank for floating-point in AArch64 state

The mapping between the registers is as follows:
• S<n> maps to the least significant half of D<n>
• H<n> maps to the least significant half of S<n>

For example, you can access the least significant half of register D7 by referring to S7.

Related concepts
B2.5 Views of the floating-point extension register bank in AArch64 state on page B2-119

B2 Floating-point Programming
B2.3 Extension register bank mapping in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-117
Non-Confidential

B2.4 Views of the floating-point extension register bank in AArch32 state
Floating-point can have different views of the extension register bank in AArch32 state.

The floating-point extension register bank can be viewed as:
• Thirty-two 64-bit registers, D0-D31.
• Thirty-two 32-bit registers, S0-S31. Only half of the register bank is accessible in this view.
• A combination of registers from these views.

64-bit floating-point registers are called double-precision registers and can contain double-precision
floating-point values. 32-bit floating-point registers are called single-precision registers and can contain
either a single-precision or two half-precision floating-point values.

Related concepts
B2.2 Extension register bank mapping for floating-point in AArch32 state on page B2-115

B2 Floating-point Programming
B2.4 Views of the floating-point extension register bank in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-118
Non-Confidential

B2.5 Views of the floating-point extension register bank in AArch64 state
Floating-point can have different views of the extension register bank in AArch64 state.

The floating-point extension register bank can be viewed as:
• Thirty-two 64-bit registers D0-D31.
• Thirty-two 32-bit registers S0-S31.
• Thirty-two 16-bit registers H0-H31.
• A combination of registers from these views.

Related concepts
B2.3 Extension register bank mapping in AArch64 state on page B2-117

B2 Floating-point Programming
B2.5 Views of the floating-point extension register bank in AArch64 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-119
Non-Confidential

B2.6 Differences between A32/T32 and A64 floating-point instruction syntax
The syntax and mnemonics of A64 floating-point instructions are based on those in A32/T32 but with
some differences.

The following table describes the main differences.

Table B2-1 Differences in syntax and mnemonics between A32/T32 and A64 floating-point instructions

A32/T32 A64

All floating-point instruction mnemonics begin with V, for
example VMAX.

The first letter of the instruction mnemonic indicates the data type of
the instruction. For example, SMAX, UMAX, and FMAX mean signed,
unsigned, and floating-point respectively. No suffix means the type is
irrelevant and P means polynomial.

A mnemonic qualifier specifies the type and width of elements
in a vector. For example, in the following instruction, U32
means 32-bit unsigned integers:

VMAX.U32 Q0, Q1, Q2

A register qualifier specifies the data width and the number of
elements in the register. For example, in the following instruction .4S
means 4 32-bit elements:

UMAX V0.4S, V1.4S, V2.4S

You can append a condition code to most floating-point
instruction mnemonics to make them conditional.

A64 has no conditionally executed floating-point instructions.

The floating-point select instruction, VSEL, is unconditionally
executed but uses a condition code as an operand. You append
the condition code to the mnemonic, for example:

VSELEQ.F32 S1,S2,S3

There are several floating-point instructions that use a condition code
as an operand. You specify the condition code in the final operand
position, for example:

FCSEL S1,S2,S3,EQ

The P mnemonic qualifier which indicates pairwise
instructions is a prefix, for example, VPADD.

The P mnemonic qualifier is a suffix, for example ADDP.

B2 Floating-point Programming
B2.6 Differences between A32/T32 and A64 floating-point instruction syntax

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-120
Non-Confidential

B2.7 Load values to floating-point registers
To load a register with a floating-point immediate value, use VMOV in A32 or FMOV in A64. Both
instructions exist in scalar and vector forms.

Related reference
VLDR pseudo-instruction (floating-point)
C4.22 VMOV (floating-point) on page C4-623
D4.32 FMOV (scalar, immediate) on page D4-1067

B2 Floating-point Programming
B2.7 Load values to floating-point registers

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-121
Non-Confidential

B2.8 Conditional execution of A32/T32 floating-point instructions
You can execute floating-point instructions conditionally, in the same way as most A32 and T32
instructions.

You cannot use any of the following floating-point instructions in an IT block:
• VRINT{A, N, P, M}.
• VSEL.
• VCVT{A, N, P, M}.
• VMAXNM.
• VMINNM.

In addition, specifying any other floating-point instruction in an IT block is deprecated.

Most A32 floating-point instructions can be conditionally executed, by appending a condition code suffix
to the instruction.

Related concepts
C1.2 Conditional execution in A32 code on page C1-135
C1.3 Conditional execution in T32 code on page C1-136
Related reference
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C1.9 Condition code suffixes on page C1-142

B2 Floating-point Programming
B2.8 Conditional execution of A32/T32 floating-point instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-122
Non-Confidential

B2.9 Floating-point exceptions for floating-point in A32/T32 instructions
The floating-point extension records floating-point exceptions in the FPSCR cumulative flags.

It records the following exceptions:

Invalid operation
The exception is caused if the result of an operation has no mathematical value or cannot be
represented.

Division by zero
The exception is caused if a divide operation has a zero divisor and a dividend that is not zero,
an infinity or a NaN.

Overflow
The exception is caused if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow
The exception is caused if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision,
and the rounded result is inexact.

Inexact
The exception is caused if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

Input denormal
The exception is caused if a denormalized input operand is replaced in the computation by a
zero.

The descriptions of the floating-point instructions that can cause floating-point exceptions include a
subsection listing the exceptions. If there is no such subsection, that instruction cannot cause any
floating-point exception.

Related concepts
B2.13 Flush-to-zero mode in floating-point on page B2-127
Related reference
Chapter C4 Floating-point Instructions (32-bit) on page C4-599
Related information
Arm Architecture Reference Manual

B2 Floating-point Programming
B2.9 Floating-point exceptions for floating-point in A32/T32 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-123
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2.10 Floating-point data types in A32/T32 instructions
Most floating-point instructions use a data type specifier to define the size and type of data that the
instruction operates on.

Data type specifiers in floating-point instructions consist of a letter indicating the type of data, usually
followed by a number indicating the width. They are separated from the instruction mnemonic by a
point.

The following data types are available in floating-point instructions:

16-bit
F16

32-bit
F32 (or F)

64-bit
F64 (or D)

The datatype of the second (or only) operand is specified in the instruction.
 Note

• Most instructions have a restricted range of permitted data types. See the instruction descriptions for
details. However, the data type description is flexible:
— If the description specifies I, you can also use the S or U data types.
— If only the data size is specified, you can specify a type (S, U, P or F).
— If no data type is specified, you can specify a data type.

Related concepts
B1.11 Polynomial arithmetic over {0,1} on page B1-101

B2 Floating-point Programming
B2.10 Floating-point data types in A32/T32 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-124
Non-Confidential

B2.11 Extended notation extension for floating-point in A32/T32 code
armasm implements an extension to the architectural floating-point assembly syntax, called extended
notation. This extension allows you to include datatype information or scalar indexes in register names.

 Note

Extended notation is not supported for A64 code.

If you use extended notation, you do not have to include the data type or scalar index information in
every instruction.

Register names can be any of the following:

Untyped
The register name specifies the register, but not what datatype it contains, nor any index to a
particular scalar within the register.

Untyped with scalar index
The register name specifies the register, but not what datatype it contains, It specifies an index to
a particular scalar within the register.

Typed
The register name specifies the register, and what datatype it contains, but not any index to a
particular scalar within the register.

Typed with scalar index
The register name specifies the register, what datatype it contains, and an index to a particular
scalar within the register.

Use the SN and DN directives to define names for typed and scalar registers.

Related concepts
B2.10 Floating-point data types in A32/T32 instructions on page B2-124

B2 Floating-point Programming
B2.11 Extended notation extension for floating-point in A32/T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-125
Non-Confidential

B2.12 Floating-point system registers in AArch32 state
Floating-point system registers are accessible in all implementations of floating-point.

For exception levels using AArch32, the following floating-point system registers are accessible in all
floating-point implementations:
• FPSCR, the floating-point status and control register.
• FPEXC, the floating-point exception register.
• FPSID, the floating-point system ID register.

A particular floating-point implementation can have additional registers. For more information, see the
Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual

B2 Floating-point Programming
B2.12 Floating-point system registers in AArch32 state

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-126
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

B2.13 Flush-to-zero mode in floating-point
Flush-to-zero mode replaces denormalized numbers with zero. This does not comply with IEEE 754
arithmetic, but in some circumstances can improve performance considerably.

Some implementations of floating-point use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much less than it is in
normal calculations.

Flush-to-zero mode in floating-point always preserves the sign bit.

Related concepts
B2.15 The effects of using flush-to-zero mode in floating-point on page B2-129
Related reference
B2.14 When to use flush-to-zero mode in floating-point on page B2-128
B2.16 Floating-point operations not affected by flush-to-zero mode on page B2-130

B2 Floating-point Programming
B2.13 Flush-to-zero mode in floating-point

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-127
Non-Confidential

B2.14 When to use flush-to-zero mode in floating-point
You can change between flush-to-zero mode and normal mode, depending on the requirements of
different parts of your code.

You must select flush-to-zero mode if all the following are true:
• IEEE 754 compliance is not a requirement for your system.
• The algorithms you are using sometimes generate denormalized numbers.
• Your system uses support code to handle denormalized numbers.
• The algorithms you are using do not depend for their accuracy on the preservation of denormalized

numbers.
• The algorithms you are using do not generate frequent exceptions as a result of replacing

denormalized numbers with 0.

You select flush-to-zero mode in one of the following ways:
• In A32 code, by setting the FZ bit in the FPSCR to 1. You do this using the VMRS and VMSR

instructions.
• In A64 code, by setting the FZ bit in the FPCR to 1. You do this using the MRS and MSR instructions.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have
different requirements. Numbers already in registers are not affected by changing mode.

Related concepts
B2.13 Flush-to-zero mode in floating-point on page B2-127
B2.15 The effects of using flush-to-zero mode in floating-point on page B2-129

B2 Floating-point Programming
B2.14 When to use flush-to-zero mode in floating-point

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-128
Non-Confidential

B2.15 The effects of using flush-to-zero mode in floating-point
In flush-to-zero mode, denormalized inputs are treated as zero. Results that are too small to be
represented in a normalized number are replaced with zero.

With certain exceptions, flush-to-zero mode has the following effects on floating-point operations:
• A denormalized number is treated as 0 when used as an input to a floating-point operation. The

source register is not altered.
• If the result of a single-precision floating-point operation, before rounding, is in the range -2-126 to

+2-126, it is replaced by 0.
• If the result of a double-precision floating-point operation, before rounding, is in the range -2-1022 to

+2-1022, it is replaced by 0.

In flush-to-zero mode, an Input Denormal exception occurs whenever a denormalized number is used as
an operand. An Underflow exception occurs when a result is flushed-to-zero.

Related concepts
B2.13 Flush-to-zero mode in floating-point on page B2-127
Related reference
B2.16 Floating-point operations not affected by flush-to-zero mode on page B2-130

B2 Floating-point Programming
B2.15 The effects of using flush-to-zero mode in floating-point

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-129
Non-Confidential

B2.16 Floating-point operations not affected by flush-to-zero mode
Some floating-point instructions can be carried out on denormalized numbers even in flush-to-zero
mode, without flushing the results to zero.

These instructions are as follows:
• Absolute value and negate (VABS and VNEG).
• Load and store (VLDR and VSTR).
• Load multiple and store multiple (VLDM and VSTM).
• Transfer between extension registers and general-purpose registers (VMOV).

Related concepts
B2.13 Flush-to-zero mode in floating-point on page B2-127
Related reference
C4.2 VABS (floating-point) on page C4-603
C4.14 VLDM (floating-point) on page C4-615
C4.15 VLDR (floating-point) on page C4-616
C4.38 VSTM (floating-point) on page C4-639
C4.39 VSTR (floating-point) on page C4-640
C3.54 VLDM on page C3-503
C3.55 VLDR on page C3-504
C3.131 VSTM on page C3-580
C3.134 VSTR on page C3-585
C4.23 VMOV (between one general-purpose register and single precision floating-point register)
on page C4-624
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-519
C4.29 VNEG (floating-point) on page C4-630
C3.83 VNEG on page C3-532

B2 Floating-point Programming
B2.16 Floating-point operations not affected by flush-to-zero mode

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. B2-130
Non-Confidential

Part C
A32/T32 Instruction Set Reference

Chapter C1
Condition Codes

Describes condition codes and conditional execution of A32 and T32 code.

It contains the following sections:
• C1.1 Conditional instructions on page C1-134.
• C1.2 Conditional execution in A32 code on page C1-135.
• C1.3 Conditional execution in T32 code on page C1-136.
• C1.4 Condition flags on page C1-137.
• C1.5 Updates to the condition flags in A32/T32 code on page C1-138.
• C1.6 Floating-point instructions that update the condition flags on page C1-139.
• C1.7 Carry flag on page C1-140.
• C1.8 Overflow flag on page C1-141.
• C1.9 Condition code suffixes on page C1-142.
• C1.10 Condition code suffixes and related flags on page C1-143.
• C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144.
• C1.12 Benefits of using conditional execution in A32 and T32 code on page C1-146.
• C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

on page C1-147.
• C1.14 Optimization for execution speed on page C1-150.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-133
Non-Confidential

C1.1 Conditional instructions
A32 and T32 instructions can execute conditionally on the condition flags set by a previous instruction.

The conditional instruction can occur either:

• Immediately after the instruction that updated the flags.
• After any number of intervening instructions that have not updated the flags.

In AArch32 state, whether an instruction can be conditional or not depends on the instruction set state
that the processor is in.

To make an instruction conditional, you must add a condition code suffix to the instruction mnemonic.
The condition code suffix enables the processor to test a condition based on the flags. If the condition test
of a conditional instruction fails, the instruction:
• Does not execute.
• Does not write any value to its destination register.
• Does not affect any of the flags.
• Does not generate any exception.

Related concepts
C1.2 Conditional execution in A32 code on page C1-135
C1.3 Conditional execution in T32 code on page C1-136
Related reference
C1.10 Condition code suffixes and related flags on page C1-143
C1.5 Updates to the condition flags in A32/T32 code on page C1-138

C1 Condition Codes
C1.1 Conditional instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-134
Non-Confidential

C1.2 Conditional execution in A32 code
Almost all A32 instructions can be executed conditionally on the value of the condition flags in the
APSR. You can either add a condition code suffix to the instruction or you can conditionally skip over
the instruction using a conditional branch instruction.

Using conditional branch instructions to control the flow of execution can be more efficient when a
series of instructions depend on the same condition.

Conditional instructions to control execution

; flags set by a previous instruction
 LSLEQ r0, r0, #24
 ADDEQ r0, r0, #2
 ;…

Conditional branch to control execution

; flags set by a previous instruction
 BNE over
 LSL r0, r0, #24
 ADD r0, r0, #2
over
 ;…

Related concepts
C1.3 Conditional execution in T32 code on page C1-136

C1 Condition Codes
C1.2 Conditional execution in A32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-135
Non-Confidential

C1.3 Conditional execution in T32 code
In T32 code, there are several ways to achieve conditional execution. You can conditionally skip over the
instruction using a conditional branch instruction.

Instructions can also be conditionally executed by using either of the following:

• CBZ and CBNZ.
• The IT (If-Then) instruction.

The T32 CBZ (Conditional Branch on Zero) and CBNZ (Conditional Branch on Non-Zero) instructions
compare the value of a register against zero and branch on the result.

IT is a 16-bit instruction that enables a single subsequent 16-bit T32 instruction from a restricted set to
be conditionally executed, based on the value of the condition flags, and the condition code suffix
specified.

Conditional instructions using IT block

; flags set by a previous instruction
 IT EQ
 LSLEQ r0, r0, #24
 ;…

The use of the IT instruction is deprecated when any of the following are true:
• There is more than one instruction in the IT block.
• There is a 32-bit instruction in the IT block.
• The instruction in the IT block references the PC.

Related concepts
C1.2 Conditional execution in A32 code on page C1-135
Related reference
C2.44 IT on page C2-222
C2.23 CBZ and CBNZ on page C2-195

C1 Condition Codes
C1.3 Conditional execution in T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-136
Non-Confidential

C1.4 Condition flags
The N, Z, C, and V condition flags are held in the APSR.

The condition flags are held in the APSR. They are set or cleared as follows:

N
Set to 1 when the result of the operation is negative, cleared to 0 otherwise.

Z
Set to 1 when the result of the operation is zero, cleared to 0 otherwise.

C
Set to 1 when the operation results in a carry, or when a subtraction results in no borrow, cleared
to 0 otherwise.

V
Set to 1 when the operation causes overflow, cleared to 0 otherwise.

C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a

borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-addition/subtractions that incorporate a shift operation, C is set to the last bit shifted out of

the value by the shifter.
• For other non-addition/subtractions, C is normally left unchanged, but see the individual instruction

descriptions for any special cases.

Overflow occurs if the result of a signed add, subtract, or compare is greater than or equal to 231, or less
than -231.

Related reference
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
C1.10 Condition code suffixes and related flags on page C1-143
D1.3 Updates to the condition flags in A64 code on page D1-650
D1.8 Condition code suffixes and related flags on page D1-655

C1 Condition Codes
C1.4 Condition flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-137
Non-Confidential

C1.5 Updates to the condition flags in A32/T32 code
In AArch32 state, the condition flags are held in the Application Program Status Register (APSR). You
can read and modify the flags using the read-modify-write procedure.

Most A32 and T32 data processing instructions have an option to update the condition flags according to
the result of the operation. Instructions with the optional S suffix update the flags. Conditional
instructions that are not executed have no effect on the flags.

Which flags are updated depends on the instruction. Some instructions update all flags, and some update
a subset of the flags. If a flag is not updated, the original value is preserved. The description of each
instruction mentions the effect that it has on the flags.

 Note

Most instructions update the condition flags only if the S suffix is specified. The instructions CMP, CMN,
TEQ, and TST always update the flags.

Related concepts
C1.1 Conditional instructions on page C1-134
Related reference
C1.4 Condition flags on page C1-137
D1.3 Updates to the condition flags in A64 code on page D1-650
C1.10 Condition code suffixes and related flags on page C1-143
Chapter C2 A32 and T32 Instructions on page C2-151

C1 Condition Codes
C1.5 Updates to the condition flags in A32/T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-138
Non-Confidential

C1.6 Floating-point instructions that update the condition flags
The only A32/T32 floating-point instructions that can update the condition flags are VCMP and VCMPE.
Other floating-point or Advanced SIMD instructions cannot modify the flags.

VCMP and VCMPE do not update the flags directly, but update a separate set of flags in the Floating-Point
Status and Control Register (FPSCR). To use these flags to control conditional instructions, including
conditional floating-point instructions, you must first update the condition flags yourself. To do this,
copy the flags from the FPSCR into the APSR using a VMRS instruction:

VMRS APSR_nzcv, FPSCR

Related concepts
C1.7 Carry flag on page C1-140
C1.8 Overflow flag on page C1-141
Related reference
D1.3 Updates to the condition flags in A64 code on page D1-650
C4.4 VCMP, VCMPE on page C4-605
C3.75 VMRS on page C3-524
C4.26 VMRS (floating-point) on page C4-627
Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.6 Floating-point instructions that update the condition flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-139
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.7 Carry flag
The carry (C) flag is set when an operation results in a carry, or when a subtraction results in no borrow.

In A32/T32 code, C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a

borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-additions/subtractions that incorporate a shift operation, C is set to the last bit shifted out of

the value by the shifter.
• For other non-additions/subtractions, C is normally left unchanged, but see the individual instruction

descriptions for any special cases.
• The floating-point compare instructions, VCMP and VCMPE set the C flag and the other condition flags

in the FPSCR to the result of the comparison.

Related concepts
C1.8 Overflow flag on page C1-141
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
A3.5 Predeclared core register names in AArch64 state on page A3-76
C1.10 Condition code suffixes and related flags on page C1-143
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
D1.3 Updates to the condition flags in A64 code on page D1-650

C1 Condition Codes
C1.7 Carry flag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-140
Non-Confidential

C1.8 Overflow flag
Overflow can occur for add, subtract, and compare operations.

In A32/T32 code, overflow occurs if the result of the operation is greater than or equal to 231, or less than
-231.

Related concepts
C1.7 Carry flag on page C1-140
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
D1.3 Updates to the condition flags in A64 code on page D1-650

C1 Condition Codes
C1.8 Overflow flag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-141
Non-Confidential

C1.9 Condition code suffixes
Instructions that can be conditional have an optional two character condition code suffix.

Condition codes are shown in syntax descriptions as {cond}. The following table shows the condition
codes that you can use:

Table C1-1 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)

 Note

The meaning of some of these condition codes depends on whether the instruction that last updated the
condition flags is a floating-point or integer instruction.

Related reference
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C2.44 IT on page C2-222
C3.75 VMRS on page C3-524
C4.26 VMRS (floating-point) on page C4-627

C1 Condition Codes
C1.9 Condition code suffixes

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-142
Non-Confidential

C1.10 Condition code suffixes and related flags
Condition code suffixes define the conditions that must be met for the instruction to execute.

The following table shows the condition codes that you can use and the flag settings they depend on:

Table C1-2 Condition code suffixes and related flags

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally omitted.

The optional condition code is shown in syntax descriptions as {cond}. This condition is encoded in A32
instructions. For T32 instructions, the condition is encoded in a preceding IT instruction. An instruction
with a condition code is only executed if the condition flags meet the specified condition.

The following is an example of conditional execution in A32 code:

 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags
 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags
 ADDSCS r0, r1, r2 ; If C flag set then r0 = r1 + r2,
 ; and update flags
 CMP r0, r1 ; update flags based on r0-r1.

Related concepts
C1.1 Conditional instructions on page C1-134
Related reference
C1.4 Condition flags on page C1-137
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
D1.3 Updates to the condition flags in A64 code on page D1-650
Chapter C2 A32 and T32 Instructions on page C2-151

C1 Condition Codes
C1.10 Condition code suffixes and related flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-143
Non-Confidential

C1.11 Comparison of condition code meanings in integer and floating-point code
The meaning of the condition code mnemonic suffixes depends on whether the condition flags were set
by a floating-point instruction or by an A32 or T32 data processing instruction.

This is because:
• Floating-point values are never unsigned, so the unsigned conditions are not required.
• Not-a-Number (NaN) values have no ordering relationship with numbers or with each other, so

additional conditions are required to account for unordered results.

The meaning of the condition code mnemonic suffixes is shown in the following table:

Table C1-3 Condition codes

Suffix Meaning after integer data processing instruction Meaning after floating-point instruction

EQ Equal Equal

NE Not equal Not equal, or unordered

CS Carry set Greater than or equal, or unordered

HS Unsigned higher or same Greater than or equal, or unordered

CC Carry clear Less than

LO Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal, or unordered

VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unordered

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or unordered

AL Always (normally omitted) Always (normally omitted)

 Note

The type of the instruction that last updated the condition flags determines the meaning of the condition
codes.

Related concepts
C1.1 Conditional instructions on page C1-134
Related reference
C1.10 Condition code suffixes and related flags on page C1-143
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
D1.3 Updates to the condition flags in A64 code on page D1-650
C4.4 VCMP, VCMPE on page C4-605
C3.75 VMRS on page C3-524

C1 Condition Codes
C1.11 Comparison of condition code meanings in integer and floating-point code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-144
Non-Confidential

C4.26 VMRS (floating-point) on page C4-627
Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.11 Comparison of condition code meanings in integer and floating-point code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-145
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.12 Benefits of using conditional execution in A32 and T32 code
It can be more efficient to use conditional instructions rather than conditional branches.

You can use conditional execution of A32 instructions to reduce the number of branch instructions in
your code, and improve code density. The IT instruction in T32 achieves a similar improvement.

Branch instructions are also expensive in processor cycles. On Arm processors without branch prediction
hardware, it typically takes three processor cycles to refill the processor pipeline each time a branch is
taken.

Some Arm processors have branch prediction hardware. In systems using these processors, the pipeline
only has to be flushed and refilled when there is a misprediction.

Related concepts
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code on page C1-147

C1 Condition Codes
C1.12 Benefits of using conditional execution in A32 and T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-146
Non-Confidential

C1.13 Example showing the benefits of conditional instructions in A32 and T32
code

Using conditional instructions rather than conditional branches can save both code size and cycles.

This example shows the difference between using branches and using conditional instructions. It uses the
Euclid algorithm for the Greatest Common Divisor (gcd) to show how conditional instructions improve
code size and speed.

In C the gcd algorithm can be expressed as:

int gcd(int a, int b)
{
 while (a != b)
 {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

The following examples show implementations of the gcd algorithm with and without conditional
instructions.

Example of conditional execution using branches in A32 code

This example is an A32 code implementation of the gcd algorithm. It achieves conditional execution by
using conditional branches, rather than individual conditional instructions:

gcd CMP r0, r1
 BEQ end
 BLT less
 SUBS r0, r0, r1 ; could be SUB r0, r0, r1 for A32
 B gcd
less
 SUBS r1, r1, r0 ; could be SUB r1, r1, r0 for A32
 B gcd
end

The code is seven instructions long because of the number of branches. Every time a branch is taken, the
processor must refill the pipeline and continue from the new location. The other instructions and non-
executed branches use a single cycle each.

The following table shows the number of cycles this implementation uses on an Arm7™ processor when
R0 equals 1 and R1 equals 2.

Table C1-4 Conditional branches only

R0: a R1: b Instruction Cycles (Arm7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-147
Non-Confidential

Example of conditional execution using conditional instructions in A32 code

This example is an A32 code implementation of the gcd algorithm using individual conditional
instructions in A32 code. The gcd algorithm only takes four instructions:

gcd
 CMP r0, r1
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

In addition to improving code size, in most cases this code executes faster than the version that uses only
branches.

The following table shows the number of cycles this implementation uses on an Arm7 processor when
R0 equals 1 and R1 equals 2.

Table C1-5 All instructions conditional

R0: a R1: b Instruction Cycles (Arm7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1 (not executed)

1 1 BNE gcd 1 (not executed)

Total = 10

Comparing this with the example that uses only branches:
• Replacing branches with conditional execution of all instructions saves three cycles.
• Where R0 equals R1, both implementations execute in the same number of cycles. For all other cases,

the implementation that uses conditional instructions executes in fewer cycles than the
implementation that uses branches only.

Example of conditional execution using conditional instructions in T32 code

You can use the IT instruction to write conditional instructions in T32 code. The T32 code
implementation of the gcd algorithm using conditional instructions is similar to the implementation in
A32 code. The implementation in T32 code is:

gcd
 CMP r0, r1
 ITE GT
 SUBGT r0, r0, r1
 SUBLE r1, r1, r0
 BNE gcd

These instructions assemble equally well to A32 or T32 code. The assembler checks the IT instructions,
but omits them on assembly to A32 code.

It requires one more instruction in T32 code (the IT instruction) than in A32 code, but the overall code
size is 10 bytes in T32 code, compared with 16 bytes in A32 code.

Example of conditional execution code using branches in T32 code

In architectures before Armv6T2, there is no IT instruction and therefore T32 instructions cannot be
executed conditionally except for the B branch instruction. The gcd algorithm must be written with

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-148
Non-Confidential

conditional branches and is similar to the A32 code implementation using branches, without conditional
instructions.

The T32 code implementation of the gcd algorithm without conditional instructions requires seven
instructions. The overall code size is 14 bytes. This figure is even less than the A32 implementation that
uses conditional instructions, which uses 16 bytes.

In addition, on a system using 16-bit memory this T32 implementation runs faster than both A32
implementations because only one memory access is required for each 16-bit T32 instruction, whereas
each 32-bit A32 instruction requires two fetches.

Related concepts
C1.12 Benefits of using conditional execution in A32 and T32 code on page C1-146
C1.14 Optimization for execution speed on page C1-150
Related reference
C2.44 IT on page C2-222
C1.10 Condition code suffixes and related flags on page C1-143
Related information
Arm Architecture Reference Manual

C1 Condition Codes
C1.13 Example showing the benefits of conditional instructions in A32 and T32 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-149
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C1.14 Optimization for execution speed
To optimize code for execution speed you must have detailed knowledge of the instruction timings,
branch prediction logic, and cache behavior of your target system.

For more information, see the Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual
Further reading

C1 Condition Codes
C1.14 Optimization for execution speed

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C1-150
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374245422802.html

Chapter C2
A32 and T32 Instructions

Describes the A32 and T32 instructions supported in AArch32 state.

It contains the following sections:
• C2.1 A32 and T32 instruction summary on page C2-156.
• C2.2 Instruction width specifiers on page C2-161.
• C2.3 Flexible second operand (Operand2) on page C2-162.
• C2.4 Syntax of Operand2 as a constant on page C2-163.
• C2.5 Syntax of Operand2 as a register with optional shift on page C2-164.
• C2.6 Shift operations on page C2-165.
• C2.7 Saturating instructions on page C2-168.
• C2.8 ADC on page C2-169.
• C2.9 ADD on page C2-171.
• C2.10 ADR (PC-relative) on page C2-174.
• C2.11 ADR (register-relative) on page C2-176.
• C2.12 AND on page C2-178.
• C2.13 ASR on page C2-180.
• C2.14 B on page C2-182.
• C2.15 BFC on page C2-184.
• C2.16 BFI on page C2-185.
• C2.17 BIC on page C2-186.
• C2.18 BKPT on page C2-188.
• C2.19 BL on page C2-189.
• C2.20 BLX, BLXNS on page C2-190.
• C2.21 BX, BXNS on page C2-192.
• C2.22 BXJ on page C2-194.
• C2.23 CBZ and CBNZ on page C2-195.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-151
Non-Confidential

• C2.24 CDP and CDP2 on page C2-196.
• C2.25 CLREX on page C2-197.
• C2.26 CLZ on page C2-198.
• C2.27 CMP and CMN on page C2-199.
• C2.28 CPS on page C2-201.
• C2.29 CRC32 on page C2-203.
• C2.30 CRC32C on page C2-204.
• C2.31 CSDB on page C2-205.
• C2.32 DBG on page C2-207.
• C2.33 DCPS1 (T32 instruction) on page C2-208.
• C2.34 DCPS2 (T32 instruction) on page C2-209.
• C2.35 DCPS3 (T32 instruction) on page C2-210.
• C2.36 DMB on page C2-211.
• C2.37 DSB on page C2-213.
• C2.38 EOR on page C2-215.
• C2.39 ERET on page C2-217.
• C2.40 ESB on page C2-218.
• C2.41 HLT on page C2-219.
• C2.42 HVC on page C2-220.
• C2.43 ISB on page C2-221.
• C2.44 IT on page C2-222.
• C2.45 LDA on page C2-225.
• C2.46 LDAEX on page C2-226.
• C2.47 LDC and LDC2 on page C2-228.
• C2.48 LDM on page C2-230.
• C2.49 LDR (immediate offset) on page C2-232.
• C2.50 LDR (PC-relative) on page C2-234.
• C2.51 LDR (register offset) on page C2-236.
• C2.52 LDR (register-relative) on page C2-238.
• C2.53 LDR, unprivileged on page C2-240.
• C2.54 LDREX on page C2-242.
• C2.55 LSL on page C2-244.
• C2.56 LSR on page C2-246.
• C2.57 MCR and MCR2 on page C2-248.
• C2.58 MCRR and MCRR2 on page C2-249.
• C2.59 MLA on page C2-250.
• C2.60 MLS on page C2-251.
• C2.61 MOV on page C2-252.
• C2.62 MOVT on page C2-254.
• C2.63 MRC and MRC2 on page C2-255.
• C2.64 MRRC and MRRC2 on page C2-256.
• C2.65 MRS (PSR to general-purpose register) on page C2-257.
• C2.66 MRS (system coprocessor register to general-purpose register) on page C2-259.
• C2.67 MSR (general-purpose register to system coprocessor register) on page C2-260.
• C2.68 MSR (general-purpose register to PSR) on page C2-261.
• C2.69 MUL on page C2-263.
• C2.70 MVN on page C2-264.
• C2.71 NOP on page C2-266.
• C2.72 ORN (T32 only) on page C2-267.
• C2.73 ORR on page C2-268.
• C2.74 PKHBT and PKHTB on page C2-270.
• C2.75 PLD, PLDW, and PLI on page C2-272.
• C2.76 POP on page C2-274.
• C2.77 PUSH on page C2-275.
• C2.78 QADD on page C2-276.
• C2.79 QADD8 on page C2-277.

C2 A32 and T32 Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-152
Non-Confidential

• C2.80 QADD16 on page C2-278.
• C2.81 QASX on page C2-279.
• C2.82 QDADD on page C2-280.
• C2.83 QDSUB on page C2-281.
• C2.84 QSAX on page C2-282.
• C2.85 QSUB on page C2-283.
• C2.86 QSUB8 on page C2-284.
• C2.87 QSUB16 on page C2-285.
• C2.88 RBIT on page C2-286.
• C2.89 REV on page C2-287.
• C2.90 REV16 on page C2-288.
• C2.91 REVSH on page C2-289.
• C2.92 RFE on page C2-290.
• C2.93 ROR on page C2-292.
• C2.94 RRX on page C2-294.
• C2.95 RSB on page C2-296.
• C2.96 RSC on page C2-298.
• C2.97 SADD8 on page C2-300.
• C2.98 SADD16 on page C2-302.
• C2.99 SASX on page C2-304.
• C2.100 SBC on page C2-306.
• C2.101 SBFX on page C2-308.
• C2.102 SDIV on page C2-309.
• C2.103 SEL on page C2-310.
• C2.104 SETEND on page C2-312.
• C2.105 SETPAN on page C2-313.
• C2.106 SEV on page C2-314.
• C2.107 SEVL on page C2-315.
• C2.108 SG on page C2-316.
• C2.109 SHADD8 on page C2-317.
• C2.110 SHADD16 on page C2-318.
• C2.111 SHASX on page C2-319.
• C2.112 SHSAX on page C2-320.
• C2.113 SHSUB8 on page C2-321.
• C2.114 SHSUB16 on page C2-322.
• C2.115 SMC on page C2-323.
• C2.116 SMLAxy on page C2-324.
• C2.117 SMLAD on page C2-326.
• C2.118 SMLAL on page C2-327.
• C2.119 SMLALD on page C2-328.
• C2.120 SMLALxy on page C2-329.
• C2.121 SMLAWy on page C2-331.
• C2.122 SMLSD on page C2-332.
• C2.123 SMLSLD on page C2-333.
• C2.124 SMMLA on page C2-334.
• C2.125 SMMLS on page C2-335.
• C2.126 SMMUL on page C2-336.
• C2.127 SMUAD on page C2-337.
• C2.128 SMULxy on page C2-338.
• C2.129 SMULL on page C2-339.
• C2.130 SMULWy on page C2-340.
• C2.131 SMUSD on page C2-341.
• C2.132 SRS on page C2-342.
• C2.133 SSAT on page C2-344.
• C2.134 SSAT16 on page C2-345.
• C2.135 SSAX on page C2-346.

C2 A32 and T32 Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-153
Non-Confidential

• C2.136 SSUB8 on page C2-348.
• C2.137 SSUB16 on page C2-350.
• C2.138 STC and STC2 on page C2-352.
• C2.139 STL on page C2-354.
• C2.140 STLEX on page C2-355.
• C2.141 STM on page C2-357.
• C2.142 STR (immediate offset) on page C2-359.
• C2.143 STR (register offset) on page C2-361.
• C2.144 STR, unprivileged on page C2-363.
• C2.145 STREX on page C2-365.
• C2.146 SUB on page C2-367.
• C2.147 SUBS pc, lr on page C2-370.
• C2.148 SVC on page C2-372.
• C2.149 SWP and SWPB on page C2-373.
• C2.150 SXTAB on page C2-374.
• C2.151 SXTAB16 on page C2-376.
• C2.152 SXTAH on page C2-378.
• C2.153 SXTB on page C2-380.
• C2.154 SXTB16 on page C2-382.
• C2.155 SXTH on page C2-383.
• C2.156 SYS on page C2-385.
• C2.157 TBB and TBH on page C2-386.
• C2.158 TEQ on page C2-387.
• C2.159 TST on page C2-389.
• C2.160 TT, TTT, TTA, TTAT on page C2-391.
• C2.161 UADD8 on page C2-393.
• C2.162 UADD16 on page C2-395.
• C2.163 UASX on page C2-397.
• C2.164 UBFX on page C2-399.
• C2.165 UDF on page C2-400.
• C2.166 UDIV on page C2-401.
• C2.167 UHADD8 on page C2-402.
• C2.168 UHADD16 on page C2-403.
• C2.169 UHASX on page C2-404.
• C2.170 UHSAX on page C2-405.
• C2.171 UHSUB8 on page C2-406.
• C2.172 UHSUB16 on page C2-407.
• C2.173 UMAAL on page C2-408.
• C2.174 UMLAL on page C2-409.
• C2.175 UMULL on page C2-410.
• C2.176 UQADD8 on page C2-411.
• C2.177 UQADD16 on page C2-412.
• C2.178 UQASX on page C2-413.
• C2.179 UQSAX on page C2-414.
• C2.180 UQSUB8 on page C2-415.
• C2.181 UQSUB16 on page C2-416.
• C2.182 USAD8 on page C2-417.
• C2.183 USADA8 on page C2-418.
• C2.184 USAT on page C2-419.
• C2.185 USAT16 on page C2-420.
• C2.186 USAX on page C2-421.
• C2.187 USUB8 on page C2-423.
• C2.188 USUB16 on page C2-425.
• C2.189 UXTAB on page C2-426.
• C2.190 UXTAB16 on page C2-428.
• C2.191 UXTAH on page C2-430.

C2 A32 and T32 Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-154
Non-Confidential

• C2.192 UXTB on page C2-432.
• C2.193 UXTB16 on page C2-434.
• C2.194 UXTH on page C2-435.
• C2.195 WFE on page C2-437.
• C2.196 WFI on page C2-438.
• C2.197 YIELD on page C2-439.

C2 A32 and T32 Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-155
Non-Confidential

C2.1 A32 and T32 instruction summary
An overview of the instructions available in the A32 and T32 instruction sets.

Table C2-1 Summary of instructions

Mnemonic Brief description

ADC, ADD Add with Carry, Add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic Shift Right

B Branch

BFC, BFI Bit Field Clear and Insert

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX, BLXNS Branch with Link, change instruction set, Branch with Link and Exchange (Non-secure)

BX, BXNS Branch, change instruction set, Branch and Exchange (Non-secure)

CBZ, CBNZ Compare and Branch if {Non}Zero

CDP Coprocessor Data Processing operation

CDP2 Coprocessor Data Processing operation

CLREX Clear Exclusive

CLZ Count leading zeros

CMN, CMP Compare Negative, Compare

CPS Change Processor State

CRC32 CRC32

CRC32C CRC32C

CSDB Consumption of Speculative Data Barrier

DBG Debug

DCPS1 Debug switch to exception level 1

DCPS2 Debug switch to exception level 2

DCPS3 Debug switch to exception level 3

DMB, DSB Data Memory Barrier, Data Synchronization Barrier

DSB Data Synchronization Barrier

EOR Exclusive OR

ERET Exception Return

ESB Error Synchronization Barrier

HLT Halting breakpoint

HVC Hypervisor Call

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-156
Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

ISB Instruction Synchronization Barrier

IT If-Then

LDAEX, LDAEXB, LDAEXH, LDAEXD Load-Acquire Register Exclusive Word, Byte, Halfword, Doubleword

LDC, LDC2 Load Coprocessor

LDM Load Multiple registers

LDR Load Register with word

LDA, LDAB, LDAH Load-Acquire Register Word, Byte, Halfword

LDRB Load Register with Byte

LDRBT Load Register with Byte, user mode

LDRD Load Registers with two words

LDREX, LDREXB, LDREXH, LDREXD Load Register Exclusive Word, Byte, Halfword, Doubleword

LDRH Load Register with Halfword

LDRHT Load Register with Halfword, user mode

LDRSB Load Register with Signed Byte

LDRSBT Load Register with Signed Byte, user mode

LDRSH Load Register with Signed Halfword

LDRSHT Load Register with Signed Halfword, user mode

LDRT Load Register with word, user mode

LSL, LSR Logical Shift Left, Logical Shift Right

MCR Move from Register to Coprocessor

MCRR Move from Registers to Coprocessor

MLA Multiply Accumulate

MLS Multiply and Subtract

MOV Move

MOVT Move Top

MRC Move from Coprocessor to Register

MRRC Move from Coprocessor to Registers

MRS Move from PSR to Register

MSR Move from Register to PSR

MUL Multiply

MVN Move Not

NOP No Operation

ORN Logical OR NOT

ORR Logical OR

PKHBT, PKHTB Pack Halfwords

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-157
Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

PLD Preload Data

PLDW Preload Data with intent to Write

PLI Preload Instruction

PUSH, POP PUSH registers to stack, POP registers from stack

QADD, QDADD, QDSUB, QSUB Saturating arithmetic

QADD8, QADD16, QASX, QSUB8, QSUB16,
QSAX

Parallel signed saturating arithmetic

RBIT Reverse Bits

REV, REV16, REVSH Reverse byte order

RFE Return From Exception

ROR Rotate Right Register

RRX Rotate Right with Extend

RSB Reverse Subtract

RSC Reverse Subtract with Carry

SADD8, SADD16, SASX Parallel Signed arithmetic

SBC Subtract with Carry

SBFX, UBFX Signed, Unsigned Bit Field eXtract

SDIV Signed Divide

SEL Select bytes according to APSR GE flags

SETEND Set Endianness for memory accesses

SETPAN Set Privileged Access Never

SEV Set Event

SEVL Set Event Locally

SG Secure Gateway

SHADD8, SHADD16, SHASX, SHSUB8,
SHSUB16, SHSAX

Parallel Signed Halving arithmetic

SMC Secure Monitor Call

SMLAxy Signed Multiply with Accumulate (32 <= 16 x 16 + 32)

SMLAD Dual Signed Multiply Accumulate

(32 <= 32 + 16 x 16 + 16 x 16)

SMLAL Signed Multiply Accumulate (64 <= 64 + 32 x 32)

SMLALxy Signed Multiply Accumulate (64 <= 64 + 16 x 16)

SMLALD Dual Signed Multiply Accumulate Long

(64 <= 64 + 16 x 16 + 16 x 16)

SMLAWy Signed Multiply with Accumulate (32 <= 32 x 16 + 32)

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-158
Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

SMLSD Dual Signed Multiply Subtract Accumulate

(32 <= 32 + 16 x 16 – 16 x 16)

SMLSLD Dual Signed Multiply Subtract Accumulate Long

(64 <= 64 + 16 x 16 – 16 x 16)

SMMLA Signed top word Multiply with Accumulate (32 <= TopWord(32 x 32 + 32))

SMMLS Signed top word Multiply with Subtract (32 <= TopWord(32 - 32 x 32))

SMMUL Signed top word Multiply (32 <= TopWord(32 x 32))

SMUAD, SMUSD Dual Signed Multiply, and Add or Subtract products

SMULxy Signed Multiply (32 <= 16 x 16)

SMULL Signed Multiply (64 <= 32 x 32)

SMULWy Signed Multiply (32 <= 32 x 16)

SRS Store Return State

SSAT Signed Saturate

SSAT16 Signed Saturate, parallel halfwords

SSUB8, SSUB16, SSAX Parallel Signed arithmetic

STC Store Coprocessor

STM Store Multiple registers

STR Store Register with word

STRB Store Register with Byte

STRBT Store Register with Byte, user mode

STRD Store Registers with two words

STREX, STREXB, STREXH,STREXD Store Register Exclusive Word, Byte, Halfword, Doubleword

STRH Store Register with Halfword

STRHT Store Register with Halfword, user mode

STL, STLB, STLH Store-Release Word, Byte, Halfword

STLEX, STLEXB, STLEXH, STLEXD Store-Release Exclusive Word, Byte, Halfword, Doubleword

STRT Store Register with word, user mode

SUB Subtract

SUBS pc, lr Exception return, no stack

SVC (formerly SWI) Supervisor Call

SXTAB, SXTAB16, SXTAH Signed extend, with Addition

SXTB, SXTH Signed extend

SXTB16 Signed extend

SYS Execute System coprocessor instruction

TBB, TBH Table Branch Byte, Halfword

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-159
Non-Confidential

Table C2-1 Summary of instructions (continued)

Mnemonic Brief description

TEQ Test Equivalence

TST Test

TT, TTT, TTA, TTAT Test Target (Alternate Domain, Unprivileged)

UADD8, UADD16, UASX Parallel Unsigned arithmetic

UDF Permanently Undefined

UDIV Unsigned Divide

UHADD8, UHADD16, UHASX, UHSUB8,
UHSUB16, UHSAX

Parallel Unsigned Halving arithmetic

UMAAL Unsigned Multiply Accumulate Accumulate Long

(64 <= 32 + 32 + 32 x 32)

UMLAL, UMULL Unsigned Multiply Accumulate, Unsigned Multiply

(64 <= 32 x 32 + 64), (64 <= 32 x 32)

UQADD8, UQADD16, UQASX, UQSUB8,
UQSUB16, UQSAX

Parallel Unsigned Saturating arithmetic

USAD8 Unsigned Sum of Absolute Differences

USADA8 Accumulate Unsigned Sum of Absolute Differences

USAT Unsigned Saturate

USAT16 Unsigned Saturate, parallel halfwords

USUB8, USUB16, USAX Parallel Unsigned arithmetic

UXTAB, UXTAB16, UXTAH Unsigned extend with Addition

UXTB, UXTH Unsigned extend

UXTB16 Unsigned extend

V* See Chapter C3 Advanced SIMD Instructions (32-bit) on page C3-441 and
Chapter C4 Floating-point Instructions (32-bit) on page C4-599

WFE, WFI, YIELD Wait For Event, Wait For Interrupt, Yield

C2 A32 and T32 Instructions
C2.1 A32 and T32 instruction summary

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-160
Non-Confidential

C2.2 Instruction width specifiers
The instruction width specifiers .W and .N control the size of T32 instruction encodings.

In T32 code the .W width specifier forces the assembler to generate a 32-bit encoding, even if a 16-bit
encoding is available. The .W specifier has no effect when assembling to A32 code.

In T32 code the .N width specifier forces the assembler to generate a 16-bit encoding. In this case, if the
instruction cannot be encoded in 16 bits or if .N is used in A32 code, the assembler generates an error.

If you use an instruction width specifier, you must place it immediately after the instruction mnemonic
and any condition code, for example:

BCS.W label ; forces 32-bit instruction even for a short branch
B.N label ; faults if label out of range for 16-bit instruction

C2 A32 and T32 Instructions
C2.2 Instruction width specifiers

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-161
Non-Confidential

C2.3 Flexible second operand (Operand2)
Many A32 and T32 general data processing instructions have a flexible second operand.

This is shown as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:
• Constant.
• Register with optional shift.

Related concepts
C2.6 Shift operations on page C2-165
Related reference
C2.4 Syntax of Operand2 as a constant on page C2-163
C2.5 Syntax of Operand2 as a register with optional shift on page C2-164

C2 A32 and T32 Instructions
C2.3 Flexible second operand (Operand2)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-162
Non-Confidential

C2.4 Syntax of Operand2 as a constant
An Operand2 constant in an instruction has a limited range of values.

Syntax

#constant

where constant is an expression evaluating to a numeric value.

Usage

In A32 instructions, constant can have any value that can be produced by rotating an 8-bit value right
by any even number of bits within a 32-bit word.

In T32 instructions, constant can be:

• Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-
bit word.

• Any constant of the form 0x00XY00XY.
• Any constant of the form 0xXY00XY00.
• Any constant of the form 0xXYXYXYXY.

 Note

In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are
listed in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ
or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any
other constant.

Instruction substitution

If the value of an Operand2 constant is not available, but its logical inverse or negation is available, then
the assembler produces an equivalent instruction and inverts or negates the constant.

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Be aware of this when comparing disassembly listings with source code.

Related concepts
C2.6 Shift operations on page C2-165
Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.5 Syntax of Operand2 as a register with optional shift on page C2-164

C2 A32 and T32 Instructions
C2.4 Syntax of Operand2 as a constant

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-163
Non-Confidential

C2.5 Syntax of Operand2 as a register with optional shift
When you use an Operand2 register in an instruction, you can optionally also specify a shift value.

Syntax

Rm {, shift}

where:

Rm

is the register holding the data for the second operand.

shift

is an optional constant or register-controlled shift to be applied to Rm. It can be one of:

ASR #n

arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n

logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n

logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n

rotate right n bits, 1 ≤ n ≤ 31.

RRX

rotate right one bit, with extend.

type Rs

register-controlled shift is available in Arm code only, where:

type

is one of ASR, LSL, LSR, ROR.

Rs

is a register supplying the shift amount, and only the least significant byte is
used.

-

if omitted, no shift occurs, equivalent to LSL #0.

Usage

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents of the register Rm remain unchanged. Specifying a register with shift
also updates the carry flag when used with certain instructions.

Related concepts
C2.6 Shift operations on page C2-165
Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.4 Syntax of Operand2 as a constant on page C2-163

C2 A32 and T32 Instructions
C2.5 Syntax of Operand2 as a register with optional shift

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-164
Non-Confidential

C2.6 Shift operations
Register shift operations move the bits in a register left or right by a specified number of bits, called the
shift length.

Register shift can be performed:
• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination

register.
• During the calculation of Operand2 by the instructions that specify the second operand as a register

with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction
description or the flexible second operand description. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0.

Arithmetic shift right (ASR)

Arithmetic shift right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the
right-hand 32-n bits of the result. It copies the original bit[31] of the register into the left-hand n bits of
the result.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

31 1 0

Carry
Flag

...
2345

Figure C2-1 ASR #3

Logical shift right (LSR)

Logical shift right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the
right-hand 32-n bits of the result. It sets the left-hand n bits of the result to 0.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is regarded as
an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-165
Non-Confidential

31 1 0

Carry
Flag

...

000

2345

Figure C2-2 LSR #3

Logical shift left (LSL)

Logical shift left by n bits moves the right-hand 32-n bits of a register to the left by n places, into the left-
hand 32-n bits of the result. It sets the right-hand n bits of the result to 0.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is regarded
as an unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out,
bit[32-n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

31 1 0
Carry
Flag ...

000

2345

Figure C2-3 LSL #3

Rotate right (ROR)

Rotate right by n bits moves the left-hand 32-n bits of a register to the right by n places, into the right-
hand 32-n bits of the result. It also moves the right-hand n bits of the register into the left-hand n bits of
the result.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

 Note

• If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is
updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

31 1 0

Carry
Flag

...
2345

Figure C2-4 ROR #3

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-166
Non-Confidential

Rotate right with extend (RRX)

Rotate right with extend moves the bits of a register to the right by one bit. It copies the carry flag into
bit[31] of the result.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

31 1 0

Carry
Flag

... ...
Figure C2-5 RRX

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.4 Syntax of Operand2 as a constant on page C2-163
C2.5 Syntax of Operand2 as a register with optional shift on page C2-164

C2 A32 and T32 Instructions
C2.6 Shift operations

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-167
Non-Confidential

C2.7 Saturating instructions
Some A32 and T32 instructions perform saturating arithmetic.

The saturating instructions are:
• QADD.
• QDADD.
• QDSUB.
• QSUB.
• SSAT.
• USAT.

Some of the parallel instructions are also saturating.

Saturating arithmetic

Saturation means that, for some value of 2n that depends on the instruction:

• For a signed saturating operation, if the full result would be less than -2n, the result returned is -2n.
• For an unsigned saturating operation, if the full result would be negative, the result returned is zero.
• If the full result would be greater than 2n-1, the result returned is 2n-1.

When any of these occurs, it is called saturation. Some instructions set the Q flag when saturation occurs.
 Note

Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q flag, use an
MSR instruction.

The Q flag can also be set by two other instructions, but these instructions do not saturate.

Related reference
C2.78 QADD on page C2-276
C2.85 QSUB on page C2-283
C2.82 QDADD on page C2-280
C2.83 QDSUB on page C2-281
C2.116 SMLAxy on page C2-324
C2.121 SMLAWy on page C2-331
C2.128 SMULxy on page C2-338
C2.130 SMULWy on page C2-340
C2.133 SSAT on page C2-344
C2.184 USAT on page C2-419
C2.68 MSR (general-purpose register to PSR) on page C2-261

C2 A32 and T32 Instructions
C2.7 Saturating instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-168
Non-Confidential

C2.8 ADC
Add with Carry.

Syntax

ADC{S}{cond} {Rd}, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Usage

The ADC (Add with Carry) instruction adds the values in Rn and Operand2, together with the carry flag.

You can use ADC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd, or any operand with the ADC command.

You cannot use SP (R13) for Rd, or any operand with the ADC command.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Operand2, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP with the ADC A32 instruction is deprecated.

Condition flags

If S is specified, the ADC instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

ADCS Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

C2 A32 and T32 Instructions
C2.8 ADC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-169
Non-Confidential

ADC{cond} Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Multiword arithmetic examples

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in
R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.8 ADC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-170
Non-Confidential

C2.9 ADD
Add without Carry.

Syntax

ADD{S}{cond} {Rd}, Rn, Operand2

ADD{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encoding only

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

imm12
is any value in the range 0-4095.

Operation

The ADD instruction adds the values in Rn and Operand2 or imm12.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

Generally, you cannot use PC (R15) for Rd, or any operand.

The exceptions are:

• you can use PC for Rn in 32-bit encodings of T32 ADD instructions, with a constant Operand2 value in
the range 0-4095, and no S suffix. These instructions are useful for generating PC-relative addresses.
Bit[1] of the PC value reads as 0 in this case, so that the base address for the calculation is always
word-aligned.

• you can use PC in 16-bit encodings of T32 ADD{cond} Rd, Rd, Rm instructions, where both registers
cannot be PC. However, the following 16-bit T32 instructions are deprecated:
— ADD{cond} PC, SP, PC.
— ADD{cond} SP, SP, PC.

Generally, you cannot use SP (R13) for Rd, or any operand. Except that:
• You can use SP for Rn in ADD instructions.
• ADD{cond} SP, SP, SP is permitted but is deprecated in Armv6T2 and above.
• ADD{S}{cond} SP, SP, Rm{,shift} and SUB{S}{cond} SP, SP, Rm{,shift} are permitted if

shift is omitted or LSL #1, LSL #2, or LSL #3.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In ADD instructions without register-controlled shift, use of PC is deprecated except for the following
cases:

C2 A32 and T32 Instructions
C2.9 ADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-171
Non-Confidential

• Use of PC for Rd in instructions that do not add SP to a register.
• Use of PC for Rn and use of PC for Rm in instructions that add two registers other than SP.
• Use of PC for Rn in the instruction ADD{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in ADD instructions, however, ADDS PC, SP, #Constant is deprecated.

You can use SP in ADD (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.

Other uses of SP in these A32 instructions are deprecated.

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ADDS Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

ADD{cond} Rd, Rn, #imm
imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT
block.

ADDS Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

ADD{cond} Rd, Rn, Rm
Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

ADDS Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

ADD{cond} Rd, Rd, #imm
imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

ADD SP, SP, #imm
imm range 0-508, word aligned.

ADD Rd, SP, #imm
imm range 0-1020, word aligned. Rd must be a Lo register.

ADD Rd, pc, #imm
imm range 0-1020, word aligned. Rd must be a Lo register. Bits[1:0] of the PC are read as 0 in
this instruction.

Example
 ADD r2, r1, r3

Multiword arithmetic example

These two instructions add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in
R0 and R1, and place the result in R4 and R5.

 ADDS r4, r0, r2 ; adding the least significant words
 ADC r5, r1, r3 ; adding the most significant words

C2 A32 and T32 Instructions
C2.9 ADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-172
Non-Confidential

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142
C2.147 SUBS pc, lr on page C2-370

C2 A32 and T32 Instructions
C2.9 ADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-173
Non-Confidential

C2.10 ADR (PC-relative)
Generate a PC-relative address in the destination register, for a label in the current area.

Syntax

ADR{cond}{.W} Rd,label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rd
is the destination register to load.

label

is a PC-relative expression.

label must be within a limited distance of the current instruction.

Usage

ADR produces position-independent code, because the assembler generates an instruction that adds or
subtracts a value to the PC.

label must evaluate to an address in the same assembler area as the ADR instruction.

If you use ADR to generate a target for a BX or BLX instruction, it is your responsibility to set the T32 bit
(bit 0) of the address if the target contains T32 instructions.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-2 PC-relative offsets

Instruction Offset range

A32 ADR See C2.4 Syntax of Operand2 as a constant on page C2-163.

T32 ADR, 32-bit encoding ±4095

T32 ADR, 16-bit encoding a 0-1020 b

ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR with .W
always generates a 32-bit instruction, even if the address can be generated in a 16-bit instruction.

For forward references, ADR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for an address that could be generated in a 32-bit T32 ADD instruction.

Restrictions

In T32 code, Rd cannot be PC or SP.

In A32 code, Rd can be PC or SP but use of SP is deprecated.

a Rd must be in the range R0-R7.
b Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.10 ADR (PC-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-174
Non-Confidential

Related reference
C2.4 Syntax of Operand2 as a constant on page C2-163
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.10 ADR (PC-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-175
Non-Confidential

C2.11 ADR (register-relative)
Generate a register-relative address in the destination register, for a label defined in a storage map.

Syntax

ADR{cond}{.W} Rd,label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rd
is the destination register to load.

label

is a symbol defined by the FIELD directive. label specifies an offset from the base register
which is defined using the MAP directive.

label must be within a limited distance from the base register.

Usage

ADR generates code to easily access named fields inside a storage map.

Restrictions
In T32 code:
• Rd cannot be PC.
• Rd can be SP only if the base register is SP.

Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an error if
label is out of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-3 Register-relative offsets

Instruction Offset range

A32 ADR See C2.4 Syntax of Operand2 as a constant on page C2-163

T32 ADR, 32-bit encoding ±4095

T32 ADR, 16-bit encoding, base register is SP c 0-1020 d

ADR in T32

You can use the .W width specifier to force ADR to generate a 32-bit instruction in T32 code. ADR with .W
always generates a 32-bit instruction, even if the address can be generated in a 16-bit instruction.

For forward references, ADR without .W, with base register SP, always generates a 16-bit instruction in
T32 code, even if that results in failure for an address that could be generated in a 32-bit T32 ADD
instruction.

Related reference
C2.4 Syntax of Operand2 as a constant on page C2-163

c Rd must be in the range R0-R7 or SP. If Rd is SP, the offset range is -508 to 508 and must be a multiple of 4
d Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.11 ADR (register-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-176
Non-Confidential

C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.11 ADR (register-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-177
Non-Confidential

C2.12 AND
Logical AND.

Syntax

AND{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The AND instruction performs bitwise AND operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of this when
reading disassembly listings.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand with the AND instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the AND A32 instruction but this is deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the AND instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

ANDS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

AND{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify AND{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.12 AND

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-178
Non-Confidential

Examples
 AND r9,r2,#0xFF00
 ANDS r9, r8, #0x19

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.12 AND

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-179
Non-Confidential

C2.13 ASR
Arithmetic Shift Right. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

ASR{S}{cond} Rd, Rm, Rs

ASR{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted right.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 1-32.

Operation

ASR provides the signed value of the contents of a register divided by a power of two. It copies the sign
bit into vacated bit positions on the left.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in the ASR A32 instruction but this is deprecated.

You cannot use PC in instructions with the ASR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction ASRS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in the ASR instruction if it has a register-controlled shift.

C2 A32 and T32 Instructions
C2.13 ASR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-180
Non-Confidential

Condition flags

If S is specified, the ASR instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

ASRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

ASRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ASR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Example
 ASR r7, r8, r9

Related reference
C2.61 MOV on page C2-252
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.13 ASR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-181
Non-Confidential

C2.14 B
Branch.

Syntax

B{cond}{.W} label

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier to force the use of a 32-bit B instruction in T32.

label
is a PC-relative expression.

Operation

The B instruction causes a branch to label.

Instruction availability and branch ranges

The following table shows the branch ranges that are available in A32 and T32 code. Instructions that are
not shown in this table are not available.

Table C2-4 B instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

B label ±32MB ±2KB ±16MB e

B{cond} label ±32MB -252 to +258 ±1MB e

Extending branch ranges

Machine-level B instructions have restricted ranges from the address of the current instruction. However,
you can use these instructions even if label is out of range. Often you do not know where the linker
places label. When necessary, the linker adds code to enable longer branches. The added code is called
a veneer.

B in T32

You can use the .W width specifier to force B to generate a 32-bit instruction in T32 code.

B.W always generates a 32-bit instruction, even if the target could be reached using a 16-bit instruction.

For forward references, B without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 instruction.

Condition flags

The B instruction does not change the flags.

Architectures

See the earlier table for details of availability of the B instruction.

Example
 B loopA

e Use .W to instruct the assembler to use this 32-bit instruction.

C2 A32 and T32 Instructions
C2.14 B

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-182
Non-Confidential

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.14 B

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-183
Non-Confidential

C2.15 BFC
Bit Field Clear.

Syntax

BFC{cond} Rd, #lsb, #width

where:

cond
is an optional condition code.

Rd
is the destination register.

lsb
is the least significant bit that is to be cleared.

width
is the number of bits to be cleared. width must not be 0, and (width+lsb) must be less than or
equal to 32.

Operation

Clears adjacent bits in a register. width bits in Rd are cleared, starting at lsb. Other bits in Rd are
unchanged.

Register restrictions

You cannot use PC for any register.

You can use SP in the BFC A32 instruction but this is deprecated. You cannot use SP in the BFC T32
instruction.

Condition flags

The BFC instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.15 BFC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-184
Non-Confidential

C2.16 BFI
Bit Field Insert.

Syntax

BFI{cond} Rd, Rn, #lsb, #width

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the source register.

lsb
is the least significant bit that is to be copied.

width
is the number of bits to be copied. width must not be 0, and (width+lsb) must be less than or
equal to 32.

Operation

Inserts adjacent bits from one register into another. width bits in Rd, starting at lsb, are replaced by
width bits from Rn, starting at bit[0]. Other bits in Rd are unchanged.

Register restrictions

You cannot use PC for any register.

You can use SP in the BFI A32 instruction but this is deprecated. You cannot use SP in the BFI T32
instruction.

Condition flags

The BFI instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.16 BFI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-185
Non-Confidential

C2.17 BIC
Bit Clear.

Syntax

BIC{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The BIC (Bit Clear) instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of this when
reading disassembly listings.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand in a BIC instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the BIC instruction but they are deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the BIC instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the BIC instruction are available in T32 code, and are 16-bit instructions:

BICS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

BIC{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

C2 A32 and T32 Instructions
C2.17 BIC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-186
Non-Confidential

Example
 BIC r0, r1, #0xab

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.17 BIC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-187
Non-Confidential

C2.18 BKPT
Breakpoint.

Syntax

BKPT #imm

where:

imm
is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-255 (an 8-bit value) in a 16-bit T32 instruction.

Usage

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate
system state when the instruction at a particular address is reached.

In both A32 state and T32 state, imm is ignored by the Arm hardware. However, a debugger can use it to
store additional information about the breakpoint.

BKPT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code, the
BKPT instruction does not require a condition code suffix because BKPT always executes irrespective of its
condition code suffix.

Architectures

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.

C2 A32 and T32 Instructions
C2.18 BKPT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-188
Non-Confidential

C2.19 BL
Branch with Link.

Syntax

BL{cond}{.W} label

where:

cond
is an optional condition code. cond is not available on all forms of this instruction.

.W
is an optional instruction width specifier to force the use of a 32-bit BL instruction in T32.

label
is a PC-relative expression.

Operation

The BL instruction causes a branch to label, and copies the address of the next instruction into LR (R14,
the link register).

Instruction availability and branch ranges

The following table shows the BL instructions that are available in A32 and T32 state. Instructions that
are not shown in this table are not available.

Table C2-5 BL instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BL label ±32MB ±4MB f ±16MB

BL{cond} label ±32MB - -

Extending branch ranges

Machine-level BL instructions have restricted ranges from the address of the current instruction.
However, you can use these instructions even if label is out of range. Often you do not know where the
linker places label. When necessary, the linker adds code to enable longer branches. The added code is
called a veneer.

Condition flags

The BL instruction does not change the flags.

Availability

See the preceding table for details of availability of the BL instruction in both instruction sets.

Examples
 BLE ng+8
 BL subC
 BLLT rtX

Related reference
C1.9 Condition code suffixes on page C1-142

f BL label and BLX label are an instruction pair.

C2 A32 and T32 Instructions
C2.19 BL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-189
Non-Confidential

C2.20 BLX, BLXNS
Branch with Link and exchange instruction set and Branch with Link and Exchange (Non-secure).

Syntax

BLX{cond}{q} label

BLX{cond}{q} Rm

BLXNS{cond}{q} Rm (Armv8‑M only)

Where:

cond
Is an optional condition code. cond is not available on all forms of this instruction.

q
Is an optional instruction width specifier. Must be set to .W when label is used.

label
Is a PC-relative expression.

Rm
Is a register containing an address to branch to.

Operation
The BLX instruction causes a branch to label, or to the address contained in Rm. In addition:
• The BLX instruction copies the address of the next instruction into LR (R14, the link register).
• The BLX instruction can change the instruction set.

BLX label always changes the instruction set. It changes a processor in A32 state to T32 state, or a
processor in T32 state to A32 state.

BLX Rm derives the target instruction set from bit[0] of Rm:
— If bit[0] of Rm is 0, the processor changes to, or remains in, A32 state.
— If bit[0] of Rm is 1, the processor changes to, or remains in, T32 state.

 Note

• There are no equivalent instructions to BLX to change between AArch32 and AArch64 state. The only
way to change execution state is by a change of exception level.

• Armv8‑M, Armv7‑M, and Armv6‑M only support the T32 instruction set. An attempt to change the
instruction execution state causes the processor to take an exception on the instruction at the target
address.

The BLXNS instruction calls a subroutine at an address and instruction set specified by a register, and
causes a transition from the Secure to the Non-secure domain. This variant of the instruction must only
be used when additional steps required to make such a transition safe are taken.

Instruction availability and branch ranges

The following table shows the instructions that are available in A32 and T32 state. Instructions that are
not shown in this table are not available.

Table C2-6 BLX instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BLX label ±32MB ±4MB g ±16MB

BLX Rm Available Available Use 16-bit

g BLX label and BL label are an instruction pair.

C2 A32 and T32 Instructions
C2.20 BLX, BLXNS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-190
Non-Confidential

Table C2-6 BLX instruction availability and range (continued)

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BLX{cond} Rm Available - -

BLXNS - Available -

Register restrictions

You can use PC for Rm in the A32 BLX instruction, but this is deprecated. You cannot use PC in other A32
instructions.

You can use PC for Rm in the T32 BLX instruction. You cannot use PC in other T32 instructions.

You can use SP for Rm in this A32 instruction but this is deprecated.

You can use SP for Rm in the T32 BLX and BLXNS instructions, but this is deprecated. You cannot use SP
in the other T32 instructions.

Condition flags

These instructions do not change the flags.

Availability

See the preceding table for details of availability of the BLX and BLXNS instructions in both instruction
sets.

Related reference
C1.9 Condition code suffixes on page C1-142
C2.2 Instruction width specifiers on page C2-161

C2 A32 and T32 Instructions
C2.20 BLX, BLXNS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-191
Non-Confidential

C2.21 BX, BXNS
Branch and exchange instruction set and Branch and Exchange Non-secure.

Syntax

BX{cond}{q} Rm

BXNS{cond}{q} Rm (Armv8‑M only)

Where:

cond
Is an optional condition code. cond is not available on all forms of this instruction.

q
Is an optional instruction width specifier.

Rm
Is a register containing an address to branch to.

Operation

The BX instruction causes a branch to the address contained in Rm and exchanges the instruction set, if
necessary. The BX instruction can change the instruction set.

BX Rm derives the target instruction set from bit[0] of Rm:
• If bit[0] of Rm is 0, the processor changes to, or remains in, A32 state.
• If bit[0] of Rm is 1, the processor changes to, or remains in, T32 state.

 Note

• There are no equivalent instructions to BX to change between AArch32 and AArch64 state. The only
way to change execution state is by a change of exception level.

• Armv8‑M, Armv7‑M, and Armv6‑M only support the T32 instruction set. An attempt to change the
instruction execution state causes the processor to take an exception on the instruction at the target
address.

BX can also be used for an exception return.

The BXNS instruction causes a branch to an address and instruction set specified by a register, and causes
a transition from the Secure to the Non-secure domain. This variant of the instruction must only be used
when additional steps required to make such a transition safe are taken.

Instruction availability and branch ranges

The following table shows the instructions that are available in A32 and T32 state. Instructions that are
not shown in this table are not available.

Table C2-7 BX instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BX Rm Available Available Use 16-bit

BX{cond} Rm Available - -

BXNS - Available -

Register restrictions

You can use PC for Rm in the A32 BX instruction, but this is deprecated. You cannot use PC in other A32
instructions.

C2 A32 and T32 Instructions
C2.21 BX, BXNS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-192
Non-Confidential

You can use PC for Rm in the T32 BX and BXNS instructions. You cannot use PC in other T32 instructions.

You can use SP for Rm in the A32 BX instruction but this is deprecated.

You can use SP for Rm in the T32 BX and BXNS instructions, but this is deprecated.

Condition flags

These instructions do not change the flags.

Availability

See the preceding table for details of availability of the BX and BXNS instructions in both instruction sets.

Related reference
C1.9 Condition code suffixes on page C1-142
C2.2 Instruction width specifiers on page C2-161

C2 A32 and T32 Instructions
C2.21 BX, BXNS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-193
Non-Confidential

C2.22 BXJ
Branch and change to Jazelle state.

Syntax

BXJ{cond} Rm

where:

cond
is an optional condition code. cond is not available on all forms of this instruction.

Rm
is a register containing an address to branch to.

Operation
The BXJ instruction causes a branch to the address contained in Rm and changes the instruction set state to
Jazelle.

 Note

In Armv8, BXJ behaves as a BX instruction. This means it causes a branch to an address and instruction
set specified by a register.

Instruction availability and branch ranges

The following table shows the BXJ instructions that are available in A32 and T32 state. Instructions that
are not shown in this table are not available.

Table C2-8 BXJ instruction availability and range

Instruction A32 T32, 16-bit encoding T32, 32-bit encoding

BXJ Rm Available - Available

BXJ{cond} Rm Available - -

Register restrictions

You can use SP for Rm in the BXJ A32 instruction but this is deprecated.

You cannot use SP in the BXJ T32 instruction.

Condition flags

The BXJ instruction does not change the flags.

Availability

See the preceding table for details of availability of the BXJ instruction in both instruction sets.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.22 BXJ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-194
Non-Confidential

C2.23 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ{q} Rn, label

CBNZ{q} Rn, label

where:

q
Is an optional instruction width specifier.

Rn
Is the register holding the operand.

label
Is the branch destination.

Usage

You can use the CBZ or CBNZ instructions to avoid changing the condition flags and to reduce the number
of instructions.

Except that it does not change the condition flags, CBZ Rn, label is equivalent to:

 CMP Rn, #0
 BEQ label

Except that it does not change the condition flags, CBNZ Rn, label is equivalent to:

 CMP Rn, #0
 BNE label

Restrictions

The branch destination must be a multiple of 2 in the range 0 to 126 bytes after the instruction and in the
same execution state.

These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Architectures

These 16-bit instructions are available in Armv7‑A T32, Armv8‑A T32, and Armv8‑M only.

There are no Armv7‑A A32, or Armv8‑A A32 or 32-bit T32 encodings of these instructions.

Related reference
C2.14 B on page C2-182
C2.27 CMP and CMN on page C2-199
C2.2 Instruction width specifiers on page C2-161

C2 A32 and T32 Instructions
C2.23 CBZ and CBNZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-195
Non-Confidential

C2.24 CDP and CDP2
Coprocessor data operations.

 Note

CDP and CDP2 are not supported in Armv8.

Syntax

CDP{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

CDP2{cond} coproc, #opcode1, CRd, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for CDP2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer in the range 0-15.

opcode1
is a 4-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

CRd, CRn, CRm
are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.24 CDP and CDP2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-196
Non-Confidential

C2.25 CLREX
Clear Exclusive.

Syntax

CLREX{cond}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
Armv8. This is an unconditional instruction in A32.

Usage

Use the CLREX instruction to clear the local record of the executing processor that an address has had a
request for an exclusive access.

CLREX returns a closely-coupled exclusive access monitor to its open-access state. This removes the
requirement for a dummy store to memory.

It is implementation defined whether CLREX also clears the global record of the executing processor that
an address has had a request for an exclusive access.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit CLREX instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.25 CLREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-197
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.26 CLZ
Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rm
is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd.
The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

Register restrictions

You cannot use PC for any operand.

You can use SP in these A32 instructions but this is deprecated.

You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Examples
 CLZ r4,r9
 CLZNE r2,r3

Use the CLZ T32 instruction followed by a left shift of Rm by the resulting Rd value to normalize the value
of register Rm. Use MOVS, rather than MOV, to flag the case where Rm is zero:

 CLZ r5, r9
 MOVS r9, r9, LSL r5

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.26 CLZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-198
Non-Confidential

C2.27 CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond
is an optional condition code.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the
result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be aware of this when
reading disassembly listings.

Use of PC in A32 and T32 instructions

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

You can use PC (R15) in these A32 instructions without register controlled shift but this is deprecated.

If you use PC as Rn in A32 instructions, the value used is the address of the instruction plus 8.

You cannot use PC for any operand in these T32 instructions.

Use of SP in A32 and T32 instructions

You can use SP for Rn in A32 and T32 instructions.

You can use SP for Rm in A32 instructions but this is deprecated.

You can use SP for Rm in a 16-bit T32 CMP Rn, Rm instruction but this is deprecated. Other uses of SP for
Rm are not permitted in T32.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

CMP Rn, Rm
Lo register restriction does not apply.

CMN Rn, Rm
Rn and Rm must both be Lo registers.

C2 A32 and T32 Instructions
C2.27 CMP and CMN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-199
Non-Confidential

CMP Rn, #imm
Rn must be a Lo register. imm range 0-255.

Correct examples
 CMP r2, r9
 CMN r0, #6400
 CMPGT sp, r7, LSL #2

Incorrect example
 CMP r2, pc, ASR r0 ; PC not permitted with register-controlled
 ; shift.

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.27 CMP and CMN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-200
Non-Confidential

C2.28 CPS
Change Processor State.

Syntax

CPSeffect iflags{, #mode}

CPS #mode

where:

effect

is one of:

IE
Interrupt or abort enable.

ID
Interrupt or abort disable.

iflags

is a sequence of one or more of:

a
Enables or disables imprecise aborts.

i
Enables or disables IRQ interrupts.

f
Enables or disables FIQ interrupts.

mode
specifies the number of the mode to change to.

Usage

Changes one or more of the mode, A, I, and F bits in the CPSR, without changing the other CPSR bits.

CPS is only permitted in privileged software execution, and has no effect in User mode.

CPS cannot be conditional, and is not permitted in an IT block.

Condition flags

This instruction does not change the condition flags.

16-bit instructions
The following forms of these instructions are available in T32 code, and are 16-bit instructions:
• CPSIE iflags.
• CPSID iflags.

You cannot specify a mode change in a 16-bit T32 instruction.

Architectures

This instruction is available in A32 and T32.

In T32, 16-bit and 32-bit versions of this instruction are available.

Examples
 CPSIE if ; Enable IRQ and FIQ interrupts.
 CPSID A ; Disable imprecise aborts.
 CPSID ai, #17 ; Disable imprecise aborts and interrupts, and enter

C2 A32 and T32 Instructions
C2.28 CPS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-201
Non-Confidential

 ; FIQ mode.
 CPS #16 ; Enter User mode.

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55

C2 A32 and T32 Instructions
C2.28 CPS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-202
Non-Confidential

C2.29 CRC32
CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register.

Syntax

CRC32B{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<7:0>])

CRC32H{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<15:0>])

CRC32W{q} Rd, Rn, Rm ; A1 Wd = CRC32(Wn, Rm[<31:0>])

CRC32B{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<7:0>])

CRC32H{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<15:0>])

CRC32W{q} Rd, Rn, Rm ; T1 Wd = CRC32(Wn, Rm[<31:0>])

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.
A CRC32 instruction must be unconditional.

Rd
Is the general-purpose accumulator output register.

Rn
Is the general-purpose accumulator input register.

Rm
Is the general-purpose data source register.

Architectures supported

Supported in architecture Armv8.1 and later. Optionally supported in the Armv8‑A architecture.

Usage
CRC32 takes an input CRC value in the first source operand, performs a CRC on the input value in the
second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32
bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the
polynomial 0x04C11DB7 is used for the CRC calculation.

 Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related reference
C2.29 CRC32 on page C2-203
C2.1 A32 and T32 instruction summary on page C2-156

C2 A32 and T32 Instructions
C2.29 CRC32

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-203
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C2.30 CRC32C
CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose
register.

Syntax

CRC32CB{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<7:0>])

CRC32CH{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<15:0>])

CRC32CW{q} Rd, Rn, Rm ; A1 Wd = CRC32C(Wn, Rm[<31:0>])

CRC32CB{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<7:0>])

CRC32CH{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<15:0>])

CRC32CW{q} Rd, Rn, Rm ; T1 Wd = CRC32C(Wn, Rm[<31:0>])

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.
A CRC32C instruction must be unconditional.

Rd
Is the general-purpose accumulator output register.

Rn
Is the general-purpose accumulator input register.

Rm
Is the general-purpose data source register.

Architectures supported

Supported in architecture Armv8‑A.1 and later. Optionally supported in the Armv8‑A architecture.

Usage
CRC32C takes an input CRC value in the first source operand, performs a CRC on the input value in the
second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32
bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the
polynomial 0x1EDC6F41 is used for the CRC calculation.

 Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related reference
C2.29 CRC32 on page C2-203
C2.1 A32 and T32 instruction summary on page C2-156

C2 A32 and T32 Instructions
C2.30 CRC32C

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-204
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C2.31 CSDB
Consumption of Speculative Data Barrier.

Syntax

CSDB{c}{q} ; A32

CSDB{c}.W ; T32

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

Usage

Consumption of Speculative Data Barrier is a memory barrier that controls Speculative execution and
data value prediction. Arm Compiler supports the mitigation of the Variant 1 mechanism that is described
in the whitepaper at Vulnerability of Speculative Processors to Cache Timing Side-Channel Mechanism.

The CSDB instruction allows Speculative execution of:

• Branch instructions.
• Instructions that write to the PC.
• Instructions that are not a result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from conditional branch

instructions or from conditional instructions that write to the PC.

The CSDB instruction prevents Speculative execution of:
• Non-branch instructions.
• Instructions that do not write to the PC.
• Instructions that are the result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from instructions other than

conditional branch instructions and conditional instructions that write to the PC.

CONSTRAINED UNPREDICTABLE behavior
For conditional CSDB instructions that specify a condition {c} other than AL in A32, and for any
condition {c} used inside an IT block in T32, then how the instructions are rejected depends on your
assembler implementation. See your assembler documentation for details.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Examples

The following example shows a code sequence that could result in the processor loading data from an
untrusted location that is provided by a user as the result of Speculative execution of instructions:

 CMP R0, R1
 BGE out_of_range
 LDRB R4, [R5, R0] ; load data from list A
 ; speculative execution of this instruction
 ; must be prevented
 AND R4, R4, #1
 LSL R4, R4, #8
 ADD R4, R4, #0x200
 CMP R4, R6
 BGE out_of_range

C2 A32 and T32 Instructions
C2.31 CSDB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-205
Non-Confidential

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

 LDRB R7, [R8, R4] ; load data from list B
out_of_range

In this example:

• There are two list objects A and B.
• A contains a list of values that are used to calculate offsets from which data can be loaded from B.
• R1 is the length of A.
• R5 is the base address of A.
• R6 is the length of B.
• R8 is the base address of B.
• R0 is an untrusted offset that is provided by a user, and is used to load an element from A.

When R0 is greater-than or equal-to the length of A, it is outside the address range of A. Therefore, the
first branch instruction BGE out_of_range is taken, and instructions LDRB R4, [R5, R0] through LDRB
R7, [R8, R4] are skipped.

Without a CSDB instruction, these skipped instructions can still be speculatively executed, and could
result in:
• If R0 is maliciously set to an incorrect value, then data can be loaded into R4 from an address outside

the address range of A.
• Data can be loaded into R7 from an address outside the address range of B.

To mitigate against these untrusted accesses, add a pair of MOVGE and CSDB instructions between the BGE
out_of_range and LDRB R4, [R5, R0] instructions as follows:

 CMP R0, R1
 BGE out_of_range

 MOVGE R0, #0 ; conditonally clears the untrusted
 ; offset provided by the user so that
 ; it cannot affect any other code

 CSDB ; new barrier instruction

 LDRB R4, [R5, R0] ; load data from list A
 ; speculative execution of this instruction
 ; is prevented
 AND R4, R4, #1
 LSL R4, R4, #8
 ADD R4, R4, #0x200
 CMP R4, R6
 BGE out_of_range
 LDRB R7, [R8, R4] ; load data from list B
out_of_range

Related reference
C2.1 A32 and T32 instruction summary on page C2-156
C2.61 MOV on page C2-252
Related information
Arm Processor Security Update
Compiler support for mitigations

C2 A32 and T32 Instructions
C2.31 CSDB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-206
Non-Confidential

https://developer.arm.com/support/security-update
https://developer.arm.com/support/security-update/compiler-support-for-mitigations

C2.32 DBG
Debug.

Syntax

DBG{cond} {option}

where:

cond
is an optional condition code.

option
is an optional limitation on the operation of the hint. The range is 0-15.

Usage

DBG is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
behaves as a NOP. The assembler produces a diagnostic message if the instruction executes as NOP on the
target.

Debug hint provides a hint to a debugger and related tools. See your debugger and related tools
documentation to determine the use, if any, of this instruction.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.32 DBG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-207
Non-Confidential

C2.33 DCPS1 (T32 instruction)
Debug switch to exception level 1 (EL1).

 Note

This instruction is supported only in Armv8.

Syntax

DCPS1

Usage

This instruction is valid in Debug state only, and is always UNDEFINED in Non-debug state.

DCPS1 targets EL1 and:
• If EL1 is using AArch32, the processing element (PE) enters SVC mode. If EL3 is using AArch32,

Secure SVC is an EL3 mode. This means DCPS1 causes the PE to enter EL3.
• If EL1 is using AArch64, the PE enters EL1h, and executes future instructions as A64 instructions.

In Non-debug state, use the SVC instruction to generate a trap to EL1.

Availability

This 32-bit instruction is available in T32 only.

There is no 16-bit version of this instruction in T32.

Related reference
C2.148 SVC on page C2-372
C2.34 DCPS2 (T32 instruction) on page C2-209
C2.35 DCPS3 (T32 instruction) on page C2-210
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.33 DCPS1 (T32 instruction)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-208
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.34 DCPS2 (T32 instruction)
Debug switch to exception level 2.

 Note

This instruction is supported only in Armv8.

Syntax

DCPS2

Usage

This instruction is valid in Debug state only, and is always UNDEFINED in Non-debug state.

DCPS2 targets EL2 and:
• If EL2 is using AArch32, the PE enters Hyp mode.
• If EL2 is using AArch64, the PE enters EL2h, and executes future instructions as A64 instructions.

In Non-debug state, use the HVC instruction to generate a trap to EL2.

Availability

This 32-bit instruction is available in T32 only.

There is no 16-bit version of this instruction in T32.

Related reference
C2.42 HVC on page C2-220
C2.33 DCPS1 (T32 instruction) on page C2-208
C2.35 DCPS3 (T32 instruction) on page C2-210
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.34 DCPS2 (T32 instruction)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-209
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.35 DCPS3 (T32 instruction)
Debug switch to exception level 3.

 Note

This instruction is supported only in Armv8.

Syntax

DCPS3

Usage

This instruction is valid in Debug state only, and is always UNDEFINED in Non-debug state.

DCPS3 targets EL3 and:
• If EL3 is using AArch32, the PE enters Monitor mode.
• If EL3 is using AArch64, the PE enters EL3h, and executes future instructions as A64 instructions.

In Non-debug state, use the SMC instruction to generate a trap to EL3.

Availability

This 32-bit instruction is available in T32 only.

There is no 16-bit version of this instruction in T32.

Related reference
C2.115 SMC on page C2-323
C2.34 DCPS2 (T32 instruction) on page C2-209
C2.33 DCPS1 (T32 instruction) on page C2-208
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.35 DCPS3 (T32 instruction)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-210
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.36 DMB
Data Memory Barrier.

Syntax

DMB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. Permitted values are:

SY
Full system barrier operation. This is the default and can be omitted.

LD
Barrier operation that waits only for loads to complete.

ST
Barrier operation that waits only for stores to complete.

ISH
Barrier operation only to the inner shareable domain.

ISHLD
Barrier operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST
Barrier operation that waits only for stores to complete, and only to the inner shareable
domain.

NSH
Barrier operation only out to the point of unification.

NSHLD
Barrier operation that waits only for loads to complete and only applies out to the point
of unification.

NSHST
Barrier operation that waits only for stores to complete and only out to the point of
unification.

OSH
Barrier operation only to the outer shareable domain.

OSHLD
DMB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST
Barrier operation that waits only for stores to complete, and only to the outer shareable
domain.

 Note

The options LD, ISHLD, NSHLD, and OSHLD are supported only in the Armv8-A and Armv8-R
architectures.

C2 A32 and T32 Instructions
C2.36 DMB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-211
Non-Confidential

Operation

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in
program order before the DMB instruction are observed before any explicit memory accesses that appear
in program order after the DMB instruction. It does not affect the ordering of any other instructions
executing on the processor.

Alias
The following alternative values of option are supported, but Arm recommends that you do not use
them:
• SH is an alias for ISH.
• SHST is an alias for ISHST.
• UN is an alias for NSH.
• UNST is an alias for NSHST.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.36 DMB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-212
Non-Confidential

C2.37 DSB
Data Synchronization Barrier.

Syntax

DSB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. Permitted values are:

SY
Full system barrier operation. This is the default and can be omitted.

LD
Barrier operation that waits only for loads to complete.

ST
Barrier operation that waits only for stores to complete.

ISH
Barrier operation only to the inner shareable domain.

ISHLD
Barrier operation that waits only for loads to complete, and only applies to the inner
shareable domain.

ISHST
Barrier operation that waits only for stores to complete, and only to the inner shareable
domain.

NSH
Barrier operation only out to the point of unification.

NSHLD
Barrier operation that waits only for loads to complete and only applies out to the point
of unification.

NSHST
Barrier operation that waits only for stores to complete and only out to the point of
unification.

OSH
Barrier operation only to the outer shareable domain.

OSHLD
DMB operation that waits only for loads to complete, and only applies to the outer
shareable domain.

OSHST
Barrier operation that waits only for stores to complete, and only to the outer shareable
domain.

 Note

The options LD, ISHLD, NSHLD, and OSHLD are supported only in the Armv8-A and Armv8-R
architectures.

C2 A32 and T32 Instructions
C2.37 DSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-213
Non-Confidential

Operation
Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order
after this instruction executes until this instruction completes. This instruction completes when:
• All explicit memory accesses before this instruction complete.
• All Cache, Branch predictor and TLB maintenance operations before this instruction complete.

Alias
The following alternative values of option are supported for DSB, but Arm recommends that you do not
use them:
• SH is an alias for ISH.
• SHST is an alias for ISHST.
• UN is an alias for NSH.
• UNST is an alias for NSHST.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.37 DSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-214
Non-Confidential

C2.38 EOR
Logical Exclusive OR.

Syntax

EOR{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The EOR instruction performs bitwise Exclusive OR operations on the values in Rn and Operand2.

Use of PC in T32 instructions

You cannot use PC (R15) for Rd or any operand in an EOR instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the EOR instruction but they are deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the EOR instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the EOR instruction are available in T32 code, and are 16-bit instructions:

EORS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

EOR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify EOR{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.38 EOR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-215
Non-Confidential

Correct examples
 EORS r0,r0,r3,ROR r6
 EORS r7, r11, #0x18181818

Incorrect example
 EORS r0,pc,r3,ROR r6 ; PC not permitted with register
 ; controlled shift

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.38 EOR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-216
Non-Confidential

C2.39 ERET
Exception Return.

Syntax

ERET{cond}

where:

cond

is an optional condition code.

Usage

In a processor that implements the Virtualization Extensions, you can use ERET to perform a return from
an exception taken to Hyp mode.

Operation
When executed in Hyp mode, ERET loads the PC from ELR_hyp and loads the CPSR from SPSR_hyp.
When executed in any other mode, apart from User or System, it behaves as:
• MOVS PC, LR in the A32 instruction set.
• SUBS PC, LR, #0 in the T32 instruction set.

Notes

You must not use ERET in User or System mode. The assembler cannot warn you about this because it
has no information about what the processor mode is likely to be at execution time.

ERET is the preferred synonym for SUBS PC, LR, #0 in the T32 instruction set.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related reference
C2.61 MOV on page C2-252
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142
C2.42 HVC on page C2-220

C2 A32 and T32 Instructions
C2.39 ERET

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-217
Non-Confidential

C2.40 ESB
Error Synchronization Barrier.

Syntax

ESB{c}{q}

ESB{c}.W

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

Architectures supported

Supported in the Armv8-A and Armv8-R architectures.

Usage

Error Synchronization Barrier.

Related reference
C2.1 A32 and T32 instruction summary on page C2-156

C2 A32 and T32 Instructions
C2.40 ESB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-218
Non-Confidential

C2.41 HLT
Halting breakpoint.

 Note

This instruction is supported only in the Armv8 architecture.

Syntax

HLT{Q} #imm

Where:

Q
is an optional suffix. It only has an effect when Halting debug-mode is disabled. In this case, if Q
is specified, the instruction behaves as a NOP. If Q is not specified, the instruction is UNDEFINED.

imm
is an expression evaluating to an integer in the range:
• 0-65535 (a 16-bit value) in an A32 instruction.
• 0-63 (a 6-bit value) in a 16-bit T32 instruction.

Usage

The HLT instruction causes the processor to enter Debug state if Halting debug-mode is enabled.

In both A32 state and T32 state, imm is ignored by the Arm hardware. However, a debugger can use it to
store additional information about the breakpoint.

HLT is an unconditional instruction. It must not have a condition code in A32 code. In T32 code, the HLT
instruction does not require a condition code suffix because it always executes irrespective of its
condition code suffix.

Availability

This instruction is available in A32 and T32.

In T32, it is only available as a 16-bit instruction.

Related reference
C2.71 NOP on page C2-266

C2 A32 and T32 Instructions
C2.41 HLT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-219
Non-Confidential

C2.42 HVC
Hypervisor Call.

Syntax

HVC #imm

where:

imm
is an expression evaluating to an integer in the range 0-65535.

Operation

In a processor that implements the Virtualization Extensions, the HVC instruction causes a Hypervisor
Call exception. This means that the processor enters Hyp mode, the CPSR value is saved to the Hyp
mode SPSR, and execution branches to the HVC vector.

HVC must not be used if the processor is in Secure state, or in User mode in Non-secure state.

imm is ignored by the processor. However, it can be retrieved by the exception handler to determine what
service is being requested.

HVC cannot be conditional, and is not permitted in an IT block.

Notes

The ERET instruction performs an exception return from Hyp mode.

Architectures

This 32-bit instruction is available in A32 and T32. It is available in Armv7 architectures that include the
Virtualization Extensions.

There is no 16-bit version of this instruction in T32.

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related reference
C2.39 ERET on page C2-217

C2 A32 and T32 Instructions
C2.42 HVC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-220
Non-Confidential

C2.43 ISB
Instruction Synchronization Barrier.

Syntax

ISB{cond} {option}

where:

cond
is an optional condition code.

 Note

cond is permitted only in T32 code. This is an unconditional instruction in A32 code.

option

is an optional limitation on the operation of the hint. The permitted value is:

SY
Full system barrier operation. This is the default and can be omitted.

Operation

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following
the ISB are fetched from cache or memory, after the instruction has been completed. It ensures that the
effects of context altering operations, such as changing the ASID, or completed TLB maintenance
operations, or branch predictor maintenance operations, in addition to all changes to the CP15 registers,
executed before the ISB instruction are visible to the instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it are always
written into the branch prediction logic with the context that is visible after the ISB instruction. This is
required to ensure correct execution of the instruction stream.

 Note

When the target architecture is Armv7‑M, you cannot use an ISB instruction in an IT block, unless it is
the last instruction in the block.

Architectures

This 32-bit instructions are available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.43 ISB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-221
Non-Confidential

C2.44 IT
The IT (If-Then) instruction makes a single following instruction (the IT block) conditional. The
conditional instruction must be from a restricted set of 16-bit instructions.

Syntax

IT cond

where:

cond
specifies the condition for the following instruction.

Deprecated syntax

IT{x{y{z}}} {cond}

where:

x
specifies the condition switch for the second instruction in the IT block.

y
specifies the condition switch for the third instruction in the IT block.

z
specifies the condition switch for the fourth instruction in the IT block.

cond
specifies the condition for the first instruction in the IT block.

The condition switches for the second, third, and fourth instructions in the IT block can be either:

T
Then. Applies the condition cond to the instruction.

E
Else. Applies the inverse condition of cond to the instruction.

Usage

The IT block can contain between two and four conditional instructions, where the conditions can be all
the same, or some of them can be the logical inverse of the others, but this is deprecated in Armv8.

The conditional instruction (including branches, but excluding the BKPT instruction) must specify the
condition in the {cond} part of its syntax.

You are not required to write IT instructions in your code, because the assembler generates them for you
automatically according to the conditions specified on the following instructions. However, if you do
write IT instructions, the assembler validates the conditions specified in the IT instructions against the
conditions specified in the following instructions.

Writing the IT instructions ensures that you consider the placing of conditional instructions, and the
choice of conditions, in the design of your code.

When assembling to A32 code, the assembler performs the same checks, but does not generate any IT
instructions.

With the exception of CMP, CMN, and TST, the 16-bit instructions that normally affect the condition flags,
do not affect them when used inside an IT block.

C2 A32 and T32 Instructions
C2.44 IT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-222
Non-Confidential

A BKPT instruction in an IT block is always executed, so it does not require a condition in the {cond} part
of its syntax. The IT block continues from the next instruction. Using a BKPT or HLT instruction inside an
IT block is deprecated.

 Note

You can use an IT block for unconditional instructions by using the AL condition.

Conditional branches inside an IT block have a longer branch range than those outside the IT block.

Restrictions

The following instructions are not permitted in an IT block:

• IT.
• CBZ and CBNZ.
• TBB and TBH.
• CPS, CPSID and CPSIE.
• SETEND.

Other restrictions when using an IT block are:
• A branch or any instruction that modifies the PC is only permitted in an IT block if it is the last

instruction in the block.
• You cannot branch to any instruction in an IT block, unless when returning from an exception

handler.
• You cannot use any assembler directives in an IT block.

 Note

armasm shows a diagnostic message when any of these instructions are used in an IT block.

Using any instruction not listed in the following table in an IT block is deprecated. Also, any explicit
reference to R15 (the PC) in the IT block is deprecated.

Table C2-9 Permitted instructions inside an IT block

16-bit instruction When deprecated

MOV, MVN When Rm or Rd is the PC

LDR, LDRB, LDRH, LDRSB, LDRSH For PC-relative forms

STR, STRB, STRH -

ADD, ADC, RSB, SBC, SUB ADD SP, SP, #imm or SUB SP, SP, #imm or when Rm, Rdn
or Rdm is the PC

CMP, CMN When Rm or Rn is the PC

MUL -

ASR, LSL, LSR, ROR -

AND, BIC, EOR, ORR, TST -

BX, BLX When Rm is the PC

Condition flags

This instruction does not change the flags.

C2 A32 and T32 Instructions
C2.44 IT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-223
Non-Confidential

Exceptions

Exceptions can occur between an IT instruction and the corresponding IT block, or within an IT block.
This exception results in entry to the appropriate exception handler, with suitable return information in
LR and SPSR.

Instructions designed for use as exception returns can be used as normal to return from the exception,
and execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction
can branch to an instruction in an IT block.

Availability

This 16-bit instruction is available in T32 only.

In A32 code, IT is a pseudo-instruction that does not generate any code.

There is no 32-bit version of this instruction.

Correct examples
 IT GT
 LDRGT r0, [r1,#4]

 IT EQ
 ADDEQ r0, r1, r2

Incorrect examples
 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used in IT block

 ITT EQ
 MOVEQ r0,r1
 ADDEQ r0,r0,#1 ; IT block covering more than one instruction is deprecated

 IT GT
 LDRGT r0,label ; LDR (PC-relative) is deprecated in an IT block

 IT EQ
 ADDEQ PC,r0 ; ADD is deprecated when Rdn is the PC

C2 A32 and T32 Instructions
C2.44 IT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-224
Non-Confidential

C2.45 LDA
Load-Acquire Register.

 Note

This instruction is supported only in Armv8.

Syntax

LDA{cond} Rt, [Rn]

LDAB{cond} Rt, [Rn]

LDAH{cond} Rt, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

Operation

LDA loads data from memory. If any loads or stores appear after a load-acquire in program order, then all
observers are guaranteed to observe the load-acquire before observing the loads and stores. Loads and
stores appearing before a load-acquire are unaffected.

If a store-release follows a load-acquire, each observer is guaranteed to observe them in program order.

There is no requirement that a load-acquire be paired with a store-release.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not be used for Rt or Rn.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

Related reference
C2.46 LDAEX on page C2-226
C2.139 STL on page C2-354
C2.140 STLEX on page C2-355
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.45 LDA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-225
Non-Confidential

C2.46 LDAEX
Load-Acquire Register Exclusive.

 Note

This instruction is supported only in Armv8.

Syntax

LDAEX{cond} Rt, [Rn]

LDAEXB{cond} Rt, [Rn]

LDAEXH{cond} Rt, [Rn]

LDAEXD{cond} Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rt2
is the second register for doubleword loads.

Rn
is the register on which the memory address is based.

Operation
LDAEX loads data from memory.
• If the physical address has the Shared TLB attribute, LDAEX tags the physical address as exclusive

access for the current processor, and clears any exclusive access tag for this processor for any other
physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical address.
• If any loads or stores appear after LDAEX in program order, then all observers are guaranteed to

observe the LDAEX before observing the loads and stores. Loads and stores appearing before LDAEX
are unaffected.

Restrictions

The PC must not be used for any of Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rt, or Rt2 is deprecated.
• For LDAEXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rt, or Rt2.
• For LDAEXD, Rt and Rt2 must not be the same register.

Usage

Use LDAEX and STLEX to implement interprocess communication in multiple-processor and shared-
memory systems.

C2 A32 and T32 Instructions
C2.46 LDAEX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-226
Non-Confidential

For reasons of performance, keep the number of instructions between corresponding LDAEX and STLEX
instructions to a minimum.

 Note

The address used in a STLEX instruction must be the same as the address in the most recently executed
LDAEX instruction.

Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Related reference
C2.139 STL on page C2-354
C2.45 LDA on page C2-225
C2.140 STLEX on page C2-355
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.46 LDAEX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-227
Non-Confidential

C2.47 LDC and LDC2
Transfer Data from memory to Coprocessor.

 Note

LDC2 is not supported in Armv8.

Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, label

op{L}{cond} coproc, CRd, [Rn], {option}

where:

op
is LDC or LDC2.

cond

is an optional condition code.

In A32 code, cond is not permitted for LDC2.

L
is an optional suffix specifying a long transfer.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0 to 15 in Armv7 and earlier.
• 14 in Armv8.

CRd
is the coprocessor register to load.

Rn
is the register on which the memory address is based. If PC is specified, the value used is the
address of the current instruction plus eight.

-
is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is
added to Rn.

offset
is an expression evaluating to a multiple of 4, in the range 0 to 1020.

!
is an optional suffix. If ! is present, the address including the offset is written back into Rn.

label

is a word-aligned PC-relative expression.

label must be within 1020 bytes of the current instruction.

option
is a coprocessor option in the range 0-255, enclosed in braces.

C2 A32 and T32 Instructions
C2.47 LDC and LDC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-228
Non-Confidential

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that write
back to Rn.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.47 LDC and LDC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-229
Non-Confidential

C2.48 LDM
Load Multiple registers.

Syntax

LDM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode

is any one of the following:

IA
Increment address After each transfer. This is the default, and can be omitted.

IB
Increment address Before each transfer (A32 only).

DA
Decrement address After each transfer (A32 only).

DB
Decrement address Before each transfer.

You can also use the stack oriented addressing mode suffixes, for example, when implementing
stacks.

cond
is an optional condition code.

Rn
is the base register, the AArch32 register holding the initial address for the transfer. Rn must not
be PC.

!
is an optional suffix. If ! is present, the final address is written back into Rn.

reglist
is a list of one or more registers to be loaded, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range. Any
combination of registers R0 to R15 (PC) can be transferred in A32 state, but there are some
restrictions in T32 state.

^
is an optional suffix, available in A32 state only. You must not use it in User mode or System
mode. It has the following purposes:
• If reglist contains the PC (R15), in addition to the normal multiple register transfer, the

SPSR is copied into the CPSR. This is for returning from exception handlers. Use this only
from exception modes.

• Otherwise, data is transferred into or out of the User mode registers instead of the current
mode registers.

Restrictions on reglist in 32-bit T32 instructions
In 32-bit T32 instructions:
• The SP cannot be in the list.
• The PC and LR cannot both be in the list.
• There must be two or more registers in the list.

If you write an LDM instruction with only one register in reglist, the assembler automatically substitutes
the equivalent LDR instruction. Be aware of this when comparing disassembly listings with source code.

Restrictions on reglist in A32 instructions

A32 load instructions can have SP and PC in the reglist but these instructions that include SP in the
reglist or both PC and LR in the reglist are deprecated.

C2 A32 and T32 Instructions
C2.48 LDM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-230
Non-Confidential

16-bit instructions

16-bit versions of a subset of these instructions are available in T32 code.

The following restrictions apply to the 16-bit instructions:
• All registers in reglist must be Lo registers.
• Rn must be a Lo register.
• addr_mode must be omitted (or IA), meaning increment address after each transfer.
• Writeback must be specified for LDM instructions where Rn is not in the reglist.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can therefore
be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also 16-bit
instructions.

Loading to the PC

A load to the PC causes a branch to the instruction at the address loaded.

Also:
• Bits[1:0] must not be 0b10.
• If bit[0] is 1, execution continues in T32 state.
• If bit[0] is 0, execution continues in A32 state.

Loading or storing the base register, with writeback
In A32 or 16-bit T32 instructions, if Rn is in reglist, and writeback is specified with the ! suffix:
• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in reglist, the

initial value of Rn is stored. These instructions are deprecated.
• Otherwise, the loaded or stored value of Rn cannot be relied on, so these instructions are not

permitted.

32-bit T32 instructions are not permitted if Rn is in reglist, and writeback is specified with the ! suffix.

Correct example
 LDM r8,{r0,r2,r9} ; LDMIA is a synonym for LDM

Incorrect example
 LDMDA r2, {} ; must be at least one register in list

Related reference
C2.76 POP on page C2-274
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.48 LDM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-231
Non-Confidential

C2.49 LDR (immediate offset)
Load with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

LDR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

LDR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

LDR{type}{cond} Rt, [Rn], #offset ; post-indexed

LDRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

LDRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

LDRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

offset
is an offset. If offset is omitted, the address is the contents of Rn.

Rt2
is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of these instructions:

Table C2-10 Offsets and architectures, LDR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed

A32, word or byte h -4095 to 4095 -4095 to 4095 -4095 to 4095

A32, signed byte, halfword, or signed halfword -255 to 255 -255 to 255 -255 to 255

A32, doubleword -255 to 255 -255 to 255 -255 to 255

T32 32-bit encoding, word, halfword, signed halfword, byte, or signed byte h -255 to 4095 -255 to 255 -255 to 255

T32 32-bit encoding, doubleword -1020 to 1020 i -1020 to 1020 i -1020 to 1020 i

C2 A32 and T32 Instructions
C2.49 LDR (immediate offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-232
Non-Confidential

Table C2-10 Offsets and architectures, LDR, word, halfword, and byte (continued)

Instruction Immediate offset Pre-indexed Post-indexed

T32 16-bit encoding, word j 0 to 124 i Not available Not available

T32 16-bit encoding, unsigned halfword j 0 to 62 k Not available Not available

T32 16-bit encoding, unsigned byte j 0 to 31 Not available Not available

T32 16-bit encoding, word, Rn is SP l 0 to 1020 i Not available Not available

Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

In A32 code you can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions.

Other uses of PC are not permitted in these A32 instructions.

In T32 code you can use PC for Rt in LDR word instructions and PC for Rn in LDR instructions. Other uses
of PC in these T32 instructions are not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word instructions
in A32 code but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Examples
 LDR r8,[r10] ; loads R8 from the address in R10.
 LDRNE r2,[r5,#960]! ; (conditionally) loads R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.

Related reference
C1.9 Condition code suffixes on page C1-142

h For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

i Must be divisible by 4.
j Rt and Rn must be in the range R0-R7.
k Must be divisible by 2.
l Rt must be in the range R0-R7.

C2 A32 and T32 Instructions
C2.49 LDR (immediate offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-233
Non-Confidential

C2.50 LDR (PC-relative)
Load register. The address is an offset from the PC.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:
type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rt
is the register to load or store.

Rt2
is the second register to load or store.

label

is a PC-relative expression.

label must be within a limited distance of the current instruction.

 Note

Equivalent syntaxes are available for the STR instruction in A32 code but they are deprecated.

Offset range and architectures

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-11 PC-relative offsets

Instruction Offset range

A32 LDR, LDRB, LDRSB, LDRH, LDRSH m ±4095

A32 LDRD ±255

m For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

C2 A32 and T32 Instructions
C2.50 LDR (PC-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-234
Non-Confidential

Table C2-11 PC-relative offsets (continued)

Instruction Offset range

32-bit T32 LDR, LDRB, LDRSB, LDRH, LDRSH m ±4095

32-bit T32 LDRD n ±1020 o

16-bit T32 LDR p 0-1020 o

LDR (PC-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of SP

In A32 code, you can use SP for Rt in LDR word instructions. You can use SP for Rt in LDR non-word
A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in LDR word instructions only. All other uses of SP in these
instructions are not permitted in T32 code.

Related reference
C1.9 Condition code suffixes on page C1-142

m For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

n In Armv7‑M, LDRD (PC-relative) instructions must be on a word-aligned address.
o Must be a multiple of 4.
p Rt must be in the range R0-R7. There are no byte, halfword, or doubleword 16-bit instructions.

C2 A32 and T32 Instructions
C2.50 LDR (PC-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-235
Non-Confidential

C2.51 LDR (register offset)
Load with register offset, pre-indexed register offset, or post-indexed register offset.

Syntax

LDR{type}{cond} Rt, [Rn, ±Rm {, shift}] ; register offset

LDR{type}{cond} Rt, [Rn, ±Rm {, shift}]! ; pre-indexed ; A32 only

LDR{type}{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed ; A32 only

LDRD{cond} Rt, Rt2, [Rn, ±Rm] ; register offset, doubleword ; A32 only

LDRD{cond} Rt, Rt2, [Rn, ±Rm]! ; pre-indexed, doubleword ; A32 only

LDRD{cond} Rt, Rt2, [Rn], ±Rm ; post-indexed, doubleword ; A32 only

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

Rm
is a register containing a value to be used as the offset. –Rm is not permitted in T32 code.

shift
is an optional shift.

Rt2
is the additional register to load for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset register and shift options

The following table shows the ranges of offsets and availability of these instructions:

C2 A32 and T32 Instructions
C2.51 LDR (register offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-236
Non-Confidential

Table C2-12 Options and architectures, LDR (register offsets)

Instruction ±Rm q shift

A32, word or byte r ±Rm LSL #0-31 LSR #1-32

ASR #1-32 ROR #1-31 RRX

A32, signed byte, halfword, or signed halfword ±Rm Not available

A32, doubleword ±Rm Not available

T32 32-bit encoding, word, halfword, signed halfword, byte, or signed byte r +Rm LSL #0-3

T32 16-bit encoding, all except doubleword s +Rm Not available

Register restrictions

In the pre-index and post-index forms, Rn must be different from Rt.

Doubleword register restrictions
For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).
• Rm must be different from Rt and Rt2 in LDRD instructions.
• Rn must be different from Rt2 in the pre-index and post-index forms.

Use of PC

In A32 instructions you can use PC for Rt in LDR word instructions, and you can use PC for Rn in LDR
instructions with register offset syntax (that is the forms that do not writeback to the Rn).

Other uses of PC are not permitted in A32 instructions.

In T32 instructions you can use PC for Rt in LDR word instructions. Other uses of PC in these T32
instructions are not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

You can use SP for Rm in A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Use of SP for Rm is not permitted in T32 state.

Related reference
C1.9 Condition code suffixes on page C1-142

q Where ±Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
r For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and

above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.
s Rt, Rn, and Rm must all be in the range R0-R7.

C2 A32 and T32 Instructions
C2.51 LDR (register offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-237
Non-Confidential

C2.52 LDR (register-relative)
Load register. The address is an offset from a base register.

Syntax

LDR{type}{cond}{.W} Rt, label

LDRD{cond} Rt, Rt2, label ; Doubleword

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (LDR only. Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (LDR only. Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

.W
is an optional instruction width specifier.

Rt
is the register to load or store.

Rt2
is the second register to load or store.

label

is a symbol defined by the FIELD directive. label specifies an offset from the base register
which is defined using the MAP directive.

label must be within a limited distance of the value in the base register.

Offset range and architectures

The assembler calculates the offset from the base register for you. The assembler generates an error if
label is out of range.

The following table shows the possible offsets between the label and the current instruction:

Table C2-13 Register-relative offsets

Instruction Offset range

A32 LDR, LDRB t ±4095

A32 LDRSB, LDRH, LDRSH ±255

A32 LDRD ±255

T32, 32-bit LDR, LDRB, LDRSB, LDRH, LDRSH t -255 to 4095

t For word loads, Rt can be the PC. A load to the PC causes a branch to the address loaded. In Armv4, bits[1:0] of the address loaded must be 0b00. In Armv5T and
above, bits[1:0] must not be 0b10, and if bit[0] is 1, execution continues in T32 state, otherwise execution continues in A32 state.

u Must be a multiple of 4.

C2 A32 and T32 Instructions
C2.52 LDR (register-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-238
Non-Confidential

Table C2-13 Register-relative offsets (continued)

Instruction Offset range

T32, 32-bit LDRD ±1020 u

T32, 16-bit LDR v 0 to 124 u

T32, 16-bit LDRH v 0 to 62 w

T32, 16-bit LDRB v 0 to 31

T32, 16-bit LDR, base register is SP x 0 to 1020 u

LDR (register-relative) in T32

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the target could be reached using a 16-bit LDR.

For forward references, LDR without .W always generates a 16-bit instruction in T32 code, even if that
results in failure for a target that could be reached using a 32-bit T32 LDR instruction.

Doubleword register restrictions

For 32-bit T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

You can use PC for Rt in word instructions. Other uses of PC are not permitted in these instructions.

Use of SP

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in these
instructions are not permitted in T32 code.

Related reference
C1.9 Condition code suffixes on page C1-142

v Rt and base register must be in the range R0-R7.
w Must be a multiple of 2.
x Rt must be in the range R0-R7.

C2 A32 and T32 Instructions
C2.52 LDR (register-relative)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-239
Non-Confidential

C2.53 LDR, unprivileged
Unprivileged load byte, halfword, or word.

Syntax

LDR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (32-bit T32 encoding only)

LDR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (A32 only)

LDR{type}T{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed (register) (A32 only)

where:

type

can be any one of:

B
unsigned Byte (Zero extend to 32 bits on loads.)

SB
signed Byte (Sign extend to 32 bits.)

H
unsigned Halfword (Zero extend to 32 bits on loads.)

SH
signed Halfword (Sign extend to 32 bits.)

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the register to load.

Rn
is the register on which the memory address is based.

offset
is an offset. If offset is omitted, the address is the value in Rn.

Rm
is a register containing a value to be used as the offset. Rm must not be PC.

shift
is an optional shift.

Operation

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software these instructions behave in exactly the same way as the
corresponding load instruction, for example LDRSBT behaves in the same way as LDRSB.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of these instructions.

Table C2-14 Offsets and architectures, LDR (User mode)

Instruction Immediate offset Post-indexed ±Rm y shift

A32, word or byte Not available -4095 to 4095 ±Rm LSL #0-31

LSR #1-32

y You can use –Rm, +Rm, or Rm.

C2 A32 and T32 Instructions
C2.53 LDR, unprivileged

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-240
Non-Confidential

Table C2-14 Offsets and architectures, LDR (User mode) (continued)

Instruction Immediate offset Post-indexed ±Rm y shift

ASR #1-32

ROR #1-31

RRX

A32, signed byte, halfword, or signed halfword Not available -255 to 255 ±Rm Not available

T32, 32-bit encoding, word, halfword, signed halfword, byte, or signed
byte

0 to 255 Not available Not available

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.53 LDR, unprivileged

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-241
Non-Confidential

C2.54 LDREX
Load Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

LDREXH{cond} Rt, [Rn]

LDREXD{cond} Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to load.

Rt2
is the second register for doubleword loads.

Rn
is the register on which the memory address is based.

offset
is an optional offset applied to the value in Rn. offset is permitted only in 32-bit T32
instructions. If offset is omitted, an offset of zero is assumed.

Operation
LDREX loads data from memory.
• If the physical address has the Shared TLB attribute, LDREX tags the physical address as exclusive

access for the current processor, and clears any exclusive access tag for this processor for any other
physical address.

• Otherwise, it tags the fact that the executing processor has an outstanding tagged physical address.

LDREXB and LDREXH zero extend the value loaded.

Restrictions

PC must not be used for any of Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rt, or Rt2 is deprecated.
• For LDREXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).
• offset is not permitted.

For T32 instructions:
• SP can be used for Rn, but must not be used for Rt or Rt2.
• For LDREXD, Rt and Rt2 must not be the same register.
• The value of offset can be any multiple of four in the range 0-1020.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and shared-
memory systems.

C2 A32 and T32 Instructions
C2.54 LDREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-242
Non-Confidential

For reasons of performance, keep the number of instructions between corresponding LDREX and STREX
instructions to a minimum.

 Note

The address used in a STREX instruction must be the same as the address in the most recently executed
LDREX instruction.

Architectures

These 32-bit instructions are available in A32 and T32.

The LDREXD instruction is not available in the Armv7‑M architecture.

There are no 16-bit versions of these instructions in T32.

Examples
 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.54 LDREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-243
Non-Confidential

C2.55 LSL
Logical Shift Left. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

LSL{S}{cond} Rd, Rm, Rs

LSL{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted left.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 0-31.

Operation

LSL provides the value of a register multiplied by a power of two, inserting zeros into the vacated bit
positions.

Restrictions in T32 code

T32 instructions must not use PC or SP.

You cannot specify zero for the sh value in an LSL instruction in an IT block.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but this is deprecated.

You cannot use PC in instructions with the LSL{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction LSLS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

C2 A32 and T32 Instructions
C2.55 LSL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-244
Non-Confidential

You cannot use PC for Rd or any operand in the LSL instruction if it has a register-controlled shift.

Condition flags

If S is specified, the LSL instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

LSLS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSLS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSL{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This 32-bit instruction is available in A32 and T32.

This 16-bit T32 instruction is available in T32.

Example
 LSLS r1, r2, r3

Related reference
C2.61 MOV on page C2-252
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.55 LSL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-245
Non-Confidential

C2.56 LSR
Logical Shift Right. This instruction is a preferred synonym for MOV instructions with shifted register
operands.

Syntax

LSR{S}{cond} Rd, Rm, Rs

LSR{S}{cond} Rd, Rm, #sh

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rm
is the register holding the first operand. This operand is shifted right.

Rs
is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh
is a constant shift. The range of values permitted is 1-32.

Operation

LSR provides the unsigned value of a register divided by a variable power of two, inserting zeros into the
vacated bit positions.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but they are deprecated.

You cannot use PC in instructions with the LSR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction LSRS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in the LSR instruction if it has a register-controlled shift.

C2 A32 and T32 Instructions
C2.56 LSR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-246
Non-Confidential

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of these instructions are available in T32 code, and are 16-bit instructions:

LSRS Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rm, #sh
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

LSRS Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

LSR{cond} Rd, Rd, Rs
Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This 32-bit instruction is available in A32 and T32.

This 16-bit T32 instruction is available in T32.

Example
 LSR r4, r5, r6

Related reference
C2.61 MOV on page C2-252
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.56 LSR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-247
Non-Confidential

C2.57 MCR and MCR2
Move to Coprocessor from general-purpose register. Depending on the coprocessor, you might be able to
specify various additional operations.

 Note

MCR2 is not supported in Armv8.

Syntax

MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MCR2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MCR2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode1
is a 3-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

Rt
is a general-purpose register. Rt must not be PC.

CRn, CRm
are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.57 MCR and MCR2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-248
Non-Confidential

C2.58 MCRR and MCRR2
Move to Coprocessor from two general-purpose registers. Depending on the coprocessor, you might be
able to specify various additional operations.

 Note

MCRR2 is not supported in Armv8.

Syntax

MCRR{cond} coproc, #opcode, Rt, Rt2, CRn

MCRR2{cond} coproc, #opcode, Rt, Rt2, CRn

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MCRR2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode
is a 4-bit coprocessor-specific opcode.

Rt, Rt2
are general-purpose registers. Rt and Rt2 must not be PC.

CRn
is a coprocessor register.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.58 MCRR and MCRR2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-249
Non-Confidential

C2.59 MLA
Multiply-Accumulate with signed or unsigned 32-bit operands, giving the least significant 32 bits of the
result.

Syntax

MLA{S}{cond} Rd, Rn, Rm, Ra

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Ra
is a register holding the value to be added.

Operation

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, the MLA instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flag.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 MLA r10, r2, r1, r5

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.59 MLA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-250
Non-Confidential

C2.60 MLS
Multiply-Subtract, with signed or unsigned 32-bit operands, giving the least significant 32 bits of the
result.

Syntax

MLS{cond} Rd, Rn, Rm, Ra

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Ra
is a register holding the value to be subtracted from.

Operation

The MLS instruction multiplies the values in Rn and Rm, subtracts the result from the value in Ra, and
places the least significant 32 bits of the final result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 MLS r4, r5, r6, r7

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.60 MLS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-251
Non-Confidential

C2.61 MOV
Move.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Operand2
is a flexible second operand.

imm16
is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of this when
reading disassembly listings.

Use of PC and SP in 32-bit T32 encodings
You cannot use PC (R15) for Rd, or in Operand2, in 32-bit T32 MOV instructions. With the following
exceptions, you cannot use SP (R13) for Rd, or in Operand2:
• MOV{cond}.W Rd, SP, where Rd is not SP.
• MOV{cond}.W SP, Rm, where Rm is not SP.

Use of PC and SP in 16-bit T32 encodings

You can use PC or SP in 16-bit T32 MOV{cond} Rd, Rm instructions but these instructions in which both
Rd and Rm are SP or PC are deprecated.

You cannot use PC or SP in any other MOV{S} 16-bit T32 instructions.

Use of PC and SP in A32 MOV

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In instructions without register-controlled shift, the use of PC is deprecated except for the following
cases:

• MOVS PC, LR.
• MOV PC, Rm when Rm is not PC or SP.
• MOV Rd, PC when Rd is not PC or SP.

You can use SP for Rd or Rm. But this is deprecated except for the following cases:

• MOV SP, Rm when Rm is not PC or SP.
• MOV Rd, SP when Rd is not PC or SP.

C2 A32 and T32 Instructions
C2.61 MOV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-252
Non-Confidential

 Note

• You cannot use PC for Rd in MOV Rd, #imm16 if the #imm16 value is not a permitted Operand2 value.
You can use PC in forms with Operand2 without register-controlled shift.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags
If S is specified, the instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

MOVS Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used outside an IT block.

MOV{cond} Rd, #imm
Rd must be a Lo register. imm range 0-255. This form can only be used inside an IT block.

MOVS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MOV{cond} Rd, Rm
Rd or Rm can be Lo or Hi registers.

Availability

These instructions are available in A32 and T32.

In T32, 16-bit and 32-bit versions of these instructions are available.

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.61 MOV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-253
Non-Confidential

C2.62 MOVT
Move Top.

Syntax

MOVT{cond} Rd, #imm16

where:

cond
is an optional condition code.

Rd
is the destination register.

imm16
is a 16-bit immediate value.

Usage

MOVT writes imm16 to Rd[31:16], without affecting Rd[15:0].

You can generate any 32-bit immediate with a MOV, MOVT instruction pair.

Register restrictions

You cannot use PC in A32 or T32 instructions.

You can use SP for Rd in A32 instructions but this is deprecated.

You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.62 MOVT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-254
Non-Confidential

C2.63 MRC and MRC2
Move to general-purpose register from Coprocessor. Depending on the coprocessor, you might be able to
specify various additional operations.

 Note

MRC2 is not supported in Armv8.

Syntax

MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

MRC2{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MRC2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode1
is a 3-bit coprocessor-specific opcode.

opcode2
is an optional 3-bit coprocessor-specific opcode.

Rt

is the general-purpose register. Rt must not be PC.

Rt can be APSR_nzcv. This means that the coprocessor executes an instruction that changes the
value of the condition flags in the APSR.

CRn, CRm

are coprocessor registers.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.63 MRC and MRC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-255
Non-Confidential

C2.64 MRRC and MRRC2
Move to two general-purpose registers from coprocessor. Depending on the coprocessor, you might be
able to specify various additional operations.

 Note

MRRC2 is not supported in Armv8.

Syntax

MRRC{cond} coproc, #opcode, Rt, Rt2, CRm

MRRC2{cond} coproc, #opcode, Rt, Rt2, CRm

where:

cond

is an optional condition code.

In A32 code, cond is not permitted for MRRC2.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 or 15 in Armv8.

opcode
is a 4-bit coprocessor-specific opcode.

Rt, Rt2
are general-purpose registers. Rt and Rt2 must not be PC.

CRm
is a coprocessor register.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.64 MRRC and MRRC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-256
Non-Confidential

C2.65 MRS (PSR to general-purpose register)
Move the contents of a PSR to a general-purpose register.

Syntax

MRS{cond} Rd, psr

where:

cond
is an optional condition code.

Rd
is the destination register.

psr

is one of:

APSR
on any processor, in any mode.

CPSR
deprecated synonym for APSR and for use in Debug state, on any processor except
Armv7‑M and Armv6‑M.

SPSR
on any processor, except Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M
Mainline, in privileged software execution only.

Mpsr
on Armv6‑M, Armv7‑M, Armv8‑M Baseline, and Armv8‑M Mainline processors only.

Mpsr
can be any of: IPSR, EPSR, IEPSR, IAPSR, EAPSR, MSP, PSP, XPSR, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example to change processor mode, or to clear the Q flag.

In process swap code, the programmers’ model state of the process being swapped out must be saved,
including relevant PSR contents. Similarly, the state of the process being swapped in must also be
restored. These operations make use of MRS/store and load/MSR instruction sequences.

SPSR

You must not attempt to access the SPSR when the processor is in User or System mode. This is your
responsibility. The assembler cannot warn you about this, because it has no information about the
processor mode at execution time.

CPSR

Arm deprecates reading the CPSR endianness bit (E) with an MRS instruction.

The CPSR execution state bits, other than the E bit, can only be read when the processor is in Debug
state, halting debug-mode. Otherwise, the execution state bits in the CPSR read as zero.

The condition flags can be read in any mode on any processor. Use APSR if you are only interested in
accessing the condition flags in User mode.

Register restrictions

You cannot use PC for Rd in A32 instructions. You can use SP for Rd in A32 instructions but this is
deprecated.

You cannot use PC or SP for Rd in T32 instructions.

C2 A32 and T32 Instructions
C2.65 MRS (PSR to general-purpose register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-257
Non-Confidential

Condition flags

This instruction does not change the flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related concepts
A2.12 Current Program Status Register in AArch32 state on page A2-66
Related reference
C2.66 MRS (system coprocessor register to general-purpose register) on page C2-259
C2.67 MSR (general-purpose register to system coprocessor register) on page C2-260
C2.68 MSR (general-purpose register to PSR) on page C2-261
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.65 MRS (PSR to general-purpose register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-258
Non-Confidential

C2.66 MRS (system coprocessor register to general-purpose register)
Move to general-purpose register from system coprocessor register.

Syntax

MRS{cond} Rn, coproc_register

MRS{cond} APSR_nzcv, special_register

where:

cond
is an optional condition code.

coproc_register
is the name of the coprocessor register.

special_register
is the name of the coprocessor register that can be written to APSR_nzcv. This is only possible
for the coprocessor register DBGDSCRint.

Rn
is the general-purpose register. Rn must not be PC.

Usage

You can use this pseudo-instruction to read CP14 or CP15 coprocessor registers, with the exception of
write-only registers. A complete list of the applicable coprocessor register names is in the Arm®v7-AR
Architecture Reference Manual. For example:

 MRS R1, SCTLR ; writes the contents of the CP15 coprocessor
 ; register SCTLR into R1

Architectures

This pseudo-instruction is available in Armv7‑A and Armv7‑R in A32 and 32-bit T32 code.

There is no 16-bit version of this pseudo-instruction in T32.

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.67 MSR (general-purpose register to system coprocessor register) on page C2-260
C2.68 MSR (general-purpose register to PSR) on page C2-261
C1.9 Condition code suffixes on page C1-142
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.66 MRS (system coprocessor register to general-purpose register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-259
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.67 MSR (general-purpose register to system coprocessor register)
Move to system coprocessor register from general-purpose register.

Syntax

MSR{cond} coproc_register, Rn

where:

cond
is an optional condition code.

coproc_register
is the name of the coprocessor register.

Rn
is the general-purpose register. Rn must not be PC.

Usage

You can use this pseudo-instruction to write to any CP14 or CP15 coprocessor writable register. A
complete list of the applicable coprocessor register names is in the Arm Architecture Reference Manual.
For example:

 MSR SCTLR, R1 ; writes the contents of R1 into the CP15
 ; coprocessor register SCTLR

Availability

This pseudo-instruction is available in A32 and T32.

This pseudo-instruction is available in Armv7‑A and Armv7‑R in A32 and 32-bit T32 code.

There is no 16-bit version of this pseudo-instruction in T32.

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.66 MRS (system coprocessor register to general-purpose register) on page C2-259
C2.68 MSR (general-purpose register to PSR) on page C2-261
C1.9 Condition code suffixes on page C1-142
C2.156 SYS on page C2-385
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.67 MSR (general-purpose register to system coprocessor register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-260
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.68 MSR (general-purpose register to PSR)
Load an immediate value, or the contents of a general-purpose register, into the specified fields of a
Program Status Register (PSR).

Syntax

MSR{cond} APSR_flags, Rm

where:

cond
is an optional condition code.

flags

specifies the APSR flags to be moved. flags can be one or more of:

nzcvq
ALU flags field mask, PSR[31:27] (User mode)

g
SIMD GE flags field mask, PSR[19:16] (User mode).

Rm
is the general-purpose register. Rm must not be PC.

Syntax on architectures other than Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M
Mainline

MSR{cond} APSR_flags, #constant

MSR{cond} psr_fields, #constant

MSR{cond} psr_fields, Rm

where:

cond
is an optional condition code.

flags

specifies the APSR flags to be moved. flags can be one or more of:

nzcvq
ALU flags field mask, PSR[31:27] (User mode)

g
SIMD GE flags field mask, PSR[19:16] (User mode).

constant
is an expression evaluating to a numeric value. The value must correspond to an 8-bit pattern
rotated by an even number of bits within a 32-bit word. Not available in T32.

Rm
is the source register. Rm must not be PC.

psr

is one of:

CPSR
for use in Debug state, also deprecated synonym for APSR

SPSR
on any processor, in privileged software execution only.

fields

specifies the SPSR or CPSR fields to be moved. fields can be one or more of:

c
control field mask byte, PSR[7:0] (privileged software execution)

C2 A32 and T32 Instructions
C2.68 MSR (general-purpose register to PSR)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-261
Non-Confidential

x
extension field mask byte, PSR[15:8] (privileged software execution)

s
status field mask byte, PSR[23:16] (privileged software execution)

f
flags field mask byte, PSR[31:24] (privileged software execution).

Syntax on architectures Armv6-M, Armv7-M, Armv8-M Baseline, and Armv8-M Mainline
only

MSR{cond} psr, Rm

where:

cond
is an optional condition code.

Rm
is the source register. Rm must not be PC.

psr
can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, XPSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Usage
In User mode:
• Use APSR to access the condition flags, Q, or GE bits.
• Writes to unallocated, privileged or execution state bits in the CPSR are ignored. This ensures that

User mode programs cannot change to privileged software execution.

Arm deprecates using MSR to change the endianness bit (E) of the CPSR, in any mode.

You must not attempt to access the SPSR when the processor is in User or System mode.

Register restrictions

You cannot use PC in A32 instructions. You can use SP for Rm in A32 instructions but this is deprecated.

You cannot use PC or SP in T32 instructions.

Condition flags

This instruction updates the flags explicitly if the APSR_nzcvq or CPSR_f field is specified.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.66 MRS (system coprocessor register to general-purpose register) on page C2-259
C2.67 MSR (general-purpose register to system coprocessor register) on page C2-260
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.68 MSR (general-purpose register to PSR)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-262
Non-Confidential

C2.69 MUL
Multiply with signed or unsigned 32-bit operands, giving the least significant 32 bits of the result.

Syntax

MUL{S}{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd
is the destination register.

Rn, Rm
are registers holding the values to be multiplied.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the
result in Rd.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, the MUL instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flag.

16-bit instructions

The following forms of the MUL instruction are available in T32 code, and are 16-bit instructions:

MULS Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

MUL{cond} Rd, Rn, Rd
Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

There are no other T32 multiply instructions that can update the condition flags.

Availability

This instruction is available in A32 and T32.

The MULS instruction is available in T32 in a 16-bit encoding.

Examples
 MUL r10, r2, r5
 MULS r0, r2, r2
 MULLT r2, r3, r2

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.69 MUL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-263
Non-Confidential

C2.70 MVN
Move Not.

Syntax

MVN{S}{cond} Rd, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Operand2
is a flexible second operand.

Operation

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value,
and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be aware of this when
reading disassembly listings.

Use of PC and SP in 32-bit T32 MVN

You cannot use PC (R15) for Rd, or in Operand2, in 32-bit T32 MVN instructions. You cannot use SP (R13)
for Rd, or in Operand2.

Use of PC and SP in 16-bit T32 instructions

You cannot use PC or SP in any MVN{S} 16-bit T32 instructions.

Use of PC and SP in A32 MVN

You cannot use PC for Rd or any operand in any data processing instruction that has a register-controlled
shift.

In instructions without register-controlled shift, use of PC is deprecated.

You can use SP for Rd or Rm, but this is deprecated.

 Note

• PC and SP in A32 instructions are deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags
If S is specified, the instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

C2 A32 and T32 Instructions
C2.70 MVN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-264
Non-Confidential

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

MVNS Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

MVN{cond} Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Correct example
 MVNNE r11, #0xF000000B ; A32 only. This immediate value is not
 ; available in T32.

Incorrect example
 MVN pc,r3,ASR r0 ; PC not permitted with
 ; register-controlled shift

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.70 MVN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-265
Non-Confidential

C2.71 NOP
No Operation.

Syntax

NOP{cond}

where:

cond
is an optional condition code.

Usage

NOP does nothing. If NOP is not implemented as a specific instruction on your target architecture, the
assembler treats it as a pseudo-instruction and generates an alternative instruction that does nothing, such
as MOV r0, r0 (A32) or MOV r8, r8 (T32).

NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline before it
reaches the execution stage.

You can use NOP for padding, for example to place the following instruction on a 64-bit boundary in A32,
or a 32-bit boundary in T32.

Architectures

This instruction is available in A32 and T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.71 NOP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-266
Non-Confidential

C2.72 ORN (T32 only)
Logical OR NOT.

Syntax

ORN{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The ORN T32 instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of this when
reading disassembly listings.

Use of PC

You cannot use PC (R15) for Rd or any operand in the ORN instruction.

Condition flags
If S is specified, the ORN instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

Examples
 ORN r7, r11, lr, ROR #4
 ORNS r7, r11, lr, ASR #32

Architectures

This 32-bit instruction is available in T32.

There is no A32 or 16-bit T32 ORN instruction.

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.72 ORN (T32 only)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-267
Non-Confidential

C2.73 ORR
Logical OR.

Syntax

ORR{S}{cond} Rd, Rn, Operand2

where:

S
is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the first operand.

Operand2
is a flexible second operand.

Operation

The ORR instruction performs bitwise OR operations on the values in Rn and Operand2.

In certain circumstances, the assembler can substitute ORN for ORR, or ORR for ORN. Be aware of this when
reading disassembly listings.

Use of PC in 32-bit T32 instructions

You cannot use PC (R15) for Rd or any operand with the ORR instruction.

Use of PC and SP in A32 instructions

You can use PC and SP with the ORR instruction but this is deprecated.

If you use PC as Rn, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You cannot use PC for any operand in any data processing instruction that has a register-controlled shift.

Condition flags
If S is specified, the ORR instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following forms of the ORR instruction are available in T32 code, and are 16-bit instructions:

ORRS Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

ORR{cond} Rd, Rd, Rm
Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

It does not matter if you specify ORR{S} Rd, Rm, Rd. The instruction is the same.

C2 A32 and T32 Instructions
C2.73 ORR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-268
Non-Confidential

Example
 ORREQ r2,r0,r5

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.73 ORR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-269
Non-Confidential

C2.74 PKHBT and PKHTB
Halfword Packing instructions that combine a halfword from one register with a halfword from another
register. One of the operands can be shifted before extraction of the halfword.

Syntax

PKHBT{cond} {Rd}, Rn, Rm{, LSL #leftshift}

PKHTB{cond} {Rd}, Rn, Rm{, ASR #rightshift}

where:

PKHBT

Combines bits[15:0] of Rn with bits[31:16] of the shifted value from Rm.

PKHTB

Combines bits[31:16] of Rn with bits[15:0] of the shifted value from Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the first operand.

leftshift

is in the range 0 to 31.

rightshift

is in the range 1 to 32.

Register restrictions

You cannot use PC for any register.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

These instructions do not change the flags.

Architectures

These instructions are available in A32.

These 32-bit instructions are available T32. For the Armv7‑M architecture, they are only available in an
Armv7E-M implementation.

There are no 16-bit versions of these instructions in T32.

Correct examples
 PKHBT r0, r3, r5 ; combine the bottom halfword of R3
 ; with the top halfword of R5
 PKHBT r0, r3, r5, LSL #16 ; combine the bottom halfword of R3
 ; with the bottom halfword of R5

C2 A32 and T32 Instructions
C2.74 PKHBT and PKHTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-270
Non-Confidential

 PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of R3
 ; with the top halfword of R5

You can also scale the second operand by using different values of shift.

Incorrect example
 PKHBTEQ r4, r5, r1, ASR #8 ; ASR not permitted with PKHBT

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.74 PKHBT and PKHTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-271
Non-Confidential

C2.75 PLD, PLDW, and PLI
Preload Data and Preload Instruction allow the processor to signal the memory system that a data or
instruction load from an address is likely in the near future.

Syntax

PLtype{cond} [Rn {, #offset}]

PLtype{cond} [Rn, ±Rm {, shift}]

PLtype{cond} label

where:

type

can be one of:

D

Data address.

DW

Data address with intention to write.

I

Instruction address.

type cannot be DW if the syntax specifies label.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
the Armv8 architecture. This is an unconditional instruction in A32 code and you must not use
cond.

Rn

is the register on which the memory address is based.

offset

is an immediate offset. If offset is omitted, the address is the value in Rn.

Rm

is a register containing a value to be used as the offset.

shift

is an optional shift.

label

is a PC-relative expression.

Range of offsets
The offset is applied to the value in Rn before the preload takes place. The result is used as the memory
address for the preload. The range of offsets permitted is:
• -4095 to +4095 for A32 instructions.
• -255 to +4095 for T32 instructions, when Rn is not PC.
• -4095 to +4095 for T32 instructions, when Rn is PC.

C2 A32 and T32 Instructions
C2.75 PLD, PLDW, and PLI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-272
Non-Confidential

The assembler calculates the offset from the PC for you. The assembler generates an error if label is out
of range.

Register or shifted register offset

In A32 code, the value in Rm is added to or subtracted from the value in Rn. In T32 code, the value in Rm
can only be added to the value in Rn. The result is used as the memory address for the preload.

The range of shifts permitted is:
• LSL #0 to #3 for T32 instructions.
• Any one of the following for A32 instructions:

— LSL #0 to #31.
— LSR #1 to #32.
— ASR #1 to #32.
— ROR #1 to #31.
— RRX.

Address alignment for preloads

No alignment checking is performed for preload instructions.

Register restrictions

Rm must not be PC. For T32 instructions Rm must also not be SP.

Rn must not be PC for T32 instructions of the syntax PLtype{cond} [Rn, ±Rm{, #shift}].

Architectures

The PLD instruction is available in A32.

The 32-bit encoding of PLD is available in T32.

PLDW is available only in the Armv7 architecture and above that implement the Multiprocessing
Extensions.

PLI is available only in the Armv7 architecture and above.

There are no 16-bit encodings of these instructions in T32.

These are hint instructions, and their implementation is optional. If they are not implemented, they
execute as NOPs.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.75 PLD, PLDW, and PLI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-273
Non-Confidential

C2.76 POP
Pop registers off a full descending stack.

Syntax

POP{cond} reglist

where:

cond

is an optional condition code.

reglist

is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.

Operation
POP is a synonym for LDMIA sp! reglist. POP is the preferred mnemonic.

 Note

LDM and LDMFD are synonyms of LDMIA.

Registers are stored on the stack in numerical order, with the lowest numbered register at the lowest
address.

POP, with reglist including the PC

This instruction causes a branch to the address popped off the stack into the PC. This is usually a return
from a subroutine, where the LR was pushed onto the stack at the start of the subroutine.

Also:
• Bits[1:0] must not be 0b10.
• If bit[0] is 1, execution continues in T32 state.
• If bit[0] is 0, execution continues in A32 state.

T32 instructions

A subset of this instruction is available in the T32 instruction set.

The following restriction applies to the 16-bit POP instruction:

• reglist can only include the Lo registers and the PC.

The following restrictions apply to the 32-bit POP instruction:
• reglist must not include the SP.
• reglist can include either the LR or the PC, but not both.

Restrictions on reglist in A32 instructions

The A32 POP instruction cannot have SP but can have PC in the reglist. The instruction that includes
both PC and LR in the reglist is deprecated.

Example
 POP {r0,r10,pc} ; no 16-bit version available

Related reference
C2.48 LDM on page C2-230
C2.77 PUSH on page C2-275
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.76 POP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-274
Non-Confidential

C2.77 PUSH
Push registers onto a full descending stack.

Syntax

PUSH{cond} reglist

where:

cond

is an optional condition code.

reglist

is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.

Operation
PUSH is a synonym for STMDB sp!, reglist. PUSH is the preferred mnemonic.

 Note

STMFD is a synonym of STMDB.

Registers are stored on the stack in numerical order, with the lowest numbered register at the lowest
address.

T32 instructions

The following restriction applies to the 16-bit PUSH instruction:

• reglist can only include the Lo registers and the LR.

The following restrictions apply to the 32-bit PUSH instruction:
• reglist must not include the SP.
• reglist must not include the PC.

Restrictions on reglist in A32 instructions

The A32 PUSH instruction can have SP and PC in the reglist but the instruction that includes SP or PC
in the reglist is deprecated.

Examples
 PUSH {r0,r4-r7}
 PUSH {r2,lr}

Related reference
C2.48 LDM on page C2-230
C2.76 POP on page C2-274
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.77 PUSH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-275
Non-Confidential

C2.78 QADD
Signed saturating addition.

Syntax

QADD{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the registers holding the operands.

Operation
The QADD instruction adds the values in Rm and Rn. It saturates the result to the signed range -231 ≤ x ≤
231-1.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 QADD r0, r1, r9

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.78 QADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-276
Non-Confidential

C2.79 QADD8
Signed saturating parallel byte-wise addition.

Syntax

QADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. It saturates the results to the signed
range -27 ≤ x ≤ 27 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.79 QADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-277
Non-Confidential

C2.80 QADD16
Signed saturating parallel halfword-wise addition.

Syntax

QADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. It saturates the results to the
signed range -215 ≤ x ≤ 215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.80 QADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-278
Non-Confidential

C2.81 QASX
Signed saturating parallel add and subtract halfwords with exchange.

Syntax

QASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. It saturates the results to the signed range -215 ≤ x ≤
215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.81 QASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-279
Non-Confidential

C2.82 QDADD
Signed saturating Double and Add.

Syntax

QDADD{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
QDADD calculates SAT(Rm + SAT(Rn * 2)). It saturates the result to the signed range -231 ≤ x ≤ 231-1.
Saturation can occur on the doubling operation, on the addition, or on both. If saturation occurs on the
doubling but not on the addition, the Q flag is set but the final result is unsaturated.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.82 QDADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-280
Non-Confidential

C2.83 QDSUB
Signed saturating Double and Subtract.

Syntax

QDSUB{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
QDSUB calculates SAT(Rm - SAT(Rn * 2)). It saturates the result to the signed range -231 ≤ x ≤ 231-1.
Saturation can occur on the doubling operation, on the subtraction, or on both. If saturation occurs on the
doubling but not on the subtraction, the Q flag is set but the final result is unsaturated.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 QDSUBLT r9, r0, r1

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.83 QDSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-281
Non-Confidential

C2.84 QSAX
Signed saturating parallel subtract and add halfwords with exchange.

Syntax

QSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. It saturates the results to the signed range -215 ≤ x ≤ 215

-1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.84 QSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-282
Non-Confidential

C2.85 QSUB
Signed saturating Subtract.

Syntax

QSUB{cond} {Rd}, Rm, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation
The QSUB instruction subtracts the value in Rn from the value in Rm. It saturates the result to the signed
range -231 ≤ x ≤ 231-1.

 Note

All values are treated as two’s complement signed integers by this instruction.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.85 QSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-283
Non-Confidential

C2.86 QSUB8
Signed saturating parallel byte-wise subtraction.

Syntax

QSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. It saturates the results to
the signed range -27 ≤ x ≤ 27 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.86 QSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-284
Non-Confidential

C2.87 QSUB16
Signed saturating parallel halfword-wise subtraction.

Syntax

QSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. It saturates the
results to the signed range -215 ≤ x ≤ 215 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
A2.10 The Q flag in AArch32 state on page A2-64
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.87 QSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-285
Non-Confidential

C2.88 RBIT
Reverse the bit order in a 32-bit word.

Syntax

RBIT{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 RBIT r7, r8

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.88 RBIT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-286
Non-Confidential

C2.89 REV
Reverse the byte order in a word.

Syntax

REV{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage

You can use this instruction to change endianness. REV converts 32-bit big-endian data into little-endian
data or 32-bit little-endian data into big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REV Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REV r3, r7

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.89 REV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-287
Non-Confidential

C2.90 REV16
Reverse the byte order in each halfword independently.

Syntax

REV16{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage

You can use this instruction to change endianness. REV16 converts 16-bit big-endian data into little-
endian data or 16-bit little-endian data into big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REV16 Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REV16 r0, r0

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.90 REV16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-288
Non-Confidential

C2.91 REVSH
Reverse the byte order in the bottom halfword, and sign extend to 32 bits.

Syntax

REVSH{cond} Rd, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the operand.

Usage
You can use this instruction to change endianness. REVSH converts either:
• 16-bit signed big-endian data into 32-bit signed little-endian data.
• 16-bit signed little-endian data into 32-bit signed big-endian data.

Register restrictions

You cannot use PC for any register.

You can use SP in the A32 instruction but this is deprecated. You cannot use SP in the T32 instruction.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

REVSH Rd, Rm

Rd and Rm must both be Lo registers.

Architectures

This instruction is available in A32 and T32.

Example
 REVSH r0, r5 ; Reverse Signed Halfword

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.91 REVSH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-289
Non-Confidential

C2.92 RFE
Return From Exception.

Syntax

RFE{addr_mode}{cond} Rn{!}

where:

addr_mode

is any one of the following:

IA
Increment address After each transfer (Full Descending stack)

IB
Increment address Before each transfer (A32 only)

DA
Decrement address After each transfer (A32 only)

DB
Decrement address Before each transfer.

If addr_mode is omitted, it defaults to Increment After.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
Armv8. This is an unconditional instruction in A32 code.

Rn
specifies the base register. Rn must not be PC.

!
is an optional suffix. If ! is present, the final address is written back into Rn.

Usage

You can use RFE to return from an exception if you previously saved the return state using the SRS
instruction. Rn is usually the SP where the return state information was saved.

Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address. Optionally
updates Rn.

Notes
RFE writes an address to the PC. The alignment of this address must be correct for the instruction set in
use after the exception return:
• For a return to A32, the address written to the PC must be word-aligned.
• For a return to T32, the address written to the PC must be halfword-aligned.
• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction to return
after a valid exception entry mechanism.

Where addresses are not word-aligned, RFE ignores the least significant two bits of Rn.

The time order of the accesses to individual words of memory generated by RFE is not architecturally
defined. Do not use this instruction on memory-mapped I/O locations where access order matters.

C2 A32 and T32 Instructions
C2.92 RFE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-290
Non-Confidential

Do not use RFE in unprivileged software execution.

Architectures

This instruction is available in A32.

This 32-bit T32 instruction is available, except in the Armv7‑M and Armv8‑M Mainline architectures.

There is no 16-bit version of this instruction.

Example
 RFE sp!

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related reference
C2.132 SRS on page C2-342
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.92 RFE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-291
Non-Confidential

C2.93 ROR
Rotate Right. This instruction is a preferred synonym for MOV instructions with shifted register operands.

Syntax

ROR{S}{cond} Rd, Rm, Rs

ROR{S}{cond} Rd, Rm, #sh

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd

is the destination register.

Rm

is the register holding the first operand. This operand is shifted right.

Rs

is a register holding a shift value to apply to the value in Rm. Only the least significant byte is
used.

sh

is a constant shift. The range of values is 1-31.

Operation

ROR provides the value of the contents of a register rotated by a value. The bits that are rotated off the
right end are inserted into the vacated bit positions on the left.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in these A32 instructions but this is deprecated.

You cannot use PC in instructions with the ROR{S}{cond} Rd, Rm, Rs syntax. You can use PC for Rd
and Rm in the other syntax, but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction RORS{cond} pc,Rm,#sh always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

C2 A32 and T32 Instructions
C2.93 ROR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-292
Non-Confidential

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

RORS Rd, Rd, Rs

Rd and Rs must both be Lo registers. This form can only be used outside an IT block.

ROR{cond} Rd, Rd, Rs

Rd and Rs must both be Lo registers. This form can only be used inside an IT block.

Architectures

This instruction is available in A32 and T32.

Example
 ROR r4, r5, r6

Related reference
C2.61 MOV on page C2-252
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.93 ROR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-293
Non-Confidential

C2.94 RRX
Rotate Right with Extend. This instruction is a preferred synonym for MOV instructions with shifted
register operands.

Syntax

RRX{S}{cond} Rd, Rm

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

Rd

is the destination register.

Rm

is the register holding the first operand. This operand is shifted right.

Operation

RRX provides the value of the contents of a register shifted right one bit. The old carry flag is shifted into
bit[31]. If the S suffix is present, the old bit[0] is placed in the carry flag.

Restrictions in T32 code

T32 instructions must not use PC or SP.

Use of SP and PC in A32 instructions

You can use SP in this A32 instruction but this is deprecated.

If you use PC as Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to

return from exceptions.
 Note

The A32 instruction RRXS{cond} pc,Rm always disassembles to the preferred form MOVS{cond}
pc,Rm{,shift}.

 Caution

Do not use the S suffix when using PC as Rd in User mode or System mode. The assembler cannot warn
you about this because it has no information about what the processor mode is likely to be at execution
time.

You cannot use PC for Rd or any operand in this instruction if it has a register-controlled shift.

Condition flags

If S is specified, the instruction updates the N and Z flags according to the result.

The C flag is unaffected if the shift value is 0. Otherwise, the C flag is updated to the last bit shifted out.

C2 A32 and T32 Instructions
C2.94 RRX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-294
Non-Confidential

Architectures

The 32-bit instruction is available in A32 and T32.

There is no 16-bit instruction in T32.

Related reference
C2.61 MOV on page C2-252
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.94 RRX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-295
Non-Confidential

C2.95 RSB
Reverse Subtract without carry.

Syntax

RSB{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Operation

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the
wide range of options for Operand2.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd or any operand.

You cannot use SP (R13) for Rd or any operand.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in an RSB instruction that has a register-controlled shift.

Use of PC for any operand, in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP and PC in A32 instructions is deprecated.

Condition flags

If S is specified, the RSB instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

C2 A32 and T32 Instructions
C2.95 RSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-296
Non-Confidential

RSBS Rd, Rn, #0

Rd and Rn must both be Lo registers. This form can only be used outside an IT block.

RSB{cond} Rd, Rn, #0

Rd and Rn must both be Lo registers. This form can only be used inside an IT block.

Example
 RSB r4, r4, #1280 ; subtracts contents of R4 from 1280

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.95 RSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-297
Non-Confidential

C2.96 RSC
Reverse Subtract with Carry.

Syntax

RSC{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Usage

The RSC instruction subtracts the value in Rn from the value of Operand2. If the carry flag is clear, the
result is reduced by one.

You can use RSC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

RSC is not available in T32 code.

Use of PC and SP

Use of PC and SP is deprecated.

You cannot use PC for Rd or any operand in an RSC instruction that has a register-controlled shift.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Condition flags

If S is specified, the RSC instruction updates the N, Z, C and V flags according to the result.

Correct example
 RSCSLE r0,r5,r0,LSL r4 ; conditional, flags set

Incorrect example
 RSCSLE r0,pc,r0,LSL r4 ; PC not permitted with register
 ; controlled shift

C2 A32 and T32 Instructions
C2.96 RSC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-298
Non-Confidential

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.96 RSC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-299
Non-Confidential

C2.97 SADD8
Signed parallel byte-wise addition.

Syntax

SADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. The results are modulo 28. It sets the
APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero. This is
equivalent to an ADDS instruction setting the N and V condition flags to the same value, so that the GE
condition passes.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.97 SADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-300
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.97 SADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-301
Non-Confidential

C2.98 SADD16
Signed parallel halfword-wise addition.

Syntax

SADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. The results are modulo 216. It
sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS instruction setting the N and V condition flags to the same value, so that the
GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.98 SADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-302
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.98 SADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-303
Non-Confidential

C2.99 SASX
Signed parallel add and subtract halfwords with exchange.

Syntax

SASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE
flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS or SUBS instruction setting the N and V condition flags to the same value,
so that the GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.99 SASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-304
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.99 SASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-305
Non-Confidential

C2.100 SBC
Subtract with Carry.

Syntax

SBC{S}{cond} {Rd}, Rn, Operand2

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

Usage

The SBC (Subtract with Carry) instruction subtracts the value of Operand2 from the value in Rn. If the
carry flag is clear, the result is reduced by one.

You can use SBC to synthesize multiword arithmetic.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

You cannot use PC (R15) for Rd, or any operand.

You cannot use SP (R13) for Rd, or any operand.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in an SBC instruction that has a register-controlled shift.

Use of PC for any operand in instructions without register-controlled shift, is deprecated.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:
• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

Use of SP and PC in SBC A32 instructions is deprecated.

Condition flags

If S is specified, the SBC instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

C2 A32 and T32 Instructions
C2.100 SBC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-306
Non-Confidential

SBCS Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used outside an IT block.

SBC{cond} Rd, Rd, Rm

Rd and Rm must both be Lo registers. This form can only be used inside an IT block.

Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit integer
contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no requirement
to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.100 SBC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-307
Non-Confidential

C2.101 SBFX
Signed Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the source register.

lsb

is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width

is the width of the bitfield, in the range 1 to (32–lsb).

Operation

Copies adjacent bits from one register into the least significant bits of a second register, and sign extends
to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.101 SBFX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-308
Non-Confidential

C2.102 SDIV
Signed Divide.

Syntax

SDIV{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the value to be divided.

Rm
is a register holding the divisor.

Register restrictions

PC or SP cannot be used for Rd, Rn, or Rm.

Architectures

This 32-bit T32 instruction is available in Armv7‑R, Armv7‑M, and Armv8‑M Mainline.

This 32-bit A32 instruction is optional in Armv7‑R.

This 32-bit A32 and T32 instruction is available in Armv7‑A if Virtualization Extensions are
implemented, and optional if not.

There is no 16-bit T32 SDIV instruction.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.102 SDIV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-309
Non-Confidential

C2.103 SEL
Select bytes from each operand according to the state of the APSR GE flags.

Syntax

SEL{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Operation
The SEL instruction selects bytes from Rn or Rm according to the APSR GE flags:
• If GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0].
• If GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8].
• If GE[2] is set, Rd[23:16] come from Rn[23:16], otherwise from Rm[23:16].
• If GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24].

Usage

Use the SEL instruction after one of the signed parallel instructions. You can use this to select maximum
or minimum values in multiple byte or halfword data.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SEL r0, r4, r5
 SELLT r4, r0, r4

The following instruction sequence sets each byte in R4 equal to the unsigned minimum of the
corresponding bytes of R1 and R2:

 USUB8 r4, r1, r2
 SEL r4, r2, r1

C2 A32 and T32 Instructions
C2.103 SEL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-310
Non-Confidential

Related concepts
A2.11 Application Program Status Register on page A2-65
Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.103 SEL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-311
Non-Confidential

C2.104 SETEND
Set the endianness bit in the CPSR, without affecting any other bits in the CPSR.

 Note

This instruction is deprecated in Armv8.

Syntax

SETEND specifier

where:

specifier

is one of:

BE

Big-endian.

LE

Little-endian.

Usage

Use SETEND to access data of different endianness, for example, to access several big-endian DMA-
formatted data fields from an otherwise little-endian application.

SETEND cannot be conditional, and is not permitted in an IT block.

Architectures

This instruction is available in A32 and 16-bit T32.

This 16-bit instruction is available in T32, except in the Armv6‑M and Armv7‑M architectures.

There is no 32-bit version of this instruction in T32.

Example
 SETEND BE ; Set the CPSR E bit for big-endian accesses
 LDR r0, [r2, #header]
 LDR r1, [r2, #CRC32]
 SETEND le ; Set the CPSR E bit for little-endian accesses
 ; for the rest of the application

C2 A32 and T32 Instructions
C2.104 SETEND

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-312
Non-Confidential

C2.105 SETPAN
Set Privileged Access Never.

Syntax

SETPAN{q} #imm ; A1 general registers (A32)

SETPAN{q} #imm ; T1 general registers (T32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

imm
Is the unsigned immediate 0 or 1.

Architectures supported

Supported in Armv8.1 and later.

Usage

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

Related reference
C2.1 A32 and T32 instruction summary on page C2-156

C2 A32 and T32 Instructions
C2.105 SETPAN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-313
Non-Confidential

C2.106 SEV
Set Event.

Syntax

SEV{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
executes as a NOP. The assembler produces a diagnostic message if the instruction executes as a NOP on
the target.

SEV causes an event to be signaled to all cores within a multiprocessor system. If SEV is implemented,
WFE must also be implemented.

Availability

This instruction is available in A32 and T32.

Related reference
C2.107 SEVL on page C2-315
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.106 SEV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-314
Non-Confidential

C2.107 SEVL
Set Event Locally.

 Note

This instruction is supported only in Armv8.

Syntax

SEVL{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether it is implemented or not. If it is not implemented, it
executes as a NOP. armasm produces a diagnostic message if the instruction executes as a NOP on the
target.

SEVL causes an event to be signaled to all cores the current processor. SEVL is not required to affect other
processors although it is permitted to do so.

Availability

This instruction is available in A32 and T32.

Related reference
C2.106 SEV on page C2-314
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.107 SEVL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-315
Non-Confidential

C2.108 SG
Secure Gateway.

Syntax

SG

Usage

Secure Gateway marks a valid branch target for branches from Non-secure code that wants to call Secure
code.

C2 A32 and T32 Instructions
C2.108 SG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-316
Non-Confidential

C2.109 SHADD8
Signed halving parallel byte-wise addition.

Syntax

SHADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four signed integer additions on the corresponding bytes of the operands,
halves the results, and writes the results into the corresponding bytes of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.109 SHADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-317
Non-Confidential

C2.110 SHADD16
Signed halving parallel halfword-wise addition.

Syntax

SHADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two signed integer additions on the corresponding halfwords of the operands,
halves the results, and writes the results into the corresponding halfwords of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.110 SHADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-318
Non-Confidential

C2.111 SHASX
Signed halving parallel add and subtract halfwords with exchange.

Syntax

SHASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It halves the results
and writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.111 SHASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-319
Non-Confidential

C2.112 SHSAX
Signed halving parallel subtract and add halfwords with exchange.

Syntax

SHSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It halves the results and
writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.112 SHSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-320
Non-Confidential

C2.113 SHSUB8
Signed halving parallel byte-wise subtraction.

Syntax

SHSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand, halves the results, and writes the results into the corresponding bytes of the destination. This
cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.113 SHSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-321
Non-Confidential

C2.114 SHSUB16
Signed halving parallel halfword-wise subtraction.

Syntax

SHSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand, halves the results, and writes the results into the corresponding halfwords of the
destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.114 SHSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-322
Non-Confidential

C2.115 SMC
Secure Monitor Call.

Syntax

SMC{cond} #imm4

where:

cond

is an optional condition code.

imm4

is a 4-bit immediate value. This is ignored by the Arm processor, but can be used by the SMC
exception handler to determine what service is being requested.

 Note

SMC was called SMI in earlier versions of the A32 assembly language. SMI instructions disassemble to
SMC, with a comment to say that this was formerly SMI.

Architectures

This 32-bit instruction is available in A32 and T32, if the Arm architecture has the Security Extensions.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.115 SMC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-323
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.116 SMLAxy
Signed Multiply Accumulate, with 16-bit operands and a 32-bit result and accumulator.

Syntax

SMLA<x><y>{cond} Rd, Rn, Rm, Ra

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Ra

is the register holding the value to be added.

Operation

SMLAxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, adds the 32-bit result
to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag, use an MRS
instruction.

 Note

SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.116 SMLAxy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-324
Non-Confidential

Examples
 SMLABBNE r0, r2, r1, r10
 SMLABT r0, r0, r3, r5

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.116 SMLAxy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-325
Non-Confidential

C2.117 SMLAD
Dual 16-bit Signed Multiply with Addition of products and 32-bit accumulation.

Syntax

SMLAD{X}{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is the register holding the accumulate operand.

Operation

SMLAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds both products to the value in Ra and stores the sum to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLADLT r1, r2, r4, r1

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.117 SMLAD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-326
Non-Confidential

C2.118 SMLAL
Signed Long Multiply, with optional Accumulate, with 32-bit operands, and 64-bit result and
accumulator.

Syntax

SMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulating value. RdLo and RdHi must be
different registers

Rn, Rm

are general-purpose registers holding the operands.

Operation

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in RdHi and
RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.118 SMLAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-327
Non-Confidential

C2.119 SMLALD
Dual 16-bit Signed Multiply with Addition of products and 64-bit Accumulation.

Syntax

SMLALD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the 64-bit accumulate operand.
RdHi and RdLo must be different registers.

Rn, Rm

are the general-purpose registers holding the operands.

Operation

SMLALD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds both products to the value in RdLo, RdHi and stores the sum to
RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLALD r10, r11, r5, r1

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.119 SMLALD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-328
Non-Confidential

C2.120 SMLALxy
Signed Multiply-Accumulate with 16-bit operands and a 64-bit accumulator.

Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rn, Rm

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulate value. RdHi and RdLo must be
different registers.

Rn, Rm

are the general-purpose registers holding the values to be multiplied.

Operation

SMLALxy multiplies the signed integer from the selected half of Rm by the signed integer from the selected
half of Rn, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
This instruction does not change the flags.

 Note

SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round without
any warning.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMLALTB r2, r3, r7, r1
 SMLALBTVS r0, r1, r9, r2

C2 A32 and T32 Instructions
C2.120 SMLALxy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-329
Non-Confidential

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.120 SMLALxy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-330
Non-Confidential

C2.121 SMLAWy
Signed Multiply-Accumulate Wide, with one 32-bit and one 16-bit operand, and a 32-bit accumulate
value, providing the top 32 bits of the result.

Syntax

SMLAW<y>{cond} Rd, Rn, Rm, Ra

where:

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Ra

is the register holding the value to be added.

Operation

SMLAWy multiplies the signed 16-bit integer from the selected half of Rm by the signed 32-bit integer from
Rn, adds the top 32 bits of the 48-bit result to the 32-bit value in Ra, and places the result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.121 SMLAWy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-331
Non-Confidential

C2.122 SMLSD
Dual 16-bit Signed Multiply with Subtraction of products and 32-bit accumulation.

Syntax

SMLSD{X}{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is the register holding the accumulate operand.

Operation

SMLSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, adds the difference to the
value in Ra, and stores the result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMLSD r1, r2, r0, r7
 SMLSDX r11, r10, r2, r3

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.122 SMLSD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-332
Non-Confidential

C2.123 SMLSLD
Dual 16-bit Signed Multiply with Subtraction of products and 64-bit accumulation.

Syntax

SMLSD{X}{cond} RdLo, RdHi, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the 64-bit accumulate operand.
RdHi and RdLo must be different registers.

Rn, Rm

are the general-purpose registers holding the operands.

Operation

SMLSLD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, adds the difference to the
value in RdLo, RdHi, and stores the result to RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMLSLD r3, r0, r5, r1

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.123 SMLSLD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-333
Non-Confidential

C2.124 SMMLA
Signed Most significant word Multiply with Accumulation.

Syntax

SMMLA{R}{cond} Rd, Rn, Rm, Ra

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMLA multiplies the values from Rn and Rm, adds the value in Ra to the most significant 32 bits of the
product, and stores the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.124 SMMLA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-334
Non-Confidential

C2.125 SMMLS
Signed Most significant word Multiply with Subtraction.

Syntax

SMMLS{R}{cond} Rd, Rn, Rm, Ra

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMLS multiplies the values from Rn and Rm, subtracts the product from the value in Ra shifted left by 32
bits, and stores the most significant 32 bits of the result in Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.125 SMMLS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-335
Non-Confidential

C2.126 SMMUL
Signed Most significant word Multiply.

Syntax

SMMUL{R}{cond} {Rd}, Rn, Rm

where:

R

is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Ra

is a register holding the value to be added or subtracted from.

Operation

SMMUL multiplies the 32-bit values from Rn and Rm, and stores the most significant 32 bits of the 64-bit
result to Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32
bits. This has the effect of rounding the result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMMULGE r6, r4, r3
 SMMULR r2, r2, r2

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.126 SMMUL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-336
Non-Confidential

C2.127 SMUAD
Dual 16-bit Signed Multiply with Addition of products, and optional exchange of operand halves.

Syntax

SMUAD{X}{cond} {Rd}, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Operation

SMUAD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then adds the products and stores the sum to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

The SMUAD instruction sets the Q flag if the addition overflows.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMUAD r2, r3, r2

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.127 SMUAD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-337
Non-Confidential

C2.128 SMULxy
Signed Multiply, with 16-bit operands and a 32-bit result.

Syntax

SMUL<x><y>{cond} {Rd}, Rn, Rm

where:

<x>

is either B or T. B means use the bottom half (bits [15:0]) of Rn, T means use the top half (bits
[31:16]) of Rn.

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Operation

SMULxy multiplies the 16-bit signed integers from the selected halves of Rn and Rm, and places the 32-bit
result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

These instructions do not affect the N, Z, C, or V flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 SMULTBEQ r8, r7, r9

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C2.68 MSR (general-purpose register to PSR) on page C2-261
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.128 SMULxy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-338
Non-Confidential

C2.129 SMULL
Signed Long Multiply, with 32-bit operands and 64-bit result.

Syntax

SMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. RdLo and RdHi must be different registers

Rn, Rm

are general-purpose registers holding the operands.

Operation

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.129 SMULL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-339
Non-Confidential

C2.130 SMULWy
Signed Multiply Wide, with one 32-bit and one 16-bit operand, providing the top 32 bits of the result.

Syntax

SMULW<y>{cond} {Rd}, Rn, Rm

where:

<y>

is either B or T. B means use the bottom half (bits [15:0]) of Rm, T means use the top half (bits
[31:16]) of Rm.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the values to be multiplied.

Operation

SMULWy multiplies the signed integer from the selected half of Rm by the signed integer from Rn, and
places the upper 32-bits of the 48-bit result in Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.130 SMULWy

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-340
Non-Confidential

C2.131 SMUSD
Dual 16-bit Signed Multiply with Subtraction of products, and optional exchange of operand halves.

Syntax

SMUSD{X}{cond} {Rd}, Rn, Rm

where:

X

is an optional parameter. If X is present, the most and least significant halfwords of the second
operand are exchanged before the multiplications occur.

cond

is an optional condition code.

Rd

is the destination register.

Rn, Rm

are the registers holding the operands.

Operation

SMUSD multiplies the bottom halfword of Rn with the bottom halfword of Rm, and the top halfword of Rn
with the top halfword of Rm. It then subtracts the second product from the first, and stores the difference
to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 SMUSDXNE r0, r1, r2

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.131 SMUSD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-341
Non-Confidential

C2.132 SRS
Store Return State onto a stack.

Syntax

SRS{addr_mode}{cond} sp{!}, #modenum

SRS{addr_mode}{cond} #modenum{!} ; This is pre-UAL syntax

where:

addr_mode

is any one of the following:

IA

Increment address After each transfer

IB

Increment address Before each transfer (A32 only)

DA

Decrement address After each transfer (A32 only)

DB

Decrement address Before each transfer (Full Descending stack).

If addr_mode is omitted, it defaults to Increment After. You can also use stack oriented
addressing mode suffixes, for example, when implementing stacks.

cond
is an optional condition code.

 Note

cond is permitted only in T32 code, using a preceding IT instruction, but this is deprecated in
the Armv8 architecture. This is an unconditional instruction in A32.

!

is an optional suffix. If ! is present, the final address is written back into the SP of the mode
specified by modenum.

modenum

specifies the number of the mode whose banked SP is used as the base register. You must use
only the defined mode numbers.

Operation
SRS stores the LR and the SPSR of the current mode, at the address contained in SP of the mode
specified by modenum, and the following word respectively. Optionally updates SP of the mode specified
by modenum. This is compatible with the normal use of the STM instruction for stack accesses.

 Note

For full descending stack, you must use SRSFD or SRSDB.

Usage

You can use SRS to store return state for an exception handler on a different stack from the one
automatically selected.

C2 A32 and T32 Instructions
C2.132 SRS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-342
Non-Confidential

Notes

Where addresses are not word-aligned, SRS ignores the least significant two bits of the specified address.

The time order of the accesses to individual words of memory generated by SRS is not architecturally
defined. Do not use this instruction on memory-mapped I/O locations where access order matters.

Do not use SRS in User and System modes because these modes do not have a SPSR.

SRS is not permitted in a non-secure state if modenum specifies monitor mode.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Example
R13_usr EQU 16
 SRSFD sp,#R13_usr

Related concepts
A2.2 Processor modes, and privileged and unprivileged software execution on page A2-55
Related reference
C2.48 LDM on page C2-230
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.132 SRS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-343
Non-Confidential

C2.133 SSAT
Signed Saturate to any bit position, with optional shift before saturating.

Syntax

SSAT{cond} Rd, #sat, Rm{, shift}

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 1 to 32.

Rm

is the register containing the operand.

shift

is an optional shift. It must be one of the following:

ASR #n

where n is in the range 1-32 (A32) or 1-31 (T32)

LSL #n

where n is in the range 0-31.

Operation

The SSAT instruction applies the specified shift, then saturates a signed value to the signed range -2sat-1 ≤
x ≤ 2sat-1 -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 SSAT r7, #16, r7, LSL #4

Related reference
C2.134 SSAT16 on page C2-345
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.133 SSAT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-344
Non-Confidential

C2.134 SSAT16
Parallel halfword Saturate.

Syntax

SSAT16{cond} Rd, #sat, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 1 to 16.

Rn

is the register holding the operand.

Operation

Halfword-wise signed saturation to any bit position.

The SSAT16 instruction saturates each signed halfword to the signed range -2sat-1 ≤ x ≤ 2sat-1 -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the Q flag, use
an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Correct example
 SSAT16 r7, #12, r7

Incorrect example
 SSAT16 r1, #16, r2, LSL #4 ; shifts not permitted with halfword
 ; saturations

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.134 SSAT16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-345
Non-Confidential

C2.135 SSAX
Signed parallel subtract and add halfwords with exchange.

Syntax

SSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to an ADDS or SUBS instruction setting the N and V condition flags to the same value,
so that the GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.135 SSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-346
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.135 SSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-347
Non-Confidential

C2.136 SSUB8
Signed parallel byte-wise subtraction.

Syntax

SSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. The results are modulo 28.
It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero. This is
equivalent to a SUBS instruction setting the N and V condition flags to the same value, so that the GE
condition passes.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.136 SSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-348
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.136 SSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-349
Non-Confidential

C2.137 SSUB16
Signed parallel halfword-wise subtraction.

Syntax

SSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. The results are
modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero.
This is equivalent to a SUBS instruction setting the N and V condition flags to the same value, so that the
GE condition passes.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.137 SSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-350
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.137 SSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-351
Non-Confidential

C2.138 STC and STC2
Transfer Data between memory and Coprocessor.

 Note

STC2 is not supported in Armv8.

Syntax

op{L}{cond} coproc, CRd, [Rn]

op{L}{cond} coproc, CRd, [Rn, #{-}offset] ; offset addressing

op{L}{cond} coproc, CRd, [Rn, #{-}offset]! ; pre-index addressing

op{L}{cond} coproc, CRd, [Rn], #{-}offset ; post-index addressing

op{L}{cond} coproc, CRd, [Rn], {option}

where:

op

is one of STC or STC2.

cond

is an optional condition code.

In A32 code, cond is not permitted for STC2.

L

is an optional suffix specifying a long transfer.

coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be:
• In the range 0-15 in Armv7 and earlier.
• 14 in Armv8.

CRd

is the coprocessor register to store.

Rn

is the register on which the memory address is based. If PC is specified, the value used is the
address of the current instruction plus eight.

-

is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is
added to Rn.

offset

is an expression evaluating to a multiple of 4, in the range 0 to 1020.

!

is an optional suffix. If ! is present, the address including the offset is written back into Rn.

option

is a coprocessor option in the range 0-255, enclosed in braces.

C2 A32 and T32 Instructions
C2.138 STC and STC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-352
Non-Confidential

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Architectures

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions in T32.

Register restrictions

You cannot use PC for Rn in the pre-index and post-index instructions. These are the forms that write
back to Rn.

You cannot use PC for Rn in T32 STC and STC2 instructions.

A32 STC and STC2 instructions where Rn is PC, are deprecated.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.138 STC and STC2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-353
Non-Confidential

C2.139 STL
Store-Release Register.

 Note

This instruction is supported only in Armv8.

Syntax

STL{cond} Rt, [Rn]

STLB{cond} Rt, [Rn]

STLH{cond} Rt, [Rn]

where:

cond
is an optional condition code.

Rt
is the register to store.

Rn
is the register on which the memory address is based.

Operation

STL stores data to memory. If any loads or stores appear before a store-release in program order, then all
observers are guaranteed to observe the loads and stores before observing the store-release. Loads and
stores appearing after a store-release are unaffected.

If a store-release follows a load-acquire, each observer is guaranteed to observe them in program order.

There is no requirement that a store-release be paired with a load-acquire.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if one
observer observes a write to memory because of a store-release operation, then all observers observe it.
Also, all observers observe all such writes to the same location in the same order.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not be used for Rt or Rn.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction.

Related reference
C2.46 LDAEX on page C2-226
C2.45 LDA on page C2-225
C2.140 STLEX on page C2-355
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.139 STL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-354
Non-Confidential

C2.140 STLEX
Store-Release Register Exclusive.

 Note

This instruction is supported only in Armv8.

Syntax

STLEX{cond} Rd, Rt, [Rn]

STLEXB{cond} Rd, Rt, [Rn]

STLEXH{cond} Rd, Rt, [Rn]

STLEXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond
is an optional condition code.

Rd
is the destination register for the returned status.

Rt
is the register to load or store.

Rt2
is the second register for doubleword loads or stores.

Rn
is the register on which the memory address is based.

Operation
STLEX performs a conditional store to memory. The conditions are as follows:
• If the physical address does not have the Shared TLB attribute, and the executing processor has an

outstanding tagged physical address, the store takes place, the tag is cleared, and the value 0 is
returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing processor does not
have an outstanding tagged physical address, the store does not take place, and the value 1 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive
access for the executing processor, the store takes place, the tag is cleared, and the value 0 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged as
exclusive access for the executing processor, the store does not take place, and the value 1 is returned
in Rd.

If any loads or stores appear before STLEX in program order, then all observers are guaranteed to observe
the loads and stores before observing the store-release. Loads and stores appearing after STLEX are
unaffected.

All store-release operations are multi-copy atomic.

Restrictions

The PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STLEX, Rd must not be the same register as Rt, Rt2, or Rn.

C2 A32 and T32 Instructions
C2.140 STLEX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-355
Non-Confidential

For A32 instructions:
• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For STLEXD, Rt must be an even numbered register, and not LR.
• Rt2 must be R(t+1).

For T32 instructions, SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.

Usage

Use LDAEX and STLEX to implement interprocess communication in multiple-processor and shared-
memory systems.

For reasons of performance, keep the number of instructions between corresponding LDAEX and STLEX
instructions to a minimum.

 Note

The address used in a STLEX instruction must be the same as the address in the most recently executed
LDAEX instruction.

Availability

These 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Related reference
C2.46 LDAEX on page C2-226
C2.139 STL on page C2-354
C2.45 LDA on page C2-225
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.140 STLEX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-356
Non-Confidential

C2.141 STM
Store Multiple registers.

Syntax

STM{addr_mode}{cond} Rn{!}, reglist{^}

where:

addr_mode

is any one of the following:

IA

Increment address After each transfer. This is the default, and can be omitted.

IB

Increment address Before each transfer (A32 only).

DA

Decrement address After each transfer (A32 only).

DB

Decrement address Before each transfer.

You can also use the stack-oriented addressing mode suffixes, for example when implementing
stacks.

cond

is an optional condition code.

Rn

is the base register, the general-purpose register holding the initial address for the transfer. Rn
must not be PC.

!

is an optional suffix. If ! is present, the final address is written back into Rn.

reglist

is a list of one or more registers to be stored, enclosed in braces. It can contain register ranges. It
must be comma-separated if it contains more than one register or register range. Any
combination of registers R0 to R15 (PC) can be transferred in A32 state, but there are some
restrictions in T32 state.

^

is an optional suffix, available in A32 state only. You must not use it in User mode or System
mode. Data is transferred into or out of the User mode registers instead of the current mode
registers.

Restrictions on reglist in 32-bit T32 instructions
In 32-bit T32 instructions:
• The SP cannot be in the list.
• The PC cannot be in the list.
• There must be two or more registers in the list.

If you write an STM instruction with only one register in reglist, the assembler automatically substitutes
the equivalent STR instruction. Be aware of this when comparing disassembly listings with source code.

C2 A32 and T32 Instructions
C2.141 STM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-357
Non-Confidential

Restrictions on reglist in A32 instructions

A32 store instructions can have SP and PC in the reglist but these instructions that include SP or PC in
the reglist are deprecated.

16-bit instruction

A 16-bit version of this instruction is available in T32 code.

The following restrictions apply to the 16-bit instruction:
• All registers in reglist must be Lo registers.
• Rn must be a Lo register.
• addr_mode must be omitted (or IA), meaning increment address after each transfer.
• Writeback must be specified for STM instructions.

 Note

16-bit T32 STM instructions with writeback that specify Rn as the lowest register in the reglist are
deprecated.

In addition, the PUSH and POP instructions are subsets of the STM and LDM instructions and can therefore
be expressed using the STM and LDM instructions. Some forms of PUSH and POP are also 16-bit
instructions.

Storing the base register, with writeback
In A32 or 16-bit T32 instructions, if Rn is in reglist, and writeback is specified with the ! suffix:
• If the instruction is STM{addr_mode}{cond} and Rn is the lowest-numbered register in reglist, the

initial value of Rn is stored. These instructions are deprecated.
• Otherwise, the stored value of Rn cannot be relied on, so these instructions are not permitted.

32-bit T32 instructions are not permitted if Rn is in reglist, and writeback is specified with the ! suffix.

Correct example
 STMDB r1!,{r3-r6,r11,r12}

Incorrect example
 STM r5!,{r5,r4,r9} ; value stored for R5 unknown

Related reference
C2.76 POP on page C2-274
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.141 STM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-358
Non-Confidential

C2.142 STR (immediate offset)
Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

STR{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

STR{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

STR{type}{cond} Rt, [Rn], #offset ; post-indexed

STRD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, doubleword

STRD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, doubleword

STRD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:

type

can be any one of:

B

Byte

H

Halfword

-

omitted, for Word.

cond

is an optional condition code.

Rt

is the general-purpose register to store.

Rn

is the general-purpose register on which the memory address is based.

offset

is an offset. If offset is omitted, the address is the contents of Rn.

Rt2

is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of this instruction:

Table C2-15 Offsets and architectures, STR, word, halfword, and byte

Instruction Immediate offset Pre-indexed Post-indexed

A32, word or byte -4095 to 4095 -4095 to 4095 -4095 to 4095

A32, halfword -255 to 255 -255 to 255 -255 to 255

C2 A32 and T32 Instructions
C2.142 STR (immediate offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-359
Non-Confidential

Table C2-15 Offsets and architectures, STR, word, halfword, and byte (continued)

Instruction Immediate offset Pre-indexed Post-indexed

A32, doubleword -255 to 255 -255 to 255 -255 to 255

T32 32-bit encoding, word, halfword, or byte -255 to 4095 -255 to 255 -255 to 255

T32 32-bit encoding, doubleword -1020 to 1020 z -1020 to 1020 z -1020 to 1020 z

T32 16-bit encoding, word aa 0 to 124 z Not available Not available

T32 16-bit encoding, halfword aa 0 to 62 ac Not available Not available

T32 16-bit encoding, byte aa 0 to 31 Not available Not available

T32 16-bit encoding, word, Rn is SP ab 0 to 1020 z Not available Not available

Register restrictions

Rn must be different from Rt in the pre-index and post-index forms.

Doubleword register restrictions

Rn must be different from Rt2 in the pre-index and post-index forms.

For T32 instructions, you must not specify SP or PC for either Rt or Rt2.

For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).

Use of PC

In A32 instructions you can use PC for Rt in STR word instructions and PC for Rn in STR instructions
with immediate offset syntax (that is the forms that do not writeback to the Rn). However, this is
deprecated.

Other uses of PC are not permitted in these A32 instructions.

In T32 code, using PC in STR instructions is not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word instructions
in A32 code but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in T32 code.

Example
 STR r2,[r9,#consta-struc] ; consta-struc is an expression
 ; evaluating to a constant in
 ; the range 0-4095.

Related reference
C1.9 Condition code suffixes on page C1-142

z Must be divisible by 4.
aa Rt and Rn must be in the range R0-R7.
ab Rt must be in the range R0-R7.
ac Must be divisible by 2.

C2 A32 and T32 Instructions
C2.142 STR (immediate offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-360
Non-Confidential

C2.143 STR (register offset)
Store with register offset, pre-indexed register offset, or post-indexed register offset.

Syntax

STR{type}{cond} Rt, [Rn, ±Rm {, shift}] ; register offset

STR{type}{cond} Rt, [Rn, ±Rm {, shift}]! ; pre-indexed ; A32 only

STR{type}{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed ; A32 only

STRD{cond} Rt, Rt2, [Rn, ±Rm] ; register offset, doubleword ; A32 only

STRD{cond} Rt, Rt2, [Rn, ±Rm]! ; pre-indexed, doubleword ; A32 only

STRD{cond} Rt, Rt2, [Rn], ±Rm ; post-indexed, doubleword ; A32 only

where:

type

can be any one of:

B
Byte

H
Halfword

-
omitted, for Word.

cond
is an optional condition code.

Rt
is the general-purpose register to store.

Rn
is the general-purpose register on which the memory address is based.

Rm
is a general-purpose register containing a value to be used as the offset. –Rm is not permitted in
T32 code.

shift
is an optional shift.

Rt2
is the additional register to store for doubleword operations.

Not all options are available in every instruction set and architecture.

Offset register and shift options

The following table shows the ranges of offsets and availability of this instruction:

Table C2-16 Options and architectures, STR (register offsets)

Instruction ±Rm ad shift

A32, word or byte ±Rm LSL #0-31 LSR #1-32

ASR #1-32 ROR #1-31 RRX

A32, halfword ±Rm Not available

A32, doubleword ±Rm Not available

ad Where ±Rm is shown, you can use –Rm, +Rm, or Rm. Where +Rm is shown, you cannot use –Rm.
ae Rt, Rn, and Rm must all be in the range R0-R7.

C2 A32 and T32 Instructions
C2.143 STR (register offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-361
Non-Confidential

Table C2-16 Options and architectures, STR (register offsets) (continued)

Instruction ±Rm ad shift

T32 32-bit encoding, word, halfword, or byte +Rm LSL #0-3

T32 16-bit encoding, all except doubleword ae +Rm Not available

Register restrictions

In the pre-index and post-index forms, Rn must be different from Rt.

Doubleword register restrictions
For A32 instructions:
• Rt must be an even-numbered register.
• Rt must not be LR.
• Arm strongly recommends that you do not use R12 for Rt.
• Rt2 must be R(t + 1).
• Rn must be different from Rt2 in the pre-index and post-index forms.

Use of PC

In A32 instructions you can use PC for Rt in STR word instructions, and you can use PC for Rn in STR
instructions with register offset syntax (that is, the forms that do not writeback to the Rn). However, this
is deprecated.

Other uses of PC are not permitted in A32 instructions.

Use of PC in STR T32 instructions is not permitted.

Use of SP

You can use SP for Rn.

In A32 code, you can use SP for Rt in word instructions. You can use SP for Rt in non-word A32
instructions but this is deprecated.

You can use SP for Rm in A32 instructions but this is deprecated.

In T32 code, you can use SP for Rt in word instructions only. All other use of SP for Rt in this
instruction is not permitted in T32 code.

Use of SP for Rm is not permitted in T32 state.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.143 STR (register offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-362
Non-Confidential

C2.144 STR, unprivileged
Unprivileged Store, byte, halfword, or word.

Syntax

STR{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset (T32, 32-bit encoding only)

STR{type}T{cond} Rt, [Rn] {, #offset} ; post-indexed (A32 only)

STR{type}T{cond} Rt, [Rn], ±Rm {, shift} ; post-indexed (register) (A32 only)

where:

type

can be any one of:

B

Byte

H

Halfword

-

omitted, for Word.

cond

is an optional condition code.

Rt

is the register to load or store.

Rn

is the register on which the memory address is based.

offset

is an offset. If offset is omitted, the address is the value in Rn.

Rm

is a register containing a value to be used as the offset. Rm must not be PC.

shift

is an optional shift.

Operation

When these instructions are executed by privileged software, they access memory with the same
restrictions as they would have if they were executed by unprivileged software.

When executed by unprivileged software, these instructions behave in exactly the same way as the
corresponding store instruction, for example STRBT behaves in the same way as STRB.

Offset ranges and architectures

The following table shows the ranges of offsets and availability of this instruction:

C2 A32 and T32 Instructions
C2.144 STR, unprivileged

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-363
Non-Confidential

Table C2-17 Offsets and architectures, STR (User mode)

Instruction Immediate offset Post-indexed +/–Rm af shift

A32, word or byte Not available -4095 to 4095 +/–Rm LSL #0-31

LSR #1-32

ASR #1-32

ROR #1-31

RRX

A32, halfword Not available -255 to 255 +/–Rm Not available

T32 32-bit encoding, word, halfword, or byte 0 to 255 Not available Not available

Related reference
C1.9 Condition code suffixes on page C1-142

af You can use –Rm, +Rm, or Rm.

C2 A32 and T32 Instructions
C2.144 STR, unprivileged

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-364
Non-Confidential

C2.145 STREX
Store Register Exclusive.

Syntax

STREX{cond} Rd, Rt, [Rn {, #offset}]

STREXB{cond} Rd, Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

STREXD{cond} Rd, Rt, Rt2, [Rn]

where:

cond

is an optional condition code.

Rd

is the destination register for the returned status.

Rt

is the register to store.

Rt2

is the second register for doubleword stores.

Rn

is the register on which the memory address is based.

offset

is an optional offset applied to the value in Rn. offset is permitted only in T32 instructions. If
offset is omitted, an offset of 0 is assumed.

Operation
STREX performs a conditional store to memory. The conditions are as follows:
• If the physical address does not have the Shared TLB attribute, and the executing processor has an

outstanding tagged physical address, the store takes place, the tag is cleared, and the value 0 is
returned in Rd.

• If the physical address does not have the Shared TLB attribute, and the executing processor does not
have an outstanding tagged physical address, the store does not take place, and the value 1 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive
access for the executing processor, the store takes place, the tag is cleared, and the value 0 is returned
in Rd.

• If the physical address has the Shared TLB attribute, and the physical address is not tagged as
exclusive access for the executing processor, the store does not take place, and the value 1 is returned
in Rd.

Restrictions

PC must not be used for any of Rd, Rt, Rt2, or Rn.

For STREX, Rd must not be the same register as Rt, Rt2, or Rn.

For A32 instructions:

• SP can be used but use of SP for any of Rd, Rt, or Rt2 is deprecated.
• For STREXD, Rt must be an even numbered register, and not LR.

C2 A32 and T32 Instructions
C2.145 STREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-365
Non-Confidential

• Rt2 must be R(t+1).
• offset is not permitted.

For T32 instructions:
• SP can be used for Rn, but must not be used for any of Rd, Rt, or Rt2.
• The value of offset can be any multiple of four in the range 0-1020.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and shared-
memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and STREX
instructions to a minimum.

 Note

The address used in a STREX instruction must be the same as the address in the most recently executed
LDREX instruction.

Availability

All these 32-bit instructions are available in A32 and T32.

There are no 16-bit versions of these instructions.

Examples
 MOV r1, #0x1 ; load the ‘lock taken’ value
try
 LDREX r0, [LockAddr] ; load the lock value
 CMP r0, #0 ; is the lock free?
 STREXEQ r0, r1, [LockAddr] ; try and claim the lock
 CMPEQ r0, #0 ; did this succeed?
 BNE try ; no – try again
 ; yes – we have the lock

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.145 STREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-366
Non-Confidential

C2.146 SUB
Subtract without carry.

Syntax

SUB{S}{cond} {Rd}, Rn, Operand2

SUB{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encoding only

where:

S

is an optional suffix. If S is specified, the condition flags are updated on the result of the
operation.

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Operand2

is a flexible second operand.

imm12

is any value in the range 0-4095.

Operation

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when
reading disassembly listings.

Use of PC and SP in T32 instructions

In general, you cannot use PC (R15) for Rd, or any operand. The exception is you can use PC for Rn in
32-bit T32 SUB instructions, with a constant Operand2 value in the range 0-4095, and no S suffix. These
instructions are useful for generating PC-relative addresses. Bit[1] of the PC value reads as 0 in this case,
so that the base address for the calculation is always word-aligned.

Generally, you cannot use SP (R13) for Rd, or any operand, except that you can use SP for Rn.

Use of PC and SP in A32 instructions

You cannot use PC for Rd or any operand in a SUB instruction that has a register-controlled shift.

In SUB instructions without register-controlled shift, use of PC is deprecated except for the following
cases:

• Use of PC for Rd.
• Use of PC for Rn in the instruction SUB{cond} Rd, Rn, #Constant.

If you use PC (R15) as Rn or Rm, the value used is the address of the instruction plus 8.

If you use PC as Rd:

C2 A32 and T32 Instructions
C2.146 SUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-367
Non-Confidential

• Execution branches to the address corresponding to the result.
• If you use the S suffix, see the SUBS pc,lr instruction.

You can use SP for Rn in SUB instructions, however, SUBS PC, SP, #Constant is deprecated.

You can use SP in SUB (register) if Rn is SP and shift is omitted or LSL #1, LSL #2, or LSL #3.

Other uses of SP in A32 SUB instructions are deprecated.
 Note

Use of SP and PC is deprecated in A32 instructions.

Condition flags

If S is specified, the SUB instruction updates the N, Z, C and V flags according to the result.

16-bit instructions

The following forms of this instruction are available in T32 code, and are 16-bit instructions:

SUBS Rd, Rn, Rm

Rd, Rn and Rm must all be Lo registers. This form can only be used outside an IT block.

SUB{cond} Rd, Rn, Rm

Rd, Rn and Rm must all be Lo registers. This form can only be used inside an IT block.

SUBS Rd, Rn, #imm

imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used outside an IT
block.

SUB{cond} Rd, Rn, #imm

imm range 0-7. Rd and Rn must both be Lo registers. This form can only be used inside an IT
block.

SUBS Rd, Rd, #imm

imm range 0-255. Rd must be a Lo register. This form can only be used outside an IT block.

SUB{cond} Rd, Rd, #imm

imm range 0-255. Rd must be a Lo register. This form can only be used inside an IT block.

SUB{cond} SP, SP, #imm

imm range 0-508, word aligned.

Example
 SUBS r8, r6, #240 ; sets the flags based on the result

Multiword arithmetic examples

These instructions subtract one 96-bit integer contained in R9, R10, and R11 from another 96-bit integer
contained in R6, R7, and R8, and place the result in R3, R4, and R5:

 SUBS r3, r6, r9
 SBCS r4, r7, r10
 SBC r5, r8, r11

For clarity, the above examples use consecutive registers for multiword values. There is no requirement
to do this. The following, for example, is perfectly valid:

 SUBS r6, r6, r9
 SBCS r9, r2, r1
 SBC r2, r8, r11

C2 A32 and T32 Instructions
C2.146 SUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-368
Non-Confidential

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C2.147 SUBS pc, lr on page C2-370
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.146 SUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-369
Non-Confidential

C2.147 SUBS pc, lr
Exception return, without popping anything from the stack.

Syntax

SUBS{cond} pc, lr, #imm ; A32 and T32 code

MOVS{cond} pc, lr ; A32 and T32 code

op1S{cond} pc, Rn, #imm ; A32 code only and is deprecated

op1S{cond} pc, Rn, Rm {, shift} ; A32 code only and is deprecated

op2S{cond} pc, #imm ; A32 code only and is deprecated

op2S{cond} pc, Rm {, shift} ; A32 code only and is deprecated

where:

op1

is one of ADC, ADD, AND, BIC, EOR, ORN, ORR, RSB, RSC, SBC, and SUB.

op2

is one of MOV and MVN.

cond

is an optional condition code.

imm

is an immediate value. In T32 code, it is limited to the range 0-255. In A32 code, it is a flexible
second operand.

Rn

is the first general-purpose source register. Arm deprecates the use of any register except LR.

Rm

is the optionally shifted second or only general-purpose register.

shift

is an optional condition code.

Usage

SUBS pc, lr, #imm subtracts a value from the link register and loads the PC with the result, then copies
the SPSR to the CPSR.

You can use SUBS pc, lr, #imm to return from an exception if there is no return state on the stack. The
value of #imm depends on the exception to return from.

Notes

SUBS pc, lr, #imm writes an address to the PC. The alignment of this address must be correct for the
instruction set in use after the exception return:

• For a return to A32, the address written to the PC must be word-aligned.
• For a return to T32, the address written to the PC must be halfword-aligned.
• For a return to Jazelle, there are no alignment restrictions on the address written to the PC.

No special precautions are required in software to follow these rules, if you use the instruction to return
after a valid exception entry mechanism.

C2 A32 and T32 Instructions
C2.147 SUBS pc, lr

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-370
Non-Confidential

In T32, only SUBS{cond} pc, lr, #imm is a valid instruction. MOVS pc, lr is a synonym of SUBS pc,
lr, #0. Other instructions are undefined.

In A32, only SUBS{cond} pc, lr, #imm and MOVS{cond} pc, lr are valid instructions. Other
instructions are deprecated.

 Caution

Do not use these instructions in User mode or System mode. The assembler cannot warn you about this.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Related reference
C2.12 AND on page C2-178
C2.61 MOV on page C2-252
C2.3 Flexible second operand (Operand2) on page C2-162
C2.9 ADD on page C2-171
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.147 SUBS pc, lr

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-371
Non-Confidential

C2.148 SVC
SuperVisor Call.

Syntax

SVC{cond} #imm

where:

cond

is an optional condition code.

imm
is an expression evaluating to an integer in the range:
• 0 to 224-1 (a 24-bit value) in an A32 instruction.
• 0-255 (an 8-bit value) in a T32 instruction.

Operation

The SVC instruction causes an exception. This means that the processor mode changes to Supervisor, the
CPSR is saved to the Supervisor mode SPSR, and execution branches to the SVC vector.

imm is ignored by the processor. However, it can be retrieved by the exception handler to determine what
service is being requested.

 Note

SVC was called SWI in earlier versions of the A32 assembly language. SWI instructions disassemble to
SVC, with a comment to say that this was formerly SWI.

Condition flags

This instruction does not change the flags.

Availability

This instruction is available in A32 and 16-bit T32 and in the Armv7 architectures.

There is no 32-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.148 SVC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-372
Non-Confidential

C2.149 SWP and SWPB
Swap data between registers and memory.

 Note

These instruction are not supported in Armv8.

Syntax

SWP{B}{cond} Rt, Rt2, [Rn]

where:

cond

is an optional condition code.

B

is an optional suffix. If B is present, a byte is swapped. Otherwise, a 32-bit word is swapped.

Rt

is the destination register. Rt must not be PC.

Rt2

is the source register. Rt2 can be the same register as Rt. Rt2 must not be PC.

Rn

contains the address in memory. Rn must be a different register from both Rt and Rt2. Rn must
not be PC.

Usage
You can use SWP and SWPB to implement semaphores:
• Data from memory is loaded into Rt.
• The contents of Rt2 are saved to memory.
• If Rt2 is the same register as Rt, the contents of the register are swapped with the contents of the

memory location.

Note

The use of SWP and SWPB is deprecated. You can use LDREX and STREX instructions to implement more
sophisticated semaphores.

Availability

These instructions are available in A32.

There are no T32 SWP or SWPB instructions.

Related reference
C2.54 LDREX on page C2-242
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.149 SWP and SWPB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-373
Non-Confidential

C2.150 SXTAB
Sign extend Byte with Add, to extend an 8-bit value to a 32-bit value.

Syntax

SXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[7:0] from the value obtained.
3. Sign extend to 32 bits.
4. Add the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.150 SXTAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-374
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.150 SXTAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-375
Non-Confidential

C2.151 SXTAB16
Sign extend two Bytes with Add, to extend two 8-bit values to two 16-bit values.

Syntax

SXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[23:16] and bits[7:0] from the value obtained.
3. Sign extend to 16 bits.
4. Add them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and bits[15:0] of the

result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.151 SXTAB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-376
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.151 SXTAB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-377
Non-Confidential

C2.152 SXTAH
Sign extend Halfword with Add, to extend a 16-bit value to a 32-bit value.

Syntax

SXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits[15:0] from the value obtained.
3. Sign extend to 32 bits.
4. Add the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.152 SXTAH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-378
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.152 SXTAH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-379
Non-Confidential

C2.153 SXTB
Sign extend Byte, to extend an 8-bit value to a 32-bit value.

Syntax

SXTB{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
This instruction does the following:
1. Rotates the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracts bits[7:0] from the value obtained.
3. Sign extends to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

SXTB Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.153 SXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-380
Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.153 SXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-381
Non-Confidential

C2.154 SXTB16
Sign extend two bytes.

Syntax

SXTB16{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
SXTB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Sign extending to 16 bits each.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.154 SXTB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-382
Non-Confidential

C2.155 SXTH
Sign extend Halfword.

Syntax

SXTH{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
SXTH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Sign extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

SXTH Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.155 SXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-383
Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Example
 SXTH r3, r9

Incorrect example
 SXTH r3, r9, ROR #12 ; rotation must be 0, 8, 16, or 24.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.155 SXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-384
Non-Confidential

C2.156 SYS
Execute system coprocessor instruction.

Syntax

SYS{cond} instruction{, Rn}

where:

cond

is an optional condition code.

instruction

is the coprocessor instruction to execute.

Rn

is an operand to the instruction. For instructions that take an argument, Rn is compulsory. For
instructions that do not take an argument, Rn is optional and if it is not specified, R0 is used. Rn
must not be PC.

Usage

You can use this pseudo-instruction to execute special coprocessor instructions such as cache, branch
predictor, and TLB operations. The instructions operate by writing to special write-only coprocessor
registers. The instruction names are the same as the write-only coprocessor register names and are listed
in the Arm® Architecture Reference Manual. For example:

 SYS ICIALLUIS ; invalidates all instruction caches Inner Shareable
 ; to Point of Unification and also flushes branch
 ; target cache.

Availability

This 32-bit instruction is available in A32 and T32.

The 32-bit T32 instruction is not available in the Armv7‑M architecture.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142
Related information
Arm Architecture Reference Manual

C2 A32 and T32 Instructions
C2.156 SYS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-385
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C2.157 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn

is the base register. This contains the address of the table of branch lengths. Rn must not be SP.

If PC is specified for Rn, the value used is the address of the instruction plus 4.

Rm

is the index register. This contains an index into the table.

Rm must not be PC or SP.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets (TBB) or
halfword offsets (TBH). Rn provides a pointer to the table, and Rm supplies an index into the table. The
branch length is twice the value of the byte (TBB) or the halfword (TBH) returned from the table. The
target of the branch table must be in the same execution state.

Architectures

These 32-bit T32 instructions are available.

There are no versions of these instructions in A32 or in 16-bit T32 encodings.

C2 A32 and T32 Instructions
C2.157 TBB and TBH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-386
Non-Confidential

C2.158 TEQ
Test Equivalence.

Syntax

TEQ{cond} Rn, Operand2

where:

cond

is an optional condition code.

Rn

is the general-purpose register holding the first operand.

Operand2

is a flexible second operand.

Usage

This instruction tests the value in a register against Operand2. It updates the condition flags on the result,
but does not place the result in any register.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is the same as an EORS instruction, except that the result is discarded.

Use the TEQ instruction to test if two values are equal, without affecting the V or C flags (as CMP does).

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive
OR of the sign bits of the two operands.

Register restrictions

In this T32 instruction, you cannot use SP or PC for Rn or Operand2.

In this A32 instruction, use of SP or PC is deprecated.

For A32 instructions:
• If you use PC (R15) as Rn, the value used is the address of the instruction plus 8.
• You cannot use PC for any operand in any data processing instruction that has a register-controlled

shift.

Condition flags
This instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

Architectures

This instruction is available in A32 and T32.

Correct example
 TEQEQ r10, r9

Incorrect example
 TEQ pc, r1, ROR r0 ; PC not permitted with register
 ; controlled shift

C2 A32 and T32 Instructions
C2.158 TEQ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-387
Non-Confidential

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.158 TEQ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-388
Non-Confidential

C2.159 TST
Test bits.

Syntax

TST{cond} Rn, Operand2

where:

cond

is an optional condition code.

Rn

is the general-purpose register holding the first operand.

Operand2

is a flexible second operand.

Operation

This instruction tests the value in a register against Operand2. It updates the condition flags on the result,
but does not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2.
This is the same as an ANDS instruction, except that the result is discarded.

Register restrictions

In this T32 instruction, you cannot use SP or PC for Rn or Operand2.

In this A32 instruction, use of SP or PC is deprecated.

For A32 instructions:
• If you use PC (R15) as Rn, the value used is the address of the instruction plus 8.
• You cannot use PC for any operand in any data processing instruction that has a register-controlled

shift.

Condition flags
This instruction:
• Updates the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Does not affect the V flag.

16-bit instructions

The following form of the TST instruction is available in T32 code, and is a 16-bit instruction:

TST Rn, Rm

Rn and Rm must both be Lo registers.

Architectures

This instruction is available A32 and T32.

Examples
 TST r0, #0x3F8
 TSTNE r1, r5, ASR r1

Related reference
C2.3 Flexible second operand (Operand2) on page C2-162

C2 A32 and T32 Instructions
C2.159 TST

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-389
Non-Confidential

C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.159 TST

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-390
Non-Confidential

C2.160 TT, TTT, TTA, TTAT
Test Target (Alternate Domain, Unprivileged).

Syntax

TT{cond}{q} Rd, Rn ; T1 TT general registers (T32)

TTA{cond}{q} Rd, Rn ; T1 TTA general registers (T32)

TTAT{cond}{q} Rd, Rn ; T1 TTAT general registers (T32)

TTT{cond}{q} Rd, Rn ; T1 TTT general registers (T32)

Where:

cond
Is an optional condition code. It specifies the condition under which the instruction is executed.
If cond is omitted, it defaults to always (AL). See Chapter C1 Condition Codes on page C1-133.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Rd
Is the destination general-purpose register into which the status result of the target test is written.

Rn
Is the general-purpose base register.

Usage

Test Target (TT) queries the security state and access permissions of a memory location.

Test Target Unprivileged (TTT) queries the security state and access permissions of a memory location
for an unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the
security state and access permissions of a memory location for a Non-secure access to that location.
These instructions are only valid when executing in Secure state, and are UNDEFINED if used from Non-
secure state.

These instructions return the security state and access permissions in the destination register, the contents
of which are as follows:

Bits Name Description

[7:0] MREGION The MPU region that the address maps to. This field is 0 if MRVALID is 0.

[15:8] SREGION The SAU region that the address maps to. This field is only valid if the instruction is executed from Secure
state. This field is 0 if SRVALID is 0.

[16] MRVALID Set to 1 if the MREGION content is valid. Set to 0 if the MREGION content is invalid.

[17] SRVALID Set to 1 if the SREGION content is valid. Set to 0 if the SREGION content is invalid.

[18] R Read accessibility. Set to 1 if the memory location can be read according to the permissions of the selected
MPU when operating in the current mode. For TTT and TTAT, this bit returns the permissions for unprivileged
access, regardless of whether the current mode is privileged or unprivileged.

[19] RW Read/write accessibility. Set to 1 if the memory location can be read and written according to the permissions of
the selected MPU when operating in the current mode. For TTT and TTAT, this bit returns the permissions for
unprivileged access, regardless of whether the current mode is privileged or unprivileged.

[20] NSR Equal to R AND NOT S. Can be used in combination with the LSLS (immediate) instruction to check both the
MPU and SAU/IDAU permissions. This bit is only valid if the instruction is executed from Secure state and the
R field is valid.

C2 A32 and T32 Instructions
C2.160 TT, TTT, TTA, TTAT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-391
Non-Confidential

 (continued)

Bits Name Description

[21] NSRW Equal to RW AND NOT S. Can be used in combination with the LSLS (immediate) instruction to check both
the MPU and SAU/IDAU permissions. This bit is only valid if the instruction is executed from Secure state and
the RW field is valid.

[22] S Security. A value of 1 indicates the memory location is Secure, and a value of 0 indicates the memory location
is Non-secure. This bit is only valid if the instruction is executed from Secure state.

[23] IRVALID IREGION valid flag. For a Secure request, indicates the validity of the IREGION field. Set to 1 if the IREGION
content is valid. Set to 0 if the IREGION content is invalid.

This bit is always 0 if the IDAU cannot provide a region number, the address is exempt from security
attribution, or if the requesting TT instruction is executed from the Non-secure state.

[31:24] IREGION IDAU region number. Indicates the IDAU region number containing the target address. This field is 0 if
IRVALID is0.

Invalid fields are 0.

The MREGION field is invalid and 0 if any of the following conditions are true:

• The MPU is not present or MPU_CTRL.ENABLE is 0.
• The address did not match any enabled MPU regions.
• The address matched multiple MPU regions.
• TT or TTT was executed from an unprivileged mode.

The SREGION field is invalid and 0 if any of the following conditions are true:

• SAU_CTRL.ENABLE is set to 0.
• The address did not match any enabled SAU regions.
• The address matched multiple SAU regions.
• The SAU attributes were overridden by the IDAU.
• The instruction is executed from Non-secure state, or is executed on a processor that does not

implement the Armv8‑M Security Extensions.

The R and RW bits are invalid and 0 if any of the following conditions are true:
• The address matched multiple MPU regions.
• TT or TTT is executed from an unprivileged mode.

Related reference
C1.9 Condition code suffixes on page C1-142
C2.2 Instruction width specifiers on page C2-161

C2 A32 and T32 Instructions
C2.160 TT, TTT, TTA, TTAT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-392
Non-Confidential

C2.161 UADD8
Unsigned parallel byte-wise addition.

Syntax

UADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. The results are modulo 28. It sets the
APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result overflowed, generating a carry. This is
equivalent to an ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.161 UADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-393
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.161 UADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-394
Non-Confidential

C2.162 UADD16
Unsigned parallel halfword-wise addition.

Syntax

UADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. The results are modulo 216. It
sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result overflowed, generating a carry.
This is equivalent to an ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.162 UADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-395
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.162 UADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-396
Non-Confidential

C2.163 UASX
Unsigned parallel add and subtract halfwords with exchange.

Syntax

UASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE
flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets GE[1:0] to 1 to indicate that the subtraction gave a result greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

It sets GE[3:2] to 1 to indicate that the addition overflowed, generating a carry. This is equivalent to an
ADDS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.163 UASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-397
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.163 UASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-398
Non-Confidential

C2.164 UBFX
Unsigned Bit Field Extract.

Syntax

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the source register.

lsb

is the bit number of the least significant bit in the bitfield, in the range 0 to 31.

width

is the width of the bitfield, in the range 1 to (32–lsb).

Operation

Copies adjacent bits from one register into the least significant bits of a second register, and zero extends
to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.164 UBFX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-399
Non-Confidential

C2.165 UDF
Permanently Undefined.

Syntax

UDF{c}{q} {#}imm ; A1 general registers (A32)

UDF{c}{q} {#}imm ; T1 general registers (T32)

UDF{c}.W {#}imm ; T2 general registers (T32)

Where:

imm
The value depends on the instruction variant:

A1 general registers
For A32, a 16-bit unsigned immediate, in the range 0 to 65535.

T1 general registers
For T32, an 8-bit unsigned immediate, in the range 0 to 255.

T2 general registers
For T32, a 16-bit unsigned immediate, in the range 0 to 65535.

 Note

The PE ignores the value of this constant.

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133. Arm
deprecates using any c value other than AL.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Usage

Permanently Undefined generates an Undefined Instruction exception.

The encodings for UDF used in this section are defined as permanently UNDEFINED in the Armv8‑A
architecture. However:
• With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.
• In the A32 instruction set, UDF is not conditional.

Related reference
C2.1 A32 and T32 instruction summary on page C2-156

C2 A32 and T32 Instructions
C2.165 UDF

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-400
Non-Confidential

C2.166 UDIV
Unsigned Divide.

Syntax

UDIV{cond} {Rd}, Rn, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rn
is the register holding the value to be divided.

Rm
is a register holding the divisor.

Register restrictions

PC or SP cannot be used for Rd, Rn, or Rm.

Architectures

This 32-bit T32 instruction is available in Armv7‑R, Armv7‑M and Armv8‑M Mainline.

This 32-bit A32 instruction is optional in Armv7‑R.

This 32-bit A32 and T32 instruction is available in Armv7‑A if Virtualization Extensions are
implemented, and optional if not.

There is no 16-bit T32 UDIV instruction.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.166 UDIV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-401
Non-Confidential

C2.167 UHADD8
Unsigned halving parallel byte-wise addition.

Syntax

UHADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands,
halves the results, and writes the results into the corresponding bytes of the destination. This cannot
cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.167 UHADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-402
Non-Confidential

C2.168 UHADD16
Unsigned halving parallel halfword-wise addition.

Syntax

UHADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the
operands, halves the results, and writes the results into the corresponding halfwords of the destination.
This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.168 UHADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-403
Non-Confidential

C2.169 UHASX
Unsigned halving parallel add and subtract halfwords with exchange.

Syntax

UHASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It halves the results
and writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.169 UHASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-404
Non-Confidential

C2.170 UHSAX
Unsigned halving parallel subtract and add halfwords with exchange.

Syntax

UHSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It halves the results and
writes them into the corresponding halfwords of the destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.170 UHSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-405
Non-Confidential

C2.171 UHSUB8
Unsigned halving parallel byte-wise subtraction.

Syntax

UHSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand, halves the results, and writes the results into the corresponding bytes of the destination. This
cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.171 UHSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-406
Non-Confidential

C2.172 UHSUB16
Unsigned halving parallel halfword-wise subtraction.

Syntax

UHSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand, halves the results, and writes the results into the corresponding halfwords of the
destination. This cannot cause overflow.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.172 UHSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-407
Non-Confidential

C2.173 UMAAL
Unsigned Multiply Accumulate Accumulate Long.

Syntax

UMAAL{cond} RdLo, RdHi, Rn, Rm

where:

cond

is an optional condition code.

RdLo, RdHi

are the destination registers for the 64-bit result. They also hold the two 32-bit accumulate
operands. RdLo and RdHi must be different registers.

Rn, Rm

are the general-purpose registers holding the multiply operands.

Operation

The UMAAL instruction multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values in RdHi and
RdLo, and stores the 64-bit result to RdLo, RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Examples
 UMAAL r8, r9, r2, r3
 UMAALGE r2, r0, r5, r3

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.173 UMAAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-408
Non-Confidential

C2.174 UMLAL
Unsigned Long Multiply, with optional Accumulate, with 32-bit operands and 64-bit result and
accumulator.

Syntax

UMLAL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
based on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination registers. They also hold the accumulating value. RdLo and RdHi must be
different registers.

Rn, Rm

are general-purpose registers holding the operands.

Operation

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 UMLALS r4, r5, r3, r8

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.174 UMLAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-409
Non-Confidential

C2.175 UMULL
Unsigned Long Multiply, with 32-bit operands, and 64-bit result.

Syntax

UMULL{S}{cond} RdLo, RdHi, Rn, Rm

where:

S

is an optional suffix available in A32 state only. If S is specified, the condition flags are updated
based on the result of the operation.

cond

is an optional condition code.

RdLo, RdHi

are the destination general-purpose registers. RdLo and RdHi must be different registers.

Rn, Rm

are general-purpose registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of
the result in RdHi.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags
If S is specified, this instruction:
• Updates the N and Z flags according to the result.
• Does not affect the C or V flags.

Architectures

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 UMULL r0, r4, r5, r6

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.175 UMULL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-410
Non-Confidential

C2.176 UQADD8
Unsigned saturating parallel byte-wise addition.

Syntax

UQADD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs four unsigned integer additions on the corresponding bytes of the operands and
writes the results into the corresponding bytes of the destination. It saturates the results to the unsigned
range 0 ≤ x ≤ 28 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.176 UQADD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-411
Non-Confidential

C2.177 UQADD16
Unsigned saturating parallel halfword-wise addition.

Syntax

UQADD16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction performs two unsigned integer additions on the corresponding halfwords of the operands
and writes the results into the corresponding halfwords of the destination. It saturates the results to the
unsigned range 0 ≤ x ≤ 216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.177 UQADD16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-412
Non-Confidential

C2.178 UQASX
Unsigned saturating parallel add and subtract halfwords with exchange.

Syntax

UQASX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs an addition on the
two top halfwords of the operands and a subtraction on the bottom two halfwords. It writes the results
into the corresponding halfwords of the destination. It saturates the results to the unsigned range 0 ≤ x ≤
216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.178 UQASX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-413
Non-Confidential

C2.179 UQSAX
Unsigned saturating parallel subtract and add halfwords with exchange.

Syntax

UQSAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. It saturates the results to the unsigned range 0 ≤ x ≤ 216

-1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.179 UQSAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-414
Non-Confidential

C2.180 UQSUB8
Unsigned saturating parallel byte-wise subtraction.

Syntax

UQSUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. It saturates the results to
the unsigned range 0 ≤ x ≤ 28 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.180 UQSUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-415
Non-Confidential

C2.181 UQSUB16
Unsigned saturating parallel halfword-wise subtraction.

Syntax

UQSUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. It saturates the
results to the unsigned range 0 ≤ x ≤ 216 -1. The Q flag is not affected even if this operation saturates.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, Q, or GE flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.181 UQSUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-416
Non-Confidential

C2.182 USAD8
Unsigned Sum of Absolute Differences.

Syntax

USAD8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding bytes of
Rn and Rm. It adds the absolute values of the four differences, and saves the result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 USAD8 r2, r4, r6

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.182 USAD8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-417
Non-Confidential

C2.183 USADA8
Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond} Rd, Rn, Rm, Ra

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the first operand.

Rm

is the register holding the second operand.

Ra

is the register holding the accumulate operand.

Operation

The USADA8 instruction adds the absolute values of the four differences to the value in Ra, and saves the
result to Rd.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not alter any flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Correct examples
 USADA8 r0, r3, r5, r2
 USADA8VS r0, r4, r0, r1

Incorrect examples
 USADA8 r2, r4, r6 ; USADA8 requires four registers
 USADA16 r0, r4, r0, r1 ; no such instruction

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.183 USADA8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-418
Non-Confidential

C2.184 USAT
Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

USAT{cond} Rd, #sat, Rm{, shift}

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 0 to 31.

Rm

is the register containing the operand.

shift

is an optional shift. It must be one of the following:

ASR #n

where n is in the range 1-32 (A32) or 1-31 (T32).

LSL #n

where n is in the range 0-31.

Operation

The USAT instruction applies the specified shift to a signed value, then saturates to the unsigned range 0 ≤
x ≤ 2sat – 1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs, this instruction sets the Q flag. To read the state of the Q flag, use an MRS instruction.

Architectures

This instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Example
 USATNE r0, #7, r5

Related reference
C2.134 SSAT16 on page C2-345
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.184 USAT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-419
Non-Confidential

C2.185 USAT16
Parallel halfword Saturate.

Syntax

USAT16{cond} Rd, #sat, Rn

where:

cond

is an optional condition code.

Rd

is the destination register.

sat

specifies the bit position to saturate to, in the range 0 to 15.

Rn

is the register holding the operand.

Operation

Halfword-wise unsigned saturation to any bit position.

The USAT16 instruction saturates each signed halfword to the unsigned range 0 ≤ x ≤ 2sat -1.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Q flag

If saturation occurs on either halfword, this instruction sets the Q flag. To read the state of the Q flag, use
an MRS instruction.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Example
 USAT16 r0, #7, r5

Related reference
C2.65 MRS (PSR to general-purpose register) on page C2-257
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.185 USAT16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-420
Non-Confidential

C2.186 USAX
Unsigned parallel subtract and add halfwords with exchange.

Syntax

USAX{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction exchanges the two halfwords of the second operand, then performs a subtraction on the
two top halfwords of the operands and an addition on the bottom two halfwords. It writes the results into
the corresponding halfwords of the destination. The results are modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets GE[1:0] to 1 to indicate that the addition overflowed, generating a carry. This is equivalent to an
ADDS instruction setting the C condition flag to 1.

It sets GE[3:2] to 1 to indicate that the subtraction gave a result greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

C2 A32 and T32 Instructions
C2.186 USAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-421
Non-Confidential

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.186 USAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-422
Non-Confidential

C2.187 USUB8
Unsigned parallel byte-wise subtraction.

Syntax

USUB8{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each byte of the second operand from the corresponding byte of the first
operand and writes the results into the corresponding bytes of the destination. The results are modulo 28.
It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

GE flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[0]

for bits[7:0] of the result.

GE[1]

for bits[15:8] of the result.

GE[2]

for bits[23:16] of the result.

GE[3]

for bits[31:24] of the result.

It sets a GE flag to 1 to indicate that the corresponding result is greater than or equal to zero, meaning a
borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C2.103 SEL on page C2-310

C2 A32 and T32 Instructions
C2.187 USUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-423
Non-Confidential

C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.187 USUB8

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-424
Non-Confidential

C2.188 USUB16
Unsigned parallel halfword-wise subtraction.

Syntax

USUB16{cond} {Rd}, Rn, Rm

where:

cond

is an optional condition code.

Rd

is the destination general-purpose register.

Rm, Rn

are the general-purpose registers holding the operands.

Operation

This instruction subtracts each halfword of the second operand from the corresponding halfword of the
first operand and writes the results into the corresponding halfwords of the destination. The results are
modulo 216. It sets the APSR GE flags.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not affect the N, Z, C, V, or Q flags.

It sets the GE flags in the APSR as follows:

GE[1:0]

for bits[15:0] of the result.

GE[3:2]

for bits[31:16] of the result.

It sets a pair of GE flags to 1 to indicate that the corresponding result is greater than or equal to zero,
meaning a borrow did not occur. This is equivalent to a SUBS instruction setting the C condition flag to 1.

You can use these flags to control a following SEL instruction.
 Note

GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Availability

This 32-bit instruction is available in A32 and T32.

There is no 16-bit version of this instruction in T32.

Related reference
C2.103 SEL on page C2-310
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.188 USUB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-425
Non-Confidential

C2.189 UXTAB
Zero extend Byte and Add.

Syntax

UXTAB{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAB extends an 8-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[7:0] from the value obtained.
3. Zero extending to 32 bits.
4. Adding the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.189 UXTAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-426
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.189 UXTAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-427
Non-Confidential

C2.190 UXTAB16
Zero extend two Bytes and Add.

Syntax

UXTAB16{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Zero extending them to 16 bits.
4. Adding them to bits[31:16] and bits[15:0] respectively of Rn to form bits[31:16] and bits[15:0] of the

result.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.190 UXTAB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-428
Non-Confidential

There is no 16-bit version of this instruction in T32.

Example
 UXTAB16EQ r0, r0, r4, ROR #16

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.190 UXTAB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-429
Non-Confidential

C2.191 UXTAH
Zero extend Halfword and Add.

Syntax

UXTAH{cond} {Rd}, Rn, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rn

is the register holding the number to add.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTAH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Zero extending to 32 bits.
4. Adding the value from Rn.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

C2 A32 and T32 Instructions
C2.191 UXTAH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-430
Non-Confidential

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.191 UXTAH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-431
Non-Confidential

C2.192 UXTB
Zero extend Byte.

Syntax

UXTB{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTB extends an 8-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16, or 24 bits.
2. Extracting bits[7:0] from the value obtained.
3. Zero extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instruction

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

UXTB Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.192 UXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-432
Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.192 UXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-433
Non-Confidential

C2.193 UXTB16
Zero extend two Bytes.

Syntax

UXTB16{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTB16 extends two 8-bit values to two 16-bit values. It does this by:
1. Rotating the value from Rm right by 0, 8, 16 or 24 bits.
2. Extracting bits[23:16] and bits[7:0] from the value obtained.
3. Zero extending each to 16 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

Availability

The 32-bit instruction is available in A32 and T32.

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

There is no 16-bit version of this instruction in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.193 UXTB16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-434
Non-Confidential

C2.194 UXTH
Zero extend Halfword.

Syntax

UXTH{cond} {Rd}, Rm {,rotation}

where:

cond

is an optional condition code.

Rd

is the destination register.

Rm

is the register holding the value to extend.

rotation

is one of:

ROR #8

Value from Rm is rotated right 8 bits.

ROR #16

Value from Rm is rotated right 16 bits.

ROR #24

Value from Rm is rotated right 24 bits.

If rotation is omitted, no rotation is performed.

Operation
UXTH extends a 16-bit value to a 32-bit value. It does this by:
1. Rotating the value from Rm right by 0, 8, 16, or 24 bits.
2. Extracting bits[15:0] from the value obtained.
3. Zero extending to 32 bits.

Register restrictions

You cannot use PC for any operand.

You can use SP in A32 instructions but this is deprecated. You cannot use SP in T32 instructions.

Condition flags

This instruction does not change the flags.

16-bit instructions

The following form of this instruction is available in T32 code, and is a 16-bit instruction:

UXTH Rd, Rm

Rd and Rm must both be Lo registers.

Availability

The 32-bit instruction is available in A32 and T32.

C2 A32 and T32 Instructions
C2.194 UXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-435
Non-Confidential

For the Armv7‑M architecture, the 32-bit T32 instruction is only available in an Armv7E-M
implementation.

The 16-bit instruction is available in T32.

Related reference
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.194 UXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-436
Non-Confidential

C2.195 WFE
Wait For Event.

Syntax

WFE{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

If the Event Register is not set, WFE suspends execution until one of the following events occurs:
• An IRQ interrupt, unless masked by the CPSR I-bit.
• An FIQ interrupt, unless masked by the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, if Debug is enabled.
• An Event signaled by another processor using the SEV instruction, or by the current processor using

the SEVL instruction.

If the Event Register is set, WFE clears it and returns immediately.

If WFE is implemented, SEV must also be implemented.

Availability

This instruction is available in A32 and T32.

Related reference
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142
C2.106 SEV on page C2-314
C2.107 SEVL on page C2-315
C2.196 WFI on page C2-438

C2 A32 and T32 Instructions
C2.195 WFE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-437
Non-Confidential

C2.196 WFI
Wait for Interrupt.

Syntax

WFI{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

WFI suspends execution until one of the following events occurs:
• An IRQ interrupt, regardless of the CPSR I-bit.
• An FIQ interrupt, regardless of the CPSR F-bit.
• An Imprecise Data abort, unless masked by the CPSR A-bit.
• A Debug Entry request, regardless of whether Debug is enabled.

Availability

This instruction is available in A32 and T32.

Related reference
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142
C2.195 WFE on page C2-437

C2 A32 and T32 Instructions
C2.196 WFI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-438
Non-Confidential

C2.197 YIELD
Yield.

Syntax

YIELD{cond}

where:

cond

is an optional condition code.

Operation

This is a hint instruction. It is optional whether this instruction is implemented or not. If this instruction
is not implemented, it executes as a NOP. The assembler produces a diagnostic message if the instruction
executes as a NOP on the target.

YIELD indicates to the hardware that the current thread is performing a task, for example a spinlock, that
can be swapped out. Hardware can use this hint to suspend and resume threads in a multithreading
system.

Availability

This instruction is available in A32 and T32.

Related reference
C2.71 NOP on page C2-266
C1.9 Condition code suffixes on page C1-142

C2 A32 and T32 Instructions
C2.197 YIELD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-439
Non-Confidential

C2 A32 and T32 Instructions
C2.197 YIELD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C2-440
Non-Confidential

Chapter C3
Advanced SIMD Instructions (32-bit)

Describes Advanced SIMD assembly language instructions.

It contains the following sections:
• C3.1 Summary of Advanced SIMD instructions on page C3-445.
• C3.2 Summary of shared Advanced SIMD and floating-point instructions on page C3-448.
• C3.3 Interleaving provided by load and store element and structure instructions on page C3-449.
• C3.4 Alignment restrictions in load and store element and structure instructions on page C3-450.
• C3.5 FLDMDBX, FLDMIAX on page C3-451.
• C3.6 FSTMDBX, FSTMIAX on page C3-452.
• C3.7 VABA and VABAL on page C3-453.
• C3.8 VABD and VABDL on page C3-454.
• C3.9 VABS on page C3-455.
• C3.10 VACLE, VACLT, VACGE and VACGT on page C3-456.
• C3.11 VADD on page C3-457.
• C3.12 VADDHN on page C3-458.
• C3.13 VADDL and VADDW on page C3-459.
• C3.14 VAND (immediate) on page C3-460.
• C3.15 VAND (register) on page C3-461.
• C3.16 VBIC (immediate) on page C3-462.
• C3.17 VBIC (register) on page C3-463.
• C3.18 VBIF on page C3-464.
• C3.19 VBIT on page C3-465.
• C3.20 VBSL on page C3-466.
• C3.21 VCADD on page C3-467.
• C3.22 VCEQ (immediate #0) on page C3-468.
• C3.23 VCEQ (register) on page C3-469.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-441
Non-Confidential

• C3.24 VCGE (immediate #0) on page C3-470.
• C3.25 VCGE (register) on page C3-471.
• C3.26 VCGT (immediate #0) on page C3-472.
• C3.27 VCGT (register) on page C3-473.
• C3.28 VCLE (immediate #0) on page C3-474.
• C3.29 VCLS on page C3-475.
• C3.30 VCLE (register) on page C3-476.
• C3.31 VCLT (immediate #0) on page C3-477.
• C3.32 VCLT (register) on page C3-478.
• C3.33 VCLZ on page C3-479.
• C3.34 VCMLA on page C3-480.
• C3.35 VCMLA (by element) on page C3-481.
• C3.36 VCNT on page C3-482.
• C3.37 VCVT (between fixed-point or integer, and floating-point) on page C3-483.
• C3.38 VCVT (between half-precision and single-precision floating-point) on page C3-484.
• C3.39 VCVT (from floating-point to integer with directed rounding modes) on page C3-485.
• C3.40 VCVTB, VCVTT (between half-precision and double-precision) on page C3-486.
• C3.41 VDUP on page C3-487.
• C3.42 VEOR on page C3-488.
• C3.43 VEXT on page C3-489.
• C3.44 VFMA, VFMS on page C3-490.
• C3.45 VFMAL (by scalar) on page C3-491.
• C3.46 VFMAL (vector) on page C3-492.
• C3.47 VFMSL (by scalar) on page C3-493.
• C3.48 VFMSL (vector) on page C3-494.
• C3.49 VHADD on page C3-495.
• C3.50 VHSUB on page C3-496.
• C3.51 VLDn (single n-element structure to one lane) on page C3-497.
• C3.52 VLDn (single n-element structure to all lanes) on page C3-499.
• C3.53 VLDn (multiple n-element structures) on page C3-501.
• C3.54 VLDM on page C3-503.
• C3.55 VLDR on page C3-504.
• C3.56 VLDR (post-increment and pre-decrement) on page C3-505.
• C3.57 VLDR pseudo-instruction on page C3-506.
• C3.58 VMAX and VMIN on page C3-507.
• C3.59 VMAXNM, VMINNM on page C3-508.
• C3.60 VMLA on page C3-509.
• C3.61 VMLA (by scalar) on page C3-510.
• C3.62 VMLAL (by scalar) on page C3-511.
• C3.63 VMLAL on page C3-512.
• C3.64 VMLS (by scalar) on page C3-513.
• C3.65 VMLS on page C3-514.
• C3.66 VMLSL on page C3-515.
• C3.67 VMLSL (by scalar) on page C3-516.
• C3.68 VMOV (immediate) on page C3-517.
• C3.69 VMOV (register) on page C3-518.
• C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)

on page C3-519.
• C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-520.
• C3.72 VMOVL on page C3-521.
• C3.73 VMOVN on page C3-522.
• C3.74 VMOV2 on page C3-523.
• C3.75 VMRS on page C3-524.
• C3.76 VMSR on page C3-525.
• C3.77 VMUL on page C3-526.
• C3.78 VMUL (by scalar) on page C3-527.

C3 Advanced SIMD Instructions (32-bit)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-442
Non-Confidential

• C3.79 VMULL on page C3-528.
• C3.80 VMULL (by scalar) on page C3-529.
• C3.81 VMVN (register) on page C3-530.
• C3.82 VMVN (immediate) on page C3-531.
• C3.83 VNEG on page C3-532.
• C3.84 VORN (register) on page C3-533.
• C3.85 VORN (immediate) on page C3-534.
• C3.86 VORR (register) on page C3-535.
• C3.87 VORR (immediate) on page C3-536.
• C3.88 VPADAL on page C3-537.
• C3.89 VPADD on page C3-538.
• C3.90 VPADDL on page C3-539.
• C3.91 VPMAX and VPMIN on page C3-540.
• C3.92 VPOP on page C3-541.
• C3.93 VPUSH on page C3-542.
• C3.94 VQABS on page C3-543.
• C3.95 VQADD on page C3-544.
• C3.96 VQDMLAL and VQDMLSL (by vector or by scalar) on page C3-545.
• C3.97 VQDMULH (by vector or by scalar) on page C3-546.
• C3.98 VQDMULL (by vector or by scalar) on page C3-547.
• C3.99 VQMOVN and VQMOVUN on page C3-548.
• C3.100 VQNEG on page C3-549.
• C3.101 VQRDMULH (by vector or by scalar) on page C3-550.
• C3.102 VQRSHL (by signed variable) on page C3-551.
• C3.103 VQRSHRN and VQRSHRUN (by immediate) on page C3-552.
• C3.104 VQSHL (by signed variable) on page C3-553.
• C3.105 VQSHL and VQSHLU (by immediate) on page C3-554.
• C3.106 VQSHRN and VQSHRUN (by immediate) on page C3-555.
• C3.107 VQSUB on page C3-556.
• C3.108 VRADDHN on page C3-557.
• C3.109 VRECPE on page C3-558.
• C3.110 VRECPS on page C3-559.
• C3.111 VREV16, VREV32, and VREV64 on page C3-560.
• C3.112 VRHADD on page C3-561.
• C3.113 VRSHL (by signed variable) on page C3-562.
• C3.114 VRSHR (by immediate) on page C3-563.
• C3.115 VRSHRN (by immediate) on page C3-564.
• C3.116 VRINT on page C3-565.
• C3.117 VRSQRTE on page C3-566.
• C3.118 VRSQRTS on page C3-567.
• C3.119 VRSRA (by immediate) on page C3-568.
• C3.120 VRSUBHN on page C3-569.
• C3.121 VSDOT (vector) on page C3-570.
• C3.122 VSDOT (by element) on page C3-571.
• C3.123 VSHL (by immediate) on page C3-572.
• C3.124 VSHL (by signed variable) on page C3-573.
• C3.125 VSHLL (by immediate) on page C3-574.
• C3.126 VSHR (by immediate) on page C3-575.
• C3.127 VSHRN (by immediate) on page C3-576.
• C3.128 VSLI on page C3-577.
• C3.129 VSRA (by immediate) on page C3-578.
• C3.130 VSRI on page C3-579.
• C3.131 VSTM on page C3-580.
• C3.132 VSTn (multiple n-element structures) on page C3-581.
• C3.133 VSTn (single n-element structure to one lane) on page C3-583.
• C3.134 VSTR on page C3-585.

C3 Advanced SIMD Instructions (32-bit)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-443
Non-Confidential

• C3.135 VSTR (post-increment and pre-decrement) on page C3-586.
• C3.136 VSUB on page C3-587.
• C3.137 VSUBHN on page C3-588.
• C3.138 VSUBL and VSUBW on page C3-589.
• C3.139 VSWP on page C3-590.
• C3.140 VTBL and VTBX on page C3-591.
• C3.141 VTRN on page C3-592.
• C3.142 VTST on page C3-593.
• C3.143 VUDOT (vector) on page C3-594.
• C3.144 VUDOT (by element) on page C3-595.
• C3.145 VUZP on page C3-596.
• C3.146 VZIP on page C3-597.

C3 Advanced SIMD Instructions (32-bit)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-444
Non-Confidential

C3.1 Summary of Advanced SIMD instructions
Most Advanced SIMD instructions are not available in floating-point.

The following table shows a summary of Advanced SIMD instructions that are not available as floating-
point instructions:

Table C3-1 Summary of Advanced SIMD instructions

Mnemonic Brief description

FLDMDBX, FLDMIAX FLDMX

FSTMDBX, FSTMIAX FSTMX

VABA, VABD Absolute difference and Accumulate, Absolute Difference

VABS Absolute value

VACGE, VACGT Absolute Compare Greater than or Equal, Greater Than

VACLE, VACLT Absolute Compare Less than or Equal, Less Than (pseudo-instructions)

VADD Add

VADDHN Add, select High half

VAND Bitwise AND

VAND Bitwise AND (pseudo-instruction)

VBIC Bitwise Bit Clear (register)

VBIC Bitwise Bit Clear (immediate)

VBIF, VBIT, VBSL Bitwise Insert if False, Insert if True, Select

VCADD Vector Complex Add

VCEQ, VCLE, VCLT Compare Equal, Less than or Equal, Compare Less Than

VCGE, VCGT Compare Greater than or Equal, Greater Than

VCLE, VCLT Compare Less than or Equal, Compare Less Than (pseudo-instruction)

VCLS, VCLZ, VCNT Count Leading Sign bits, Count Leading Zeros, and Count set bits

VCMLA Vector Complex Multiply Accumulate

VCMLA (by element) Vector Complex Multiply Accumulate (by element)

VCVT Convert fixed-point or integer to floating-point, floating-point to integer or fixed-point

VCVT Convert floating-point to integer with directed rounding modes

VCVT Convert between half-precision and single-precision floating-point numbers

VDUP Duplicate scalar to all lanes of vector

VEOR Bitwise Exclusive OR

VEXT Extract

VFMA, VFMS Fused Multiply Accumulate, Fused Multiply Subtract

VFMAL, VFMSL Vector Floating-point Multiply-Add Long to accumulator (by scalar)

VFMAL, VFMSL Vector Floating-point Multiply-Add Long to accumulator (vector)

VHADD, VHSUB Halving Add, Halving Subtract

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-445
Non-Confidential

Table C3-1 Summary of Advanced SIMD instructions (continued)

Mnemonic Brief description

VLD Vector Load

VMAX, VMIN Maximum, Minimum

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008

VMLA, VMLS Multiply Accumulate, Multiply Subtract (vector)

VMLA, VMLS Multiply Accumulate, Multiply Subtract (by scalar)

VMOV Move (immediate)

VMOV Move (register)

VMOVL, VMOV{U}N Move Long, Move Narrow (register)

VMUL Multiply (vector)

VMUL Multiply (by scalar)

VMVN Move Negative (immediate)

VNEG Negate

VORN Bitwise OR NOT

VORN Bitwise OR NOT (pseudo-instruction)

VORR Bitwise OR (register)

VORR Bitwise OR (immediate)

VPADD, VPADAL Pairwise Add, Pairwise Add and Accumulate

VPMAX, VPMIN Pairwise Maximum, Pairwise Minimum

VQABS Absolute value, saturate

VQADD Add, saturate

VQDMLAL, VQDMLSL Saturating Doubling Multiply Accumulate, and Multiply Subtract

VQDMULL Saturating Doubling Multiply

VQDMULH Saturating Doubling Multiply returning High half

VQMOV{U}N Saturating Move (register)

VQNEG Negate, saturate

VQRDMULH Saturating Doubling Multiply returning High half

VQRSHL Shift Left, Round, saturate (by signed variable)

VQRSHR{U}N Shift Right, Round, saturate (by immediate)

VQSHL Shift Left, saturate (by immediate)

VQSHL Shift Left, saturate (by signed variable)

VQSHR{U}N Shift Right, saturate (by immediate)

VQSUB Subtract, saturate

VRADDHN Add, select High half, Round

VRECPE Reciprocal Estimate

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-446
Non-Confidential

Table C3-1 Summary of Advanced SIMD instructions (continued)

Mnemonic Brief description

VRECPS Reciprocal Step

VREV Reverse elements

VRHADD Halving Add, Round

VRINT Round to integer

VRSHR Shift Right and Round (by immediate)

VRSHRN Shift Right, Round, Narrow (by immediate)

VRSQRTE Reciprocal Square Root Estimate

VRSQRTS Reciprocal Square Root Step

VRSRA Shift Right, Round, and Accumulate (by immediate)

VRSUBHN Subtract, select High half, Round

VSDOT (vector) Dot Product vector form with signed integers

VSDOT (by element) Dot Product index form with signed integers

VSHL Shift Left (by immediate)

VSHR Shift Right (by immediate)

VSHRN Shift Right, Narrow (by immediate)

VSLI Shift Left and Insert

VSRA Shift Right, Accumulate (by immediate)

VSRI Shift Right and Insert

VST Vector Store

VSUB Subtract

VSUBHN Subtract, select High half

VSWP Swap vectors

VTBL, VTBX Vector table look-up

VTRN Vector transpose

VTST Test bits

VUDOT (vector) Dot Product vector form with unsigned integers

VUDOT (by element) Dot Product index form with unsigned integers

VUZP, VZIP Vector interleave and de-interleave

VZIP Vector Zip

C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-447
Non-Confidential

C3.2 Summary of shared Advanced SIMD and floating-point instructions
Some instructions are common to Advanced SIMD and floating-point.

The following table shows a summary of instructions that are common to the Advanced SIMD and
floating-point instruction sets.

Table C3-2 Summary of shared Advanced SIMD and floating-point instructions

Mnemonic Brief description

VLDM Load multiple

VLDR Load

Load (post-increment and pre-decrement)

VMOV Transfer from one general-purpose register to a scalar

Transfer from two general-purpose registers to either one double-precision or two single-precision registers

Transfer from a scalar to a general-purpose register

Transfer from either one double-precision or two single-precision registers to two general-purpose registers

VMRS Transfer from a SIMD and floating-point system register to a general-purpose register

VMSR Transfer from a general-purpose register to a SIMD and floating-point system register

VPOP Pop floating-point or SIMD registers from full-descending stack

VPUSH Push floating-point or SIMD registers to full-descending stack

VSTM Store multiple

VSTR Store

Store (post-increment and pre-decrement)

Related reference
C3.54 VLDM on page C3-503
C3.55 VLDR on page C3-504
C3.56 VLDR (post-increment and pre-decrement) on page C3-505
C3.57 VLDR pseudo-instruction on page C3-506
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register) on page C3-519
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar) on page C3-520
C3.75 VMRS on page C3-524
C3.76 VMSR on page C3-525
C3.92 VPOP on page C3-541
C3.93 VPUSH on page C3-542
C3.131 VSTM on page C3-580
C3.134 VSTR on page C3-585
C3.135 VSTR (post-increment and pre-decrement) on page C3-586

C3 Advanced SIMD Instructions (32-bit)
C3.2 Summary of shared Advanced SIMD and floating-point instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-448
Non-Confidential

C3.3 Interleaving provided by load and store element and structure instructions
Many instructions in this group provide interleaving when structures are stored to memory, and de-
interleaving when structures are loaded from memory.

The following figure shows an example of de-interleaving. Interleaving is the inverse process.

Z3 D2

A[3].x
A[3].y
A[3].z

Z2 Z1 Z0

A[2].x
A[2].y
A[2].z

A[1].x
A[1].y
A[1].z

A[0].x
A[0].y
A[0].z

Y3 D1Y2 Y1 Y0

X3 D0X2 X1 X0

Figure C3-1 De-interleaving an array of 3-element structures

Related concepts
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-450
Related reference
C3.51 VLDn (single n-element structure to one lane) on page C3-497
C3.52 VLDn (single n-element structure to all lanes) on page C3-499
C3.53 VLDn (multiple n-element structures) on page C3-501
C3.132 VSTn (multiple n-element structures) on page C3-581
C3.133 VSTn (single n-element structure to one lane) on page C3-583
Related information
Arm Architecture Reference Manual

C3 Advanced SIMD Instructions (32-bit)
C3.3 Interleaving provided by load and store element and structure instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-449
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C3.4 Alignment restrictions in load and store element and structure instructions
Many of these instructions allow you to specify memory alignment restrictions.

When the alignment is not specified in the instruction, the alignment restriction is controlled by the A bit
(SCTLR bit[1]):
• If the A bit is 0, there are no alignment restrictions (except for strongly-ordered or device memory,

where accesses must be element-aligned).
• If the A bit is 1, accesses must be element-aligned.

If an address is not correctly aligned, an alignment fault occurs.

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C3.51 VLDn (single n-element structure to one lane) on page C3-497
C3.52 VLDn (single n-element structure to all lanes) on page C3-499
C3.53 VLDn (multiple n-element structures) on page C3-501
C3.132 VSTn (multiple n-element structures) on page C3-581
C3.133 VSTn (single n-element structure to one lane) on page C3-583
Related information
Arm Architecture Reference Manual

C3 Advanced SIMD Instructions (32-bit)
C3.4 Alignment restrictions in load and store element and structure instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-450
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

C3.5 FLDMDBX, FLDMIAX
FLDMX.

Syntax

FLDMDBX{c}{q} Rn!, dreglist ; A1 Decrement Before FP/SIMD registers (A32)

FLDMIAX{c}{q} Rn{!}, dreglist ; A1 Increment After FP/SIMD registers (A32)

FLDMDBX{c}{q} Rn!, dreglist ; T1 Decrement Before FP/SIMD registers (T32)

FLDMIAX{c}{q} Rn{!}, dreglist ; T1 Increment After FP/SIMD registers (T32)

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Rn
Is the general-purpose base register. If writeback is not specified, the PC can be used.

!
Specifies base register writeback.

dreglist
Is the list of consecutively numbered 64-bit SIMD and FP registers to be transferred. The list
must contain at least one register, all registers must be in the range D0-D15, and must not
contain more than 16 registers.

Usage

FLDMX loads multiple SIMD and FP registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.
 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.5 FLDMDBX, FLDMIAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-451
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.6 FSTMDBX, FSTMIAX
FSTMX.

Syntax

FSTMDBX{c}{q} Rn!, dreglist ; A1 Decrement Before FP/SIMD registers (A32)

FSTMIAX{c}{q} Rn{!}, dreglist ; A1 Increment After FP/SIMD registers (A32)

FSTMDBX{c}{q} Rn!, dreglist ; T1 Decrement Before FP/SIMD registers (T32)

FSTMIAX{c}{q} Rn{!}, dreglist ; T1 Increment After FP/SIMD registers (T32)

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Rn
Is the general-purpose base register. If writeback is not specified, the PC can be used. However,
Arm deprecates use of the PC.

!
Specifies base register writeback.

dreglist
Is the list of consecutively numbered 64-bit SIMD and FP registers to be transferred. The list
must contain at least one register, all registers must be in the range D0-D15, and must not
contain more than 16 registers.

Usage

FSTMX stores multiple SIMD and FP registers from the Advanced SIMD and floating-point register file
to consecutive locations in using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and
mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or
trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.6 FSTMDBX, FSTMIAX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-452
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.7 VABA and VABAL
Vector Absolute Difference and Accumulate.

Syntax

VABA{cond}.datatype {Qd}, Qn, Qm

VABA{cond}.datatype {Dd}, Dn, Dm

VABAL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VABA subtracts the elements of one vector from the corresponding elements of another vector, and
accumulates the absolute values of the results into the elements of the destination vector.

VABAL is the long version of the VABA instruction.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.7 VABA and VABAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-453
Non-Confidential

C3.8 VABD and VABDL
Vector Absolute Difference.

Syntax

VABD{cond}.datatype {Qd}, Qn, Qm

VABD{cond}.datatype {Dd}, Dn, Dm

VABDL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype
must be one of:
• S8, S16, S32, U8, U16, or U32 for VABDL.
• S8, S16, S32, U8, U16, U32 or F32 for VABD.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VABD subtracts the elements of one vector from the corresponding elements of another vector, and places
the absolute values of the results into the elements of the destination vector.

VABDL is the long version of the VABD instruction.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.8 VABD and VABDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-454
Non-Confidential

C3.9 VABS
Vector Absolute

Syntax

VABS{cond}.datatype Qd, Qm

VABS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VABS takes the absolute value of each element in a vector, and places the results in a second vector. (The
floating-point version only clears the sign bit.)

Related reference
C3.94 VQABS on page C3-543
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.9 VABS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-455
Non-Confidential

C3.10 VACLE, VACLT, VACGE and VACGT
Vector Absolute Compare.

Syntax

VACop{cond}.F32 {Qd}, Qn, Qm

VACop{cond}.F32 {Dd}, Dn, Dm

where:

op

must be one of:

GE

Absolute Greater than or Equal.

GT

Absolute Greater Than.

LE

Absolute Less than or Equal.

LT

Absolute Less Than.

cond

is an optional condition code.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

The result datatype is I32.

Operation
These instructions take the absolute value of each element in a vector, and compare it with the absolute
value of the corresponding element of a second vector. If the condition is true, the corresponding element
in the destination vector is set to all ones. Otherwise, it is set to all zeros.

 Note

On disassembly, the VACLE and VACLT pseudo-instructions are disassembled to the corresponding VACGE
and VACGT instructions, with the operands reversed.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.10 VACLE, VACLT, VACGE and VACGT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-456
Non-Confidential

C3.11 VADD
Vector Add.

Syntax

VADD{cond}.datatype {Qd}, Qn, Qm

VADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VADD adds corresponding elements in two vectors, and places the results in the destination vector.

Related reference
C3.13 VADDL and VADDW on page C3-459
C3.95 VQADD on page C3-544
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.11 VADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-457
Non-Confidential

C3.12 VADDHN
Vector Add and Narrow, selecting High half.

Syntax

VADDHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VADDHN adds corresponding elements in two vectors, selects the most significant halves of the results, and
places the final results in the destination vector. Results are truncated.

Related reference
C3.108 VRADDHN on page C3-557
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.12 VADDHN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-458
Non-Confidential

C3.13 VADDL and VADDW
Vector Add Long, Vector Add Wide.

Syntax

VADDL{cond}.datatype Qd, Dn, Dm ; Long operation

VADDW{cond}.datatype {Qd,} Qn, Dm ; Wide operation

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Qd, Qn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a wide
operation.

Operation

VADDL adds corresponding elements in two doubleword vectors, and places the results in the destination
quadword vector.

VADDW adds corresponding elements in one quadword and one doubleword vector, and places the results
in the destination quadword vector.

Related reference
C3.11 VADD on page C3-457
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.13 VADDL and VADDW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-459
Non-Confidential

C3.14 VAND (immediate)
Vector bitwise AND immediate pseudo-instruction.

Syntax

VAND{cond}.datatype Qd, #imm

VAND{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is the immediate value.

Operation
VAND takes each element of the destination vector, performs a bitwise AND with an immediate value, and
returns the result into the destination vector.

 Note

On disassembly, this pseudo-instruction is disassembled to a corresponding VBIC instruction, with the
complementary immediate value.

Immediate values

If datatype is I16, the immediate value must have one of the following forms:

• 0xFFXY.
• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.

Related reference
C3.16 VBIC (immediate) on page C3-462
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.14 VAND (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-460
Non-Confidential

C3.15 VAND (register)
Vector bitwise AND.

Syntax

VAND{cond}{.datatype} {Qd}, Qn, Qm

VAND{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VAND performs a bitwise logical AND between two registers, and places the result in the destination
register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.15 VAND (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-461
Non-Confidential

C3.16 VBIC (immediate)
Vector Bit Clear immediate.

Syntax

VBIC{cond}.datatype Qd, #imm

VBIC{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the source and result.

imm

is the immediate value.

Operation

VBIC takes each element of the destination vector, performs a bitwise AND complement with an
immediate value, and returns the result in the destination vector.

Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination register, or you
can directly specify the immediate value (that conforms to the pattern) in full. The pattern for imm
depends on datatype as shown in the following table:

Table C3-3 Patterns for immediate value in VBIC (immediate)

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

0x00XY0000

0xXY000000

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction to match
the pattern of imm. If the immediate value does not match any of the patterns in the preceding table, the
assembler generates an error.

Related reference
C3.14 VAND (immediate) on page C3-460
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.16 VBIC (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-462
Non-Confidential

C3.17 VBIC (register)
Vector Bit Clear.

Syntax

VBIC{cond}{.datatype} {Qd}, Qn, Qm

VBIC{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIC performs a bitwise logical AND complement between two registers, and places the result in the
destination register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.17 VBIC (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-463
Non-Confidential

C3.18 VBIF
Vector Bitwise Insert if False.

Syntax

VBIF{cond}{.datatype} {Qd}, Qn, Qm

VBIF{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIF inserts each bit from the first operand into the destination if the corresponding bit of the second
operand is 0, otherwise it leaves the destination bit unchanged.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.18 VBIF

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-464
Non-Confidential

C3.19 VBIT
Vector Bitwise Insert if True.

Syntax

VBIT{cond}{.datatype} {Qd}, Qn, Qm

VBIT{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBIT inserts each bit from the first operand into the destination if the corresponding bit of the second
operand is 1, otherwise it leaves the destination bit unchanged.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.19 VBIT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-465
Non-Confidential

C3.20 VBSL
Vector Bitwise Select.

Syntax

VBSL{cond}{.datatype} {Qd}, Qn, Qm

VBSL{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VBSL selects each bit for the destination from the first operand if the corresponding bit of the destination
is 1, or from the second operand if the corresponding bit of the destination is 0.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.20 VBSL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-466
Non-Confidential

C3.21 VCADD
Vector Complex Add.

Syntax

VCADD{q}.dt {Dd,} Dn, Dm, #rotate ; A1 64-bit SIMD vector FP/SIMD registers (A32)

VCADD{q}.dt {Qd,} Qn, Qm, #rotate ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

dt
Is the data type for the elements of the vectors, and can be either F16 or F32.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
either 90 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.21 VCADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-467
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.22 VCEQ (immediate #0)
Vector Compare Equal to zero.

Syntax

VCEQ{cond}.datatype {Qd}, Qn, #0

VCEQ{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

The result datatype is:
• I32 for operand datatypes I32 or F32.
• I16 for operand datatype I16.
• I8 for operand datatype I8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCEQ takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.22 VCEQ (immediate #0)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-468
Non-Confidential

C3.23 VCEQ (register)
Vector Compare Equal.

Syntax

VCEQ{cond}.datatype {Qd}, Qn, Qm

VCEQ{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

The result datatype is:
• I32 for operand datatypes I32 or F32.
• I16 for operand datatype I16.
• I8 for operand datatype I8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCEQ takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.23 VCEQ (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-469
Non-Confidential

C3.24 VCGE (immediate #0)
Vector Compare Greater than or Equal to zero.

Syntax

VCGE{cond}.datatype {Qd}, Qn, #0

VCGE{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCGE takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.24 VCGE (immediate #0)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-470
Non-Confidential

C3.25 VCGE (register)
Vector Compare Greater than or Equal.

Syntax

VCGE{cond}.datatype {Qd}, Qn, Qm

VCGE{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCGE takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.25 VCGE (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-471
Non-Confidential

C3.26 VCGT (immediate #0)
Vector Compare Greater Than zero.

Syntax

VCGT{cond}.datatype {Qd}, Qn, #0

VCGT{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

Operation

VCGT takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.26 VCGT (immediate #0)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-472
Non-Confidential

C3.27 VCGT (register)
Vector Compare Greater Than.

Syntax

VCGT{cond}.datatype {Qd}, Qn, Qm

VCGT{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCGT takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.27 VCGT (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-473
Non-Confidential

C3.28 VCLE (immediate #0)
Vector Compare Less than or Equal to zero.

Syntax

VCLE{cond}.datatype {Qd}, Qn, #0

VCLE{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCLE takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.28 VCLE (immediate #0)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-474
Non-Confidential

C3.29 VCLS
Vector Count Leading Sign bits.

Syntax

VCLS{cond}.datatype Qd, Qm

VCLS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCLS counts the number of consecutive bits following the topmost bit, that are the same as the topmost
bit, in each element in a vector, and places the results in a second vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.29 VCLS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-475
Non-Confidential

C3.30 VCLE (register)
Vector Compare Less than or Equal pseudo-instruction.

Syntax

VCLE{cond}.datatype {Qd}, Qn, Qm

VCLE{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VCLE takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

On disassembly, this pseudo-instruction is disassembled to the corresponding VCGE instruction, with the
operands reversed.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.30 VCLE (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-476
Non-Confidential

C3.31 VCLT (immediate #0)
Vector Compare Less Than zero.

Syntax

VCLT{cond}.datatype {Qd}, Qn, #0

VCLT{cond}.datatype {Dd}, Dn, #0

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

The result datatype is:
• I32 for operand datatypes S32 or F32.
• I16 for operand datatype S16.
• I8 for operand datatype S8.

Qd, Qn, Qm

specifies the destination register and the operand register, for a quadword operation.

Dd, Dn, Dm

specifies the destination register and the operand register, for a doubleword operation.

#0

specifies a comparison with zero.

Operation

VCLT takes the value of each element in a vector, and compares it with zero. If the condition is true, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.31 VCLT (immediate #0)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-477
Non-Confidential

C3.32 VCLT (register)
Vector Compare Less Than.

Syntax

VCLT{cond}.datatype {Qd}, Qn, Qm

VCLT{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

The result datatype is:
• I32 for operand datatypes S32, U32, or F32.
• I16 for operand datatypes S16 or U16.
• I8 for operand datatypes S8 or U8.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation
VCLT takes the value of each element in a vector, and compares it with the value of the corresponding
element of a second vector. If the condition is true, the corresponding element in the destination vector is
set to all ones. Otherwise, it is set to all zeros.

 Note

On disassembly, this pseudo-instruction is disassembled to the corresponding VCGT instruction, with the
operands reversed.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.32 VCLT (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-478
Non-Confidential

C3.33 VCLZ
Vector Count Leading Zeros.

Syntax

VCLZ{cond}.datatype Qd, Qm

VCLZ{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, or I32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCLZ counts the number of consecutive zeros, starting from the top bit, in each element in a vector, and
places the results in a second vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.33 VCLZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-479
Non-Confidential

C3.34 VCMLA
Vector Complex Multiply Accumulate.

Syntax

VCMLA{q}.dt {Dd,} Dn, Dm, #rotate ; 64-bit SIMD vector FP/SIMD registers

VCMLA{q}.dt {Qd,} Qn, Qm, #rotate ; 128-bit SIMD vector FP/SIMD registers

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

dt
Is the data type for the elements of the vectors, and can be either F16 or F32.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
one of 0, 90, 180 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.34 VCMLA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-480
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.35 VCMLA (by element)
Vector Complex Multiply Accumulate (by element).

Syntax

VCMLA{q}.F16 Dd, Dn, Dm[index], #rotate ; A1 Double,halfprec FP/SIMD registers (A32)

VCMLA{q}.F32 Dd, Dn, Dm[0], #rotate ; A1 Double,singleprec FP/SIMD registers (A32)

VCMLA{q}.F32 Qd, Qn, Dm[0], #rotate ; A1 Quad,singleprec FP/SIMD registers (A32)

VCMLA{q}.F16 Qd, Qn, Dm[index], #rotate ; A1 Halfprec,quad FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

rotate
Is the rotation to be applied to elements in the second SIMD and FP source register, and can be
one of 0, 90, 180 or 270.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to
Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.35 VCMLA (by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-481
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C3.36 VCNT
Vector Count set bits.

Syntax

VCNT{cond}.datatype Qd, Qm

VCNT{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be I8.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VCNT counts the number of bits that are one in each element in a vector, and places the results in a second
vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.36 VCNT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-482
Non-Confidential

C3.37 VCVT (between fixed-point or integer, and floating-point)
Vector Convert.

Syntax

VCVT{cond}.type Qd, Qm {, #fbits}

VCVT{cond}.type Dd, Dm {, #fbits}

where:

cond

is an optional condition code.

type

specifies the data types for the elements of the vectors. It must be one of:

S32.F32

Floating-point to signed integer or fixed-point.

U32.F32

Floating-point to unsigned integer or fixed-point.

F32.S32

Signed integer or fixed-point to floating-point.

F32.U32

Unsigned integer or fixed-point to floating-point.

Qd, Qm

specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the operand vector, for a doubleword operation.

fbits

if present, specifies the number of fraction bits in the fixed point number. Otherwise, the
conversion is between floating-point and integer. fbits must lie in the range 0-32. If fbits is
omitted, the number of fraction bits is 0.

Operation
VCVT converts each element in a vector in one of the following ways, and places the results in the
destination vector:
• From floating-point to integer.
• From integer to floating-point.
• From floating-point to fixed-point.
• From fixed-point to floating-point.

Rounding

Integer or fixed-point to floating-point conversions use round to nearest.

Floating-point to integer or fixed-point conversions use round towards zero.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.37 VCVT (between fixed-point or integer, and floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-483
Non-Confidential

C3.38 VCVT (between half-precision and single-precision floating-point)
Vector Convert.

Syntax

VCVT{cond}.F32.F16 Qd, Dm

VCVT{cond}.F16.F32 Dd, Qm

where:

cond
is an optional condition code.

Qd, Dm
specifies the destination vector for the single-precision results and the half-precision operand
vector.

Dd, Qm
specifies the destination vector for half-precision results and the single-precision operand vector.

Operation
VCVT with half-precision extension, converts each element in a vector in one of the following ways, and
places the results in the destination vector:
• From half-precision floating-point to single-precision floating-point (F32.F16).
• From single-precision floating-point to half-precision floating-point (F16.F32).

Architectures

This instruction is available in Armv8. In earlier architectures, it is only available in NEON systems with
the half-precision extension.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.38 VCVT (between half-precision and single-precision floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-484
Non-Confidential

C3.39 VCVT (from floating-point to integer with directed rounding modes)
VCVT (Vector Convert) converts each element in a vector from floating-point to signed or unsigned
integer, and places the results in the destination vector.

 Note

• This instruction is supported only in Armv8.
• You cannot use VCVT with a directed rounding mode inside an IT block.

Syntax

VCVTmode.type Qd, Qm

VCVTmode.type Dd, Dm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero

N
meaning round to nearest, ties to even

P
meaning round towards plus infinity

M
meaning round towards minus infinity.

type

specifies the data types for the elements of the vectors. It must be one of:

S32.F32

floating-point to signed integer

U32.F32
floating-point to unsigned integer.

Qd, Qm
specifies the destination and operand vectors, for a quadword operation.

Dd, Dm
specifies the destination and operand vectors, for a doubleword operation.

C3 Advanced SIMD Instructions (32-bit)
C3.39 VCVT (from floating-point to integer with directed rounding modes)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-485
Non-Confidential

C3.40 VCVTB, VCVTT (between half-precision and double-precision)
These instructions convert between half-precision and double-precision floating-point numbers.

The conversion can be done in either of the following ways:

• From half-precision floating-point to double-precision floating-point (F64.F16).
• From double-precision floating-point to half-precision floating-point (F16.F64).

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value.

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

 Note

These instructions are supported only in Armv8.

Syntax

VCVTB{cond}.F64.F16 Dd, Sm

VCVTB{cond}.F16.F64 Sd, Dm

VCVTT{cond}.F64.F16 Dd, Sm

VCVTT{cond}.F16.F64 Sd, Dm

where:

cond
is an optional condition code.

Dd
is a double-precision register for the result.

Sm
is a single word register holding the operand.

Sd
is a single word register for the result.

Dm
is a double-precision register holding the operand.

Usage

These instructions convert the half-precision value in Sm to double-precision and place the result in Dd, or
the double-precision value in Dm to half-precision and place the result in Sd.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C3 Advanced SIMD Instructions (32-bit)
C3.40 VCVTB, VCVTT (between half-precision and double-precision)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-486
Non-Confidential

C3.41 VDUP
Vector Duplicate.

Syntax

VDUP{cond}.size Qd, Dm[x]

VDUP{cond}.size Dd, Dm[x]

VDUP{cond}.size Qd, Rm

VDUP{cond}.size Dd, Rm

where:

cond

is an optional condition code.

size

must be 8, 16, or 32.

Qd

specifies the destination register for a quadword operation.

Dd

specifies the destination register for a doubleword operation.

Dm[x]

specifies the Advanced SIMD scalar.

Rm

specifies the general-purpose register. Rm must not be PC.

Operation

VDUP duplicates a scalar into every element of the destination vector. The source can be an Advanced
SIMD scalar or a general-purpose register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.41 VDUP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-487
Non-Confidential

C3.42 VEOR
Vector Bitwise Exclusive OR.

Syntax

VEOR{cond}{.datatype} {Qd}, Qn, Qm

VEOR{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VEOR performs a logical exclusive OR between two registers, and places the result in the destination
register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.42 VEOR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-488
Non-Confidential

C3.43 VEXT
Vector Extract.

Syntax

VEXT{cond}.8 {Qd}, Qn, Qm, #imm

VEXT{cond}.8 {Dd}, Dn, Dm, #imm

where:

cond

is an optional condition code.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

imm

is the number of 8-bit elements to extract from the bottom of the second operand vector, in the
range 0-7 for doubleword operations, or 0-15 for quadword operations.

Operation

VEXT extracts 8-bit elements from the bottom end of the second operand vector and the top end of the
first, concatenates them, and places the result in the destination vector. See the following figure for an
example:

Vd

VnVm
0123456701234567

Figure C3-2 Operation of doubleword VEXT for imm = 3

VEXT pseudo-instruction

You can specify a datatype of 16, 32, or 64 instead of 8. In this case, #imm refers to halfwords, words, or
doublewords instead of referring to bytes, and the permitted ranges are correspondingly reduced.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.43 VEXT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-489
Non-Confidential

C3.44 VFMA, VFMS
Vector Fused Multiply Accumulate, Vector Fused Multiply Subtract.

Syntax

Vop{cond}.F32 {Qd}, Qn, Qm

Vop{cond}.F32 {Dd}, Dn, Dm

where:

op

is one of FMA or FMS.

cond

is an optional condition code.

Dd, Dn, Dm

are the destination and operand vectors for doubleword operation.

Qd, Qn, Qm

are the destination and operand vectors for quadword operation.

Operation

VFMA multiplies corresponding elements in the two operand vectors, and accumulates the results into the
elements of the destination vector. The result of the multiply is not rounded before the accumulation.

VFMS multiplies corresponding elements in the two operand vectors, then subtracts the products from the
corresponding elements of the destination vector, and places the final results in the destination vector.
The result of the multiply is not rounded before the subtraction.

Related reference
C3.77 VMUL on page C3-526
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.44 VFMA, VFMS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-490
Non-Confidential

C3.45 VFMAL (by scalar)
Vector Floating-point Multiply-Add Long to accumulator (by scalar).

Syntax

VFMAL{q}.F16 Dd, Sn, Sm[index] ; 64-bit SIMD vector

VFMAL{q}.F16 Qd, Dn, Dm[index] ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

index

Depends on the instruction variant:

64
For the 64-bit SIMD vector variant: is the element index in the range 0 to 1.

128
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the
vector elements in the first source SIMD and FP register by the specified value in the second source
SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.45 VFMAL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-491
Non-Confidential

C3.46 VFMAL (vector)
Vector Floating-point Multiply-Add Long to accumulator (vector).

Syntax

VFMAL{q}.F16 Dd, Sn, Sm ; 64-bit SIMD vector

VFMAL{q}.F16 Qd, Dn, Dm ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies
corresponding values in the vectors in the two source SIMD and FP registers, and accumulates the
product to the corresponding vector element of the destination SIMD and FP register. The instruction
does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.46 VFMAL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-492
Non-Confidential

C3.47 VFMSL (by scalar)
Vector Floating-point Multiply-Subtract Long from accumulator (by scalar).

Syntax

VFMSL{q}.F16 Dd, Sn, Sm[index] ; 64-bit SIMD vector

VFMSL{q}.F16 Qd, Dn, Dm[index] ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

index

Depends on the instruction variant:

64
For the 64-bit SIMD vector variant: is the element index in the range 0 to 1.

128
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies
the negated vector elements in the first source SIMD and FP register by the specified value in the second
source SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.47 VFMSL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-493
Non-Confidential

C3.48 VFMSL (vector)
Vector Floating-point Multiply-Subtract Long from accumulator (vector).

Syntax

VFMSL{q}.F16 Dd, Sn, Sm ; 64-bit SIMD vector

VFMSL{q}.F16 Qd, Dn, Dm ; 128-bit SIMD vector FP/SIMD registers (A32)

Where:

Dd
Is the 64-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

Usage

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the
values in the vector of one SIMD and FP register, multiplies these with the corresponding values in
another vector, and accumulates the product to the corresponding vector element of the destination SIMD
and FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and
PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED,
or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_ISAR6.FHM indicates whether this instruction is supported.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.48 VFMSL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-494
Non-Confidential

C3.49 VHADD
Vector Halving Add.

Syntax

VHADD{cond}.datatype {Qd}, Qn, Qm

VHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VHADD adds corresponding elements in two vectors, shifts each result right one bit, and places the results
in the destination vector. Results are truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.49 VHADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-495
Non-Confidential

C3.50 VHSUB
Vector Halving Subtract.

Syntax

VHSUB{cond}.datatype {Qd}, Qn, Qm

VHSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VHSUB subtracts the elements of one vector from the corresponding elements of another vector, shifts
each result right one bit, and places the results in the destination vector. Results are always truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.50 VHSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-496
Non-Confidential

C3.51 VLDn (single n-element structure to one lane)
Vector Load single n-element structure to one lane.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads one n-element structure from memory into one or more Advanced SIMD registers. Elements
of the register that are not loaded are unaltered.

Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane)

n datatype list ag align ah alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

ag Every register in the list must be in the range D0-D31.
ah align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.51 VLDn (single n-element structure to one lane)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-497
Non-Confidential

Table C3-4 Permitted combinations of parameters for VLDn (single n-element structure to one lane) (continued)

n datatype list ag align ah alignment

16 {Dd[x], D(d+1)[x]} @32 4-byte

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.51 VLDn (single n-element structure to one lane)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-498
Non-Confidential

C3.52 VLDn (single n-element structure to all lanes)
Vector Load single n-element structure to all lanes.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads multiple copies of one n-element structure from memory into one or more Advanced SIMD
registers.

Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes)

n datatype list ai align aj alignment

1 8 {Dd[]} - Standard only

{Dd[],D(d+1)[]} - Standard only

16 {Dd[]} @16 2-byte

{Dd[],D(d+1)[]} @16 2-byte

ai Every register in the list must be in the range D0-D31.
aj align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.52 VLDn (single n-element structure to all lanes)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-499
Non-Confidential

Table C3-5 Permitted combinations of parameters for VLDn (single n-element structure to all lanes) (continued)

n datatype list ai align aj alignment

32 {Dd[]} @32 4-byte

{Dd[],D(d+1)[]} @32 4-byte

2 8 {Dd[], D(d+1)[]} @8 byte

{Dd[], D(d+2)[]} @8 byte

16 {Dd[], D(d+1)[]} @16 2-byte

{Dd[], D(d+2)[]} @16 2-byte

32 {Dd[], D(d+1)[]} @32 4-byte

{Dd[], D(d+2)[]} @32 4-byte

3 8, 16, or 32 {Dd[], D(d+1)[], D(d+2)[]} - Standard only

{Dd[], D(d+2)[], D(d+4)[]} - Standard only

4 8 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @32 4-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @32 4-byte

16 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 8-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 8-byte

32 {Dd[], D(d+1)[], D(d+2)[], D(d+3)[]} @64 or @128 8-byte or 16-byte

{Dd[], D(d+2)[], D(d+4)[], D(d+6)[]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.52 VLDn (single n-element structure to all lanes)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-500
Non-Confidential

C3.53 VLDn (multiple n-element structures)
Vector Load multiple n-element structures.

Syntax

VLDn{cond}.datatype list, [Rn{@align}]{!}

VLDn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table for options.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the loads have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VLDn loads multiple n-element structures from memory into one or more Advanced SIMD registers, with
de-interleaving (unless n == 1). Every element of each register is loaded.

Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures)

n datatype list ak align al alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

ak Every register in the list must be in the range D0-D31.
al align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.53 VLDn (multiple n-element structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-501
Non-Confidential

Table C3-6 Permitted combinations of parameters for VLDn (multiple n-element structures) (continued)

n datatype list ak align al alignment

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.53 VLDn (multiple n-element structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-502
Non-Confidential

C3.54 VLDM
Extension register load multiple.

Syntax

VLDMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as DB for loads.

FD

meaning Full Descending stack operation. This is the same as IA for loads.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related reference
C1.9 Condition code suffixes on page C1-142
C4.14 VLDM (floating-point) on page C4-615

C3 Advanced SIMD Instructions (32-bit)
C3.54 VLDM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-503
Non-Confidential

C3.55 VLDR
Extension register load.

Syntax

VLDR{cond}{.64} Dd, [Rn{, #offset}]

VLDR{cond}{.64} Dd, label

where:

cond

is an optional condition code.

Dd

is the extension register to be loaded.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

label

is a PC-relative expression.

label must be aligned on a word boundary within ±1KB of the current instruction.

Operation

The VLDR instruction loads an extension register from memory.

Two words are transferred.

There is also a VLDR pseudo-instruction.

Related reference
C3.57 VLDR pseudo-instruction on page C3-506
C1.9 Condition code suffixes on page C1-142
C4.15 VLDR (floating-point) on page C4-616

C3 Advanced SIMD Instructions (32-bit)
C3.55 VLDR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-504
Non-Confidential

C3.56 VLDR (post-increment and pre-decrement)
Pseudo-instruction that loads extension registers, with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VLDR{cond}{.64} Dd, [Rn], #offset ; post-increment

VLDR{cond}{.64} Dd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

Dd

is the extension register to load.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to 8 at assembly time.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VLDM instruction.

Related reference
C3.54 VLDM on page C3-503
C3.55 VLDR on page C3-504
C1.9 Condition code suffixes on page C1-142
C4.16 VLDR (post-increment and pre-decrement, floating-point) on page C4-617

C3 Advanced SIMD Instructions (32-bit)
C3.56 VLDR (post-increment and pre-decrement)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-505
Non-Confidential

C3.57 VLDR pseudo-instruction
The VLDR pseudo-instruction loads a constant value into every element of a 64-bit Advanced SIMD
vector.

 Note

This description is for the VLDR pseudo-instruction only.

Syntax

VLDR{cond}.datatype Dd,=constant

where:

cond
is an optional condition code.

datatype

must be one of In, Sn, Un, or F32.

n
must be one of 8, 16, 32, or 64.

Dd
is the extension register to be loaded.

constant
is an immediate value of the appropriate type for datatype.

Usage

If an instruction (for example, VMOV) is available that can generate the constant directly into the register,
the assembler uses it. Otherwise, it generates a doubleword literal pool entry containing the constant and
loads the constant using a VLDR instruction.

Related reference
C3.55 VLDR on page C3-504
C1.9 Condition code suffixes on page C1-142
C3.57 VLDR pseudo-instruction on page C3-506

C3 Advanced SIMD Instructions (32-bit)
C3.57 VLDR pseudo-instruction

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-506
Non-Confidential

C3.58 VMAX and VMIN
Vector Maximum, Vector Minimum.

Syntax

Vop{cond}.datatype Qd, Qn, Qm

Vop{cond}.datatype Dd, Dn, Dm

where:

op

must be either MAX or MIN.

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMAX compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

VMIN compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

Floating-point maximum and minimum

max(+0.0, -0.0) = +0.0.

min(+0.0, -0.0) = -0.0

If any input is a NaN, the corresponding result element is the default NaN.

Related reference
C3.89 VPADD on page C3-538
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.58 VMAX and VMIN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-507
Non-Confidential

C3.59 VMAXNM, VMINNM
Vector Minimum, Vector Maximum.

 Note

• These instructions are supported only in Armv8.
• You cannot use VMAXNM or VMINNM inside an IT block.

Syntax

Vop.F32 Qd, Qn, Qm

Vop.F32 Dd, Dn, Dm

where:

op
must be either MAXNM or MINNM.

Qd, Qn, Qm
are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm
are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMAXNM compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.

VMINNM compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.

If one of the elements in a pair is a number and the other element is NaN, the corresponding result
element is the number. This is consistent with the IEEE 754-2008 standard.

C3 Advanced SIMD Instructions (32-bit)
C3.59 VMAXNM, VMINNM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-508
Non-Confidential

C3.60 VMLA
Vector Multiply Accumulate.

Syntax

VMLA{cond}.datatype {Qd}, Qn, Qm

VMLA{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMLA multiplies corresponding elements in two vectors, and accumulates the results into the elements of
the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.60 VMLA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-509
Non-Confidential

C3.61 VMLA (by scalar)
Vector Multiply by scalar and Accumulate.

Syntax

VMLA{cond}.datatype {Qd}, Qn, Dm[x]

VMLA{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLA multiplies each element in a vector by a scalar, and accumulates the results into the corresponding
elements of the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.61 VMLA (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-510
Non-Confidential

C3.62 VMLAL (by scalar)
Vector Multiply by scalar and Accumulate Long.

Syntax

VMLAL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLAL multiplies each element in a vector by a scalar, and accumulates the results into the corresponding
elements of the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.62 VMLAL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-511
Non-Confidential

C3.63 VMLAL
Vector Multiply Accumulate Long.

Syntax

VMLAL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32,U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMLAL multiplies corresponding elements in two vectors, and accumulates the results into the elements of
the destination vector.

Related concepts
B1.11 Polynomial arithmetic over {0,1} on page B1-101

C3 Advanced SIMD Instructions (32-bit)
C3.63 VMLAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-512
Non-Confidential

C3.64 VMLS (by scalar)
Vector Multiply by scalar and Subtract.

Syntax

VMLS{cond}.datatype {Qd}, Qn, Dm[x]

VMLS{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLS multiplies each element in a vector by a scalar, subtracts the results from the corresponding
elements of the destination vector, and places the final results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.64 VMLS (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-513
Non-Confidential

C3.65 VMLS
Vector Multiply Subtract.

Syntax

VMLS{cond}.datatype {Qd}, Qn, Qm

VMLS{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMLS multiplies corresponding elements in two vectors, subtracts the results from corresponding
elements of the destination vector, and places the final results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.65 VMLS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-514
Non-Confidential

C3.66 VMLSL
Vector Multiply Subtract Long.

Syntax

VMLSL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMLSL multiplies corresponding elements in two vectors, subtracts the results from corresponding
elements of the destination vector, and places the final results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.66 VMLSL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-515
Non-Confidential

C3.67 VMLSL (by scalar)
Vector Multiply by scalar and Subtract Long.

Syntax

VMLSL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32.

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMLSL multiplies each element in a vector by a scalar, subtracts the results from the corresponding
elements of the destination vector, and places the final results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.67 VMLSL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-516
Non-Confidential

C3.68 VMOV (immediate)
Vector Move.

Syntax

VMOV{cond}.datatype Qd, #imm

VMOV{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is an immediate value of the type specified by datatype. This is replicated to fill the destination
register.

Operation

VMOV replicates an immediate value in every element of the destination register.

Table C3-7 Available immediate values in VMOV (immediate)

datatype imm

I8 0xXY

I16 0x00XY, 0xXY00

I32 0x000000XY, 0x0000XY00, 0x00XY0000, 0xXY000000

0x0000XYFF, 0x00XYFFFF

I64 byte masks, 0xGGHHJJKKLLMMNNPP am

F32 floating-point numbers an

Related reference
C1.9 Condition code suffixes on page C1-142

am Each of 0xGG, 0xHH, 0xJJ, 0xKK, 0xLL, 0xMM, 0xNN, and 0xPP must be either 0x00 or 0xFF.
an Any number that can be expressed as +/–n * 2–r, where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.

C3 Advanced SIMD Instructions (32-bit)
C3.68 VMOV (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-517
Non-Confidential

C3.69 VMOV (register)
Vector Move.

Syntax

VMOV{cond}{.datatype} Qd, Qm

VMOV{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the source vector, for a doubleword operation.

Operation

VMOV copies the contents of the source register into the destination register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.69 VMOV (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-518
Non-Confidential

C3.70 VMOV (between two general-purpose registers and a 64-bit extension
register)

Transfer contents between two general-purpose registers and a 64-bit extension register.

Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

where:

cond

is an optional condition code.

Dm

is a 64-bit extension register.

Rd, Rn

are the general-purpose registers. Rd and Rn must not be PC.

Operation

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into the
high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high half of
Dm into Rn.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.70 VMOV (between two general-purpose registers and a 64-bit extension register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-519
Non-Confidential

C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar)
Transfer contents between a general-purpose register and an Advanced SIMD scalar.

Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.datatype} Rd, Dn[x]

where:

cond

is an optional condition code.

size

the data size. Can be 8, 16, or 32. If omitted, size is 32.

datatype

the data type. Can be U8, S8, U16, S16, or 32. If omitted, datatype is 32.

Dn[x]

is the Advanced SIMD scalar.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Dn[x], Rd transfers the contents of the least significant byte, halfword, or word of Rd into Dn[x].

VMOV Rd, Dn[x] transfers the contents of Dn[x] into the least significant byte, halfword, or word of Rd.
The remaining bits of Rd are either zero or sign extended.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.71 VMOV (between a general-purpose register and an Advanced SIMD scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-520
Non-Confidential

C3.72 VMOVL
Vector Move Long.

Syntax

VMOVL{cond}.datatype Qd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dm

specifies the destination vector and the operand vector.

Operation

VMOVL takes each element in a doubleword vector, sign or zero extends them to twice their original
length, and places the results in a quadword vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.72 VMOVL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-521
Non-Confidential

C3.73 VMOVN
Vector Move and Narrow.

Syntax

VMOVN{cond}.datatype Dd, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

specifies the destination vector and the operand vector.

Operation

VMOVN copies the least significant half of each element of a quadword vector into the corresponding
elements of a doubleword vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.73 VMOVN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-522
Non-Confidential

C3.74 VMOV2
Pseudo-instruction that generates an immediate value and places it in every element of an Advanced
SIMD vector, without loading a value from a literal pool.

Syntax

VMOV2{cond}.datatype Qd, #constant

VMOV2{cond}.datatype Dd, #constant

where:

datatype
must be one of:
• I8, I16, I32, or I64.
• S8, S16, S32, or S64.
• U8, U16, U32, or U64.
• F32.

cond

is an optional condition code.

Qd or Dd
is the extension register to be loaded.

constant
is an immediate value of the appropriate type for datatype.

Operation

VMOV2 can generate any 16-bit immediate value, and a restricted range of 32-bit and 64-bit immediate
values.

VMOV2 is a pseudo-instruction that always assembles to exactly two instructions. It typically assembles to
a VMOV or VMVN instruction, followed by a VBIC or VORR instruction.

Related reference
C3.68 VMOV (immediate) on page C3-517
C3.16 VBIC (immediate) on page C3-462
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.74 VMOV2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-523
Non-Confidential

C3.75 VMRS
Transfer contents from an Advanced SIMD system register to a general-purpose register.

Syntax

VMRS{cond} Rd, extsysreg

where:

cond
is an optional condition code.

extsysreg
is the Advanced SIMD and floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMRS instruction transfers the contents of extsysreg into Rd.

 Note

The instruction stalls the processor until all current Advanced SIMD or floating-point operations
complete.

Example
 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to the
 ; special-purpose APSR

Related reference
B1.17 Advanced SIMD system registers in AArch32 state on page B1-107
C1.9 Condition code suffixes on page C1-142
C4.26 VMRS (floating-point) on page C4-627

C3 Advanced SIMD Instructions (32-bit)
C3.75 VMRS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-524
Non-Confidential

C3.76 VMSR
Transfer contents of a general-purpose register to an Advanced SIMD system register.

Syntax

VMSR{cond} extsysreg, Rd

where:

cond
is an optional condition code.

extsysreg
is the Advanced SIMD and floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMSR instruction transfers the contents of Rd into extsysreg.

 Note

The instruction stalls the processor until all current Advanced SIMD operations complete.

Example
 VMSR FPSCR, r4

Related reference
B1.17 Advanced SIMD system registers in AArch32 state on page B1-107
C1.9 Condition code suffixes on page C1-142
C4.27 VMSR (floating-point) on page C4-628

C3 Advanced SIMD Instructions (32-bit)
C3.76 VMSR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-525
Non-Confidential

C3.77 VMUL
Vector Multiply.

Syntax

VMUL{cond}.datatype {Qd}, Qn, Qm

VMUL{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, F32, or P8.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VMUL multiplies corresponding elements in two vectors, and places the results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.77 VMUL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-526
Non-Confidential

C3.78 VMUL (by scalar)
Vector Multiply by scalar.

Syntax

VMUL{cond}.datatype {Qd}, Qn, Dm[x]

VMUL{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or F32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMUL multiplies each element in a vector by a scalar, and places the results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.78 VMUL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-527
Non-Confidential

C3.79 VMULL
Vector Multiply Long

Syntax

VMULL{cond}.datatype Qd, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of U8, U16, U32, S8, S16, S32, or P8.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Operation

VMULL multiplies corresponding elements in two vectors, and places the results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.79 VMULL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-528
Non-Confidential

C3.80 VMULL (by scalar)
Vector Multiply Long by scalar

Syntax

VMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be one of S16, S32, U16, or U32.

Qd, Dn

are the destination vector and the first operand vector, for a long operation.

Dm[x]

is the scalar holding the second operand.

Operation

VMULL multiplies each element in a vector by a scalar, and places the results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.80 VMULL (by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-529
Non-Confidential

C3.81 VMVN (register)
Vector Move NOT (register).

Syntax

VMVN{cond}{.datatype} Qd, Qm

VMVN{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the destination vector and the source vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the source vector, for a doubleword operation.

Operation

VMVN inverts the value of each bit from the source register and places the results into the destination
register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.81 VMVN (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-530
Non-Confidential

C3.82 VMVN (immediate)
Vector Move NOT (immediate).

Syntax

VMVN{cond}.datatype Qd, #imm

VMVN{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is an immediate value of the type specified by datatype. This is replicated to fill the destination
register.

Operation

VMVN inverts the value of each bit from an immediate value and places the results into each element in the
destination register.

Table C3-8 Available immediate values in VMVN (immediate)

datatype imm

I8 -

I16 0xFFXY, 0xXYFF

I32 0xFFFFFFXY, 0xFFFFXYFF, 0xFFXYFFFF, 0xXYFFFFFF

0xFFFFXY00, 0xFFXY0000

I64 -

F32 -

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.82 VMVN (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-531
Non-Confidential

C3.83 VNEG
Vector Negate.

Syntax

VNEG{cond}.datatype Qd, Qm

VNEG{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VNEG negates each element in a vector, and places the results in a second vector. (The floating-point
version only inverts the sign bit.)

Related reference
C4.29 VNEG (floating-point) on page C4-630
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.83 VNEG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-532
Non-Confidential

C3.84 VORN (register)
Vector bitwise OR NOT (register).

Syntax

VORN{cond}{.datatype} {Qd}, Qn, Qm

VORN{cond}{.datatype} {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VORN performs a bitwise logical OR complement between two registers, and places the results in the
destination register.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.84 VORN (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-533
Non-Confidential

C3.85 VORN (immediate)
Vector bitwise OR NOT (immediate) pseudo-instruction.

Syntax

VORN{cond}.datatype Qd, #imm

VORN{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the result.

imm

is the immediate value.

Operation
VORN takes each element of the destination vector, performs a bitwise OR complement with an immediate
value, and returns the results in the destination vector.

 Note

On disassembly, this pseudo-instruction is disassembled to a corresponding VORR instruction, with a
complementary immediate value.

Immediate values

If datatype is I16, the immediate value must have one of the following forms:

• 0xFFXY.
• 0xXYFF.

If datatype is I32, the immediate value must have one of the following forms:
• 0xFFFFFFXY.
• 0xFFFFXYFF.
• 0xFFXYFFFF.
• 0xXYFFFFFF.

Related reference
C3.87 VORR (immediate) on page C3-536
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.85 VORN (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-534
Non-Confidential

C3.86 VORR (register)
Vector bitwise OR (register).

Syntax

VORR{cond}{.datatype} {Qd}, Qn, Qm

VORR{cond}{.datatype} {Dd}, Dn, Dm

where:
cond

is an optional condition code.

datatype

is an optional data type. The assembler ignores datatype.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

 Note

VORR with the same register for both operands is a VMOV instruction. You can use VORR in this way, but
disassembly of the resulting code produces the VMOV syntax.

Operation

VORR performs a bitwise logical OR between two registers, and places the result in the destination
register.

Related reference
C3.69 VMOV (register) on page C3-518
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.86 VORR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-535
Non-Confidential

C3.87 VORR (immediate)
Vector bitwise OR immediate.

Syntax

VORR{cond}.datatype Qd, #imm

VORR{cond}.datatype Dd, #imm

where:

cond

is an optional condition code.

datatype

must be either I8, I16, I32, or I64.

Qd or Dd

is the Advanced SIMD register for the source and result.

imm

is the immediate value.

Operation

VORR takes each element of the destination vector, performs a bitwise logical OR with an immediate
value, and places the results in the destination vector.

Immediate values

You can either specify imm as a pattern which the assembler repeats to fill the destination register, or you
can directly specify the immediate value (that conforms to the pattern) in full. The pattern for imm
depends on the datatype, as shown in the following table:

Table C3-9 Patterns for immediate value in VORR (immediate)

I16 I32

0x00XY 0x000000XY

0xXY00 0x0000XY00

- 0x00XY0000

- 0xXY000000

If you use the I8 or I64 datatypes, the assembler converts it to either the I16 or I32 instruction to match
the pattern of imm. If the immediate value does not match any of the patterns in the preceding table, the
assembler generates an error.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.87 VORR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-536
Non-Confidential

C3.88 VPADAL
Vector Pairwise Add and Accumulate Long.

Syntax

VPADAL{cond}.datatype Qd, Qm

VPADAL{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm

are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm

are the destination vector and the operand vector, for a doubleword instruction.

Operation

VPADAL adds adjacent pairs of elements of a vector, and accumulates the absolute values of the results
into the elements of the destination vector.

Dd

Dm

+ +

Figure C3-3 Example of operation of VPADAL (in this case for data type S16)

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.88 VPADAL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-537
Non-Confidential

C3.89 VPADD
Vector Pairwise Add.

Syntax

VPADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or F32.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VPADD adds adjacent pairs of elements of two vectors, and places the results in the destination vector.

Dd

DnDm

+ + ++

Figure C3-4 Example of operation of VPADD (in this case, for data type I16)

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.89 VPADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-538
Non-Confidential

C3.90 VPADDL
Vector Pairwise Add Long.

Syntax

VPADDL{cond}.datatype Qd, Qm

VPADDL{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qm

are the destination vector and the operand vector, for a quadword instruction.

Dd, Dm

are the destination vector and the operand vector, for a doubleword instruction.

Operation

VPADDL adds adjacent pairs of elements of a vector, sign or zero extends the results to twice their original
width, and places the final results in the destination vector.

Dd

Dm

+ +

Figure C3-5 Example of operation of doubleword VPADDL (in this case, for data type S16)

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.90 VPADDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-539
Non-Confidential

C3.91 VPMAX and VPMIN
Vector Pairwise Maximum, Vector Pairwise Minimum.

Syntax

VPop{cond}.datatype Dd, Dn, Dm

where:

op

must be either MAX or MIN.

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, U32, or F32.

Dd, Dn, Dm

are the destination doubleword vector, the first operand doubleword vector, and the second
operand doubleword vector.

Operation

VPMAX compares adjacent pairs of elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector. Operands and results must be doubleword vectors.

VPMIN compares adjacent pairs of elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector. Operands and results must be doubleword vectors.

Floating-point maximum and minimum

max(+0.0, -0.0) = +0.0.

min(+0.0, -0.0) = -0.0

If any input is a NaN, the corresponding result element is the default NaN.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.91 VPMAX and VPMIN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-540
Non-Confidential

C3.92 VPOP
Pop extension registers from the stack.

Syntax

VPOP{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related reference
C1.9 Condition code suffixes on page C1-142
C3.93 VPUSH on page C3-542
C4.33 VPOP (floating-point) on page C4-634

C3 Advanced SIMD Instructions (32-bit)
C3.92 VPOP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-541
Non-Confidential

C3.93 VPUSH
Push extension registers onto the stack.

Syntax

VPUSH{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related reference
C1.9 Condition code suffixes on page C1-142
C3.92 VPOP on page C3-541
C4.34 VPUSH (floating-point) on page C4-635

C3 Advanced SIMD Instructions (32-bit)
C3.93 VPUSH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-542
Non-Confidential

C3.94 VQABS
Vector Saturating Absolute.

Syntax

VQABS{cond}.datatype Qd, Qm

VQABS{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VQABS takes the absolute value of each element in a vector, and places the results in a second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.94 VQABS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-543
Non-Confidential

C3.95 VQADD
Vector Saturating Add.

Syntax

VQADD{cond}.datatype {Qd}, Qn, Qm

VQADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQADD adds corresponding elements in two vectors, and places the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.95 VQADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-544
Non-Confidential

C3.96 VQDMLAL and VQDMLSL (by vector or by scalar)
Vector Saturating Doubling Multiply Accumulate Long, Vector Saturating Doubling Multiply Subtract
Long.

Syntax

VQDopL{cond}.datatype Qd, Dn, Dm

VQDopL{cond}.datatype Qd, Dn, Dm[x]

where:

op

must be one of:

MLA

Multiply Accumulate.

MLS

Multiply Subtract.

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Dn

are the destination vector and the first operand vector.

Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

These instructions multiply their operands and double the results. VQDMLAL adds the results to the values
in the destination register. VQDMLSL subtracts the results from the values in the destination register.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.96 VQDMLAL and VQDMLSL (by vector or by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-545
Non-Confidential

C3.97 VQDMULH (by vector or by scalar)
Vector Saturating Doubling Multiply Returning High Half.

Syntax

VQDMULH{cond}.datatype {Qd}, Qn, Qm

VQDMULH{cond}.datatype {Dd}, Dn, Dm

VQDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Qm or Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQDMULH multiplies corresponding elements in two vectors, doubles the results, and places the most
significant half of the final results in the destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs. Each result is truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.97 VQDMULH (by vector or by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-546
Non-Confidential

C3.98 VQDMULL (by vector or by scalar)
Vector Saturating Doubling Multiply Long.

Syntax

VQDMULL{cond}.datatype Qd, Dn, Dm

VQDMULL{cond}.datatype Qd, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Dn

are the destination vector and the first operand vector.

Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQDMULL multiplies corresponding elements in two vectors, doubles the results and places the results in
the destination register.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.98 VQDMULL (by vector or by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-547
Non-Confidential

C3.99 VQMOVN and VQMOVUN
Vector Saturating Move and Narrow.

Syntax

VQMOVN{cond}.datatype Dd, Qm

VQMOVUN{cond}.datatype Dd, Qm

where:

cond

is an optional condition code.

datatype

must be one of:

S16, S32, S64

for VQMOVN or VQMOVUN.

U16, U32, U64

for VQMOVN.

Dd, Qm

specifies the destination vector and the operand vector.

Operation

VQMOVN copies each element of the operand vector to the corresponding element of the destination vector.
The result element is half the width of the operand element, and values are saturated to the result width.
The results are the same type as the operands.

VQMOVUN copies each element of the operand vector to the corresponding element of the destination
vector. The result element is half the width of the operand element, and values are saturated to the result
width. The elements in the operand are signed and the elements in the result are unsigned.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.99 VQMOVN and VQMOVUN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-548
Non-Confidential

C3.100 VQNEG
Vector Saturating Negate.

Syntax

VQNEG{cond}.datatype Qd, Qm

VQNEG{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, or S32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VQNEG negates each element in a vector, and places the results in a second vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.100 VQNEG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-549
Non-Confidential

C3.101 VQRDMULH (by vector or by scalar)
Vector Saturating Rounding Doubling Multiply Returning High Half.

Syntax

VQRDMULH{cond}.datatype {Qd}, Qn, Qm

VQRDMULH{cond}.datatype {Dd}, Dn, Dm

VQRDMULH{cond}.datatype {Qd}, Qn, Dm[x]

VQRDMULH{cond}.datatype {Dd}, Dn, Dm[x]

where:

cond

is an optional condition code.

datatype

must be either S16 or S32.

Qd, Qn

are the destination vector and the first operand vector, for a quadword operation.

Dd, Dn

are the destination vector and the first operand vector, for a doubleword operation.

Qm or Dm

is the vector holding the second operand, for a by vector operation.

Dm[x]

is the scalar holding the second operand, for a by scalar operation.

Operation

VQRDMULH multiplies corresponding elements in two vectors, doubles the results, and places the most
significant half of the final results in the destination vector.

The second operand can be a scalar instead of a vector.

If any of the results overflow, they are saturated. The sticky QC flag (FPSCR bit[27]) is set if saturation
occurs. Each result is rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.101 VQRDMULH (by vector or by scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-550
Non-Confidential

C3.102 VQRSHL (by signed variable)
Vector Saturating Rounding Shift Left by signed variable.

Syntax

VQRSHL{cond}.datatype {Qd}, Qm, Qn

VQRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQRSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a rounding right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.102 VQRSHL (by signed variable)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-551
Non-Confidential

C3.103 VQRSHRN and VQRSHRUN (by immediate)
Vector Saturating Shift Right, Narrow, by immediate value, with Rounding.

Syntax

VQRSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U

if present, indicates that the results are unsigned, although the operands are signed. Otherwise,
the results are the same type as the operands.

cond

is an optional condition code.

datatype

must be one of:

I16, I32, I64

for VQRSHRN or VQRSHRUN. Only a #0 immediate is permitted with these datatypes.

S16, S32, S64

for VQRSHRN or VQRSHRUN.

U16, U32, U64

for VQRSHRN only.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-10 Available immediate ranges in VQRSHRN and VQRSHRUN (by immediate)

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32

Operation

VQRSHR{U}N takes each element in a quadword vector of integers, right shifts them by an immediate
value, and places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.103 VQRSHRN and VQRSHRUN (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-552
Non-Confidential

C3.104 VQSHL (by signed variable)
Vector Saturating Shift Left by signed variable.

Syntax

VQSHL{cond}.datatype {Qd}, Qm, Qn

VQSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a truncating right shift.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.104 VQSHL (by signed variable)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-553
Non-Confidential

C3.105 VQSHL and VQSHLU (by immediate)
Vector Saturating Shift Left.

Syntax

VQSHL{U}{cond}.datatype {Qd}, Qm, #imm

VQSHL{U}{cond}.datatype {Dd}, Dm, #imm

where:

U

only permitted if Q is also present. Indicates that the results are unsigned even though the
operands are signed.

cond

is an optional condition code.

datatype

must be one of :

S8, S16, S32, S64

for VQSHL or VQSHLU.

U8, U16, U32, U64

for VQSHL only.

Qd, Qm

are the destination and operand vectors, for a quadword operation.

Dd, Dm

are the destination and operand vectors, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype) – 1).
The ranges are shown in the following table:

Table C3-11 Available immediate ranges in VQSHL and VQSHLU (by immediate)

datatype imm range

S8 or U8 0 to 7

S16 or U16 0 to 15

S32 or U32 0 to 31

S64 or U64 0 to 63

Operation

VQSHL and VQSHLU instructions take each element in a vector of integers, left shift them by an immediate
value, and place the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.105 VQSHL and VQSHLU (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-554
Non-Confidential

C3.106 VQSHRN and VQSHRUN (by immediate)
Vector Saturating Shift Right, Narrow, by immediate value.

Syntax

VQSHR{U}N{cond}.datatype Dd, Qm, #imm

where:

U

if present, indicates that the results are unsigned, although the operands are signed. Otherwise,
the results are the same type as the operands.

cond

is an optional condition code.

datatype

must be one of:

I16, I32, I64

for VQSHRN or VQSHRUN. Only a #0 immediate is permitted with these datatypes.

S16, S32, S64

for VQSHRN or VQSHRUN.

U16, U32, U64

for VQSHRN only.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-12 Available immediate ranges in VQSHRN and VQSHRUN (by immediate)

datatype imm range

S16 or U16 0 to 8

S32 or U32 0 to 16

S64 or U64 0 to 32

Operation

VQSHR{U}N takes each element in a quadword vector of integers, right shifts them by an immediate value,
and places the results in a doubleword vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Results are truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.106 VQSHRN and VQSHRUN (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-555
Non-Confidential

C3.107 VQSUB
Vector Saturating Subtract.

Syntax

VQSUB{cond}.datatype {Qd}, Qn, Qm

VQSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VQSUB subtracts the elements of one vector from the corresponding elements of another vector, and
places the results in the destination vector.

The sticky QC flag (FPSCR bit[27]) is set if saturation occurs.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.107 VQSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-556
Non-Confidential

C3.108 VRADDHN
Vector Rounding Add and Narrow, selecting High half.

Syntax

VRADDHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VRADDHN adds corresponding elements in two quadword vectors, selects the most significant halves of the
results, and places the final results in the destination doubleword vector. Results are rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.108 VRADDHN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-557
Non-Confidential

C3.109 VRECPE
Vector Reciprocal Estimate.

Syntax

VRECPE{cond}.datatype Qd, Qm

VRECPE{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be either U32 or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VRECPE finds an approximate reciprocal of each element in a vector, and places the results in a second
vector.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-13 Results for out-of-range inputs in VRECPE

Operand element Result element

Integer <= 0x7FFFFFFF 0xFFFFFFFF

Floating-point NaN Default NaN

Negative 0, Negative Denormal Negative Infinity ao

Positive 0, Positive Denormal Positive Infinity ao

Positive infinity Positive 0

Negative infinity Negative 0

Related reference
C1.9 Condition code suffixes on page C1-142

ao The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

C3 Advanced SIMD Instructions (32-bit)
C3.109 VRECPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-558
Non-Confidential

C3.110 VRECPS
Vector Reciprocal Step.

Syntax

VRECPS{cond}.F32 {Qd}, Qn, Qm

VRECPS{cond}.F32 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRECPS multiplies the elements of one vector by the corresponding elements of another vector, subtracts
each of the results from 2, and places the final results into the elements of the destination vector.

The Newton-Raphson iteration:

xn+1 = xn (2–dxn)

converges to (1/d) if x0 is the result of VRECPE applied to d.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-14 Results for out-of-range inputs in VRECPS

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

± 0.0 or denormal ± infinity 2.0

± infinity ± 0.0 or denormal 2.0

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.110 VRECPS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-559
Non-Confidential

C3.111 VREV16, VREV32, and VREV64
Vector Reverse within halfwords, words, or doublewords.

Syntax

VREVn{cond}.size Qd, Qm

VREVn{cond}.size Dd, Dm

where:

n

must be one of 16, 32, or 64.

cond

is an optional condition code.

size

must be one of 8, 16, or 32, and must be less than n.

Qd, Qm

specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm

specifies the destination vector and the operand vector, for a doubleword operation.

Operation

VREV16 reverses the order of 8-bit elements within each halfword of the vector, and places the result in
the corresponding destination vector.

VREV32 reverses the order of 8-bit or 16-bit elements within each word of the vector, and places the result
in the corresponding destination vector.

VREV64 reverses the order of 8-bit, 16-bit, or 32-bit elements within each doubleword of the vector, and
places the result in the corresponding destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.111 VREV16, VREV32, and VREV64

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-560
Non-Confidential

C3.112 VRHADD
Vector Rounding Halving Add.

Syntax

VRHADD{cond}.datatype {Qd}, Qn, Qm

VRHADD{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRHADD adds corresponding elements in two vectors, shifts each result right one bit, and places the results
in the destination vector. Results are rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.112 VRHADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-561
Non-Confidential

C3.113 VRSHL (by signed variable)
Vector Rounding Shift Left by signed variable.

Syntax

VRSHL{cond}.datatype {Qd}, Qm, Qn

VRSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRSHL takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a rounding right shift.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.113 VRSHL (by signed variable)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-562
Non-Confidential

C3.114 VRSHR (by immediate)
Vector Rounding Shift Right by immediate value.

Syntax

VRSHR{cond}.datatype {Qd}, Qm, #imm

VRSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype)). The
ranges are shown in the following table:

Table C3-15 Available immediate ranges in VRSHR (by immediate)

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64

VRSHR with an immediate value of zero is a pseudo-instruction for VORR.

Operation

VRSHR takes each element in a vector, right shifts them by an immediate value, and places the results in
the destination vector. The results are rounded.

Related reference
C3.86 VORR (register) on page C3-535
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.114 VRSHR (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-563
Non-Confidential

C3.115 VRSHRN (by immediate)
Vector Rounding Shift Right, Narrow, by immediate value.

Syntax

VRSHRN{cond}.datatype Dd, Qm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size(datatype)/2). The
ranges are shown in the following table:

Table C3-16 Available immediate ranges in VRSHRN (by immediate)

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32

VRSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

Operation

VRSHRN takes each element in a quadword vector, right shifts them by an immediate value, and places the
results in a doubleword vector. The results are rounded.

Related reference
C3.73 VMOVN on page C3-522
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.115 VRSHRN (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-564
Non-Confidential

C3.116 VRINT
VRINT (Vector Round to Integer) rounds each floating-point element in a vector to integer, and places the
results in the destination vector.

The resulting integers are represented in floating-point format.
 Note

This instruction is supported only in Armv8.

Syntax

VRINTmode.F32.F32 Qd, Qm

VRINTmode.F32.F32 Dd, Dm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero. This cannot generate an Inexact
exception, even if the result is not exact.

N
meaning round to nearest, ties to even. This cannot generate an Inexact exception, even
if the result is not exact.

X
meaning round to nearest, ties to even, generating an Inexact exception if the result is
not exact.

P
meaning round towards plus infinity. This cannot generate an Inexact exception, even if
the result is not exact.

M
meaning round towards minus infinity. This cannot generate an Inexact exception, even
if the result is not exact.

Z
meaning round towards zero. This cannot generate an Inexact exception, even if the
result is not exact.

Qd, Qm
specifies the destination vector and the operand vector, for a quadword operation.

Dd, Dm
specifies the destination and operand vectors, for a doubleword operation.

Notes

You cannot use VRINT inside an IT block.

C3 Advanced SIMD Instructions (32-bit)
C3.116 VRINT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-565
Non-Confidential

C3.117 VRSQRTE
Vector Reciprocal Square Root Estimate.

Syntax

VRSQRTE{cond}.datatype Qd, Qm

VRSQRTE{cond}.datatype Dd, Dm

where:

cond

is an optional condition code.

datatype

must be either U32 or F32.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

Operation

VRSQRTE finds an approximate reciprocal square root of each element in a vector, and places the results in
a second vector.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-17 Results for out-of-range inputs in VRSQRTE

Operand element Result element

Integer <= 0x3FFFFFFF 0xFFFFFFFF

Floating-point NaN, Negative Normal, Negative Infinity Default NaN

Negative 0, Negative Denormal Negative Infinity ap

Positive 0, Positive Denormal Positive Infinity ap

Positive infinity Positive 0

Negative 0

Related reference
C1.9 Condition code suffixes on page C1-142

ap The Division by Zero exception bit in the FPSCR (FPSCR[1]) is set

C3 Advanced SIMD Instructions (32-bit)
C3.117 VRSQRTE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-566
Non-Confidential

C3.118 VRSQRTS
Vector Reciprocal Square Root Step.

Syntax

VRSQRTS{cond}.F32 {Qd}, Qn, Qm

VRSQRTS{cond}.F32 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VRSQRTS multiplies the elements of one vector by the corresponding elements of another vector, subtracts
each of the results from three, divides these results by two, and places the final results into the elements
of the destination vector.

The Newton-Raphson iteration:

xn+1 = xn (3–dxn2)/2

converges to (1/√d) if x0 is the result of VRSQRTE applied to d.

Results for out-of-range inputs

The following table shows the results where input values are out of range:

Table C3-18 Results for out-of-range inputs in VRSQRTS

1st operand element 2nd operand element Result element

NaN - Default NaN

- NaN Default NaN

± 0.0 or denormal ± infinity 1.5

± infinity ± 0.0 or denormal 1.5

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.118 VRSQRTS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-567
Non-Confidential

C3.119 VRSRA (by immediate)
Vector Rounding Shift Right by immediate value and Accumulate.

Syntax

VRSRA{cond}.datatype {Qd}, Qm, #imm

VRSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 1 to (size(datatype)). The
ranges are shown in the following table:

Table C3-19 Available immediate ranges in VRSRA (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64

Operation

VRSRA takes each element in a vector, right shifts them by an immediate value, and accumulates the
results into the destination vector. The results are rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.119 VRSRA (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-568
Non-Confidential

C3.120 VRSUBHN
Vector Rounding Subtract and Narrow, selecting High half.

Syntax

VRSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VRSUBHN subtracts the elements of one quadword vector from the corresponding elements of another
quadword vector, selects the most significant halves of the results, and places the final results in the
destination doubleword vector. Results are rounded.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.120 VRSUBHN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-569
Non-Confidential

C3.121 VSDOT (vector)
Dot Product vector form with signed integers.

Syntax

VSDOT{q}.S8 Dd, Dn, Dm ; 64-bit SIMD vector

VSDOT{q}.S8 Qd, Qn, Qm ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.121 VSDOT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-570
Non-Confidential

C3.122 VSDOT (by element)
Dot Product index form with signed integers.

Syntax

VSDOT{q}.S8 Dd, Dn, Dm[index] ; 64-bit SIMD vector

VSDOT{q}.S8 Qd, Qn, Dm[index] ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-
bit element in the second source register, accumulating the result into the corresponding 32-bit element
of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.122 VSDOT (by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-571
Non-Confidential

C3.123 VSHL (by immediate)
Vector Shift Left by immediate.

Syntax

VSHL{cond}.datatype {Qd}, Qm, #imm

VSHL{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, or I64.

Qd, Qm

are the destination and operand vectors, for a quadword operation.

Dd, Dm

are the destination and operand vectors, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-20 Available immediate ranges in VSHL (by immediate)

datatype imm range

I8 0 to 7

I16 0 to 15

I32 0 to 31

I64 0 to 63

Operation

VSHL takes each element in a vector of integers, left shifts them by an immediate value, and places the
results in the destination vector.

Bits shifted out of the left of each element are lost.

The following figure shows the operation of VSHL with two elements and a shift value of one. The least
significant bit in each element in the destination vector is set to zero.

Qd

Qm
Element 0

0

Element 1

0

... ...

Figure C3-6 Operation of quadword VSHL.I64 Qd, Qm, #1

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.123 VSHL (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-572
Non-Confidential

C3.124 VSHL (by signed variable)
Vector Shift Left by signed variable.

Syntax

VSHL{cond}.datatype {Qd}, Qm, Qn

VSHL{cond}.datatype {Dd}, Dm, Dn

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm, Qn

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Dd, Dm, Dn

are the destination vector, the first operand vector, and the second operand vector, for a
doubleword operation.

Operation

VSHL takes each element in a vector, shifts them by the value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift
value is positive, the operation is a left shift. Otherwise, it is a truncating right shift.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.124 VSHL (by signed variable)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-573
Non-Confidential

C3.125 VSHLL (by immediate)
Vector Shift Left Long.

Syntax

VSHLL{cond}.datatype Qd, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dm

are the destination and operand vectors, for a long operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-21 Available immediate ranges in VSHLL (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

0 is permitted, but the resulting code disassembles to VMOVL.

Operation

VSHLL takes each element in a vector of integers, left shifts them by an immediate value, and places the
results in the destination vector. Values are sign or zero extended.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.125 VSHLL (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-574
Non-Confidential

C3.126 VSHR (by immediate)
Vector Shift Right by immediate value.

Syntax

VSHR{cond}.datatype {Qd}, Qm, #imm

VSHR{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-22 Available immediate ranges in VSHR (by immediate)

datatype imm range

S8 or U8 0 to 8

S16 or U16 0 to 16

S32 or U32 0 to 32

S64 or U64 0 to 64

VSHR with an immediate value of zero is a pseudo-instruction for VORR.

Operation

VSHR takes each element in a vector, right shifts them by an immediate value, and places the results in the
destination vector. The results are truncated.

Related reference
C3.86 VORR (register) on page C3-535
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.126 VSHR (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-575
Non-Confidential

C3.127 VSHRN (by immediate)
Vector Shift Right, Narrow, by immediate value.

Syntax

VSHRN{cond}.datatype Dd, Qm, #imm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qm

are the destination vector and the operand vector.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-23 Available immediate ranges in VSHRN (by immediate)

datatype imm range

I16 0 to 8

I32 0 to 16

I64 0 to 32

VSHRN with an immediate value of zero is a pseudo-instruction for VMOVN.

Operation

VSHRN takes each element in a quadword vector, right shifts them by an immediate value, and places the
results in a doubleword vector. The results are truncated.

Related reference
C3.73 VMOVN on page C3-522
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.127 VSHRN (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-576
Non-Confidential

C3.128 VSLI
Vector Shift Left and Insert.

Syntax

VSLI{cond}.size {Qd}, Qm, #imm

VSLI{cond}.size {Dd}, Dm, #imm

where:

cond

is an optional condition code.

size

must be one of 8, 16, 32, or 64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 0 to (size – 1).

Operation

VSLI takes each element in a vector, left shifts them by an immediate value, and inserts the results in the
destination vector. Bits shifted out of the left of each element are lost. The following figure shows the
operation of VSLI with two elements and a shift value of one. The least significant bit in each element in
the destination vector is unchanged.

Qd

Qm
Element 0Element 1

... ...

Unchanged
bit

Unchanged
bit

Figure C3-7 Operation of quadword VSLI.64 Qd, Qm, #1

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.128 VSLI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-577
Non-Confidential

C3.129 VSRA (by immediate)
Vector Shift Right by immediate value and Accumulate.

Syntax

VSRA{cond}.datatype {Qd}, Qm, #imm

VSRA{cond}.datatype {Dd}, Dm, #imm

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, S64, U8, U16, U32, or U64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift. The ranges are shown in the following
table:

Table C3-24 Available immediate ranges in VSRA (by immediate)

datatype imm range

S8 or U8 1 to 8

S16 or U16 1 to 16

S32 or U32 1 to 32

S64 or U64 1 to 64

Operation

VSRA takes each element in a vector, right shifts them by an immediate value, and accumulates the results
into the destination vector. The results are truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.129 VSRA (by immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-578
Non-Confidential

C3.130 VSRI
Vector Shift Right and Insert.

Syntax

VSRI{cond}.size {Qd}, Qm, #imm

VSRI{cond}.size {Dd}, Dm, #imm

where:

cond

is an optional condition code.

size

must be one of 8, 16, 32, or 64.

Qd, Qm

are the destination vector and the operand vector, for a quadword operation.

Dd, Dm

are the destination vector and the operand vector, for a doubleword operation.

imm

is the immediate value specifying the size of the shift, in the range 1 to size.

Operation

VSRI takes each element in a vector, right shifts them by an immediate value, and inserts the results in the
destination vector. Bits shifted out of the right of each element are lost. The following figure shows the
operation of VSRI with a single element and a shift value of two. The two most significant bits in the
destination vector are unchanged.

Dd

Dm
Element 0

... ...

Unchanged
bits

Figure C3-8 Operation of doubleword VSRI.64 Dd, Dm, #2

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.130 VSRI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-579
Non-Confidential

C3.131 VSTM
Extension register store multiple.

Syntax

VSTMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as IA for stores.

FD

meaning Full Descending stack operation. This is the same as DB for stores.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify D or Q registers, but they must not be mixed. The number of registers must not
exceed 16 D registers, or 8 Q registers. If Q registers are specified, on disassembly they are shown
as D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related reference
C1.9 Condition code suffixes on page C1-142
C4.38 VSTM (floating-point) on page C4-639

C3 Advanced SIMD Instructions (32-bit)
C3.131 VSTM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-580
Non-Confidential

C3.132 VSTn (multiple n-element structures)
Vector Store multiple n-element structures.

Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table for options.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the stores have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VSTn stores multiple n-element structures to memory from one or more Advanced SIMD registers, with
interleaving (unless n == 1). Every element of each register is stored.

Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures)

n datatype list aq align ar alignment

1 8, 16, 32, or 64 {Dd} @64 8-byte

{Dd, D(d+1)} @64 or @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

aq Every register in the list must be in the range D0-D31.
ar align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.132 VSTn (multiple n-element structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-581
Non-Confidential

Table C3-25 Permitted combinations of parameters for VSTn (multiple n-element structures) (continued)

n datatype list aq align ar alignment

2 8, 16, or 32 {Dd, D(d+1)} @64, @128 8-byte or 16-byte

{Dd, D(d+2)} @64, @128 8-byte or 16-byte

{Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

3 8, 16, or 32 {Dd, D(d+1), D(d+2)} @64 8-byte

{Dd, D(d+2), D(d+4)} @64 8-byte

4 8, 16, or 32 {Dd, D(d+1), D(d+2), D(d+3)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

{Dd, D(d+2), D(d+4), D(d+6)} @64, @128, or @256 8-byte, 16-byte, or 32-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-450
Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.132 VSTn (multiple n-element structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-582
Non-Confidential

C3.133 VSTn (single n-element structure to one lane)
Vector Store single n-element structure to one lane.

Syntax

VSTn{cond}.datatype list, [Rn{@align}]{!}

VSTn{cond}.datatype list, [Rn{@align}], Rm

where:

n

must be one of 1, 2, 3, or 4.

cond

is an optional condition code.

datatype

see the following table.

list

is the list of Advanced SIMD registers enclosed in braces, { and }. See the following table for
options.

Rn

is the general-purpose register containing the base address. Rn cannot be PC.

align

specifies an optional alignment. See the following table for options.

!

if ! is present, Rn is updated to (Rn + the number of bytes transferred by the instruction). The
update occurs after all the stores have taken place.

Rm

is a general-purpose register containing an offset from the base address. If Rm is present, the
instruction updates Rn to (Rn + Rm) after using the address to access memory. Rm cannot be SP or
PC.

Operation

VSTn stores one n-element structure into memory from one or more Advanced SIMD registers.

Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane)

n datatype list as align at alignment

1 8 {Dd[x]} - Standard only

16 {Dd[x]} @16 2-byte

32 {Dd[x]} @32 4-byte

2 8 {Dd[x], D(d+1)[x]} @16 2-byte

16 {Dd[x], D(d+1)[x]} @32 4-byte

as Every register in the list must be in the range D0-D31.
at align can be omitted. In this case, standard alignment rules apply.

C3 Advanced SIMD Instructions (32-bit)
C3.133 VSTn (single n-element structure to one lane)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-583
Non-Confidential

Table C3-26 Permitted combinations of parameters for VSTn (single n-element structure to one lane) (continued)

n datatype list as align at alignment

{Dd[x], D(d+2)[x]} @32 4-byte

32 {Dd[x], D(d+1)[x]} @64 8-byte

{Dd[x], D(d+2)[x]} @64 8-byte

3 8 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

16 or 32 {Dd[x], D(d+1)[x], D(d+2)[x]} - Standard only

{Dd[x], D(d+2)[x], D(d+4)[x]} - Standard only

4 8 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @32 4-byte

16 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 8-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 8-byte

32 {Dd[x], D(d+1)[x], D(d+2)[x], D(d+3)[x]} @64 or @128 8-byte or 16-byte

{Dd[x], D(d+2)[x], D(d+4)[x], D(d+6)[x]} @64 or @128 8-byte or 16-byte

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
C3.4 Alignment restrictions in load and store element and structure instructions on page C3-450
Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.133 VSTn (single n-element structure to one lane)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-584
Non-Confidential

C3.134 VSTR
Extension register store.

Syntax

VSTR{cond}{.64} Dd, [Rn{, #offset}]

where:

cond

is an optional condition code.

Dd

is the extension register to be saved.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

Operation

The VSTR instruction saves the contents of an extension register to memory.

Two words are transferred.

Related reference
C1.9 Condition code suffixes on page C1-142
C4.39 VSTR (floating-point) on page C4-640

C3 Advanced SIMD Instructions (32-bit)
C3.134 VSTR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-585
Non-Confidential

C3.135 VSTR (post-increment and pre-decrement)
Pseudo-instruction that stores extension registers with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VSTR{cond}{.64} Dd, [Rn], #offset ; post-increment

VSTR{cond}{.64} Dd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

Dd

is the extension register to be saved.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to 8 at assembly time.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VSTM instruction.

Related reference
C3.134 VSTR on page C3-585
C3.131 VSTM on page C3-580
C1.9 Condition code suffixes on page C1-142
C4.40 VSTR (post-increment and pre-decrement, floating-point) on page C4-641

C3 Advanced SIMD Instructions (32-bit)
C3.135 VSTR (post-increment and pre-decrement)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-586
Non-Confidential

C3.136 VSUB
Vector Subtract.

Syntax

VSUB{cond}.datatype {Qd}, Qn, Qm

VSUB{cond}.datatype {Dd}, Dn, Dm

where:

cond

is an optional condition code.

datatype

must be one of I8, I16, I32, I64, or F32.

Qd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector, for a
quadword operation.

Operation

VSUB subtracts the elements of one vector from the corresponding elements of another vector, and places
the results in the destination vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.136 VSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-587
Non-Confidential

C3.137 VSUBHN
Vector Subtract and Narrow, selecting High half.

Syntax

VSUBHN{cond}.datatype Dd, Qn, Qm

where:

cond

is an optional condition code.

datatype

must be one of I16, I32, or I64.

Dd, Qn, Qm

are the destination vector, the first operand vector, and the second operand vector.

Operation

VSUBHN subtracts the elements of one quadword vector from the corresponding elements of another
quadword vector, selects the most significant halves of the results, and places the final results in the
destination doubleword vector. Results are truncated.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.137 VSUBHN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-588
Non-Confidential

C3.138 VSUBL and VSUBW
Vector Subtract Long, Vector Subtract Wide.

Syntax

VSUBL{cond}.datatype Qd, Dn, Dm ; Long operation

VSUBW{cond}.datatype {Qd}, Qn, Dm ; Wide operation

where:

cond

is an optional condition code.

datatype

must be one of S8, S16, S32, U8, U16, or U32.

Qd, Dn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a long
operation.

Qd, Qn, Dm

are the destination vector, the first operand vector, and the second operand vector, for a wide
operation.

Operation

VSUBL subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in the destination quadword vector.

VSUBW subtracts the elements of a doubleword vector from the corresponding elements of a quadword
vector, and places the results in the destination quadword vector.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.138 VSUBL and VSUBW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-589
Non-Confidential

C3.139 VSWP
Vector Swap.

Syntax

VSWP{cond}{.datatype} Qd, Qm

VSWP{cond}{.datatype} Dd, Dm

where:

cond

is an optional condition code.

datatype

is an optional datatype. The assembler ignores datatype.

Qd, Qm

specifies the vectors for a quadword operation.

Dd, Dm

specifies the vectors for a doubleword operation.

Operation

VSWP exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is
no distinction between data types.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.139 VSWP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-590
Non-Confidential

C3.140 VTBL and VTBX
Vector Table Lookup, Vector Table Extension.

Syntax

Vop{cond}.8 Dd, list, Dm

where:

op

must be either TBL or TBX.

cond

is an optional condition code.

Dd

specifies the destination vector.

list
Specifies the vectors containing the table. It must be one of:
• {Dn}.
• {Dn,D(n+1)}.
• {Dn,D(n+1),D(n+2)}.
• {Dn,D(n+1),D(n+2),D(n+3)}.
• {Qn,Q(n+1)}.

All the registers in list must be in the range D0-D31 or Q0-Q15 and must not wrap around the
end of the register bank. For example {D31,D0,D1} is not permitted. If list contains Q registers,
they disassemble to the equivalent D registers.

Dm

specifies the index vector.

Operation

VTBL uses byte indexes in a control vector to look up byte values in a table and generate a new vector.
Indexes out of range return zero.

VTBX works in the same way, except that indexes out of range leave the destination element unchanged.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.140 VTBL and VTBX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-591
Non-Confidential

C3.141 VTRN
Vector Transpose.

Syntax

VTRN{cond}.size Qd, Qm

VTRN{cond}.size Dd, Dm

where:

cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qm

specifies the vectors, for a quadword operation.

Dd, Dm

specifies the vectors, for a doubleword operation.

Operation

VTRN treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.
The following figures show examples of the operation of VTRN:

Dd

Dm
017 6 5 4 3 2

Figure C3-9 Operation of doubleword VTRN.8

Dd

Dm
01

Figure C3-10 Operation of doubleword VTRN.32

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.141 VTRN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-592
Non-Confidential

C3.142 VTST
Vector Test bits.

Syntax

VTST{cond}.size {Qd}, Qn, Qm

VTST{cond}.size {Dd}, Dn, Dm

where:

cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qn, Qm

specifies the destination register, the first operand register, and the second operand register, for a
quadword operation.

Dd, Dn, Dm

specifies the destination register, the first operand register, and the second operand register, for a
doubleword operation.

Operation

VTST takes each element in a vector, and bitwise logical ANDs them with the corresponding element of a
second vector. If the result is not zero, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.

Related reference
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.142 VTST

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-593
Non-Confidential

C3.143 VUDOT (vector)
Dot Product vector form with unsigned integers.

Syntax

VUDOT{q}.U8 Dd, Dn, Dm ; 64-bit SIMD vector

VUDOT{q}.U8 Qd, Qn, Qm ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Qm
Is the 128-bit name of the second SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-
bit elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.143 VUDOT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-594
Non-Confidential

C3.144 VUDOT (by element)
Dot Product index form with unsigned integers.

Syntax

VUDOT{q}.U8 Dd, Dn, Dm[index] ; 64-bit SIMD vector

VUDOT{q}.U8 Qd, Qn, Dm[index] ; A1 128-bit SIMD vector FP/SIMD registers (A32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

index
Is the element index in the range 0 to 1.

Qd
Is the 128-bit name of the SIMD and FP destination register.

Qn
Is the 128-bit name of the first SIMD and FP source register.

Architectures supported

Supported in Armv8.2 and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage
Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-
bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed
32-bit element in the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.

 Note

ID_ISAR6.DP indicates whether this instruction is supported in the T32 and A32 instruction sets.

Related reference
C3.1 Summary of Advanced SIMD instructions on page C3-445

C3 Advanced SIMD Instructions (32-bit)
C3.144 VUDOT (by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-595
Non-Confidential

C3.145 VUZP
Vector Unzip.

Syntax

VUZP{cond}.size Qd, Qm

VUZP{cond}.size Dd, Dm

where:
cond

is an optional condition code.
size

must be one of 8, 16, or 32.
Qd, Qm

specifies the vectors, for a quadword operation.
Dd, Dm

specifies the vectors, for a doubleword operation.
 Note

The following are all the same instruction:
• VZIP.32 Dd, Dm.
• VUZP.32 Dd, Dm.
• VTRN.32 Dd, Dm.

The instruction is disassembled as VTRN.32 Dd, Dm.

Operation

VUZP de-interleaves the elements of two vectors.

De-interleaving is the inverse process of interleaving.

Table C3-27 Operation of doubleword VUZP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1

Table C3-28 Operation of quadword VUZP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B2 B0 A2 A0

Qm B3 B2 B1 B0 B3 B1 A3 A1

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C3.141 VTRN on page C3-592
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.145 VUZP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-596
Non-Confidential

C3.146 VZIP
Vector Zip.

Syntax

VZIP{cond}.size Qd, Qm

VZIP{cond}.size Dd, Dm

where:
cond

is an optional condition code.

size

must be one of 8, 16, or 32.

Qd, Qm

specifies the vectors, for a quadword operation.

Dd, Dm

specifies the vectors, for a doubleword operation.

 Note

The following are all the same instruction:
• VZIP.32 Dd, Dm.
• VUZP.32 Dd, Dm.
• VTRN.32 Dd, Dm.

The instruction is disassembled as VTRN.32 Dd, Dm.

Operation

VZIP interleaves the elements of two vectors.

Table C3-29 Operation of doubleword VZIP.8

Register state before operation Register state after operation

Dd A7 A6 A5 A4 A3 A2 A1 A0 B3 A3 B2 A2 B1 A1 B0 A0

Dm B7 B6 B5 B4 B3 B2 B1 B0 B7 A7 B6 A6 B5 A5 B4 A4

Table C3-30 Operation of quadword VZIP.32

Register state before operation Register state after operation

Qd A3 A2 A1 A0 B1 A1 B0 A0

Qm B3 B2 B1 B0 B3 A3 B2 A2

Related concepts
C3.3 Interleaving provided by load and store element and structure instructions on page C3-449
Related reference
C3.141 VTRN on page C3-592
C1.9 Condition code suffixes on page C1-142

C3 Advanced SIMD Instructions (32-bit)
C3.146 VZIP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-597
Non-Confidential

C3 Advanced SIMD Instructions (32-bit)
C3.146 VZIP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C3-598
Non-Confidential

Chapter C4
Floating-point Instructions (32-bit)

Describes floating-point assembly language instructions.

It contains the following sections:
• C4.1 Summary of floating-point instructions on page C4-601.
• C4.2 VABS (floating-point) on page C4-603.
• C4.3 VADD (floating-point) on page C4-604.
• C4.4 VCMP, VCMPE on page C4-605.
• C4.5 VCVT (between single-precision and double-precision) on page C4-606.
• C4.6 VCVT (between floating-point and integer) on page C4-607.
• C4.7 VCVT (from floating-point to integer with directed rounding modes) on page C4-608.
• C4.8 VCVT (between floating-point and fixed-point) on page C4-609.
• C4.9 VCVTB, VCVTT (half-precision extension) on page C4-610.
• C4.10 VCVTB, VCVTT (between half-precision and double-precision) on page C4-611.
• C4.11 VDIV on page C4-612.
• C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point) on page C4-613.
• C4.13 VJCVT on page C4-614.
• C4.14 VLDM (floating-point) on page C4-615.
• C4.15 VLDR (floating-point) on page C4-616.
• C4.16 VLDR (post-increment and pre-decrement, floating-point) on page C4-617.
• C4.17 VLLDM on page C4-618.
• C4.18 VLSTM on page C4-619.
• C4.19 VMAXNM, VMINNM (floating-point) on page C4-620.
• C4.20 VMLA (floating-point) on page C4-621.
• C4.21 VMLS (floating-point) on page C4-622.
• C4.22 VMOV (floating-point) on page C4-623.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-599
Non-Confidential

• C4.23 VMOV (between one general-purpose register and single precision floating-point register)
on page C4-624.

• C4.24 VMOV (between two general-purpose registers and one or two extension registers)
on page C4-625.

• C4.25 VMOV (between a general-purpose register and half a double precision floating-point
register) on page C4-626.

• C4.26 VMRS (floating-point) on page C4-627.
• C4.27 VMSR (floating-point) on page C4-628.
• C4.28 VMUL (floating-point) on page C4-629.
• C4.29 VNEG (floating-point) on page C4-630.
• C4.30 VNMLA (floating-point) on page C4-631.
• C4.31 VNMLS (floating-point) on page C4-632.
• C4.32 VNMUL (floating-point) on page C4-633.
• C4.33 VPOP (floating-point) on page C4-634.
• C4.34 VPUSH (floating-point) on page C4-635.
• C4.35 VRINT (floating-point) on page C4-636.
• C4.36 VSEL on page C4-637.
• C4.37 VSQRT on page C4-638.
• C4.38 VSTM (floating-point) on page C4-639.
• C4.39 VSTR (floating-point) on page C4-640.
• C4.40 VSTR (post-increment and pre-decrement, floating-point) on page C4-641.
• C4.41 VSUB (floating-point) on page C4-642.

C4 Floating-point Instructions (32-bit)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-600
Non-Confidential

C4.1 Summary of floating-point instructions
A summary of the floating-point instructions. Not all of these instructions are available in all floating-
point versions.

The following table shows a summary of floating-point instructions that are not available in Advanced
SIMD.

 Note

Floating-point vector mode is not supported in Armv8. Use Advanced SIMD instructions for vector
floating-point.

Table C4-1 Summary of floating-point instructions

Mnemonic Brief description

VABS Absolute value

VADD Add

VCMP, VCMPE Compare

VCVT Convert between single-precision and double-precision

Convert between floating-point and integer

Convert between floating-point and fixed-point

Convert floating-point to integer with directed rounding modes

VCVTB, VCVTT Convert between half-precision and single-precision floating-point

Convert between half-precision and double-precision

VDIV Divide

VFMA, VFMS Fused multiply accumulate, Fused multiply subtract

VFNMA, VFNMS Fused multiply accumulate with negation, Fused multiply subtract with negation

VJCVT Javascript Convert to signed fixed-point, rounding toward Zero

VLDM Extension register load multiple

VLDR Extension register load

VLLDM Floating-point Lazy Load Multiple

VLSTM Floating-point Lazy Store Multiple

VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008

VMLA Multiply accumulate

VMLS Multiply subtract

VMOV Insert floating-point immediate in single-precision or double-precision register, or copy one FP register into
another FP register of the same width

VMRS Transfer contents from a floating-point system register to a general-purpose register

VMSR Transfer contents from a general-purpose register to a floating-point system register

VMUL Multiply

VNEG Negate

C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-601
Non-Confidential

Table C4-1 Summary of floating-point instructions (continued)

Mnemonic Brief description

VNMLA Negated multiply accumulate

VNMLS Negated multiply subtract

VNMUL Negated multiply

VPOP Extension register load multiple

VPUSH Extension register store multiple

VRINT Round to integer

VSEL Select

VSQRT Square Root

VSTM Extension register store multiple

VSTR Extension register store

VSUB Subtract

C4 Floating-point Instructions (32-bit)
C4.1 Summary of floating-point instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-602
Non-Confidential

C4.2 VABS (floating-point)
Floating-point absolute value.

Syntax

VABS{cond}.F32 Sd, Sm

VABS{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VABS instruction takes the contents of Sm or Dm, clears the sign bit, and places the result in Sd or Dd.
This gives the absolute value.

If the operand is a NaN, the sign bit is cleared, but no exception is produced.

Floating-point exceptions

VABS instructions do not produce any exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.2 VABS (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-603
Non-Confidential

C4.3 VADD (floating-point)
Floating-point add.

Syntax

VADD{cond}.F32 {Sd}, Sn, Sm

VADD{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VADD instruction adds the values in the operand registers and places the result in the destination
register.

Floating-point exceptions

The VADD instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.3 VADD (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-604
Non-Confidential

C4.4 VCMP, VCMPE
Floating-point compare.

Syntax

VCMP{E}{cond}.F32 Sd, Sm

VCMP{E}{cond}.F32 Sd, #0

VCMP{E}{cond}.F64 Dd, Dm

VCMP{E}{cond}.F64 Dd, #0

where:

E

if present, indicates that the instruction raises an Invalid Operation exception if either operand is
a quiet or signaling NaN. Otherwise, it raises the exception only if either operand is a signaling
NaN.

cond

is an optional condition code.

Sd, Sm

are the single-precision registers holding the operands.

Dd, Dm

are the double-precision registers holding the operands.

Operation

The VCMP{E} instruction subtracts the value in the second operand register (or 0 if the second operand is
#0) from the value in the first operand register, and sets the VFP condition flags based on the result.

Floating-point exceptions

VCMP{E} instructions can produce Invalid Operation exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.4 VCMP, VCMPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-605
Non-Confidential

C4.5 VCVT (between single-precision and double-precision)
Convert between single-precision and double-precision numbers.

Syntax

VCVT{cond}.F64.F32 Dd, Sm

VCVT{cond}.F32.F64 Sd, Dm

where:

cond

is an optional condition code.

Dd

is a double-precision register for the result.

Sm

is a single-precision register holding the operand.

Sd

is a single-precision register for the result.

Dm

is a double-precision register holding the operand.

Operation

These instructions convert the single-precision value in Sm to double-precision, placing the result in Dd,
or the double-precision value in Dm to single-precision, placing the result in Sd.

Floating-point exceptions

These instructions can produce Invalid Operation, Input Denormal, Overflow, Underflow, or Inexact
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.5 VCVT (between single-precision and double-precision)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-606
Non-Confidential

C4.6 VCVT (between floating-point and integer)
Convert between floating-point numbers and integers.

Syntax

VCVT{R}{cond}.type.F64 Sd, Dm

VCVT{R}{cond}.type.F32 Sd, Sm

VCVT{cond}.F64.type Dd, Sm

VCVT{cond}.F32.type Sd, Sm

where:

R

makes the operation use the rounding mode specified by the FPSCR. Otherwise, the operation
rounds towards zero.

cond

is an optional condition code.

type

can be either U32 (unsigned 32-bit integer) or S32 (signed 32-bit integer).

Sd

is a single-precision register for the result.

Dd

is a double-precision register for the result.

Sm

is a single-precision register holding the operand.

Dm

is a double-precision register holding the operand.

Operation

The first two forms of this instruction convert from floating-point to integer.

The third and fourth forms convert from integer to floating-point.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.6 VCVT (between floating-point and integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-607
Non-Confidential

C4.7 VCVT (from floating-point to integer with directed rounding modes)
Convert from floating-point to signed or unsigned integer with directed rounding modes.

 Note

This instruction is supported only in Armv8.

Syntax

VCVTmode.S32.F64 Sd, Dm

VCVTmode.S32.F32 Sd, Sm

VCVTmode.U32.F64 Sd, Dm

VCVTmode.U32.F32 Sd, Sm

where:

mode

must be one of:

A

meaning round to nearest, ties away from zero

N
meaning round to nearest, ties to even

P
meaning round towards plus infinity

M
meaning round towards minus infinity.

Sd, Sm
specifies the single-precision registers for the operand and result.

Sd, Dm
specifies a single-precision register for the result and double-precision register holding the
operand.

Notes

You cannot use VCVT with a directed rounding mode inside an IT block.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

C4 Floating-point Instructions (32-bit)
C4.7 VCVT (from floating-point to integer with directed rounding modes)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-608
Non-Confidential

C4.8 VCVT (between floating-point and fixed-point)
Convert between floating-point and fixed-point numbers.

Syntax

VCVT{cond}.type.F64 Dd, Dd, #fbits

VCVT{cond}.type.F32 Sd, Sd, #fbits

VCVT{cond}.F64.type Dd, Dd, #fbits

VCVT{cond}.F32.type Sd, Sd, #fbits

where:

cond

is an optional condition code.

type

can be any one of:

S16

16-bit signed fixed-point number.

U16

16-bit unsigned fixed-point number.

S32

32-bit signed fixed-point number.

U32

32-bit unsigned fixed-point number.

Sd

is a single-precision register for the operand and result.

Dd

is a double-precision register for the operand and result.

fbits

is the number of fraction bits in the fixed-point number, in the range 0-16 if type is S16 or U16,
or in the range 1-32 if type is S32 or U32.

Operation

The first two forms of this instruction convert from floating-point to fixed-point.

The third and fourth forms convert from fixed-point to floating-point.

In all cases the fixed-point number is contained in the least significant 16 or 32 bits of the register.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, or Inexact exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.8 VCVT (between floating-point and fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-609
Non-Confidential

C4.9 VCVTB, VCVTT (half-precision extension)
Convert between half-precision and single-precision floating-point numbers.

Syntax

VCVTB{cond}.type Sd, Sm

VCVTT{cond}.type Sd, Sm

where:

cond

is an optional condition code.

type

can be any one of:

F32.F16

Convert from half-precision to single-precision.

F16.F32

Convert from single-precision to half-precision.

Sd

is a single word register for the result.

Sm

is a single word register for the operand.

Operation

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

Architectures

The instructions are only available in VFPv3 systems with the half-precision extension, and VFPv4.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.9 VCVTB, VCVTT (half-precision extension)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-610
Non-Confidential

C4.10 VCVTB, VCVTT (between half-precision and double-precision)
These instructions convert between half-precision and double-precision floating-point numbers.

The conversion can be done in either of the following ways:

• From half-precision floating-point to double-precision floating-point (F64.F16).
• From double-precision floating-point to half-precision floating-point (F16.F64).

VCVTB uses the bottom half (bits[15:0]) of the single word register to obtain or store the half-precision
value.

VCVTT uses the top half (bits[31:16]) of the single word register to obtain or store the half-precision
value.

 Note

These instructions are supported only in Armv8.

Syntax

VCVTB{cond}.F64.F16 Dd, Sm

VCVTB{cond}.F16.F64 Sd, Dm

VCVTT{cond}.F64.F16 Dd, Sm

VCVTT{cond}.F16.F64 Sd, Dm

where:

cond
is an optional condition code.

Dd
is a double-precision register for the result.

Sm
is a single word register holding the operand.

Sd
is a single word register for the result.

Dm
is a double-precision register holding the operand.

Usage

These instructions convert the half-precision value in Sm to double-precision and place the result in Dd, or
the double-precision value in Dm to half-precision and place the result in Sd.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C4 Floating-point Instructions (32-bit)
C4.10 VCVTB, VCVTT (between half-precision and double-precision)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-611
Non-Confidential

C4.11 VDIV
Floating-point divide.

Syntax

VDIV{cond}.F32 {Sd}, Sn, Sm

VDIV{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VDIV instruction divides the value in the first operand register by the value in the second operand
register, and places the result in the destination register.

Floating-point exceptions

VDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.11 VDIV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-612
Non-Confidential

C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point)
Fused floating-point multiply accumulate and fused floating-point multiply subtract, with optional
negation.

Syntax

VF{N}op{cond}.F64 {Dd}, Dn, Dm

VF{N}op{cond}.F32 {Sd}, Sn, Sm

where:

op

is one of MA or MS.

N

negates the final result.

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

VFMA multiplies the values in the operand registers, adds the value in the destination register, and places
the final result in the destination register. The result of the multiply is not rounded before the
accumulation.

VFMS multiplies the values in the operand registers, subtracts the product from the value in the destination
register, and places the final result in the destination register. The result of the multiply is not rounded
before the subtraction.

In each case, the final result is negated if the N option is used.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Related reference
C4.28 VMUL (floating-point) on page C4-629
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.12 VFMA, VFMS, VFNMA, VFNMS (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-613
Non-Confidential

C4.13 VJCVT
Javascript Convert to signed fixed-point, rounding toward Zero.

Syntax

VJCVT{q}.S32.F64 Sd, Dm ; A1 FP/SIMD registers (A32)

VJCVT{q}.S32.F64 Sd, Dm ; T1 FP/SIMD registers (T32)

Where:

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dm
Is the 64-bit name of the SIMD and FP source register.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-
precision floating-point value in the SIMD and FP source register to a 32-bit signed integer using the
Round towards Zero rounding mode, and write the result to the general-purpose destination register. If
the result is too large to be held as a 32-bit signed integer, then the result is the integer modulo 232, as
held in a 32-bit signed integer.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the security state and
mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or
trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
C4.1 Summary of floating-point instructions on page C4-601

C4 Floating-point Instructions (32-bit)
C4.13 VJCVT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-614
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

C4.14 VLDM (floating-point)
Extension register load multiple.

Syntax

VLDMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as DB for loads.

FD

meaning Full Descending stack operation. This is the same as IA for loads.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.14 VLDM (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-615
Non-Confidential

C4.15 VLDR (floating-point)
Extension register load.

Syntax

VLDR{cond}{.size} Fd, [Rn{, #offset}]

VLDR{cond}{.size} Fd, label

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd

is the extension register to be loaded, and can be either a D or S register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

label

is a PC-relative expression.

label must be aligned on a word boundary within ±1KB of the current instruction.

Operation

The VLDR instruction loads an extension register from memory.

One word is transferred if Fd is an S register. Two words are transferred otherwise.

There is also a VLDR pseudo-instruction.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.15 VLDR (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-616
Non-Confidential

C4.16 VLDR (post-increment and pre-decrement, floating-point)
Pseudo-instruction that loads extension registers, with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VLDR{cond}{.size} Fd, [Rn], #offset ; post-increment

VLDR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a D register.

Fd

is the extension register to load. It can be either a double precision (Dd) or a single precision (Sd)
register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to a numeric value at assembly time. The value must
be 4 if Fd is an S register, or 8 if Fd is a D register.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VLDM instruction.

Related reference
C4.14 VLDM (floating-point) on page C4-615
C4.15 VLDR (floating-point) on page C4-616
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.16 VLDR (post-increment and pre-decrement, floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-617
Non-Confidential

C4.17 VLLDM
Floating-point Lazy Load Multiple.

Syntax

VLLDM{c}{q} Rn

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Rn
Is the general-purpose base register.

Architectures supported

Supported in Armv8‑M Main extension only.

Usage

Floating-point Lazy Load Multiple restores the contents of the Secure floating-point registers that were
protected by a VLSTM instruction, and marks the floating-point context as active.

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1),
this instruction deactivates lazy state preservation and enables access to the Secure floating-point
registers.

If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state preservation was
not enabled (FPCCR.LSPEN == 0) or because a floating-point instruction caused the Secure floating-
point register contents to be stored to memory, this instruction loads the stored Secure floating-point
register contents back into the floating-point registers.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Related reference
C4.1 Summary of floating-point instructions on page C4-601

C4 Floating-point Instructions (32-bit)
C4.17 VLLDM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-618
Non-Confidential

C4.18 VLSTM
Floating-point Lazy Store Multiple.

Syntax

VLSTM{c}{q} Rn

Where:

c
Is an optional condition code. See Chapter C1 Condition Codes on page C1-133.

q
Is an optional instruction width specifier. See C2.2 Instruction width specifiers on page C2-161.

Rn
Is the general-purpose base register.

Architectures supported

Supported in Armv8‑M Main extension only.

Usage

Floating-point Lazy Store Multiple stores the contents of Secure floating-point registers to a prepared
stack frame, and clears the Secure floating-point registers.

If floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a floating-point
instruction other than VLSTM or VLLDM is executed:
• The contents of Secure floating-point registers are stored to memory.
• The Secure floating-point registers are cleared.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Related reference
C4.1 Summary of floating-point instructions on page C4-601

C4 Floating-point Instructions (32-bit)
C4.18 VLSTM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-619
Non-Confidential

C4.19 VMAXNM, VMINNM (floating-point)
Vector Minimum, Vector Maximum.

 Note

These instructions are supported only in Armv8.

Syntax

Vop.F32 Sd, Sn, Sm

Vop.F64 Dd, Dn, Dm

where:

op
must be either MAXNM or MINNM.

Sd, Sn, Sm
are the single-precision destination register, first operand register, and second operand register.

Dd, Dn, Dm
are the double-precision destination register, first operand register, and second operand register.

Operation

VMAXNM compares the values in the operand registers, and copies the larger value into the destination
operand register.

VMINNM compares the values in the operand registers, and copies the smaller value into the destination
operand register.

If one of the values being compared is a number and the other value is NaN, the number is copied into
the destination operand register. This is consistent with the IEEE 754-2008 standard.

Notes

You cannot use VMAXNM or VMINNM inside an IT block.

Floating-point exceptions

These instructions can produce Input Denormal, Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

C4 Floating-point Instructions (32-bit)
C4.19 VMAXNM, VMINNM (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-620
Non-Confidential

C4.20 VMLA (floating-point)
Floating-point multiply accumulate.

Syntax

VMLA{cond}.F32 Sd, Sn, Sm

VMLA{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMLA instruction multiplies the values in the operand registers, adds the value in the destination
register, and places the final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.20 VMLA (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-621
Non-Confidential

C4.21 VMLS (floating-point)
Floating-point multiply subtract.

Syntax

VMLS{cond}.F32 Sd, Sn, Sm

VMLS{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMLS instruction multiplies the values in the operand registers, subtracts the result from the value in
the destination register, and places the final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.21 VMLS (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-622
Non-Confidential

C4.22 VMOV (floating-point)
Insert a floating-point immediate value into a single-precision or double-precision register, or copy one
register into another register. This instruction is always scalar.

Syntax

VMOV{cond}.F32 Sd, #imm

VMOV{cond}.F64 Dd, #imm

VMOV{cond}.F32 Sd, Sm

VMOV{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd

is the single-precision destination register.

Dd

is the double-precision destination register.

imm

is the floating-point immediate value.

Sm

is the single-precision source register.

Dm

is the double-precision source register.

Immediate values

Any number that can be expressed as ±n * 2–r,where n and r are integers, 16 <= n <= 31, 0 <= r <= 7.

Architectures

The instructions that copy immediate constants are available in VFPv3 and above.

The instructions that copy from registers are available in all VFP systems.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.22 VMOV (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-623
Non-Confidential

C4.23 VMOV (between one general-purpose register and single precision floating-
point register)

Transfer contents between a single-precision floating-point register and a general-purpose register.

Syntax

VMOV{cond} Rd, Sn

VMOV{cond} Sn, Rd

where:

cond

is an optional condition code.

Sn

is the floating-point single-precision register.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Rd, Sn transfers the contents of Sn into Rd.

VMOV Sn, Rd transfers the contents of Rd into Sn.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.23 VMOV (between one general-purpose register and single precision floating-point register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-624
Non-Confidential

C4.24 VMOV (between two general-purpose registers and one or two extension
registers)

Transfer contents between two general-purpose registers and either one 64-bit register or two consecutive
32-bit registers.

Syntax

VMOV{cond} Dm, Rd, Rn

VMOV{cond} Rd, Rn, Dm

VMOV{cond} Sm, Sm1, Rd, Rn

VMOV{cond} Rd, Rn, Sm, Sm1

where:

cond

is an optional condition code.

Dm

is a 64-bit extension register.

Sm

is a VFP 32-bit register.

Sm1

is the next consecutive VFP 32-bit register after Sm.

Rd, Rn

are the general-purpose registers. Rd and Rn must not be PC.

Operation

VMOV Dm, Rd, Rn transfers the contents of Rd into the low half of Dm, and the contents of Rn into the
high half of Dm.

VMOV Rd, Rn, Dm transfers the contents of the low half of Dm into Rd, and the contents of the high half of
Dm into Rn.

VMOV Rd, Rn, Sm, Sm1 transfers the contents of Sm into Rd, and the contents of Sm1 into Rn.

VMOV Sm, Sm1, Rd, Rn transfers the contents of Rd into Sm, and the contents of Rn into Sm1.

Architectures

The instructions are available in VFPv2 and above.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.24 VMOV (between two general-purpose registers and one or two extension registers)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-625
Non-Confidential

C4.25 VMOV (between a general-purpose register and half a double precision
floating-point register)

Transfer contents between a general-purpose register and half a double precision floating-point register.

Syntax

VMOV{cond}{.size} Dn[x], Rd

VMOV{cond}{.size} Rd, Dn[x]

where:

cond

is an optional condition code.

size

the data size. Must be either 32 or omitted. If omitted, size is 32.

Dn[x]

is the upper or lower half of a double precision floating-point register.

Rd

is the general-purpose register. Rd must not be PC.

Operation

VMOV Dn[x], Rd transfers the contents of Rd into Dn[x].

VMOV Rd, Dn[x] transfers the contents of Dn[x] into Rd.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.25 VMOV (between a general-purpose register and half a double precision floating-point register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-626
Non-Confidential

C4.26 VMRS (floating-point)
Transfer contents from an floating-point system register to a general-purpose register.

Syntax

VMRS{cond} Rd, extsysreg

where:

cond
is an optional condition code.

extsysreg
is the floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMRS instruction transfers the contents of extsysreg into Rd.

 Note

The instruction stalls the processor until all current floating-point operations complete.

Examples
 VMRS r2,FPCID
 VMRS APSR_nzcv, FPSCR ; transfer FP status register to the
 ; special-purpose APSR

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.26 VMRS (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-627
Non-Confidential

C4.27 VMSR (floating-point)
Transfer contents of a general-purpose register to a floating-point system register.

Syntax

VMSR{cond} extsysreg, Rd

where:

cond
is an optional condition code.

extsysreg
is the floating-point system register, usually FPSCR, FPSID, or FPEXC.

Rd

is the general-purpose register. Rd must not be PC.

It can be APSR_nzcv, if extsysreg is FPSCR. In this case, the floating-point status flags are
transferred into the corresponding flags in the special-purpose APSR.

Usage
The VMSR instruction transfers the contents of Rd into extsysreg.

 Note

The instruction stalls the processor until all current floating-point operations complete.

Example
 VMSR FPSCR, r4

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.27 VMSR (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-628
Non-Confidential

C4.28 VMUL (floating-point)
Floating-point multiply.

Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm

VMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VMUL operation multiplies the values in the operand registers and places the result in the destination
register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.28 VMUL (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-629
Non-Confidential

C4.29 VNEG (floating-point)
Floating-point negate.

Syntax

VNEG{cond}.F32 Sd, Sm

VNEG{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VNEG instruction takes the contents of Sm or Dm, changes the sign bit, and places the result in Sd or Dd.
This gives the negation of the value.

If the operand is a NaN, the sign bit is changed, but no exception is produced.

Floating-point exceptions

VNEG instructions do not produce any exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.29 VNEG (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-630
Non-Confidential

C4.30 VNMLA (floating-point)
Floating-point multiply accumulate with negation.

Syntax

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLA{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMLA instruction multiplies the values in the operand registers, adds the value to the destination
register, and places the negated final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.30 VNMLA (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-631
Non-Confidential

C4.31 VNMLS (floating-point)
Floating-point multiply subtract with negation.

Syntax

VNMLS{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F64 Dd, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMLS instruction multiplies the values in the operand registers, subtracts the result from the value in
the destination register, and places the negated final result in the destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.31 VNMLS (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-632
Non-Confidential

C4.32 VNMUL (floating-point)
Floating-point multiply with negation.

Syntax

VNMUL{cond}.F32 {Sd,} Sn, Sm

VNMUL{cond}.F64 {Dd,} Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VNMUL instruction multiplies the values in the operand registers and places the negated result in the
destination register.

Floating-point exceptions

This instruction can produce Invalid Operation, Overflow, Underflow, Inexact, or Input Denormal
exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.32 VNMUL (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-633
Non-Confidential

C4.33 VPOP (floating-point)
Pop extension registers from the stack.

Syntax

VPOP{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPOP Registers is equivalent to VLDM sp!, Registers.

You can use either form of this instruction. They both disassemble to VPOP.

Related reference
C1.9 Condition code suffixes on page C1-142
C4.34 VPUSH (floating-point) on page C4-635

C4 Floating-point Instructions (32-bit)
C4.33 VPOP (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-634
Non-Confidential

C4.34 VPUSH (floating-point)
Push extension registers onto the stack.

Syntax

VPUSH{cond} Registers

where:
cond

is an optional condition code.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related reference
C1.9 Condition code suffixes on page C1-142
C4.33 VPOP (floating-point) on page C4-634

C4 Floating-point Instructions (32-bit)
C4.34 VPUSH (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-635
Non-Confidential

C4.35 VRINT (floating-point)
Rounds a floating-point number to integer and places the result in the destination register. The resulting
integer is represented in floating-point format.

 Note

This instruction is supported only in Armv8.

Syntax

VRINTmode{cond}.F64.F64 Dd, Dm

VRINTmode{cond}.F32.F32 Sd, Sm

where:

mode

must be one of:

Z

meaning round towards zero.

R
meaning use the rounding mode specified in the FPSCR.

X
meaning use the rounding mode specified in the FPSCR, generating an Inexact
exception if the result is not exact.

A
meaning round to nearest, ties away from zero.

N
meaning round to nearest, ties to even.

P
meaning round towards plus infinity.

M
meaning round towards minus infinity.

cond
is an optional condition code. This can only be used when mode is Z, R or X.

Sd, Sm
specifies the destination and operand registers, for a word operation.

Dd, Dm
specifies the destination and operand registers, for a doubleword operation.

Notes

You cannot use VRINT with a rounding mode of A, N, P or M inside an IT block.

Floating-point exceptions

These instructions cannot produce any exceptions, except VRINTX which can generate an Inexact
exception.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.35 VRINT (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-636
Non-Confidential

C4.36 VSEL
Floating-point select.

 Note

This instruction is supported only in Armv8.

Syntax

VSELcond.F32 Sd, Sn, Sm

VSELcond.F64 Dd, Dn, Dm

where:

cond
must be one of GE, GT, EQ, VS.

Sd, Sn, Sm
are the single-precision registers for the result and operands.

Dd, Dn, Dm
are the double-precision registers for the result and operands.

Usage

The VSEL instruction compares the values in the operand registers. If the condition is true, it copies the
value in the first operand register into the destination operand register. Otherwise, it copies the value in
the second operand register.

You cannot use VSEL inside an IT block.

Floating-point exceptions

VSEL instructions cannot produce any exceptions.

Related reference
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.36 VSEL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-637
Non-Confidential

C4.37 VSQRT
Floating-point square root.

Syntax

VSQRT{cond}.F32 Sd, Sm

VSQRT{cond}.F64 Dd, Dm

where:

cond

is an optional condition code.

Sd, Sm

are the single-precision registers for the result and operand.

Dd, Dm

are the double-precision registers for the result and operand.

Operation

The VSQRT instruction takes the square root of the contents of Sm or Dm, and places the result in Sd or Dd.

Floating-point exceptions

VSQRT instructions can produce Invalid Operation or Inexact exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.37 VSQRT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-638
Non-Confidential

C4.38 VSTM (floating-point)
Extension register store multiple.

Syntax

VSTMmode{cond} Rn{!}, Registers

where:
mode

must be one of:

IA

meaning Increment address After each transfer. IA is the default, and can be omitted.

DB

meaning Decrement address Before each transfer.

EA

meaning Empty Ascending stack operation. This is the same as IA for stores.

FD

meaning Full Descending stack operation. This is the same as DB for stores.

cond

is an optional condition code.

Rn

is the general-purpose register holding the base address for the transfer.

!

is optional. ! specifies that the updated base address must be written back to Rn. If ! is not
specified, mode must be IA.

Registers

is a list of consecutive extension registers enclosed in braces, { and }. The list can be comma-
separated, or in range format. There must be at least one register in the list.

You can specify S or D registers, but they must not be mixed. The number of registers must not
exceed 16 D registers.

 Note

VPUSH Registers is equivalent to VSTMDB sp!, Registers.

You can use either form of this instruction. They both disassemble to VPUSH.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.38 VSTM (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-639
Non-Confidential

C4.39 VSTR (floating-point)
Extension register store.

Syntax

VSTR{cond}{.size} Fd, [Rn{, #offset}]

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 otherwise.

Fd

is the extension register to be saved. It can be either a D or S register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is an optional numeric expression. It must evaluate to a numeric value at assembly time. The
value must be a multiple of 4, and lie in the range -1020 to +1020. The value is added to the
base address to form the address used for the transfer.

Operation

The VSTR instruction saves the contents of an extension register to memory.

One word is transferred if Fd is an S register. Two words are transferred otherwise.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.39 VSTR (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-640
Non-Confidential

C4.40 VSTR (post-increment and pre-decrement, floating-point)
Pseudo-instruction that stores extension registers with post-increment and pre-decrement forms.

 Note

There are also VLDR and VSTR instructions without post-increment and pre-decrement.

Syntax

VSTR{cond}{.size} Fd, [Rn], #offset ; post-increment

VSTR{cond}{.size} Fd, [Rn, #-offset]! ; pre-decrement

where:

cond

is an optional condition code.

size

is an optional data size specifier. Must be 32 if Fd is an S register, or 64 if Fd is a D register.

Fd

is the extension register to be saved. It can be either a double precision (Dd) or a single precision
(Sd) register.

Rn

is the general-purpose register holding the base address for the transfer.

offset

is a numeric expression that must evaluate to a numeric value at assembly time. The value must
be 4 if Fd is an S register, or 8 if Fd is a D register.

Operation

The post-increment instruction increments the base address in the register by the offset value, after the
transfer. The pre-decrement instruction decrements the base address in the register by the offset value,
and then performs the transfer using the new address in the register. This pseudo-instruction assembles to
a VSTM instruction.

Related reference
C4.39 VSTR (floating-point) on page C4-640
C4.38 VSTM (floating-point) on page C4-639
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.40 VSTR (post-increment and pre-decrement, floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-641
Non-Confidential

C4.41 VSUB (floating-point)
Floating-point subtract.

Syntax

VSUB{cond}.F32 {Sd}, Sn, Sm

VSUB{cond}.F64 {Dd}, Dn, Dm

where:

cond

is an optional condition code.

Sd, Sn, Sm

are the single-precision registers for the result and operands.

Dd, Dn, Dm

are the double-precision registers for the result and operands.

Operation

The VSUB instruction subtracts the value in the second operand register from the value in the first operand
register, and places the result in the destination register.

Floating-point exceptions

The VSUB instruction can produce Invalid Operation, Overflow, or Inexact exceptions.

Related reference
C1.9 Condition code suffixes on page C1-142

C4 Floating-point Instructions (32-bit)
C4.41 VSUB (floating-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C4-642
Non-Confidential

Chapter C5
A32/T32 Cryptographic Algorithms

Lists the algorithms that A32 and T32 SIMD instructions support.

It contains the following section:
• C5.1 A32/T32 Cryptographic instructions on page C5-644.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C5-643
Non-Confidential

C5.1 A32/T32 Cryptographic instructions
A set of A32 and T32 cryptographic instructions is available in the Armv8 architecture.

These instructions use the 128-bit Advanced SIMD registers and support the acceleration of the
following cryptographic and hash algorithms:
• AES.
• SHA1.
• SHA256.

Summary of A32/T32 cryptographic instructions

The following table lists the A32/T32 cryptographic instructions that are supported:

Table C5-1 Summary of A32/T32 cryptographic instructions

Mnemonic Brief description

AESD AES single round decryption

AESE AES single round encryption

AESIMC AES inverse mix columns

AESMC AES mix columns

SHA1C SHA1 hash update (choose)

SHA1H SHA1 fixed rotate

SHA1M SHA1 hash update (majority)

SHA1P SHA1 hash update (parity)

SHA1SU0 SHA1 schedule update 0

SHA1SU1 SHA1 schedule update 1

SHA256H2 SHA256 hash update part 2

SHA256H SHA256 hash update part 1

SHA256SU0 SHA256 schedule update 0

SHA256SU1 SHA256 schedule update 1

C5 A32/T32 Cryptographic Algorithms
C5.1 A32/T32 Cryptographic instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. C5-644
Non-Confidential

Part D
A64 Instruction Set Reference

Chapter D1
Condition Codes

Describes condition codes and conditional execution of A64 code.

It contains the following sections:
• D1.1 Conditional execution in A64 code on page D1-648.
• D1.2 Condition flags on page D1-649.
• D1.3 Updates to the condition flags in A64 code on page D1-650.
• D1.4 Floating-point instructions that update the condition flags on page D1-651.
• D1.5 Carry flag on page D1-652.
• D1.6 Overflow flag on page D1-653.
• D1.7 Condition code suffixes on page D1-654.
• D1.8 Condition code suffixes and related flags on page D1-655.
• D1.9 Optimization for execution speed on page D1-656.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-647
Non-Confidential

D1.1 Conditional execution in A64 code
In the A64 instruction set, there are a few instructions that are truly conditional. Truly conditional means
that when the condition is false, the instruction advances the program counter but has no other effect.

The conditional branch, B.cond is a truly conditional instruction. The condition code is appended to the
instruction with a '.' delimiter, for example B.EQ.

There are other truly conditional branch instructions that execute depending on the value of the Zero
condition flag. You cannot append any condition code suffix to them. These instructions are:

• CBNZ.
• CBZ.
• TBNZ.
• TBZ.

There are a few A64 instructions that are unconditionally executed but use the condition code as a source
operand. These instructions always execute but the operation depends on the value of the condition code.
These instructions can be categorized as:
• Conditional data processing instructions, for example CSEL.
• Conditional comparison instructions, CCMN and CCMP.

In these instructions, you specify the condition code in the final operand position, for example CSEL
Wd,Wm,Wn,NE.

D1 Condition Codes
D1.1 Conditional execution in A64 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-648
Non-Confidential

D1.2 Condition flags
The N, Z, C, and V condition flags are held in the APSR.

The condition flags are held in the APSR. They are set or cleared as follows:

N
Set to 1 when the result of the operation is negative, cleared to 0 otherwise.

Z
Set to 1 when the result of the operation is zero, cleared to 0 otherwise.

C
Set to 1 when the operation results in a carry, or when a subtraction results in no borrow, cleared
to 0 otherwise.

V
Set to 1 when the operation causes overflow, cleared to 0 otherwise.

C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a

borrow (that is, an unsigned underflow), and to 1 otherwise.
• For non-addition/subtractions that incorporate a shift operation, C is set to the last bit shifted out of

the value by the shifter.
• For other non-addition/subtractions, C is normally left unchanged, but see the individual instruction

descriptions for any special cases.

Overflow occurs if the result of a signed add, subtract, or compare is greater than or equal to 231, or less
than -231.

Related reference
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
C1.10 Condition code suffixes and related flags on page C1-143
D1.3 Updates to the condition flags in A64 code on page D1-650
D1.8 Condition code suffixes and related flags on page D1-655

D1 Condition Codes
D1.2 Condition flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-649
Non-Confidential

D1.3 Updates to the condition flags in A64 code
In AArch64 state, the N, Z, C, and V condition flags are held in the NZCV system register, which is part
of the process state. You can access the flags using the MSR and MRS instructions.

 Note

An instruction updates the condition flags only if the S suffix is specified, except the instructions CMP,
CMN, CCMP, CCMN, and TST, which always update the condition flags. The instruction also determines
which flags get updated. If a conditional instruction does not execute, it does not affect the flags.

Example

This example shows the read-modify-write procedure to change some of the condition flags in A64 code.

 MRS x1, NZCV ; copy N, Z, C, and V flags into general-purpose x1
 MOV x2, #0x30000000
 BIC x1,x1,x2 ; clears the C and V flags (bits 29,28)
 ORR x1,x1,#0xC0000000 ; sets the N and Z flags (bits 31,30)
 MSR NZCV, x1 ; copy x1 back into NZCV register to update the condition flags

Related concepts
C1.1 Conditional instructions on page C1-134
Related reference
C1.4 Condition flags on page C1-137
C1.5 Updates to the condition flags in A32/T32 code on page C1-138
C1.10 Condition code suffixes and related flags on page C1-143
D1.8 Condition code suffixes and related flags on page D1-655

D1 Condition Codes
D1.3 Updates to the condition flags in A64 code

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-650
Non-Confidential

D1.4 Floating-point instructions that update the condition flags
All A64 floating-point comparison instructions can update the condition flags. These instructions update
the flags directly in the NZCV register.

Related concepts
D1.5 Carry flag on page D1-652
D1.6 Overflow flag on page D1-653
Related reference
D1.3 Updates to the condition flags in A64 code on page D1-650
C4.4 VCMP, VCMPE on page C4-605
C3.75 VMRS on page C3-524
C4.26 VMRS (floating-point) on page C4-627
Related information
Arm Architecture Reference Manual

D1 Condition Codes
D1.4 Floating-point instructions that update the condition flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-651
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

D1.5 Carry flag
The carry (C) flag is set when an operation results in a carry, or when a subtraction results in no borrow.

C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a

carry (that is, an unsigned overflow), and to 0 otherwise.
• For a subtraction, including the comparison instruction CMP and the negate instructions NEGS and

NGCS, C is set to 0 if the subtraction produced a borrow (that is, an unsigned underflow), and to 1
otherwise.

• For the integer and floating-point conditional compare instructions CCMP, CCMN, FCCMP, and FCCMPE, C
and the other condition flags are set either to the result of the comparison, or directly from an
immediate value.

• For the floating-point compare instructions, FCMP and FCMPE, C and the other condition flags are set
to the result of the comparison.

• For other instructions, C is normally left unchanged, but see the individual instruction descriptions
for any special cases.

Related concepts
D1.6 Overflow flag on page D1-653
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
A3.5 Predeclared core register names in AArch64 state on page A3-76
D1.8 Condition code suffixes and related flags on page D1-655
D1.3 Updates to the condition flags in A64 code on page D1-650

D1 Condition Codes
D1.5 Carry flag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-652
Non-Confidential

D1.6 Overflow flag
Overflow can occur for add, subtract, and compare operations.

In A64 instructions that use the 64-bit X registers, overflow occurs if the result of the operation is greater
than or equal to 263, or less than -263.

In A64 instructions that use the 32-bit W registers, overflow occurs if the result of the operation is
greater than or equal to 231, or less than -231.

Related concepts
D1.5 Carry flag on page D1-652
Related reference
A2.7 Predeclared core register names in AArch32 state on page A2-61
D1.3 Updates to the condition flags in A64 code on page D1-650

D1 Condition Codes
D1.6 Overflow flag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-653
Non-Confidential

D1.7 Condition code suffixes
Instructions that can be conditional have an optional two character condition code suffix.

Condition codes are shown in syntax descriptions as {cond}. The following table shows the condition
codes that you can use:

Table D1-1 Condition code suffixes

Suffix Meaning

EQ Equal

NE Not equal

CS Carry set (identical to HS)

HS Unsigned higher or same (identical to CS)

CC Carry clear (identical to LO)

LO Unsigned lower (identical to CC)

MI Minus or negative result

PL Positive or zero result

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Signed greater than or equal

LT Signed less than

GT Signed greater than

LE Signed less than or equal

AL Always (this is the default)

 Note

The meaning of some of these condition codes depends on whether the instruction that last updated the
condition flags is a floating-point or integer instruction.

Related reference
C1.11 Comparison of condition code meanings in integer and floating-point code on page C1-144
C2.44 IT on page C2-222
C3.75 VMRS on page C3-524
C4.26 VMRS (floating-point) on page C4-627

D1 Condition Codes
D1.7 Condition code suffixes

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-654
Non-Confidential

D1.8 Condition code suffixes and related flags
Condition code suffixes define the conditions that must be met for the instruction to execute.

The following table shows the condition codes that you can use and the flag settings they depend on:

Table D1-2 Condition code suffixes and related flags

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally omitted.

The optional condition code is shown in syntax descriptions as {cond}. This condition is encoded in A32
instructions and in A64 instructions. For T32 instructions, the condition is encoded in a preceding IT
instruction. An instruction with a condition code is only executed if the condition flags meet the
specified condition.

The following is an example of conditional execution in A32 code:

 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags
 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags
 ADDSCS r0, r1, r2 ; If C flag set then r0 = r1 + r2,
 ; and update flags
 CMP r0, r1 ; update flags based on r0-r1.

Related reference
C1.4 Condition flags on page C1-137
D1.3 Updates to the condition flags in A64 code on page D1-650
Chapter C2 A32 and T32 Instructions on page C2-151

D1 Condition Codes
D1.8 Condition code suffixes and related flags

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-655
Non-Confidential

D1.9 Optimization for execution speed
To optimize code for execution speed you must have detailed knowledge of the instruction timings,
branch prediction logic, and cache behavior of your target system.

For more information, see the Technical Reference Manual for your processor.

Related information
Arm Architecture Reference Manual
Further reading

D1 Condition Codes
D1.9 Optimization for execution speed

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D1-656
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/
http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/chr1374245422802.html

Chapter D2
A64 General Instructions

Describes the A64 general instructions.

It contains the following sections:
• D2.1 A64 instructions in alphabetical order on page D2-662.
• D2.2 Register restrictions for A64 instructions on page D2-669.
• D2.3 ADC on page D2-670.
• D2.4 ADCS on page D2-671.
• D2.5 ADD (extended register) on page D2-672.
• D2.6 ADD (immediate) on page D2-674.
• D2.7 ADD (shifted register) on page D2-675.
• D2.8 ADDG on page D2-676.
• D2.9 ADDS (extended register) on page D2-677.
• D2.10 ADDS (immediate) on page D2-679.
• D2.11 ADDS (shifted register) on page D2-680.
• D2.12 ADR on page D2-681.
• D2.13 ADRP on page D2-682.
• D2.14 AND (immediate) on page D2-683.
• D2.15 AND (shifted register) on page D2-684.
• D2.16 ANDS (immediate) on page D2-685.
• D2.17 ANDS (shifted register) on page D2-686.
• D2.18 ASR (register) on page D2-687.
• D2.19 ASR (immediate) on page D2-688.
• D2.20 ASRV on page D2-689.
• D2.21 AT on page D2-690.
• D2.22 AUTDA, AUTDZA on page D2-692.
• D2.23 AUTDB, AUTDZB on page D2-693.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-657
Non-Confidential

• D2.24 AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ on page D2-694.
• D2.25 AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ on page D2-695.
• D2.26 AXFlag on page D2-696.
• D2.27 B.cond on page D2-697.
• D2.28 B on page D2-698.
• D2.29 BFC on page D2-699.
• D2.30 BFI on page D2-700.
• D2.31 BFM on page D2-701.
• D2.32 BFXIL on page D2-702.
• D2.33 BIC (shifted register) on page D2-703.
• D2.34 BICS (shifted register) on page D2-704.
• D2.35 BL on page D2-705.
• D2.36 BLR on page D2-706.
• D2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ on page D2-707.
• D2.38 BR on page D2-708.
• D2.39 BRAA, BRAAZ, BRAB, BRABZ on page D2-709.
• D2.40 BRK on page D2-710.
• D2.41 BTI on page D2-711.
• D2.42 CBNZ on page D2-712.
• D2.43 CBZ on page D2-713.
• D2.44 CCMN (immediate) on page D2-714.
• D2.45 CCMN (register) on page D2-715.
• D2.46 CCMP (immediate) on page D2-716.
• D2.47 CCMP (register) on page D2-717.
• D2.48 CINC on page D2-718.
• D2.49 CINV on page D2-719.
• D2.50 CLREX on page D2-720.
• D2.51 CLS on page D2-721.
• D2.52 CLZ on page D2-722.
• D2.53 CMN (extended register) on page D2-723.
• D2.54 CMN (immediate) on page D2-725.
• D2.55 CMN (shifted register) on page D2-726.
• D2.56 CMP (extended register) on page D2-727.
• D2.57 CMP (immediate) on page D2-729.
• D2.58 CMP (shifted register) on page D2-730.
• D2.59 CMPP on page D2-731.
• D2.60 CNEG on page D2-732.
• D2.61 CRC32B, CRC32H, CRC32W, CRC32X on page D2-733.
• D2.62 CRC32CB, CRC32CH, CRC32CW, CRC32CX on page D2-734.
• D2.63 CSDB on page D2-735.
• D2.64 CSEL on page D2-737.
• D2.65 CSET on page D2-738.
• D2.66 CSETM on page D2-739.
• D2.67 CSINC on page D2-740.
• D2.68 CSINV on page D2-741.
• D2.69 CSNEG on page D2-742.
• D2.70 DC on page D2-743.
• D2.71 DCPS1 on page D2-744.
• D2.72 DCPS2 on page D2-745.
• D2.73 DCPS3 on page D2-746.
• D2.74 DMB on page D2-747.
• D2.75 DRPS on page D2-749.
• D2.76 DSB on page D2-750.
• D2.77 EON (shifted register) on page D2-752.
• D2.78 EOR (immediate) on page D2-753.
• D2.79 EOR (shifted register) on page D2-754.

D2 A64 General Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-658
Non-Confidential

• D2.80 ERET on page D2-755.
• D2.81 ERETAA, ERETAB on page D2-756.
• D2.82 ESB on page D2-757.
• D2.83 EXTR on page D2-758.
• D2.84 GMI on page D2-759.
• D2.85 HINT on page D2-760.
• D2.86 HLT on page D2-761.
• D2.87 HVC on page D2-762.
• D2.88 IC on page D2-763.
• D2.89 IRG on page D2-764.
• D2.90 ISB on page D2-765.
• D2.91 LDG on page D2-766.
• D2.92 LDGV on page D2-767.
• D2.93 LSL (register) on page D2-768.
• D2.94 LSL (immediate) on page D2-769.
• D2.95 LSLV on page D2-770.
• D2.96 LSR (register) on page D2-771.
• D2.97 LSR (immediate) on page D2-772.
• D2.98 LSRV on page D2-773.
• D2.99 MADD on page D2-774.
• D2.100 MNEG on page D2-775.
• D2.101 MOV (to or from SP) on page D2-776.
• D2.102 MOV (inverted wide immediate) on page D2-777.
• D2.103 MOV (wide immediate) on page D2-778.
• D2.104 MOV (bitmask immediate) on page D2-779.
• D2.105 MOV (register) on page D2-780.
• D2.106 MOVK on page D2-781.
• D2.107 MOVN on page D2-782.
• D2.108 MOVZ on page D2-783.
• D2.109 MRS on page D2-784.
• D2.110 MSR (immediate) on page D2-785.
• D2.111 MSR (register) on page D2-786.
• D2.112 MSUB on page D2-787.
• D2.113 MUL on page D2-788.
• D2.114 MVN on page D2-789.
• D2.115 NEG (shifted register) on page D2-790.
• D2.116 NEGS on page D2-791.
• D2.117 NGC on page D2-792.
• D2.118 NGCS on page D2-793.
• D2.119 NOP on page D2-794.
• D2.120 ORN (shifted register) on page D2-795.
• D2.121 ORR (immediate) on page D2-796.
• D2.122 ORR (shifted register) on page D2-797.
• D2.123 PACDA, PACDZA on page D2-798.
• D2.124 PACDB, PACDZB on page D2-799.
• D2.125 PACGA on page D2-800.
• D2.126 PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ on page D2-801.
• D2.127 PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ on page D2-802.
• D2.128 PSB on page D2-803.
• D2.129 RBIT on page D2-804.
• D2.130 RET on page D2-805.
• D2.131 RETAA, RETAB on page D2-806.
• D2.132 REV16 on page D2-807.
• D2.133 REV32 on page D2-808.
• D2.134 REV64 on page D2-809.
• D2.135 REV on page D2-810.

D2 A64 General Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-659
Non-Confidential

• D2.136 ROR (immediate) on page D2-811.
• D2.137 ROR (register) on page D2-812.
• D2.138 RORV on page D2-813.
• D2.139 SBC on page D2-814.
• D2.140 SBCS on page D2-815.
• D2.141 SBFIZ on page D2-816.
• D2.142 SBFM on page D2-817.
• D2.143 SBFX on page D2-818.
• D2.144 SDIV on page D2-819.
• D2.145 SEV on page D2-820.
• D2.146 SEVL on page D2-821.
• D2.147 SMADDL on page D2-822.
• D2.148 SMC on page D2-823.
• D2.149 SMNEGL on page D2-824.
• D2.150 SMSUBL on page D2-825.
• D2.151 SMULH on page D2-826.
• D2.152 SMULL on page D2-827.
• D2.153 ST2G on page D2-828.
• D2.154 STG on page D2-829.
• D2.155 STGP on page D2-830.
• D2.156 STGV on page D2-831.
• D2.157 STZ2G on page D2-832.
• D2.158 STZG on page D2-833.
• D2.159 SUB (extended register) on page D2-834.
• D2.160 SUB (immediate) on page D2-836.
• D2.161 SUB (shifted register) on page D2-837.
• D2.162 SUBG on page D2-838.
• D2.163 SUBP on page D2-839.
• D2.164 SUBPS on page D2-840.
• D2.165 SUBS (extended register) on page D2-841.
• D2.166 SUBS (immediate) on page D2-843.
• D2.167 SUBS (shifted register) on page D2-844.
• D2.168 SVC on page D2-845.
• D2.169 SXTB on page D2-846.
• D2.170 SXTH on page D2-847.
• D2.171 SXTW on page D2-848.
• D2.172 SYS on page D2-849.
• D2.173 SYSL on page D2-850.
• D2.174 TBNZ on page D2-851.
• D2.175 TBZ on page D2-852.
• D2.176 TLBI on page D2-853.
• D2.177 TST (immediate) on page D2-855.
• D2.178 TST (shifted register) on page D2-856.
• D2.179 UBFIZ on page D2-857.
• D2.180 UBFM on page D2-858.
• D2.181 UBFX on page D2-859.
• D2.182 UDIV on page D2-860.
• D2.183 UMADDL on page D2-861.
• D2.184 UMNEGL on page D2-862.
• D2.185 UMSUBL on page D2-863.
• D2.186 UMULH on page D2-864.
• D2.187 UMULL on page D2-865.
• D2.188 UXTB on page D2-866.
• D2.189 UXTH on page D2-867.
• D2.190 XAFlag on page D2-868.
• D2.191 WFE on page D2-869.

D2 A64 General Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-660
Non-Confidential

• D2.192 WFI on page D2-870.
• D2.193 XPACD, XPACI, XPACLRI on page D2-871.
• D2.194 YIELD on page D2-872.

D2 A64 General Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-661
Non-Confidential

D2.1 A64 instructions in alphabetical order
A summary of the A64 instructions and pseudo-instructions that are supported.

Table D2-1 Summary of A64 general instructions

Mnemonic Brief description See

ADC Add with Carry D2.3 ADC on page D2-670

ADCS Add with Carry, setting flags D2.4 ADCS on page D2-671

ADD (extended register) Add (extended register) D2.5 ADD (extended register) on page D2-672

ADD (immediate) Add (immediate) D2.6 ADD (immediate) on page D2-674

ADD (shifted register) Add (shifted register) D2.7 ADD (shifted register) on page D2-675

ADDG Add with Tag D2.8 ADDG on page D2-676

ADDS (extended register) Add (extended register), setting flags D2.9 ADDS (extended register) on page D2-677

ADDS (immediate) Add (immediate), setting flags D2.10 ADDS (immediate) on page D2-679

ADDS (shifted register) Add (shifted register), setting flags D2.11 ADDS (shifted register) on page D2-680

ADR Form PC-relative address D2.12 ADR on page D2-681

ADRL pseudo-instruction Load a PC-relative address into a register

ADRP Form PC-relative address to 4KB page D2.13 ADRP on page D2-682

AND (immediate) Bitwise AND (immediate) D2.14 AND (immediate) on page D2-683

AND (shifted register) Bitwise AND (shifted register) D2.15 AND (shifted register) on page D2-684

ANDS (immediate) Bitwise AND (immediate), setting flags D2.16 ANDS (immediate) on page D2-685

ANDS (shifted register) Bitwise AND (shifted register), setting
flags

D2.17 ANDS (shifted register) on page D2-686

ASR (register) Arithmetic Shift Right (register) D2.18 ASR (register) on page D2-687

ASR (immediate) Arithmetic Shift Right (immediate) D2.19 ASR (immediate) on page D2-688

ASRV Arithmetic Shift Right Variable D2.20 ASRV on page D2-689

AT Address Translate D2.21 AT on page D2-690

AUTDA, AUTDZA Authenticate Data address, using key A D2.22 AUTDA, AUTDZA on page D2-692

AUTDB, AUTDZB Authenticate Data address, using key B D2.23 AUTDB, AUTDZB on page D2-693

AUTIA, AUTIZA,
AUTIA1716, AUTIASP,
AUTIAZ

Authenticate Instruction address, using key
A

D2.24 AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ
on page D2-694

AUTIB, AUTIZB,
AUTIB1716, AUTIBSP,
AUTIBZ

Authenticate Instruction address, using key
B

D2.25 AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ
on page D2-695

AXFlag Convert floating-point condition flags from
Arm to external format

D2.26 AXFlag on page D2-696

B.cond Branch conditionally D2.27 B.cond on page D2-697

B Branch D2.28 B on page D2-698

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-662
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

BFC Bitfield Clear, leaving other bits unchanged D2.29 BFC on page D2-699

BFI Bitfield Insert D2.30 BFI on page D2-700

BFM Bitfield Move D2.31 BFM on page D2-701

BFXIL Bitfield extract and insert at low end D2.32 BFXIL on page D2-702

BIC (shifted register) Bitwise Bit Clear (shifted register) D2.33 BIC (shifted register) on page D2-703

BICS (shifted register) Bitwise Bit Clear (shifted register), setting
flags

D2.34 BICS (shifted register) on page D2-704

BL Branch with Link D2.35 BL on page D2-705

BLR Branch with Link to Register D2.36 BLR on page D2-706

BLRAA, BLRAAZ, BLRAB,
BLRABZ

Branch with Link to Register, with pointer
authentication

D2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ
on page D2-707

BR Branch to Register D2.38 BR on page D2-708

BRAA, BRAAZ, BRAB,
BRABZ

Branch to Register, with pointer
authentication

D2.39 BRAA, BRAAZ, BRAB, BRABZ on page D2-709

BRK Breakpoint instruction D2.40 BRK on page D2-710

BTI Branch Target Identification D2.41 BTI on page D2-711

CBNZ Compare and Branch on Nonzero D2.42 CBNZ on page D2-712

CBZ Compare and Branch on Zero D2.43 CBZ on page D2-713

CCMN (immediate) Conditional Compare Negative (immediate) D2.44 CCMN (immediate) on page D2-714

CCMN (register) Conditional Compare Negative (register) D2.45 CCMN (register) on page D2-715

CCMP (immediate) Conditional Compare (immediate) D2.46 CCMP (immediate) on page D2-716

CCMP (register) Conditional Compare (register) D2.47 CCMP (register) on page D2-717

CINC Conditional Increment D2.48 CINC on page D2-718

CINV Conditional Invert D2.49 CINV on page D2-719

CLREX Clear Exclusive D2.50 CLREX on page D2-720

CLS Count leading sign bits D2.51 CLS on page D2-721

CLZ Count leading zero bits D2.52 CLZ on page D2-722

CMN (extended register) Compare Negative (extended register) D2.53 CMN (extended register) on page D2-723

CMN (immediate) Compare Negative (immediate) D2.54 CMN (immediate) on page D2-725

CMN (shifted register) Compare Negative (shifted register) D2.55 CMN (shifted register) on page D2-726

CMP (extended register) Compare (extended register) D2.56 CMP (extended register) on page D2-727

CMP (immediate) Compare (immediate) D2.57 CMP (immediate) on page D2-729

CMP (shifted register) Compare (shifted register) D2.58 CMP (shifted register) on page D2-730

CMPP Compare with Tag D2.59 CMPP on page D2-731

CNEG Conditional Negate D2.60 CNEG on page D2-732

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-663
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

CRC32B, CRC32H,
CRC32W, CRC32X

CRC32 checksum performs a cyclic
redundancy check (CRC) calculation on a
value held in a general-purpose register

D2.61 CRC32B, CRC32H, CRC32W, CRC32X
on page D2-733

CRC32CB, CRC32CH,
CRC32CW, CRC32CX

CRC32C checksum performs a cyclic
redundancy check (CRC) calculation on a
value held in a general-purpose register

D2.62 CRC32CB, CRC32CH, CRC32CW, CRC32CX
on page D2-734

CSDB Consumption of Speculative Data Barrier D2.63 CSDB on page D2-735

CSEL Conditional Select D2.64 CSEL on page D2-737

CSET Conditional Set D2.65 CSET on page D2-738

CSETM Conditional Set Mask D2.66 CSETM on page D2-739

CSINC Conditional Select Increment D2.67 CSINC on page D2-740

CSINV Conditional Select Invert D2.68 CSINV on page D2-741

CSNEG Conditional Select Negation D2.69 CSNEG on page D2-742

DC Data Cache operation D2.70 DC on page D2-743

DCPS1 Debug Change PE State to EL1 D2.71 DCPS1 on page D2-744

DCPS2 Debug Change PE State to EL2 D2.72 DCPS2 on page D2-745

DCPS3 Debug Change PE State to EL3 D2.73 DCPS3 on page D2-746

DMB Data Memory Barrier D2.74 DMB on page D2-747

DRPS Debug restore process state D2.75 DRPS on page D2-749

DSB Data Synchronization Barrier D2.76 DSB on page D2-750

EON (shifted register) Bitwise Exclusive OR NOT (shifted
register)

D2.77 EON (shifted register) on page D2-752

EOR (immediate) Bitwise Exclusive OR (immediate) D2.78 EOR (immediate) on page D2-753

EOR (shifted register) Bitwise Exclusive OR (shifted register) D2.79 EOR (shifted register) on page D2-754

ERET Returns from an exception D2.80 ERET on page D2-755

ERETAA, ERETAB Exception Return, with pointer
authentication

D2.81 ERETAA, ERETAB on page D2-756

ESB Error Synchronization Barrier D2.82 ESB on page D2-757

EXTR Extract register D2.83 EXTR on page D2-758

HINT Hint instruction D2.85 HINT on page D2-760

HLT Halt instruction D2.86 HLT on page D2-761

HVC Hypervisor call to allow OS code to call the
Hypervisor

D2.87 HVC on page D2-762

IC Instruction Cache operation D2.88 IC on page D2-763

IRG Insert Random Tag D2.89 IRG on page D2-764

ISB Instruction Synchronization Barrier D2.90 ISB on page D2-765

LDG Load Allocation Tag D2.91 LDG on page D2-766

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-664
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

LDGV Load Allocation Tag D2.92 LDGV on page D2-767

LSL (register) Logical Shift Left (register) D2.93 LSL (register) on page D2-768

LSL (immediate) Logical Shift Left (immediate) D2.94 LSL (immediate) on page D2-769

LSLV Logical Shift Left Variable D2.95 LSLV on page D2-770

LSR (register) Logical Shift Right (register) D2.96 LSR (register) on page D2-771

LSR (immediate) Logical Shift Right (immediate) D2.97 LSR (immediate) on page D2-772

LSRV Logical Shift Right Variable D2.98 LSRV on page D2-773

MADD Multiply-Add D2.99 MADD on page D2-774

MNEG Multiply-Negate D2.100 MNEG on page D2-775

MOV (to or from SP) Move between register and stack pointer D2.101 MOV (to or from SP) on page D2-776

MOV (inverted wide
immediate)

Move (inverted wide immediate) D2.102 MOV (inverted wide immediate) on page D2-777

MOV (wide immediate) Move (wide immediate) D2.103 MOV (wide immediate) on page D2-778

MOV (bitmask immediate) Move (bitmask immediate) D2.104 MOV (bitmask immediate) on page D2-779

MOV (register) Move (register) D2.105 MOV (register) on page D2-780

MOVK Move wide with keep D2.106 MOVK on page D2-781

MOVL pseudo-instruction Load a register with either a 32-bit or 64-bit
immediate value or any address

MOVN Move wide with NOT D2.107 MOVN on page D2-782

MOVZ Move wide with zero D2.108 MOVZ on page D2-783

MRS Move System Register D2.109 MRS on page D2-784

MSR (immediate) Move immediate value to Special Register D2.110 MSR (immediate) on page D2-785

MSR (register) Move general-purpose register to System
Register

D2.111 MSR (register) on page D2-786

MSUB Multiply-Subtract D2.112 MSUB on page D2-787

MUL Multiply D2.113 MUL on page D2-788

MVN Bitwise NOT D2.114 MVN on page D2-789

NEG (shifted register) Negate (shifted register) D2.115 NEG (shifted register) on page D2-790

NEGS Negate, setting flags D2.116 NEGS on page D2-791

NGC Negate with Carry D2.117 NGC on page D2-792

NGCS Negate with Carry, setting flags D2.118 NGCS on page D2-793

NOP No Operation D2.119 NOP on page D2-794

ORN (shifted register) Bitwise OR NOT (shifted register) D2.120 ORN (shifted register) on page D2-795

ORR (immediate) Bitwise OR (immediate) D2.121 ORR (immediate) on page D2-796

ORR (shifted register) Bitwise OR (shifted register) D2.122 ORR (shifted register) on page D2-797

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-665
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

PACDA, PACDZA Pointer Authentication Code for Data
address, using key A

D2.123 PACDA, PACDZA on page D2-798

PACDB, PACDZB Pointer Authentication Code for Data
address, using key B

D2.124 PACDB, PACDZB on page D2-799

PACGA Pointer Authentication Code, using Generic
key

D2.125 PACGA on page D2-800

PACIA, PACIZA,
PACIA1716, PACIASP,
PACIAZ

Pointer Authentication Code for Instruction
address, using key A

D2.126 PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ
on page D2-801

PACIB, PACIZB,
PACIB1716, PACIBSP,
PACIBZ

Pointer Authentication Code for Instruction
address, using key B

D2.127 PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ
on page D2-802

PSB Profiling Synchronization Barrier D2.128 PSB on page D2-803

RBIT Reverse Bits D2.129 RBIT on page D2-804

RET Return from subroutine D2.130 RET on page D2-805

RETAA, RETAB Return from subroutine, with pointer
authentication

D2.131 RETAA, RETAB on page D2-806

REV16 Reverse bytes in 16-bit halfwords D2.132 REV16 on page D2-807

REV32 Reverse bytes in 32-bit words D2.133 REV32 on page D2-808

REV64 Reverse Bytes D2.134 REV64 on page D2-809

REV Reverse Bytes D2.135 REV on page D2-810

ROR (immediate) Rotate right (immediate) D2.136 ROR (immediate) on page D2-811

ROR (register) Rotate Right (register) D2.137 ROR (register) on page D2-812

RORV Rotate Right Variable D2.138 RORV on page D2-813

SBC Subtract with Carry D2.139 SBC on page D2-814

SBCS Subtract with Carry, setting flags D2.140 SBCS on page D2-815

SBFIZ Signed Bitfield Insert in Zero D2.141 SBFIZ on page D2-816

SBFM Signed Bitfield Move D2.142 SBFM on page D2-817

SBFX Signed Bitfield Extract D2.143 SBFX on page D2-818

SDIV Signed Divide D2.144 SDIV on page D2-819

SEV Send Event D2.145 SEV on page D2-820

SEVL Send Event Local D2.146 SEVL on page D2-821

SMADDL Signed Multiply-Add Long D2.147 SMADDL on page D2-822

SMC Supervisor call to allow OS or Hypervisor
code to call the Secure Monitor

D2.148 SMC on page D2-823

SMNEGL Signed Multiply-Negate Long D2.149 SMNEGL on page D2-824

SMSUBL Signed Multiply-Subtract Long D2.150 SMSUBL on page D2-825

SMULH Signed Multiply High D2.151 SMULH on page D2-826

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-666
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

SMULL Signed Multiply Long D2.152 SMULL on page D2-827

ST2G Store Allocation Tags D2.153 ST2G on page D2-828

STG Store Allocation Tag D2.154 STG on page D2-829

STGP Store Allocation Tag and Pair of registers. D2.155 STGP on page D2-830

STGV Store Tag Vector D2.156 STGV on page D2-831

STZ2G Store Allocation Tags, Zeroing D2.157 STZ2G on page D2-832

STZG Store Allocation Tag, Zeroing D2.158 STZG on page D2-833

SUB (extended register) Subtract (extended register) D2.159 SUB (extended register) on page D2-834

SUB (immediate) Subtract (immediate) D2.160 SUB (immediate) on page D2-836

SUB (shifted register) Subtract (shifted register) D2.161 SUB (shifted register) on page D2-837

SUBG Subtract with Tag D2.162 SUBG on page D2-838

SUBP Subtract Pointer D2.163 SUBP on page D2-839

SUBPS Subtract Pointer, setting Flags D2.164 SUBPS on page D2-840

SUBS (extended register) Subtract (extended register), setting flags D2.165 SUBS (extended register) on page D2-841

SUBS (immediate) Subtract (immediate), setting flags D2.166 SUBS (immediate) on page D2-843

SUBS (shifted register) Subtract (shifted register), setting flags D2.167 SUBS (shifted register) on page D2-844

SVC Supervisor call to allow application code to
call the OS

D2.168 SVC on page D2-845

SXTB Signed Extend Byte D2.169 SXTB on page D2-846

SXTH Sign Extend Halfword D2.170 SXTH on page D2-847

SXTW Sign Extend Word D2.171 SXTW on page D2-848

SYS System instruction D2.172 SYS on page D2-849

SYSL System instruction with result D2.173 SYSL on page D2-850

TBNZ Test bit and Branch if Nonzero D2.174 TBNZ on page D2-851

TBZ Test bit and Branch if Zero D2.175 TBZ on page D2-852

TLBI TLB Invalidate operation D2.176 TLBI on page D2-853

TST (immediate) , setting the condition flags and discarding
the result

D2.177 TST (immediate) on page D2-855

TST (shifted register) Test (shifted register) D2.178 TST (shifted register) on page D2-856

UBFIZ Unsigned Bitfield Insert in Zero D2.179 UBFIZ on page D2-857

UBFM Unsigned Bitfield Move D2.180 UBFM on page D2-858

UBFX Unsigned Bitfield Extract D2.181 UBFX on page D2-859

UDIV Unsigned Divide D2.182 UDIV on page D2-860

UMADDL Unsigned Multiply-Add Long D2.183 UMADDL on page D2-861

UMNEGL Unsigned Multiply-Negate Long D2.184 UMNEGL on page D2-862

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-667
Non-Confidential

Table D2-1 Summary of A64 general instructions (continued)

Mnemonic Brief description See

UMSUBL Unsigned Multiply-Subtract Long D2.185 UMSUBL on page D2-863

UMULH Unsigned Multiply High D2.186 UMULH on page D2-864

UMULL Unsigned Multiply Long D2.187 UMULL on page D2-865

UXTB Unsigned Extend Byte D2.188 UXTB on page D2-866

UXTH Unsigned Extend Halfword D2.189 UXTH on page D2-867

WFE Wait For Event D2.191 WFE on page D2-869

WFI Wait For Interrupt D2.192 WFI on page D2-870

XAFlag Convert floating-point condition flags from
external format to Arm format

D2.190 XAFlag on page D2-868

XPACD, XPACI, XPACLRI Strip Pointer Authentication Code D2.193 XPACD, XPACI, XPACLRI on page D2-871

YIELD YIELD D2.194 YIELD on page D2-872

D2 A64 General Instructions
D2.1 A64 instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-668
Non-Confidential

D2.2 Register restrictions for A64 instructions
In A64 instructions, the general-purpose integer registers are W0-W30 for 32-bit registers and X0-X30
for 64-bit registers.

You cannot refer to register 31 by number. In a few instructions, you can refer to it using one of the
following names:

WSP

the current stack pointer in a 32-bit context.

SP

the current stack pointer in a 64-bit context.

WZR

the zero register in a 32-bit context.

XZR

the zero register in a 64-bit context.

You can only use one of these names if it is mentioned in the Syntax section for the instruction.

You cannot refer to the Program Counter (PC) explicitly by name or by number.

D2 A64 General Instructions
D2.2 Register restrictions for A64 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-669
Non-Confidential

D2.3 ADC
Add with Carry.

Syntax

ADC Wd, Wn, Wm ; 32-bit

ADC Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination
register.

Rd = Rn + Rm + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.3 ADC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-670
Non-Confidential

D2.4 ADCS
Add with Carry, setting flags.

Syntax

ADCS Wd, Wn, Wm ; 32-bit

ADCS Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to
the destination register. It updates the condition flags based on the result.

Rd = Rn + Rm + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.4 ADCS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-671
Non-Confidential

D2.5 ADD (extended register)
Add (extended register).

Syntax

ADD Wd|WSP, Wn|WSP, Wm{, extend {#amount}} ; 32-bit

ADD Xd|SP, Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rd or Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when
amount is 0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rd or Rn is SP then LSL is preferred rather than UXTX, and can be omitted when
amount is 0. In all other cases extend is required and must be UXTX rather than LSL.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an
optional left shift amount, and writes the result to the destination register. The argument that is extended
from the Rm register can be a byte, halfword, word, or doubleword.

Rd = Rn + LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.5 ADD (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-672
Non-Confidential

Usage

Table D2-2 ADD (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.5 ADD (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-673
Non-Confidential

D2.6 ADD (immediate)
Add (immediate).

This instruction is used by the alias MOV (to or from SP).

Syntax

ADD Wd|WSP, Wn|WSP, #imm{, shift} ; 32-bit

ADD Xd|SP, Xn|SP, #imm{, shift} ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to
the destination register.

Rd = Rn + shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.6 ADD (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-674
Non-Confidential

D2.7 ADD (shifted register)
Add (shifted register).

Syntax

ADD Wd, Wn, Wm{, shift #amount} ; 32-bit

ADD Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result
to the destination register.

Rd = Rn + shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.7 ADD (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-675
Non-Confidential

D2.8 ADDG
Add with Tag.

Syntax

ADDG Xd|SP, Xn|SP, #<uimm6>, #<uimm4>

Where:

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

<uimm6>
Is an unsigned immediate, a multiple of 16 in the range 0 to 1008.

<uimm4>
Is an unsigned immediate, in the range 0 to 15.

Architectures supported

Supported in Armv8.5 and later.

Usage

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register,
modifies the Logical Address Tag of the address using an immediate value, and writes the result to the
destination register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when
modifying the Logical Address Tag.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.8 ADDG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-676
Non-Confidential

D2.9 ADDS (extended register)
Add (extended register), setting flags.

This instruction is used by the alias CMN (extended register).

Syntax

ADDS Wd, Wn|WSP, Wm{, extend {#amount}} ; 32-bit

ADDS Xd, Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when amount is
0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is SP then LSL is preferred rather than UXTX, and can be omitted when amount is 0.
In all other cases extend is required and must be UXTX rather than LSL.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value,
followed by an optional left shift amount, and writes the result to the destination register. The argument
that is extended from the Rm register can be a byte, halfword, word, or doubleword. It updates the
condition flags based on the result.

Rd = Rn + LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.9 ADDS (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-677
Non-Confidential

Usage

Table D2-3 ADDS (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.9 ADDS (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-678
Non-Confidential

D2.10 ADDS (immediate)
Add (immediate), setting flags.

This instruction is used by the alias CMN (immediate).

Syntax

ADDS Wd, Wn|WSP, #imm{, shift} ; 32-bit

ADDS Xd, Xn|SP, #imm{, shift} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and
writes the result to the destination register. It updates the condition flags based on the result.

Rd = Rn + shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.10 ADDS (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-679
Non-Confidential

D2.11 ADDS (shifted register)
Add (shifted register), setting flags.

This instruction is used by the alias CMN (shifted register).

Syntax

ADDS Wd, Wn, Wm{, shift #amount} ; 32-bit

ADDS Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and
writes the result to the destination register. It updates the condition flags based on the result.

Rd = Rn + shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.11 ADDS (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-680
Non-Confidential

D2.12 ADR
Form PC-relative address.

Syntax

ADR Xd, label

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

label
Is the program label whose address is to be calculated. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and
writes the result to the destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.12 ADR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-681
Non-Confidential

D2.13 ADRP
Form PC-relative address to 4KB page.

Syntax

ADRP Xd, label

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

label
Is the program label whose 4KB page address is to be calculated. Its offset from the page
address of this instruction, in the range ±4GB.

Usage

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC
value to form a PC-relative address, with the bottom 12 bits masked out, and writes the result to the
destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.13 ADRP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-682
Non-Confidential

D2.14 AND (immediate)
Bitwise AND (immediate).

Syntax

AND Wd|WSP, Wn, #imm ; 32-bit

AND Xd|SP, Xn, #imm ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn
Is the 32-bit name of the general-purpose source register.

imm
The bitmask immediate.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and
writes the result to the destination register.

Rd = Rn AND imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.14 AND (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-683
Non-Confidential

D2.15 AND (shifted register)
Bitwise AND (shifted register).

Syntax

AND Wd, Wn, Wm{, shift #amount} ; 32-bit

AND Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register.

Rd = Rn AND shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.15 AND (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-684
Non-Confidential

D2.16 ANDS (immediate)
Bitwise AND (immediate), setting flags.

This instruction is used by the alias TST (immediate).

Syntax

ANDS Wd, Wn, #imm ; 32-bit

ANDS Xd, Xn, #imm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

imm
The bitmask immediate.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate
value, and writes the result to the destination register. It updates the condition flags based on the result.

Rd = Rn AND imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.16 ANDS (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-685
Non-Confidential

D2.17 ANDS (shifted register)
Bitwise AND (shifted register), setting flags.

This instruction is used by the alias TST (shifted register).

Syntax

ANDS Wd, Wn, Wm{, shift #amount} ; 32-bit

ANDS Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an
optionally-shifted register value, and writes the result to the destination register. It updates the condition
flags based on the result.

Rd = Rn AND shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.17 ANDS (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-686
Non-Confidential

D2.18 ASR (register)
Arithmetic Shift Right (register).

This instruction is an alias of ASRV.

The equivalent instruction is ASRV Wd, Wn, Wm.

Syntax

ASR Wd, Wn, Wm ; 32-bit

ASR Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. The remainder obtained by dividing
the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

Rd = ASR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.18 ASR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-687
Non-Confidential

D2.19 ASR (immediate)
Arithmetic Shift Right (immediate).

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Wd, Wn, #shift, #31.

Syntax

ASR Wd, Wn, #shift ; 32-bit

ASR Xd, Xn, #shift ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

shift

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31.

64-bit general registers
Is the shift amount, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting
in copies of the sign bit in the upper bits and zeros in the lower bits, and writes the result to the
destination register.

Rd = ASR(Rn, shift), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.19 ASR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-688
Non-Confidential

D2.20 ASRV
Arithmetic Shift Right Variable.

This instruction is used by the alias ASR (register).

Syntax

ASRV Wd, Wn, Wm ; 32-bit

ASRV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. The remainder obtained by dividing
the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

Rd = ASR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.20 ASRV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-689
Non-Confidential

D2.21 AT
Address Translate.

This instruction is an alias of SYS.

The equivalent instruction is SYS #op1, C7, Cm, #op2, Xt.

Syntax

AT at_op, Xt

Where:

at_op
Is an AT instruction name, as listed for the AT system instruction group, and can be one of the
values shown in Usage.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt
Is the 64-bit name of the general-purpose source register.

Usage

Address Translate. For more information, see A64 system instructions for address translation in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The following table shows the valid specifier combinations:

Table D2-4 SYS parameter values corresponding to AT operations

at_op op1 Cm op2

S12E0R 4 0 6

S12E0W 4 0 7

S12E1R 4 0 4

S12E1W 4 0 5

S1E0R 0 0 2

S1E0W 0 0 3

S1E1R 0 0 0

S1E1RP 0 1 0

S1E1W 0 0 1

S1E1WP 0 1 1

S1E2R 4 0 0

S1E2W 4 0 1

S1E3R 6 0 0

S1E3W 6 0 1

D2 A64 General Instructions
D2.21 AT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-690
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.21 AT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-691
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.22 AUTDA, AUTDZA
Authenticate Data address, using key A.

Syntax

AUTDA Xd, Xn|SP ; AUTDA general registers

AUTDZA Xd ; AUTDZA general registers

Where:

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier
and key A.

The address is in the general-purpose register that is specified by Xd.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for AUTDA.
• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the
address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address
results in a Translation fault.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.22 AUTDA, AUTDZA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-692
Non-Confidential

D2.23 AUTDB, AUTDZB
Authenticate Data address, using key B.

Syntax

AUTDB Xd, Xn|SP ; AUTDB general registers

AUTDZB Xd ; AUTDZB general registers

Where:

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier
and key B.

The address is in the general-purpose register that is specified by Xd.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for AUTDB.
• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the
address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address
results in a Translation fault.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.23 AUTDB, AUTDZB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-693
Non-Confidential

D2.24 AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ
Authenticate Instruction address, using key A.

Syntax

AUTIA Xd, Xn|SP

AUTIZA Xd

AUTIA1716

AUTIASP

AUTIAZ

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using
a modifier and key A.

The address is:

• In the general-purpose register that is specified by Xd for AUTIA and AUTIZA.
• In X17, for AUTIA1716.
• In X30, for AUTIASP and AUTIAZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for AUTIA.
• The value zero, for AUTIZA and AUTIAZ.
• In X16, for AUTIA1716.
• In SP, for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the
address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address
results in a Translation fault.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.24 AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-694
Non-Confidential

D2.25 AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ
Authenticate Instruction address, using key B.

Syntax

AUTIB Xd, Xn|SP

AUTIZB Xd

AUTIB1716

AUTIBSP

AUTIBZ

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using
a modifier and key B.

The address is:

• In the general-purpose register that is specified by Xd for AUTIB and AUTIZB.
• In X17, for AUTIB1716.
• In X30, for AUTIBSP and AUTIBZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for AUTIB.
• The value zero, for AUTIZB and AUTIBZ.
• In X16, for AUTIB1716.
• In SP, for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the
address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address
results in a Translation fault.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.25 AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-695
Non-Confidential

D2.26 AXFlag
Convert floating-point condition flags from Arm to external format.

Syntax

AXFlag

Architectures supported

Supported in Armv8.5 and later.

Usage

Convert floating-point condition flags from Arm to external format. This instruction converts the state of
the PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar
compare instruction to an alternative representation required by some software.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.26 AXFlag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-696
Non-Confidential

D2.27 B.cond
Branch conditionally.

Syntax

B.cond label

Where:

cond
Is one of the standard conditions.

label
Is the program label to be conditionally branched to. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or
return.

Related reference
Condition code suffixes and related flags
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.27 B.cond

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-697
Non-Confidential

D2.28 B
Branch.

Syntax

B label

Where:

label
Is the program label to be unconditionally branched to. Its offset from the address of this
instruction, in the range ±128MB. The branch can be forward or backward within 128MB.

Usage

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a
subroutine call or return.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.28 B

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-698
Non-Confidential

D2.29 BFC
Bitfield Clear, leaving other bits unchanged.

This instruction is an alias of BFM.

The equivalent instruction is BFM Wd, WZR, #(-lsb MOD 32), #(width-1).

Syntax

BFC Wd, #lsb, #width ; 32-bit

BFC Xd, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in the Armv8.2 architecture and later.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.29 BFC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-699
Non-Confidential

D2.30 BFI
Bitfield Insert.

This instruction is an alias of BFM.

The equivalent instruction is BFM Wd, Wn, #(-lsb MOD 32), #(width-1).

Syntax

BFI Wd, Wn, #lsb, #width ; 32-bit

BFI Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Bitfield Insert copies any number of low-order bits from a source register into the same number of
adjacent bits at any position in the destination register, leaving other bits unchanged.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.30 BFI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-700
Non-Confidential

D2.31 BFM
Bitfield Move.

This instruction is used by the aliases:
• BFC.
• BFI.
• BFXIL.

Syntax

BFM Wd, Wn, #<immr>, #<imms> ; 32-bit

BFM Xd, Xn, #<immr>, #<imms> ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

<immr>

Depends on the instruction variant:

32-bit general registers
Is the right rotate amount, in the range 0 to 31.

64-bit general registers
Is the right rotate amount, in the range 0 to 63.

<imms>

Depends on the instruction variant:

32-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Bitfield Move copies any number of low-order bits from a source register into the same number of
adjacent bits at any position in the destination register, leaving other bits unchanged.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.31 BFM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-701
Non-Confidential

D2.32 BFXIL
Bitfield extract and insert at low end.

This instruction is an alias of BFM.

The equivalent instruction is BFM Wd, Wn, #lsb, #(lsb+width-1).

Syntax

BFXIL Wd, Wn, #lsb, #width ; 32-bit

BFXIL Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Bitfield extract and insert at low end copies any number of low-order bits from a source register into the
same number of adjacent bits at the low end in the destination register, leaving other bits unchanged.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.32 BFXIL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-702
Non-Confidential

D2.33 BIC (shifted register)
Bitwise Bit Clear (shifted register).

Syntax

BIC Wd, Wn, Wm{, shift #amount} ; 32-bit

BIC Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

Rd = Rn AND NOT shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.33 BIC (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-703
Non-Confidential

D2.34 BICS (shifted register)
Bitwise Bit Clear (shifted register), setting flags.

Syntax

BICS Wd, Wn, Wm{, shift #amount} ; 32-bit

BICS Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the
complement of an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

Rd = Rn AND NOT shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.34 BICS (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-704
Non-Confidential

D2.35 BL
Branch with Link.

Syntax

BL label

Where:

label
Is the program label to be unconditionally branched to. Its offset from the address of this
instruction, in the range ±128MB. The branch can be forward or backward within 128MB.

Usage

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint
that this is a subroutine call.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.35 BL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-705
Non-Confidential

D2.36 BLR
Branch with Link to Register.

Syntax

BLR Xn

Where:

Xn
Is the 64-bit name of the general-purpose register holding the address to be branched to.

Usage

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.36 BLR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-706
Non-Confidential

D2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ
Branch with Link to Register, with pointer authentication.

Syntax

BLRAA Xn, Xm|SP ; BLRAA general registers

BLRAAZ Xn ; BLRAAZ general registers

BLRAB Xn, Xm|SP ; BLRAB general registers

BLRABZ Xn ; BLRABZ general registers

Where:

Xn
Is the 64-bit name of the general-purpose register holding the address to be branched to.

Xm|SP
Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in
the general-purpose register that is specified by Xn, using a modifier and the specified key, and calls a
subroutine at the authenticated address, setting register X30 to PC+4.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xm|SP for BLRAA and BLRAB.
• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication
fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.37 BLRAA, BLRAAZ, BLRAB, BLRABZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-707
Non-Confidential

D2.38 BR
Branch to Register.

Syntax

BR Xn

Where:

Xn
Is the 64-bit name of the general-purpose register holding the address to be branched to.

Usage

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a
subroutine return.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.38 BR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-708
Non-Confidential

D2.39 BRAA, BRAAZ, BRAB, BRABZ
Branch to Register, with pointer authentication.

Syntax

BRAA Xn, Xm|SP ; BRAA general registers

BRAAZ Xn ; BRAAZ general registers

BRAB Xn, Xm|SP ; BRAB general registers

BRABZ Xn ; BRABZ general registers

Where:

Xn
Is the 64-bit name of the general-purpose register holding the address to be branched to.

Xm|SP
Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier.

Architectures supported

Supported in the Armv8.3-A architecture and later.

Usage

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-
purpose register that is specified by Xn, using a modifier and the specified key, and branches to the
authenticated address.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xm|SP for BRAA and BRAB.
• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication
fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.39 BRAA, BRAAZ, BRAB, BRABZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-709
Non-Confidential

D2.40 BRK
Breakpoint instruction.

Syntax

BRK #imm

Where:

imm
Is a 16-bit unsigned immediate, in the range 0 to 65535.

Usage

Breakpoint instruction generates a Breakpoint Instruction exception. The PE records the exception in
ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in ESR_ELx.ISS.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.40 BRK

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-710
Non-Confidential

D2.41 BTI
Branch Target Identification.

Syntax

BTI {<targets>}

Where:

<targets>
Is the type of indirection, and can be one of:
c

Branch Target Identification for function calls. Checks that the two bits,
PSTATE.BTYPE, match the value set by BLR instructions. Instruction faults on
mismatch.

j

Branch Target Identification for jumps. Checks that the two bits, PSTATE.BTYPE,
match the value set by BR instructions.

jc

Branch Target Identification for function calls or jumps. Checks that the two bits,
PSTATE.BTYPE, match either the value set by BLR or value set by BR instructions.

Architectures supported

Supported in Armv8.5 and later.

Usage

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions that
are not the intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. In a guarded memory region
with PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE
does not generate a Branch Target Exception and allows execution of subsequent instructions within the
memory region.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE which the
BTI instruction is compatible with.

 Note

In a guarded memory region, with PSTATE.BTYPE != 0b00, all instructions generate a Branch Target
Exception, other than BRK, BTI, HLT, PACIASP, and PACIBSP, which might not. See the individual
instructions for details.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.41 BTI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-711
Non-Confidential

D2.42 CBNZ
Compare and Branch on Nonzero.

Syntax

CBNZ Wt, label ; 32-bit

CBNZ Xt, label ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be tested.

Xt
Is the 64-bit name of the general-purpose register to be tested.

label
Is the program label to be conditionally branched to. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches
to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a
subroutine call or return. This instruction does not affect the condition flags.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.42 CBNZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-712
Non-Confidential

D2.43 CBZ
Compare and Branch on Zero.

Syntax

CBZ Wt, label ; 32-bit

CBZ Xt, label ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be tested.

Xt
Is the 64-bit name of the general-purpose register to be tested.

label
Is the program label to be conditionally branched to. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a
label at a PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call
or return. This instruction does not affect condition flags.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.43 CBZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-713
Non-Confidential

D2.44 CCMN (immediate)
Conditional Compare Negative (immediate).

Syntax

CCMN Wn, #imm, #nzcv, cond ; 32-bit

CCMN Xn, #imm, #nzcv, cond ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Xn
Is the 64-bit name of the first general-purpose source register.

imm
Is a five bit unsigned immediate.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

Operation

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the
comparison of a register value and a negated immediate value if the condition is TRUE, and an
immediate value otherwise.

flags = if cond then compare(Rn, #-imm) else #nzcv, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.44 CCMN (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-714
Non-Confidential

D2.45 CCMN (register)
Conditional Compare Negative (register).

Syntax

CCMN Wn, Wm, #nzcv, cond ; 32-bit

CCMN Xn, Xm, #nzcv, cond ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

Operation

Conditional Compare Negative (register) sets the value of the condition flags to the result of the
comparison of a register value and the inverse of another register value if the condition is TRUE, and an
immediate value otherwise.

flags = if cond then compare(Rn, -Rm) else #nzcv, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.45 CCMN (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-715
Non-Confidential

D2.46 CCMP (immediate)
Conditional Compare (immediate).

Syntax

CCMP Wn, #imm, #nzcv, cond ; 32-bit

CCMP Xn, #imm, #nzcv, cond ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Xn
Is the 64-bit name of the first general-purpose source register.

imm
Is a five bit unsigned immediate.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

Operation

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of
a register value and an immediate value if the condition is TRUE, and an immediate value otherwise.

flags = if cond then compare(Rn, #imm) else #nzcv, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.46 CCMP (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-716
Non-Confidential

D2.47 CCMP (register)
Conditional Compare (register).

Syntax

CCMP Wn, Wm, #nzcv, cond ; 32-bit

CCMP Xn, Xm, #nzcv, cond ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

Operation

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of
two registers if the condition is TRUE, and an immediate value otherwise.

flags = if cond then compare(Rn, Rm) else #nzcv, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.47 CCMP (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-717
Non-Confidential

D2.48 CINC
Conditional Increment.

This instruction is an alias of CSINC.

The equivalent instruction is CSINC Wd, Wn, Wn, invert(cond).

Syntax

CINC Wd, Wn, cond ; 32-bit

CINC Xd, Xn, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

cond
Is one of the standard conditions, excluding AL and NV.

Operation

Conditional Increment returns, in the destination register, the value of the source register incremented by
1 if the condition is TRUE, and otherwise returns the value of the source register.

Rd = if cond then Rn+1 else Rn, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.48 CINC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-718
Non-Confidential

D2.49 CINV
Conditional Invert.

This instruction is an alias of CSINV.

The equivalent instruction is CSINV Wd, Wn, Wn, invert(cond).

Syntax

CINV Wd, Wn, cond ; 32-bit

CINV Xd, Xn, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

cond
Is one of the standard conditions, excluding AL and NV.

Operation

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source
register if the condition is TRUE, and otherwise returns the value of the source register.

Rd = if cond then NOT(Rn) else Rn, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.49 CINV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-719
Non-Confidential

D2.50 CLREX
Clear Exclusive.

Syntax

CLREX {#imm}

Where:

imm
Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15.

Usage

Clear Exclusive clears the local monitor of the executing PE.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.50 CLREX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-720
Non-Confidential

D2.51 CLS
Count leading sign bits.

Syntax

CLS Wd, Wn ; 32-bit

CLS Xd, Xn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Rd = CLS(Rn), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.51 CLS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-721
Non-Confidential

D2.52 CLZ
Count leading zero bits.

Syntax

CLZ Wd, Wn ; 32-bit

CLZ Xd, Xn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Rd = CLZ(Rn), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.52 CLZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-722
Non-Confidential

D2.53 CMN (extended register)
Compare Negative (extended register).

This instruction is an alias of ADDS (extended register).

The equivalent instruction is ADDS WZR, Wn|WSP, Wm{, extend {#amount}}.

Syntax

CMN Wn|WSP, Wm{, extend {#amount}} ; 32-bit

CMN Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when amount is
0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is SP then LSL is preferred rather than UXTX, and can be omitted when amount is 0.
In all other cases extend is required and must be UXTX rather than LSL.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Compare Negative (extended register) adds a register value and a sign or zero-extended register value,
followed by an optional left shift amount. The argument that is extended from the Rm register can be a
byte, halfword, word, or doubleword. It updates the condition flags based on the result, and discards the
result.

Rn + LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.53 CMN (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-723
Non-Confidential

Usage

Table D2-5 CMN (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.53 CMN (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-724
Non-Confidential

D2.54 CMN (immediate)
Compare Negative (immediate).

This instruction is an alias of ADDS (immediate).

The equivalent instruction is ADDS WZR, Wn|WSP, #imm {, shift}.

Syntax

CMN Wn|WSP, #imm{, shift} ; 32-bit

CMN Xn|SP, #imm{, shift} ; 64-bit

Where:

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It
updates the condition flags based on the result, and discards the result.

Rn + shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.54 CMN (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-725
Non-Confidential

D2.55 CMN (shifted register)
Compare Negative (shifted register).

This instruction is an alias of ADDS (shifted register).

The equivalent instruction is ADDS WZR, Wn, Wm {, shift #amount}.

Syntax

CMN Wn, Wm{, shift #amount} ; 32-bit

CMN Xn, Xm{, shift #amount} ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.

Rn + shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.55 CMN (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-726
Non-Confidential

D2.56 CMP (extended register)
Compare (extended register).

This instruction is an alias of SUBS (extended register).

The equivalent instruction is SUBS WZR, Wn|WSP, Wm{, extend {#amount}}.

Syntax

CMP Wn|WSP, Wm{, extend {#amount}} ; 32-bit

CMP Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when amount is
0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is SP then LSL is preferred rather than UXTX, and can be omitted when amount is 0.
In all other cases extend is required and must be UXTX rather than LSL.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left
shift amount, from a register value. The argument that is extended from the Rm register can be a byte,
halfword, word, or doubleword. It updates the condition flags based on the result, and discards the result.

Rn - LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.56 CMP (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-727
Non-Confidential

Usage

Table D2-6 CMP (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.56 CMP (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-728
Non-Confidential

D2.57 CMP (immediate)
Compare (immediate).

This instruction is an alias of SUBS (immediate).

The equivalent instruction is SUBS WZR, Wn|WSP, #imm {, shift}.

Syntax

CMP Wn|WSP, #imm{, shift} ; 32-bit

CMP Xn|SP, #imm{, shift} ; 64-bit

Where:

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates
the condition flags based on the result, and discards the result.

Rn - shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.57 CMP (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-729
Non-Confidential

D2.58 CMP (shifted register)
Compare (shifted register).

This instruction is an alias of SUBS (shifted register).

The equivalent instruction is SUBS WZR, Wn, Wm {, shift #amount}.

Syntax

CMP Wn, Wm{, shift #amount} ; 32-bit

CMP Xn, Xm{, shift #amount} ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates
the condition flags based on the result, and discards the result.

Rn - shift(Rm,amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.58 CMP (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-730
Non-Confidential

D2.59 CMPP
Compare with Tag.

This instruction is an alias of SUBPS.

The equivalent instruction is SUBPS XZR, Xn|SP, Xm|SP.

Syntax

CMPP Xn|SP, Xm|SP

Where:

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

Xm|SP
Is the 64-bit name of the second general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, updates the condition flags based on the result of the subtraction, and
discards the result.

Related reference
D2.164 SUBPS on page D2-840
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.59 CMPP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-731
Non-Confidential

D2.60 CNEG
Conditional Negate.

This instruction is an alias of CSNEG.

The equivalent instruction is CSNEG Wd, Wn, Wn, invert(cond).

Syntax

CNEG Wd, Wn, cond ; 32-bit

CNEG Xd, Xn, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

cond
Is one of the standard conditions, excluding AL and NV.

Operation

Conditional Negate returns, in the destination register, the negated value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

Rd = if cond then -Rn else Rn, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.60 CNEG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-732
Non-Confidential

D2.61 CRC32B, CRC32H, CRC32W, CRC32X
CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-
purpose register.

Syntax

CRC32B Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[<7:0>])

CRC32H Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[<15:0>])

CRC32W Wd, Wn, Wm ; Wd = CRC32(Wn, Rm[<31:0>])

CRC32X Wd, Wn, Xm ; Wd = CRC32(Wn, Rm[<63:0>])

Where:

Wm
Is the 32-bit name of the general-purpose data source register.

Xm
Is the 64-bit name of the general-purpose data source register.

Wd
Is the 32-bit name of the general-purpose accumulator output register.

Wn
Is the 32-bit name of the general-purpose accumulator input register.

Operation
This instruction takes an input CRC value in the first source operand, performs a CRC on the input value
in the second source operand, and returns the output CRC value. The second source operand can be 8,
16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the
operation, and the polynomial 0x04C11DB7 is used for the CRC calculation.

 Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported. See ID_AA64ISAR0_EL1
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Wd = CRC32(Wn, Rm<n:0>) // n = 7, 15, 31, 63.

Architectures supported

Supported in architecture Armv8.1 and later. Optionally supported in Armv8‑A.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.61 CRC32B, CRC32H, CRC32W, CRC32X

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-733
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.62 CRC32CB, CRC32CH, CRC32CW, CRC32CX
CRC32C checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-
purpose register.

Syntax

CRC32CB Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[<7:0>])

CRC32CH Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[<15:0>])

CRC32CW Wd, Wn, Wm ; Wd = CRC32C(Wn, Rm[<31:0>])

CRC32CX Wd, Wn, Xm ; Wd = CRC32C(Wn, Rm[<63:0>])

Where:

Wm
Is the 32-bit name of the general-purpose data source register.

Xm
Is the 64-bit name of the general-purpose data source register.

Wd
Is the 32-bit name of the general-purpose accumulator output register.

Wn
Is the 32-bit name of the general-purpose accumulator input register.

Operation
This instruction takes an input CRC value in the first source operand, performs a CRC on the input value
in the second source operand, and returns the output CRC value. The second source operand can be 8,
16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the
operation, and the polynomial 0x1EDC6F41 is used for the CRC calculation.

 Note

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported. See ID_AA64ISAR0_EL1
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Wd = CRC32C(Wn, Rm<n:0>) // n = 7, 15, 31, 63.

Architectures supported

Supported in architecture Armv8.1 and later. Optionally supported in Armv8‑A.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.62 CRC32CB, CRC32CH, CRC32CW, CRC32CX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-734
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.63 CSDB
Consumption of Speculative Data Barrier.

Syntax

CSDB

Usage

Consumption of Speculative Data Barrier is a memory barrier that controls Speculative execution and
data value prediction. Arm Compiler supports the mitigation of the Variant 1 mechanism that is described
in the whitepaper at Vulnerability of Speculative Processors to Cache Timing Side-Channel Mechanism.

The CSDB instruction allows Speculative execution of:

• Branch instructions.
• Instructions that are not a result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from conditional branch

instructions.
• Instructions that are not a result of predictions of SVE prediction state for any SVE instructions.

The CSDB instruction prevents Speculative execution of:
• Non-branch instructions.
• Instructions that are the result of data value predictions.
• Instructions that are the result of PSTATE.{N,Z,C,V} predictions from instructions other than

conditional branch instructions.
• Instructions that are the result of predictions of SVE prediction state for any SVE instructions.

Examples

The following example shows a code sequence that could result in the processor loading data from an
untrusted location that is provided by a user as the result of Speculative execution of instructions:

 CMP X0, X1
 BGE out_of_range
 LDRB W4, [X5, X0] ; load data from list A
 ; speculative execution of this instruction
 ; must be prevented
 AND X4, X4, #1
 LSL X4, X4, #8
 ADD X4, X4, #0x200
 CMP X4, X6
 BGE out_of_range
 LDRB X7, [X8, X4] ; load data from list B
out_of_range

In this example:

• There are two list objects A and B.
• A contains a list of values that are used to calculate offsets from which data can be loaded from B.
• X1 is the length of A.
• X5 is the base address of A.
• X6 is the length of B.
• X8 is the base address of B.
• X0 is an untrusted offset that is provided by a user, and is used to load an element from A.

When X0 is greater-than or equal-to the length of A, it is outside the address range of A. Therefore, the
first branch instruction BGE out_of_range is taken, and instructions LDRB W4, [X5, X0] through LDRB
X7, [X8, X4] are skipped.

D2 A64 General Instructions
D2.63 CSDB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-735
Non-Confidential

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

Without a CSDB instruction, these skipped instructions can still be Speculatively executed:
• If X0 is maliciously set to an incorrect value, then data can be loaded into W4 from an address

outside the address range of A.
• Data can be loaded into X7 from an address outside the address range of B.

To mitigate against these untrusted accesses, add a pair of CSEL and CSDB instructions between the BGE
out_of_range and LDRB W4, [X5, X0] instructions as follows:

 CMP X0, X1
 BGE out_of_range

 CSEL X0, XZR, X0, GE ; conditonally clears the untrusted
 ; offset provided by the user so that
 ; it cannot affect any other code

 CSDB ; new barrier instruction

 LDRB W4, [X5, X0] ; load data from list A
 ; speculative execution of this instruction
 ; is prevented
 AND X4, X4, #1
 LSL X4, X4, #8
 ADD X4, X4, #0x200
 CMP X4, X6
 BGE out_of_range
 LDRB X7, [X8, X4] ; load data from list B
out_of_range

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
D2.64 CSEL on page D2-737
Related information
Arm Processor Security Update
Compiler support for mitigations

D2 A64 General Instructions
D2.63 CSDB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-736
Non-Confidential

https://developer.arm.com/support/security-update
https://developer.arm.com/support/security-update/compiler-support-for-mitigations

D2.64 CSEL
Conditional Select.

Syntax

CSEL Wd, Wn, Wm, cond ; 32-bit

CSEL Xd, Xn, Xm, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

cond
Is one of the standard conditions.

Operation

Conditional Select returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register.

Rd = if cond then Rn else Rm, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.64 CSEL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-737
Non-Confidential

D2.65 CSET
Conditional Set.

This instruction is an alias of CSINC.

The equivalent instruction is CSINC Wd, WZR, WZR, invert(cond).

Syntax

CSET Wd, cond ; 32-bit

CSET Xd, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Xd
Is the 64-bit name of the general-purpose destination register.

cond
Is one of the standard conditions, excluding AL and NV.

Operation

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

Rd = if cond then 1 else 0, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.65 CSET

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-738
Non-Confidential

D2.66 CSETM
Conditional Set Mask.

This instruction is an alias of CSINV.

The equivalent instruction is CSINV Wd, WZR, WZR, invert(cond).

Syntax

CSETM Wd, cond ; 32-bit

CSETM Xd, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Xd
Is the 64-bit name of the general-purpose destination register.

cond
Is one of the standard conditions, excluding AL and NV.

Operation

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise
sets all bits to 0.

Rd = if cond then -1 else 0, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.66 CSETM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-739
Non-Confidential

D2.67 CSINC
Conditional Select Increment.

This instruction is used by the aliases:
• CINC.
• CSET.

Syntax

CSINC Wd, Wn, Wm, cond ; 32-bit

CSINC Xd, Xn, Xm, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

cond
Is one of the standard conditions.

Operation

Conditional Select Increment returns, in the destination register, the value of the first source register if
the condition is TRUE, and otherwise returns the value of the second source register incremented by 1.

Rd = if cond then Rn else (Rm + 1), where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.67 CSINC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-740
Non-Confidential

D2.68 CSINV
Conditional Select Invert.

This instruction is used by the aliases:
• CINV.
• CSETM.

Syntax

CSINV Wd, Wn, Wm, cond ; 32-bit

CSINV Xd, Xn, Xm, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

cond
Is one of the standard conditions.

Operation

Conditional Select Invert returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the bitwise inversion value of the second source register.

Rd = if cond then Rn else NOT (Rm), where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.68 CSINV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-741
Non-Confidential

D2.69 CSNEG
Conditional Select Negation.

This instruction is used by the alias CNEG.

Syntax

CSNEG Wd, Wn, Wm, cond ; 32-bit

CSNEG Xd, Xn, Xm, cond ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

cond
Is one of the standard conditions.

Operation

Conditional Select Negation returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the negated value of the second source register.

Rd = if cond then Rn else -Rm, where R is either W or X.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.69 CSNEG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-742
Non-Confidential

D2.70 DC
Data Cache operation.

This instruction is an alias of SYS.

The equivalent instruction is SYS #op1, C7, Cm, #op2, Xt.

Syntax

DC <dc_op>, Xt

Where:

<dc_op>
Is a DC instruction name, as listed for the DC system instruction group, and can be one of the
values shown in Usage.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt
Is the 64-bit name of the general-purpose source register.

Usage

Data Cache operation. For more information, see A64 system instructions for cache maintenance in the
Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The following table shows the valid specifier combinations:

Table D2-7 SYS parameter values corresponding to DC operations

<dc_op> op1 Cm op2

CISW 0 14 2

CIVAC 3 14 1

CSW 0 10 2

CVAC 3 10 1

CVAP 3 12 1

CVAU 3 11 1

ISW 0 6 2

IVAC 0 6 1

ZVA 3 4 1

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.70 DC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-743
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.71 DCPS1
Debug Change PE State to EL1.

Syntax

DCPS1 {#imm}

Where:

imm
Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

Usage

Debug Change PE State to EL1, when executed in Debug state:

• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

• EL1 if the instruction is executed at EL0.
• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:
• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE ==
1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.71 DCPS1

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-744
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.72 DCPS2
Debug Change PE State to EL2.

Syntax

DCPS2 {#imm}

Where:

imm
Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

Usage

Debug Change PE State to EL2, when executed in Debug state:

• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

• EL2 if the instruction is executed at an exception level that is not EL3.
• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:
• All exception levels if EL2 is not implemented.
• At EL0 and EL1 in Secure state if EL2 is implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.72 DCPS2

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-745
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.73 DCPS3
Debug Change PE State to EL3.

Syntax

DCPS3 {#imm}

Where:

imm
Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0.

Usage

Debug Change PE State to EL3, when executed in Debug state:

• If executed at EL3 selects SP_EL3.
• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.
• SPSR_EL3 becomes UNKNOWN.
• ESR_EL3 becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:
• EDSCR.SDD == 1.
• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.73 DCPS3

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-746
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.74 DMB
Data Memory Barrier.

Syntax

DMB option|#imm

Where:

option
Specifies the limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access
types in both Group A and Group B. This option is referred to as the full system DMB.

ST
Full system is the required shareability domain, writes are the required access type in
both Group A and Group B.

LD
Full system is the required shareability domain, reads are the required access type in
Group A, and reads and writes are the required access types in Group B.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type
in both Group A and Group B.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type
in Group A, and reads and writes are the required access types in Group B.

NSH
Non-shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

NSHST
Non-shareable is the required shareability domain, writes are the required access type in
both Group A and Group B.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type in
Group A, and reads and writes are the required access types in Group B.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type
in both Group A and Group B.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type
in Group A, and reads and writes are the required access types in Group B.

imm
Is a 4-bit unsigned immediate, in the range 0 to 15.

Usage

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses,
see Data Memory Barrier in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture
profile.

D2 A64 General Instructions
D2.74 DMB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-747
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.74 DMB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-748
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.75 DRPS
Debug restore process state.

Syntax

DRPS

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.75 DRPS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-749
Non-Confidential

D2.76 DSB
Data Synchronization Barrier.

Syntax

DSB option|#imm

Where:

option
Specifies the limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access
types in both Group A and Group B. This option is referred to as the full system DMB.

ST
Full system is the required shareability domain, writes are the required access type in
both Group A and Group B.

LD
Full system is the required shareability domain, reads are the required access type in
Group A, and reads and writes are the required access types in Group B.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type
in both Group A and Group B.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type
in Group A, and reads and writes are the required access types in Group B.

NSH
Non-shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

NSHST
Non-shareable is the required shareability domain, writes are the required access type in
both Group A and Group B.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type in
Group A, and reads and writes are the required access types in Group B.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required
access types in both Group A and Group B.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type
in both Group A and Group B.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type
in Group A, and reads and writes are the required access types in Group B.

imm
Is a 4-bit unsigned immediate, in the range 0 to 15.

Usage

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see
Data Synchronization Barrier in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

D2 A64 General Instructions
D2.76 DSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-750
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.76 DSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-751
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.77 EON (shifted register)
Bitwise Exclusive OR NOT (shifted register).

Syntax

EON Wd, Wn, Wm{, shift #amount} ; 32-bit

EON Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value
and an optionally-shifted register value, and writes the result to the destination register.

Rd = Rn EOR NOT shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.77 EON (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-752
Non-Confidential

D2.78 EOR (immediate)
Bitwise Exclusive OR (immediate).

Syntax

EOR Wd|WSP, Wn, #imm ; 32-bit

EOR Xd|SP, Xn, #imm ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn
Is the 32-bit name of the general-purpose source register.

imm
The bitmask immediate.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an
immediate value, and writes the result to the destination register.

Rd = Rn EOR imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.78 EOR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-753
Non-Confidential

D2.79 EOR (shifted register)
Bitwise Exclusive OR (shifted register).

Syntax

EOR Wd, Wn, Wm{, shift #amount} ; 32-bit

EOR Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an
optionally-shifted register value, and writes the result to the destination register.

Rd = Rn EOR shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.79 EOR (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-754
Non-Confidential

D2.80 ERET
Returns from an exception. It restores the processor state based on SPSR_ELn and branches to
ELR_ELn, where n is the current exception level..

Syntax

ERET

Usage

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE
restores PSTATE from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return
events from AArch64 state in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

ERET is UNDEFINED at EL0.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.80 ERET

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-755
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.81 ERETAA, ERETAB
Exception Return, with pointer authentication.

Syntax

ERETAA ; ERETAA general registers

ERETAB ; ERETAB general registers

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using
SP as the modifier and the specified key, the PE restores PSTATE from the SPSR for the current
Exception level, and branches to the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication
fails, a Translation fault is generated.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return
events from AArch64 state in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

ERET is UNDEFINED at EL0.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.81 ERETAA, ERETAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-756
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.82 ESB
Error Synchronization Barrier.

Syntax

ESB

Architectures supported

Supported in the Armv8.2 architecture and later.

Usage

Error Synchronization Barrier.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.82 ESB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-757
Non-Confidential

D2.83 EXTR
Extract register.

This instruction is used by the alias ROR (immediate).

Syntax

EXTR Wd, Wn, Wm, #lsb ; 32-bit

EXTR Xd, Xn, Xm, #lsb ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the least significant bit position from which to extract, in the range 0 to 31.

64-bit general registers
Is the least significant bit position from which to extract, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Usage

Extract register extracts a register from a pair of registers.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.83 EXTR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-758
Non-Confidential

D2.84 GMI
Tag Mask Insert.

Syntax

GMI Xd, Xn|SP, Xm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

Xm
Is the 64-bit name of the second general-purpose source register.

Architectures supported

Supported in Armv8.5 and later.

Usage

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second
source register, writing the new excluded set to the destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.84 GMI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-759
Non-Confidential

D2.85 HINT
Hint instruction.

Syntax

HINT #imm ; Hints 6 and 7

HINT #imm ; Hints 8 to 15, and 24 to 127

HINT #imm ; Hints 17 to 23

Where:

imm
Is a 7-bit unsigned immediate, in the range 0 to 127, but excludes the following:
0

NOP.
1

YIELD.
2

WFE.
3

WFI.
4

SEV.
5

SEVL.

Usage

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

The encoding variants described here are unallocated in this revision of the architecture, and behave as a
NOP. These encodings might be allocated to other hint functionality in future revisions of the architecture.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.85 HINT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-760
Non-Confidential

D2.86 HLT
Halt instruction.

Syntax

HLT #imm

Where:

imm
Is a 16-bit unsigned immediate, in the range 0 to 65535.

Usage

Halt instruction generates a Halt Instruction debug event.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.86 HLT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-761
Non-Confidential

D2.87 HVC
Hypervisor call to allow OS code to call the Hypervisor. It generates an exception targeting exception
level 2 (EL2).

Syntax

HVC #imm

Where:

imm
Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made available to the
handler in the Exception Syndrome Register.

Usage

Hypervisor Call causes an exception to EL2. Non-secure software executing at EL1 can use this
instruction to call the hypervisor to request a service.

The HVC instruction is UNDEFINED:
• At EL0, and Secure EL1.
• When SCR_EL3.HCE is set to 0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in
ESR_ELx, using the EC value 0x16, and the value of the immediate argument.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.87 HVC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-762
Non-Confidential

D2.88 IC
Instruction Cache operation.

This instruction is an alias of SYS.

The equivalent instruction is SYS #op1, C7, Cm, #op2{, Xt}.

Syntax

IC <ic_op>{, Xt}

Where:

<ic_op>
Is an IC instruction name, as listed for the IC system instruction pages, and can be one of the
values shown in Usage.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt
Is the 64-bit name of the optional general-purpose source register, defaulting to 31.

Usage

Instruction Cache operation. For more information, see A64 system instructions for cache maintenance in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The following table shows the valid specifier combinations:

Table D2-8 SYS parameter values corresponding to IC operations

<ic_op> op1 Cm op2

IALLU 0 5 0

IALLUIS 0 1 0

IVAU 3 5 1

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.88 IC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-763
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.89 IRG
Insert Random Tag.

Syntax

IRG Xd|SP, Xn|SP{, Xm}

Where:

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

Xm
Is the 64-bit name of the second general-purpose source register. Defaults to XZR if absent.

Architectures supported

Supported in Armv8.5 and later.

Usage

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and
writes the result to the destination register. Any tags specified in the optional second source register or in
GCR_EL1.Exclude are excluded from the selection of the random Logical Address Tag.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.89 IRG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-764
Non-Confidential

D2.90 ISB
Instruction Synchronization Barrier.

Syntax

ISB {option|#imm}

Where:

option
Specifies an optional limitation on the barrier operation. Values are:
SY

Full system barrier operation. Can be omitted.
imm

Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15.

Usage

Instruction Synchronization Barrier flushes the pipeline in the PE, so that all instructions following the
ISB are fetched from cache or memory, after the instruction has been completed. It ensures that the
effects of context changing operations executed before the ISB instruction are visible to the instructions
fetched after the ISB. Context changing operations include changing the ASID, TLB maintenance
instructions, and all changes to the System registers. In addition, any branches that appear in program
order after the ISB instruction are written into the branch prediction logic with the context that is visible
after the ISB instruction. This is needed to ensure correct execution of the instruction stream. For more
information, see Instruction Synchronization Barrier (ISB) in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.90 ISB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-765
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.91 LDG
Load Allocation Tag.

Syntax

LDG Xt, [Xn|SP{, #simm}]

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting
to 0.

Architectures supported

Supported in Armv8.5 and later.

Usage

Load Allocation Tag loads an Allocation Tag from a memory address, generates an address with the
Logical Address Tag generated from the loaded Allocation Tag, and writes the result to the destination
register. The address used for the load is calculated from the source register and an immediate signed
offset scaled by the Tag granule.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.91 LDG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-766
Non-Confidential

D2.92 LDGV
Load Allocation Tag.

Syntax

LDGV Xt, [Xn|SP]!

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Load Tag Vector loads an IMPLEMENTATION DEFINED number of Allocation Tags from the naturally aligned
array of 16 Allocation Tags which includes a tag whose address is the address in the source register, and
writes them to the destination register. Bits of the destination register which do not store a tag are set to
0. The Allocation Tag at the address in the source register is always loaded, and the first source register is
updated to the address of the first Allocation Tag at an address higher than the original address that was
not loaded.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.92 LDGV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-767
Non-Confidential

D2.93 LSL (register)
Logical Shift Left (register).

This instruction is an alias of LSLV.

The equivalent instruction is LSLV Wd, Wn, Wm.

Syntax

LSL Wd, Wn, Wm ; 32-bit

LSL Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The remainder obtained by dividing the second source register
by the data size defines the number of bits by which the first source register is left-shifted.

Rd = LSL(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.93 LSL (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-768
Non-Confidential

D2.94 LSL (immediate)
Logical Shift Left (immediate).

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #(-shift MOD 32), #(31-shift).

Syntax

LSL Wd, Wn, #shift ; 32-bit

LSL Xd, Xn, #shift ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

shift

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31.

64-bit general registers
Is the shift amount, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.

Rd = LSL(Rn, shift), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.94 LSL (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-769
Non-Confidential

D2.95 LSLV
Logical Shift Left Variable.

This instruction is used by the alias LSL (register).

Syntax

LSLV Wd, Wn, Wm ; 32-bit

LSLV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The remainder obtained by dividing the second source register
by the data size defines the number of bits by which the first source register is left-shifted.

Rd = LSL(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.95 LSLV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-770
Non-Confidential

D2.96 LSR (register)
Logical Shift Right (register).

This instruction is an alias of LSRV.

The equivalent instruction is LSRV Wd, Wn, Wm.

Syntax

LSR Wd, Wn, Wm ; 32-bit

LSR Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros,
and writes the result to the destination register. The remainder obtained by dividing the second source
register by the data size defines the number of bits by which the first source register is right-shifted.

Rd = LSR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.96 LSR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-771
Non-Confidential

D2.97 LSR (immediate)
Logical Shift Right (immediate).

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #shift, #31.

Syntax

LSR Wd, Wn, #shift ; 32-bit

LSR Xd, Xn, #shift ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

shift

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31.

64-bit general registers
Is the shift amount, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.

Rd = LSR(Rn, shift), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.97 LSR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-772
Non-Confidential

D2.98 LSRV
Logical Shift Right Variable.

This instruction is used by the alias LSR (register).

Syntax

LSRV Wd, Wn, Wm ; 32-bit

LSRV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros,
and writes the result to the destination register. The remainder obtained by dividing the second source
register by the data size defines the number of bits by which the first source register is right-shifted.

Rd = LSR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.98 LSRV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-773
Non-Confidential

D2.99 MADD
Multiply-Add.

This instruction is used by the alias MUL.

Syntax

MADD Wd, Wn, Wm, Wa ; 32-bit

MADD Xd, Xn, Xm, Xa ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Wa
Is the 32-bit name of the third general-purpose source register holding the addend.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the addend.

Operation

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the
destination register.

Rd = Ra + Rn * Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.99 MADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-774
Non-Confidential

D2.100 MNEG
Multiply-Negate.

This instruction is an alias of MSUB.

The equivalent instruction is MSUB Wd, Wn, Wm, WZR.

Syntax

MNEG Wd, Wn, Wm ; 32-bit

MNEG Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Operation

Multiply-Negate multiplies two register values, negates the product, and writes the result to the
destination register.

Rd = -(Rn * Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.100 MNEG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-775
Non-Confidential

D2.101 MOV (to or from SP)
Move between register and stack pointer.

This instruction is an alias of ADD (immediate).

The equivalent instruction is ADD Wd|WSP, Wn|WSP, #0.

Syntax

MOV Wd|WSP, Wn|WSP ; 32-bit

MOV Xd|SP, Xn|SP ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

Operation

Rd = Rn, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.101 MOV (to or from SP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-776
Non-Confidential

D2.102 MOV (inverted wide immediate)
Move (inverted wide immediate).

This instruction is an alias of MOVN.

The equivalent instruction is MOVN Wd, #imm16, LSL #shift.

Syntax

MOV Wd, #imm ; 32-bit

MOV Xd, #imm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

imm

Depends on the instruction variant:

32-bit general registers
Is a 32-bit immediate.

64-bit general registers
Is a 64-bit immediate.

Xd
Is the 64-bit name of the general-purpose destination register.

Operation

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

Rd = imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.102 MOV (inverted wide immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-777
Non-Confidential

D2.103 MOV (wide immediate)
Move (wide immediate).

This instruction is an alias of MOVZ.

The equivalent instruction is MOVZ Wd, #imm16, LSL #shift.

Syntax

MOV Wd, #imm ; 32-bit

MOV Xd, #imm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

imm

Depends on the instruction variant:

32-bit general registers
Is a 32-bit immediate.

64-bit general registers
Is a 64-bit immediate.

Xd
Is the 64-bit name of the general-purpose destination register.

Operation

Move (wide immediate) moves a 16-bit immediate value to a register.

Rd = imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.103 MOV (wide immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-778
Non-Confidential

D2.104 MOV (bitmask immediate)
Move (bitmask immediate).

This instruction is an alias of ORR (immediate).

The equivalent instruction is ORR Wd|WSP, WZR, #imm.

Syntax

MOV Wd|WSP, #imm ; 32-bit

MOV Xd|SP, #imm ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

imm
The bitmask immediate but excluding values which could be encoded by MOVZ or MOVN.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Operation

Move (bitmask immediate) writes a bitmask immediate value to a register.

Rd = imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.104 MOV (bitmask immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-779
Non-Confidential

D2.105 MOV (register)
Move (register).

This instruction is an alias of ORR (shifted register).

The equivalent instruction is ORR Wd, WZR, Wm.

Syntax

MOV Wd, Wm ; 32-bit

MOV Xd, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

Operation

Move (register) copies the value in a source register to the destination register.

Rd = Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.105 MOV (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-780
Non-Confidential

D2.106 MOVK
Move wide with keep.

Syntax

MOVK Wd, #imm{, LSL #shift} ; 32-bit

MOVK Xd, #imm{, LSL #shift} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

shift

Depends on the instruction variant:

32-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default) or 16.

64-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48.

Xd
Is the 64-bit name of the general-purpose destination register.

imm
Is the 16-bit unsigned immediate, in the range 0 to 65535.

Operation

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other
bits unchanged.

Rd<shift+15:shift> = imm16, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.106 MOVK

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-781
Non-Confidential

D2.107 MOVN
Move wide with NOT.

This instruction is used by the alias MOV (inverted wide immediate).

Syntax

MOVN Wd, #imm{, LSL #shift} ; 32-bit

MOVN Xd, #imm{, LSL #shift} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

shift

Depends on the instruction variant:

32-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default) or 16.

64-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48.

Xd
Is the 64-bit name of the general-purpose destination register.

imm
Is the 16-bit unsigned immediate, in the range 0 to 65535.

Operation

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

Rd = NOT (LSL (imm16, shift)), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.107 MOVN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-782
Non-Confidential

D2.108 MOVZ
Move wide with zero.

This instruction is used by the alias MOV (wide immediate).

Syntax

MOVZ Wd, #imm{, LSL #shift} ; 32-bit

MOVZ Xd, #imm{, LSL #shift} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

shift

Depends on the instruction variant:

32-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default) or 16.

64-bit general registers
Is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48.

Xd
Is the 64-bit name of the general-purpose destination register.

imm
Is the 16-bit unsigned immediate, in the range 0 to 65535.

Operation

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

Rd = LSL (imm16, shift), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.108 MOVZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-783
Non-Confidential

D2.109 MRS
Move System Register.

Syntax

MRS Xt, (systemreg|Sop0_op1_Cn_Cm_op2)

Where:

Xt
Is the 64-bit name of the general-purpose destination register.

systemreg
Is a System register name.

op0
Is an unsigned immediate, and can be either 2 or 3.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn
Is a name Cn, with n in the range 0 to 15.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Usage

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.109 MRS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-784
Non-Confidential

D2.110 MSR (immediate)
Move immediate value to Special Register.

Syntax

MSR pstatefield, #imm

Where:

pstatefield
Is a PSTATE field name, and can be one of UAO, PAN, SPSel, DAIFSet or DAIFClr.

imm
Is a 4-bit unsigned immediate, in the range 0 to 15.

Usage

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE.
For more information, see Process state, PSTATE in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

The bits that can be written are D, A, I, F, and SP. This set of bits is expanded in extensions to the
architecture as follows:
• Armv8.1 adds the PAN bit.
• Armv8.2 adds the UAO bit.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.110 MSR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-785
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.111 MSR (register)
Move general-purpose register to System Register.

Syntax

MSR (systemreg|Sop0_op1_Cn_Cm_op2), Xt

Where:

systemreg
Is a System register name.

op0
Is an unsigned immediate, and can be either 2 or 3.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn
Is a name Cn, with n in the range 0 to 15.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt
Is the 64-bit name of the general-purpose source register.

Usage

Move general-purpose register to System Register allows the PE to write an AArch64 System register
from a general-purpose register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.111 MSR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-786
Non-Confidential

D2.112 MSUB
Multiply-Subtract.

This instruction is used by the alias MNEG.

Syntax

MSUB Wd, Wn, Wm, Wa ; 32-bit

MSUB Xd, Xn, Xm, Xa ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Wa
Is the 32-bit name of the third general-purpose source register holding the minuend.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the minuend.

Operation

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and
writes the result to the destination register.

Rd = Ra - Rn * Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.112 MSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-787
Non-Confidential

D2.113 MUL
Multiply.

This instruction is an alias of MADD.

The equivalent instruction is MADD Wd, Wn, Wm, WZR.

Syntax

MUL Wd, Wn, Wm ; 32-bit

MUL Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Operation

Rd = Rn * Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.113 MUL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-788
Non-Confidential

D2.114 MVN
Bitwise NOT.

This instruction is an alias of ORN (shifted register).

The equivalent instruction is ORN Wd, WZR, Wm{, shift #amount}.

Syntax

MVN Wd, Wm{, shift #amount} ; 32-bit

MVN Xd, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

Rd = NOT shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.114 MVN

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-789
Non-Confidential

D2.115 NEG (shifted register)
Negate (shifted register).

This instruction is an alias of SUB (shifted register).

The equivalent instruction is SUB Wd, WZR, Wm {, shift #amount}.

Syntax

NEG Wd, Wm{, shift #amount} ; 32-bit

NEG Xd, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the
destination register.

Rd = 0 - shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.115 NEG (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-790
Non-Confidential

D2.116 NEGS
Negate, setting flags.

This instruction is an alias of SUBS (shifted register).

The equivalent instruction is SUBS Wd, WZR, Wm {, shift #amount}.

Syntax

NEGS Wd, Wm{, shift #amount} ; 32-bit

NEGS Xd, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination
register. It updates the condition flags based on the result.

Rd = 0 - shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.116 NEGS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-791
Non-Confidential

D2.117 NGC
Negate with Carry.

This instruction is an alias of SBC.

The equivalent instruction is SBC Wd, WZR, Wm.

Syntax

NGC Wd, Wm ; 32-bit

NGC Xd, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

Operation

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the
result to the destination register.

Rd = 0 - Rm - 1 + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.117 NGC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-792
Non-Confidential

D2.118 NGCS
Negate with Carry, setting flags.

This instruction is an alias of SBCS.

The equivalent instruction is SBCS Wd, WZR, Wm.

Syntax

NGCS Wd, Wm ; 32-bit

NGCS Xd, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wm
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xm
Is the 64-bit name of the general-purpose source register.

Operation

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag),
and writes the result to the destination register. It updates the condition flags based on the result.

Rd = 0 - Rm - 1 + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.118 NGCS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-793
Non-Confidential

D2.119 NOP
No Operation.

Usage
No Operation does nothing, other than advance the value of the program counter by 4. This instruction
can be used for instruction alignment purposes.

 Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase
execution time, leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for
timing loops.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.119 NOP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-794
Non-Confidential

D2.120 ORN (shifted register)
Bitwise OR NOT (shifted register).

This instruction is used by the alias MVN.

Syntax

ORN Wd, Wn, Wm{, shift #amount} ; 32-bit

ORN Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the
complement of an optionally-shifted register value, and writes the result to the destination register.

Rd = Rn OR NOT shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.120 ORN (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-795
Non-Confidential

D2.121 ORR (immediate)
Bitwise OR (immediate).

This instruction is used by the alias MOV (bitmask immediate).

Syntax

ORR Wd|WSP, Wn, #imm ; 32-bit

ORR Xd|SP, Xn, #imm ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn
Is the 32-bit name of the general-purpose source register.

imm
The bitmask immediate.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register
value, and writes the result to the destination register.

Rd = Rn OR imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.121 ORR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-796
Non-Confidential

D2.122 ORR (shifted register)
Bitwise OR (shifted register).

This instruction is used by the alias MOV (register).

Syntax

ORR Wd, Wn, Wm{, shift #amount} ; 32-bit

ORR Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-
shifted register value, and writes the result to the destination register.

Rd = Rn OR shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.122 ORR (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-797
Non-Confidential

D2.123 PACDA, PACDZA
Pointer Authentication Code for Data address, using key A.

Syntax

PACDA Xd, Xn|SP ; PACDA general registers

PACDZA Xd ; PACDZA general registers

Where:

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a
pointer authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by Xd.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for PACDA.
• The value zero, for PACDZA.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.123 PACDA, PACDZA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-798
Non-Confidential

D2.124 PACDB, PACDZB
Pointer Authentication Code for Data address, using key B.

Syntax

PACDB Xd, Xn|SP ; PACDB general registers

PACDZB Xd ; PACDZB general registers

Where:

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a
pointer authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by Xd.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for PACDB.
• The value zero, for PACDZB.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.124 PACDB, PACDZB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-799
Non-Confidential

D2.125 PACGA
Pointer Authentication Code, using Generic key.

Syntax

PACGA Xd, Xn, Xm|SP

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm|SP
Is the 64-bit name of the second general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication
code for an address in the first source register, using a modifier in the second source register, and the
Generic key. The computed pointer authentication code is returned in the upper 32 bits of the destination
register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.125 PACGA

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-800
Non-Confidential

D2.126 PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ
Pointer Authentication Code for Instruction address, using key A.

Syntax

PACIA Xd, Xn|SP ; PACIA general registers

PACIZA Xd ; PACIZA general registers

PACIA1716 ; PACIA1716

PACIASP ; PACIASP

PACIAZ ; PACIAZ

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a
pointer authentication code for an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by Xd for PACIA and PACIZA.
• In X17, for PACIA1716.
• In X30, for PACIASP and PACIAZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for PACIA.
• The value zero, for PACIZA and PACIAZ.
• In X16, for PACIA1716.
• In SP, for PACIASP.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.126 PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-801
Non-Confidential

D2.127 PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ
Pointer Authentication Code for Instruction address, using key B.

Syntax

PACIB Xd, Xn|SP ; PACIB general registers

PACIZB Xd ; PACIZB general registers

PACIB1716 ; PACIB1716

PACIBSP ; PACIBSP

PACIBZ ; PACIBZ

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a
pointer authentication code for an instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by Xd for PACIB and PACIZB.
• In X17, for PACIB1716.
• In X30, for PACIBSP and PACIBZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by Xn|SP for PACIB.
• The value zero, for PACIZB and PACIBZ.
• In X16, for PACIB1716.
• In SP, for PACIBSP.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.127 PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-802
Non-Confidential

D2.128 PSB
Profiling Synchronization Barrier.

Syntax

PSB CSYNC

Architectures supported

Supported in the Armv8.2 architecture and later.

Usage

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data
for the current PE has been formatted, and profiling buffer addresses have been translated such that all
writes to the profiling buffer have been initiated. A following DSB instruction completes when the writes
to the profiling buffer have completed.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.128 PSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-803
Non-Confidential

D2.129 RBIT
Reverse Bits.

Syntax

RBIT Wd, Wn ; 32-bit

RBIT Xd, Xn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Reverse Bits reverses the bit order in a register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.129 RBIT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-804
Non-Confidential

D2.130 RET
Return from subroutine.

Syntax

RET {Xn}

Where:

Xn
Is the 64-bit name of the general-purpose register holding the address to be branched to.
Defaults to X30 if absent.

Usage

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a
subroutine return.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.130 RET

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-805
Non-Confidential

D2.131 RETAA, RETAB
Return from subroutine, with pointer authentication.

Syntax

RETAA ; RETAA general registers

RETAB ; RETAB general registers

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Return from subroutine, with pointer authentication. This instruction authenticates the address that is
held in LR, using SP as the modifier and the specified key, branches to the authenticated address, with a
hint that this instruction is a subroutine return.

Key A is used for RETAA, and key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication
fails, a Translation fault is generated.

The authenticated address is not written back to LR.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.131 RETAA, RETAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-806
Non-Confidential

D2.132 REV16
Reverse bytes in 16-bit halfwords.

Syntax

REV16 Wd, Wn ; 32-bit

REV16 Xd, Xn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.132 REV16

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-807
Non-Confidential

D2.133 REV32
Reverse bytes in 32-bit words.

Syntax

REV32 Xd, Xn

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.133 REV32

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-808
Non-Confidential

D2.134 REV64
Reverse Bytes.

This instruction is an alias of REV.

The equivalent instruction is REV Xd, Xn.

Syntax

REV64 Xd, Xn

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether
an assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.134 REV64

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-809
Non-Confidential

D2.135 REV
Reverse Bytes.

This instruction is used by the alias REV64.

Syntax

REV Wd, Wn ; 32-bit

REV Xd, Xn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Reverse Bytes reverses the byte order in a register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.135 REV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-810
Non-Confidential

D2.136 ROR (immediate)
Rotate right (immediate).

This instruction is an alias of EXTR.

The equivalent instruction is EXTR Wd, Ws, Ws, #shift.

Syntax

ROR Wd, Ws, #shift ; 32-bit

ROR Xd, Xs, #shift ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Ws
Is the 32-bit name of the general-purpose source register.

shift

Depends on the instruction variant:

32-bit general registers
Is the amount by which to rotate, in the range 0 to 31.

64-bit general registers
Is the amount by which to rotate, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xs
Is the 64-bit name of the general-purpose source register.

Operation

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of
bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

Rd = ROR(Rs, shift), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.136 ROR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-811
Non-Confidential

D2.137 ROR (register)
Rotate Right (register).

This instruction is an alias of RORV.

The equivalent instruction is RORV Wd, Wn, Wm.

Syntax

ROR Wd, Wn, Wm ; 32-bit

ROR Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of
bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The
remainder obtained by dividing the second source register by the data size defines the number of bits by
which the first source register is right-shifted.

Rd = ROR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.137 ROR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-812
Non-Confidential

D2.138 RORV
Rotate Right Variable.

This instruction is used by the alias ROR (register).

Syntax

RORV Wd, Wn, Wm ; 32-bit

RORV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register holding a shift amount from 0
to 31 in its bottom 5 bits.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register holding a shift amount from 0
to 63 in its bottom 6 bits.

Operation

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits.
The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The
remainder obtained by dividing the second source register by the data size defines the number of bits by
which the first source register is right-shifted.

Rd = ROR(Rn, Rm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.138 RORV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-813
Non-Confidential

D2.139 SBC
Subtract with Carry.

This instruction is used by the alias NGC.

Syntax

SBC Wd, Wn, Wm ; 32-bit

SBC Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register.

Rd = Rn - Rm - 1 + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.139 SBC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-814
Non-Confidential

D2.140 SBCS
Subtract with Carry, setting flags.

This instruction is used by the alias NGCS.

Syntax

SBCS Wd, Wn, Wm ; 32-bit

SBCS Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a
register value, and writes the result to the destination register. It updates the condition flags based on the
result.

Rd = Rn - Rm - 1 + C, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.140 SBCS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-815
Non-Confidential

D2.141 SBFIZ
Signed Bitfield Insert in Zero.

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Wd, Wn, #(-lsb MOD 32), #(width-1).

Syntax

SBFIZ Wd, Wn, #lsb, #width ; 32-bit

SBFIZ Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Signed Bitfield Insert in Zero zeros the destination register and copies any number of contiguous bits
from a source register into any position in the destination register, sign-extending the most significant bit
of the transferred value.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.141 SBFIZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-816
Non-Confidential

D2.142 SBFM
Signed Bitfield Move.

This instruction is used by the aliases:
• ASR (immediate).
• SBFIZ.
• SBFX.
• SXTB.
• SXTH.
• SXTW.

Syntax

SBFM Wd, Wn, #<immr>, #<imms> ; 32-bit

SBFM Xd, Xn, #<immr>, #<imms> ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

<immr>

Depends on the instruction variant:

32-bit general registers
Is the right rotate amount, in the range 0 to 31.

64-bit general registers
Is the right rotate amount, in the range 0 to 63.

<imms>

Depends on the instruction variant:

32-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Signed Bitfield Move copies any number of low-order bits from a source register into the same number
of adjacent bits at any position in the destination register, shifting in copies of the sign bit in the upper
bits and zeros in the lower bits.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.142 SBFM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-817
Non-Confidential

D2.143 SBFX
Signed Bitfield Extract.

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Wd, Wn, #lsb, #(lsb+width-1).

Syntax

SBFX Wd, Wn, #lsb, #width ; 32-bit

SBFX Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Signed Bitfield Extract extracts any number of adjacent bits at any position from a register, sign-extends
them to the size of the register, and writes the result to the destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.143 SBFX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-818
Non-Confidential

D2.144 SDIV
Signed Divide.

Syntax

SDIV Wd, Wn, Wm ; 32-bit

SDIV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Signed Divide divides a signed integer register value by another signed integer register value, and writes
the result to the destination register. The condition flags are not affected.

Rd = Rn / Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.144 SDIV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-819
Non-Confidential

D2.145 SEV
Send Event.

Usage

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system.
For more information, see Wait for Event mechanism and Send event in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.145 SEV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-820
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.146 SEVL
Send Event Local.

Usage

Send Event Local is a hint instruction. It causes an event to be signaled locally without the requirement
to affect other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE
instruction.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.146 SEVL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-821
Non-Confidential

D2.147 SMADDL
Signed Multiply-Add Long.

This instruction is used by the alias SMULL.

Syntax

SMADDL Xd, Wn, Wm, Xa

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the addend.

Operation

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes
the result to the 64-bit destination register.

Xd = Xa + Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.147 SMADDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-822
Non-Confidential

D2.148 SMC
Supervisor call to allow OS or Hypervisor code to call the Secure Monitor. It generates an exception
targeting exception level 3 (EL3).

Syntax

SMC #imm

Where:

imm
Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made available to the
handler in the Exception Syndrome Register.

Usage

Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1
or higher generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17,
that is taken to EL3.

If the value of HCR_EL2.TSC is 1, execution of an SMC instruction in a Non-secure EL1 state generates
an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD. For more information, see
Traps to EL2 of Non-secure EL1 execution of SMC instructions in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is
UNDEFINED.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.148 SMC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-823
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.149 SMNEGL
Signed Multiply-Negate Long.

This instruction is an alias of SMSUBL.

The equivalent instruction is SMSUBL Xd, Wn, Wm, XZR.

Syntax

SMNEGL Xd, Wn, Wm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Operation

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the
result to the 64-bit destination register.

Xd = -(Wn * Wm).

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.149 SMNEGL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-824
Non-Confidential

D2.150 SMSUBL
Signed Multiply-Subtract Long.

This instruction is used by the alias SMNEGL.

Syntax

SMSUBL Xd, Wn, Wm, Xa

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the minuend.

Operation

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit
register value, and writes the result to the 64-bit destination register.

Xd = Xa - Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.150 SMSUBL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-825
Non-Confidential

D2.151 SMULH
Signed Multiply High.

Syntax

SMULH Xd, Xn, Xm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Operation

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result
to the 64-bit destination register.

Xd = bits<127:64> of Xn * Xm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.151 SMULH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-826
Non-Confidential

D2.152 SMULL
Signed Multiply Long.

This instruction is an alias of SMADDL.

The equivalent instruction is SMADDL Xd, Wn, Wm, XZR.

Syntax

SMULL Xd, Wn, Wm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Operation

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination
register.

Xd = Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.152 SMULL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-827
Non-Confidential

D2.153 ST2G
Store Allocation Tags.

Syntax

ST2G [Xn|SP], #simm ; Post-index

ST2G [Xn|SP, #simm]! ; Pre-index

ST2G [Xn|SP{, #simm}] ; Signed offset

Where:

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting
to 0.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the
store is calculated from the source register and an immediate signed offset scaled by the Tag granule. The
Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.153 ST2G

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-828
Non-Confidential

D2.154 STG
Store Allocation Tag.

Syntax

STG [Xn|SP], #simm ; Post-index

STG [Xn|SP, #simm]! ; Pre-index

STG [Xn|SP{, #simm}] ; Signed offset

Where:

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting
to 0.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated
from the source register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.154 STG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-829
Non-Confidential

D2.155 STGP
Store Allocation Tag and Pair of registers.

Syntax

STGP Xt1, Xt2, [Xn|SP], #imm ; Post-index

STGP Xt1, Xt2, [Xn|SP, #imm]! ; Pre-index

STGP Xt1, Xt2, [Xn|SP{, #imm}] ; Signed offset

Where:

imm

Depends on the instruction variant:

Post-index and Pre-index general registers
Is the signed immediate offset, in the range -64 to 63.

Pre-index general registers
Is the signed immediate offset, in the range -64 to 63.

Signed offset general registers
Is the optional signed immediate offset, in the range -64 to 63, defaulting to 0.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to
memory, from two registers. The address used for the store is calculated from the base register and an
immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the base register.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.155 STGP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-830
Non-Confidential

D2.156 STGV
Store Tag Vector.

Syntax

STGV Xt, [Xn|SP]!

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Tag Vector reads from the second source register an IMPLEMENTATION DEFINED number of Allocation
Tags and stores them to the naturally aligned array of 16 allocation tags which includes a tag whose
address is the address in the first source register. The Allocation Tag at the address in the first source
register is always stored, and the first source register is updated to the address of the first Allocation Tag
at an address higher than the original address that was not loaded.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.156 STGV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-831
Non-Confidential

D2.157 STZ2G
Store Allocation Tags, Zeroing.

Syntax

STZ2G [Xn|SP], #simm ; Post-index

STZ2G [Xn|SP, #simm]! ; Pre-index

STZ2G [Xn|SP{, #simm}] ; Signed offset

Where:

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting
to 0.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Allocation Tags, Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the
associated data locations. The address used for the store is calculated from the source register and an
immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the source register.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.157 STZ2G

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-832
Non-Confidential

D2.158 STZG
Store Allocation Tag, Zeroing.

Syntax

STZG [Xn|SP], #simm ; Post-index

STZG [Xn|SP, #simm]! ; Pre-index

STZG [Xn|SP{, #simm}] ; Signed offset

Where:

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting
to 0.

Architectures supported

Supported in Armv8.5 and later.

Usage

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location.
The address used for the store is calculated from the source register and an immediate signed offset
scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source
register.

This instruction generates an Unchecked access.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.158 STZG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-833
Non-Confidential

D2.159 SUB (extended register)
Subtract (extended register).

Syntax

SUB Wd|WSP, Wn|WSP, Wm{, extend {#amount}} ; 32-bit

SUB Xd|SP, Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rd or Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when
amount is 0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rd or Rn is SP then LSL is preferred rather than UXTX, and can be omitted when
amount is 0. In all other cases extend is required and must be UXTX rather than LSL.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left
shift amount, from a register value, and writes the result to the destination register. The argument that is
extended from the Rm register can be a byte, halfword, word, or doubleword.

Rd = Rn - LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.159 SUB (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-834
Non-Confidential

Usage

Table D2-9 SUB (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.159 SUB (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-835
Non-Confidential

D2.160 SUB (immediate)
Subtract (immediate).

Syntax

SUB Wd|WSP, Wn|WSP, #imm{, shift} ; 32-bit

SUB Xd|SP, Xn|SP, #imm{, shift} ; 64-bit

Where:

Wd|WSP
Is the 32-bit name of the destination general-purpose register or stack pointer.

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes
the result to the destination register.

Rd = Rn - shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.160 SUB (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-836
Non-Confidential

D2.161 SUB (shifted register)
Subtract (shifted register).

This instruction is used by the alias NEG (shifted register).

Syntax

SUB Wd, Wn, Wm{, shift #amount} ; 32-bit

SUB Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes
the result to the destination register.

Rd = Rn - shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.161 SUB (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-837
Non-Confidential

D2.162 SUBG
Subtract with Tag.

Syntax

SUBG Xd|SP, Xn|SP, #<uimm6>, #<uimm4>

Where:

Xd|SP
Is the 64-bit name of the destination general-purpose register or stack pointer.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

<uimm6>
Is an unsigned immediate, a multiple of 16 in the range 0 to 1008.

<uimm4>
Is an unsigned immediate, in the range 0 to 15.

Architectures supported

Supported in Armv8.5 and later.

Usage

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source
register, modifies the Logical Address Tag of the address using an immediate value, and writes the result
to the destination register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs
when modifying the Logical Address Tag.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.162 SUBG

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-838
Non-Confidential

D2.163 SUBP
Subtract Pointer.

Syntax

SUBP Xd, Xn|SP, Xm|SP

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

Xm|SP
Is the 64-bit name of the second general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination
register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.163 SUBP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-839
Non-Confidential

D2.164 SUBPS
Subtract Pointer, setting Flags.

This instruction is used by the alias CMPP.

Syntax

SUBPS Xd, Xn|SP, Xm|SP

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

Xm|SP
Is the 64-bit name of the second general-purpose source register or stack pointer.

Architectures supported

Supported in Armv8.5 and later.

Usage

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-
bit address held in the first source register, sign-extends the result to 64-bits, and writes the result to the
destination register. It updates the condition flags based on the result of the subtraction.

Related reference
D2.59 CMPP on page D2-731
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.164 SUBPS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-840
Non-Confidential

D2.165 SUBS (extended register)
Subtract (extended register), setting flags.

This instruction is used by the alias CMP (extended register).

Syntax

SUBS Wd, Wn|WSP, Wm{, extend {#amount}} ; 32-bit

SUBS Xd, Xn|SP, Rm{, extend {#amount}} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn|WSP
Is the 32-bit name of the first source general-purpose register or stack pointer.

Wm
Is the 32-bit name of the second general-purpose source register.

extend

Is the extension to be applied to the second source operand:

32-bit general registers

Can be one of UXTB, UXTH, LSL|UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is WSP then LSL is preferred rather than UXTW, and can be omitted when amount is
0. In all other cases extend is required and must be UXTW rather than LSL.

64-bit general registers

Can be one of UXTB, UXTH, UXTW, LSL|UXTX, SXTB, SXTH, SXTW or SXTX.

If Rn is SP then LSL is preferred rather than UXTX, and can be omitted when amount is 0.
In all other cases extend is required and must be UXTX rather than LSL.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the first source general-purpose register or stack pointer.

R
Is a width specifier, and can be either W or X.

m
Is the number [0-30] of the second general-purpose source register or the name ZR (31).

amount
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0. It must
be absent when extend is absent, is required when extend is LSL, and is optional when extend
is present but not LSL.

Operation

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by
an optional left shift amount, from a register value, and writes the result to the destination register. The
argument that is extended from the Rm register can be a byte, halfword, word, or doubleword. It updates
the condition flags based on the result.

Rd = Rn - LSL(extend(Rm), amount), where R is either W or X.

D2 A64 General Instructions
D2.165 SUBS (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-841
Non-Confidential

Usage

Table D2-10 SUBS (64-bit general registers) specifier combinations

R extend

W SXTB

W SXTH

W SXTW

W UXTB

W UXTH

W UXTW

X LSL|UXTX

X SXTX

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.165 SUBS (extended register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-842
Non-Confidential

D2.166 SUBS (immediate)
Subtract (immediate), setting flags.

This instruction is used by the alias CMP (immediate).

Syntax

SUBS Wd, Wn|WSP, #imm{, shift} ; 32-bit

SUBS Xd, Xn|SP, #imm{, shift} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn|WSP
Is the 32-bit name of the source general-purpose register or stack pointer.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn|SP
Is the 64-bit name of the source general-purpose register or stack pointer.

imm
Is an unsigned immediate, in the range 0 to 4095.

shift
Is the optional left shift to apply to the immediate, defaulting to LSL #0, and can be either LSL
#0 or LSL #12.

Operation

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

Rd = Rn - shift(imm), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.166 SUBS (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-843
Non-Confidential

D2.167 SUBS (shifted register)
Subtract (shifted register), setting flags.

This instruction is used by the aliases:
• CMP (shifted register).
• NEGS.

Syntax

SUBS Wd, Wn, Wm{, shift #amount} ; 32-bit

SUBS Xd, Xn, Xm{, shift #amount} ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift type to be applied to the second source operand, defaulting to LSL, and can
be one of LSL, LSR, or ASR.

Operation

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register
value, and writes the result to the destination register. It updates the condition flags based on the result.

Rd = Rn - shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.167 SUBS (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-844
Non-Confidential

D2.168 SVC
Supervisor call to allow application code to call the OS. It generates an exception targeting exception
level 1 (EL1).

Syntax

SVC #imm

Where:

imm
Is a 16-bit unsigned immediate, in the range 0 to 65535. This value is made available to the
handler in the Exception Syndrome Register.

Usage

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in
ESR_ELx, using the EC value 0x15, and the value of the immediate argument.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.168 SVC

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-845
Non-Confidential

D2.169 SXTB
Signed Extend Byte.

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Wd, Wn, #0, #7.

Syntax

SXTB Wd, Wn ; 32-bit

SXTB Xd, Wn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Operation

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and
writes the result to the destination register.

Rd = SignExtend(Wn<7:0>), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.169 SXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-846
Non-Confidential

D2.170 SXTH
Sign Extend Halfword.

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Wd, Wn, #0, #15.

Syntax

SXTH Wd, Wn ; 32-bit

SXTH Xd, Wn ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Operation

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the
result to the destination register.

Rd = SignExtend(Wn<15:0>), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.170 SXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-847
Non-Confidential

D2.171 SXTW
Sign Extend Word.

This instruction is an alias of SBFM.

The equivalent instruction is SBFM Xd, Xn, #0, #31.

Syntax

SXTW Xd, Wn

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Wn
Is the 32-bit name of the general-purpose source register.

Operation

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination
register.

Xd = SignExtend(Wn<31:0>).

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.171 SXTW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-848
Non-Confidential

D2.172 SYS
System instruction.

This instruction is used by the aliases:
• AT.
• DC.
• IC.
• TLBI.

Syntax

SYS #op1, Cn, Cm, #op2{, Xt}

Where:

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn
Is a name Cn, with n in the range 0 to 15.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Xt
Is the 64-bit name of the optional general-purpose source register, defaulting to 31.

Usage

System instruction. For more information, see Op0 equals 0b01, cache maintenance, TLB maintenance,
and address translation instructions in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile for the encodings of System instructions.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.172 SYS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-849
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.173 SYSL
System instruction with result.

Syntax

SYSL Xt, #op1, Cn, Cm, #op2

Where:

Xt
Is the 64-bit name of the general-purpose destination register.

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cn
Is a name Cn, with n in the range 0 to 15.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

Usage

System instruction with result. For more information, see Op0 equals 0b01, cache maintenance, TLB
maintenance, and address translation instructions in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile for the encodings of System instructions.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.173 SYSL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-850
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.174 TBNZ
Test bit and Branch if Nonzero.

Syntax

TBNZ R<t>, #imm, label

Where:

R

Is a width specifier, and can be either W or X.

In assembler source code an X specifier is always permitted, but a W specifier is only permitted
when the bit number is less than 32.

<t>
Is the number [0-30] of the general-purpose register to be tested or the name ZR (31).

imm
Is the bit number to be tested, in the range 0 to 63.

label
Is the program label to be conditionally branched to. Its offset from the address of this
instruction, in the range ±32KB.

Usage

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and
conditionally branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint
that this is not a subroutine call or return. This instruction does not affect condition flags.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.174 TBNZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-851
Non-Confidential

D2.175 TBZ
Test bit and Branch if Zero.

Syntax

TBZ R<t>, #imm, label

Where:

R

Is a width specifier, and can be either W or X.

In assembler source code an X specifier is always permitted, but a W specifier is only permitted
when the bit number is less than 32.

<t>
Is the number [0-30] of the general-purpose register to be tested or the name ZR (31).

imm
Is the bit number to be tested, in the range 0 to 63.

label
Is the program label to be conditionally branched to. Its offset from the address of this
instruction, in the range ±32KB.

Usage

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a
label at a PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call
or return. This instruction does not affect condition flags.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.175 TBZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-852
Non-Confidential

D2.176 TLBI
TLB Invalidate operation.

This instruction is an alias of SYS.

The equivalent instruction is SYS #op1, C8, Cm, #op2{, Xt}.

Syntax

TLBI <tlbi_op>{, Xt}

Where:

op1
Is a 3-bit unsigned immediate, in the range 0 to 7.

Cm
Is a name Cm, with m in the range 0 to 15.

op2
Is a 3-bit unsigned immediate, in the range 0 to 7.

<tlbi_op>
Is a TLBI instruction name, as listed for the TLBI system instruction group, and can be one of
the values shown in Usage.

Xt
Is the 64-bit name of the optional general-purpose source register, defaulting to 31.

Usage

TLB Invalidate operation. For more information, see A64 system instructions for TLB maintenance in the
Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The following table shows the valid specifier combinations:

Table D2-11 SYS parameter values corresponding to TLBI operations

<tlbi_op> op1 Cm op2

ALLE1 4 7 4

ALLE1IS 4 3 4

ALLE2 4 7 0

ALLE2IS 4 3 0

ALLE3 6 7 0

ALLE3IS 6 3 0

ASIDE1 0 7 2

ASIDE1IS 0 3 2

IPAS2E1 4 4 1

IPAS2E1IS 4 0 1

IPAS2LE1 4 4 5

IPAS2LE1IS 4 0 5

VAAE1 0 7 3

VAAE1IS 0 3 3

VAALE1 0 7 7

D2 A64 General Instructions
D2.176 TLBI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-853
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Table D2-11 SYS parameter values corresponding to TLBI operations (continued)

<tlbi_op> op1 Cm op2

VAALE1IS 0 3 7

VAE1 0 7 1

VAE1IS 0 3 1

VAE2 4 7 1

VAE2IS 4 3 1

VAE3 6 7 1

VAE3IS 6 3 1

VALE1 0 7 5

VALE1IS 0 3 5

VALE2 4 7 5

VALE2IS 4 3 5

VALE3 6 7 5

VALE3IS 6 3 5

VMALLE1 0 7 0

VMALLE1IS 0 3 0

VMALLS12E1 4 7 6

VMALLS12E1IS 4 3 6

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.176 TLBI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-854
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.177 TST (immediate)
, setting the condition flags and discarding the result.

This instruction is an alias of ANDS (immediate).

The equivalent instruction is ANDS WZR, Wn, #imm.

Syntax

TST Wn, #imm ; 32-bit

TST Xn, #imm ; 64-bit

Where:

Wn
Is the 32-bit name of the general-purpose source register.

imm
The bitmask immediate.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Rn AND imm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.177 TST (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-855
Non-Confidential

D2.178 TST (shifted register)
Test (shifted register).

This instruction is an alias of ANDS (shifted register).

The equivalent instruction is ANDS WZR, Wn, Wm{, shift #amount}.

Syntax

TST Wn, Wm{, shift #amount} ; 32-bit

TST Xn, Xm{, shift #amount} ; 64-bit

Where:

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

amount

Depends on the instruction variant:

32-bit general registers
Is the shift amount, in the range 0 to 31, defaulting to 0.

64-bit general registers
Is the shift amount, in the range 0 to 63, defaulting to 0.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

shift
Is the optional shift to be applied to the final source, defaulting to LSL, and can be one of LSL,
LSR, ASR, or ROR.

Operation

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

Rn AND shift(Rm, amount), where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.178 TST (shifted register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-856
Non-Confidential

D2.179 UBFIZ
Unsigned Bitfield Insert in Zero.

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #(-lsb MOD 32), #(width-1).

Syntax

UBFIZ Wd, Wn, #lsb, #width ; 32-bit

UBFIZ Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Unsigned Bitfield Insert in Zero zeros the destination register and copies any number of contiguous bits
from a source register into any position in the destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.179 UBFIZ

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-857
Non-Confidential

D2.180 UBFM
Unsigned Bitfield Move.

This instruction is used by the aliases:
• LSL (immediate).
• LSR (immediate).
• UBFIZ.
• UBFX.
• UXTB.
• UXTH.

Syntax

UBFM Wd, Wn, #<immr>, #<imms> ; 32-bit

UBFM Xd, Xn, #<immr>, #<imms> ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

<immr>

Depends on the instruction variant:

32-bit general registers
Is the right rotate amount, in the range 0 to 31.

64-bit general registers
Is the right rotate amount, in the range 0 to 63.

<imms>

Depends on the instruction variant:

32-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 31.

64-bit general registers
Is the leftmost bit number to be moved from the source, in the range 0 to 63.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Unsigned Bitfield Move copies any number of low-order bits from a source register into the same
number of adjacent bits at any position in the destination register, with zeros in the upper and lower bits.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.180 UBFM

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-858
Non-Confidential

D2.181 UBFX
Unsigned Bitfield Extract.

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #lsb, #(lsb+width-1).

Syntax

UBFX Wd, Wn, #lsb, #width ; 32-bit

UBFX Xd, Xn, #lsb, #width ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

lsb

Depends on the instruction variant:

32-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 31.

64-bit general registers
Is the bit number of the lsb of the source bitfield, in the range 0 to 63.

width

Depends on the instruction variant:

32-bit general registers
Is the width of the bitfield, in the range 1 to 32-lsb.

64-bit general registers
Is the width of the bitfield, in the range 1 to 64-lsb.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Usage

Unsigned Bitfield Extract extracts any number of adjacent bits at any position from a register, zero-
extends them to the size of the register, and writes the result to the destination register.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.181 UBFX

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-859
Non-Confidential

D2.182 UDIV
Unsigned Divide.

Syntax

UDIV Wd, Wn, Wm ; 32-bit

UDIV Xd, Xn, Xm ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register.

Wm
Is the 32-bit name of the second general-purpose source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register.

Xm
Is the 64-bit name of the second general-purpose source register.

Operation

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value,
and writes the result to the destination register. The condition flags are not affected.

Rd = Rn / Rm, where R is either W or X.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.182 UDIV

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-860
Non-Confidential

D2.183 UMADDL
Unsigned Multiply-Add Long.

This instruction is used by the alias UMULL.

Syntax

UMADDL Xd, Wn, Wm, Xa

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the addend.

Operation

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and
writes the result to the 64-bit destination register.

Xd = Xa + Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.183 UMADDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-861
Non-Confidential

D2.184 UMNEGL
Unsigned Multiply-Negate Long.

This instruction is an alias of UMSUBL.

The equivalent instruction is UMSUBL Xd, Wn, Wm, XZR.

Syntax

UMNEGL Xd, Wn, Wm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Operation

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the
result to the 64-bit destination register.

Xd = -(Wn * Wm).

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.184 UMNEGL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-862
Non-Confidential

D2.185 UMSUBL
Unsigned Multiply-Subtract Long.

This instruction is used by the alias UMNEGL.

Syntax

UMSUBL Xd, Wn, Wm, Xa

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Xa
Is the 64-bit name of the third general-purpose source register holding the minuend.

Operation

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-
bit register value, and writes the result to the 64-bit destination register.

Xd = Xa - Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.185 UMSUBL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-863
Non-Confidential

D2.186 UMULH
Unsigned Multiply High.

Syntax

UMULH Xd, Xn, Xm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Xn
Is the 64-bit name of the first general-purpose source register holding the multiplicand.

Xm
Is the 64-bit name of the second general-purpose source register holding the multiplier.

Operation

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit
result to the 64-bit destination register.

Xd = bits<127:64> of Xn * Xm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.186 UMULH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-864
Non-Confidential

D2.187 UMULL
Unsigned Multiply Long.

This instruction is an alias of UMADDL.

The equivalent instruction is UMADDL Xd, Wn, Wm, XZR.

Syntax

UMULL Xd, Wn, Wm

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the first general-purpose source register holding the multiplicand.

Wm
Is the 32-bit name of the second general-purpose source register holding the multiplier.

Operation

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit
destination register.

Xd = Wn * Wm.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.187 UMULL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-865
Non-Confidential

D2.188 UXTB
Unsigned Extend Byte.

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #0, #7.

Syntax

UXTB Wd, Wn

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Operation

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register,
and writes the result to the destination register.

Wd = ZeroExtend(Wn<7:0>).

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.188 UXTB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-866
Non-Confidential

D2.189 UXTH
Unsigned Extend Halfword.

This instruction is an alias of UBFM.

The equivalent instruction is UBFM Wd, Wn, #0, #15.

Syntax

UXTH Wd, Wn

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Operation

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the
register, and writes the result to the destination register.

Wd = ZeroExtend(Wn<15:0>).

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.189 UXTH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-867
Non-Confidential

D2.190 XAFlag
Convert floating-point condition flags from external format to Arm format.

Syntax

XAFlag

Architectures supported

Supported in Armv8.5 and later.

Usage

Convert floating-point condition flags from external format to Arm format. This instruction converts the
state of the PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a
form representing the result of an Arm floating-point scalar compare instruction.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.190 XAFlag

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-868
Non-Confidential

D2.191 WFE
Wait For Event.

Usage

Wait For Event is a hint instruction that permits the PE to enter a low-power state until one of a number
of events occurs, including events signaled by executing the SEV instruction on any PE in the
multiprocessor system. For more information, see Wait For Event mechanism and Send event in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

As described in Wait For Event mechanism and Send event in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile, the execution of a WFE instruction that would otherwise cause
entry to a low-power state can be trapped to a higher Exception level. See:
• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.191 WFE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-869
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.192 WFI
Wait For Interrupt.

Usage

Wait For Interrupt is a hint instruction that permits the PE to enter a low-power state until one of a
number of asynchronous event occurs. For more information, see Wait For Interrupt in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

As described in Wait For Interrupt in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile, the execution of a WFI instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level. See:
• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.192 WFI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-870
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D2.193 XPACD, XPACI, XPACLRI
Strip Pointer Authentication Code.

Syntax

XPACD Xd ; XPACD general registers

XPACI Xd ; XPACI general registers

XPACLRI ; System

Where:

Xd
Is the 64-bit name of the general-purpose destination register.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an
address. The address is in the specified general-purpose register for XPACI and XPACD, and is in LR for
XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction
addresses.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662

D2 A64 General Instructions
D2.193 XPACD, XPACI, XPACLRI

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-871
Non-Confidential

D2.194 YIELD
YIELD.

Usage

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to
indicate to the PE that it is performing a task, for example a spin-lock, that could be swapped out to
improve overall system performance. The PE can use this hint to suspend and resume multiple software
threads if it supports the capability.

For more information about the recommended use of this instruction, see The YIELD instruction in the
Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D2.1 A64 instructions in alphabetical order on page D2-662
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D2 A64 General Instructions
D2.194 YIELD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D2-872
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Chapter D3
A64 Data Transfer Instructions

Describes the A64 data transfer instructions.

It contains the following sections:
• D3.1 A64 data transfer instructions in alphabetical order on page D3-877.
• D3.2 CASA, CASAL, CAS, CASL, CASAL, CAS, CASL on page D3-883.
• D3.3 CASAB, CASALB, CASB, CASLB on page D3-884.
• D3.4 CASAH, CASALH, CASH, CASLH on page D3-885.
• D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL on page D3-886.
• D3.6 LDADDA, LDADDAL, LDADD, LDADDL, LDADDAL, LDADD, LDADDL on page D3-888.
• D3.7 LDADDAB, LDADDALB, LDADDB, LDADDLB on page D3-889.
• D3.8 LDADDAH, LDADDALH, LDADDH, LDADDLH on page D3-890.
• D3.9 LDAPR on page D3-891.
• D3.10 LDAPRB on page D3-892.
• D3.11 LDAPRH on page D3-893.
• D3.12 LDAR on page D3-894.
• D3.13 LDARB on page D3-895.
• D3.14 LDARH on page D3-896.
• D3.15 LDAXP on page D3-897.
• D3.16 LDAXR on page D3-898.
• D3.17 LDAXRB on page D3-899.
• D3.18 LDAXRH on page D3-900.
• D3.19 LDCLRA, LDCLRAL, LDCLR, LDCLRL, LDCLRAL, LDCLR, LDCLRL on page D3-901.
• D3.20 LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB on page D3-902.
• D3.21 LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH on page D3-903.
• D3.22 LDEORA, LDEORAL, LDEOR, LDEORL, LDEORAL, LDEOR, LDEORL on page D3-904.
• D3.23 LDEORAB, LDEORALB, LDEORB, LDEORLB on page D3-905.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-873
Non-Confidential

• D3.24 LDEORAH, LDEORALH, LDEORH, LDEORLH on page D3-906.
• D3.25 LDLAR on page D3-907.
• D3.26 LDLARB on page D3-908.
• D3.27 LDLARH on page D3-909.
• D3.28 LDNP on page D3-910.
• D3.29 LDP on page D3-911.
• D3.30 LDPSW on page D3-912.
• D3.31 LDR (immediate) on page D3-913.
• D3.32 LDR (literal) on page D3-914.
• D3.33 LDR (register) on page D3-915.
• D3.34 LDRAA, LDRAB, LDRAB on page D3-916.
• D3.35 LDRB (immediate) on page D3-917.
• D3.36 LDRB (register) on page D3-918.
• D3.37 LDRH (immediate) on page D3-919.
• D3.38 LDRH (register) on page D3-920.
• D3.39 LDRSB (immediate) on page D3-921.
• D3.40 LDRSB (register) on page D3-922.
• D3.41 LDRSH (immediate) on page D3-923.
• D3.42 LDRSH (register) on page D3-924.
• D3.43 LDRSW (immediate) on page D3-925.
• D3.44 LDRSW (literal) on page D3-926.
• D3.45 LDRSW (register) on page D3-927.
• D3.46 LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL, LDSET, LDSETL on page D3-928.
• D3.47 LDSETAB, LDSETALB, LDSETB, LDSETLB on page D3-929.
• D3.48 LDSETAH, LDSETALH, LDSETH, LDSETLH on page D3-930.
• D3.49 LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL, LDSMAXAL, LDSMAX, LDSMAXL

on page D3-931.
• D3.50 LDSMAXAB, LDSMAXALB, LDSMAXB, LDSMAXLB on page D3-932.
• D3.51 LDSMAXAH, LDSMAXALH, LDSMAXH, LDSMAXLH on page D3-933.
• D3.52 LDSMINA, LDSMINAL, LDSMIN, LDSMINL, LDSMINAL, LDSMIN, LDSMINL

on page D3-934.
• D3.53 LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB on page D3-935.
• D3.54 LDSMINAH, LDSMINALH, LDSMINH, LDSMINLH on page D3-936.
• D3.55 LDTR on page D3-937.
• D3.56 LDTRB on page D3-938.
• D3.57 LDTRH on page D3-939.
• D3.58 LDTRSB on page D3-940.
• D3.59 LDTRSH on page D3-941.
• D3.60 LDTRSW on page D3-942.
• D3.61 LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL, LDUMAXAL, LDUMAX, LDUMAXL

on page D3-943.
• D3.62 LDUMAXAB, LDUMAXALB, LDUMAXB, LDUMAXLB on page D3-944.
• D3.63 LDUMAXAH, LDUMAXALH, LDUMAXH, LDUMAXLH on page D3-945.
• D3.64 LDUMINA, LDUMINAL, LDUMIN, LDUMINL, LDUMINAL, LDUMIN, LDUMINL

on page D3-946.
• D3.65 LDUMINAB, LDUMINALB, LDUMINB, LDUMINLB on page D3-947.
• D3.66 LDUMINAH, LDUMINALH, LDUMINH, LDUMINLH on page D3-948.
• D3.67 LDUR on page D3-949.
• D3.68 LDURB on page D3-950.
• D3.69 LDURH on page D3-951.
• D3.70 LDURSB on page D3-952.
• D3.71 LDURSH on page D3-953.
• D3.72 LDURSW on page D3-954.
• D3.73 LDXP on page D3-955.
• D3.74 LDXR on page D3-956.
• D3.75 LDXRB on page D3-957.

D3 A64 Data Transfer Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-874
Non-Confidential

• D3.76 LDXRH on page D3-958.
• D3.77 PRFM (immediate) on page D3-959.
• D3.78 PRFM (literal) on page D3-961.
• D3.79 PRFM (register) on page D3-963.
• D3.80 PRFUM (unscaled offset) on page D3-965.
• D3.81 STADD, STADDL, STADDL on page D3-967.
• D3.82 STADDB, STADDLB on page D3-968.
• D3.83 STADDH, STADDLH on page D3-969.
• D3.84 STCLR, STCLRL, STCLRL on page D3-970.
• D3.85 STCLRB, STCLRLB on page D3-971.
• D3.86 STCLRH, STCLRLH on page D3-972.
• D3.87 STEOR, STEORL, STEORL on page D3-973.
• D3.88 STEORB, STEORLB on page D3-974.
• D3.89 STEORH, STEORLH on page D3-975.
• D3.90 STLLR on page D3-976.
• D3.91 STLLRB on page D3-977.
• D3.92 STLLRH on page D3-978.
• D3.93 STLR on page D3-979.
• D3.94 STLRB on page D3-980.
• D3.95 STLRH on page D3-981.
• D3.96 STLXP on page D3-982.
• D3.97 STLXR on page D3-984.
• D3.98 STLXRB on page D3-986.
• D3.99 STLXRH on page D3-987.
• D3.100 STNP on page D3-988.
• D3.101 STP on page D3-989.
• D3.102 STR (immediate) on page D3-990.
• D3.103 STR (register) on page D3-991.
• D3.104 STRB (immediate) on page D3-992.
• D3.105 STRB (register) on page D3-993.
• D3.106 STRH (immediate) on page D3-994.
• D3.107 STRH (register) on page D3-995.
• D3.108 STSET, STSETL, STSETL on page D3-996.
• D3.109 STSETB, STSETLB on page D3-997.
• D3.110 STSETH, STSETLH on page D3-998.
• D3.111 STSMAX, STSMAXL, STSMAXL on page D3-999.
• D3.112 STSMAXB, STSMAXLB on page D3-1000.
• D3.113 STSMAXH, STSMAXLH on page D3-1001.
• D3.114 STSMIN, STSMINL, STSMINL on page D3-1002.
• D3.115 STSMINB, STSMINLB on page D3-1003.
• D3.116 STSMINH, STSMINLH on page D3-1004.
• D3.117 STTR on page D3-1005.
• D3.118 STTRB on page D3-1006.
• D3.119 STTRH on page D3-1007.
• D3.120 STUMAX, STUMAXL, STUMAXL on page D3-1008.
• D3.121 STUMAXB, STUMAXLB on page D3-1009.
• D3.122 STUMAXH, STUMAXLH on page D3-1010.
• D3.123 STUMIN, STUMINL, STUMINL on page D3-1011.
• D3.124 STUMINB, STUMINLB on page D3-1012.
• D3.125 STUMINH, STUMINLH on page D3-1013.
• D3.126 STUR on page D3-1014.
• D3.127 STURB on page D3-1015.
• D3.128 STURH on page D3-1016.
• D3.129 STXP on page D3-1017.
• D3.130 STXR on page D3-1019.
• D3.131 STXRB on page D3-1021.

D3 A64 Data Transfer Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-875
Non-Confidential

• D3.132 STXRH on page D3-1022.
• D3.133 SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL on page D3-1023.
• D3.134 SWPAB, SWPALB, SWPB, SWPLB on page D3-1024.
• D3.135 SWPAH, SWPALH, SWPH, SWPLH on page D3-1025.

D3 A64 Data Transfer Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-876
Non-Confidential

D3.1 A64 data transfer instructions in alphabetical order
A summary of the A64 data transfer instructions and pseudo-instructions that are supported.

Table D3-1 Summary of A64 data transfer instructions

Mnemonic Brief description See

CASA, CASAL, CAS, CASL,
CASAL, CAS, CASL

Compare and Swap word or doubleword in
memory

D3.2 CASA, CASAL, CAS, CASL, CASAL, CAS, CASL
on page D3-883

CASAB, CASALB, CASB,
CASLB

Compare and Swap byte in memory D3.3 CASAB, CASALB, CASB, CASLB on page D3-884

CASAH, CASALH, CASH,
CASLH

Compare and Swap halfword in memory D3.4 CASAH, CASALH, CASH, CASLH on page D3-885

CASPA, CASPAL, CASP,
CASPL, CASPAL, CASP,
CASPL

Compare and Swap Pair of words or
doublewords in memory

D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP,
CASPL on page D3-886

LDADDA, LDADDAL, LDADD,
LDADDL, LDADDAL, LDADD,
LDADDL

Atomic add on word or doubleword in
memory

D3.6 LDADDA, LDADDAL, LDADD, LDADDL,
LDADDAL, LDADD, LDADDL on page D3-888

LDADDAB, LDADDALB,
LDADDB, LDADDLB

Atomic add on byte in memory D3.7 LDADDAB, LDADDALB, LDADDB, LDADDLB
on page D3-889

LDADDAH, LDADDALH,
LDADDH, LDADDLH

Atomic add on halfword in memory D3.8 LDADDAH, LDADDALH, LDADDH, LDADDLH
on page D3-890

LDAPR Load-Acquire RCpc Register D3.9 LDAPR on page D3-891

LDAPRB Load-Acquire RCpc Register Byte D3.10 LDAPRB on page D3-892

LDAPRH Load-Acquire RCpc Register Halfword D3.11 LDAPRH on page D3-893

LDAR Load-Acquire Register D3.12 LDAR on page D3-894

LDARB Load-Acquire Register Byte D3.13 LDARB on page D3-895

LDARH Load-Acquire Register Halfword D3.14 LDARH on page D3-896

LDAXP Load-Acquire Exclusive Pair of Registers D3.15 LDAXP on page D3-897

LDAXR Load-Acquire Exclusive Register D3.16 LDAXR on page D3-898

LDAXRB Load-Acquire Exclusive Register Byte D3.17 LDAXRB on page D3-899

LDAXRH Load-Acquire Exclusive Register Halfword D3.18 LDAXRH on page D3-900

LDCLRA, LDCLRAL, LDCLR,
LDCLRL, LDCLRAL, LDCLR,
LDCLRL

Atomic bit clear on word or doubleword in
memory

D3.19 LDCLRA, LDCLRAL, LDCLR, LDCLRL,
LDCLRAL, LDCLR, LDCLRL on page D3-901

LDCLRAB, LDCLRALB,
LDCLRB, LDCLRLB

Atomic bit clear on byte in memory D3.20 LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB
on page D3-902

LDCLRAH, LDCLRALH,
LDCLRH, LDCLRLH

Atomic bit clear on halfword in memory D3.21 LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH
on page D3-903

LDEORA, LDEORAL, LDEOR,
LDEORL, LDEORAL, LDEOR,
LDEORL

Atomic exclusive OR on word or
doubleword in memory

D3.22 LDEORA, LDEORAL, LDEOR, LDEORL,
LDEORAL, LDEOR, LDEORL on page D3-904

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-877
Non-Confidential

Table D3-1 Summary of A64 data transfer instructions (continued)

Mnemonic Brief description See

LDEORAB, LDEORALB,
LDEORB, LDEORLB

Atomic exclusive OR on byte in memory D3.23 LDEORAB, LDEORALB, LDEORB, LDEORLB
on page D3-905

LDEORAH, LDEORALH,
LDEORH, LDEORLH

Atomic exclusive OR on halfword in
memory

D3.24 LDEORAH, LDEORALH, LDEORH, LDEORLH
on page D3-906

LDLAR Load LOAcquire Register D3.25 LDLAR on page D3-907

LDLARB Load LOAcquire Register Byte D3.26 LDLARB on page D3-908

LDLARH Load LOAcquire Register Halfword D3.27 LDLARH on page D3-909

LDNP Load Pair of Registers, with non-temporal
hint

D3.28 LDNP on page D3-910

LDP Load Pair of Registers D3.29 LDP on page D3-911

LDPSW Load Pair of Registers Signed Word D3.30 LDPSW on page D3-912

LDR (immediate) Load Register (immediate) D3.31 LDR (immediate) on page D3-913

LDR (literal) Load Register (literal) D3.32 LDR (literal) on page D3-914

LDR pseudo-instruction Load a register with either a 32-bit or 64-bit
immediate value or any address

LDR (register) Load Register (register) D3.33 LDR (register) on page D3-915

LDRAA, LDRAB, LDRAB Load Register, with pointer authentication D3.34 LDRAA, LDRAB, LDRAB on page D3-916

LDRB (immediate) Load Register Byte (immediate) D3.35 LDRB (immediate) on page D3-917

LDRB (register) Load Register Byte (register) D3.36 LDRB (register) on page D3-918

LDRH (immediate) Load Register Halfword (immediate) D3.37 LDRH (immediate) on page D3-919

LDRH (register) Load Register Halfword (register) D3.38 LDRH (register) on page D3-920

LDRSB (immediate) Load Register Signed Byte (immediate) D3.39 LDRSB (immediate) on page D3-921

LDRSB (register) Load Register Signed Byte (register) D3.40 LDRSB (register) on page D3-922

LDRSH (immediate) Load Register Signed Halfword
(immediate)

D3.41 LDRSH (immediate) on page D3-923

LDRSH (register) Load Register Signed Halfword (register) D3.42 LDRSH (register) on page D3-924

LDRSW (immediate) Load Register Signed Word (immediate) D3.43 LDRSW (immediate) on page D3-925

LDRSW (literal) Load Register Signed Word (literal) D3.44 LDRSW (literal) on page D3-926

LDRSW (register) Load Register Signed Word (register) D3.45 LDRSW (register) on page D3-927

LDSETA, LDSETAL, LDSET,
LDSETL, LDSETAL, LDSET,
LDSETL

Atomic bit set on word or doubleword in
memory

D3.46 LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL,
LDSET, LDSETL on page D3-928

LDSETAB, LDSETALB,
LDSETB, LDSETLB

Atomic bit set on byte in memory D3.47 LDSETAB, LDSETALB, LDSETB, LDSETLB
on page D3-929

LDSETAH, LDSETALH,
LDSETH, LDSETLH

Atomic bit set on halfword in memory D3.48 LDSETAH, LDSETALH, LDSETH, LDSETLH
on page D3-930

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-878
Non-Confidential

Table D3-1 Summary of A64 data transfer instructions (continued)

Mnemonic Brief description See

LDSMAXA, LDSMAXAL,
LDSMAX, LDSMAXL,
LDSMAXAL, LDSMAX,
LDSMAXL

Atomic signed maximum on word or
doubleword in memory

D3.49 LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL,
LDSMAXAL, LDSMAX, LDSMAXL on page D3-931

LDSMAXAB, LDSMAXALB,
LDSMAXB, LDSMAXLB

Atomic signed maximum on byte in
memory

D3.50 LDSMAXAB, LDSMAXALB, LDSMAXB,
LDSMAXLB on page D3-932

LDSMAXAH, LDSMAXALH,
LDSMAXH, LDSMAXLH

Atomic signed maximum on halfword in
memory

D3.51 LDSMAXAH, LDSMAXALH, LDSMAXH,
LDSMAXLH on page D3-933

LDSMINA, LDSMINAL,
LDSMIN, LDSMINL,
LDSMINAL, LDSMIN,
LDSMINL

Atomic signed minimum on word or
doubleword in memory

D3.52 LDSMINA, LDSMINAL, LDSMIN, LDSMINL,
LDSMINAL, LDSMIN, LDSMINL on page D3-934

LDSMINAB, LDSMINALB,
LDSMINB, LDSMINLB

Atomic signed minimum on byte in
memory

D3.53 LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB
on page D3-935

LDSMINAH, LDSMINALH,
LDSMINH, LDSMINLH

Atomic signed minimum on halfword in
memory

D3.54 LDSMINAH, LDSMINALH, LDSMINH,
LDSMINLH on page D3-936

LDTR Load Register (unprivileged) D3.55 LDTR on page D3-937

LDTRB Load Register Byte (unprivileged) D3.56 LDTRB on page D3-938

LDTRH Load Register Halfword (unprivileged) D3.57 LDTRH on page D3-939

LDTRSB Load Register Signed Byte (unprivileged) D3.58 LDTRSB on page D3-940

LDTRSH Load Register Signed Halfword
(unprivileged)

D3.59 LDTRSH on page D3-941

LDTRSW Load Register Signed Word (unprivileged) D3.60 LDTRSW on page D3-942

LDUMAXA, LDUMAXAL,
LDUMAX, LDUMAXL,
LDUMAXAL, LDUMAX,
LDUMAXL

Atomic unsigned maximum on word or
doubleword in memory

D3.61 LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL,
LDUMAXAL, LDUMAX, LDUMAXL on page D3-943

LDUMAXAB, LDUMAXALB,
LDUMAXB, LDUMAXLB

Atomic unsigned maximum on byte in
memory

D3.62 LDUMAXAB, LDUMAXALB, LDUMAXB,
LDUMAXLB on page D3-944

LDUMAXAH, LDUMAXALH,
LDUMAXH, LDUMAXLH

Atomic unsigned maximum on halfword in
memory

D3.63 LDUMAXAH, LDUMAXALH, LDUMAXH,
LDUMAXLH on page D3-945

LDUMINA, LDUMINAL,
LDUMIN, LDUMINL,
LDUMINAL, LDUMIN,
LDUMINL

Atomic unsigned minimum on word or
doubleword in memory

D3.64 LDUMINA, LDUMINAL, LDUMIN, LDUMINL,
LDUMINAL, LDUMIN, LDUMINL on page D3-946

LDUMINAB, LDUMINALB,
LDUMINB, LDUMINLB

Atomic unsigned minimum on byte in
memory

D3.65 LDUMINAB, LDUMINALB, LDUMINB,
LDUMINLB on page D3-947

LDUMINAH, LDUMINALH,
LDUMINH, LDUMINLH

Atomic unsigned minimum on halfword in
memory

D3.66 LDUMINAH, LDUMINALH, LDUMINH,
LDUMINLH on page D3-948

LDUR Load Register (unscaled) D3.67 LDUR on page D3-949

LDURB Load Register Byte (unscaled) D3.68 LDURB on page D3-950

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-879
Non-Confidential

Table D3-1 Summary of A64 data transfer instructions (continued)

Mnemonic Brief description See

LDURH Load Register Halfword (unscaled) D3.69 LDURH on page D3-951

LDURSB Load Register Signed Byte (unscaled) D3.70 LDURSB on page D3-952

LDURSH Load Register Signed Halfword (unscaled) D3.71 LDURSH on page D3-953

LDURSW Load Register Signed Word (unscaled) D3.72 LDURSW on page D3-954

LDXP Load Exclusive Pair of Registers D3.73 LDXP on page D3-955

LDXR Load Exclusive Register D3.74 LDXR on page D3-956

LDXRB Load Exclusive Register Byte D3.75 LDXRB on page D3-957

LDXRH Load Exclusive Register Halfword D3.76 LDXRH on page D3-958

PRFM (immediate) Prefetch Memory (immediate) D3.77 PRFM (immediate) on page D3-959

PRFM (literal) Prefetch Memory (literal) D3.78 PRFM (literal) on page D3-961

PRFM (register) Prefetch Memory (register) D3.79 PRFM (register) on page D3-963

PRFUM (unscaled offset) Prefetch Memory (unscaled offset) D3.80 PRFUM (unscaled offset) on page D3-965

STADD, STADDL, STADDL Atomic add on word or doubleword in
memory, without return

D3.81 STADD, STADDL, STADDL on page D3-967

STADDB, STADDLB Atomic add on byte in memory, without
return

D3.82 STADDB, STADDLB on page D3-968

STADDH, STADDLH Atomic add on halfword in memory,
without return

D3.83 STADDH, STADDLH on page D3-969

STCLR, STCLRL, STCLRL Atomic bit clear on word or doubleword in
memory, without return

D3.84 STCLR, STCLRL, STCLRL on page D3-970

STCLRB, STCLRLB Atomic bit clear on byte in memory,
without return

D3.85 STCLRB, STCLRLB on page D3-971

STCLRH, STCLRLH Atomic bit clear on halfword in memory,
without return

D3.86 STCLRH, STCLRLH on page D3-972

STEOR, STEORL, STEORL Atomic exclusive OR on word or
doubleword in memory, without return

D3.87 STEOR, STEORL, STEORL on page D3-973

STEORB, STEORLB Atomic exclusive OR on byte in memory,
without return

D3.88 STEORB, STEORLB on page D3-974

STEORH, STEORLH Atomic exclusive OR on halfword in
memory, without return

D3.89 STEORH, STEORLH on page D3-975

STLLR Store LORelease Register D3.90 STLLR on page D3-976

STLLRB Store LORelease Register Byte D3.91 STLLRB on page D3-977

STLLRH Store LORelease Register Halfword D3.92 STLLRH on page D3-978

STLR Store-Release Register D3.93 STLR on page D3-979

STLRB Store-Release Register Byte D3.94 STLRB on page D3-980

STLRH Store-Release Register Halfword D3.95 STLRH on page D3-981

STLXP Store-Release Exclusive Pair of registers D3.96 STLXP on page D3-982

STLXR Store-Release Exclusive Register D3.97 STLXR on page D3-984

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-880
Non-Confidential

Table D3-1 Summary of A64 data transfer instructions (continued)

Mnemonic Brief description See

STLXRB Store-Release Exclusive Register Byte D3.98 STLXRB on page D3-986

STLXRH Store-Release Exclusive Register Halfword D3.99 STLXRH on page D3-987

STNP Store Pair of Registers, with non-temporal
hint

D3.100 STNP on page D3-988

STP Store Pair of Registers D3.101 STP on page D3-989

STR (immediate) Store Register (immediate) D3.102 STR (immediate) on page D3-990

STR (register) Store Register (register) D3.103 STR (register) on page D3-991

STRB (immediate) Store Register Byte (immediate) D3.104 STRB (immediate) on page D3-992

STRB (register) Store Register Byte (register) D3.105 STRB (register) on page D3-993

STRH (immediate) Store Register Halfword (immediate) D3.106 STRH (immediate) on page D3-994

STRH (register) Store Register Halfword (register) D3.107 STRH (register) on page D3-995

STSET, STSETL, STSETL Atomic bit set on word or doubleword in
memory, without return

D3.108 STSET, STSETL, STSETL on page D3-996

STSETB, STSETLB Atomic bit set on byte in memory, without
return

D3.109 STSETB, STSETLB on page D3-997

STSETH, STSETLH Atomic bit set on halfword in memory,
without return

D3.110 STSETH, STSETLH on page D3-998

STSMAX, STSMAXL,
STSMAXL

Atomic signed maximum on word or
doubleword in memory, without return

D3.111 STSMAX, STSMAXL, STSMAXL on page D3-999

STSMAXB, STSMAXLB Atomic signed maximum on byte in
memory, without return

D3.112 STSMAXB, STSMAXLB on page D3-1000

STSMAXH, STSMAXLH Atomic signed maximum on halfword in
memory, without return

D3.113 STSMAXH, STSMAXLH on page D3-1001

STSMIN, STSMINL,
STSMINL

Atomic signed minimum on word or
doubleword in memory, without return

D3.114 STSMIN, STSMINL, STSMINL on page D3-1002

STSMINB, STSMINLB Atomic signed minimum on byte in
memory, without return

D3.115 STSMINB, STSMINLB on page D3-1003

STSMINH, STSMINLH Atomic signed minimum on halfword in
memory, without return

D3.116 STSMINH, STSMINLH on page D3-1004

STTR Store Register (unprivileged) D3.117 STTR on page D3-1005

STTRB Store Register Byte (unprivileged) D3.118 STTRB on page D3-1006

STTRH Store Register Halfword (unprivileged) D3.119 STTRH on page D3-1007

STUMAX, STUMAXL,
STUMAXL

Atomic unsigned maximum on word or
doubleword in memory, without return

D3.120 STUMAX, STUMAXL, STUMAXL
on page D3-1008

STUMAXB, STUMAXLB Atomic unsigned maximum on byte in
memory, without return

D3.121 STUMAXB, STUMAXLB on page D3-1009

STUMAXH, STUMAXLH Atomic unsigned maximum on halfword in
memory, without return

D3.122 STUMAXH, STUMAXLH on page D3-1010

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-881
Non-Confidential

Table D3-1 Summary of A64 data transfer instructions (continued)

Mnemonic Brief description See

STUMIN, STUMINL,
STUMINL

Atomic unsigned minimum on word or
doubleword in memory, without return

D3.123 STUMIN, STUMINL, STUMINL on page D3-1011

STUMINB, STUMINLB Atomic unsigned minimum on byte in
memory, without return

D3.124 STUMINB, STUMINLB on page D3-1012

STUMINH, STUMINLH Atomic unsigned minimum on halfword in
memory, without return

D3.125 STUMINH, STUMINLH on page D3-1013

STUR Store Register (unscaled) D3.126 STUR on page D3-1014

STURB Store Register Byte (unscaled) D3.127 STURB on page D3-1015

STURH Store Register Halfword (unscaled) D3.128 STURH on page D3-1016

STXP Store Exclusive Pair of registers D3.129 STXP on page D3-1017

STXR Store Exclusive Register D3.130 STXR on page D3-1019

STXRB Store Exclusive Register Byte D3.131 STXRB on page D3-1021

STXRH Store Exclusive Register Halfword D3.132 STXRH on page D3-1022

SWPA, SWPAL, SWP, SWPL,
SWPAL, SWP, SWPL

Swap word or doubleword in memory D3.133 SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL
on page D3-1023

SWPAB, SWPALB, SWPB,
SWPLB

Swap byte in memory D3.134 SWPAB, SWPALB, SWPB, SWPLB
on page D3-1024

SWPAH, SWPALH, SWPH,
SWPLH

Swap halfword in memory D3.135 SWPAH, SWPALH, SWPH, SWPLH
on page D3-1025

D3 A64 Data Transfer Instructions
D3.1 A64 data transfer instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-882
Non-Confidential

D3.2 CASA, CASAL, CAS, CASL, CASAL, CAS, CASL
Compare and Swap word or doubleword in memory.

Syntax

CASA Ws, Wt, [Xn|SP{,#0}] ; 32-bit, acquire

CASAL Ws, Wt, [Xn|SP{,#0}] ; 32-bit, acquire and release

CAS Ws, Wt, [Xn|SP{,#0}] ; 32-bit, no memory ordering

CASL Ws, Wt, [Xn|SP{,#0}] ; 32-bit, release

CASA Xs, Xt, [Xn|SP{,#0}] ; 64-bit, acquire

CASAL Xs, Xt, [Xn|SP{,#0}] ; 64-bit, acquire and release

CAS Xs, Xt, [Xn|SP{,#0}] ; 64-bit, no memory ordering

CASL Xs, Xt, [Xn|SP{,#0}] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register to be compared and loaded.

Wt
Is the 32-bit name of the general-purpose register to be conditionally stored.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register to be compared and loaded.

Xt
Is the 64-bit name of the general-purpose register to be conditionally stored.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from
memory, and compares it against the value held in a first register. If the comparison is equal, the value in
a second register is written to memory. If the write is performed, the read and write occur atomically
such that no other modification of the memory location can take place between the read and write.
• CASA and CASAL load from memory with acquire semantics.
• CASL and CASAL store to memory with release semantics.
• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The architecture permits that the data read clears any exclusive monitors associated with that location,
even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is
Ws, or Xs, is restored to the value held in the register before the instruction was executed.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.2 CASA, CASAL, CAS, CASL, CASAL, CAS, CASL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-883
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.3 CASAB, CASALB, CASB, CASLB
Compare and Swap byte in memory.

Syntax

CASAB Ws, Wt, [Xn|SP{,#0}] ; Acquire general registers

CASALB Ws, Wt, [Xn|SP{,#0}] ; Acquire and release general registers

CASB Ws, Wt, [Xn|SP{,#0}] ; No memory ordering general registers

CASLB Ws, Wt, [Xn|SP{,#0}] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register to be compared and loaded.

Wt
Is the 32-bit name of the general-purpose register to be conditionally stored.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If
the write is performed, the read and write occur atomically such that no other modification of the
memory location can take place between the read and write.
• CASAB and CASALB load from memory with acquire semantics.
• CASLB and CASALB store to memory with release semantics.
• CASB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The architecture permits that the data read clears any exclusive monitors associated with that location,
even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is
Ws, is restored to the values held in the register before the instruction was executed.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.3 CASAB, CASALB, CASB, CASLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-884
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.4 CASAH, CASALH, CASH, CASLH
Compare and Swap halfword in memory.

Syntax

CASAH Ws, Wt, [Xn|SP{,#0}] ; Acquire general registers

CASALH Ws, Wt, [Xn|SP{,#0}] ; Acquire and release general registers

CASH Ws, Wt, [Xn|SP{,#0}] ; No memory ordering general registers

CASLH Ws, Wt, [Xn|SP{,#0}] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register to be compared and loaded.

Wt
Is the 32-bit name of the general-purpose register to be conditionally stored.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against
the value held in a first register. If the comparison is equal, the value in a second register is written to
memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.
• CASAH and CASALH load from memory with acquire semantics.
• CASLH and CASALH store to memory with release semantics.
• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The architecture permits that the data read clears any exclusive monitors associated with that location,
even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is
Ws, is restored to the values held in the register before the instruction was executed.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.4 CASAH, CASALH, CASH, CASLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-885
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL
Compare and Swap Pair of words or doublewords in memory.

Syntax

CASPA Ws, <W(s+1)>, Wt, <W(t+1)>, [Xn|SP{,#0}] ; 32-bit, acquire

CASPAL Ws, <W(s+1)>, Wt, <W(t+1)>, [Xn|SP{,#0}] ; 32-bit, acquire and release

CASP Ws, <W(s+1)>, Wt, <W(t+1)>, [Xn|SP{,#0}] ; 32-bit, no memory ordering

CASPL Ws, <W(s+1)>, Wt, <W(t+1)>, [Xn|SP{,#0}] ; 32-bit, release

CASPA Xs, <X(s+1)>, Xt, <X(t+1)>, [Xn|SP{,#0}] ; 64-bit, acquire

CASPAL Xs, <X(s+1)>, Xt, <X(t+1)>, [Xn|SP{,#0}] ; 64-bit, acquire and release

CASP Xs, <X(s+1)>, Xt, <X(t+1)>, [Xn|SP{,#0}] ; 64-bit, no memory ordering

CASPL Xs, <X(s+1)>, Xt, <X(t+1)>, [Xn|SP{,#0}] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the first general-purpose register to be compared and loaded.

<W(s+1)>
Is the 32-bit name of the second general-purpose register to be compared and loaded.

Wt
Is the 32-bit name of the first general-purpose register to be conditionally stored.

<W(t+1)>
Is the 32-bit name of the second general-purpose register to be conditionally stored.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the first general-purpose register to be compared and loaded.

<X(s+1)>
Is the 64-bit name of the second general-purpose register to be compared and loaded.

Xt
Is the 64-bit name of the first general-purpose register to be conditionally stored.

<X(t+1)>
Is the 64-bit name of the second general-purpose register to be conditionally stored.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit
doublewords from memory, and compares them against the values held in the first pair of registers. If the
comparison is equal, the values in the second pair of registers are written to memory. If the writes are
performed, the reads and writes occur atomically such that no other modification of the memory location
can take place between the reads and writes.
• CASPA and CASPAL load from memory with acquire semantics.
• CASPL and CASPAL store to memory with release semantics.
• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

D3 A64 Data Transfer Instructions
D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-886
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

The architecture permits that the data read clears any exclusive monitors associated with that location,
even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that
is Ws and <W(s+1)>, or Xs and <X(s+1)>, are restored to the values held in the registers before the
instruction was executed.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.5 CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-887
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.6 LDADDA, LDADDAL, LDADD, LDADDL, LDADDAL, LDADD, LDADDL
Atomic add on word or doubleword in memory.

Syntax

LDADDA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDADDAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDADD Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDADDL Ws, Wt, [Xn|SP] ; 32-bit, release

LDADDA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDADDAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDADD Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDADDL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.
• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with

acquire semantics.
• LDADDL and LDADDAL store to memory with release semantics.
• LDADD has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.6 LDADDA, LDADDAL, LDADD, LDADDL, LDADDAL, LDADD, LDADDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-888
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.7 LDADDAB, LDADDALB, LDADDB, LDADDLB
Atomic add on byte in memory.

Syntax

LDADDAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDADDALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDADDB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDADDLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.
• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire

semantics.
• LDADDLB and LDADDALB store to memory with release semantics.
• LDADDB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.7 LDADDAB, LDADDALB, LDADDB, LDADDLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-889
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.8 LDADDAH, LDADDALH, LDADDH, LDADDLH
Atomic add on halfword in memory.

Syntax

LDADDAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDADDALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDADDH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDADDLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire

semantics.
• LDADDLH and LDADDALH store to memory with release semantics.
• LDADDH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.8 LDADDAH, LDADDALH, LDADDH, LDADDLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-890
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.9 LDAPR
Load-Acquire RCpc Register.

Syntax

LDAPR Wt, [Xn|SP {,#0}] ; 32-bit

LDAPR Xt, [Xn|SP {,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

This instruction is supported in the Armv8.3-A architecture and later. It is optionally supported in the
Armv8.2-A architecture with the RCpc extension.

Usage

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except
that:
• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-

Release, created by having a Store-Release followed by a Load-Acquirepc instruction.
• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same

observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.9 LDAPR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-891
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.10 LDAPRB
Load-Acquire RCpc Register Byte.

Syntax

LDAPRB Wt, [Xn|SP {,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

This instruction is supported in the Armv8.3-A architecture and later. It is optionally supported in the
Armv8.2-A architecture with the RCpc extension.

Usage

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except
that:
• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-

Release, created by having a Store-Release followed by a Load-Acquirepc instruction.
• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same

observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.10 LDAPRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-892
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.11 LDAPRH
Load-Acquire RCpc Register Halfword.

Syntax

LDAPRH Wt, [Xn|SP {,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

This instruction is supported in the Armv8.3-A architecture and later. It is optionally supported in the
Armv8.2-A architecture with the RCpc extension.

Usage

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword
from the derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except
that:
• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-

Release, created by having a Store-Release followed by a Load-Acquirepc instruction.
• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same

observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.11 LDAPRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-893
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.12 LDAR
Load-Acquire Register.

Syntax

LDAR Wt, [Xn|SP{,#0}] ; 32-bit

LDAR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see
Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.12 LDAR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-894
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.13 LDARB
Load-Acquire Register Byte.

Syntax

LDARB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.13 LDARB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-895
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.14 LDARH
Load-Acquire Register Halfword.

Syntax

LDARH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it, and writes it to a register. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.14 LDARH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-896
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.15 LDAXP
Load-Acquire Exclusive Pair of Registers.

Syntax

LDAXP Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit

LDAXP Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires
the address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair
requires the address to be quadword aligned and is single-copy atomic for each doubleword at
doubleword granularity. The PE marks the physical address being accessed as an exclusive access. This
exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDAXP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.15 LDAXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-897
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.16 LDAXR
Load-Acquire Exclusive Register.

Syntax

LDAXR Wt, [Xn|SP{,#0}] ; 32-bit

LDAXR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or
64-bit doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks
the physical address being accessed as an exclusive access. This exclusive access mark is checked by
Store Exclusive instructions. See Synchronization and semaphores in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.16 LDAXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-898
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.17 LDAXRB
Load-Acquire Exclusive Register Byte.

Syntax

LDAXRB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.17 LDAXRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-899
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.18 LDAXRH
Load-Acquire Exclusive Register Halfword.

Syntax

LDAXRH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a
halfword from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE
marks the physical address being accessed as an exclusive access. This exclusive access mark is checked
by Store Exclusive instructions. See Synchronization and semaphores in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.18 LDAXRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-900
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.19 LDCLRA, LDCLRAL, LDCLR, LDCLRL, LDCLRAL, LDCLR, LDCLRL
Atomic bit clear on word or doubleword in memory.

Syntax

LDCLRA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDCLRAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDCLR Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDCLRL Ws, Wt, [Xn|SP] ; 32-bit, release

LDCLRA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDCLRAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDCLR Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDCLRL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory. The value initially loaded from memory is returned in the destination
register.
• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with

acquire semantics.
• LDCLRL and LDCLRAL store to memory with release semantics.
• LDCLR has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.19 LDCLRA, LDCLRAL, LDCLR, LDCLRL, LDCLRAL, LDCLR, LDCLRL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-901
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.20 LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB
Atomic bit clear on byte in memory.

Syntax

LDCLRAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDCLRALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDCLRB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDCLRLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire

semantics.
• LDCLRLB and LDCLRALB store to memory with release semantics.
• LDCLRB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.20 LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-902
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.21 LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH
Atomic bit clear on halfword in memory.

Syntax

LDCLRAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDCLRALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDCLRH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDCLRLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a
bitwise AND with the complement of the value held in a register on it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire

semantics.
• LDCLRLH and LDCLRALH store to memory with release semantics.
• LDCLRH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.21 LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-903
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.22 LDEORA, LDEORAL, LDEOR, LDEORL, LDEORAL, LDEOR, LDEORL
Atomic exclusive OR on word or doubleword in memory.

Syntax

LDEORA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDEORAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDEOR Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDEORL Ws, Wt, [Xn|SP] ; 32-bit, release

LDEORA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDEORAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDEOR Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDEORL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores
the result back to memory. The value initially loaded from memory is returned in the destination register.
• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with

acquire semantics.
• LDEORL and LDEORAL store to memory with release semantics.
• LDEOR has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.22 LDEORA, LDEORAL, LDEOR, LDEORL, LDEORAL, LDEOR, LDEORL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-904
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.23 LDEORAB, LDEORALB, LDEORB, LDEORLB
Atomic exclusive OR on byte in memory.

Syntax

LDEORAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDEORALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDEORB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDEORLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire

semantics.
• LDEORLB and LDEORALB store to memory with release semantics.
• LDEORB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.23 LDEORAB, LDEORALB, LDEORB, LDEORLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-905
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.24 LDEORAH, LDEORALH, LDEORH, LDEORLH
Atomic exclusive OR on halfword in memory.

Syntax

LDEORAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDEORALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDEORH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDEORLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs
an exclusive OR with the value held in a register on it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire

semantics.
• LDEORLH and LDEORALH store to memory with release semantics.
• LDEORH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.24 LDEORAH, LDEORALH, LDEORH, LDEORLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-906
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.25 LDLAR
Load LOAcquire Register.

Syntax

LDLAR Wt, [Xn|SP{,#0}] ; 32-bit

LDLAR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a
register. The instruction also has memory ordering semantics as described in Load LOAcquire, Store
LORelease. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.25 LDLAR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-907
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.26 LDLARB
Load LOAcquire Register Byte.

Syntax

LDLARB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.26 LDLARB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-908
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.27 LDLARH
Load LOAcquire Register Halfword.

Syntax

LDLARH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a
register. The instruction also has memory ordering semantics as described in Load LOAcquire, Store
LORelease. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.27 LDLARH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-909
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.28 LDNP
Load Pair of Registers, with non-temporal hint.

Syntax

LDNP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit

LDNP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

imm

Depends on the instruction variant:

32-bit general registers
Is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0.

64-bit general registers
Is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an
immediate offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to
two registers.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDNP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.28 LDNP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-910
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.29 LDP
Load Pair of Registers.

Syntax

LDP Wt1, Wt2, [Xn|SP], #imm ; 32-bit

LDP Xt1, Xt2, [Xn|SP], #imm ; 64-bit

LDP Wt1, Wt2, [Xn|SP, #imm]! ; 32-bit

LDP Xt1, Xt2, [Xn|SP, #imm]! ; 64-bit

LDP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit

LDP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

imm

Depends on the instruction variant:

32-bit general registers
Is the signed immediate byte offset, a multiple of 4 in the range -256 to 252.

64-bit general registers
Is the signed immediate byte offset, a multiple of 8 in the range -512 to 504.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Pair of Registers calculates an address from a base register value and an immediate offset, loads
two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.29 LDP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-911
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.30 LDPSW
Load Pair of Registers Signed Word.

Syntax

LDPSW Xt1, Xt2, [Xn|SP], #imm ; Post-index general registers

LDPSW Xt1, Xt2, [Xn|SP, #imm]! ; Pre-index general registers

LDPSW Xt1, Xt2, [Xn|SP{, #imm}] ; Signed offset general registers

Where:

imm

Depends on the instruction variant:

Post-index and Pre-index general registers
Is the signed immediate byte offset, a multiple of 4 in the range -256 to 252.

Signed offset general registers
Is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Pair of Registers Signed Word calculates an address from a base register value and an immediate
offset, loads two 32-bit words from memory, sign-extends them, and writes them to two registers. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDPSW.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.30 LDPSW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-912
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.31 LDR (immediate)
Load Register (immediate).

Syntax

LDR Wt, [Xn|SP], #simm ; 32-bit

LDR Xt, [Xn|SP], #simm ; 64-bit

LDR Wt, [Xn|SP, #simm]! ; 32-bit

LDR Xt, [Xn|SP, #simm]! ; 64-bit

LDR Wt, [Xn|SP{, #pimm}] ; 32-bit

LDR Xt, [Xn|SP{, #pimm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

pimm

Depends on the instruction variant:

32-bit general registers
Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380,
defaulting to 0.

64-bit general registers
Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760,
defaulting to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile. The Unsigned offset variant scales the
immediate offset value by the size of the value accessed before adding it to the base register value.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDR (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.31 LDR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-913
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.32 LDR (literal)
Load Register (literal).

Syntax

LDR Wt, label ; 32-bit

LDR Xt, label ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

label
Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.32 LDR (literal)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-914
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.33 LDR (register)
Load Register (register).

Syntax

LDR Wt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 32-bit

LDR Xt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

amount

Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is:

32-bit general registers
Can be one of #0 or #2.

64-bit general registers
Can be one of #0 or #3.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of the values shown in Usage.

Usage

Load Register (register) calculates an address from a base register value and an offset register value,
loads a word from memory, and writes it to a register. The offset register value can optionally be shifted
and extended. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.33 LDR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-915
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.34 LDRAA, LDRAB, LDRAB
Load Register, with pointer authentication.

Syntax

LDRAA Xt, [Xn|SP{, #simm}] ; LDRAA

LDRAA Xt, [Xn|SP{, #simm}]! ; LDRAA

LDRAB Xt, [Xn|SP{, #simm}] ; LDRAB

LDRAB Xt, [Xn|SP{, #simm}]! ; LDRAB

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -512 to 511, defaulting to 0.

Usage

Load Register, with pointer authentication. This instruction authenticates an address from a base register
using a modifier of zero and the specified key, adds an immediate offset to the authenticated address, and
loads a 64-bit doubleword from memory at this resulting address into a register.

Key A is used for LDRAA, and key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails,
a Translation fault is generated.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the
instruction is used. In this case, the address that is written back to the base register does not include the
pointer authentication code.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.34 LDRAA, LDRAB, LDRAB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-916
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.35 LDRB (immediate)
Load Register Byte (immediate).

Syntax

LDRB Wt, [Xn|SP], #simm ; Post-index general registers

LDRB Wt, [Xn|SP, #simm]! ; Pre-index general registers

LDRB Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm
Is the signed immediate byte offset, in the range -256 to 255.

pimm
Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0.

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.
For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRH (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.35 LDRB (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-917
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.36 LDRB (register)
Load Register Byte (register).

Syntax

LDRB Wt, [Xn|SP, (Wm|Xm), extend {amount}] ; Extended register general registers

LDRB Wt, [Xn|SP, Xm{, LSL amount}] ; Shifted register general registers

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend specifier, and can be one of the values shown in Usage.

amount
Is the index shift amount, it must be.

Usage

Load Register Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, zero-extends it, and writes it to a register. For information about memory
accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.36 LDRB (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-918
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.37 LDRH (immediate)
Load Register Halfword (immediate).

Syntax

LDRH Wt, [Xn|SP], #simm ; Post-index general registers

LDRH Wt, [Xn|SP, #simm]! ; Pre-index general registers

LDRH Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm
Is the signed immediate byte offset, in the range -256 to 255.

pimm
Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0.

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the
result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.
 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRH (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.37 LDRH (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-919
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.38 LDRH (register)
Load Register Halfword (register).

Syntax

LDRH Wt, [Xn|SP, (Wm|Xm){, extend {amount}}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of UXTW, LSL, SXTW or SXTX.

amount
Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is, and can be either #0 or #1.

Usage
Load Register Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, zero-extends it, and writes it to a register. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRH (register).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.38 LDRH (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-920
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.39 LDRSB (immediate)
Load Register Signed Byte (immediate).

Syntax

LDRSB Wt, [Xn|SP], #simm ; 32-bit

LDRSB Xt, [Xn|SP], #simm ; 64-bit

LDRSB Wt, [Xn|SP, #simm]! ; 32-bit

LDRSB Xt, [Xn|SP, #simm]! ; 64-bit

LDRSB Wt, [Xn|SP{, #pimm}] ; 32-bit

LDRSB Xt, [Xn|SP{, #pimm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

pimm
Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64
bits, and writes the result to a register. The address that is used for the load is calculated from a base
register and an immediate offset. For information about memory accesses, see Load/Store addressing
modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRSB (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.39 LDRSB (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-921
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.40 LDRSB (register)
Load Register Signed Byte (register).

Syntax

LDRSB Wt, [Xn|SP, (Wm|Xm), extend {amount}] ; 32-bit with extended register offset

LDRSB Wt, [Xn|SP, Xm{, LSL amount}] ; 32-bit with shifted register offset

LDRSB Xt, [Xn|SP, (Wm|Xm), extend {amount}] ; 64-bit with extended register offset

LDRSB Xt, [Xn|SP, Xm{, LSL amount}] ; 64-bit with shifted register offset

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend

Is the index extend specifier.

Can be one of UXTW, SXTW or SXTX.

amount
Is the index shift amount, it must be.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Usage

Load Register Signed Byte (register) calculates an address from a base register value and an offset
register value, loads a byte from memory, sign-extends it, and writes it to a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.40 LDRSB (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-922
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.41 LDRSH (immediate)
Load Register Signed Halfword (immediate).

Syntax

LDRSH Wt, [Xn|SP], #simm ; 32-bit

LDRSH Xt, [Xn|SP], #simm ; 64-bit

LDRSH Wt, [Xn|SP, #simm]! ; 32-bit

LDRSH Xt, [Xn|SP, #simm]! ; 64-bit

LDRSH Wt, [Xn|SP{, #pimm}] ; 32-bit

LDRSH Xt, [Xn|SP{, #pimm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

pimm
Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or
64 bits, and writes the result to a register. The address that is used for the load is calculated from a base
register and an immediate offset. For information about memory accesses, see Load/Store addressing
modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRSH (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.41 LDRSH (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-923
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.42 LDRSH (register)
Load Register Signed Halfword (register).

Syntax

LDRSH Wt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 32-bit

LDRSH Xt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of the values shown in Usage.

amount
Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is, and can be either #0 or #1.

Usage

Load Register Signed Halfword (register) calculates an address from a base register value and an offset
register value, loads a halfword from memory, sign-extends it, and writes it to a register. For information
about memory accesses see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.42 LDRSH (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-924
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.43 LDRSW (immediate)
Load Register Signed Word (immediate).

Syntax

LDRSW Xt, [Xn|SP], #simm ; Post-index general registers

LDRSW Xt, [Xn|SP, #simm]! ; Pre-index general registers

LDRSW Xt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm
Is the signed immediate byte offset, in the range -256 to 255.

pimm
Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting
to 0.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and
an immediate offset. For information about memory accesses, see Load/Store addressing modes in the
Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDRSW (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.43 LDRSW (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-925
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.44 LDRSW (literal)
Load Register Signed Word (literal).

Syntax

LDRSW Xt, label

Where:

Xt
Is the 64-bit name of the general-purpose register to be loaded.

label
Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset,
loads a word from memory, and writes it to a register. For information about memory accesses, see Load/
Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture
profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.44 LDRSW (literal)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-926
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.45 LDRSW (register)
Load Register Signed Word (register).

Syntax

LDRSW Xt, [Xn|SP, (Wm|Xm){, extend {amount}}]

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of UXTW, LSL, SXTW or SXTX.

amount
Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is, and can be either #0 or #2.

Usage

Load Register Signed Word (register) calculates an address from a base register value and an offset
register value, loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a
register. The offset register value can be shifted left by 0 or 2 bits. For information about memory
accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.45 LDRSW (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-927
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.46 LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL, LDSET, LDSETL
Atomic bit set on word or doubleword in memory.

Syntax

LDSETA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDSETAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDSET Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDSETL Ws, Wt, [Xn|SP] ; 32-bit, release

LDSETA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDSETAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDSET Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDSETL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.
• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with

acquire semantics.
• LDSETL and LDSETAL store to memory with release semantics.
• LDSET has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.46 LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL, LDSET, LDSETL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-928
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.47 LDSETAB, LDSETALB, LDSETB, LDSETLB
Atomic bit set on byte in memory.

Syntax

LDSETAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDSETALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSETB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSETLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.
• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire

semantics.
• LDSETLB and LDSETALB store to memory with release semantics.
• LDSETB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.47 LDSETAB, LDSETALB, LDSETB, LDSETLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-929
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.48 LDSETAH, LDSETALH, LDSETH, LDSETLH
Atomic bit set on halfword in memory.

Syntax

LDSETAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDSETALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSETH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSETLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a
bitwise OR with the value held in a register on it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire

semantics.
• LDSETLH and LDSETALH store to memory with release semantics.
• LDSETH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.48 LDSETAH, LDSETALH, LDSETH, LDSETLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-930
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.49 LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL, LDSMAXAL, LDSMAX,
LDSMAXL

Atomic signed maximum on word or doubleword in memory.

Syntax

LDSMAXA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDSMAXAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDSMAX Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDSMAXL Ws, Wt, [Xn|SP] ; 32-bit, release

LDSMAXA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDSMAXAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDSMAX Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDSMAXL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value
back to memory, treating the values as signed numbers. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with

acquire semantics.
• LDSMAXL and LDSMAXAL store to memory with release semantics.
• LDSMAX has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.49 LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL, LDSMAXAL, LDSMAX, LDSMAXL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-931
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.50 LDSMAXAB, LDSMAXALB, LDSMAXB, LDSMAXLB
Atomic signed maximum on byte in memory.

Syntax

LDSMAXAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDSMAXALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSMAXB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSMAXLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire

semantics.
• LDSMAXLB and LDSMAXALB store to memory with release semantics.
• LDSMAXB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.50 LDSMAXAB, LDSMAXALB, LDSMAXB, LDSMAXLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-932
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.51 LDSMAXAH, LDSMAXALH, LDSMAXH, LDSMAXLH
Atomic signed maximum on halfword in memory.

Syntax

LDSMAXAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDSMAXALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSMAXH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSMAXLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire

semantics.
• LDSMAXLH and LDSMAXALH store to memory with release semantics.
• LDSMAXH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.51 LDSMAXAH, LDSMAXALH, LDSMAXH, LDSMAXLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-933
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.52 LDSMINA, LDSMINAL, LDSMIN, LDSMINL, LDSMINAL, LDSMIN, LDSMINL
Atomic signed minimum on word or doubleword in memory.

Syntax

LDSMINA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDSMINAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDSMIN Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDSMINL Ws, Wt, [Xn|SP] ; 32-bit, release

LDSMINA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDSMINAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDSMIN Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDSMINL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value
back to memory, treating the values as signed numbers. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with

acquire semantics.
• LDSMINL and LDSMINAL store to memory with release semantics.
• LDSMIN has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.52 LDSMINA, LDSMINAL, LDSMIN, LDSMINL, LDSMINAL, LDSMIN, LDSMINL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-934
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.53 LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB
Atomic signed minimum on byte in memory.

Syntax

LDSMINAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDSMINALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSMINB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSMINLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire

semantics.
• LDSMINLB and LDSMINALB store to memory with release semantics.
• LDSMINB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.53 LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-935
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.54 LDSMINAH, LDSMINALH, LDSMINH, LDSMINLH
Atomic signed minimum on halfword in memory.

Syntax

LDSMINAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDSMINALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDSMINH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDSMINLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire

semantics.
• LDSMINLH and LDSMINALH store to memory with release semantics.
• LDSMINH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.54 LDSMINAH, LDSMINALH, LDSMINH, LDSMINLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-936
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.55 LDTR
Load Register (unprivileged).

Syntax

LDTR Wt, [Xn|SP{, #simm}] ; 32-bit

LDTR Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.55 LDTR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-937
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.56 LDTRB
Load Register Byte (unprivileged).

Syntax

LDTRB Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.56 LDTRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-938
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.57 LDTRH
Load Register Halfword (unprivileged).

Syntax

LDTRH Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the
result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.57 LDTRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-939
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.58 LDTRSB
Load Register Signed Byte (unprivileged).

Syntax

LDTRSB Wt, [Xn|SP{, #simm}] ; 32-bit

LDTRSB Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register
and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.58 LDTRSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-940
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.59 LDTRSH
Load Register Signed Halfword (unprivileged).

Syntax

LDTRSH Wt, [Xn|SP{, #simm}] ; 32-bit

LDTRSH Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits
or 64 bits, and writes the result to a register. The address that is used for the load is calculated from a
base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.59 LDTRSH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-941
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.60 LDTRSW
Load Register Signed Word (unprivileged).

Syntax

LDTRSW Xt, [Xn|SP{, #simm}]

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and
an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.60 LDTRSW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-942
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.61 LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL, LDUMAXAL, LDUMAX,
LDUMAXL

Atomic unsigned maximum on word or doubleword in memory.

Syntax

LDUMAXA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDUMAXAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDUMAX Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDUMAXL Ws, Wt, [Xn|SP] ; 32-bit, release

LDUMAXA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDUMAXAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDUMAX Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDUMAXL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value
back to memory, treating the values as unsigned numbers. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with

acquire semantics.
• LDUMAXL and LDUMAXAL store to memory with release semantics.
• LDUMAX has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.61 LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL, LDUMAXAL, LDUMAX, LDUMAXL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-943
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.62 LDUMAXAB, LDUMAXALB, LDUMAXB, LDUMAXLB
Atomic unsigned maximum on byte in memory.

Syntax

LDUMAXAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDUMAXALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDUMAXB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDUMAXLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire

semantics.
• LDUMAXLB and LDUMAXALB store to memory with release semantics.
• LDUMAXB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.62 LDUMAXAB, LDUMAXALB, LDUMAXB, LDUMAXLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-944
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.63 LDUMAXAH, LDUMAXALH, LDUMAXH, LDUMAXLH
Atomic unsigned maximum on halfword in memory.

Syntax

LDUMAXAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDUMAXALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDUMAXH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDUMAXLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination
register.
• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire

semantics.
• LDUMAXLH and LDUMAXALH store to memory with release semantics.
• LDUMAXH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.63 LDUMAXAH, LDUMAXALH, LDUMAXH, LDUMAXLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-945
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.64 LDUMINA, LDUMINAL, LDUMIN, LDUMINL, LDUMINAL, LDUMIN, LDUMINL
Atomic unsigned minimum on word or doubleword in memory.

Syntax

LDUMINA Ws, Wt, [Xn|SP] ; 32-bit, acquire

LDUMINAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

LDUMIN Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

LDUMINL Ws, Wt, [Xn|SP] ; 32-bit, release

LDUMINA Xs, Xt, [Xn|SP] ; 64-bit, acquire

LDUMINAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

LDUMIN Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

LDUMINL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value
back to memory, treating the values as unsigned numbers. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with

acquire semantics.
• LDUMINL and LDUMINAL store to memory with release semantics.
• LDUMIN has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.64 LDUMINA, LDUMINAL, LDUMIN, LDUMINL, LDUMINAL, LDUMIN, LDUMINL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-946
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.65 LDUMINAB, LDUMINALB, LDUMINB, LDUMINLB
Atomic unsigned minimum on byte in memory.

Syntax

LDUMINAB Ws, Wt, [Xn|SP] ; Acquire general registers

LDUMINALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDUMINB Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDUMINLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers. The value initially loaded from memory is returned in the destination register.
• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire

semantics.
• LDUMINLB and LDUMINALB store to memory with release semantics.
• LDUMINB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.65 LDUMINAB, LDUMINALB, LDUMINB, LDUMINLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-947
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.66 LDUMINAH, LDUMINALH, LDUMINH, LDUMINLH
Atomic unsigned minimum on halfword in memory.

Syntax

LDUMINAH Ws, Wt, [Xn|SP] ; Acquire general registers

LDUMINALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

LDUMINH Ws, Wt, [Xn|SP] ; No memory ordering general registers

LDUMINLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination
register.
• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire

semantics.
• LDUMINLH and LDUMINALH store to memory with release semantics.
• LDUMINH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.66 LDUMINAH, LDUMINALH, LDUMINH, LDUMINLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-948
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.67 LDUR
Load Register (unscaled).

Syntax

LDUR Wt, [Xn|SP{, #simm}] ; 32-bit

LDUR Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-
bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.67 LDUR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-949
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.68 LDURB
Load Register Byte (unscaled).

Syntax

LDURB Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.68 LDURB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-950
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.69 LDURH
Load Register Halfword (unscaled).

Syntax

LDURH Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset,
loads a halfword from memory, zero-extends it, and writes it to a register. For information about memory
accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.69 LDURH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-951
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.70 LDURSB
Load Register Signed Byte (unscaled).

Syntax

LDURSB Wt, [Xn|SP{, #simm}] ; 32-bit

LDURSB Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset,
loads a signed byte from memory, sign-extends it, and writes it to a register. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.70 LDURSB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-952
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.71 LDURSH
Load Register Signed Halfword (unscaled).

Syntax

LDURSH Wt, [Xn|SP{, #simm}] ; 32-bit

LDURSH Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a signed halfword from memory, sign-extends it, and writes it to a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.71 LDURSH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-953
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.72 LDURSW
Load Register Signed Word (unscaled).

Syntax

LDURSW Xt, [Xn|SP{, #simm}]

Where:

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.72 LDURSW

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-954
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.73 LDXP
Load Exclusive Pair of Registers.

Syntax

LDXP Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit

LDXP Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or
two 64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires the
address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair
requires the address to be quadword aligned and is single-copy atomic for each doubleword at
doubleword granularity. The PE marks the physical address being accessed as an exclusive access. This
exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. For information
about memory accesses see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDXP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.73 LDXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-955
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.74 LDXR
Load Exclusive Register.

Syntax

LDXR Wt, [Xn|SP{,#0}] ; 32-bit

LDXR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile. For information about memory accesses see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.74 LDXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-956
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.75 LDXRB
Load Exclusive Register Byte.

Syntax

LDXRB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile. For information about memory accesses see Load/Store addressing
modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.75 LDXRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-957
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.76 LDXRH
Load Exclusive Register Halfword.

Syntax

LDXRH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile. For information about memory accesses see Load/Store
addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.76 LDXRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-958
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.77 PRFM (immediate)
Prefetch Memory (immediate).

Syntax

PRFM (prfop|#imm5), [Xn|SP{, #pimm}]

Where:

prfop

Is the prefetch operation, defined as type<target><policy>.

type is one of:

PLD
Prefetch for load.

PLI
Preload instructions.

PST
Prefetch for store.

<target> is one of:

L1
Level 1 cache.

L2
Level 2 cache.

L3
Level 3 cache.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally.

STRM
Streaming or non-temporal prefetch, for data that is used only once.

imm5

Is the prefetch operation encoding as an immediate, in the range 0 to 31.

This syntax is only for encodings that are not accessible using prfop.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

pimm
Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting
to 0.

Usage

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified
address are likely to occur in the near future. The memory system can respond by taking actions that are
expected to speed up the memory accesses when they do occur, such as preloading the cache line
containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

D3 A64 Data Transfer Instructions
D3.77 PRFM (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-959
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.77 PRFM (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-960
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.78 PRFM (literal)
Prefetch Memory (literal).

Syntax

PRFM (prfop|#imm5), label

Where:

prfop

Is the prefetch operation, defined as type<target><policy>.

type is one of:

PLD
Prefetch for load.

PLI
Preload instructions.

PST
Prefetch for store.

<target> is one of:

L1
Level 1 cache.

L2
Level 2 cache.

L3
Level 3 cache.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally.

STRM
Streaming or non-temporal prefetch, for data that is used only once.

imm5

Is the prefetch operation encoding as an immediate, in the range 0 to 31.

This syntax is only for encodings that are not accessible using prfop.

label
Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified
address are likely to occur in the near future. The memory system can respond by taking actions that are
expected to speed up the memory accesses when they do occur, such as preloading the cache line
containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D3 A64 Data Transfer Instructions
D3.78 PRFM (literal)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-961
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.78 PRFM (literal)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-962
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.79 PRFM (register)
Prefetch Memory (register).

Syntax

PRFM (prfop|#imm5), [Xn|SP, (Wm|Xm){, extend {amount}}]

Where:

prfop

Is the prefetch operation, defined as type<target><policy>.

type is one of:

PLD
Prefetch for load.

PLI
Preload instructions.

PST
Prefetch for store.

<target> is one of:

L1
Level 1 cache.

L2
Level 2 cache.

L3
Level 3 cache.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally.

STRM
Streaming or non-temporal prefetch, for data that is used only once.

imm5

Is the prefetch operation encoding as an immediate, in the range 0 to 31.

This syntax is only for encodings that are not accessible using prfop.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of UXTW, LSL, SXTW or SXTX.

amount
Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is, and can be either #0 or #3.

Usage

Prefetch Memory (register) signals the memory system that data memory accesses from a specified
address are likely to occur in the near future. The memory system can respond by taking actions that are
expected to speed up the memory accesses when they do occur, such as preloading the cache line
containing the specified address into one or more caches.

D3 A64 Data Transfer Instructions
D3.79 PRFM (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-963
Non-Confidential

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.79 PRFM (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-964
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.80 PRFUM (unscaled offset)
Prefetch Memory (unscaled offset).

Syntax

PRFUM (prfop|#imm5), [Xn|SP{, #simm}]

Where:

prfop

Is the prefetch operation, defined as type<target><policy>.

type is one of:

PLD
Prefetch for load.

PLI
Preload instructions.

PST
Prefetch for store.

<target> is one of:

L1
Level 1 cache.

L2
Level 2 cache.

L3
Level 3 cache.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally.

STRM
Streaming or non-temporal prefetch, for data that is used only once.

imm5

Is the prefetch operation encoding as an immediate, in the range 0 to 31.

This syntax is only for encodings that are not accessible using prfop.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a
specified address are likely to occur in the near future. The memory system can respond by taking
actions that are expected to speed up the memory accesses when they do occur, such as preloading the
cache line containing the specified address into one or more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory
in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D3 A64 Data Transfer Instructions
D3.80 PRFUM (unscaled offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-965
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.80 PRFUM (unscaled offset)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-966
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.81 STADD, STADDL, STADDL
Atomic add on word or doubleword in memory, without return.

Syntax

STADD Ws, [Xn|SP] ; 32-bit, no memory ordering

STADDL Ws, [Xn|SP] ; 32-bit, release

STADD Xs, [Xn|SP] ; 64-bit, no memory ordering

STADDL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, adds the value held in a register to it, and stores the result back to memory.
• STADD has no memory ordering semantics.
• STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.81 STADD, STADDL, STADDL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-967
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.82 STADDB, STADDLB
Atomic add on byte in memory, without return.

Syntax

STADDB Ws, [Xn|SP] ; No memory ordering general registers

STADDLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the
value held in a register to it, and stores the result back to memory.
• STADDB has no memory ordering semantics.
• STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.82 STADDB, STADDLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-968
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.83 STADDH, STADDLH
Atomic add on halfword in memory, without return.

Syntax

STADDH Ws, [Xn|SP] ; No memory ordering general registers

STADDLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
adds the value held in a register to it, and stores the result back to memory.
• STADDH has no memory ordering semantics.
• STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.83 STADDH, STADDLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-969
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.84 STCLR, STCLRL, STCLRL
Atomic bit clear on word or doubleword in memory, without return.

Syntax

STCLR Ws, [Xn|SP] ; 32-bit, no memory ordering

STCLRL Ws, [Xn|SP] ; 32-bit, release

STCLR Xs, [Xn|SP] ; 64-bit, no memory ordering

STCLRL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, performs a bitwise AND with the complement of the value held in a
register on it, and stores the result back to memory.
• STCLR has no memory ordering semantics.
• STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.84 STCLR, STCLRL, STCLRL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-970
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.85 STCLRB, STCLRLB
Atomic bit clear on byte in memory, without return.

Syntax

STCLRB Ws, [Xn|SP] ; No memory ordering general registers

STCLRLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory,
performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory.
• STCLRB has no memory ordering semantics.
• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.85 STCLRB, STCLRLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-971
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.86 STCLRH, STCLRLH
Atomic bit clear on halfword in memory, without return.

Syntax

STCLRH Ws, [Xn|SP] ; No memory ordering general registers

STCLRLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores
the result back to memory.
• STCLRH has no memory ordering semantics.
• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.86 STCLRH, STCLRLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-972
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.87 STEOR, STEORL, STEORL
Atomic exclusive OR on word or doubleword in memory, without return.

Syntax

STEOR Ws, [Xn|SP] ; 32-bit, no memory ordering

STEORL Ws, [Xn|SP] ; 32-bit, release

STEOR Xs, [Xn|SP] ; 64-bit, no memory ordering

STEORL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word
or 64-bit doubleword from memory, performs an exclusive OR with the value held in a register on it, and
stores the result back to memory.
• STEOR has no memory ordering semantics.
• STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.87 STEOR, STEORL, STEORL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-973
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.88 STEORB, STEORLB
Atomic exclusive OR on byte in memory, without return.

Syntax

STEORB Ws, [Xn|SP] ; No memory ordering general registers

STEORLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory,
performs an exclusive OR with the value held in a register on it, and stores the result back to memory.
• STEORB has no memory ordering semantics.
• STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.88 STEORB, STEORLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-974
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.89 STEORH, STEORLH
Atomic exclusive OR on halfword in memory, without return.

Syntax

STEORH Ws, [Xn|SP] ; No memory ordering general registers

STEORLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to
memory.
• STEORH has no memory ordering semantics.
• STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.89 STEORH, STEORLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-975
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.90 STLLR
Store LORelease Register.

Syntax

STLLR Wt, [Xn|SP{,#0}] ; 32-bit

STLLR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a
register. The instruction also has memory ordering semantics as described in Load LOAcquire, Store
LORelease. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.90 STLLR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-976
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.91 STLLRB
Store LORelease Register Byte.

Syntax

STLLRB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.91 STLLRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-977
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.92 STLLRH
Store LORelease Register Halfword.

Syntax

STLLRH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.92 STLLRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-978
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.93 STLR
Store-Release Register.

Syntax

STLR Wt, [Xn|SP{,#0}] ; 32-bit

STLR Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.93 STLR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-979
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.94 STLRB
Store-Release Register Byte.

Syntax

STLRB Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.94 STLRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-980
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.95 STLRH
Store-Release Register Halfword.

Syntax

STLRH Wt, [Xn|SP{,#0}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.95 STLRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-981
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.96 STLXP
Store-Release Exclusive Pair of registers.

Syntax

STLXP Ws, Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit

STLXP Ws, Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault
Data Abort exception to be generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory
location if the PE has exclusive access to the memory address, from two registers, and returns a status
value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and
semaphores in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. A
32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword
granularity. A 64-bit pair requires the address to be quadword aligned and, if the Store-Exclusive
succeeds, it causes a single-copy atomic update of the 128-bit memory location being updated. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For

D3 A64 Data Transfer Instructions
D3.96 STLXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-982
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STLXP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.96 STLXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-983
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.97 STLXR
Store-Release Exclusive Register.

Syntax

STLXR Ws, Wt, [Xn|SP{,#0}] ; 32-bit

STLXR Ws, Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault
Data Abort exception to be generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has
exclusive access to the memory address, from two registers, and returns a status value of 0 if the store
was successful, or of 1 if no store was performed. See Synchronization and semaphores in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. The memory access is atomic.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STLXR.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D3 A64 Data Transfer Instructions
D3.97 STLXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-984
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.97 STLXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-985
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.98 STLXRB
Store-Release Exclusive Register Byte.

Syntax

STLXRB Ws, Wt, [Xn|SP{,#0}]

Where:

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Wt

Is the 32-bit name of the general-purpose register to be transferred.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:
• Memory is not updated.
• Ws is not updated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1
if no store was performed. See Synchronization and semaphores in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile. The memory access is atomic. The instruction also
has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STLXRB.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.98 STLXRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-986
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.99 STLXRH
Store-Release Exclusive Register Halfword.

Syntax

STLXRH Ws, Wt, [Xn|SP{,#0}]

Where:

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Wt

Is the 32-bit name of the general-purpose register to be transferred.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be
generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE
has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or
of 1 if no store was performed. See Synchronization and semaphores in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile. The memory access is atomic. The instruction also
has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STLXRH.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.99 STLXRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-987
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.100 STNP
Store Pair of Registers, with non-temporal hint.

Syntax

STNP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit

STNP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

imm

Depends on the instruction variant:

32-bit general registers
Is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0.

64-bit general registers
Is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an
immediate offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from
two registers. For information about memory accesses, see Load/Store addressing modes in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. For information about Non-
temporal pair instructions, see Load/Store Non-temporal pair in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.100 STNP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-988
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.101 STP
Store Pair of Registers.

Syntax

STP Wt1, Wt2, [Xn|SP], #imm ; 32-bit

STP Xt1, Xt2, [Xn|SP], #imm ; 64-bit

STP Wt1, Wt2, [Xn|SP, #imm]! ; 32-bit

STP Xt1, Xt2, [Xn|SP, #imm]! ; 64-bit

STP Wt1, Wt2, [Xn|SP{, #imm}] ; 32-bit

STP Xt1, Xt2, [Xn|SP{, #imm}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

imm

Depends on the instruction variant:

32-bit general registers
Is the signed immediate byte offset, a multiple of 4 in the range -256 to 252.

64-bit general registers
Is the signed immediate byte offset, a multiple of 8 in the range -512 to 504.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Store Pair of Registers calculates an address from a base register value and an immediate offset, and
stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.101 STP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-989
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.102 STR (immediate)
Store Register (immediate).

Syntax

STR Wt, [Xn|SP], #simm ; 32-bit

STR Xt, [Xn|SP], #simm ; 64-bit

STR Wt, [Xn|SP, #simm]! ; 32-bit

STR Xt, [Xn|SP, #simm]! ; 64-bit

STR Wt, [Xn|SP{, #pimm}] ; 32-bit

STR Xt, [Xn|SP{, #pimm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

pimm

Depends on the instruction variant:

32-bit general registers
Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380,
defaulting to 0.

64-bit general registers
Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760,
defaulting to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.102 STR (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-990
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.103 STR (register)
Store Register (register).

Syntax

STR Wt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 32-bit

STR Xt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

amount

Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is:

32-bit general registers
Can be one of #0 or #2.

64-bit general registers
Can be one of #0 or #3.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of the values shown in Usage.

Usage

Store Register (register) calculates an address from a base register value and an offset register value, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

The instruction uses an offset addressing mode, that calculates the address used for the memory access
from a base register value and an offset register value. The offset can be optionally shifted and extended.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.103 STR (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-991
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.104 STRB (immediate)
Store Register Byte (immediate).

Syntax

STRB Wt, [Xn|SP], #simm ; Post-index general registers

STRB Wt, [Xn|SP, #simm]! ; Pre-index general registers

STRB Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm
Is the signed immediate byte offset, in the range -256 to 255.

pimm
Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0.

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The
address that is used for the store is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STRB (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.104 STRB (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-992
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.105 STRB (register)
Store Register Byte (register).

Syntax

STRB Wt, [Xn|SP, (Wm|Xm), extend {amount}] ; Extended register general registers

STRB Wt, [Xn|SP, Xm{, LSL amount}] ; Shifted register general registers

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend specifier, and can be one of the values shown in Usage.

amount
Is the index shift amount, it must be.

Usage

Store Register Byte (register) calculates an address from a base register value and an offset register
value, and stores a byte from a 32-bit register to the calculated address. For information about memory
accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

The instruction uses an offset addressing mode, that calculates the address used for the memory access
from a base register value and an offset register value. The offset can be optionally shifted and extended.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.105 STRB (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-993
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.106 STRH (immediate)
Store Register Halfword (immediate).

Syntax

STRH Wt, [Xn|SP], #simm ; Post-index general registers

STRH Wt, [Xn|SP, #simm]! ; Pre-index general registers

STRH Wt, [Xn|SP{, #pimm}] ; Unsigned offset general registers

Where:

simm
Is the signed immediate byte offset, in the range -256 to 255.

pimm
Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0.

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage
Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory.
The address that is used for the store is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STRH (immediate).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.106 STRH (immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-994
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.107 STRH (register)
Store Register Halfword (register).

Syntax

STRH Wt, [Xn|SP, (Wm|Xm){, extend {amount}}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend
Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when amount is omitted, and can be one of UXTW, LSL, SXTW or SXTX.

amount
Is the index shift amount, optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0. It is, and can be either #0 or #1.

Usage

Store Register Halfword (register) calculates an address from a base register value and an offset register
value, and stores a halfword from a 32-bit register to the calculated address. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

The instruction uses an offset addressing mode, that calculates the address used for the memory access
from a base register value and an offset register value. The offset can be optionally shifted and extended.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.107 STRH (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-995
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.108 STSET, STSETL, STSETL
Atomic bit set on word or doubleword in memory, without return.

Syntax

STSET Ws, [Xn|SP] ; 32-bit, no memory ordering

STSETL Ws, [Xn|SP] ; 32-bit, release

STSET Xs, [Xn|SP] ; 64-bit, no memory ordering

STSETL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-
bit doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores
the result back to memory.
• STSET has no memory ordering semantics.
• STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.108 STSET, STSETL, STSETL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-996
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.109 STSETB, STSETLB
Atomic bit set on byte in memory, without return.

Syntax

STSETB Ws, [Xn|SP] ; No memory ordering general registers

STSETLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory.
• STSETB has no memory ordering semantics.
• STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.109 STSETB, STSETLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-997
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.110 STSETH, STSETLH
Atomic bit set on halfword in memory, without return.

Syntax

STSETH Ws, [Xn|SP] ; No memory ordering general registers

STSETLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
performs a bitwise OR with the value held in a register on it, and stores the result back to memory.
• STSETH has no memory ordering semantics.
• STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.110 STSETH, STSETLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-998
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.111 STSMAX, STSMAXL, STSMAXL
Atomic signed maximum on word or doubleword in memory, without return.

Syntax

STSMAX Ws, [Xn|SP] ; 32-bit, no memory ordering

STSMAXL Ws, [Xn|SP] ; 32-bit, release

STSMAX Xs, [Xn|SP] ; 64-bit, no memory ordering

STSMAXL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit
word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the
larger value back to memory, treating the values as signed numbers.
• STSMAX has no memory ordering semantics.
• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.111 STSMAX, STSMAXL, STSMAXL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-999
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.112 STSMAXB, STSMAXLB
Atomic signed maximum on byte in memory, without return.

Syntax

STSMAXB Ws, [Xn|SP] ; No memory ordering general registers

STSMAXLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from
memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as signed numbers.
• STSMAXB has no memory ordering semantics.
• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.112 STSMAXB, STSMAXLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1000
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.113 STSMAXH, STSMAXLH
Atomic signed maximum on halfword in memory, without return.

Syntax

STSMAXH Ws, [Xn|SP] ; No memory ordering general registers

STSMAXLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword
from memory, compares it against the value held in a register, and stores the larger value back to
memory, treating the values as signed numbers.
• STSMAXH has no memory ordering semantics.
• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.113 STSMAXH, STSMAXLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1001
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.114 STSMIN, STSMINL, STSMINL
Atomic signed minimum on word or doubleword in memory, without return.

Syntax

STSMIN Ws, [Xn|SP] ; 32-bit, no memory ordering

STSMINL Ws, [Xn|SP] ; 32-bit, release

STSMIN Xs, [Xn|SP] ; 64-bit, no memory ordering

STSMINL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit
word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the
smaller value back to memory, treating the values as signed numbers.
• STSMIN has no memory ordering semantics.
• STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.114 STSMIN, STSMINL, STSMINL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1002
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.115 STSMINB, STSMINLB
Atomic signed minimum on byte in memory, without return.

Syntax

STSMINB Ws, [Xn|SP] ; No memory ordering general registers

STSMINLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from
memory, compares it against the value held in a register, and stores the smaller value back to memory,
treating the values as signed numbers.
• STSMINB has no memory ordering semantics.
• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.115 STSMINB, STSMINLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1003
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.116 STSMINH, STSMINLH
Atomic signed minimum on halfword in memory, without return.

Syntax

STSMINH Ws, [Xn|SP] ; No memory ordering general registers

STSMINLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword
from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as signed numbers.
• STSMINH has no memory ordering semantics.
• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.116 STSMINH, STSMINLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1004
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.117 STTR
Store Register (unprivileged).

Syntax

STTR Wt, [Xn|SP{, #simm}] ; 32-bit

STTR Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is
used for the store is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.117 STTR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1005
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.118 STTRB
Store Register Byte (unprivileged).

Syntax

STTRB Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.118 STTRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1006
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.119 STTRH
Store Register Halfword (unprivileged).

Syntax

STTRH Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address
that is used for the store is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:
• Executing at EL1.
• Executing at EL2, in Armv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For
information about memory accesses, see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.119 STTRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1007
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.120 STUMAX, STUMAXL, STUMAXL
Atomic unsigned maximum on word or doubleword in memory, without return.

Syntax

STUMAX Ws, [Xn|SP] ; 32-bit, no memory ordering

STUMAXL Ws, [Xn|SP] ; 32-bit, release

STUMAX Xs, [Xn|SP] ; 64-bit, no memory ordering

STUMAXL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit
word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the
larger value back to memory, treating the values as unsigned numbers.
• STUMAX has no memory ordering semantics.
• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.120 STUMAX, STUMAXL, STUMAXL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1008
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.121 STUMAXB, STUMAXLB
Atomic unsigned maximum on byte in memory, without return.

Syntax

STUMAXB Ws, [Xn|SP] ; No memory ordering general registers

STUMAXLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from
memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as unsigned numbers.
• STUMAXB has no memory ordering semantics.
• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.121 STUMAXB, STUMAXLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1009
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.122 STUMAXH, STUMAXLH
Atomic unsigned maximum on halfword in memory, without return.

Syntax

STUMAXH Ws, [Xn|SP] ; No memory ordering general registers

STUMAXLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword
from memory, compares it against the value held in a register, and stores the larger value back to
memory, treating the values as unsigned numbers.
• STUMAXH has no memory ordering semantics.
• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.122 STUMAXH, STUMAXLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1010
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.123 STUMIN, STUMINL, STUMINL
Atomic unsigned minimum on word or doubleword in memory, without return.

Syntax

STUMIN Ws, [Xn|SP] ; 32-bit, no memory ordering

STUMINL Ws, [Xn|SP] ; 32-bit, release

STUMIN Xs, [Xn|SP] ; 64-bit, no memory ordering

STUMINL Xs, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit
word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the
smaller value back to memory, treating the values as unsigned numbers.
• STUMIN has no memory ordering semantics.
• STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.123 STUMIN, STUMINL, STUMINL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1011
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.124 STUMINB, STUMINLB
Atomic unsigned minimum on byte in memory, without return.

Syntax

STUMINB Ws, [Xn|SP] ; No memory ordering general registers

STUMINLB Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from
memory, compares it against the value held in a register, and stores the smaller value back to memory,
treating the values as unsigned numbers.
• STUMINB has no memory ordering semantics.
• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.124 STUMINB, STUMINLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1012
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.125 STUMINH, STUMINLH
Atomic unsigned minimum on halfword in memory, without return.

Syntax

STUMINH Ws, [Xn|SP] ; No memory ordering general registers

STUMINLH Ws, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register holding the data value to be operated on with
the contents of the memory location.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword
from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as unsigned numbers.
• STUMINH has no memory ordering semantics.
• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.125 STUMINH, STUMINLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1013
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.126 STUR
Store Register (unscaled).

Syntax

STUR Wt, [Xn|SP{, #simm}] ; 32-bit

STUR Xt, [Xn|SP{, #simm}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information
about memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.126 STUR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1014
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.127 STURB
Store Register Byte (unscaled).

Syntax

STURB Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset,
and stores a byte to the calculated address, from a 32-bit register. For information about memory
accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.127 STURB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1015
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.128 STURH
Store Register Halfword (unscaled).

Syntax

STURH Wt, [Xn|SP{, #simm}]

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate
offset, and stores a halfword to the calculated address, from a 32-bit register. For information about
memory accesses, see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.128 STURH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1016
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.129 STXP
Store Exclusive Pair of registers.

Syntax

STXP Ws, Wt1, Wt2, [Xn|SP{,#0}] ; 32-bit

STXP Ws, Xt1, Xt2, [Xn|SP{,#0}] ; 64-bit

Where:

Wt1
Is the 32-bit name of the first general-purpose register to be transferred.

Wt2
Is the 32-bit name of the second general-purpose register to be transferred.

Xt1
Is the 64-bit name of the first general-purpose register to be transferred.

Xt2
Is the 64-bit name of the second general-purpose register to be transferred.

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault
Data Abort exception to be generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to
a memory location if the PE has exclusive access to the memory address, and returns a status value of 0
if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores in the
Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile. A 32-bit pair requires
the address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair
requires the address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy
atomic update of the 128-bit memory location being updated. For information about memory accesses

D3 A64 Data Transfer Instructions
D3.129 STXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1017
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

see Load/Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A
architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STXP.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.129 STXP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1018
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.130 STXR
Store Exclusive Register.

Syntax

STXR Ws, Wt, [Xn|SP{,#0}] ; 32-bit

STXR Ws, Xt, [Xn|SP{,#0}] ; 64-bit

Where:

Wt
Is the 32-bit name of the general-purpose register to be transferred.

Xt
Is the 64-bit name of the general-purpose register to be transferred.

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault
Data Abort exception to be generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage
Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE
has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or
of 1 if no store was performed. See Synchronization and semaphores in the Arm® Architecture Reference
Manual Arm®v8, for Arm®v8‑A architecture profile. For information about memory accesses see Load/
Store addressing modes in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture
profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STXR.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D3 A64 Data Transfer Instructions
D3.130 STXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1019
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.130 STXR

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1020
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.131 STXRB
Store Exclusive Register Byte.

Syntax

STXRB Ws, Wt, [Xn|SP{,#0}]

Where:

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Wt

Is the 32-bit name of the general-purpose register to be transferred.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:
• Memory is not updated.
• Ws is not updated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed. See Synchronization and semaphores in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly STXRB.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.131 STXRB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1021
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.132 STXRH
Store Exclusive Register Halfword.

Syntax

STXRH Ws, Wt, [Xn|SP{,#0}]

Where:

Ws
Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written. The value returned is.
0

If the operation updates memory.
1

If the operation fails to update memory.
Wt

Is the 32-bit name of the general-purpose register to be transferred.
Xn|SP

Is the 64-bit name of the general-purpose base register or stack pointer.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• Ws is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be
generated, subject to the following rules:
• The exception is generated if the Exclusive Monitors for the current PE include all of the addresses

associated with the virtual address region of size bytes starting at address. The immediately following
memory write must be to the same addresses.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

Whether the detection of memory aborts happens before or after the check on the local Exclusive
Monitor depends on the implementation. As a result a failure of the local monitor can occur on some
implementations even if the memory access would give a memory abort.

Usage

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive
access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no
store was performed. See Synchronization and semaphores in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.132 STXRH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1022
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.133 SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL
Swap word or doubleword in memory.

Syntax

SWPA Ws, Wt, [Xn|SP] ; 32-bit, acquire

SWPAL Ws, Wt, [Xn|SP] ; 32-bit, acquire and release

SWP Ws, Wt, [Xn|SP] ; 32-bit, no memory ordering

SWPL Ws, Wt, [Xn|SP] ; 32-bit, release

SWPA Xs, Xt, [Xn|SP] ; 64-bit, acquire

SWPAL Xs, Xt, [Xn|SP] ; 64-bit, acquire and release

SWP Xs, Xt, [Xn|SP] ; 64-bit, no memory ordering

SWPL Xs, Xt, [Xn|SP] ; 64-bit, release

Where:

Ws
Is the 32-bit name of the general-purpose register to be stored.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xs
Is the 64-bit name of the general-purpose register to be stored.

Xt
Is the 64-bit name of the general-purpose register to be loaded.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a
memory location, and stores the value held in a register back to the same memory location. The value
initially loaded from memory is returned in the destination register.
• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire

semantics.
• SWPL and SWPAL store to memory with release semantics.
• SWP has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.133 SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1023
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.134 SWPAB, SWPALB, SWPB, SWPLB
Swap byte in memory.

Syntax

SWPAB Ws, Wt, [Xn|SP] ; Acquire general registers

SWPALB Ws, Wt, [Xn|SP] ; Acquire and release general registers

SWPB Ws, Wt, [Xn|SP] ; No memory ordering general registers

SWPLB Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register to be stored.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held
in a register back to the same memory location. The value initially loaded from memory is returned in
the destination register.
• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.
• SWPLB and SWPALB store to memory with release semantics.
• SWPB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.134 SWPAB, SWPALB, SWPB, SWPLB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1024
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3.135 SWPAH, SWPALH, SWPH, SWPLH
Swap halfword in memory.

Syntax

SWPAH Ws, Wt, [Xn|SP] ; Acquire general registers

SWPALH Ws, Wt, [Xn|SP] ; Acquire and release general registers

SWPH Ws, Wt, [Xn|SP] ; No memory ordering general registers

SWPLH Ws, Wt, [Xn|SP] ; Release general registers

Where:

Ws
Is the 32-bit name of the general-purpose register to be stored.

Wt
Is the 32-bit name of the general-purpose register to be loaded.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Architectures supported

Supported in the Armv8.1 architecture and later.

Usage
Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the
value held in a register back to the same memory location. The value initially loaded from memory is
returned in the destination register.
• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.
• SWPLH and SWPALH store to memory with release semantics.
• SWPH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

For information about memory accesses see Load/Store addressing modes in the Arm® Architecture
Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D3 A64 Data Transfer Instructions
D3.135 SWPAH, SWPALH, SWPH, SWPLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1025
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D3 A64 Data Transfer Instructions
D3.135 SWPAH, SWPALH, SWPH, SWPLH

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D3-1026
Non-Confidential

Chapter D4
A64 Floating-point Instructions

Describes the A64 floating-point instructions.

It contains the following sections:
• D4.1 A64 floating-point instructions in alphabetical order on page D4-1029.
• D4.2 Register restrictions for A64 instructions on page D4-1032.
• D4.3 FABS (scalar) on page D4-1033.
• D4.4 FADD (scalar) on page D4-1034.
• D4.5 FCCMP on page D4-1035.
• D4.6 FCCMPE on page D4-1036.
• D4.7 FCMP on page D4-1038.
• D4.8 FCMPE on page D4-1040.
• D4.9 FCSEL on page D4-1042.
• D4.10 FCVT on page D4-1043.
• D4.11 FCVTAS (scalar) on page D4-1044.
• D4.12 FCVTAU (scalar) on page D4-1045.
• D4.13 FCVTMS (scalar) on page D4-1046.
• D4.14 FCVTMU (scalar) on page D4-1047.
• D4.15 FCVTNS (scalar) on page D4-1048.
• D4.16 FCVTNU (scalar) on page D4-1049.
• D4.17 FCVTPS (scalar) on page D4-1050.
• D4.18 FCVTPU (scalar) on page D4-1051.
• D4.19 FCVTZS (scalar, fixed-point) on page D4-1052.
• D4.20 FCVTZS (scalar, integer) on page D4-1054.
• D4.21 FCVTZU (scalar, fixed-point) on page D4-1055.
• D4.22 FCVTZU (scalar, integer) on page D4-1057.
• D4.23 FDIV (scalar) on page D4-1058.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1027
Non-Confidential

• D4.24 FJCVTZS on page D4-1059.
• D4.25 FMADD on page D4-1060.
• D4.26 FMAX (scalar) on page D4-1061.
• D4.27 FMAXNM (scalar) on page D4-1062.
• D4.28 FMIN (scalar) on page D4-1063.
• D4.29 FMINNM (scalar) on page D4-1064.
• D4.30 FMOV (register) on page D4-1065.
• D4.31 FMOV (general) on page D4-1066.
• D4.32 FMOV (scalar, immediate) on page D4-1067.
• D4.33 FMSUB on page D4-1068.
• D4.34 FMUL (scalar) on page D4-1069.
• D4.35 FNEG (scalar) on page D4-1070.
• D4.36 FNMADD on page D4-1071.
• D4.37 FNMSUB on page D4-1072.
• D4.38 FNMUL (scalar) on page D4-1073.
• D4.39 FRINTA (scalar) on page D4-1074.
• D4.40 FRINTI (scalar) on page D4-1075.
• D4.41 FRINTM (scalar) on page D4-1076.
• D4.42 FRINTN (scalar) on page D4-1077.
• D4.43 FRINTP (scalar) on page D4-1078.
• D4.44 FRINTX (scalar) on page D4-1079.
• D4.45 FRINTZ (scalar) on page D4-1080.
• D4.46 FSQRT (scalar) on page D4-1081.
• D4.47 FSUB (scalar) on page D4-1082.
• D4.48 LDNP (SIMD and FP) on page D4-1083.
• D4.49 LDP (SIMD and FP) on page D4-1085.
• D4.50 LDR (immediate, SIMD and FP) on page D4-1087.
• D4.51 LDR (literal, SIMD and FP) on page D4-1089.
• D4.52 LDR (register, SIMD and FP) on page D4-1090.
• D4.53 LDUR (SIMD and FP) on page D4-1092.
• D4.54 SCVTF (scalar, fixed-point) on page D4-1093.
• D4.55 SCVTF (scalar, integer) on page D4-1095.
• D4.56 STNP (SIMD and FP) on page D4-1096.
• D4.57 STP (SIMD and FP) on page D4-1097.
• D4.58 STR (immediate, SIMD and FP) on page D4-1098.
• D4.59 STR (register, SIMD and FP) on page D4-1100.
• D4.60 STUR (SIMD and FP) on page D4-1102.
• D4.61 UCVTF (scalar, fixed-point) on page D4-1103.
• D4.62 UCVTF (scalar, integer) on page D4-1105.

D4 A64 Floating-point Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1028
Non-Confidential

D4.1 A64 floating-point instructions in alphabetical order
A summary of the A64 floating-point instructions that are supported.

Table D4-1 Summary of A64 floating-point instructions

Mnemonic Brief description See

FABS (scalar) Floating-point Absolute value (scalar) D4.3 FABS (scalar) on page D4-1033

FADD (scalar) Floating-point Add (scalar) D4.4 FADD (scalar) on page D4-1034

FCCMP Floating-point Conditional quiet Compare (scalar) D4.5 FCCMP on page D4-1035

FCCMPE Floating-point Conditional signaling Compare
(scalar)

D4.6 FCCMPE on page D4-1036

FCMP Floating-point quiet Compare (scalar) D4.7 FCMP on page D4-1038

FCMPE Floating-point signaling Compare (scalar) D4.8 FCMPE on page D4-1040

FCSEL Floating-point Conditional Select (scalar) D4.9 FCSEL on page D4-1042

FCVT Floating-point Convert precision (scalar) D4.10 FCVT on page D4-1043

FCVTAS (scalar) Floating-point Convert to Signed integer,
rounding to nearest with ties to Away (scalar)

D4.11 FCVTAS (scalar) on page D4-1044

FCVTAU (scalar) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to Away (scalar)

D4.12 FCVTAU (scalar) on page D4-1045

FCVTMS (scalar) Floating-point Convert to Signed integer,
rounding toward Minus infinity (scalar)

D4.13 FCVTMS (scalar) on page D4-1046

FCVTMU (scalar) Floating-point Convert to Unsigned integer,
rounding toward Minus infinity (scalar)

D4.14 FCVTMU (scalar) on page D4-1047

FCVTNS (scalar) Floating-point Convert to Signed integer,
rounding to nearest with ties to even (scalar)

D4.15 FCVTNS (scalar) on page D4-1048

FCVTNU (scalar) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to even (scalar)

D4.16 FCVTNU (scalar) on page D4-1049

FCVTPS (scalar) Floating-point Convert to Signed integer,
rounding toward Plus infinity (scalar)

D4.17 FCVTPS (scalar) on page D4-1050

FCVTPU (scalar) Floating-point Convert to Unsigned integer,
rounding toward Plus infinity (scalar)

D4.18 FCVTPU (scalar) on page D4-1051

FCVTZS (scalar, fixed-point) Floating-point Convert to Signed fixed-point,
rounding toward Zero (scalar)

D4.19 FCVTZS (scalar, fixed-point)
on page D4-1052

FCVTZS (scalar, integer) Floating-point Convert to Signed integer,
rounding toward Zero (scalar)

D4.20 FCVTZS (scalar, integer) on page D4-1054

FCVTZU (scalar, fixed-point) Floating-point Convert to Unsigned fixed-point,
rounding toward Zero (scalar)

D4.21 FCVTZU (scalar, fixed-point)
on page D4-1055

FCVTZU (scalar, integer) Floating-point Convert to Unsigned integer,
rounding toward Zero (scalar)

D4.22 FCVTZU (scalar, integer) on page D4-1057

FDIV (scalar) Floating-point Divide (scalar) D4.23 FDIV (scalar) on page D4-1058

FJCVTZS Floating-point Javascript Convert to Signed
fixed-point, rounding toward Zero

D4.24 FJCVTZS on page D4-1059

D4 A64 Floating-point Instructions
D4.1 A64 floating-point instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1029
Non-Confidential

Table D4-1 Summary of A64 floating-point instructions (continued)

Mnemonic Brief description See

FMADD Floating-point fused Multiply-Add (scalar) D4.25 FMADD on page D4-1060

FMAX (scalar) Floating-point Maximum (scalar) D4.26 FMAX (scalar) on page D4-1061

FMAXNM (scalar) Floating-point Maximum Number (scalar) D4.27 FMAXNM (scalar) on page D4-1062

FMIN (scalar) Floating-point Minimum (scalar) D4.28 FMIN (scalar) on page D4-1063

FMINNM (scalar) Floating-point Minimum Number (scalar) D4.29 FMINNM (scalar) on page D4-1064

FMOV (register) Floating-point Move register without conversion D4.30 FMOV (register) on page D4-1065

FMOV (general) Floating-point Move to or from general-purpose
register without conversion

D4.31 FMOV (general) on page D4-1066

FMOV (scalar, immediate) Floating-point move immediate (scalar) D4.32 FMOV (scalar, immediate) on page D4-1067

FMSUB Floating-point Fused Multiply-Subtract (scalar) D4.33 FMSUB on page D4-1068

FMUL (scalar) Floating-point Multiply (scalar) D4.34 FMUL (scalar) on page D4-1069

FNEG (scalar) Floating-point Negate (scalar) D4.35 FNEG (scalar) on page D4-1070

FNMADD Floating-point Negated fused Multiply-Add
(scalar)

D4.36 FNMADD on page D4-1071

FNMSUB Floating-point Negated fused Multiply-Subtract
(scalar)

D4.37 FNMSUB on page D4-1072

FNMUL (scalar) Floating-point Multiply-Negate (scalar) D4.38 FNMUL (scalar) on page D4-1073

FRINTA (scalar) Floating-point Round to Integral, to nearest with
ties to Away (scalar)

D4.39 FRINTA (scalar) on page D4-1074

FRINTI (scalar) Floating-point Round to Integral, using current
rounding mode (scalar)

D4.40 FRINTI (scalar) on page D4-1075

FRINTM (scalar) Floating-point Round to Integral, toward Minus
infinity (scalar)

D4.41 FRINTM (scalar) on page D4-1076

FRINTN (scalar) Floating-point Round to Integral, to nearest with
ties to even (scalar)

D4.42 FRINTN (scalar) on page D4-1077

FRINTP (scalar) Floating-point Round to Integral, toward Plus
infinity (scalar)

D4.43 FRINTP (scalar) on page D4-1078

FRINTX (scalar) Floating-point Round to Integral exact, using
current rounding mode (scalar)

D4.44 FRINTX (scalar) on page D4-1079

FRINTZ (scalar) Floating-point Round to Integral, toward Zero
(scalar)

D4.45 FRINTZ (scalar) on page D4-1080

FSQRT (scalar) Floating-point Square Root (scalar) D4.46 FSQRT (scalar) on page D4-1081

FSUB (scalar) Floating-point Subtract (scalar) D4.47 FSUB (scalar) on page D4-1082

LDNP (SIMD and FP) Load Pair of SIMD and FP registers, with Non-
temporal hint

D4.48 LDNP (SIMD and FP) on page D4-1083

LDP (SIMD and FP) Load Pair of SIMD and FP registers D4.49 LDP (SIMD and FP) on page D4-1085

LDR (immediate, SIMD and
FP)

Load SIMD and FP Register (immediate offset) D4.50 LDR (immediate, SIMD and FP)
on page D4-1087

D4 A64 Floating-point Instructions
D4.1 A64 floating-point instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1030
Non-Confidential

Table D4-1 Summary of A64 floating-point instructions (continued)

Mnemonic Brief description See

LDR (literal, SIMD and FP) Load SIMD and FP Register (PC-relative literal) D4.51 LDR (literal, SIMD and FP)
on page D4-1089

LDR (register, SIMD and FP) Load SIMD and FP Register (register offset) D4.52 LDR (register, SIMD and FP)
on page D4-1090

LDUR (SIMD and FP) Load SIMD and FP Register (unscaled offset) D4.53 LDUR (SIMD and FP) on page D4-1092

SCVTF (scalar, fixed-point) Signed fixed-point Convert to Floating-point
(scalar)

D4.54 SCVTF (scalar, fixed-point)
on page D4-1093

SCVTF (scalar, integer) Signed integer Convert to Floating-point (scalar) D4.55 SCVTF (scalar, integer) on page D4-1095

STNP (SIMD and FP) Store Pair of SIMD and FP registers, with Non-
temporal hint

D4.56 STNP (SIMD and FP) on page D4-1096

STP (SIMD and FP) Store Pair of SIMD and FP registers D4.57 STP (SIMD and FP) on page D4-1097

STR (immediate, SIMD and
FP)

Store SIMD and FP register (immediate offset) D4.58 STR (immediate, SIMD and FP)
on page D4-1098

STR (register, SIMD and FP) Store SIMD and FP register (register offset) D4.59 STR (register, SIMD and FP)
on page D4-1100

STUR (SIMD and FP) Store SIMD and FP register (unscaled offset) D4.60 STUR (SIMD and FP) on page D4-1102

UCVTF (scalar, fixed-point) Unsigned fixed-point Convert to Floating-point
(scalar)

D4.61 UCVTF (scalar, fixed-point)
on page D4-1103

UCVTF (scalar, integer) Unsigned integer Convert to Floating-point
(scalar)

D4.62 UCVTF (scalar, integer) on page D4-1105

D4 A64 Floating-point Instructions
D4.1 A64 floating-point instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1031
Non-Confidential

D4.2 Register restrictions for A64 instructions
In A64 instructions, the general-purpose integer registers are W0-W30 for 32-bit registers and X0-X30
for 64-bit registers.

You cannot refer to register 31 by number. In a few instructions, you can refer to it using one of the
following names:

WSP

the current stack pointer in a 32-bit context.

SP

the current stack pointer in a 64-bit context.

WZR

the zero register in a 32-bit context.

XZR

the zero register in a 64-bit context.

You can only use one of these names if it is mentioned in the Syntax section for the instruction.

You cannot refer to the Program Counter (PC) explicitly by name or by number.

D4 A64 Floating-point Instructions
D4.2 Register restrictions for A64 instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1032
Non-Confidential

D4.3 FABS (scalar)
Floating-point Absolute value (scalar).

Syntax

FABS Hd, Hn ; Half-precision

FABS Sd, Sn ; Single-precision

FABS Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD and FP
source register and writes the result to the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = abs(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.3 FABS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1033
Non-Confidential

D4.4 FADD (scalar)
Floating-point Add (scalar).

Syntax

FADD Hd, Hn, Hm ; Half-precision

FADD Sd, Sn, Sm ; Single-precision

FADD Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD and
FP registers, and writes the result to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Vn + Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.4 FADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1034
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.5 FCCMP
Floating-point Conditional quiet Compare (scalar).

Syntax

FCCMP Hn, Hm, #nzcv, cond ; Half-precision

FCCMP Sn, Sm, #nzcv, cond ; Single-precision

FCCMP Dn, Dm, #nzcv, cond ; Double-precision

Where:

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered.
If either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2),
(Operand1 == Operand2) and (Operand1 > Operand2) are false. This case results in the FPSCR flags
being set to N=0, Z=0, C=1, and V=1.

Operation

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD and FP
source register values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not
pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

flags = if cond then compareQuiet(Vn,Vm) else #nzcv.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.5 FCCMP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1035
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.6 FCCMPE
Floating-point Conditional signaling Compare (scalar).

Syntax

FCCMPE Hn, Hm, #nzcv, cond ; Half-precision

FCCMPE Sn, Sm, #nzcv, cond ; Single-precision

FCCMPE Dn, Dm, #nzcv, cond ; Double-precision

Where:

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

nzcv
Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-
bit NZCV condition flags.

cond
Is one of the standard conditions.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or
unordered. If either or both of the operands are NaNs, they are unordered, and all three of
(Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This
case results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

FCCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is
suitable for testing for <, <=, >, >=, and other predicates that raise an exception when the
operands are unordered.

Operation

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD and FP
source register values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not
pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an
Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

flags = if cond then compareSignaling(Vn,Vm) else #nzcv.

D4 A64 Floating-point Instructions
D4.6 FCCMPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1036
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.6 FCCMPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1037
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.7 FCMP
Floating-point quiet Compare (scalar).

Syntax

FCMP Hn, Hm ; Half-precision

FCMP Hn, #0.0 ; Half-precision, zero

FCMP Sn, Sm ; Single-precision

FCMP Sn, #0.0 ; Single-precision, zero

FCMP Dn, Dm ; Double-precision

FCMP Dn, #0.0 ; Double-precision, zero

Where:

Hn

Depends on the instruction variant:

Half-precision
Is the 16-bit name of the first SIMD and FP source register

Half-precision, zero
Is the 16-bit name of the SIMD and FP source register

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sn

Depends on the instruction variant:

Single-precision
Is the 32-bit name of the first SIMD and FP source register.

Single-precision, zero
Is the 32-bit name of the SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dn

Depends on the instruction variant:

Double-precision
Is the 64-bit name of the first SIMD and FP source register.

Double-precision, zero
Is the 64-bit name of the SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered.
If either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2),
(Operand1 == Operand2) and (Operand1 > Operand2) are false. This case results in the FPSCR flags
being set to N=0, Z=0, C=1, and V=1.

D4 A64 Floating-point Instructions
D4.7 FCMP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1038
Non-Confidential

Usage

Floating-point quiet Compare (scalar). This instruction compares the two SIMD and FP source register
values, or the first SIMD and FP source register value and zero. It writes the result to the PSTATE.{N, Z,
C, V} flags.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.7 FCMP

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1039
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.8 FCMPE
Floating-point signaling Compare (scalar).

Syntax

FCMPE Hn, Hm ; Half-precision

FCMPE Hn, #0.0 ; Half-precision, zero

FCMPE Sn, Sm ; Single-precision

FCMPE Sn, #0.0 ; Single-precision, zero

FCMPE Dn, Dm ; Double-precision

FCMPE Dn, #0.0 ; Double-precision, zero

Where:

Hn

Depends on the instruction variant:

Half-precision
Is the 16-bit name of the first SIMD and FP source register

Half-precision, zero
Is the 16-bit name of the SIMD and FP source register

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sn

Depends on the instruction variant:

Single-precision
Is the 32-bit name of the first SIMD and FP source register.

Single-precision, zero
Is the 32-bit name of the SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dn

Depends on the instruction variant:

Double-precision
Is the 64-bit name of the first SIMD and FP source register.

Double-precision, zero
Is the 64-bit name of the SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or
unordered. If either or both of the operands are NaNs, they are unordered, and all three of
(Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This
case results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

FCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable
for testing for <, <=, >, >=, and other predicates that raise an exception when the operands are
unordered.

D4 A64 Floating-point Instructions
D4.8 FCMPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1040
Non-Confidential

Usage

Floating-point signaling Compare (scalar). This instruction compares the two SIMD and FP source
register values, or the first SIMD and FP source register value and zero. It writes the result to the
PSTATE.{N, Z, C, V} flags.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an
Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.8 FCMPE

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1041
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.9 FCSEL
Floating-point Conditional Select (scalar).

Syntax

FCSEL Hd, Hn, Hm, cond ; Half-precision

FCSEL Sd, Sn, Sm, cond ; Single-precision

FCSEL Dd, Dn, Dm, cond ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

cond
Is one of the standard conditions.

Operation

Floating-point Conditional Select (scalar). This instruction allows the SIMD and FP destination register
to take the value from either one or the other of two SIMD and FP source registers. If the condition
passes, the first SIMD and FP source register value is taken, otherwise the second SIMD and FP source
register value is taken.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = if cond then Vn else Vm.

Related reference
D1.8 Condition code suffixes and related flags on page D1-655
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.9 FCSEL

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1042
Non-Confidential

D4.10 FCVT
Floating-point Convert precision (scalar).

Syntax

FCVT Sd, Hn ; Half-precision to single-precision

FCVT Dd, Hn ; Half-precision to double-precision

FCVT Hd, Sn ; Single-precision to half-precision

FCVT Dd, Sn ; Single-precision to double-precision

FCVT Hd, Dn ; Double-precision to half-precision

FCVT Sd, Dn ; Double-precision to single-precision

Where:

Sd
Is the 32-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Hd
Is the 16-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD
and FP source register to the precision for the destination register data type using the rounding mode that
is determined by the FPCR and writes the result to the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = convertFormat(Vn), where V is D, H, or S.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.10 FCVT

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1043
Non-Confidential

D4.11 FCVTAS (scalar)
Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).

Syntax

FCVTAS Wd, Hn ; Half-precision to 32-bit

FCVTAS Xd, Hn ; Half-precision to 64-bit

FCVTAS Wd, Sn ; Single-precision to 32-bit

FCVTAS Xd, Sn ; Single-precision to 64-bit

FCVTAS Wd, Dn ; Double-precision to 32-bit

FCVTAS Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction
converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit signed integer
using the Round to Nearest with Ties to Away rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = signed_convertToIntegerExactTiesToAway(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.11 FCVTAS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1044
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.12 FCVTAU (scalar)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).

Syntax

FCVTAU Wd, Hn ; Half-precision to 32-bit

FCVTAU Xd, Hn ; Half-precision to 64-bit

FCVTAU Wd, Sn ; Single-precision to 32-bit

FCVTAU Xd, Sn ; Single-precision to 64-bit

FCVTAU Wd, Dn ; Double-precision to 32-bit

FCVTAU Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This
instruction converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit
unsigned integer using the Round to Nearest with Ties to Away rounding mode, and writes the result to
the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = unsigned_convertToIntegerExactTiesToAway(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.12 FCVTAU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1045
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.13 FCVTMS (scalar)
Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).

Syntax

FCVTMS Wd, Hn ; Half-precision to 32-bit

FCVTMS Xd, Hn ; Half-precision to 64-bit

FCVTMS Wd, Sn ; Single-precision to 32-bit

FCVTMS Xd, Sn ; Single-precision to 64-bit

FCVTMS Wd, Dn ; Double-precision to 32-bit

FCVTMS Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction
converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit signed integer
using the Round towards Minus Infinity rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = signed_convertToIntegerExactTowardNegative(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.13 FCVTMS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1046
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.14 FCVTMU (scalar)
Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).

Syntax

FCVTMU Wd, Hn ; Half-precision to 32-bit

FCVTMU Xd, Hn ; Half-precision to 64-bit

FCVTMU Wd, Sn ; Single-precision to 32-bit

FCVTMU Xd, Sn ; Single-precision to 64-bit

FCVTMU Wd, Dn ; Double-precision to 32-bit

FCVTMU Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction
converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit unsigned
integer using the Round towards Minus Infinity rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = unsigned_convertToIntegerExactTowardNegative(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.14 FCVTMU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1047
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.15 FCVTNS (scalar)
Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).

Syntax

FCVTNS Wd, Hn ; Half-precision to 32-bit

FCVTNS Xd, Hn ; Half-precision to 64-bit

FCVTNS Wd, Sn ; Single-precision to 32-bit

FCVTNS Xd, Sn ; Single-precision to 64-bit

FCVTNS Wd, Dn ; Double-precision to 32-bit

FCVTNS Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction
converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit signed integer
using the Round to Nearest rounding mode, and writes the result to the general-purpose destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = signed_convertToIntegerExactTiesToEven(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.15 FCVTNS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1048
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.16 FCVTNU (scalar)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).

Syntax

FCVTNU Wd, Hn ; Half-precision to 32-bit

FCVTNU Xd, Hn ; Half-precision to 64-bit

FCVTNU Wd, Sn ; Single-precision to 32-bit

FCVTNU Xd, Sn ; Single-precision to 64-bit

FCVTNU Wd, Dn ; Double-precision to 32-bit

FCVTNU Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This
instruction converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit
unsigned integer using the Round to Nearest rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = unsigned_convertToIntegerExactTiesToEven(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.16 FCVTNU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1049
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.17 FCVTPS (scalar)
Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).

Syntax

FCVTPS Wd, Hn ; Half-precision to 32-bit

FCVTPS Xd, Hn ; Half-precision to 64-bit

FCVTPS Wd, Sn ; Single-precision to 32-bit

FCVTPS Xd, Sn ; Single-precision to 64-bit

FCVTPS Wd, Dn ; Double-precision to 32-bit

FCVTPS Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts
the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit signed integer using the
Round towards Plus Infinity rounding mode, and writes the result to the general-purpose destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = signed_convertToIntegerExactTowardPositive(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.17 FCVTPS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1050
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.18 FCVTPU (scalar)
Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).

Syntax

FCVTPU Wd, Hn ; Half-precision to 32-bit

FCVTPU Xd, Hn ; Half-precision to 64-bit

FCVTPU Wd, Sn ; Single-precision to 32-bit

FCVTPU Xd, Sn ; Single-precision to 64-bit

FCVTPU Wd, Dn ; Double-precision to 32-bit

FCVTPU Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction
converts the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit unsigned
integer using the Round towards Plus Infinity rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = unsigned_convertToIntegerExactTowardPositive(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.18 FCVTPU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1051
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.19 FCVTZS (scalar, fixed-point)
Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).

Syntax

FCVTZS Wd, Hn, #fbits ; Half-precision to 32-bit

FCVTZS Xd, Hn, #fbits ; Half-precision to 64-bit

FCVTZS Wd, Sn, #fbits ; Single-precision to 32-bit

FCVTZS Xd, Sn, #fbits ; Single-precision to 64-bit

FCVTZS Wd, Dn, #fbits ; Double-precision to 32-bit

FCVTZS Xd, Dn, #fbits ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

fbits

Depends on the instruction variant:

32-bit
Is the number of bits after the binary point in the fixed-point destination, in the range 1
to 32.

64-bit
Is the number of bits after the binary point in the fixed-point destination, in the range 1
to 64.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts
the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit fixed-point signed
integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Rd = signed_convertToIntegerExactTowardZero(Vn*(2^fbits)), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.19 FCVTZS (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1052
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.19 FCVTZS (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1053
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.20 FCVTZS (scalar, integer)
Floating-point Convert to Signed integer, rounding toward Zero (scalar).

Syntax

FCVTZS Wd, Hn ; Half-precision to 32-bit

FCVTZS Xd, Hn ; Half-precision to 64-bit

FCVTZS Wd, Sn ; Single-precision to 32-bit

FCVTZS Xd, Sn ; Single-precision to 64-bit

FCVTZS Wd, Dn ; Double-precision to 32-bit

FCVTZS Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD and FP source register to a 32-bit or 64-bit signed integer using the
Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = signed_convertToIntegerExactTowardZero(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.20 FCVTZS (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1054
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.21 FCVTZU (scalar, fixed-point)
Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar).

Syntax

FCVTZU Wd, Hn, #fbits ; Half-precision to 32-bit

FCVTZU Xd, Hn, #fbits ; Half-precision to 64-bit

FCVTZU Wd, Sn, #fbits ; Single-precision to 32-bit

FCVTZU Xd, Sn, #fbits ; Single-precision to 64-bit

FCVTZU Wd, Dn, #fbits ; Double-precision to 32-bit

FCVTZU Xd, Dn, #fbits ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

fbits

Depends on the instruction variant:

32-bit
Is the number of bits after the binary point in the fixed-point destination, in the range 1
to 32.

64-bit
Is the number of bits after the binary point in the fixed-point destination, in the range 1
to 64.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts
the floating-point value in the SIMD and FP source register to a 32-bit or 64-bit fixed-point unsigned
integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Rd = unsigned_convertToIntegerExactTowardZero(Vn*(2^fbits)), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.21 FCVTZU (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1055
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.21 FCVTZU (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1056
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.22 FCVTZU (scalar, integer)
Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

Syntax

FCVTZU Wd, Hn ; Half-precision to 32-bit

FCVTZU Xd, Hn ; Half-precision to 64-bit

FCVTZU Wd, Sn ; Single-precision to 32-bit

FCVTZU Xd, Sn ; Single-precision to 64-bit

FCVTZU Wd, Dn ; Double-precision to 32-bit

FCVTZU Xd, Dn ; Double-precision to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the
floating-point value in the SIMD and FP source register to a 32-bit or 64-bit unsigned integer using the
Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Rd = unsigned_convertToIntegerExactTowardZero(Vn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.22 FCVTZU (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1057
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.23 FDIV (scalar)
Floating-point Divide (scalar).

Syntax

FDIV Hd, Hn, Hm ; Half-precision

FDIV Sd, Sn, Sm ; Single-precision

FDIV Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD
and FP register by the floating-point value of the second source SIMD and FP register, and writes the
result to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Vn / Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.23 FDIV (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1058
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.24 FJCVTZS
Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.

Syntax

FJCVTZS Wd, Dn

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Architectures supported

Supported in Armv8.3-A architecture and later.

Usage

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts
the double-precision floating-point value in the SIMD and FP source register to a 32-bit signed integer
using the Round towards Zero rounding mode, and write the result to the general-purpose destination
register. If the result is too large to be held as a 32-bit signed integer, then the result is the integer modulo
232, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.24 FJCVTZS

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1059
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.25 FMADD
Floating-point fused Multiply-Add (scalar).

Syntax

FMADD Hd, Hn, Hm, Ha ; Half-precision

FMADD Sd, Sn, Sm, Sa ; Single-precision

FMADD Dd, Dn, Dm, Da ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register holding the multiplicand.

Hm
Is the 16-bit name of the second SIMD and FP source register holding the multiplier.

Ha
Is the 16-bit name of the third SIMD and FP source register holding the addend.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register holding the multiplicand.

Sm
Is the 32-bit name of the second SIMD and FP source register holding the multiplier.

Sa
Is the 32-bit name of the third SIMD and FP source register holding the addend.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register holding the multiplicand.

Dm
Is the 64-bit name of the second SIMD and FP source register holding the multiplier.

Da
Is the 64-bit name of the third SIMD and FP source register holding the addend.

Operation

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD
and FP source registers, adds the product to the value of the third SIMD and FP source register, and
writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Va + Vn*Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.25 FMADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1060
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.26 FMAX (scalar)
Floating-point Maximum (scalar).

Syntax

FMAX Hd, Hn, Hm ; Half-precision

FMAX Sd, Sn, Sm ; Single-precision

FMAX Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Maximum (scalar). This instruction compares the two source SIMD and FP registers, and
writes the larger of the two floating-point values to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = max(Vn, Vm).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.26 FMAX (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1061
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.27 FMAXNM (scalar)
Floating-point Maximum Number (scalar).

Syntax

FMAXNM Hd, Hn, Hm ; Half-precision

FMAXNM Sd, Sn, Sm ; Single-precision

FMAXNM Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD
and FP register values, and writes the larger of the two floating-point values to the destination SIMD and
FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result that is placed in the vector is the numerical value, otherwise the result is
identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = maxNum(Vn, Vm).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.27 FMAXNM (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1062
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.28 FMIN (scalar)
Floating-point Minimum (scalar).

Syntax

FMIN Hd, Hn, Hm ; Half-precision

FMIN Sd, Sn, Sm ; Single-precision

FMIN Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD and FP
register values, and writes the smaller of the two floating-point values to the destination SIMD and FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = min(Vn, Vm).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.28 FMIN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1063
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.29 FMINNM (scalar)
Floating-point Minimum Number (scalar).

Syntax

FMINNM Hd, Hn, Hm ; Half-precision

FMINNM Sd, Sn, Sm ; Single-precision

FMINNM Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD
and FP register values, and writes the smaller of the two floating-point values to the destination SIMD
and FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result that is placed in the vector is the numerical value, otherwise the result is
identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = minNum(Vn, Vm).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.29 FMINNM (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1064
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.30 FMOV (register)
Floating-point Move register without conversion.

Syntax

FMOV Hd, Hn ; Half-precision

FMOV Sd, Sn ; Single-precision

FMOV Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Move register without conversion. This instruction copies the floating-point value in the
SIMD and FP source register to the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Vn.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.30 FMOV (register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1065
Non-Confidential

D4.31 FMOV (general)
Floating-point Move to or from general-purpose register without conversion.

Syntax

FMOV Wd, Hn ; Half-precision to 32-bit

FMOV Xd, Hn ; Half-precision to 64-bit

FMOV Hd, Wn ; 32-bit to half-precision

FMOV Sd, Wn ; 32-bit to single-precision

FMOV Wd, Sn ; Single-precision to 32-bit

FMOV Hd, Xn ; 64-bit to half-precision

FMOV Dd, Xn ; 64-bit to double-precision

FMOV Vd.D[1], Xn ; 64-bit to top half of 128-bit

FMOV Xd, Dn ; Double-precision to 64-bit

FMOV Xd, Vn.D[1] ; Top half of 128-bit to 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Xd
Is the 64-bit name of the general-purpose destination register.

Hd
Is the 16-bit name of the SIMD and FP destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Xn
Is the 64-bit name of the general-purpose source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Vd
Is the name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Vn
Is the name of the SIMD and FP source register.

Usage

Floating-point Move to or from general-purpose register without conversion. This instruction transfers
the contents of a SIMD and FP register to a general-purpose register, or the contents of a general-purpose
register to a SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.31 FMOV (general)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1066
Non-Confidential

D4.32 FMOV (scalar, immediate)
Floating-point move immediate (scalar).

Syntax

FMOV Hd, #imm ; Half-precision

FMOV Sd, #imm ; Single-precision

FMOV Dd, #imm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

imm
Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision. For
details of the range of constants available and the encoding of imm, see Modified immediate
constants in A64 floating-point instructions in the Arm® Architecture Reference Manual Arm®v8,
for Arm®v8‑A architecture profile.

Operation

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into
the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd=#imm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.32 FMOV (scalar, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1067
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.33 FMSUB
Floating-point Fused Multiply-Subtract (scalar).

Syntax

FMSUB Hd, Hn, Hm, Ha ; Half-precision

FMSUB Sd, Sn, Sm, Sa ; Single-precision

FMSUB Dd, Dn, Dm, Da ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register holding the multiplicand.

Hm
Is the 16-bit name of the second SIMD and FP source register holding the multiplier.

Ha
Is the 16-bit name of the third SIMD and FP source register holding the minuend.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register holding the multiplicand.

Sm
Is the 32-bit name of the second SIMD and FP source register holding the multiplier.

Sa
Is the 32-bit name of the third SIMD and FP source register holding the minuend.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register holding the multiplicand.

Dm
Is the 64-bit name of the second SIMD and FP source register holding the multiplier.

Da
Is the 64-bit name of the third SIMD and FP source register holding the minuend.

Operation

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two
SIMD and FP source registers, negates the product, adds that to the value of the third SIMD and FP
source register, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Va + (-Vn)*Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.33 FMSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1068
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.34 FMUL (scalar)
Floating-point Multiply (scalar).

Syntax

FMUL Hd, Hn, Hm ; Half-precision

FMUL Sd, Sn, Sm ; Single-precision

FMUL Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source
SIMD and FP registers, and writes the result to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Vn * Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.34 FMUL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1069
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.35 FNEG (scalar)
Floating-point Negate (scalar).

Syntax

FNEG Hd, Hn ; Half-precision

FNEG Sd, Sn ; Single-precision

FNEG Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Negate (scalar). This instruction negates the value in the SIMD and FP source register and
writes the result to the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = -Vn.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.35 FNEG (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1070
Non-Confidential

D4.36 FNMADD
Floating-point Negated fused Multiply-Add (scalar).

Syntax

FNMADD Hd, Hn, Hm, Ha ; Half-precision

FNMADD Sd, Sn, Sm, Sa ; Single-precision

FNMADD Dd, Dn, Dm, Da ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register holding the multiplicand.

Hm
Is the 16-bit name of the second SIMD and FP source register holding the multiplier.

Ha
Is the 16-bit name of the third SIMD and FP source register holding the addend.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register holding the multiplicand.

Sm
Is the 32-bit name of the second SIMD and FP source register holding the multiplier.

Sa
Is the 32-bit name of the third SIMD and FP source register holding the addend.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register holding the multiplicand.

Dm
Is the 64-bit name of the second SIMD and FP source register holding the multiplier.

Da
Is the 64-bit name of the third SIMD and FP source register holding the addend.

Operation

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first
two SIMD and FP source registers, negates the product, subtracts the value of the third SIMD and FP
source register, and writes the result to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = (-Va) + (-Vn)*Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.36 FNMADD

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1071
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.37 FNMSUB
Floating-point Negated fused Multiply-Subtract (scalar).

Syntax

FNMSUB Hd, Hn, Hm, Ha ; Half-precision

FNMSUB Sd, Sn, Sm, Sa ; Single-precision

FNMSUB Dd, Dn, Dm, Da ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register holding the multiplicand.

Hm
Is the 16-bit name of the second SIMD and FP source register holding the multiplier.

Ha
Is the 16-bit name of the third SIMD and FP source register holding the minuend.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register holding the multiplicand.

Sm
Is the 32-bit name of the second SIMD and FP source register holding the multiplier.

Sa
Is the 32-bit name of the third SIMD and FP source register holding the minuend.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register holding the multiplicand.

Dm
Is the 64-bit name of the second SIMD and FP source register holding the multiplier.

Da
Is the 64-bit name of the third SIMD and FP source register holding the minuend.

Operation

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first
two SIMD and FP source registers, subtracts the value of the third SIMD and FP source register, and
writes the result to the destination SIMD and FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = (-Va) + Vn*Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.37 FNMSUB

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1072
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.38 FNMUL (scalar)
Floating-point Multiply-Negate (scalar).

Syntax

FNMUL Hd, Hn, Hm ; Half-precision

FNMUL Sd, Sn, Sm ; Single-precision

FNMUL Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two
source SIMD and FP registers, and writes the negation of the result to the destination SIMD and FP
register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = -(Vn * Vm).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.38 FNMUL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1073
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.39 FRINTA (scalar)
Floating-point Round to Integral, to nearest with ties to Away (scalar).

Syntax

FRINTA Hd, Hn ; Half-precision

FRINTA Sd, Sn ; Single-precision

FRINTA Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-
point value in the SIMD and FP source register to an integral floating-point value of the same size using
the Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD and FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralTiesToAway(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.39 FRINTA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1074
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.40 FRINTI (scalar)
Floating-point Round to Integral, using current rounding mode (scalar).

Syntax

FRINTI Hd, Hn ; Half-precision

FRINTI Sd, Sn ; Single-precision

FRINTI Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD and FP source register to an integral floating-point value of the same
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD and FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegral(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.40 FRINTI (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1075
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.41 FRINTM (scalar)
Floating-point Round to Integral, toward Minus infinity (scalar).

Syntax

FRINTM Hd, Hn ; Half-precision

FRINTM Sd, Sn ; Single-precision

FRINTM Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point
value in the SIMD and FP source register to an integral floating-point value of the same size using the
Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralTowardNegative(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.41 FRINTM (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1076
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.42 FRINTN (scalar)
Floating-point Round to Integral, to nearest with ties to even (scalar).

Syntax

FRINTN Hd, Hn ; Half-precision

FRINTN Sd, Sn ; Single-precision

FRINTN Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-
point value in the SIMD and FP source register to an integral floating-point value of the same size using
the Round to Nearest rounding mode, and writes the result to the SIMD and FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralTiesToEven(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.42 FRINTN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1077
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.43 FRINTP (scalar)
Floating-point Round to Integral, toward Plus infinity (scalar).

Syntax

FRINTP Hd, Hn ; Half-precision

FRINTP Sd, Sn ; Single-precision

FRINTP Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point
value in the SIMD and FP source register to an integral floating-point value of the same size using the
Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralTowardPositive(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.43 FRINTP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1078
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.44 FRINTX (scalar)
Floating-point Round to Integral exact, using current rounding mode (scalar).

Syntax

FRINTX Hd, Hn ; Half-precision

FRINTX Sd, Sn ; Single-precision

FRINTX Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD and FP source register to an integral floating-point value of the same
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD and FP
destination register.

An Inexact exception is raised when the result value is not numerically equal to the input value. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign,
and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralExact(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.44 FRINTX (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1079
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.45 FRINTZ (scalar)
Floating-point Round to Integral, toward Zero (scalar).

Syntax

FRINTZ Hd, Hn ; Half-precision

FRINTZ Sd, Sn ; Single-precision

FRINTZ Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in
the SIMD and FP source register to an integral floating-point value of the same size using the Round
towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = roundToIntegralTowardZero(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.45 FRINTZ (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1080
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.46 FSQRT (scalar)
Floating-point Square Root (scalar).

Syntax

FSQRT Hd, Hn ; Half-precision

FSQRT Sd, Sn ; Single-precision

FSQRT Dd, Dn ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the SIMD and FP source register.

Operation

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD
and FP source register and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = sqrt(Vn).

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.46 FSQRT (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1081
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.47 FSUB (scalar)
Floating-point Subtract (scalar).

Syntax

FSUB Hd, Hn, Hm ; Half-precision

FSUB Sd, Sn, Sm ; Single-precision

FSUB Dd, Dn, Dm ; Double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Sn
Is the 32-bit name of the first SIMD and FP source register.

Sm
Is the 32-bit name of the second SIMD and FP source register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Dn
Is the 64-bit name of the first SIMD and FP source register.

Dm
Is the 64-bit name of the second SIMD and FP source register.

Operation

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source
SIMD and FP register from the floating-point value of the first source SIMD and FP register, and writes
the result to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = Vn - Vm.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.47 FSUB (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1082
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.48 LDNP (SIMD and FP)
Load Pair of SIMD and FP registers, with Non-temporal hint.

Syntax

LDNP St1, St2, [Xn|SP{, #imm}] ; 32-bit

LDNP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit

LDNP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit

Where:

St1
Is the 32-bit name of the first SIMD and FP register to be transferred.

St2
Is the 32-bit name of the second SIMD and FP register to be transferred.

imm

Depends on the instruction variant:

32-bit
Is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0.

64-bit
Is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0.

128-bit
Is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to
1008, defaulting to 0.

Dt1
Is the 64-bit name of the first SIMD and FP register to be transferred.

Dt2
Is the 64-bit name of the second SIMD and FP register to be transferred.

Qt1
Is the 128-bit name of the first SIMD and FP register to be transferred.

Qt2
Is the 128-bit name of the second SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Pair of SIMD and FP registers, with Non-temporal hint. This instruction loads a pair of SIMD and
FP registers from memory, issuing a hint to the memory system that the access is non-temporal. The
address that is used for the load is calculated from a base register value and an optional immediate offset.

For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-
temporal pair in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDNP (SIMD and FP).

D4 A64 Floating-point Instructions
D4.48 LDNP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1083
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.48 LDNP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1084
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.49 LDP (SIMD and FP)
Load Pair of SIMD and FP registers.

Syntax

LDP St1, St2, [Xn|SP], #imm ; 32-bit, Post-index

LDP Dt1, Dt2, [Xn|SP], #imm ; 64-bit, Post-index

LDP Qt1, Qt2, [Xn|SP], #imm ; 128-bit, Post-index

LDP St1, St2, [Xn|SP, #imm]! ; 32-bit, Pre-index

LDP Dt1, Dt2, [Xn|SP, #imm]! ; 64-bit, Pre-index

LDP Qt1, Qt2, [Xn|SP, #imm]! ; 128-bit, Pre-index

LDP St1, St2, [Xn|SP{, #imm}] ; 32-bit, Signed offset

LDP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit, Signed offset

LDP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit, Signed offset

Where:

St1
Is the 32-bit name of the first SIMD and FP register to be transferred.

St2
Is the 32-bit name of the second SIMD and FP register to be transferred.

imm

Depends on the instruction variant:

32-bit
Is the signed immediate byte offset, a multiple of 4 in the range -256 to 252.

64-bit
Is the signed immediate byte offset, a multiple of 8 in the range -512 to 504.

128-bit
Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008.

Dt1
Is the 64-bit name of the first SIMD and FP register to be transferred.

Dt2
Is the 64-bit name of the second SIMD and FP register to be transferred.

Qt1
Is the 128-bit name of the first SIMD and FP register to be transferred.

Qt2
Is the 128-bit name of the second SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load Pair of SIMD and FP registers. This instruction loads a pair of SIMD and FP registers from
memory. The address that is used for the load is calculated from a base register value and an optional
immediate offset.

D4 A64 Floating-point Instructions
D4.49 LDP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1085
Non-Confidential

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural
Constraints on UNPREDICTABLE behaviors in the Arm® Architecture Reference Manual Arm®v8, for
Arm®v8‑A architecture profile, and particularly LDP (SIMD and FP).

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.49 LDP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1086
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.50 LDR (immediate, SIMD and FP)
Load SIMD and FP Register (immediate offset).

Syntax

LDR <Bt>, [Xn|SP], #simm ; 8-bit, Post-index

LDR Ht, [Xn|SP], #simm ; 16-bit, Post-index

LDR St, [Xn|SP], #simm ; 32-bit, Post-index

LDR Dt, [Xn|SP], #simm ; 64-bit, Post-index

LDR Qt, [Xn|SP], #simm ; 128-bit, Post-index

LDR <Bt>, [Xn|SP, #simm]! ; 8-bit, Pre-index

LDR Ht, [Xn|SP, #simm]! ; 16-bit, Pre-index

LDR St, [Xn|SP, #simm]! ; 32-bit, Pre-index

LDR Dt, [Xn|SP, #simm]! ; 64-bit, Pre-index

LDR Qt, [Xn|SP, #simm]! ; 128-bit, Pre-index

LDR <Bt>, [Xn|SP{, #pimm}] ; 8-bit, Unsigned offset

LDR Ht, [Xn|SP{, #pimm}] ; 16-bit, Unsigned offset

LDR St, [Xn|SP{, #pimm}] ; 32-bit, Unsigned offset

LDR Dt, [Xn|SP{, #pimm}] ; 64-bit, Unsigned offset

LDR Qt, [Xn|SP{, #pimm}] ; 128-bit, Unsigned offset

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

pimm

Depends on the instruction variant:

8-bit
Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0.

16-bit
Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190,
defaulting to 0.

32-bit
Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380,
defaulting to 0.

D4 A64 Floating-point Instructions
D4.50 LDR (immediate, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1087
Non-Confidential

64-bit
Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760,
defaulting to 0.

128-bit
Is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520,
defaulting to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load SIMD and FP Register (immediate offset). This instruction loads an element from memory, and
writes the result as a scalar to the SIMD and FP register. The address that is used for the load is
calculated from a base register value, a signed immediate offset, and an optional offset that is a multiple
of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.50 LDR (immediate, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1088
Non-Confidential

D4.51 LDR (literal, SIMD and FP)
Load SIMD and FP Register (PC-relative literal).

Syntax

LDR St, label ; 32-bit

LDR Dt, label ; 64-bit

LDR Qt, label ; 128-bit

Where:

St
Is the 32-bit name of the SIMD and FP register to be loaded.

Dt
Is the 64-bit name of the SIMD and FP register to be loaded.

Qt
Is the 128-bit name of the SIMD and FP register to be loaded.

label
Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range ±1MB.

Usage

Load SIMD and FP Register (PC-relative literal). This instruction loads a SIMD and FP register from
memory. The address that is used for the load is calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.51 LDR (literal, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1089
Non-Confidential

D4.52 LDR (register, SIMD and FP)
Load SIMD and FP Register (register offset).

Syntax

LDR <Bt>, [Xn|SP, (Wm|Xm), extend {amount}] ; 8-bit

LDR <Bt>, [Xn|SP, Xm{, LSL amount}] ; 8-bit

LDR Ht, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 16-bit

LDR St, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 32-bit

LDR Dt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 64-bit

LDR Qt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 128-bit

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend

Is the index extend specifier:

8-bit
Can be one of UXTW, SXTW or SXTX.

16-bit, 32-bit, 64-bit, and 128-bit
Can be one of UXTW, LSL, SXTW or SXTX. LSL is the default, and must be omitted for the
LSL option when amount is omitted.

amount
Is the index shift amount:

8-bit
Must be #0.

16-bit
Can be #0 or #1. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

32-bit
Can be #0 or #2. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

64-bit
Can be #0 or #3. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

128-bit
Can be #0 or #4. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

D4 A64 Floating-point Instructions
D4.52 LDR (register, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1090
Non-Confidential

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

Usage

Load SIMD and FP Register (register offset). This instruction loads a SIMD and FP register from
memory. The address that is used for the load is calculated from a base register value and an offset
register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.52 LDR (register, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1091
Non-Confidential

D4.53 LDUR (SIMD and FP)
Load SIMD and FP Register (unscaled offset).

Syntax

LDUR <Bt>, [Xn|SP{, #simm}] ; 8-bit

LDUR Ht, [Xn|SP{, #simm}] ; 16-bit

LDUR St, [Xn|SP{, #simm}] ; 32-bit

LDUR Dt, [Xn|SP{, #simm}] ; 64-bit

LDUR Qt, [Xn|SP{, #simm}] ; 128-bit

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Load SIMD and FP Register (unscaled offset). This instruction loads a SIMD and FP register from
memory. The address that is used for the load is calculated from a base register value and an optional
immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.53 LDUR (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1092
Non-Confidential

D4.54 SCVTF (scalar, fixed-point)
Signed fixed-point Convert to Floating-point (scalar).

Syntax

SCVTF Hd, Wn, #fbits ; 32-bit to half-precision

SCVTF Sd, Wn, #fbits ; 32-bit to single-precision

SCVTF Dd, Wn, #fbits ; 32-bit to double-precision

SCVTF Hd, Xn, #fbits ; 64-bit to half-precision

SCVTF Sd, Xn, #fbits ; 64-bit to single-precision

SCVTF Dd, Xn, #fbits ; 64-bit to double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Wn
Is the 32-bit name of the general-purpose source register.

fbits

Depends on the instruction variant:

32-bit
For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision
variant: is the number of bits after the binary point in the fixed-point source, in the
range 1 to 32.

64-bit
For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision
variant: is the number of bits after the binary point in the fixed-point source, in the
range 1 to 64.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the
32-bit or 64-bit general-purpose source register to a floating-point value using the rounding mode that is
specified by the FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Vd = signed_convertFromInt(Rn/(2^fbits)), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.54 SCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1093
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.54 SCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1094
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.55 SCVTF (scalar, integer)
Signed integer Convert to Floating-point (scalar).

Syntax

SCVTF Hd, Wn ; 32-bit to half-precision

SCVTF Sd, Wn ; 32-bit to single-precision

SCVTF Dd, Wn ; 32-bit to double-precision

SCVTF Hd, Xn ; 64-bit to half-precision

SCVTF Sd, Xn ; 64-bit to single-precision

SCVTF Dd, Xn ; 64-bit to double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in
the general-purpose source register to a floating-point value using the rounding mode that is specified by
the FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = signed_convertFromInt(Rn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.55 SCVTF (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1095
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.56 STNP (SIMD and FP)
Store Pair of SIMD and FP registers, with Non-temporal hint.

Syntax

STNP St1, St2, [Xn|SP{, #imm}] ; 32-bit

STNP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit

STNP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit

Where:

St1
Is the 32-bit name of the first SIMD and FP register to be transferred.

St2
Is the 32-bit name of the second SIMD and FP register to be transferred.

imm

Depends on the instruction variant:

32-bit
Is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0.

64-bit
Is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0.

128-bit
Is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to
1008, defaulting to 0.

Dt1
Is the 64-bit name of the first SIMD and FP register to be transferred.

Dt2
Is the 64-bit name of the second SIMD and FP register to be transferred.

Qt1
Is the 128-bit name of the first SIMD and FP register to be transferred.

Qt2
Is the 128-bit name of the second SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store Pair of SIMD and FP registers, with Non-temporal hint. This instruction stores a pair of SIMD and
FP registers to memory, issuing a hint to the memory system that the access is non-temporal. The address
used for the store is calculated from an address from a base register value and an immediate offset. For
information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-
temporal pair in the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.56 STNP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1096
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.57 STP (SIMD and FP)
Store Pair of SIMD and FP registers.

Syntax

STP St1, St2, [Xn|SP], #imm ; 32-bit, Post-index

STP Dt1, Dt2, [Xn|SP], #imm ; 64-bit, Post-index

STP Qt1, Qt2, [Xn|SP], #imm ; 128-bit, Post-index

STP St1, St2, [Xn|SP, #imm]! ; 32-bit, Pre-index

STP Dt1, Dt2, [Xn|SP, #imm]! ; 64-bit, Pre-index

STP Qt1, Qt2, [Xn|SP, #imm]! ; 128-bit, Pre-index

STP St1, St2, [Xn|SP{, #imm}] ; 32-bit, Signed offset

STP Dt1, Dt2, [Xn|SP{, #imm}] ; 64-bit, Signed offset

STP Qt1, Qt2, [Xn|SP{, #imm}] ; 128-bit, Signed offset

Where:

St1
Is the 32-bit name of the first SIMD and FP register to be transferred.

St2
Is the 32-bit name of the second SIMD and FP register to be transferred.

imm

Depends on the instruction variant:

32-bit
Is the signed immediate byte offset, a multiple of 4 in the range -256 to 252.

64-bit
Is the signed immediate byte offset, a multiple of 8 in the range -512 to 504.

128-bit
Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008.

Dt1
Is the 64-bit name of the first SIMD and FP register to be transferred.

Dt2
Is the 64-bit name of the second SIMD and FP register to be transferred.

Qt1
Is the 128-bit name of the first SIMD and FP register to be transferred.

Qt2
Is the 128-bit name of the second SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store Pair of SIMD and FP registers. This instruction stores a pair of SIMD and FP registers to memory.
The address used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.57 STP (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1097
Non-Confidential

D4.58 STR (immediate, SIMD and FP)
Store SIMD and FP register (immediate offset).

Syntax

STR <Bt>, [Xn|SP], #simm ; 8-bit, Post-index

STR Ht, [Xn|SP], #simm ; 16-bit, Post-index

STR St, [Xn|SP], #simm ; 32-bit, Post-index

STR Dt, [Xn|SP], #simm ; 64-bit, Post-index

STR Qt, [Xn|SP], #simm ; 128-bit, Post-index

STR <Bt>, [Xn|SP, #simm]! ; 8-bit, Pre-index

STR Ht, [Xn|SP, #simm]! ; 16-bit, Pre-index

STR St, [Xn|SP, #simm]! ; 32-bit, Pre-index

STR Dt, [Xn|SP, #simm]! ; 64-bit, Pre-index

STR Qt, [Xn|SP, #simm]! ; 128-bit, Pre-index

STR <Bt>, [Xn|SP{, #pimm}] ; 8-bit, Unsigned offset

STR Ht, [Xn|SP{, #pimm}] ; 16-bit, Unsigned offset

STR St, [Xn|SP{, #pimm}] ; 32-bit, Unsigned offset

STR Dt, [Xn|SP{, #pimm}] ; 64-bit, Unsigned offset

STR Qt, [Xn|SP{, #pimm}] ; 128-bit, Unsigned offset

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

simm
Is the signed immediate byte offset, in the range -256 to 255.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

pimm

Depends on the instruction variant:

8-bit
Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0.

16-bit
Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190,
defaulting to 0.

32-bit
Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380,
defaulting to 0.

D4 A64 Floating-point Instructions
D4.58 STR (immediate, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1098
Non-Confidential

64-bit
Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760,
defaulting to 0.

128-bit
Is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520,
defaulting to 0.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store SIMD and FP register (immediate offset). This instruction stores a single SIMD and FP register to
memory. The address that is used for the store is calculated from a base register value and an immediate
offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.58 STR (immediate, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1099
Non-Confidential

D4.59 STR (register, SIMD and FP)
Store SIMD and FP register (register offset).

Syntax

STR <Bt>, [Xn|SP, (Wm|Xm), extend {amount}] ; 8-bit

STR <Bt>, [Xn|SP, Xm{, LSL amount}] ; 8-bit

STR Ht, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 16-bit

STR St, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 32-bit

STR Dt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 64-bit

STR Qt, [Xn|SP, (Wm|Xm){, extend {amount}}] ; 128-bit

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Wm
When "option<0>" is set to 0, is the 32-bit name of the general-purpose index register.

Xm
When "option<0>" is set to 1, is the 64-bit name of the general-purpose index register.

extend

Is the index extend specifier:

8-bit
Can be one of UXTW, SXTW or SXTX.

16-bit, 32-bit, 64-bit, and 128-bit
Can be one of UXTW, LSL, SXTW or SXTX. LSL is the default, and must be omitted for the
LSL option when amount is omitted.

amount
Is the index shift amount:

8-bit
Must be #0.

16-bit
Can be #0 or #1. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

32-bit
Can be #0 or #2. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

64-bit
Can be #0 or #3. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

128-bit
Can be #0 or #4. Optional only when extend is not LSL. Where it is permitted to be
optional, it defaults to #0.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

D4 A64 Floating-point Instructions
D4.59 STR (register, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1100
Non-Confidential

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

Usage

Store SIMD and FP register (register offset). This instruction stores a single SIMD and FP register to
memory. The address that is used for the store is calculated from a base register value and an offset
register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.59 STR (register, SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1101
Non-Confidential

D4.60 STUR (SIMD and FP)
Store SIMD and FP register (unscaled offset).

Syntax

STUR <Bt>, [Xn|SP{, #simm}] ; 8-bit

STUR Ht, [Xn|SP{, #simm}] ; 16-bit

STUR St, [Xn|SP{, #simm}] ; 32-bit

STUR Dt, [Xn|SP{, #simm}] ; 64-bit

STUR Qt, [Xn|SP{, #simm}] ; 128-bit

Where:

<Bt>
Is the 8-bit name of the SIMD and FP register to be transferred.

Ht
Is the 16-bit name of the SIMD and FP register to be transferred.

St
Is the 32-bit name of the SIMD and FP register to be transferred.

Dt
Is the 64-bit name of the SIMD and FP register to be transferred.

Qt
Is the 128-bit name of the SIMD and FP register to be transferred.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

simm
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0.

Usage

Store SIMD and FP register (unscaled offset). This instruction stores a single SIMD and FP register to
memory. The address that is used for the store is calculated from a base register value and an optional
immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D3.1 A64 data transfer instructions in alphabetical order on page D3-877

D4 A64 Floating-point Instructions
D4.60 STUR (SIMD and FP)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1102
Non-Confidential

D4.61 UCVTF (scalar, fixed-point)
Unsigned fixed-point Convert to Floating-point (scalar).

Syntax

UCVTF Hd, Wn, #fbits ; 32-bit to half-precision

UCVTF Sd, Wn, #fbits ; 32-bit to single-precision

UCVTF Dd, Wn, #fbits ; 32-bit to double-precision

UCVTF Hd, Xn, #fbits ; 64-bit to half-precision

UCVTF Sd, Xn, #fbits ; 64-bit to single-precision

UCVTF Dd, Xn, #fbits ; 64-bit to double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Wn
Is the 32-bit name of the general-purpose source register.

fbits

Depends on the instruction variant:

32-bit
For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision
variant: is the number of bits after the binary point in the fixed-point source, in the
range 1 to 32.

64-bit
For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision
variant: is the number of bits after the binary point in the fixed-point source, in the
range 1 to 64.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in
the 32-bit or 64-bit general-purpose source register to a floating-point value using the rounding mode
that is specified by the FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Vd = unsigned_convertFromInt(Rn/(2^fbits)), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029

D4 A64 Floating-point Instructions
D4.61 UCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1103
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.61 UCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1104
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4.62 UCVTF (scalar, integer)
Unsigned integer Convert to Floating-point (scalar).

Syntax

UCVTF Hd, Wn ; 32-bit to half-precision

UCVTF Sd, Wn ; 32-bit to single-precision

UCVTF Dd, Wn ; 32-bit to double-precision

UCVTF Hd, Xn ; 64-bit to half-precision

UCVTF Sd, Xn ; 64-bit to single-precision

UCVTF Dd, Xn ; 64-bit to double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Wn
Is the 32-bit name of the general-purpose source register.

Sd
Is the 32-bit name of the SIMD and FP destination register.

Dd
Is the 64-bit name of the SIMD and FP destination register.

Xn
Is the 64-bit name of the general-purpose source register.

Operation

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value
in the general-purpose source register to a floating-point value using the rounding mode that is specified
by the FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Vd = unsigned_convertFromInt(Rn), where R is either W or X.

Related reference
D4.1 A64 floating-point instructions in alphabetical order on page D4-1029
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D4 A64 Floating-point Instructions
D4.62 UCVTF (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1105
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D4 A64 Floating-point Instructions
D4.62 UCVTF (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D4-1106
Non-Confidential

Chapter D5
A64 SIMD Scalar Instructions

Describes the A64 SIMD scalar instructions.

It contains the following sections:
• D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110.
• D5.2 ABS (scalar) on page D5-1115.
• D5.3 ADD (scalar) on page D5-1116.
• D5.4 ADDP (scalar) on page D5-1117.
• D5.5 CMEQ (scalar, register) on page D5-1118.
• D5.6 CMEQ (scalar, zero) on page D5-1119.
• D5.7 CMGE (scalar, register) on page D5-1120.
• D5.8 CMGE (scalar, zero) on page D5-1121.
• D5.9 CMGT (scalar, register) on page D5-1122.
• D5.10 CMGT (scalar, zero) on page D5-1123.
• D5.11 CMHI (scalar, register) on page D5-1124.
• D5.12 CMHS (scalar, register) on page D5-1125.
• D5.13 CMLE (scalar, zero) on page D5-1126.
• D5.14 CMLT (scalar, zero) on page D5-1127.
• D5.15 CMTST (scalar) on page D5-1128.
• D5.16 DUP (scalar, element) on page D5-1129.
• D5.17 FABD (scalar) on page D5-1130.
• D5.18 FACGE (scalar) on page D5-1131.
• D5.19 FACGT (scalar) on page D5-1132.
• D5.20 FADDP (scalar) on page D5-1133.
• D5.21 FCMEQ (scalar, register) on page D5-1134.
• D5.22 FCMEQ (scalar, zero) on page D5-1135.
• D5.23 FCMGE (scalar, register) on page D5-1136.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1107
Non-Confidential

• D5.24 FCMGE (scalar, zero) on page D5-1137.
• D5.25 FCMGT (scalar, register) on page D5-1138.
• D5.26 FCMGT (scalar, zero) on page D5-1139.
• D5.27 FCMLA (scalar, by element) on page D5-1140.
• D5.28 FCMLE (scalar, zero) on page D5-1142.
• D5.29 FCMLT (scalar, zero) on page D5-1143.
• D5.30 FCVTAS (scalar) on page D5-1144.
• D5.31 FCVTAU (scalar) on page D5-1145.
• D5.32 FCVTMS (scalar) on page D5-1146.
• D5.33 FCVTMU (scalar) on page D5-1147.
• D5.34 FCVTNS (scalar) on page D5-1148.
• D5.35 FCVTNU (scalar) on page D5-1149.
• D5.36 FCVTPS (scalar) on page D5-1150.
• D5.37 FCVTPU (scalar) on page D5-1151.
• D5.38 FCVTXN (scalar) on page D5-1152.
• D5.39 FCVTZS (scalar, fixed-point) on page D5-1153.
• D5.40 FCVTZS (scalar, integer) on page D5-1154.
• D5.41 FCVTZU (scalar, fixed-point) on page D5-1155.
• D5.42 FCVTZU (scalar, integer) on page D5-1156.
• D5.43 FMAXNMP (scalar) on page D5-1157.
• D5.44 FMAXP (scalar) on page D5-1158.
• D5.45 FMINNMP (scalar) on page D5-1159.
• D5.46 FMINP (scalar) on page D5-1160.
• D5.47 FMLA (scalar, by element) on page D5-1161.
• D5.48 FMLAL, (scalar, by element) on page D5-1163.
• D5.49 FMLS (scalar, by element) on page D5-1164.
• D5.50 FMLSL, (scalar, by element) on page D5-1166.
• D5.51 FMUL (scalar, by element) on page D5-1167.
• D5.52 FMULX (scalar, by element) on page D5-1169.
• D5.53 FMULX (scalar) on page D5-1171.
• D5.54 FRECPE (scalar) on page D5-1172.
• D5.55 FRECPS (scalar) on page D5-1173.
• D5.56 FRSQRTE (scalar) on page D5-1174.
• D5.57 FRSQRTS (scalar) on page D5-1175.
• D5.58 MOV (scalar) on page D5-1176.
• D5.59 NEG (scalar) on page D5-1177.
• D5.60 SCVTF (scalar, fixed-point) on page D5-1178.
• D5.61 SCVTF (scalar, integer) on page D5-1179.
• D5.62 SHL (scalar) on page D5-1180.
• D5.63 SLI (scalar) on page D5-1181.
• D5.64 SQABS (scalar) on page D5-1182.
• D5.65 SQADD (scalar) on page D5-1183.
• D5.66 SQDMLAL (scalar, by element) on page D5-1184.
• D5.67 SQDMLAL (scalar) on page D5-1185.
• D5.68 SQDMLSL (scalar, by element) on page D5-1186.
• D5.69 SQDMLSL (scalar) on page D5-1187.
• D5.70 SQDMULH (scalar, by element) on page D5-1188.
• D5.71 SQDMULH (scalar) on page D5-1189.
• D5.72 SQDMULL (scalar, by element) on page D5-1190.
• D5.73 SQDMULL (scalar) on page D5-1191.
• D5.74 SQNEG (scalar) on page D5-1192.
• D5.75 SQRDMLAH (scalar, by element) on page D5-1193.
• D5.76 SQRDMLAH (scalar) on page D5-1194.
• D5.77 SQRDMLSH (scalar, by element) on page D5-1195.
• D5.78 SQRDMLSH (scalar) on page D5-1196.
• D5.79 SQRDMULH (scalar, by element) on page D5-1197.

D5 A64 SIMD Scalar Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1108
Non-Confidential

• D5.80 SQRDMULH (scalar) on page D5-1198.
• D5.81 SQRSHL (scalar) on page D5-1199.
• D5.82 SQRSHRN (scalar) on page D5-1200.
• D5.83 SQRSHRUN (scalar) on page D5-1201.
• D5.84 SQSHL (scalar, immediate) on page D5-1202.
• D5.85 SQSHL (scalar, register) on page D5-1203.
• D5.86 SQSHLU (scalar) on page D5-1204.
• D5.87 SQSHRN (scalar) on page D5-1205.
• D5.88 SQSHRUN (scalar) on page D5-1206.
• D5.89 SQSUB (scalar) on page D5-1207.
• D5.90 SQXTN (scalar) on page D5-1208.
• D5.91 SQXTUN (scalar) on page D5-1209.
• D5.92 SRI (scalar) on page D5-1210.
• D5.93 SRSHL (scalar) on page D5-1211.
• D5.94 SRSHR (scalar) on page D5-1212.
• D5.95 SRSRA (scalar) on page D5-1213.
• D5.96 SSHL (scalar) on page D5-1214.
• D5.97 SSHR (scalar) on page D5-1215.
• D5.98 SSRA (scalar) on page D5-1216.
• D5.99 SUB (scalar) on page D5-1217.
• D5.100 SUQADD (scalar) on page D5-1218.
• D5.101 UCVTF (scalar, fixed-point) on page D5-1219.
• D5.102 UCVTF (scalar, integer) on page D5-1220.
• D5.103 UQADD (scalar) on page D5-1221.
• D5.104 UQRSHL (scalar) on page D5-1222.
• D5.105 UQRSHRN (scalar) on page D5-1223.
• D5.106 UQSHL (scalar, immediate) on page D5-1224.
• D5.107 UQSHL (scalar, register) on page D5-1225.
• D5.108 UQSHRN (scalar) on page D5-1226.
• D5.109 UQSUB (scalar) on page D5-1227.
• D5.110 UQXTN (scalar) on page D5-1228.
• D5.111 URSHL (scalar) on page D5-1229.
• D5.112 URSHR (scalar) on page D5-1230.
• D5.113 URSRA (scalar) on page D5-1231.
• D5.114 USHL (scalar) on page D5-1232.
• D5.115 USHR (scalar) on page D5-1233.
• D5.116 USQADD (scalar) on page D5-1234.
• D5.117 USRA (scalar) on page D5-1235.

D5 A64 SIMD Scalar Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1109
Non-Confidential

D5.1 A64 SIMD scalar instructions in alphabetical order
A summary of the A64 SIMD scalar instructions that are supported.

Table D5-1 Summary of A64 SIMD scalar instructions

Mnemonic Brief description See

ABS (scalar) Absolute value (vector) D5.2 ABS (scalar) on page D5-1115

ADD (scalar) Add (vector) D5.3 ADD (scalar) on page D5-1116

ADDP (scalar) Add Pair of elements (scalar) D5.4 ADDP (scalar) on page D5-1117

CMEQ (scalar, register) Compare bitwise Equal (vector) D5.5 CMEQ (scalar, register) on page D5-1118

CMEQ (scalar, zero) Compare bitwise Equal to zero (vector) D5.6 CMEQ (scalar, zero) on page D5-1119

CMGE (scalar, register) Compare signed Greater than or Equal
(vector)

D5.7 CMGE (scalar, register) on page D5-1120

CMGE (scalar, zero) Compare signed Greater than or Equal to zero
(vector)

D5.8 CMGE (scalar, zero) on page D5-1121

CMGT (scalar, register) Compare signed Greater than (vector) D5.9 CMGT (scalar, register) on page D5-1122

CMGT (scalar, zero) Compare signed Greater than zero (vector) D5.10 CMGT (scalar, zero) on page D5-1123

CMHI (scalar, register) Compare unsigned Higher (vector) D5.11 CMHI (scalar, register) on page D5-1124

CMHS (scalar, register) Compare unsigned Higher or Same (vector) D5.12 CMHS (scalar, register) on page D5-1125

CMLE (scalar, zero) Compare signed Less than or Equal to zero
(vector)

D5.13 CMLE (scalar, zero) on page D5-1126

CMLT (scalar, zero) Compare signed Less than zero (vector) D5.14 CMLT (scalar, zero) on page D5-1127

CMTST (scalar) Compare bitwise Test bits nonzero (vector) D5.15 CMTST (scalar) on page D5-1128

DUP (scalar, element) Duplicate vector element to scalar D5.16 DUP (scalar, element) on page D5-1129

FABD (scalar) Floating-point Absolute Difference (vector) D5.17 FABD (scalar) on page D5-1130

FACGE (scalar) Floating-point Absolute Compare Greater
than or Equal (vector)

D5.18 FACGE (scalar) on page D5-1131

FACGT (scalar) Floating-point Absolute Compare Greater
than (vector)

D5.19 FACGT (scalar) on page D5-1132

FADDP (scalar) Floating-point Add Pair of elements (scalar) D5.20 FADDP (scalar) on page D5-1133

FCMEQ (scalar, register) Floating-point Compare Equal (vector) D5.21 FCMEQ (scalar, register) on page D5-1134

FCMEQ (scalar, zero) Floating-point Compare Equal to zero
(vector)

D5.22 FCMEQ (scalar, zero) on page D5-1135

FCMGE (scalar, register) Floating-point Compare Greater than or
Equal (vector)

D5.23 FCMGE (scalar, register) on page D5-1136

FCMGE (scalar, zero) Floating-point Compare Greater than or
Equal to zero (vector)

D5.24 FCMGE (scalar, zero) on page D5-1137

FCMGT (scalar, register) Floating-point Compare Greater than (vector) D5.25 FCMGT (scalar, register) on page D5-1138

FCMGT (scalar, zero) Floating-point Compare Greater than zero
(vector)

D5.26 FCMGT (scalar, zero) on page D5-1139

D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1110
Non-Confidential

Table D5-1 Summary of A64 SIMD scalar instructions (continued)

Mnemonic Brief description See

FCMLA (scalar, by element) Floating-point Complex Multiply Accumulate
(by element)

D5.27 FCMLA (scalar, by element) on page D5-1140

FCMLE (scalar, zero) Floating-point Compare Less than or Equal to
zero (vector)

D5.28 FCMLE (scalar, zero) on page D5-1142

FCMLT (scalar, zero) Floating-point Compare Less than zero
(vector)

D5.29 FCMLT (scalar, zero) on page D5-1143

FCVTAS (scalar) Floating-point Convert to Signed integer,
rounding to nearest with ties to Away (vector)

D5.30 FCVTAS (scalar) on page D5-1144

FCVTAU (scalar) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to Away (vector)

D5.31 FCVTAU (scalar) on page D5-1145

FCVTMS (scalar) Floating-point Convert to Signed integer,
rounding toward Minus infinity (vector)

D5.32 FCVTMS (scalar) on page D5-1146

FCVTMU (scalar) Floating-point Convert to Unsigned integer,
rounding toward Minus infinity (vector)

D5.33 FCVTMU (scalar) on page D5-1147

FCVTNS (scalar) Floating-point Convert to Signed integer,
rounding to nearest with ties to even (vector)

D5.34 FCVTNS (scalar) on page D5-1148

FCVTNU (scalar) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to even (vector)

D5.35 FCVTNU (scalar) on page D5-1149

FCVTPS (scalar) Floating-point Convert to Signed integer,
rounding toward Plus infinity (vector)

D5.36 FCVTPS (scalar) on page D5-1150

FCVTPU (scalar) Floating-point Convert to Unsigned integer,
rounding toward Plus infinity (vector)

D5.37 FCVTPU (scalar) on page D5-1151

FCVTXN (scalar) Floating-point Convert to lower precision
Narrow, rounding to odd (vector)

D5.38 FCVTXN (scalar) on page D5-1152

FCVTZS (scalar, fixed-point) Floating-point Convert to Signed fixed-point,
rounding toward Zero (vector)

D5.39 FCVTZS (scalar, fixed-point) on page D5-1153

FCVTZS (scalar, integer) Floating-point Convert to Signed integer,
rounding toward Zero (vector)

D5.40 FCVTZS (scalar, integer) on page D5-1154

FCVTZU (scalar, fixed-point) Floating-point Convert to Unsigned fixed-
point, rounding toward Zero (vector)

D5.41 FCVTZU (scalar, fixed-point) on page D5-1155

FCVTZU (scalar, integer) Floating-point Convert to Unsigned integer,
rounding toward Zero (vector)

D5.42 FCVTZU (scalar, integer) on page D5-1156

FMAXNMP (scalar) Floating-point Maximum Number of Pair of
elements (scalar)

D5.43 FMAXNMP (scalar) on page D5-1157

FMAXP (scalar) Floating-point Maximum of Pair of elements
(scalar)

D5.44 FMAXP (scalar) on page D5-1158

FMINNMP (scalar) Floating-point Minimum Number of Pair of
elements (scalar)

D5.45 FMINNMP (scalar) on page D5-1159

FMINP (scalar) Floating-point Minimum of Pair of elements
(scalar)

D5.46 FMINP (scalar) on page D5-1160

FMLA (scalar, by element) Floating-point fused Multiply-Add to
accumulator (by element)

D5.47 FMLA (scalar, by element) on page D5-1161

D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1111
Non-Confidential

Table D5-1 Summary of A64 SIMD scalar instructions (continued)

Mnemonic Brief description See

FMLAL, (scalar, by element) Floating-point fused Multiply-Add Long to
accumulator (by element)

D5.48 FMLAL, (scalar, by element) on page D5-1163

FMLS (scalar, by element) Floating-point fused Multiply-Subtract from
accumulator (by element)

D5.49 FMLS (scalar, by element) on page D5-1164

FMLSL, (scalar, by element) Floating-point fused Multiply-Subtract Long
from accumulator (by element)

D5.50 FMLSL, (scalar, by element) on page D5-1166

FMUL (scalar, by element) Floating-point Multiply (by element) D5.51 FMUL (scalar, by element) on page D5-1167

FMULX (scalar, by element) Floating-point Multiply extended (by
element)

D5.52 FMULX (scalar, by element) on page D5-1169

FMULX (scalar) Floating-point Multiply extended D5.53 FMULX (scalar) on page D5-1171

FRECPE (scalar) Floating-point Reciprocal Estimate D5.54 FRECPE (scalar) on page D5-1172

FRECPS (scalar) Floating-point Reciprocal Step D5.55 FRECPS (scalar) on page D5-1173

FRSQRTE (scalar) Floating-point Reciprocal Square Root
Estimate

D5.56 FRSQRTE (scalar) on page D5-1174

FRSQRTS (scalar) Floating-point Reciprocal Square Root Step D5.57 FRSQRTS (scalar) on page D5-1175

MOV (scalar) Move vector element to scalar D5.58 MOV (scalar) on page D5-1176

NEG (scalar) Negate (vector) D5.59 NEG (scalar) on page D5-1177

SCVTF (scalar, fixed-point) Signed fixed-point Convert to Floating-point
(vector)

D5.60 SCVTF (scalar, fixed-point) on page D5-1178

SCVTF (scalar, integer) Signed integer Convert to Floating-point
(vector)

D5.61 SCVTF (scalar, integer) on page D5-1179

SHL (scalar) Shift Left (immediate) D5.62 SHL (scalar) on page D5-1180

SLI (scalar) Shift Left and Insert (immediate) D5.63 SLI (scalar) on page D5-1181

SQABS (scalar) Signed saturating Absolute value D5.64 SQABS (scalar) on page D5-1182

SQADD (scalar) Signed saturating Add D5.65 SQADD (scalar) on page D5-1183

SQDMLAL (scalar, by element) Signed saturating Doubling Multiply-Add
Long (by element)

D5.66 SQDMLAL (scalar, by element)
on page D5-1184

SQDMLAL (scalar) Signed saturating Doubling Multiply-Add
Long

D5.67 SQDMLAL (scalar) on page D5-1185

SQDMLSL (scalar, by element) Signed saturating Doubling Multiply-Subtract
Long (by element)

D5.68 SQDMLSL (scalar, by element)
on page D5-1186

SQDMLSL (scalar) Signed saturating Doubling Multiply-Subtract
Long

D5.69 SQDMLSL (scalar) on page D5-1187

SQDMULH (scalar, by element) Signed saturating Doubling Multiply
returning High half (by element)

D5.70 SQDMULH (scalar, by element)
on page D5-1188

SQDMULH (scalar) Signed saturating Doubling Multiply
returning High half

D5.71 SQDMULH (scalar) on page D5-1189

SQDMULL (scalar, by element) Signed saturating Doubling Multiply Long
(by element)

D5.72 SQDMULL (scalar, by element)
on page D5-1190

D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1112
Non-Confidential

Table D5-1 Summary of A64 SIMD scalar instructions (continued)

Mnemonic Brief description See

SQDMULL (scalar) Signed saturating Doubling Multiply Long D5.73 SQDMULL (scalar) on page D5-1191

SQNEG (scalar) Signed saturating Negate D5.74 SQNEG (scalar) on page D5-1192

SQRDMLAH (scalar, by
element)

Signed Saturating Rounding Doubling
Multiply Accumulate returning High Half (by
element)

D5.75 SQRDMLAH (scalar, by element)
on page D5-1193

SQRDMLAH (scalar) Signed Saturating Rounding Doubling
Multiply Accumulate returning High Half
(vector)

D5.76 SQRDMLAH (scalar) on page D5-1194

SQRDMLSH (scalar, by
element)

Signed Saturating Rounding Doubling
Multiply Subtract returning High Half (by
element)

D5.77 SQRDMLSH (scalar, by element)
on page D5-1195

SQRDMLSH (scalar) Signed Saturating Rounding Doubling
Multiply Subtract returning High Half
(vector)

D5.78 SQRDMLSH (scalar) on page D5-1196

SQRDMULH (scalar, by
element)

Signed saturating Rounding Doubling
Multiply returning High half (by element)

D5.79 SQRDMULH (scalar, by element)
on page D5-1197

SQRDMULH (scalar) Signed saturating Rounding Doubling
Multiply returning High half

D5.80 SQRDMULH (scalar) on page D5-1198

SQRSHL (scalar) Signed saturating Rounding Shift Left
(register)

D5.81 SQRSHL (scalar) on page D5-1199

SQRSHRN (scalar) Signed saturating Rounded Shift Right
Narrow (immediate)

D5.82 SQRSHRN (scalar) on page D5-1200

SQRSHRUN (scalar) Signed saturating Rounded Shift Right
Unsigned Narrow (immediate)

D5.83 SQRSHRUN (scalar) on page D5-1201

SQSHL (scalar, immediate) Signed saturating Shift Left (immediate) D5.84 SQSHL (scalar, immediate) on page D5-1202

SQSHL (scalar, register) Signed saturating Shift Left (register) D5.85 SQSHL (scalar, register) on page D5-1203

SQSHLU (scalar) Signed saturating Shift Left Unsigned
(immediate)

D5.86 SQSHLU (scalar) on page D5-1204

SQSHRN (scalar) Signed saturating Shift Right Narrow
(immediate)

D5.87 SQSHRN (scalar) on page D5-1205

SQSHRUN (scalar) Signed saturating Shift Right Unsigned
Narrow (immediate)

D5.88 SQSHRUN (scalar) on page D5-1206

SQSUB (scalar) Signed saturating Subtract D5.89 SQSUB (scalar) on page D5-1207

SQXTN (scalar) Signed saturating extract Narrow D5.90 SQXTN (scalar) on page D5-1208

SQXTUN (scalar) Signed saturating extract Unsigned Narrow D5.91 SQXTUN (scalar) on page D5-1209

SRI (scalar) Shift Right and Insert (immediate) D5.92 SRI (scalar) on page D5-1210

SRSHL (scalar) Signed Rounding Shift Left (register) D5.93 SRSHL (scalar) on page D5-1211

SRSHR (scalar) Signed Rounding Shift Right (immediate) D5.94 SRSHR (scalar) on page D5-1212

SRSRA (scalar) Signed Rounding Shift Right and Accumulate
(immediate)

D5.95 SRSRA (scalar) on page D5-1213

D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1113
Non-Confidential

Table D5-1 Summary of A64 SIMD scalar instructions (continued)

Mnemonic Brief description See

SSHL (scalar) Signed Shift Left (register) D5.96 SSHL (scalar) on page D5-1214

SSHR (scalar) Signed Shift Right (immediate) D5.97 SSHR (scalar) on page D5-1215

SSRA (scalar) Signed Shift Right and Accumulate
(immediate)

D5.98 SSRA (scalar) on page D5-1216

SUB (scalar) Subtract (vector) D5.99 SUB (scalar) on page D5-1217

SUQADD (scalar) Signed saturating Accumulate of Unsigned
value

D5.100 SUQADD (scalar) on page D5-1218

UCVTF (scalar, fixed-point) Unsigned fixed-point Convert to Floating-
point (vector)

D5.101 UCVTF (scalar, fixed-point) on page D5-1219

UCVTF (scalar, integer) Unsigned integer Convert to Floating-point
(vector)

D5.102 UCVTF (scalar, integer) on page D5-1220

UQADD (scalar) Unsigned saturating Add D5.103 UQADD (scalar) on page D5-1221

UQRSHL (scalar) Unsigned saturating Rounding Shift Left
(register)

D5.104 UQRSHL (scalar) on page D5-1222

UQRSHRN (scalar) Unsigned saturating Rounded Shift Right
Narrow (immediate)

D5.105 UQRSHRN (scalar) on page D5-1223

UQSHL (scalar, immediate) Unsigned saturating Shift Left (immediate) D5.106 UQSHL (scalar, immediate) on page D5-1224

UQSHL (scalar, register) Unsigned saturating Shift Left (register) D5.107 UQSHL (scalar, register) on page D5-1225

UQSHRN (scalar) Unsigned saturating Shift Right Narrow
(immediate)

D5.108 UQSHRN (scalar) on page D5-1226

UQSUB (scalar) Unsigned saturating Subtract D5.109 UQSUB (scalar) on page D5-1227

UQXTN (scalar) Unsigned saturating extract Narrow D5.110 UQXTN (scalar) on page D5-1228

URSHL (scalar) Unsigned Rounding Shift Left (register) D5.111 URSHL (scalar) on page D5-1229

URSHR (scalar) Unsigned Rounding Shift Right (immediate) D5.112 URSHR (scalar) on page D5-1230

URSRA (scalar) Unsigned Rounding Shift Right and
Accumulate (immediate)

D5.113 URSRA (scalar) on page D5-1231

USHL (scalar) Unsigned Shift Left (register) D5.114 USHL (scalar) on page D5-1232

USHR (scalar) Unsigned Shift Right (immediate) D5.115 USHR (scalar) on page D5-1233

USQADD (scalar) Unsigned saturating Accumulate of Signed
value

D5.116 USQADD (scalar) on page D5-1234

USRA (scalar) Unsigned Shift Right and Accumulate
(immediate)

D5.117 USRA (scalar) on page D5-1235

D5 A64 SIMD Scalar Instructions
D5.1 A64 SIMD scalar instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1114
Non-Confidential

D5.2 ABS (scalar)
Absolute value (vector).

Syntax

ABS Vd, Vn

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Absolute value (vector). This instruction calculates the absolute value of each vector element in the
source SIMD and FP register, puts the result into a vector, and writes the vector to the destination SIMD
and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.2 ABS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1115
Non-Confidential

D5.3 ADD (scalar)
Add (vector).

Syntax

ADD Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Add (vector). This instruction adds corresponding elements in the two source SIMD and FP registers,
places the results into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.3 ADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1116
Non-Confidential

D5.4 ADDP (scalar)
Add Pair of elements (scalar).

Syntax

ADDP Vd, Vn.T

Where:

V
Is the destination width specifier, D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is the source arrangement specifier, 2D.

Usage

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD and FP
register and writes the scalar result into the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.4 ADDP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1117
Non-Confidential

D5.5 CMEQ (scalar, register)
Compare bitwise Equal (vector).

Syntax

CMEQ Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare bitwise Equal (vector). This instruction compares each vector element from the first source
SIMD and FP register with the corresponding vector element from the second source SIMD and FP
register, and if the comparison is equal sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.5 CMEQ (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1118
Non-Confidential

D5.6 CMEQ (scalar, zero)
Compare bitwise Equal to zero (vector).

Syntax

CMEQ Vd, Vn, #0

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD
and FP register and if the value is equal to zero sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.6 CMEQ (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1119
Non-Confidential

D5.7 CMGE (scalar, register)
Compare signed Greater than or Equal (vector).

Syntax

CMGE Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the
first source SIMD and FP register with the corresponding vector element in the second source SIMD and
FP register and if the first signed integer value is greater than or equal to the second signed integer value
sets every bit of the corresponding vector element in the destination SIMD and FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD and FP register to
zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.7 CMGE (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1120
Non-Confidential

D5.8 CMGE (scalar, zero)
Compare signed Greater than or Equal to zero (vector).

Syntax

CMGE Vd, Vn, #0

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the
source SIMD and FP register and if the signed integer value is greater than or equal to zero sets every bit
of the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every
bit of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.8 CMGE (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1121
Non-Confidential

D5.9 CMGT (scalar, register)
Compare signed Greater than (vector).

Syntax

CMGT Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare signed Greater than (vector). This instruction compares each vector element in the first source
SIMD and FP register with the corresponding vector element in the second source SIMD and FP register
and if the first signed integer value is greater than the second signed integer value sets every bit of the
corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.9 CMGT (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1122
Non-Confidential

D5.10 CMGT (scalar, zero)
Compare signed Greater than zero (vector).

Syntax

CMGT Vd, Vn, #0

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Compare signed Greater than zero (vector). This instruction reads each vector element in the source
SIMD and FP register and if the signed integer value is greater than zero sets every bit of the
corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.10 CMGT (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1123
Non-Confidential

D5.11 CMHI (scalar, register)
Compare unsigned Higher (vector).

Syntax

CMHI Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare unsigned Higher (vector). This instruction compares each vector element in the first source
SIMD and FP register with the corresponding vector element in the second source SIMD and FP register
and if the first unsigned integer value is greater than the second unsigned integer value sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.11 CMHI (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1124
Non-Confidential

D5.12 CMHS (scalar, register)
Compare unsigned Higher or Same (vector).

Syntax

CMHS Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first
source SIMD and FP register with the corresponding vector element in the second source SIMD and FP
register and if the first unsigned integer value is greater than or equal to the second unsigned integer
value sets every bit of the corresponding vector element in the destination SIMD and FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD and FP register to
zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.12 CMHS (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1125
Non-Confidential

D5.13 CMLE (scalar, zero)
Compare signed Less than or Equal to zero (vector).

Syntax

CMLE Vd, Vn, #0

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the
source SIMD and FP register and if the signed integer value is less than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.13 CMLE (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1126
Non-Confidential

D5.14 CMLT (scalar, zero)
Compare signed Less than zero (vector).

Syntax

CMLT Vd, Vn, #0

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD
and FP register and if the signed integer value is less than zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.14 CMLT (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1127
Non-Confidential

D5.15 CMTST (scalar)
Compare bitwise Test bits nonzero (vector).

Syntax

CMTST Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source
SIMD and FP register, performs an AND with the corresponding vector element in the second source
SIMD and FP register, and if the result is not zero, sets every bit of the corresponding vector element in
the destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.15 CMTST (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1128
Non-Confidential

D5.16 DUP (scalar, element)
Duplicate vector element to scalar.

This instruction is used by the alias MOV (scalar).

Syntax

DUP Vd, Vn.T[index]

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

T
Is the element width specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

index
Is the element index, in the range shown in Usage.

Usage

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the
specified element index in the source SIMD and FP register into a scalar or each element in a vector, and
writes the result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-2 DUP (Scalar) specifier combinations

V T index

B B 0 to 15

H H 0 to 7

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.16 DUP (scalar, element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1129
Non-Confidential

D5.17 FABD (scalar)
Floating-point Absolute Difference (vector).

Syntax

FABD Hd, Hn, Hm ; Scalar half precision

FABD Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the
elements of the second source SIMD and FP register, from the corresponding floating-point values in the
elements of the first source SIMD and FP register, places the absolute value of each result in a vector,
and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.17 FABD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1130
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.18 FACGE (scalar)
Floating-point Absolute Compare Greater than or Equal (vector).

Syntax

FACGE Hd, Hn, Hm ; Scalar half precision

FACGE Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute
value of each floating-point value in the first source SIMD and FP register with the absolute value of the
corresponding floating-point value in the second source SIMD and FP register and if the first value is
greater than or equal to the second value sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.18 FACGE (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1131
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.19 FACGT (scalar)
Floating-point Absolute Compare Greater than (vector).

Syntax

FACGT Hd, Hn, Hm ; Scalar half precision

FACGT Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of
each vector element in the first source SIMD and FP register with the absolute value of the
corresponding vector element in the second source SIMD and FP register and if the first value is greater
than the second value sets every bit of the corresponding vector element in the destination SIMD and FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD and
FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.19 FACGT (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1132
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.20 FADDP (scalar)
Floating-point Add Pair of elements (scalar).

Syntax

FADDP Vd, Vn.T ; Half-precision

FADDP Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Can be one of S or D.

T

Is the source arrangement specifier:

Half-precision
Must be 2H.

Single-precision and double-precision
Can be one of 2S or 2D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in
the source SIMD and FP register and writes the scalar result into the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.20 FADDP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1133
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.21 FCMEQ (scalar, register)
Floating-point Compare Equal (vector).

Syntax

FCMEQ Hd, Hn, Hm ; Scalar half precision

FCMEQ Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the
first source SIMD and FP register, with the corresponding floating-point value from the second source
SIMD and FP register, and if the comparison is equal sets every bit of the corresponding vector element
in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.21 FCMEQ (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1134
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.22 FCMEQ (scalar, zero)
Floating-point Compare Equal to zero (vector).

Syntax

FCMEQ Hd, Hn, #0.0 ; Scalar half precision

FCMEQ Vd, Vn, #0.0 ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is equal to zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.22 FCMEQ (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1135
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.23 FCMGE (scalar, register)
Floating-point Compare Greater than or Equal (vector).

Syntax

FCMGE Hd, Hn, Hm ; Scalar half precision

FCMGE Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value
in the first source SIMD and FP register and if the value is greater than or equal to the corresponding
floating-point value in the second source SIMD and FP register sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.23 FCMGE (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1136
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.24 FCMGE (scalar, zero)
Floating-point Compare Greater than or Equal to zero (vector).

Syntax

FCMGE Hd, Hn, #0.0 ; Scalar half precision

FCMGE Vd, Vn, #0.0 ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point
value in the source SIMD and FP register and if the value is greater than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.24 FCMGE (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1137
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.25 FCMGT (scalar, register)
Floating-point Compare Greater than (vector).

Syntax

FCMGT Hd, Hn, Hm ; Scalar half precision

FCMGT Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first
source SIMD and FP register and if the value is greater than the corresponding floating-point value in the
second source SIMD and FP register sets every bit of the corresponding vector element in the destination
SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.25 FCMGT (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1138
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.26 FCMGT (scalar, zero)
Floating-point Compare Greater than zero (vector).

Syntax

FCMGT Hd, Hn, #0.0 ; Scalar half precision

FCMGT Vd, Vn, #0.0 ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is greater than zero sets every bit of the corresponding
vector element in the destination SIMD and FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.26 FCMGT (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1139
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.27 FCMLA (scalar, by element)
Floating-point Complex Multiply Accumulate (by element).

Syntax

FCMLA Vd.T, Vn.T, Vm.Ts[index], #rotate

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

rotate
Is the rotation, and can be one of the values shown in Usage.

Architectures supported (scalar)

Supported in the Armv8.3-A architecture and later.

Usage

This instruction multiplies the two source complex numbers from the Vm and the Vn vector registers and
adds the result to the corresponding complex number in the destination Vd vector register. The number of
complex numbers that can be stored in the Vm, the Vn, and the Vd registers is calculated as the vector
register size divided by the length of each complex number. These lengths are 16 for half-precision, 32
for single-precision, and 64 for double-precision. Each complex number is represented in a SIMP&FP
register as a pair of elements with the imaginary part of the number being placed in the more significant
element, and the real part of the number being placed in the less significant element. Both real and
imaginary parts of the source and the resulting complex number are represented as floating-point values.

None, one, or both of the two vector elements that are read from each of the numbers in the Vm source
SIMD and FP register can be negated based on the rotation value:
• If the rotation is 0, none of the vector elements are negated.
• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 180, both vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

The indexed element variant of this instruction is available for half-precision and single-precision
number values. For this variant, the index value determines the position in the Vm source vector register
of the single source value that is used to multiply each of the complex numbers in the Vn source vector
register. The index value is encoded as H:L for half-precision values, or H for single-precision values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

D5 A64 SIMD Scalar Instructions
D5.27 FCMLA (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1140
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Table D5-3 FCMLA (Scalar) specifier combinations

T Ts

4H H

8H H

4S S

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.27 FCMLA (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1141
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.28 FCMLE (scalar, zero)
Floating-point Compare Less than or Equal to zero (vector).

Syntax

FCMLE Hd, Hn, #0.0 ; Scalar half precision

FCMLE Vd, Vn, #0.0 ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point
value in the source SIMD and FP register and if the value is less than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.28 FCMLE (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1142
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.29 FCMLT (scalar, zero)
Floating-point Compare Less than zero (vector).

Syntax

FCMLT Hd, Hn, #0.0 ; Scalar half precision

FCMLT Vd, Vn, #0.0 ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is less than zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.29 FCMLT (scalar, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1143
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.30 FCVTAS (scalar)
Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).

Syntax

FCVTAS Hd, Hn ; Scalar half precision

FCVTAS Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction
converts each element in a vector from a floating-point value to a signed integer value using the Round
to Nearest with Ties to Away rounding mode and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.30 FCVTAS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1144
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.31 FCVTAU (scalar)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).

Syntax

FCVTAU Hd, Hn ; Scalar half precision

FCVTAU Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This
instruction converts each element in a vector from a floating-point value to an unsigned integer value
using the Round to Nearest with Ties to Away rounding mode and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.31 FCVTAU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1145
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.32 FCVTMS (scalar)
Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).

Syntax

FCVTMS Hd, Hn ; Scalar half precision

FCVTMS Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.32 FCVTMS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1146
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.33 FCVTMU (scalar)
Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).

Syntax

FCVTMU Hd, Hn ; Scalar half precision

FCVTMU Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to an unsigned integer value
using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.33 FCVTMU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1147
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.34 FCVTNS (scalar)
Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).

Syntax

FCVTNS Hd, Hn ; Scalar half precision

FCVTNS Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round to Nearest rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.34 FCVTNS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1148
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.35 FCVTNU (scalar)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).

Syntax

FCVTNU Hd, Hn ; Scalar half precision

FCVTNU Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This
instruction converts a scalar or each element in a vector from a floating-point value to an unsigned
integer value using the Round to Nearest rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.35 FCVTNU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1149
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.36 FCVTPS (scalar)
Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).

Syntax

FCVTPS Hd, Hn ; Scalar half precision

FCVTPS Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.36 FCVTPS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1150
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.37 FCVTPU (scalar)
Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).

Syntax

FCVTPU Hd, Hn ; Scalar half precision

FCVTPU Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to an unsigned integer value
using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.37 FCVTPU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1151
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.38 FCVTXN (scalar)
Floating-point Convert to lower precision Narrow, rounding to odd (vector).

Syntax

FCVTXN Vbd, Van

Where:

Vb
Is the destination width specifier, S.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, D.

n
Is the number of the SIMD and FP source register.

Usage
Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each
vector element in the source SIMD and FP register, narrows each value to half the precision of the source
element using the Round to Odd rounding mode, writes the result to a vector, and writes the vector to the
destination SIMD and FP register.

 Note

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008
standard. This rounding mode ensures that if the result of the conversion is inexact the least significant
bit of the mantissa is forced to 1. This rounding mode enables a floating-point value to be converted to a
lower precision format via an intermediate precision format while avoiding double rounding errors. For
example, a 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value
by first using this instruction to produce a 32-bit value and then using another instruction with the
wanted rounding mode to convert the 32-bit value to the final 16-bit floating-point value.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the FCVTXN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.38 FCVTXN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1152
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.39 FCVTZS (scalar, fixed-point)
Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).

Syntax

FCVTZS Vd, Vn, #fbits

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the operand width.

Usage

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from floating-point to fixed-point signed integer using the Round
towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D5-4 FCVTZS (Scalar) specifier combinations

V fbits

H

S 1 to 32

D 1 to 64

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.39 FCVTZS (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1153
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.40 FCVTZS (scalar, integer)
Floating-point Convert to Signed integer, rounding toward Zero (vector).

Syntax

FCVTZS Hd, Hn ; Scalar half precision

FCVTZS Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to a signed integer value using the Round
towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.40 FCVTZS (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1154
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.41 FCVTZU (scalar, fixed-point)
Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector).

Syntax

FCVTZU Vd, Vn, #fbits

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the operand width.

Usage

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts
a scalar or each element in a vector from floating-point to fixed-point unsigned integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D5-5 FCVTZU (Scalar) specifier combinations

V fbits

H

S 1 to 32

D 1 to 64

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.41 FCVTZU (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1155
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.42 FCVTZU (scalar, integer)
Floating-point Convert to Unsigned integer, rounding toward Zero (vector).

Syntax

FCVTZU Hd, Hn ; Scalar half precision

FCVTZU Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the
Round towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.42 FCVTZU (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1156
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.43 FMAXNMP (scalar)
Floating-point Maximum Number of Pair of elements (scalar).

Syntax

FMAXNMP Vd, Vn.T ; Half-precision

FMAXNMP Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Can be one of S or D.

T

Is the source arrangement specifier:

Half-precision
Must be 2H.

Single-precision and double-precision
Can be one of 2S or 2D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector
elements in the source SIMD and FP register and writes the largest of the floating-point values as a scalar
to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.43 FMAXNMP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1157
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.44 FMAXP (scalar)
Floating-point Maximum of Pair of elements (scalar).

Syntax

FMAXP Vd, Vn.T ; Half-precision

FMAXP Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Can be one of S or D.

T

Is the source arrangement specifier:

Half-precision
Must be 2H.

Single-precision and double-precision
Can be one of 2S or 2D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in
the source SIMD and FP register and writes the largest of the floating-point values as a scalar to the
destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.44 FMAXP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1158
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.45 FMINNMP (scalar)
Floating-point Minimum Number of Pair of elements (scalar).

Syntax

FMINNMP Vd, Vn.T ; Half-precision

FMINNMP Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Can be one of S or D.

T

Is the source arrangement specifier:

Half-precision
Must be 2H.

Single-precision and double-precision
Can be one of 2S or 2D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector
elements in the source SIMD and FP register and writes the smallest of the floating-point values as a
scalar to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.45 FMINNMP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1159
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.46 FMINP (scalar)
Floating-point Minimum of Pair of elements (scalar).

Syntax

FMINP Vd, Vn.T ; Half-precision

FMINP Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Can be one of S or D.

T

Is the source arrangement specifier:

Half-precision
Must be 2H.

Single-precision and double-precision
Can be one of 2S or 2D.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in
the source SIMD and FP register and writes the smallest of the floating-point values as a scalar to the
destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.46 FMINP (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1160
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.47 FMLA (scalar, by element)
Floating-point fused Multiply-Add to accumulator (by element).

Syntax

FMLA Hd, Hn, Vm.H[index] ; Scalar, half-precision

FMLA Vd, Vn, Vm.Ts[index] ; Scalar, single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Vm

The value depends on the instruction variant:

Scalar, half-precision
For the half-precision variant: is the name of the second SIMD and FP source register,
in the range V0 to V15

Scalar, single-precision and double-precision
For the single-precision and double-precision variant: is the name of the second SIMD
and FP source register in the range 0 to 31.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Ts
Is an element size specifier, and can be either S or D.

index

Is the element index, in the range 0 to 7.

For the single-precision and double-precision variant: is the element index H:L, H.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD and FP register by the specified value in the second source SIMD and
FP register, and accumulates the results in the vector elements of the destination SIMD and FP register.
All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

D5 A64 SIMD Scalar Instructions
D5.47 FMLA (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1161
Non-Confidential

Table D5-6 FMLA (Scalar, single-precision and double-precision) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.47 FMLA (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1162
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.48 FMLAL, (scalar, by element)
Floating-point fused Multiply-Add Long to accumulator (by element).

Syntax

FMLAL Vd.Ta, Vn.Tb, Vm.H[index] ; FMLAL

FMLAL2 Vd.Ta, Vn.Tb, Vm.H[index] ; FMLAL2

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of 2H or 4H.

Vm
Is the name of the second SIMD and FP source register.

index
Is the element index.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Add Long to accumulator (by element). This instruction multiplies the
vector elements in the first source SIMD and FP register by the specified value in the second source
SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.48 FMLAL, (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1163
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.49 FMLS (scalar, by element)
Floating-point fused Multiply-Subtract from accumulator (by element).

Syntax

FMLS Hd, Hn, Vm.H[index] ; Scalar, half-precision

FMLS Vd, Vn, Vm.Ts[index] ; Scalar, single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Vm

The value depends on the instruction variant:

Scalar, half-precision
For the half-precision variant: is the name of the second SIMD and FP source register,
in the range V0 to V15

Scalar, single-precision and double-precision
For the single-precision and double-precision variant: is the name of the second SIMD
and FP source register in the range 0 to 31.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Ts
Is an element size specifier, and can be either S or D.

index

Is the element index, in the range 0 to 7.

For the single-precision and double-precision variant: is the element index H:L, H.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the
vector elements in the first source SIMD and FP register by the specified value in the second source
SIMD and FP register, and subtracts the results from the vector elements of the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

D5 A64 SIMD Scalar Instructions
D5.49 FMLS (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1164
Non-Confidential

Table D5-7 FMLS (Scalar, single-precision and double-precision) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.49 FMLS (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1165
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.50 FMLSL, (scalar, by element)
Floating-point fused Multiply-Subtract Long from accumulator (by element).

Syntax

FMLSL Vd.Ta, Vn.Tb, Vm.H[index] ; FMLSL

FMLSL2 Vd.Ta, Vn.Tb, Vm.H[index] ; FMLSL2

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of 2H or 4H.

Vm
Is the name of the second SIMD and FP source register.

index
Is the element index.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Subtract Long from accumulator (by element). This instruction multiplies
the negated vector elements in the first source SIMD and FP register by the specified value in the second
source SIMD and FP register, and accumulates the product to the corresponding vector element of the
destination SIMD and FP register. The instruction does not round the result of the multiply before the
accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.50 FMLSL, (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1166
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.51 FMUL (scalar, by element)
Floating-point Multiply (by element).

Syntax

FMUL Hd, Hn, Vm.H[index] ; Scalar, half-precision

FMUL Vd, Vn, Vm.Ts[index] ; Scalar, single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Vm

The value depends on the instruction variant:

Scalar, half-precision
For the half-precision variant: is the name of the second SIMD and FP source register,
in the range V0 to V15

Scalar, single-precision and double-precision
For the single-precision and double-precision variant: is the name of the second SIMD
and FP source register in the range 0 to 31.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Ts
Is an element size specifier, and can be either S or D.

index

Is the element index, in the range 0 to 7.

For the single-precision and double-precision variant: is the element index H:L, H.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source
SIMD and FP register by the specified value in the second source SIMD and FP register, places the
results in a vector, and writes the vector to the destination SIMD and FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

D5 A64 SIMD Scalar Instructions
D5.51 FMUL (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1167
Non-Confidential

Table D5-8 FMUL (Scalar, single-precision and double-precision) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.51 FMUL (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1168
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.52 FMULX (scalar, by element)
Floating-point Multiply extended (by element).

Syntax

FMULX Hd, Hn, Vm.H[index] ; Scalar, half-precision

FMULX Vd, Vn, Vm.Ts[index] ; Scalar, single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Vm

The value depends on the instruction variant:

Scalar, half-precision
For the half-precision variant: is the name of the second SIMD and FP source register,
in the range V0 to V15

Scalar, single-precision and double-precision
For the single-precision and double-precision variant: is the name of the second SIMD
and FP source register in the range 0 to 31.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Ts
Is an element size specifier, and can be either S or D.

index

Is the element index, in the range 0 to 7.

For the single-precision and double-precision variant: is the element index H:L, H.

Architectures supported (scalar)

Supported in Armv8.2 and later.

Usage

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in
the vector elements in the first source SIMD and FP register by the specified floating-point value in the
second source SIMD and FP register, places the results in a vector, and writes the vector to the
destination SIMD and FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if
only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

D5 A64 SIMD Scalar Instructions
D5.52 FMULX (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1169
Non-Confidential

Table D5-9 FMULX (Scalar, single-precision and double-precision) specifier combinations

V Ts index

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.52 FMULX (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1170
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.53 FMULX (scalar)
Floating-point Multiply extended.

Syntax

FMULX Hd, Hn, Hm ; Scalar half precision

FMULX Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the
vectors of the two source SIMD and FP registers, places the resulting floating-point values in a vector,
and writes the vector to the destination SIMD and FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if
only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.53 FMULX (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1171
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.54 FRECPE (scalar)
Floating-point Reciprocal Estimate.

Syntax

FRECPE Hd, Hn ; Scalar half precision

FRECPE Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each
vector element in the source SIMD and FP register, places the result in a vector, and writes the vector to
the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.54 FRECPE (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1172
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.55 FRECPS (scalar)
Floating-point Reciprocal Step.

Syntax

FRECPS Hd, Hn, Hm ; Scalar half precision

FRECPS Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the
vectors of the two source SIMD and FP registers, subtracts each of the products from 2.0, places the
resulting floating-point values in a vector, and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.55 FRECPS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1173
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.56 FRSQRTE (scalar)
Floating-point Reciprocal Square Root Estimate.

Syntax

FRSQRTE Hd, Hn ; Scalar half precision

FRSQRTE Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root
for each vector element in the source SIMD and FP register, places the result in a vector, and writes the
vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.56 FRSQRTE (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1174
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.57 FRSQRTS (scalar)
Floating-point Reciprocal Square Root Step.

Syntax

FRSQRTS Hd, Hn, Hm ; Scalar half precision

FRSQRTS Vd, Vn, Vm ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the first SIMD and FP source register.

Hm
Is the 16-bit name of the second SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point
values in the vectors of the two source SIMD and FP registers, subtracts each of the products from 3.0,
divides these results by 2.0, places the results into a vector, and writes the vector to the destination SIMD
and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.57 FRSQRTS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1175
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.58 MOV (scalar)
Move vector element to scalar.

This instruction is an alias of DUP (element).

The equivalent instruction is DUP Vd, Vn.T[index].

Syntax

MOV Vd, Vn.T[index]

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is the element width specifier, and can be one of the values shown in Usage.

index
Is the element index, in the range shown in Usage.

Usage

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD and
FP source register into a scalar, and writes the result to the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-10 MOV (Scalar) specifier combinations

V T index

B B 0 to 15

H H 0 to 7

S S 0 to 3

D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.58 MOV (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1176
Non-Confidential

D5.59 NEG (scalar)
Negate (vector).

Syntax

NEG Vd, Vn

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Negate (vector). This instruction reads each vector element from the source SIMD and FP register,
negates each value, puts the result into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.59 NEG (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1177
Non-Confidential

D5.60 SCVTF (scalar, fixed-point)
Signed fixed-point Convert to Floating-point (vector).

Syntax

SCVTF Vd, Vn, #fbits

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the operand width.

Usage

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector
from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the
result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D5-11 SCVTF (Scalar) specifier combinations

V fbits

H

S 1 to 32

D 1 to 64

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.60 SCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1178
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.61 SCVTF (scalar, integer)
Signed integer Convert to Floating-point (vector).

Syntax

SCVTF Hd, Hn ; Scalar half precision

SCVTF Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector
from signed integer to floating-point using the rounding mode that is specified by the FPCR, and writes
the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.61 SCVTF (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1179
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.62 SHL (scalar)
Shift Left (immediate).

Syntax

SHL Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to 63.

Usage

Shift Left (immediate). This instruction reads each value from a vector, right shifts each result by an
immediate value, writes the final result to a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.62 SHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1180
Non-Confidential

D5.63 SLI (scalar)
Shift Left and Insert (immediate).

Syntax

SLI Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to 63.

Usage

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD and FP
register, left shifts each vector element by an immediate value, and inserts the result into the
corresponding vector element in the destination SIMD and FP register such that the new zero bits created
by the shift are not inserted but retain their existing value. Bits shifted out of the left of each vector
element in the source register are lost.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.63 SLI (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1181
Non-Confidential

D5.64 SQABS (scalar)
Signed saturating Absolute value.

Syntax

SQABS Vd, Vn

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD and
FP register, puts the absolute value of the result into a vector, and writes the vector to the destination
SIMD and FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.64 SQABS (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1182
Non-Confidential

D5.65 SQADD (scalar)
Signed saturating Add.

Syntax

SQADD Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Add. This instruction adds the values of corresponding elements of the two source
SIMD and FP registers, places the results into a vector, and writes the vector to the destination SIMD and
FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.65 SQADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1183
Non-Confidential

D5.66 SQDMLAL (scalar, by element)
Signed saturating Doubling Multiply-Add Long (by element).

Syntax

SQDMLAL Vad, Vbn, Vm.Ts[index]

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector
element in the lower or upper half of the first source SIMD and FP register by the specified vector
element of the second source SIMD and FP register, doubles the results, and accumulates the final results
with the vector elements of the destination SIMD and FP register. The destination vector elements are
twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register, while
the SQDMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-12 SQDMLAL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.66 SQDMLAL (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1184
Non-Confidential

D5.67 SQDMLAL (scalar)
Signed saturating Doubling Multiply-Add Long.

Syntax

SQDMLAL Vad, Vbn, Vbm

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer
values in the lower or upper half of the vectors of the two source SIMD and FP registers, doubles the
results, and accumulates the final results with the vector elements of the destination SIMD and FP
register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register, while
the SQDMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-13 SQDMLAL (Scalar) specifier combinations

Va Vb

S H

D S

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.67 SQDMLAL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1185
Non-Confidential

D5.68 SQDMLSL (scalar, by element)
Signed saturating Doubling Multiply-Subtract Long (by element).

Syntax

SQDMLSL Vad, Vbn, Vm.Ts[index]

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector
element in the lower or upper half of the first source SIMD and FP register by the specified vector
element of the second source SIMD and FP register, doubles the results, and subtracts the final results
from the vector elements of the destination SIMD and FP register. The destination vector elements are
twice as long as the elements that are multiplied. All the values in this instruction are signed integer
values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register, while
the SQDMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-14 SQDMLSL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.68 SQDMLSL (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1186
Non-Confidential

D5.69 SQDMLSL (scalar)
Signed saturating Doubling Multiply-Subtract Long.

Syntax

SQDMLSL Vad, Vbn, Vbm

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed
integer values in the lower or upper half of the vectors of the two source SIMD and FP registers, doubles
the results, and subtracts the final results from the vector elements of the destination SIMD and FP
register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register, while
the SQDMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-15 SQDMLSL (Scalar) specifier combinations

Va Vb

S H

D S

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.69 SQDMLSL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1187
Non-Confidential

D5.70 SQDMULH (scalar, by element)
Signed saturating Doubling Multiply returning High half (by element).

Syntax

SQDMULH Vd, Vn, Vm.Ts[index]

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each
vector element in the first source SIMD and FP register by the specified vector element of the second
source SIMD and FP register, doubles the results, places the most significant half of the final results into
a vector, and writes the vector to the destination SIMD and FP register.

The results are truncated. For rounded results, see D5.79 SQRDMULH (scalar, by element)
on page D5-1197.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-16 SQDMULH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.70 SQDMULH (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1188
Non-Confidential

D5.71 SQDMULH (scalar)
Signed saturating Doubling Multiply returning High half.

Syntax

SQDMULH Vd, Vn, Vm

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of
corresponding elements of the two source SIMD and FP registers, doubles the results, places the most
significant half of the final results into a vector, and writes the vector to the destination SIMD and FP
register.

The results are truncated. For rounded results, see D5.80 SQRDMULH (scalar) on page D5-1198.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.71 SQDMULH (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1189
Non-Confidential

D5.72 SQDMULL (scalar, by element)
Signed saturating Doubling Multiply Long (by element).

Syntax

SQDMULL Vad, Vbn, Vm.Ts[index]

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element
in the lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register, doubles the results, places the final results in a vector, and writes
the vector to the destination SIMD and FP register. All the values in this instruction are signed integer
values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register,
while the SQDMULL2 instruction extracts the first source vector from the upper half of the first source
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-17 SQDMULL (Scalar) specifier combinations

Va Vb Ts index

S H H 0 to 7

D S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.72 SQDMULL (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1190
Non-Confidential

D5.73 SQDMULL (scalar)
Signed saturating Doubling Multiply Long.

Syntax

SQDMULL Vad, Vbn, Vbm

Where:

Va
Is the destination width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

Vb
Is the source width specifier, and can be either H or S.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in
the lower or upper half of the two source SIMD and FP registers, doubles the results, places the final
results in a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register, while
the SQDMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-18 SQDMULL (Scalar) specifier combinations

Va Vb

S H

D S

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.73 SQDMULL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1191
Non-Confidential

D5.74 SQNEG (scalar)
Signed saturating Negate.

Syntax

SQNEG Vd, Vn

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Signed saturating Negate. This instruction reads each vector element from the source SIMD and FP
register, negates each value, places the result into a vector, and writes the vector to the destination SIMD
and FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.74 SQNEG (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1192
Non-Confidential

D5.75 SQRDMLAH (scalar, by element)
Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element).

Syntax

SQRDMLAH Vd, Vn, Vm.Ts[index]

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Architectures supported (scalar)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This
instruction multiplies the vector elements of the first source SIMD and FP register with the value of a
vector element of the second source SIMD and FP register without saturating the multiply results,
doubles the results, and accumulates the most significant half of the final results with the vector elements
of the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-19 SQRDMLAH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.75 SQRDMLAH (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1193
Non-Confidential

D5.76 SQRDMLAH (scalar)
Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector).

Syntax

SQRDMLAH Vd, Vn, Vm

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This
instruction multiplies the vector elements of the first source SIMD and FP register with the
corresponding vector elements of the second source SIMD and FP register without saturating the
multiply results, doubles the results, and accumulates the most significant half of the final results with
the vector elements of the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.76 SQRDMLAH (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1194
Non-Confidential

D5.77 SQRDMLSH (scalar, by element)
Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element).

Syntax

SQRDMLSH Vd, Vn, Vm.Ts[index]

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Architectures supported (scalar)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This
instruction multiplies the vector elements of the first source SIMD and FP register with the value of a
vector element of the second source SIMD and FP register without saturating the multiply results,
doubles the results, and subtracts the most significant half of the final results from the vector elements of
the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-20 SQRDMLSH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.77 SQRDMLSH (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1195
Non-Confidential

D5.78 SQRDMLSH (scalar)
Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).

Syntax

SQRDMLSH Vd, Vn, Vm

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction
multiplies the vector elements of the first source SIMD and FP register with the corresponding vector
elements of the second source SIMD and FP register without saturating the multiply results, doubles the
results, and subtracts the most significant half of the final results from the vector elements of the
destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.78 SQRDMLSH (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1196
Non-Confidential

D5.79 SQRDMULH (scalar, by element)
Signed saturating Rounding Doubling Multiply returning High half (by element).

Syntax

SQRDMULH Vd, Vn, Vm.Ts[index]

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction
multiplies each vector element in the first source SIMD and FP register by the specified vector element
of the second source SIMD and FP register, doubles the results, places the most significant half of the
final results into a vector, and writes the vector to the destination SIMD and FP register.

The results are rounded. For truncated results, see D5.70 SQDMULH (scalar, by element)
on page D5-1188.

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit
FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-21 SQRDMULH (Scalar) specifier combinations

V Ts index

H H 0 to 7

S S 0 to 3

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.79 SQRDMULH (scalar, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1197
Non-Confidential

D5.80 SQRDMULH (scalar)
Signed saturating Rounding Doubling Multiply returning High half.

Syntax

SQRDMULH Vd, Vn, Vm

Where:

V
Is a width specifier, and can be either H or S.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the
values of corresponding elements of the two source SIMD and FP registers, doubles the results, places
the most significant half of the final results into a vector, and writes the vector to the destination SIMD
and FP register.

The results are rounded. For truncated results, see D5.71 SQDMULH (scalar) on page D5-1189.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.80 SQRDMULH (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1198
Non-Confidential

D5.81 SQRSHL (scalar)
Signed saturating Rounding Shift Left (register).

Syntax

SQRSHL Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first
source SIMD and FP register, shifts it by a value from the least significant byte of the corresponding
vector element of the second source SIMD and FP register, places the results into a vector, and writes the
vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
rounded. For truncated results, see D5.85 SQSHL (scalar, register) on page D5-1203.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.81 SQRSHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1199
Non-Confidential

D5.82 SQRSHRN (scalar)
Signed saturating Rounded Shift Right Narrow (immediate).

Syntax

SQRSHRN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element
in the source SIMD and FP register, right shifts each result by an immediate value, saturates each shifted
result to a value that is half the original width, puts the final result into a vector, and writes the vector to
the lower or upper half of the destination SIMD and FP register. All the values in this instruction are
signed integer values. The destination vector elements are half as long as the source vector elements. The
results are rounded. For truncated results, see D5.87 SQSHRN (scalar) on page D5-1205.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQRSHRN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-22 SQRSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.82 SQRSHRN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1200
Non-Confidential

D5.83 SQRSHRUN (scalar)
Signed saturating Rounded Shift Right Unsigned Narrow (immediate).

Syntax

SQRSHRUN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed
integer value in the vector of the source SIMD and FP register, right shifts each value by an immediate
value, saturates the result to an unsigned integer value that is half the original width, places the final
result into a vector, and writes the vector to the destination SIMD and FP register. The results are
rounded. For truncated results, see D5.88 SQSHRUN (scalar) on page D5-1206.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQRSHRUN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-23 SQRSHRUN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.83 SQRSHRUN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1201
Non-Confidential

D5.84 SQSHL (scalar, immediate)
Signed saturating Shift Left (immediate).

Syntax

SQSHL Vd, Vn, #shift

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the operand width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD
and FP register, shifts each result by an immediate value, places the final result in a vector, and writes the
vector to the destination SIMD and FP register. The results are truncated. For rounded results, see
D5.104 UQRSHL (scalar) on page D5-1222.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-24 SQSHL (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.84 SQSHL (scalar, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1202
Non-Confidential

D5.85 SQSHL (scalar, register)
Signed saturating Shift Left (register).

Syntax

SQSHL Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source
SIMD and FP register, shifts each element by a value from the least significant byte of the corresponding
element of the second source SIMD and FP register, places the results in a vector, and writes the vector
to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
truncated. For rounded results, see D5.81 SQRSHL (scalar) on page D5-1199.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.85 SQSHL (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1203
Non-Confidential

D5.86 SQSHLU (scalar)
Signed saturating Shift Left Unsigned (immediate).

Syntax

SQSHLU Vd, Vn, #shift

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the operand width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in
the vector of the source SIMD and FP register, shifts each value by an immediate value, saturates the
shifted result to an unsigned integer value, places the result in a vector, and writes the vector to the
destination SIMD and FP register. The results are truncated. For rounded results, see D5.104 UQRSHL
(scalar) on page D5-1222.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-25 SQSHLU (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.86 SQSHLU (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1204
Non-Confidential

D5.87 SQSHRN (scalar)
Signed saturating Shift Right Narrow (immediate).

Syntax

SQSHRN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts and truncates each result by an immediate value, saturates each
shifted result to a value that is half the original width, puts the final result into a vector, and writes the
vector to the lower or upper half of the destination SIMD and FP register. All the values in this
instruction are signed integer values. The destination vector elements are half as long as the source vector
elements. For rounded results, see D5.82 SQRSHRN (scalar) on page D5-1200.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-26 SQSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.87 SQSHRN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1205
Non-Confidential

D5.88 SQSHRUN (scalar)
Signed saturating Shift Right Unsigned Narrow (immediate).

Syntax

SQSHRUN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer
value in the vector of the source SIMD and FP register, right shifts each value by an immediate value,
saturates the result to an unsigned integer value that is half the original width, places the final result into
a vector, and writes the vector to the destination SIMD and FP register. The results are truncated. For
rounded results, see D5.83 SQRSHRUN (scalar) on page D5-1201.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQSHRUN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-27 SQSHRUN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.88 SQSHRUN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1206
Non-Confidential

D5.89 SQSUB (scalar)
Signed saturating Subtract.

Syntax

SQSUB Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD and
FP register from the corresponding element values of the first source SIMD and FP register, places the
results into a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.89 SQSUB (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1207
Non-Confidential

D5.90 SQXTN (scalar)
Signed saturating extract Narrow.

Syntax

SQXTN Vbd, Van

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the SIMD and FP source register.

Usage

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD and
FP register, saturates the value to half the original width, places the result into a vector, and writes the
vector to the lower or upper half of the destination SIMD and FP register. The destination vector
elements are half as long as the source vector elements. All the values in this instruction are signed
integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQXTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-28 SQXTN (Scalar) specifier combinations

Vb Va

B H

H S

S D

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.90 SQXTN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1208
Non-Confidential

D5.91 SQXTUN (scalar)
Signed saturating extract Unsigned Narrow.

Syntax

SQXTUN Vbd, Van

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the SIMD and FP source register.

Usage

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector
of the source SIMD and FP register, saturates the value to an unsigned integer value that is half the
original width, places the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD and FP register. The destination vector elements are half as long as the source vector
elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQXTUN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-29 SQXTUN (Scalar) specifier combinations

Vb Va

B H

H S

S D

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.91 SQXTUN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1209
Non-Confidential

D5.92 SRI (scalar)
Shift Right and Insert (immediate).

Syntax

SRI Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD and
FP register, right shifts each vector element by an immediate value, and inserts the result into the
corresponding vector element in the destination SIMD and FP register such that the new zero bits created
by the shift are not inserted but retain their existing value. Bits shifted out of the right of each vector
element of the source register are lost.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.92 SRI (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1210
Non-Confidential

D5.93 SRSHL (scalar)
Signed Rounding Shift Left (register).

Syntax

SRSHL Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of
the first source SIMD and FP register, shifts it by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right
shift. For a truncating shift, see D5.96 SSHL (scalar) on page D5-1214.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.93 SRSHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1211
Non-Confidential

D5.94 SRSHR (scalar)
Signed Rounding Shift Right (immediate).

Syntax

SRSHR Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, places the final result into a vector,
and writes the vector to the destination SIMD and FP register. All the values in this instruction are signed
integer values. The results are rounded. For truncated results, see D5.97 SSHR (scalar) on page D5-1215.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.94 SRSHR (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1212
Non-Confidential

D5.95 SRSRA (scalar)
Signed Rounding Shift Right and Accumulate (immediate).

Syntax

SRSRA Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in
the source SIMD and FP register, right shifts each result by an immediate value, and accumulates the
final results with the vector elements of the destination SIMD and FP register. All the values in this
instruction are signed integer values. The results are rounded. For truncated results, see D5.98 SSRA
(scalar) on page D5-1216.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.95 SRSRA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1213
Non-Confidential

D5.96 SSHL (scalar)
Signed Shift Left (register).

Syntax

SSHL Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first
source SIMD and FP register, shifts each value by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating
right shift. For a rounding shift, see D5.93 SRSHL (scalar) on page D5-1211.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.96 SSHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1214
Non-Confidential

D5.97 SSHR (scalar)
Signed Shift Right (immediate).

Syntax

SSHR Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD and FP
register, right shifts each result by an immediate value, places the final result into a vector, and writes the
vector to the destination SIMD and FP register. All the values in this instruction are signed integer
values. The results are truncated. For rounded results, see D5.94 SRSHR (scalar) on page D5-1212.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.97 SSHR (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1215
Non-Confidential

D5.98 SSRA (scalar)
Signed Shift Right and Accumulate (immediate).

Syntax

SSRA Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, and accumulates the final results
with the vector elements of the destination SIMD and FP register. All the values in this instruction are
signed integer values. The results are truncated. For rounded results, see D5.95 SRSRA (scalar)
on page D5-1213.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.98 SSRA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1216
Non-Confidential

D5.99 SUB (scalar)
Subtract (vector).

Syntax

SUB Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Subtract (vector). This instruction subtracts each vector element in the second source SIMD and FP
register from the corresponding vector element in the first source SIMD and FP register, places the result
into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.99 SUB (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1217
Non-Confidential

D5.100 SUQADD (scalar)
Signed saturating Accumulate of Unsigned value.

Syntax

SUQADD Vd, Vn

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of
the vector elements in the source SIMD and FP register to corresponding signed integer values of the
vector elements in the destination SIMD and FP register, and writes the resulting signed integer values to
the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.100 SUQADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1218
Non-Confidential

D5.101 UCVTF (scalar, fixed-point)
Unsigned fixed-point Convert to Floating-point (vector).

Syntax

UCVTF Vd, Vn, #fbits

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the operand width.

Usage

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a
vector from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D5-30 UCVTF (Scalar) specifier combinations

V fbits

H

S 1 to 32

D 1 to 64

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.101 UCVTF (scalar, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1219
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.102 UCVTF (scalar, integer)
Unsigned integer Convert to Floating-point (vector).

Syntax

UCVTF Hd, Hn ; Scalar half precision

UCVTF Vd, Vn ; Scalar single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (scalar)

Supported in the Armv8.2 architecture and later.

Usage

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector
from an unsigned integer value to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D5 A64 SIMD Scalar Instructions
D5.102 UCVTF (scalar, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1220
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D5.103 UQADD (scalar)
Unsigned saturating Add.

Syntax

UQADD Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source
SIMD and FP registers, places the results into a vector, and writes the vector to the destination SIMD and
FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.103 UQADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1221
Non-Confidential

D5.104 UQRSHL (scalar)
Unsigned saturating Rounding Shift Left (register).

Syntax

UQRSHL Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first
source SIMD and FP register, shifts the vector element by a value from the least significant byte of the
corresponding vector element of the second source SIMD and FP register, places the results into a vector,
and writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
rounded. For truncated results, see D5.106 UQSHL (scalar, immediate) on page D5-1224.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.104 UQRSHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1222
Non-Confidential

D5.105 UQRSHRN (scalar)
Unsigned saturating Rounded Shift Right Narrow (immediate).

Syntax

UQRSHRN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector
element in the source SIMD and FP register, right shifts each result by an immediate value, puts the final
result into a vector, and writes the vector to the lower or upper half of the destination SIMD and FP
register. All the values in this instruction are unsigned integer values. The results are rounded. For
truncated results, see D5.108 UQSHRN (scalar) on page D5-1226.

The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the UQRSHRN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-31 UQRSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.105 UQRSHRN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1223
Non-Confidential

D5.106 UQSHL (scalar, immediate)
Unsigned saturating Shift Left (immediate).

Syntax

UQSHL Vd, Vn, #shift

Where:

V
Is a width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the operand width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source
SIMD and FP register, shifts it by an immediate value, places the results in a vector, and writes the vector
to the destination SIMD and FP register. The results are truncated. For rounded results, see
D5.104 UQRSHL (scalar) on page D5-1222.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-32 UQSHL (Scalar) specifier combinations

V shift

B 0 to 7

H 0 to 15

S 0 to 31

D 0 to 63

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.106 UQSHL (scalar, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1224
Non-Confidential

D5.107 UQSHL (scalar, register)
Unsigned saturating Shift Left (register).

Syntax

UQSHL Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first
source SIMD and FP register, shifts the element by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
truncated. For rounded results, see D5.104 UQRSHL (scalar) on page D5-1222.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.107 UQSHL (scalar, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1225
Non-Confidential

D5.108 UQSHRN (scalar)
Unsigned saturating Shift Right Narrow (immediate).

Syntax

UQSHRN Vbd, Van, #shift

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the destination operand width in bits, and can be one
of the values shown in Usage.

Usage

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts each result by an immediate value, saturates each shifted result
to a value that is half the original width, puts the final result into a vector, and writes the vector to the
lower or upper half of the destination SIMD and FP register. All the values in this instruction are
unsigned integer values. The results are truncated. For rounded results, see D5.105 UQRSHRN (scalar)
on page D5-1223.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the UQSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-33 UQSHRN (Scalar) specifier combinations

Vb Va shift

B H 1 to 8

H S 1 to 16

S D 1 to 32

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.108 UQSHRN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1226
Non-Confidential

D5.109 UQSUB (scalar)
Unsigned saturating Subtract.

Syntax

UQSUB Vd, Vn, Vm

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD
and FP register from the corresponding element values of the first source SIMD and FP register, places
the results into a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.109 UQSUB (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1227
Non-Confidential

D5.110 UQXTN (scalar)
Unsigned saturating extract Narrow.

Syntax

UQXTN Vbd, Van

Where:

Vb
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Va
Is the source width specifier, and can be one of the values shown in Usage.

n
Is the number of the SIMD and FP source register.

Usage

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD
and FP register, saturates each value to half the original width, places the result into a vector, and writes
the vector to the destination SIMD and FP register. All the values in this instruction are unsigned integer
values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the UQXTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D5-34 UQXTN (Scalar) specifier combinations

Vb Va

B H

H S

S D

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.110 UQXTN (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1228
Non-Confidential

D5.111 URSHL (scalar)
Unsigned Rounding Shift Left (register).

Syntax

URSHL Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first
source SIMD and FP register, shifts the vector element by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right
shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.111 URSHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1229
Non-Confidential

D5.112 URSHR (scalar)
Unsigned Rounding Shift Right (immediate).

Syntax

URSHR Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, writes the final result to a vector,
and writes the vector to the destination SIMD and FP register. All the values in this instruction are
unsigned integer values. The results are rounded. For truncated results, see D5.115 USHR (scalar)
on page D5-1233.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.112 URSHR (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1230
Non-Confidential

D5.113 URSRA (scalar)
Unsigned Rounding Shift Right and Accumulate (immediate).

Syntax

URSRA Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element
in the source SIMD and FP register, right shifts each result by an immediate value, and accumulates the
final results with the vector elements of the destination SIMD and FP register. All the values in this
instruction are unsigned integer values. The results are rounded. For truncated results, see D5.117 USRA
(scalar) on page D5-1235.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.113 URSRA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1231
Non-Confidential

D5.114 USHL (scalar)
Unsigned Shift Left (register).

Syntax

USHL Vd, Vn, Vm

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

m
Is the number of the second SIMD and FP source register.

Usage

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD
and FP register, shifts each element by a value from the least significant byte of the corresponding
element of the second source SIMD and FP register, places the results in a vector, and writes the vector
to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating
right shift. For a rounding shift, see D5.111 URSHL (scalar) on page D5-1229.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.114 USHL (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1232
Non-Confidential

D5.115 USHR (scalar)
Unsigned Shift Right (immediate).

Syntax

USHR Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD and FP
register, right shifts each result by an immediate value, writes the final result to a vector, and writes the
vector to the destination SIMD and FP register. All the values in this instruction are unsigned integer
values. The results are truncated. For rounded results, see D5.112 URSHR (scalar) on page D5-1230.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.115 USHR (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1233
Non-Confidential

D5.116 USQADD (scalar)
Unsigned saturating Accumulate of Signed value.

Syntax

USQADD Vd, Vn

Where:

V
Is a width specifier, and can be one of B, H, S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Usage

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the
vector elements in the source SIMD and FP register to corresponding unsigned integer values of the
vector elements in the destination SIMD and FP register, and accumulates the resulting unsigned integer
values with the vector elements of the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.116 USQADD (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1234
Non-Confidential

D5.117 USRA (scalar)
Unsigned Shift Right and Accumulate (immediate).

Syntax

USRA Vd, Vn, #shift

Where:

V
Is a width specifier, D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the first SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to 64.

Usage

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts each result by an immediate value, and accumulates the final
results with the vector elements of the destination SIMD and FP register. All the values in this instruction
are unsigned integer values. The results are truncated. For rounded results, see D5.113 URSRA (scalar)
on page D5-1231.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D5 A64 SIMD Scalar Instructions
D5.117 USRA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1235
Non-Confidential

D5 A64 SIMD Scalar Instructions
D5.117 USRA (scalar)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D5-1236
Non-Confidential

Chapter D6
A64 SIMD Vector Instructions

Describes the A64 SIMD vector instructions.

It contains the following sections:
• D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243.
• D6.2 ABS (vector) on page D6-1254.
• D6.3 ADD (vector) on page D6-1255.
• D6.4 ADDHN, ADDHN2 (vector) on page D6-1256.
• D6.5 ADDP (vector) on page D6-1257.
• D6.6 ADDV (vector) on page D6-1258.
• D6.7 AND (vector) on page D6-1259.
• D6.8 BIC (vector, immediate) on page D6-1260.
• D6.9 BIC (vector, register) on page D6-1261.
• D6.10 BIF (vector) on page D6-1262.
• D6.11 BIT (vector) on page D6-1263.
• D6.12 BSL (vector) on page D6-1264.
• D6.13 CLS (vector) on page D6-1265.
• D6.14 CLZ (vector) on page D6-1266.
• D6.15 CMEQ (vector, register) on page D6-1267.
• D6.16 CMEQ (vector, zero) on page D6-1268.
• D6.17 CMGE (vector, register) on page D6-1269.
• D6.18 CMGE (vector, zero) on page D6-1270.
• D6.19 CMGT (vector, register) on page D6-1271.
• D6.20 CMGT (vector, zero) on page D6-1272.
• D6.21 CMHI (vector, register) on page D6-1273.
• D6.22 CMHS (vector, register) on page D6-1274.
• D6.23 CMLE (vector, zero) on page D6-1275.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1237
Non-Confidential

• D6.24 CMLT (vector, zero) on page D6-1276.
• D6.25 CMTST (vector) on page D6-1277.
• D6.26 CNT (vector) on page D6-1278.
• D6.27 DUP (vector, element) on page D6-1279.
• D6.28 DUP (vector, general) on page D6-1280.
• D6.29 EOR (vector) on page D6-1281.
• D6.30 EXT (vector) on page D6-1282.
• D6.31 FABD (vector) on page D6-1283.
• D6.32 FABS (vector) on page D6-1284.
• D6.33 FACGE (vector) on page D6-1285.
• D6.34 FACGT (vector) on page D6-1286.
• D6.35 FADD (vector) on page D6-1287.
• D6.36 FADDP (vector) on page D6-1288.
• D6.37 FCADD (vector) on page D6-1289.
• D6.38 FCMEQ (vector, register) on page D6-1290.
• D6.39 FCMEQ (vector, zero) on page D6-1291.
• D6.40 FCMGE (vector, register) on page D6-1292.
• D6.41 FCMGE (vector, zero) on page D6-1293.
• D6.42 FCMGT (vector, register) on page D6-1294.
• D6.43 FCMGT (vector, zero) on page D6-1295.
• D6.44 FCMLA (vector) on page D6-1296.
• D6.45 FCMLE (vector, zero) on page D6-1297.
• D6.46 FCMLT (vector, zero) on page D6-1298.
• D6.47 FCVTAS (vector) on page D6-1299.
• D6.48 FCVTAU (vector) on page D6-1300.
• D6.49 FCVTL, FCVTL2 (vector) on page D6-1301.
• D6.50 FCVTMS (vector) on page D6-1302.
• D6.51 FCVTMU (vector) on page D6-1303.
• D6.52 FCVTN, FCVTN2 (vector) on page D6-1304.
• D6.53 FCVTNS (vector) on page D6-1305.
• D6.54 FCVTNU (vector) on page D6-1306.
• D6.55 FCVTPS (vector) on page D6-1307.
• D6.56 FCVTPU (vector) on page D6-1308.
• D6.57 FCVTXN, FCVTXN2 (vector) on page D6-1309.
• D6.58 FCVTZS (vector, fixed-point) on page D6-1310.
• D6.59 FCVTZS (vector, integer) on page D6-1311.
• D6.60 FCVTZU (vector, fixed-point) on page D6-1312.
• D6.61 FCVTZU (vector, integer) on page D6-1313.
• D6.62 FDIV (vector) on page D6-1314.
• D6.63 FMAX (vector) on page D6-1315.
• D6.64 FMAXNM (vector) on page D6-1316.
• D6.65 FMAXNMP (vector) on page D6-1317.
• D6.66 FMAXNMV (vector) on page D6-1318.
• D6.67 FMAXP (vector) on page D6-1319.
• D6.68 FMAXV (vector) on page D6-1320.
• D6.69 FMIN (vector) on page D6-1321.
• D6.70 FMINNM (vector) on page D6-1322.
• D6.71 FMINNMP (vector) on page D6-1323.
• D6.72 FMINNMV (vector) on page D6-1324.
• D6.73 FMINP (vector) on page D6-1325.
• D6.74 FMINV (vector) on page D6-1326.
• D6.75 FMLA (vector, by element) on page D6-1327.
• D6.76 FMLA (vector) on page D6-1329.
• D6.77 FMLAL, (vector) on page D6-1330.
• D6.78 FMLS (vector, by element) on page D6-1331.
• D6.79 FMLS (vector) on page D6-1333.

D6 A64 SIMD Vector Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1238
Non-Confidential

• D6.80 FMLSL, (vector) on page D6-1334.
• D6.81 FMOV (vector, immediate) on page D6-1335.
• D6.82 FMUL (vector, by element) on page D6-1337.
• D6.83 FMUL (vector) on page D6-1339.
• D6.84 FMULX (vector, by element) on page D6-1340.
• D6.85 FMULX (vector) on page D6-1342.
• D6.86 FNEG (vector) on page D6-1343.
• D6.87 FRECPE (vector) on page D6-1344.
• D6.88 FRECPS (vector) on page D6-1345.
• D6.89 FRECPX (vector) on page D6-1346.
• D6.90 FRINTA (vector) on page D6-1347.
• D6.91 FRINTI (vector) on page D6-1348.
• D6.92 FRINTM (vector) on page D6-1349.
• D6.93 FRINTN (vector) on page D6-1350.
• D6.94 FRINTP (vector) on page D6-1351.
• D6.95 FRINTX (vector) on page D6-1352.
• D6.96 FRINTZ (vector) on page D6-1353.
• D6.97 FRSQRTE (vector) on page D6-1354.
• D6.98 FRSQRTS (vector) on page D6-1355.
• D6.99 FSQRT (vector) on page D6-1356.
• D6.100 FSUB (vector) on page D6-1357.
• D6.101 INS (vector, element) on page D6-1358.
• D6.102 INS (vector, general) on page D6-1359.
• D6.103 LD1 (vector, multiple structures) on page D6-1360.
• D6.104 LD1 (vector, single structure) on page D6-1363.
• D6.105 LD1R (vector) on page D6-1364.
• D6.106 LD2 (vector, multiple structures) on page D6-1365.
• D6.107 LD2 (vector, single structure) on page D6-1366.
• D6.108 LD2R (vector) on page D6-1367.
• D6.109 LD3 (vector, multiple structures) on page D6-1368.
• D6.110 LD3 (vector, single structure) on page D6-1369.
• D6.111 LD3R (vector) on page D6-1371.
• D6.112 LD4 (vector, multiple structures) on page D6-1372.
• D6.113 LD4 (vector, single structure) on page D6-1373.
• D6.114 LD4R (vector) on page D6-1375.
• D6.115 MLA (vector, by element) on page D6-1376.
• D6.116 MLA (vector) on page D6-1377.
• D6.117 MLS (vector, by element) on page D6-1378.
• D6.118 MLS (vector) on page D6-1379.
• D6.119 MOV (vector, element) on page D6-1380.
• D6.120 MOV (vector, from general) on page D6-1381.
• D6.121 MOV (vector) on page D6-1382.
• D6.122 MOV (vector, to general) on page D6-1383.
• D6.123 MOVI (vector) on page D6-1384.
• D6.124 MUL (vector, by element) on page D6-1386.
• D6.125 MUL (vector) on page D6-1387.
• D6.126 MVN (vector) on page D6-1388.
• D6.127 MVNI (vector) on page D6-1389.
• D6.128 NEG (vector) on page D6-1390.
• D6.129 NOT (vector) on page D6-1391.
• D6.130 ORN (vector) on page D6-1392.
• D6.131 ORR (vector, immediate) on page D6-1393.
• D6.132 ORR (vector, register) on page D6-1394.
• D6.133 PMUL (vector) on page D6-1395.
• D6.134 PMULL, PMULL2 (vector) on page D6-1396.
• D6.135 RADDHN, RADDHN2 (vector) on page D6-1397.

D6 A64 SIMD Vector Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1239
Non-Confidential

• D6.136 RBIT (vector) on page D6-1398.
• D6.137 REV16 (vector) on page D6-1399.
• D6.138 REV32 (vector) on page D6-1400.
• D6.139 REV64 (vector) on page D6-1401.
• D6.140 RSHRN, RSHRN2 (vector) on page D6-1402.
• D6.141 RSUBHN, RSUBHN2 (vector) on page D6-1403.
• D6.142 SABA (vector) on page D6-1404.
• D6.143 SABAL, SABAL2 (vector) on page D6-1405.
• D6.144 SABD (vector) on page D6-1406.
• D6.145 SABDL, SABDL2 (vector) on page D6-1407.
• D6.146 SADALP (vector) on page D6-1408.
• D6.147 SADDL, SADDL2 (vector) on page D6-1409.
• D6.148 SADDLP (vector) on page D6-1410.
• D6.149 SADDLV (vector) on page D6-1411.
• D6.150 SADDW, SADDW2 (vector) on page D6-1412.
• D6.151 SCVTF (vector, fixed-point) on page D6-1413.
• D6.152 SCVTF (vector, integer) on page D6-1414.
• D6.153 SDOT (vector, by element) on page D6-1415.
• D6.154 SDOT (vector) on page D6-1416.
• D6.155 SHADD (vector) on page D6-1417.
• D6.156 SHL (vector) on page D6-1418.
• D6.157 SHLL, SHLL2 (vector) on page D6-1419.
• D6.158 SHRN, SHRN2 (vector) on page D6-1420.
• D6.159 SHSUB (vector) on page D6-1421.
• D6.160 SLI (vector) on page D6-1422.
• D6.161 SMAX (vector) on page D6-1423.
• D6.162 SMAXP (vector) on page D6-1424.
• D6.163 SMAXV (vector) on page D6-1425.
• D6.164 SMIN (vector) on page D6-1426.
• D6.165 SMINP (vector) on page D6-1427.
• D6.166 SMINV (vector) on page D6-1428.
• D6.167 SMLAL, SMLAL2 (vector, by element) on page D6-1429.
• D6.168 SMLAL, SMLAL2 (vector) on page D6-1430.
• D6.169 SMLSL, SMLSL2 (vector, by element) on page D6-1431.
• D6.170 SMLSL, SMLSL2 (vector) on page D6-1432.
• D6.171 SMOV (vector) on page D6-1433.
• D6.172 SMULL, SMULL2 (vector, by element) on page D6-1434.
• D6.173 SMULL, SMULL2 (vector) on page D6-1435.
• D6.174 SQABS (vector) on page D6-1436.
• D6.175 SQADD (vector) on page D6-1437.
• D6.176 SQDMLAL, SQDMLAL2 (vector, by element) on page D6-1438.
• D6.177 SQDMLAL, SQDMLAL2 (vector) on page D6-1440.
• D6.178 SQDMLSL, SQDMLSL2 (vector, by element) on page D6-1441.
• D6.179 SQDMLSL, SQDMLSL2 (vector) on page D6-1443.
• D6.180 SQDMULH (vector, by element) on page D6-1444.
• D6.181 SQDMULH (vector) on page D6-1445.
• D6.182 SQDMULL, SQDMULL2 (vector, by element) on page D6-1446.
• D6.183 SQDMULL, SQDMULL2 (vector) on page D6-1448.
• D6.184 SQNEG (vector) on page D6-1449.
• D6.185 SQRDMLAH (vector, by element) on page D6-1450.
• D6.186 SQRDMLAH (vector) on page D6-1451.
• D6.187 SQRDMLSH (vector, by element) on page D6-1452.
• D6.188 SQRDMLSH (vector) on page D6-1453.
• D6.189 SQRDMULH (vector, by element) on page D6-1454.
• D6.190 SQRDMULH (vector) on page D6-1455.
• D6.191 SQRSHL (vector) on page D6-1456.

D6 A64 SIMD Vector Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1240
Non-Confidential

• D6.192 SQRSHRN, SQRSHRN2 (vector) on page D6-1457.
• D6.193 SQRSHRUN, SQRSHRUN2 (vector) on page D6-1458.
• D6.194 SQSHL (vector, immediate) on page D6-1459.
• D6.195 SQSHL (vector, register) on page D6-1460.
• D6.196 SQSHLU (vector) on page D6-1461.
• D6.197 SQSHRN, SQSHRN2 (vector) on page D6-1462.
• D6.198 SQSHRUN, SQSHRUN2 (vector) on page D6-1463.
• D6.199 SQSUB (vector) on page D6-1464.
• D6.200 SQXTN, SQXTN2 (vector) on page D6-1465.
• D6.201 SQXTUN, SQXTUN2 (vector) on page D6-1466.
• D6.202 SRHADD (vector) on page D6-1467.
• D6.203 SRI (vector) on page D6-1468.
• D6.204 SRSHL (vector) on page D6-1469.
• D6.205 SRSHR (vector) on page D6-1470.
• D6.206 SRSRA (vector) on page D6-1471.
• D6.207 SSHL (vector) on page D6-1472.
• D6.208 SSHLL, SSHLL2 (vector) on page D6-1473.
• D6.209 SSHR (vector) on page D6-1474.
• D6.210 SSRA (vector) on page D6-1475.
• D6.211 SSUBL, SSUBL2 (vector) on page D6-1476.
• D6.212 SSUBW, SSUBW2 (vector) on page D6-1477.
• D6.213 ST1 (vector, multiple structures) on page D6-1478.
• D6.214 ST1 (vector, single structure) on page D6-1481.
• D6.215 ST2 (vector, multiple structures) on page D6-1482.
• D6.216 ST2 (vector, single structure) on page D6-1483.
• D6.217 ST3 (vector, multiple structures) on page D6-1484.
• D6.218 ST3 (vector, single structure) on page D6-1485.
• D6.219 ST4 (vector, multiple structures) on page D6-1487.
• D6.220 ST4 (vector, single structure) on page D6-1488.
• D6.221 SUB (vector) on page D6-1490.
• D6.222 SUBHN, SUBHN2 (vector) on page D6-1491.
• D6.223 SUQADD (vector) on page D6-1492.
• D6.224 SXTL, SXTL2 (vector) on page D6-1493.
• D6.225 TBL (vector) on page D6-1494.
• D6.226 TBX (vector) on page D6-1495.
• D6.227 TRN1 (vector) on page D6-1496.
• D6.228 TRN2 (vector) on page D6-1497.
• D6.229 UABA (vector) on page D6-1498.
• D6.230 UABAL, UABAL2 (vector) on page D6-1499.
• D6.231 UABD (vector) on page D6-1500.
• D6.232 UABDL, UABDL2 (vector) on page D6-1501.
• D6.233 UADALP (vector) on page D6-1502.
• D6.234 UADDL, UADDL2 (vector) on page D6-1503.
• D6.235 UADDLP (vector) on page D6-1504.
• D6.236 UADDLV (vector) on page D6-1505.
• D6.237 UADDW, UADDW2 (vector) on page D6-1506.
• D6.238 UCVTF (vector, fixed-point) on page D6-1507.
• D6.239 UCVTF (vector, integer) on page D6-1508.
• D6.240 UDOT (vector, by element) on page D6-1509.
• D6.241 UDOT (vector) on page D6-1510.
• D6.242 UHADD (vector) on page D6-1511.
• D6.243 UHSUB (vector) on page D6-1512.
• D6.244 UMAX (vector) on page D6-1513.
• D6.245 UMAXP (vector) on page D6-1514.
• D6.246 UMAXV (vector) on page D6-1515.
• D6.247 UMIN (vector) on page D6-1516.

D6 A64 SIMD Vector Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1241
Non-Confidential

• D6.248 UMINP (vector) on page D6-1517.
• D6.249 UMINV (vector) on page D6-1518.
• D6.250 UMLAL, UMLAL2 (vector, by element) on page D6-1519.
• D6.251 UMLAL, UMLAL2 (vector) on page D6-1520.
• D6.252 UMLSL, UMLSL2 (vector, by element) on page D6-1521.
• D6.253 UMLSL, UMLSL2 (vector) on page D6-1522.
• D6.254 UMOV (vector) on page D6-1523.
• D6.255 UMULL, UMULL2 (vector, by element) on page D6-1524.
• D6.256 UMULL, UMULL2 (vector) on page D6-1525.
• D6.257 UQADD (vector) on page D6-1526.
• D6.258 UQRSHL (vector) on page D6-1527.
• D6.259 UQRSHRN, UQRSHRN2 (vector) on page D6-1528.
• D6.260 UQSHL (vector, immediate) on page D6-1529.
• D6.261 UQSHL (vector, register) on page D6-1530.
• D6.262 UQSHRN, UQSHRN2 (vector) on page D6-1531.
• D6.263 UQSUB (vector) on page D6-1533.
• D6.264 UQXTN, UQXTN2 (vector) on page D6-1534.
• D6.265 URECPE (vector) on page D6-1535.
• D6.266 URHADD (vector) on page D6-1536.
• D6.267 URSHL (vector) on page D6-1537.
• D6.268 URSHR (vector) on page D6-1538.
• D6.269 URSQRTE (vector) on page D6-1539.
• D6.270 URSRA (vector) on page D6-1540.
• D6.271 USHL (vector) on page D6-1541.
• D6.272 USHLL, USHLL2 (vector) on page D6-1542.
• D6.273 USHR (vector) on page D6-1543.
• D6.274 USQADD (vector) on page D6-1544.
• D6.275 USRA (vector) on page D6-1545.
• D6.276 USUBL, USUBL2 (vector) on page D6-1546.
• D6.277 USUBW, USUBW2 (vector) on page D6-1547.
• D6.278 UXTL, UXTL2 (vector) on page D6-1548.
• D6.279 UZP1 (vector) on page D6-1549.
• D6.280 UZP2 (vector) on page D6-1550.
• D6.281 XTN, XTN2 (vector) on page D6-1551.
• D6.282 ZIP1 (vector) on page D6-1552.
• D6.283 ZIP2 (vector) on page D6-1553.

D6 A64 SIMD Vector Instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1242
Non-Confidential

D6.1 A64 SIMD Vector instructions in alphabetical order
A summary of the A64 SIMD Vector instructions that are supported.

Table D6-1 Summary of A64 SIMD Vector instructions

Mnemonic Brief description See

ABS (vector) Absolute value (vector) D6.2 ABS (vector) on page D6-1254

ADD (vector) Add (vector) D6.3 ADD (vector) on page D6-1255

ADDHN, ADDHN2 (vector) Add returning High Narrow D6.4 ADDHN, ADDHN2 (vector) on page D6-1256

ADDP (vector) Add Pairwise (vector) D6.5 ADDP (vector) on page D6-1257

ADDV (vector) Add across Vector D6.6 ADDV (vector) on page D6-1258

AND (vector) Bitwise AND (vector) D6.7 AND (vector) on page D6-1259

BIC (vector, immediate) Bitwise bit Clear (vector, immediate) D6.8 BIC (vector, immediate) on page D6-1260

BIC (vector, register) Bitwise bit Clear (vector, register) D6.9 BIC (vector, register) on page D6-1261

BIF (vector) Bitwise Insert if False D6.10 BIF (vector) on page D6-1262

BIT (vector) Bitwise Insert if True D6.11 BIT (vector) on page D6-1263

BSL (vector) Bitwise Select D6.12 BSL (vector) on page D6-1264

CLS (vector) Count Leading Sign bits (vector) D6.13 CLS (vector) on page D6-1265

CLZ (vector) Count Leading Zero bits (vector) D6.14 CLZ (vector) on page D6-1266

CMEQ (vector, register) Compare bitwise Equal (vector) D6.15 CMEQ (vector, register) on page D6-1267

CMEQ (vector, zero) Compare bitwise Equal to zero (vector) D6.16 CMEQ (vector, zero) on page D6-1268

CMGE (vector, register) Compare signed Greater than or Equal (vector) D6.17 CMGE (vector, register) on page D6-1269

CMGE (vector, zero) Compare signed Greater than or Equal to zero
(vector)

D6.18 CMGE (vector, zero) on page D6-1270

CMGT (vector, register) Compare signed Greater than (vector) D6.19 CMGT (vector, register) on page D6-1271

CMGT (vector, zero) Compare signed Greater than zero (vector) D6.20 CMGT (vector, zero) on page D6-1272

CMHI (vector, register) Compare unsigned Higher (vector) D6.21 CMHI (vector, register) on page D6-1273

CMHS (vector, register) Compare unsigned Higher or Same (vector) D6.22 CMHS (vector, register) on page D6-1274

CMLE (vector, zero) Compare signed Less than or Equal to zero
(vector)

D6.23 CMLE (vector, zero) on page D6-1275

CMLT (vector, zero) Compare signed Less than zero (vector) D6.24 CMLT (vector, zero) on page D6-1276

CMTST (vector) Compare bitwise Test bits nonzero (vector) D6.25 CMTST (vector) on page D6-1277

CNT (vector) Population Count per byte D6.26 CNT (vector) on page D6-1278

DUP (vector, element) vector D6.27 DUP (vector, element) on page D6-1279

DUP (vector, general) Duplicate general-purpose register to vector D6.28 DUP (vector, general) on page D6-1280

EOR (vector) Bitwise Exclusive OR (vector) D6.29 EOR (vector) on page D6-1281

EXT (vector) Extract vector from pair of vectors D6.30 EXT (vector) on page D6-1282

FABD (vector) Floating-point Absolute Difference (vector) D6.31 FABD (vector) on page D6-1283

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1243
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

FABS (vector) Floating-point Absolute value (vector) D6.32 FABS (vector) on page D6-1284

FACGE (vector) Floating-point Absolute Compare Greater than
or Equal (vector)

D6.33 FACGE (vector) on page D6-1285

FACGT (vector) Floating-point Absolute Compare Greater than
(vector)

D6.34 FACGT (vector) on page D6-1286

FADD (vector) Floating-point Add (vector) D6.35 FADD (vector) on page D6-1287

FADDP (vector) Floating-point Add Pairwise (vector) D6.36 FADDP (vector) on page D6-1288

FCADD (vector) Floating-point Complex Add D6.37 FCADD (vector) on page D6-1289

FCMEQ (vector, register) Floating-point Compare Equal (vector) D6.38 FCMEQ (vector, register) on page D6-1290

FCMEQ (vector, zero) Floating-point Compare Equal to zero (vector) D6.39 FCMEQ (vector, zero) on page D6-1291

FCMGE (vector, register) Floating-point Compare Greater than or Equal
(vector)

D6.40 FCMGE (vector, register) on page D6-1292

FCMGE (vector, zero) Floating-point Compare Greater than or Equal
to zero (vector)

D6.41 FCMGE (vector, zero) on page D6-1293

FCMGT (vector, register) Floating-point Compare Greater than (vector) D6.42 FCMGT (vector, register) on page D6-1294

FCMGT (vector, zero) Floating-point Compare Greater than zero
(vector)

D6.43 FCMGT (vector, zero) on page D6-1295

FCMLA (vector) Floating-point Complex Multiply Accumulate D6.44 FCMLA (vector) on page D6-1296

FCMLE (vector, zero) Floating-point Compare Less than or Equal to
zero (vector)

D6.45 FCMLE (vector, zero) on page D6-1297

FCMLT (vector, zero) Floating-point Compare Less than zero (vector) D6.46 FCMLT (vector, zero) on page D6-1298

FCVTAS (vector) Floating-point Convert to Signed integer,
rounding to nearest with ties to Away (vector)

D6.47 FCVTAS (vector) on page D6-1299

FCVTAU (vector) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to Away (vector)

D6.48 FCVTAU (vector) on page D6-1300

FCVTL, FCVTL2 (vector) Floating-point Convert to higher precision
Long (vector)

D6.49 FCVTL, FCVTL2 (vector) on page D6-1301

FCVTMS (vector) Floating-point Convert to Signed integer,
rounding toward Minus infinity (vector)

D6.50 FCVTMS (vector) on page D6-1302

FCVTMU (vector) Floating-point Convert to Unsigned integer,
rounding toward Minus infinity (vector)

D6.51 FCVTMU (vector) on page D6-1303

FCVTN, FCVTN2 (vector) Floating-point Convert to lower precision
Narrow (vector)

D6.52 FCVTN, FCVTN2 (vector) on page D6-1304

FCVTNS (vector) Floating-point Convert to Signed integer,
rounding to nearest with ties to even (vector)

D6.53 FCVTNS (vector) on page D6-1305

FCVTNU (vector) Floating-point Convert to Unsigned integer,
rounding to nearest with ties to even (vector)

D6.54 FCVTNU (vector) on page D6-1306

FCVTPS (vector) Floating-point Convert to Signed integer,
rounding toward Plus infinity (vector)

D6.55 FCVTPS (vector) on page D6-1307

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1244
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

FCVTPU (vector) Floating-point Convert to Unsigned integer,
rounding toward Plus infinity (vector)

D6.56 FCVTPU (vector) on page D6-1308

FCVTXN, FCVTXN2 (vector) Floating-point Convert to lower precision
Narrow, rounding to odd (vector)

D6.57 FCVTXN, FCVTXN2 (vector) on page D6-1309

FCVTZS (vector, fixed-point) Floating-point Convert to Signed fixed-point,
rounding toward Zero (vector)

D6.58 FCVTZS (vector, fixed-point) on page D6-1310

FCVTZS (vector, integer) Floating-point Convert to Signed integer,
rounding toward Zero (vector)

D6.59 FCVTZS (vector, integer) on page D6-1311

FCVTZU (vector, fixed-point) Floating-point Convert to Unsigned fixed-
point, rounding toward Zero (vector)

D6.60 FCVTZU (vector, fixed-point) on page D6-1312

FCVTZU (vector, integer) Floating-point Convert to Unsigned integer,
rounding toward Zero (vector)

D6.61 FCVTZU (vector, integer) on page D6-1313

FDIV (vector) Floating-point Divide (vector) D6.62 FDIV (vector) on page D6-1314

FMAX (vector) Floating-point Maximum (vector) D6.63 FMAX (vector) on page D6-1315

FMAXNM (vector) Floating-point Maximum Number (vector) D6.64 FMAXNM (vector) on page D6-1316

FMAXNMP (vector) Floating-point Maximum Number Pairwise
(vector)

D6.65 FMAXNMP (vector) on page D6-1317

FMAXNMV (vector) Floating-point Maximum Number across
Vector

D6.66 FMAXNMV (vector) on page D6-1318

FMAXP (vector) Floating-point Maximum Pairwise (vector) D6.67 FMAXP (vector) on page D6-1319

FMAXV (vector) Floating-point Maximum across Vector D6.68 FMAXV (vector) on page D6-1320

FMIN (vector) Floating-point minimum (vector) D6.69 FMIN (vector) on page D6-1321

FMINNM (vector) Floating-point Minimum Number (vector) D6.70 FMINNM (vector) on page D6-1322

FMINNMP (vector) Floating-point Minimum Number Pairwise
(vector)

D6.71 FMINNMP (vector) on page D6-1323

FMINNMV (vector) Floating-point Minimum Number across Vector D6.72 FMINNMV (vector) on page D6-1324

FMINP (vector) Floating-point Minimum Pairwise (vector) D6.73 FMINP (vector) on page D6-1325

FMINV (vector) Floating-point Minimum across Vector D6.74 FMINV (vector) on page D6-1326

FMLA (vector, by element) Floating-point fused Multiply-Add to
accumulator (by element)

D6.75 FMLA (vector, by element) on page D6-1327

FMLA (vector) Floating-point fused Multiply-Add to
accumulator (vector)

D6.76 FMLA (vector) on page D6-1329

FMLAL, (vector) Floating-point fused Multiply-Add Long to
accumulator (vector)

D6.77 FMLAL, (vector) on page D6-1330

FMLS (vector, by element) Floating-point fused Multiply-Subtract from
accumulator (by element)

D6.78 FMLS (vector, by element) on page D6-1331

FMLS (vector) Floating-point fused Multiply-Subtract from
accumulator (vector)

D6.79 FMLS (vector) on page D6-1333

FMLSL, (vector) Floating-point fused Multiply-Subtract Long
from accumulator (vector)

D6.80 FMLSL, (vector) on page D6-1334

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1245
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

FMOV (vector, immediate) Floating-point move immediate (vector) D6.81 FMOV (vector, immediate) on page D6-1335

FMUL (vector, by element) Floating-point Multiply (by element) D6.82 FMUL (vector, by element) on page D6-1337

FMUL (vector) Floating-point Multiply (vector) D6.83 FMUL (vector) on page D6-1339

FMULX (vector, by element) Floating-point Multiply extended (by element) D6.84 FMULX (vector, by element) on page D6-1340

FMULX (vector) Floating-point Multiply extended D6.85 FMULX (vector) on page D6-1342

FNEG (vector) Floating-point Negate (vector) D6.86 FNEG (vector) on page D6-1343

FRECPE (vector) Floating-point Reciprocal Estimate D6.87 FRECPE (vector) on page D6-1344

FRECPS (vector) Floating-point Reciprocal Step D6.88 FRECPS (vector) on page D6-1345

FRECPX (vector) Floating-point Reciprocal exponent (scalar) D6.89 FRECPX (vector) on page D6-1346

FRINTA (vector) Floating-point Round to Integral, to nearest
with ties to Away (vector)

D6.90 FRINTA (vector) on page D6-1347

FRINTI (vector) Floating-point Round to Integral, using current
rounding mode (vector)

D6.91 FRINTI (vector) on page D6-1348

FRINTM (vector) Floating-point Round to Integral, toward Minus
infinity (vector)

D6.92 FRINTM (vector) on page D6-1349

FRINTN (vector) Floating-point Round to Integral, to nearest
with ties to even (vector)

D6.93 FRINTN (vector) on page D6-1350

FRINTP (vector) Floating-point Round to Integral, toward Plus
infinity (vector)

D6.94 FRINTP (vector) on page D6-1351

FRINTX (vector) Floating-point Round to Integral exact, using
current rounding mode (vector)

D6.95 FRINTX (vector) on page D6-1352

FRINTZ (vector) Floating-point Round to Integral, toward Zero
(vector)

D6.96 FRINTZ (vector) on page D6-1353

FRSQRTE (vector) Floating-point Reciprocal Square Root
Estimate

D6.97 FRSQRTE (vector) on page D6-1354

FRSQRTS (vector) Floating-point Reciprocal Square Root Step D6.98 FRSQRTS (vector) on page D6-1355

FSQRT (vector) Floating-point Square Root (vector) D6.99 FSQRT (vector) on page D6-1356

FSUB (vector) Floating-point Subtract (vector) D6.100 FSUB (vector) on page D6-1357

INS (vector, element) Insert vector element from another vector
element

D6.101 INS (vector, element) on page D6-1358

INS (vector, general) Insert vector element from general-purpose
register

D6.102 INS (vector, general) on page D6-1359

LD1 (vector, multiple
structures)

Load multiple single-element structures to one,
two, three, or four registers

D6.103 LD1 (vector, multiple structures)
on page D6-1360

LD1 (vector, single
structure)

Load one single-element structure to one lane
of one register

D6.104 LD1 (vector, single structure)
on page D6-1363

LD1R (vector) Load one single-element structure and
Replicate to all lanes (of one register)

D6.105 LD1R (vector) on page D6-1364

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1246
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

LD2 (vector, multiple
structures)

Load multiple 2-element structures to two
registers

D6.106 LD2 (vector, multiple structures)
on page D6-1365

LD2 (vector, single
structure)

Load single 2-element structure to one lane of
two registers

D6.107 LD2 (vector, single structure)
on page D6-1366

LD2R (vector) Load single 2-element structure and Replicate
to all lanes of two registers

D6.108 LD2R (vector) on page D6-1367

LD3 (vector, multiple
structures)

Load multiple 3-element structures to three
registers

D6.109 LD3 (vector, multiple structures)
on page D6-1368

LD3 (vector, single
structure)

Load single 3-element structure to one lane of
three registers)

D6.110 LD3 (vector, single structure)
on page D6-1369

LD3R (vector) Load single 3-element structure and Replicate
to all lanes of three registers

D6.111 LD3R (vector) on page D6-1371

LD4 (vector, multiple
structures)

Load multiple 4-element structures to four
registers

D6.112 LD4 (vector, multiple structures)
on page D6-1372

LD4 (vector, single
structure)

Load single 4-element structure to one lane of
four registers

D6.113 LD4 (vector, single structure)
on page D6-1373

LD4R (vector) Load single 4-element structure and Replicate
to all lanes of four registers

D6.114 LD4R (vector) on page D6-1375

MLA (vector, by element) Multiply-Add to accumulator (vector, by
element)

D6.115 MLA (vector, by element) on page D6-1376

MLA (vector) Multiply-Add to accumulator (vector) D6.116 MLA (vector) on page D6-1377

MLS (vector, by element) Multiply-Subtract from accumulator (vector, by
element)

D6.117 MLS (vector, by element) on page D6-1378

MLS (vector) Multiply-Subtract from accumulator (vector) D6.118 MLS (vector) on page D6-1379

MOV (vector, element) Move vector element to another vector element D6.119 MOV (vector, element) on page D6-1380

MOV (vector, from general) Move general-purpose register to a vector
element

D6.120 MOV (vector, from general) on page D6-1381

MOV (vector) Move vector D6.121 MOV (vector) on page D6-1382

MOV (vector, to general) Move vector element to general-purpose
register

D6.122 MOV (vector, to general) on page D6-1383

MOVI (vector) Move Immediate (vector) D6.123 MOVI (vector) on page D6-1384

MUL (vector, by element) Multiply (vector, by element) D6.124 MUL (vector, by element) on page D6-1386

MUL (vector) Multiply (vector) D6.125 MUL (vector) on page D6-1387

MVN (vector) Bitwise NOT (vector) D6.126 MVN (vector) on page D6-1388

MVNI (vector) Move inverted Immediate (vector) D6.127 MVNI (vector) on page D6-1389

NEG (vector) Negate (vector) D6.128 NEG (vector) on page D6-1390

NOT (vector) Bitwise NOT (vector) D6.129 NOT (vector) on page D6-1391

ORN (vector) Bitwise inclusive OR NOT (vector) D6.130 ORN (vector) on page D6-1392

ORR (vector, immediate) Bitwise inclusive OR (vector, immediate) D6.131 ORR (vector, immediate) on page D6-1393

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1247
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

ORR (vector, register) Bitwise inclusive OR (vector, register) D6.132 ORR (vector, register) on page D6-1394

PMUL (vector) Polynomial Multiply D6.133 PMUL (vector) on page D6-1395

PMULL, PMULL2 (vector) Polynomial Multiply Long D6.134 PMULL, PMULL2 (vector) on page D6-1396

RADDHN, RADDHN2 (vector) Rounding Add returning High Narrow D6.135 RADDHN, RADDHN2 (vector)
on page D6-1397

RBIT (vector) Reverse Bit order (vector) D6.136 RBIT (vector) on page D6-1398

REV16 (vector) Reverse elements in 16-bit halfwords (vector) D6.137 REV16 (vector) on page D6-1399

REV32 (vector) Reverse elements in 32-bit words (vector) D6.138 REV32 (vector) on page D6-1400

REV64 (vector) Reverse elements in 64-bit doublewords
(vector)

D6.139 REV64 (vector) on page D6-1401

RSHRN, RSHRN2 (vector) Rounding Shift Right Narrow (immediate) D6.140 RSHRN, RSHRN2 (vector) on page D6-1402

RSUBHN, RSUBHN2 (vector) Rounding Subtract returning High Narrow D6.141 RSUBHN, RSUBHN2 (vector)
on page D6-1403

SABA (vector) Signed Absolute difference and Accumulate D6.142 SABA (vector) on page D6-1404

SABAL, SABAL2 (vector) Signed Absolute difference and Accumulate
Long

D6.143 SABAL, SABAL2 (vector) on page D6-1405

SABD (vector) Signed Absolute Difference D6.144 SABD (vector) on page D6-1406

SABDL, SABDL2 (vector) Signed Absolute Difference Long D6.145 SABDL, SABDL2 (vector) on page D6-1407

SADALP (vector) Signed Add and Accumulate Long Pairwise D6.146 SADALP (vector) on page D6-1408

SADDL, SADDL2 (vector) Signed Add Long (vector) D6.147 SADDL, SADDL2 (vector) on page D6-1409

SADDLP (vector) Signed Add Long Pairwise D6.148 SADDLP (vector) on page D6-1410

SADDLV (vector) Signed Add Long across Vector D6.149 SADDLV (vector) on page D6-1411

SADDW, SADDW2 (vector) Signed Add Wide D6.150 SADDW, SADDW2 (vector) on page D6-1412

SCVTF (vector, fixed-point) Signed fixed-point Convert to Floating-point
(vector)

D6.151 SCVTF (vector, fixed-point) on page D6-1413

SCVTF (vector, integer) Signed integer Convert to Floating-point
(vector)

D6.152 SCVTF (vector, integer) on page D6-1414

SDOT (vector, by element) Dot Product signed arithmetic (vector, by
element)

D6.153 SDOT (vector, by element) on page D6-1415

SDOT (vector) Dot Product signed arithmetic (vector) D6.154 SDOT (vector) on page D6-1416

SHADD (vector) Signed Halving Add D6.155 SHADD (vector) on page D6-1417

SHL (vector) Shift Left (immediate) D6.156 SHL (vector) on page D6-1418

SHLL, SHLL2 (vector) Shift Left Long (by element size) D6.157 SHLL, SHLL2 (vector) on page D6-1419

SHRN, SHRN2 (vector) Shift Right Narrow (immediate) D6.158 SHRN, SHRN2 (vector) on page D6-1420

SHSUB (vector) Signed Halving Subtract D6.159 SHSUB (vector) on page D6-1421

SLI (vector) Shift Left and Insert (immediate) D6.160 SLI (vector) on page D6-1422

SMAX (vector) Signed Maximum (vector) D6.161 SMAX (vector) on page D6-1423

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1248
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

SMAXP (vector) Signed Maximum Pairwise D6.162 SMAXP (vector) on page D6-1424

SMAXV (vector) Signed Maximum across Vector D6.163 SMAXV (vector) on page D6-1425

SMIN (vector) Signed Minimum (vector) D6.164 SMIN (vector) on page D6-1426

SMINP (vector) Signed Minimum Pairwise D6.165 SMINP (vector) on page D6-1427

SMINV (vector) Signed Minimum across Vector D6.166 SMINV (vector) on page D6-1428

SMLAL, SMLAL2 (vector, by
element)

Signed Multiply-Add Long (vector, by element) D6.167 SMLAL, SMLAL2 (vector, by element)
on page D6-1429

SMLAL, SMLAL2 (vector) Signed Multiply-Add Long (vector) D6.168 SMLAL, SMLAL2 (vector) on page D6-1430

SMLSL, SMLSL2 (vector, by
element)

Signed Multiply-Subtract Long (vector, by
element)

D6.169 SMLSL, SMLSL2 (vector, by element)
on page D6-1431

SMLSL, SMLSL2 (vector) Signed Multiply-Subtract Long (vector) D6.170 SMLSL, SMLSL2 (vector) on page D6-1432

SMOV (vector) Signed Move vector element to general-purpose
register

D6.171 SMOV (vector) on page D6-1433

SMULL, SMULL2 (vector, by
element)

Signed Multiply Long (vector, by element) D6.172 SMULL, SMULL2 (vector, by element)
on page D6-1434

SMULL, SMULL2 (vector) Signed Multiply Long (vector) D6.173 SMULL, SMULL2 (vector) on page D6-1435

SQABS (vector) Signed saturating Absolute value D6.174 SQABS (vector) on page D6-1436

SQADD (vector) Signed saturating Add D6.175 SQADD (vector) on page D6-1437

SQDMLAL, SQDMLAL2
(vector, by element)

Signed saturating Doubling Multiply-Add Long
(by element)

D6.176 SQDMLAL, SQDMLAL2 (vector, by element)
on page D6-1438

SQDMLAL, SQDMLAL2
(vector)

Signed saturating Doubling Multiply-Add Long D6.177 SQDMLAL, SQDMLAL2 (vector)
on page D6-1440

SQDMLSL, SQDMLSL2
(vector, by element)

Signed saturating Doubling Multiply-Subtract
Long (by element)

D6.178 SQDMLSL, SQDMLSL2 (vector, by element)
on page D6-1441

SQDMLSL, SQDMLSL2
(vector)

Signed saturating Doubling Multiply-Subtract
Long

D6.179 SQDMLSL, SQDMLSL2 (vector)
on page D6-1443

SQDMULH (vector, by
element)

Signed saturating Doubling Multiply returning
High half (by element)

D6.180 SQDMULH (vector, by element)
on page D6-1444

SQDMULH (vector) Signed saturating Doubling Multiply returning
High half

D6.181 SQDMULH (vector) on page D6-1445

SQDMULL, SQDMULL2
(vector, by element)

Signed saturating Doubling Multiply Long (by
element)

D6.182 SQDMULL, SQDMULL2 (vector, by element)
on page D6-1446

SQDMULL, SQDMULL2
(vector)

Signed saturating Doubling Multiply Long D6.183 SQDMULL, SQDMULL2 (vector)
on page D6-1448

SQNEG (vector) Signed saturating Negate D6.184 SQNEG (vector) on page D6-1449

SQRDMLAH (vector, by
element)

Signed Saturating Rounding Doubling Multiply
Accumulate returning High Half (by element)

D6.185 SQRDMLAH (vector, by element)
on page D6-1450

SQRDMLAH (vector) Signed Saturating Rounding Doubling Multiply
Accumulate returning High Half (vector)

D6.186 SQRDMLAH (vector) on page D6-1451

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1249
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

SQRDMLSH (vector, by
element)

Signed Saturating Rounding Doubling Multiply
Subtract returning High Half (by element)

D6.187 SQRDMLSH (vector, by element)
on page D6-1452

SQRDMLSH (vector) Signed Saturating Rounding Doubling Multiply
Subtract returning High Half (vector)

D6.188 SQRDMLSH (vector) on page D6-1453

SQRDMULH (vector, by
element)

Signed saturating Rounding Doubling Multiply
returning High half (by element)

D6.189 SQRDMULH (vector, by element)
on page D6-1454

SQRDMULH (vector) Signed saturating Rounding Doubling Multiply
returning High half

D6.190 SQRDMULH (vector) on page D6-1455

SQRSHL (vector) Signed saturating Rounding Shift Left (register) D6.191 SQRSHL (vector) on page D6-1456

SQRSHRN, SQRSHRN2
(vector)

Signed saturating Rounded Shift Right Narrow
(immediate)

D6.192 SQRSHRN, SQRSHRN2 (vector)
on page D6-1457

SQRSHRUN, SQRSHRUN2
(vector)

Signed saturating Rounded Shift Right
Unsigned Narrow (immediate)

D6.193 SQRSHRUN, SQRSHRUN2 (vector)
on page D6-1458

SQSHL (vector, immediate) Signed saturating Shift Left (immediate) D6.194 SQSHL (vector, immediate) on page D6-1459

SQSHL (vector, register) Signed saturating Shift Left (register) D6.195 SQSHL (vector, register) on page D6-1460

SQSHLU (vector) Signed saturating Shift Left Unsigned
(immediate)

D6.196 SQSHLU (vector) on page D6-1461

SQSHRN, SQSHRN2 (vector) Signed saturating Shift Right Narrow
(immediate)

D6.197 SQSHRN, SQSHRN2 (vector)
on page D6-1462

SQSHRUN, SQSHRUN2
(vector)

Signed saturating Shift Right Unsigned Narrow
(immediate)

D6.198 SQSHRUN, SQSHRUN2 (vector)
on page D6-1463

SQSUB (vector) Signed saturating Subtract D6.199 SQSUB (vector) on page D6-1464

SQXTN, SQXTN2 (vector) Signed saturating extract Narrow D6.200 SQXTN, SQXTN2 (vector) on page D6-1465

SQXTUN, SQXTUN2 (vector) Signed saturating extract Unsigned Narrow D6.201 SQXTUN, SQXTUN2 (vector)
on page D6-1466

SRHADD (vector) Signed Rounding Halving Add D6.202 SRHADD (vector) on page D6-1467

SRI (vector) Shift Right and Insert (immediate) D6.203 SRI (vector) on page D6-1468

SRSHL (vector) Signed Rounding Shift Left (register) D6.204 SRSHL (vector) on page D6-1469

SRSHR (vector) Signed Rounding Shift Right (immediate) D6.205 SRSHR (vector) on page D6-1470

SRSRA (vector) Signed Rounding Shift Right and Accumulate
(immediate)

D6.206 SRSRA (vector) on page D6-1471

SSHL (vector) Signed Shift Left (register) D6.207 SSHL (vector) on page D6-1472

SSHLL, SSHLL2 (vector) Signed Shift Left Long (immediate) D6.208 SSHLL, SSHLL2 (vector) on page D6-1473

SSHR (vector) Signed Shift Right (immediate) D6.209 SSHR (vector) on page D6-1474

SSRA (vector) Signed Shift Right and Accumulate
(immediate)

D6.210 SSRA (vector) on page D6-1475

SSUBL, SSUBL2 (vector) Signed Subtract Long D6.211 SSUBL, SSUBL2 (vector) on page D6-1476

SSUBW, SSUBW2 (vector) Signed Subtract Wide D6.212 SSUBW, SSUBW2 (vector) on page D6-1477

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1250
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

ST1 (vector, multiple
structures)

Store multiple single-element structures from
one, two, three, or four registers

D6.213 ST1 (vector, multiple structures)
on page D6-1478

ST1 (vector, single
structure)

Store a single-element structure from one lane
of one register

D6.214 ST1 (vector, single structure)
on page D6-1481

ST2 (vector, multiple
structures)

Store multiple 2-element structures from two
registers

D6.215 ST2 (vector, multiple structures)
on page D6-1482

ST2 (vector, single
structure)

Store single 2-element structure from one lane
of two registers

D6.216 ST2 (vector, single structure)
on page D6-1483

ST3 (vector, multiple
structures)

Store multiple 3-element structures from three
registers

D6.217 ST3 (vector, multiple structures)
on page D6-1484

ST3 (vector, single
structure)

Store single 3-element structure from one lane
of three registers

D6.218 ST3 (vector, single structure)
on page D6-1485

ST4 (vector, multiple
structures)

Store multiple 4-element structures from four
registers

D6.219 ST4 (vector, multiple structures)
on page D6-1487

ST4 (vector, single
structure)

Store single 4-element structure from one lane
of four registers

D6.220 ST4 (vector, single structure)
on page D6-1488

SUB (vector) Subtract (vector) D6.221 SUB (vector) on page D6-1490

SUBHN, SUBHN2 (vector) Subtract returning High Narrow D6.222 SUBHN, SUBHN2 (vector) on page D6-1491

SUQADD (vector) Signed saturating Accumulate of Unsigned
value

D6.223 SUQADD (vector) on page D6-1492

SXTL, SXTL2 (vector) Signed extend Long D6.224 SXTL, SXTL2 (vector) on page D6-1493

TBL (vector) Table vector Lookup D6.225 TBL (vector) on page D6-1494

TBX (vector) Table vector lookup extension D6.226 TBX (vector) on page D6-1495

TRN1 (vector) Transpose vectors (primary) D6.227 TRN1 (vector) on page D6-1496

TRN2 (vector) Transpose vectors (secondary) D6.228 TRN2 (vector) on page D6-1497

UABA (vector) Unsigned Absolute difference and Accumulate D6.229 UABA (vector) on page D6-1498

UABAL, UABAL2 (vector) Unsigned Absolute difference and Accumulate
Long

D6.230 UABAL, UABAL2 (vector) on page D6-1499

UABD (vector) Unsigned Absolute Difference (vector) D6.231 UABD (vector) on page D6-1500

UABDL, UABDL2 (vector) Unsigned Absolute Difference Long D6.232 UABDL, UABDL2 (vector) on page D6-1501

UADALP (vector) Unsigned Add and Accumulate Long Pairwise D6.233 UADALP (vector) on page D6-1502

UADDL, UADDL2 (vector) Unsigned Add Long (vector) D6.234 UADDL, UADDL2 (vector) on page D6-1503

UADDLP (vector) Unsigned Add Long Pairwise D6.235 UADDLP (vector) on page D6-1504

UADDLV (vector) Unsigned sum Long across Vector D6.236 UADDLV (vector) on page D6-1505

UADDW, UADDW2 (vector) Unsigned Add Wide D6.237 UADDW, UADDW2 (vector)
on page D6-1506

UCVTF (vector, fixed-point) Unsigned fixed-point Convert to Floating-point
(vector)

D6.238 UCVTF (vector, fixed-point) on page D6-1507

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1251
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

UCVTF (vector, integer) Unsigned integer Convert to Floating-point
(vector)

D6.239 UCVTF (vector, integer) on page D6-1508

UDOT (vector, by element) Dot Product unsigned arithmetic (vector, by
element)

D6.240 UDOT (vector, by element) on page D6-1509

UDOT (vector) Dot Product unsigned arithmetic (vector) D6.241 UDOT (vector) on page D6-1510

UHADD (vector) Unsigned Halving Add D6.242 UHADD (vector) on page D6-1511

UHSUB (vector) Unsigned Halving Subtract D6.243 UHSUB (vector) on page D6-1512

UMAX (vector) Unsigned Maximum (vector) D6.244 UMAX (vector) on page D6-1513

UMAXP (vector) Unsigned Maximum Pairwise D6.245 UMAXP (vector) on page D6-1514

UMAXV (vector) Unsigned Maximum across Vector D6.246 UMAXV (vector) on page D6-1515

UMIN (vector) Unsigned Minimum (vector) D6.247 UMIN (vector) on page D6-1516

UMINP (vector) Unsigned Minimum Pairwise D6.248 UMINP (vector) on page D6-1517

UMINV (vector) Unsigned Minimum across Vector D6.249 UMINV (vector) on page D6-1518

UMLAL, UMLAL2 (vector, by
element)

Unsigned Multiply-Add Long (vector, by
element)

D6.250 UMLAL, UMLAL2 (vector, by element)
on page D6-1519

UMLAL, UMLAL2 (vector) Unsigned Multiply-Add Long (vector) D6.251 UMLAL, UMLAL2 (vector) on page D6-1520

UMLSL, UMLSL2 (vector, by
element)

Unsigned Multiply-Subtract Long (vector, by
element)

D6.252 UMLSL, UMLSL2 (vector, by element)
on page D6-1521

UMLSL, UMLSL2 (vector) Unsigned Multiply-Subtract Long (vector) D6.253 UMLSL, UMLSL2 (vector) on page D6-1522

UMOV (vector) Unsigned Move vector element to general-
purpose register

D6.254 UMOV (vector) on page D6-1523

UMULL, UMULL2 (vector, by
element)

Unsigned Multiply Long (vector, by element) D6.255 UMULL, UMULL2 (vector, by element)
on page D6-1524

UMULL, UMULL2 (vector) Unsigned Multiply long (vector) D6.256 UMULL, UMULL2 (vector) on page D6-1525

UQADD (vector) Unsigned saturating Add D6.257 UQADD (vector) on page D6-1526

UQRSHL (vector) Unsigned saturating Rounding Shift Left
(register)

D6.258 UQRSHL (vector) on page D6-1527

UQRSHRN, UQRSHRN2
(vector)

Unsigned saturating Rounded Shift Right
Narrow (immediate)

D6.259 UQRSHRN, UQRSHRN2 (vector)
on page D6-1528

UQSHL (vector, immediate) Unsigned saturating Shift Left (immediate) D6.260 UQSHL (vector, immediate) on page D6-1529

UQSHL (vector, register) Unsigned saturating Shift Left (register) D6.261 UQSHL (vector, register) on page D6-1530

UQSHRN, UQSHRN2 (vector) Unsigned saturating Shift Right Narrow
(immediate)

D6.262 UQSHRN, UQSHRN2 (vector)
on page D6-1531

UQSUB (vector) Unsigned saturating Subtract D6.263 UQSUB (vector) on page D6-1533

UQXTN, UQXTN2 (vector) Unsigned saturating extract Narrow D6.264 UQXTN, UQXTN2 (vector) on page D6-1534

URECPE (vector) Unsigned Reciprocal Estimate D6.265 URECPE (vector) on page D6-1535

URHADD (vector) Unsigned Rounding Halving Add D6.266 URHADD (vector) on page D6-1536

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1252
Non-Confidential

Table D6-1 Summary of A64 SIMD Vector instructions (continued)

Mnemonic Brief description See

URSHL (vector) Unsigned Rounding Shift Left (register) D6.267 URSHL (vector) on page D6-1537

URSHR (vector) Unsigned Rounding Shift Right (immediate) D6.268 URSHR (vector) on page D6-1538

URSQRTE (vector) Unsigned Reciprocal Square Root Estimate D6.269 URSQRTE (vector) on page D6-1539

URSRA (vector) Unsigned Rounding Shift Right and
Accumulate (immediate)

D6.270 URSRA (vector) on page D6-1540

USHL (vector) Unsigned Shift Left (register) D6.271 USHL (vector) on page D6-1541

USHLL, USHLL2 (vector) Unsigned Shift Left Long (immediate) D6.272 USHLL, USHLL2 (vector) on page D6-1542

USHR (vector) Unsigned Shift Right (immediate) D6.273 USHR (vector) on page D6-1543

USQADD (vector) Unsigned saturating Accumulate of Signed
value

D6.274 USQADD (vector) on page D6-1544

USRA (vector) Unsigned Shift Right and Accumulate
(immediate)

D6.275 USRA (vector) on page D6-1545

USUBL, USUBL2 (vector) Unsigned Subtract Long D6.276 USUBL, USUBL2 (vector) on page D6-1546

USUBW, USUBW2 (vector) Unsigned Subtract Wide D6.277 USUBW, USUBW2 (vector) on page D6-1547

UXTL, UXTL2 (vector) Unsigned extend Long D6.278 UXTL, UXTL2 (vector) on page D6-1548

UZP1 (vector) Unzip vectors (primary) D6.279 UZP1 (vector) on page D6-1549

UZP2 (vector) Unzip vectors (secondary) D6.280 UZP2 (vector) on page D6-1550

XTN, XTN2 (vector) Extract Narrow D6.281 XTN, XTN2 (vector) on page D6-1551

ZIP1 (vector) Zip vectors (primary) D6.282 ZIP1 (vector) on page D6-1552

ZIP2 (vector) Zip vectors (secondary) D6.283 ZIP2 (vector) on page D6-1553

D6 A64 SIMD Vector Instructions
D6.1 A64 SIMD Vector instructions in alphabetical order

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1253
Non-Confidential

D6.2 ABS (vector)
Absolute value (vector).

Syntax

ABS Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Absolute value (vector). This instruction calculates the absolute value of each vector element in the
source SIMD and FP register, puts the result into a vector, and writes the vector to the destination SIMD
and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.2 ABS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1254
Non-Confidential

D6.3 ADD (vector)
Add (vector).

Syntax

ADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Add (vector). This instruction adds corresponding elements in the two source SIMD and FP registers,
places the results into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.3 ADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1255
Non-Confidential

D6.4 ADDHN, ADDHN2 (vector)
Add returning High Narrow.

Syntax

ADDHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Add returning High Narrow. This instruction adds each vector element in the first source SIMD and FP
register to the corresponding vector element in the second source SIMD and FP register, places the most
significant half of the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD and FP register.

The results are truncated. For rounded results, see D6.135 RADDHN, RADDHN2 (vector)
on page D6-1397.

The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the ADDHN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-2 ADDHN, ADDHN2 (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.4 ADDHN, ADDHN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1256
Non-Confidential

D6.5 ADDP (vector)
Add Pairwise (vector).

Syntax

ADDP Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first
source SIMD and FP register after the vector elements of the second source SIMD and FP register, reads
each pair of adjacent vector elements from the concatenated vector, adds each pair of values together,
places the result into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.5 ADDP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1257
Non-Confidential

D6.6 ADDV (vector)
Add across Vector.

Syntax

ADDV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Add across Vector. This instruction adds every vector element in the source SIMD and FP register
together, and writes the scalar result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-3 ADDV (Vector) specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.6 ADDV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1258
Non-Confidential

D6.7 AND (vector)
Bitwise AND (vector).

Syntax

AND Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD and FP
registers, and writes the result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.7 AND (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1259
Non-Confidential

D6.8 BIC (vector, immediate)
Bitwise bit Clear (vector, immediate).

Syntax

BIC Vd.T, #imm8{, LSL #amount} ; 16-bit

BIC Vd.T, #imm8{, LSL #amount} ; 32-bit

Where:

T

Is an arrangement specifier:

16-bit
Can be one of 4H or 8H.

32-bit
Can be one of 2S or 4S.

amount

Is the shift amount:

16-bit
Can be one of 0 or 8.

32-bit
Can be one of 0, 8, 16 or 24.

Defaults to zero if LSL is omitted.

Vd
Is the name of the SIMD and FP register.

imm8
Is an 8-bit immediate.

Usage

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination
SIMD and FP register, performs a bitwise AND between each result and the complement of an
immediate constant, places the result into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.8 BIC (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1260
Non-Confidential

D6.9 BIC (vector, register)
Bitwise bit Clear (vector, register).

Syntax

BIC Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source
SIMD and FP register and the complement of the second source SIMD and FP register, and writes the
result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.9 BIC (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1261
Non-Confidential

D6.10 BIF (vector)
Bitwise Insert if False.

Syntax

BIF Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD and FP register into
the destination SIMD and FP register if the corresponding bit of the second source SIMD and FP register
is 0, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.10 BIF (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1262
Non-Confidential

D6.11 BIT (vector)
Bitwise Insert if True.

Syntax

BIT Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD and FP register into
the SIMD and FP destination register if the corresponding bit of the second source SIMD and FP register
is 1, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.11 BIT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1263
Non-Confidential

D6.12 BSL (vector)
Bitwise Select.

Syntax

BSL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise Select. This instruction sets each bit in the destination SIMD and FP register to the
corresponding bit from the first source SIMD and FP register when the original destination bit was 1,
otherwise from the second source SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.12 BSL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1264
Non-Confidential

D6.13 CLS (vector)
Count Leading Sign bits (vector).

Syntax

CLS Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Usage

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the
most significant bit that are the same as the most significant bit in each vector element in the source
SIMD and FP register, places the result into a vector, and writes the vector to the destination SIMD and
FP register. The count does not include the most significant bit itself.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.13 CLS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1265
Non-Confidential

D6.14 CLZ (vector)
Count Leading Zero bits (vector).

Syntax

CLZ Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Usage

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from
the most significant bit, in each vector element in the source SIMD and FP register, places the result into
a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.14 CLZ (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1266
Non-Confidential

D6.15 CMEQ (vector, register)
Compare bitwise Equal (vector).

Syntax

CMEQ Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare bitwise Equal (vector). This instruction compares each vector element from the first source
SIMD and FP register with the corresponding vector element from the second source SIMD and FP
register, and if the comparison is equal sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.15 CMEQ (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1267
Non-Confidential

D6.16 CMEQ (vector, zero)
Compare bitwise Equal to zero (vector).

Syntax

CMEQ Vd.T, Vn.T, #0

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD
and FP register and if the value is equal to zero sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.16 CMEQ (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1268
Non-Confidential

D6.17 CMGE (vector, register)
Compare signed Greater than or Equal (vector).

Syntax

CMGE Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the
first source SIMD and FP register with the corresponding vector element in the second source SIMD and
FP register and if the first signed integer value is greater than or equal to the second signed integer value
sets every bit of the corresponding vector element in the destination SIMD and FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD and FP register to
zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.17 CMGE (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1269
Non-Confidential

D6.18 CMGE (vector, zero)
Compare signed Greater than or Equal to zero (vector).

Syntax

CMGE Vd.T, Vn.T, #0

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the
source SIMD and FP register and if the signed integer value is greater than or equal to zero sets every bit
of the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every
bit of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.18 CMGE (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1270
Non-Confidential

D6.19 CMGT (vector, register)
Compare signed Greater than (vector).

Syntax

CMGT Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare signed Greater than (vector). This instruction compares each vector element in the first source
SIMD and FP register with the corresponding vector element in the second source SIMD and FP register
and if the first signed integer value is greater than the second signed integer value sets every bit of the
corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.19 CMGT (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1271
Non-Confidential

D6.20 CMGT (vector, zero)
Compare signed Greater than zero (vector).

Syntax

CMGT Vd.T, Vn.T, #0

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Compare signed Greater than zero (vector). This instruction reads each vector element in the source
SIMD and FP register and if the signed integer value is greater than zero sets every bit of the
corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.20 CMGT (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1272
Non-Confidential

D6.21 CMHI (vector, register)
Compare unsigned Higher (vector).

Syntax

CMHI Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare unsigned Higher (vector). This instruction compares each vector element in the first source
SIMD and FP register with the corresponding vector element in the second source SIMD and FP register
and if the first unsigned integer value is greater than the second unsigned integer value sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.21 CMHI (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1273
Non-Confidential

D6.22 CMHS (vector, register)
Compare unsigned Higher or Same (vector).

Syntax

CMHS Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first
source SIMD and FP register with the corresponding vector element in the second source SIMD and FP
register and if the first unsigned integer value is greater than or equal to the second unsigned integer
value sets every bit of the corresponding vector element in the destination SIMD and FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD and FP register to
zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.22 CMHS (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1274
Non-Confidential

D6.23 CMLE (vector, zero)
Compare signed Less than or Equal to zero (vector).

Syntax

CMLE Vd.T, Vn.T, #0

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the
source SIMD and FP register and if the signed integer value is less than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.23 CMLE (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1275
Non-Confidential

D6.24 CMLT (vector, zero)
Compare signed Less than zero (vector).

Syntax

CMLT Vd.T, Vn.T, #0

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD
and FP register and if the signed integer value is less than zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.24 CMLT (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1276
Non-Confidential

D6.25 CMTST (vector)
Compare bitwise Test bits nonzero (vector).

Syntax

CMTST Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source
SIMD and FP register, performs an AND with the corresponding vector element in the second source
SIMD and FP register, and if the result is not zero, sets every bit of the corresponding vector element in
the destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD and FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.25 CMTST (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1277
Non-Confidential

D6.26 CNT (vector)
Population Count per byte.

Syntax

CNT Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the SIMD and FP source register.

Usage

Population Count per byte. This instruction counts the number of bits that have a value of one in each
vector element in the source SIMD and FP register, places the result into a vector, and writes the vector
to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.26 CNT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1278
Non-Confidential

D6.27 DUP (vector, element)
vector.

Syntax

DUP Vd.T, Vn.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Ts
Is an element size specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

index
Is the element index, in the range shown in Usage.

Usage

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the
specified element index in the source SIMD and FP register into a scalar or each element in a vector, and
writes the result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-4 DUP (Vector) specifier combinations

T Ts index

8B B 0 to 15

16B B 0 to 15

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1

Related reference
D5.1 A64 SIMD scalar instructions in alphabetical order on page D5-1110

D6 A64 SIMD Vector Instructions
D6.27 DUP (vector, element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1279
Non-Confidential

D6.28 DUP (vector, general)
Duplicate general-purpose register to vector.

Syntax

DUP Vd.T, Rn

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

R
Is the width specifier for the general-purpose source register, and can be either W or X.

n
Is the number [0-30] of the general-purpose source register or ZR (31).

Usage

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source
general-purpose register into a scalar or each element in a vector, and writes the result to the SIMD and
FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-5 DUP (Vector) specifier combinations

T R

8B W

16B W

4H W

8H W

2S W

4S W

2D X

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.28 DUP (vector, general)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1280
Non-Confidential

D6.29 EOR (vector)
Bitwise Exclusive OR (vector).

Syntax

EOR Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the
two source SIMD and FP registers, and places the result in the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.29 EOR (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1281
Non-Confidential

D6.30 EXT (vector)
Extract vector from pair of vectors.

Syntax

EXT Vd.T, Vn.T, Vm.T, #index

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

index
Is the lowest numbered byte element to be extracted in the range shown in Usage.

Usage

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second
source SIMD and FP register and the highest vector elements from the first source SIMD and FP register,
concatenates the results into a vector, and writes the vector to the destination SIMD and FP register
vector. The index value specifies the lowest vector element to extract from the first source register, and
consecutive elements are extracted from the first, then second, source registers until the destination
vector is filled.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-6 EXT (Vector) specifier combinations

T index

8B 0 to 7

16B 0 to 15

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.30 EXT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1282
Non-Confidential

D6.31 FABD (vector)
Floating-point Absolute Difference (vector).

Syntax

FABD Vd.T, Vn.T, Vm.T ; Vector half precision

FABD Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the
elements of the second source SIMD and FP register, from the corresponding floating-point values in the
elements of the first source SIMD and FP register, places the absolute value of each result in a vector,
and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.31 FABD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1283
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.32 FABS (vector)
Floating-point Absolute value (vector).

Syntax

FABS Vd.T, Vn.T ; Half-precision

FABS Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector
element in the source SIMD and FP register, writes the result to a vector, and writes the vector to the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.32 FABS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1284
Non-Confidential

D6.33 FACGE (vector)
Floating-point Absolute Compare Greater than or Equal (vector).

Syntax

FACGE Vd.T, Vn.T, Vm.T ; Vector half precision

FACGE Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute
value of each floating-point value in the first source SIMD and FP register with the absolute value of the
corresponding floating-point value in the second source SIMD and FP register and if the first value is
greater than or equal to the second value sets every bit of the corresponding vector element in the
destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.33 FACGE (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1285
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.34 FACGT (vector)
Floating-point Absolute Compare Greater than (vector).

Syntax

FACGT Vd.T, Vn.T, Vm.T ; Vector half precision

FACGT Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of
each vector element in the first source SIMD and FP register with the absolute value of the
corresponding vector element in the second source SIMD and FP register and if the first value is greater
than the second value sets every bit of the corresponding vector element in the destination SIMD and FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD and
FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.34 FACGT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1286
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.35 FADD (vector)
Floating-point Add (vector).

Syntax

FADD Vd.T, Vn.T, Vm.T ; Half-precision

FADD Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source
SIMD and FP registers, writes the result into a vector, and writes the vector to the destination SIMD and
FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.35 FADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1287
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.36 FADDP (vector)
Floating-point Add Pairwise (vector).

Syntax

FADDP Vd.T, Vn.T, Vm.T ; Half-precision

FADDP Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD and FP register after the vector elements of the second source SIMD
and FP register, reads each pair of adjacent vector elements from the concatenated vector, adds each pair
of values together, places the result into a vector, and writes the vector to the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.36 FADDP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1288
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.37 FCADD (vector)
Floating-point Complex Add.

Syntax

FCADD Vd.T, Vn.T, Vm.T, #rotate

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

rotate
Is the rotation, and can be either 90 or 270.

Architectures supported (vector)

Supported in Armv8.3-A architecture and later.

Usage

Floating-point Complex Add.

This instruction adds two source complex numbers from the Vm and the Vn vector registers and places the
resulting complex number in the destination Vd vector register. The number of complex numbers that can
be stored in the Vm, the Vn, and the Vd registers is calculated as the vector register size divided by the
length of each complex number. These lengths are 16 for half-precision, 32 for single-precision, and 64
for double-precision. Each complex number is represented in a SIMP&FP register as a pair of elements
with the imaginary part of the number being placed in the more significant element, and the real part of
the number being placed in the less significant element. Both real and imaginary parts of the source and
the resulting complex number are represented as floating-point values.

One of the two vector elements that are read from each of the numbers in the Vm source SIMD and FP
register can be optionally negated based on the rotation value:
• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.37 FCADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1289
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.38 FCMEQ (vector, register)
Floating-point Compare Equal (vector).

Syntax

FCMEQ Vd.T, Vn.T, Vm.T ; Vector half precision

FCMEQ Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the
first source SIMD and FP register, with the corresponding floating-point value from the second source
SIMD and FP register, and if the comparison is equal sets every bit of the corresponding vector element
in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.38 FCMEQ (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1290
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.39 FCMEQ (vector, zero)
Floating-point Compare Equal to zero (vector).

Syntax

FCMEQ Vd.T, Vn.T, #0.0 ; Vector half precision

FCMEQ Vd.T, Vn.T, #0.0 ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is equal to zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.39 FCMEQ (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1291
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.40 FCMGE (vector, register)
Floating-point Compare Greater than or Equal (vector).

Syntax

FCMGE Vd.T, Vn.T, Vm.T ; Vector half precision

FCMGE Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value
in the first source SIMD and FP register and if the value is greater than or equal to the corresponding
floating-point value in the second source SIMD and FP register sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.40 FCMGE (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1292
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.41 FCMGE (vector, zero)
Floating-point Compare Greater than or Equal to zero (vector).

Syntax

FCMGE Vd.T, Vn.T, #0.0 ; Vector half precision

FCMGE Vd.T, Vn.T, #0.0 ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point
value in the source SIMD and FP register and if the value is greater than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.41 FCMGE (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1293
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.42 FCMGT (vector, register)
Floating-point Compare Greater than (vector).

Syntax

FCMGT Vd.T, Vn.T, Vm.T ; Vector half precision

FCMGT Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first
source SIMD and FP register and if the value is greater than the corresponding floating-point value in the
second source SIMD and FP register sets every bit of the corresponding vector element in the destination
SIMD and FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.42 FCMGT (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1294
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.43 FCMGT (vector, zero)
Floating-point Compare Greater than zero (vector).

Syntax

FCMGT Vd.T, Vn.T, #0.0 ; Vector half precision

FCMGT Vd.T, Vn.T, #0.0 ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is greater than zero sets every bit of the corresponding
vector element in the destination SIMD and FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.43 FCMGT (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1295
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.44 FCMLA (vector)
Floating-point Complex Multiply Accumulate.

Syntax

FCMLA Vd.T, Vn.T, Vm.T, #rotate

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

rotate
Is the rotation, and can be one of 0, 90, 180 or 270.

Architectures supported (vector)

Supported in Armv8.3-A architecture and later.

Usage

This instruction multiplies the two source complex numbers from the Vm and the Vn vector registers and
adds the result to the corresponding complex number in the destination Vd vector register. The number of
complex numbers that can be stored in the Vm, the Vn, and the Vd registers is calculated as the vector
register size divided by the length of each complex number. These lengths are 16 for half-precision, 32
for single-precision, and 64 for double-precision. Each complex number is represented in a SIMP&FP
register as a pair of elements with the imaginary part of the number being placed in the more significant
element, and the real part of the number being placed in the less significant element. Both real and
imaginary parts of the source and the resulting complex number are represented as floating-point values.

None, one, or both of the two vector elements that are read from each of the numbers in the Vm source
SIMD and FP register can be negated based on the rotation value:
• If the rotation is 0, none of the vector elements are negated.
• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 180, both vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.44 FCMLA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1296
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.45 FCMLE (vector, zero)
Floating-point Compare Less than or Equal to zero (vector).

Syntax

FCMLE Vd.T, Vn.T, #0.0 ; Vector half precision

FCMLE Vd.T, Vn.T, #0.0 ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point
value in the source SIMD and FP register and if the value is less than or equal to zero sets every bit of
the corresponding vector element in the destination SIMD and FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.45 FCMLE (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1297
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.46 FCMLT (vector, zero)
Floating-point Compare Less than zero (vector).

Syntax

FCMLT Vd.T, Vn.T, #0.0 ; Vector half precision

FCMLT Vd.T, Vn.T, #0.0 ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the
source SIMD and FP register and if the value is less than zero sets every bit of the corresponding vector
element in the destination SIMD and FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD and FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.46 FCMLT (vector, zero)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1298
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.47 FCVTAS (vector)
Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).

Syntax

FCVTAS Vd.T, Vn.T ; Vector half precision

FCVTAS Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction
converts each element in a vector from a floating-point value to a signed integer value using the Round
to Nearest with Ties to Away rounding mode and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.47 FCVTAS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1299
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.48 FCVTAU (vector)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).

Syntax

FCVTAU Vd.T, Vn.T ; Vector half precision

FCVTAU Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This
instruction converts each element in a vector from a floating-point value to an unsigned integer value
using the Round to Nearest with Ties to Away rounding mode and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.48 FCVTAU (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1300
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.49 FCVTL, FCVTL2 (vector)
Floating-point Convert to higher precision Long (vector).

Syntax

FCVTL{2} Vd.Ta, Vn.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector
in the SIMD and FP source register, converts each value to double the precision of the source element
using the rounding mode that is determined by the FPCR, and writes each result to the equivalent
element of the vector in the SIMD and FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the
elements in the top 64 bits of the source register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-7 FCVTL, FCVTL2 (Vector) specifier combinations

<Q> Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.49 FCVTL, FCVTL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1301
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.50 FCVTMS (vector)
Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).

Syntax

FCVTMS Vd.T, Vn.T ; Vector half precision

FCVTMS Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.50 FCVTMS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1302
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.51 FCVTMU (vector)
Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).

Syntax

FCVTMU Vd.T, Vn.T ; Vector half precision

FCVTMU Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to an unsigned integer value
using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.51 FCVTMU (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1303
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.52 FCVTN, FCVTN2 (vector)
Floating-point Convert to lower precision Narrow (vector).

Syntax

FCVTN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Usage

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in
the SIMD and FP source register, converts each result to half the precision of the source element, writes
the final result to a vector, and writes the vector to the lower or upper half of the destination SIMD and
FP register. The destination vector elements are half as long as the source vector elements. The rounding
mode is determined by the FPCR.

The FCVTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the FCVTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D6-8 FCVTN, FCVTN2 (Vector) specifier combinations

<Q> Tb Ta

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.52 FCVTN, FCVTN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1304
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.53 FCVTNS (vector)
Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).

Syntax

FCVTNS Vd.T, Vn.T ; Vector half precision

FCVTNS Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round to Nearest rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.53 FCVTNS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1305
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.54 FCVTNU (vector)
Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).

Syntax

FCVTNU Vd.T, Vn.T ; Vector half precision

FCVTNU Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This
instruction converts a scalar or each element in a vector from a floating-point value to an unsigned
integer value using the Round to Nearest rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.54 FCVTNU (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1306
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.55 FCVTPS (vector)
Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).

Syntax

FCVTPS Vd.T, Vn.T ; Vector half precision

FCVTPS Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to a signed integer value using
the Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.55 FCVTPS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1307
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.56 FCVTPU (vector)
Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).

Syntax

FCVTPU Vd.T, Vn.T ; Vector half precision

FCVTPU Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction
converts a scalar or each element in a vector from a floating-point value to an unsigned integer value
using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.56 FCVTPU (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1308
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.57 FCVTXN, FCVTXN2 (vector)
Floating-point Convert to lower precision Narrow, rounding to odd (vector).

Syntax

FCVTXN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, 2D.

Usage

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each
vector element in the source SIMD and FP register, narrows each value to half the precision of the source
element using the Round to Odd rounding mode, writes the result to a vector, and writes the vector to the
destination SIMD and FP register.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the FCVTXN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-9 FCVTXN{2} (Vector) specifier combinations

<Q> Tb Ta

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.57 FCVTXN, FCVTXN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1309
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.58 FCVTZS (vector, fixed-point)
Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).

Syntax

FCVTZS Vd.T, Vn.T, #fbits

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the element width.

Usage

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from floating-point to fixed-point signed integer using the Round
towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D6-10 FCVTZS (Vector) specifier combinations

T fbits

4H

8H

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.58 FCVTZS (vector, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1310
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.59 FCVTZS (vector, integer)
Floating-point Convert to Signed integer, rounding toward Zero (vector).

Syntax

FCVTZS Vd.T, Vn.T ; Vector half precision

FCVTZS Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to a signed integer value using the Round
towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.59 FCVTZS (vector, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1311
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.60 FCVTZU (vector, fixed-point)
Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector).

Syntax

FCVTZU Vd.T, Vn.T, #fbits

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the element width.

Usage

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts
a scalar or each element in a vector from floating-point to fixed-point unsigned integer using the Round
towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D6-11 FCVTZU (Vector) specifier combinations

T fbits

4H

8H

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.60 FCVTZU (vector, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1312
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.61 FCVTZU (vector, integer)
Floating-point Convert to Unsigned integer, rounding toward Zero (vector).

Syntax

FCVTZU Vd.T, Vn.T ; Vector half precision

FCVTZU Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the
Round towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.61 FCVTZU (vector, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1313
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.62 FDIV (vector)
Floating-point Divide (vector).

Syntax

FDIV Vd.T, Vn.T, Vm.T ; Half-precision

FDIV Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the
first source SIMD and FP register, by the floating-point values in the corresponding elements in the
second source SIMD and FP register, places the results in a vector, and writes the vector to the
destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.62 FDIV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1314
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.63 FMAX (vector)
Floating-point Maximum (vector).

Syntax

FMAX Vd.T, Vn.T, Vm.T ; Half-precision

FMAX Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two
source SIMD and FP registers, places the larger of each of the two floating-point values into a vector,
and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.63 FMAX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1315
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.64 FMAXNM (vector)
Floating-point Maximum Number (vector).

Syntax

FMAXNM Vd.T, Vn.T, Vm.T ; Half-precision

FMAXNM Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in
the two source SIMD and FP registers, writes the larger of the two floating-point values into a vector,
and writes the vector to the destination SIMD and FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result placed in the vector is the numerical value, otherwise the result is
identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.64 FMAXNM (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1316
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.65 FMAXNMP (vector)
Floating-point Maximum Number Pairwise (vector).

Syntax

FMAXNMP Vd.T, Vn.T, Vm.T ; Half-precision

FMAXNMP Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating
the vector elements of the first source SIMD and FP register after the vector elements of the second
source SIMD and FP register, reads each pair of adjacent vector elements in the two source SIMD and
FP registers, writes the largest of each pair of values into a vector, and writes the vector to the destination
SIMD and FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.65 FMAXNMP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1317
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.66 FMAXNMV (vector)
Floating-point Maximum Number across Vector.

Syntax

FMAXNMV Vd, Vn.T ; Half-precision

FMAXNMV Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Must be S.

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Must be 4S.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the
source SIMD and FP register, and writes the largest of the values as a scalar to the destination SIMD and
FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result of the comparison is the numerical value, otherwise the result is identical
to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.66 FMAXNMV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1318
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.67 FMAXP (vector)
Floating-point Maximum Pairwise (vector).

Syntax

FMAXP Vd.T, Vn.T, Vm.T ; Half-precision

FMAXP Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD and FP register after the vector elements of the second source SIMD
and FP register, reads each pair of adjacent vector elements from the concatenated vector, writes the
larger of each pair of values into a vector, and writes the vector to the destination SIMD and FP register.
All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.67 FMAXP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1319
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.68 FMAXV (vector)
Floating-point Maximum across Vector.

Syntax

FMAXV Vd, Vn.T ; Half-precision

FMAXV Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Must be S.

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Must be 4S.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source
SIMD and FP register, and writes the largest of the values as a scalar to the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.68 FMAXV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1320
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.69 FMIN (vector)
Floating-point minimum (vector).

Syntax

FMIN Vd.T, Vn.T, Vm.T ; Half-precision

FMIN Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the
two source SIMD and FP registers, places the smaller of each of the two floating-point values into a
vector, and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.69 FMIN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1321
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.70 FMINNM (vector)
Floating-point Minimum Number (vector).

Syntax

FMINNM Vd.T, Vn.T, Vm.T ; Half-precision

FMINNM Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in
the two source SIMD and FP registers, writes the smaller of the two floating-point values into a vector,
and writes the vector to the destination SIMD and FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result placed in the vector is the numerical value, otherwise the result is
identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.70 FMINNM (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1322
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.71 FMINNMP (vector)
Floating-point Minimum Number Pairwise (vector).

Syntax

FMINNMP Vd.T, Vn.T, Vm.T ; Half-precision

FMINNMP Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating
the vector elements of the first source SIMD and FP register after the vector elements of the second
source SIMD and FP register, reads each pair of adjacent vector elements in the two source SIMD and
FP registers, writes the smallest of each pair of floating-point values into a vector, and writes the vector
to the destination SIMD and FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.71 FMINNMP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1323
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.72 FMINNMV (vector)
Floating-point Minimum Number across Vector.

Syntax

FMINNMV Vd, Vn.T ; Half-precision

FMINNMV Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Must be S.

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Must be 4S.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the
source SIMD and FP register, and writes the smallest of the values as a scalar to the destination SIMD
and FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the
other is a quiet NaN, the result of the comparison is the numerical value, otherwise the result is identical
to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.72 FMINNMV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1324
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.73 FMINP (vector)
Floating-point Minimum Pairwise (vector).

Syntax

FMINP Vd.T, Vn.T, Vm.T ; Half-precision

FMINP Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD and FP register after the vector elements of the second source SIMD
and FP register, reads each pair of adjacent vector elements from the concatenated vector, writes the
smaller of each pair of values into a vector, and writes the vector to the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.73 FMINP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1325
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.74 FMINV (vector)
Floating-point Minimum across Vector.

Syntax

FMINV Vd, Vn.T ; Half-precision

FMINV Vd, Vn.T ; Single-precision and double-precision

Where:

V

Is the destination width specifier:

Half-precision
Must be H.

Single-precision and double-precision
Must be S.

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Must be 4S.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source
SIMD and FP register, and writes the smallest of the values as a scalar to the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.74 FMINV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1326
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.75 FMLA (vector, by element)
Floating-point fused Multiply-Add to accumulator (by element).

Syntax

FMLA Vd.T, Vn.T, Vm.Ts[index] ; Vector, half-precision

FMLA Vd.T, Vn.T, Vm.Ts[index] ; Vector, single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector, half-precision
Can be one of 4H or 8H.

Vector, single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Ts

Is an element size specifier:

Vector, half-precision
Must be H.

Vector, single-precision and double-precision
Can be one of S or D.

index

Is the element index:

Vector, half-precision
Must be H:L:M.

Vector, single-precision and double-precision
Can be one of H:L or H.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector
elements in the first source SIMD and FP register by the specified value in the second source SIMD and
FP register, and accumulates the results in the vector elements of the destination SIMD and FP register.
All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.75 FMLA (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1327
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

The following table shows the valid specifier combinations:

Table D6-12 FMLA (Vector, single-precision and double-precision) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.75 FMLA (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1328
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.76 FMLA (vector)
Floating-point fused Multiply-Add to accumulator (vector).

Syntax

FMLA Vd.T, Vn.T, Vm.T

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding
floating-point values in the vectors in the two source SIMD and FP registers, adds the product to the
corresponding vector element of the destination SIMD and FP register, and writes the result to the
destination SIMD and FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.76 FMLA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1329
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.77 FMLAL, (vector)
Floating-point fused Multiply-Add Long to accumulator (vector).

Syntax

FMLAL Vd.Ta, Vn.Tb, Vm.Tb ; FMLAL

FMLAL2 Vd.Ta, Vn.Tb, Vm.Tb ; FMLAL2

Where:

Vd
Is the name of the SIMD and FP destination register

Ta
Is an arrangement specifier, and can be one of 2S or 4S.

Vn
Is the name of the first SIMD and FP source register

Tb
Is an arrangement specifier, and can be one of 2H or 4H.

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Add Long to accumulator (vector). This instruction multiplies
corresponding half-precision floating-point values in the vectors in the two source SIMD and FP
registers, and accumulates the product to the corresponding vector element of the destination SIMD and
FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.77 FMLAL, (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1330
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.78 FMLS (vector, by element)
Floating-point fused Multiply-Subtract from accumulator (by element).

Syntax

FMLS Vd.T, Vn.T, Vm.Ts[index] ; Vector, half-precision

FMLS Vd.T, Vn.T, Vm.Ts[index] ; Vector, single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector, half-precision
Can be one of 4H or 8H.

Vector, single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Ts

Is an element size specifier:

Vector, half-precision
Must be H.

Vector, single-precision and double-precision
Can be one of S or D.

index

Is the element index:

Vector, half-precision
Must be H:L:M.

Vector, single-precision and double-precision
Can be one of H:L or H.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the
vector elements in the first source SIMD and FP register by the specified value in the second source
SIMD and FP register, and subtracts the results from the vector elements of the destination SIMD and FP
register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.78 FMLS (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1331
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

The following table shows the valid specifier combinations:

Table D6-13 FMLS (Vector, single-precision and double-precision) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.78 FMLS (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1332
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.79 FMLS (vector)
Floating-point fused Multiply-Subtract from accumulator (vector).

Syntax

FMLS Vd.T, Vn.T, Vm.T

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies
corresponding floating-point values in the vectors in the two source SIMD and FP registers, negates the
product, adds the result to the corresponding vector element of the destination SIMD and FP register, and
writes the result to the destination SIMD and FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.79 FMLS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1333
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.80 FMLSL, (vector)
Floating-point fused Multiply-Subtract Long from accumulator (vector).

Syntax

FMLSL Vd.Ta, Vn.Tb, Vm.Tb ; FMLSL

FMLSL2 Vd.Ta, Vn.Tb, Vm.Tb ; FMLSL2

Where:

Vd
Is the name of the SIMD and FP destination register

Ta
Is an arrangement specifier, and can be one of 2S or 4S.

Vn
Is the name of the first SIMD and FP source register

Tb
Is an arrangement specifier, and can be one of 2H or 4H.

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in Armv8.2 and later.

Usage

Floating-point fused Multiply-Subtract Long from accumulator (vector). This instruction negates the
values in the vector of one SIMD and FP register, multiplies these with the corresponding values in
another vector, and accumulates the product to the corresponding vector element of the destination SIMD
and FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all
implementations to support it.

 Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.80 FMLSL, (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1334
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.81 FMOV (vector, immediate)
Floating-point move immediate (vector).

Syntax

FMOV Vd.T, #imm ; Half-precision

FMOV Vd.T, #imm ; Single-precision

FMOV Vd.2D, #imm ; Double-precision

Where:

Vd

The value depends on the instruction variant:

Half-precision
Is the name of the SIMD and FP destination register

Single-precision
Is the name of the SIMD and FP destination register

Double-precision
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision
Can be one of 2S or 4S.

imm

The value depends on the instruction variant:

Half-precision
Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of
precision. For details of the range of constants available and the encoding of imm, see
Modified immediate constants in A64 floating-point instructions in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Single-precision
Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of
precision. For details of the range of constants available and the encoding of imm, see
Modified immediate constants in A64 floating-point instructions in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Double-precision
Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of
precision. For details of the range of constants available and the encoding of imm, see
Modified immediate constants in A64 floating-point instructions in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

D6 A64 SIMD Vector Instructions
D6.81 FMOV (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1335
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Usage

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant
into every element of the SIMD and FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.81 FMOV (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1336
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.82 FMUL (vector, by element)
Floating-point Multiply (by element).

Syntax

FMUL Vd.T, Vn.T, Vm.Ts[index] ; Vector, half-precision

FMUL Vd.T, Vn.T, Vm.Ts[index] ; Vector, single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector, half-precision
Can be one of 4H or 8H.

Vector, single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Ts

Is an element size specifier:

Vector, half-precision
Must be H.

Vector, single-precision and double-precision
Can be one of S or D.

index

Is the element index:

Vector, half-precision
Must be H:L:M.

Vector, single-precision and double-precision
Can be one of H:L or H.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source
SIMD and FP register by the specified value in the second source SIMD and FP register, places the
results in a vector, and writes the vector to the destination SIMD and FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.82 FMUL (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1337
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

The following table shows the valid specifier combinations:

Table D6-14 FMUL (Vector, single-precision and double-precision) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.82 FMUL (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1338
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.83 FMUL (vector)
Floating-point Multiply (vector).

Syntax

FMUL Vd.T, Vn.T, Vm.T

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the
vectors in the two source SIMD and FP registers, places the result in a vector, and writes the vector to the
destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.83 FMUL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1339
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.84 FMULX (vector, by element)
Floating-point Multiply extended (by element).

Syntax

FMULX Vd.T, Vn.T, Vm.Ts[index] ; Vector, half-precision

FMULX Vd.T, Vn.T, Vm.Ts[index] ; Vector, single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector, half-precision
Can be one of 4H or 8H.

Vector, single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Ts

Is an element size specifier:

Vector, half-precision
Must be H.

Vector, single-precision and double-precision
Can be one of S or D.

index

Is the element index:

Vector, half-precision
Must be H:L:M.

Vector, single-precision and double-precision
Can be one of H:L or H.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in
the vector elements in the first source SIMD and FP register by the specified floating-point value in the
second source SIMD and FP register, places the results in a vector, and writes the vector to the
destination SIMD and FP register.

Before each multiplication, a check is performed for whether one value is infinite and the other is zero.
In this case, if only one of the values is negative, the result is 2.0, otherwise the result is -2.0.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

D6 A64 SIMD Vector Instructions
D6.84 FMULX (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1340
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-15 FMULX (Vector, single-precision and double-precision) specifier combinations

T Ts index

2S S 0 to 3

4S S 0 to 3

2D D 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.84 FMULX (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1341
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.85 FMULX (vector)
Floating-point Multiply extended.

Syntax

FMULX Vd.T, Vn.T, Vm.T ; Vector half precision

FMULX Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register.

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the
vectors of the two source SIMD and FP registers, places the resulting floating-point values in a vector,
and writes the vector to the destination SIMD and FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if
only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.85 FMULX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1342
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.86 FNEG (vector)
Floating-point Negate (vector).

Syntax

FNEG Vd.T, Vn.T ; Half-precision

FNEG Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Negate (vector). This instruction negates the value of each vector element in the source
SIMD and FP register, writes the result to a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.86 FNEG (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1343
Non-Confidential

D6.87 FRECPE (vector)
Floating-point Reciprocal Estimate.

Syntax

FRECPE Vd.T, Vn.T ; Vector half precision

FRECPE Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each
vector element in the source SIMD and FP register, places the result in a vector, and writes the vector to
the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.87 FRECPE (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1344
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.88 FRECPS (vector)
Floating-point Reciprocal Step.

Syntax

FRECPS Vd.T, Vn.T, Vm.T ; Vector half precision

FRECPS Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the
vectors of the two source SIMD and FP registers, subtracts each of the products from 2.0, places the
resulting floating-point values in a vector, and writes the vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.88 FRECPS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1345
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.89 FRECPX (vector)
Floating-point Reciprocal exponent (scalar).

Syntax

FRECPX Hd, Hn ; Half-precision

FRECPX Vd, Vn ; Single-precision and double-precision

Where:

Hd
Is the 16-bit name of the SIMD and FP destination register.

Hn
Is the 16-bit name of the SIMD and FP source register.

V
Is a width specifier, and can be either S or D.

d
Is the number of the SIMD and FP destination register.

n
Is the number of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent
for each vector element in the source SIMD and FP register, places the result in a vector, and writes the
vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.89 FRECPX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1346
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.90 FRINTA (vector)
Floating-point Round to Integral, to nearest with ties to Away (vector).

Syntax

FRINTA Vd.T, Vn.T ; Half-precision

FRINTA Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector
of floating-point values in the SIMD and FP source register to integral floating-point values of the same
size using the Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD and
FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.90 FRINTA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1347
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.91 FRINTI (vector)
Floating-point Round to Integral, using current rounding mode (vector).

Syntax

FRINTI Vd.T, Vn.T ; Half-precision

FRINTI Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector
of floating-point values in the SIMD and FP source register to integral floating-point values of the same
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD and FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.91 FRINTI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1348
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.92 FRINTM (vector)
Floating-point Round to Integral, toward Minus infinity (vector).

Syntax

FRINTM Vd.T, Vn.T ; Half-precision

FRINTM Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of
floating-point values in the SIMD and FP source register to integral floating-point values of the same
size using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.92 FRINTM (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1349
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.93 FRINTN (vector)
Floating-point Round to Integral, to nearest with ties to even (vector).

Syntax

FRINTN Vd.T, Vn.T ; Half-precision

FRINTN Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of
floating-point values in the SIMD and FP source register to integral floating-point values of the same
size using the Round to Nearest rounding mode, and writes the result to the SIMD and FP destination
register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.93 FRINTN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1350
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.94 FRINTP (vector)
Floating-point Round to Integral, toward Plus infinity (vector).

Syntax

FRINTP Vd.T, Vn.T ; Half-precision

FRINTP Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of
floating-point values in the SIMD and FP source register to integral floating-point values of the same
size using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD and FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.94 FRINTP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1351
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.95 FRINTX (vector)
Floating-point Round to Integral exact, using current rounding mode (vector).

Syntax

FRINTX Vd.T, Vn.T ; Half-precision

FRINTX Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a
vector of floating-point values in the SIMD and FP source register to integral floating-point values of the
same size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD
and FP destination register.

An Inexact exception is raised when the result value is not numerically equal to the input value. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign,
and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.95 FRINTX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1352
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.96 FRINTZ (vector)
Floating-point Round to Integral, toward Zero (vector).

Syntax

FRINTZ Vd.T, Vn.T ; Half-precision

FRINTZ Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point
values in the SIMD and FP source register to integral floating-point values of the same size using the
Round towards Zero rounding mode, and writes the result to the SIMD and FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.96 FRINTZ (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1353
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.97 FRSQRTE (vector)
Floating-point Reciprocal Square Root Estimate.

Syntax

FRSQRTE Vd.T, Vn.T ; Vector half precision

FRSQRTE Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root
for each vector element in the source SIMD and FP register, places the result in a vector, and writes the
vector to the destination SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.97 FRSQRTE (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1354
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.98 FRSQRTS (vector)
Floating-point Reciprocal Square Root Step.

Syntax

FRSQRTS Vd.T, Vn.T, Vm.T ; Vector half precision

FRSQRTS Vd.T, Vn.T, Vm.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register

Vm
Is the name of the second SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point
values in the vectors of the two source SIMD and FP registers, subtracts each of the products from 3.0,
divides these results by 2.0, places the results into a vector, and writes the vector to the destination SIMD
and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.98 FRSQRTS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1355
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.99 FSQRT (vector)
Floating-point Square Root (vector).

Syntax

FSQRT Vd.T, Vn.T ; Half-precision

FSQRT Vd.T, Vn.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Square Root (vector). This instruction calculates the square root for each vector element
in the source SIMD and FP register, places the result in a vector, and writes the vector to the destination
SIMD and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.99 FSQRT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1356
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.100 FSUB (vector)
Floating-point Subtract (vector).

Syntax

FSUB Vd.T, Vn.T, Vm.T ; Half-precision

FSUB Vd.T, Vn.T, Vm.T ; Single-precision and double-precision

Where:

T

Is an arrangement specifier:

Half-precision
Can be one of 4H or 8H.

Single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vd
Is the name of the SIMD and FP destination register.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second
source SIMD and FP register, from the corresponding elements in the vector in the first source SIMD and
FP register, places each result into elements of a vector, and writes the vector to the destination SIMD
and FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.100 FSUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1357
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.101 INS (vector, element)
Insert vector element from another vector element.

This instruction is used by the alias MOV (element).

Syntax

INS Vd.Ts[index1], Vn.Ts[index2]

Where:

Vd
Is the name of the SIMD and FP destination register.

Ts
Is an element size specifier, and can be one of the values shown in Usage.

index1
Is the destination element index, in the range shown in Usage.

Vn
Is the name of the SIMD and FP source register.

index2
Is the source element index in the range shown in Usage.

Usage

Insert vector element from another vector element. This instruction copies the vector element of the
source SIMD and FP register to the specified vector element of the destination SIMD and FP register.

This instruction can insert data into individual elements within a SIMD and FP register without clearing
the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-16 INS (Vector) specifier combinations

Ts index1 index2

B 0 to 15 0 to 15

H 0 to 7 0 to 7

S 0 to 3 0 to 3

D 0 or 1 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.101 INS (vector, element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1358
Non-Confidential

D6.102 INS (vector, general)
Insert vector element from general-purpose register.

This instruction is used by the alias MOV (from general).

Syntax

INS Vd.Ts[index], Rn

Where:

Vd
Is the name of the SIMD and FP destination register.

Ts
Is an element size specifier, and can be one of the values shown in Usage.

index
Is the element index, in the range shown in Usage.

R
Is the width specifier for the general-purpose source register, and can be either W or X.

n
Is the number [0-30] of the general-purpose source register or ZR (31).

Usage

Insert vector element from general-purpose register. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD and FP register.

This instruction can insert data into individual elements within a SIMD and FP register without clearing
the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-17 INS (Vector) specifier combinations

Ts index R

B 0 to 15 W

H 0 to 7 W

S 0 to 3 W

D 0 or 1 X

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.102 INS (vector, general)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1359
Non-Confidential

D6.103 LD1 (vector, multiple structures)
Load multiple single-element structures to one, two, three, or four registers.

Syntax

LD1 { Vt.T }, [Xn|SP] ; One register

LD1 { Vt.T, Vt2.T }, [Xn|SP] ; Two registers

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; Three registers

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; Four registers

LD1 { Vt.T }, [Xn|SP], imm ; One register, immediate offset, Post-index

LD1 { Vt.T }, [Xn|SP], Xm ; One register, register offset, Post-index

LD1 { Vt.T, Vt2.T }, [Xn|SP], imm ; Two registers, immediate offset, Post-index

LD1 { Vt.T, Vt2.T }, [Xn|SP], Xm ; Two registers, register offset, Post-index

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Three registers, immediate offset, Post-
index

LD1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Three registers, register offset, Post-
index

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Four registers, immediate offset,
Post-index

LD1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Four registers, register offset,
Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

imm

Is the post-index immediate offset:

One register, immediate offset
Can be one of #8 or #16.

Two registers, immediate offset
Can be one of #16 or #32.

Three registers, immediate offset
Can be one of #24 or #48.

Four registers, immediate offset
Can be one of #32 or #64.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

D6 A64 SIMD Vector Instructions
D6.103 LD1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1360
Non-Confidential

Usage

Load multiple single-element structures to one, two, three, or four registers. This instruction loads
multiple single-element structures from memory and writes the result to one, two, three, or four SIMD
and FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following tables show valid specifier combinations:

Table D6-18 LD1 (One register, immediate offset) specifier combinations

T imm

8B #8

16B #16

4H #8

8H #16

2S #8

4S #16

1D #8

2D #16

Table D6-19 LD1 (Two registers, immediate offset) specifier combinations

T imm

8B #16

16B #32

4H #16

8H #32

2S #16

4S #32

1D #16

2D #32

Table D6-20 LD1 (Three registers, immediate offset) specifier combinations

T imm

8B #24

16B #48

4H #24

8H #48

2S #24

4S #48

D6 A64 SIMD Vector Instructions
D6.103 LD1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1361
Non-Confidential

Table D6-20 LD1 (Three registers, immediate offset) specifier combinations (continued)

T imm

1D #24

2D #48

Table D6-21 LD1 (Four registers, immediate offset) specifier combinations

T imm

8B #32

16B #64

4H #32

8H #64

2S #32

4S #64

1D #32

2D #64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.103 LD1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1362
Non-Confidential

D6.104 LD1 (vector, single structure)
Load one single-element structure to one lane of one register.

Syntax

LD1 { Vt.B }[index], [Xn|SP] ; 8-bit

LD1 { Vt.H }[index], [Xn|SP] ; 16-bit

LD1 { Vt.S }[index], [Xn|SP] ; 32-bit

LD1 { Vt.D }[index], [Xn|SP] ; 64-bit

LD1 { Vt.B }[index], [Xn|SP], #1 ; 8-bit, immediate offset, Post-index

LD1 { Vt.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD1 { Vt.H }[index], [Xn|SP], #2 ; 16-bit, immediate offset, Post-index

LD1 { Vt.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

LD1 { Vt.S }[index], [Xn|SP], #4 ; 32-bit, immediate offset

LD1 { Vt.S }[index], [Xn|SP], Xm ; 32-bit, register offset

LD1 { Vt.D }[index], [Xn|SP], #8 ; 64-bit, immediate offset

LD1 { Vt.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Load one single-element structure to one lane of one register. This instruction loads a single-element
structure from memory and writes the result to the specified lane of the SIMD and FP register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.104 LD1 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1363
Non-Confidential

D6.105 LD1R (vector)
Load one single-element structure and Replicate to all lanes (of one register).

Syntax

LD1R { Vt.T }, [Xn|SP] ; No offset

LD1R { Vt.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD1R { Vt.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

imm
Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Vt
Is the name of the first or only SIMD and FP register to be transferred.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a
single-element structure from memory and replicates the structure to all the lanes of the SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-22 LD1R (Immediate offset) specifier combinations

T imm

8B #1

16B #1

4H #2

8H #2

2S #4

4S #4

1D #8

2D #8

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.105 LD1R (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1364
Non-Confidential

D6.106 LD2 (vector, multiple structures)
Load multiple 2-element structures to two registers.

Syntax

LD2 { Vt.T, Vt2.T }, [Xn|SP] ; No offset

LD2 { Vt.T, Vt2.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD2 { Vt.T, Vt2.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #16 or #32.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures
from memory and writes the result to the two SIMD and FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.106 LD2 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1365
Non-Confidential

D6.107 LD2 (vector, single structure)
Load single 2-element structure to one lane of two registers.

Syntax

LD2 { Vt.B, Vt2.B }[index], [Xn|SP] ; 8-bit

LD2 { Vt.H, Vt2.H }[index], [Xn|SP] ; 16-bit

LD2 { Vt.S, Vt2.S }[index], [Xn|SP] ; 32-bit

LD2 { Vt.D, Vt2.D }[index], [Xn|SP] ; 64-bit

LD2 { Vt.B, Vt2.B }[index], [Xn|SP], #2 ; 8-bit, immediate offset, Post-index

LD2 { Vt.B, Vt2.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD2 { Vt.H, Vt2.H }[index], [Xn|SP], #4 ; 16-bit, immediate offset, Post-index

LD2 { Vt.H, Vt2.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

LD2 { Vt.S, Vt2.S }[index], [Xn|SP], #8 ; 32-bit, immediate offset

LD2 { Vt.S, Vt2.S }[index], [Xn|SP], Xm ; 32-bit, register offset

LD2 { Vt.D, Vt2.D }[index], [Xn|SP], #16 ; 64-bit, immediate offset

LD2 { Vt.D, Vt2.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure
from memory and writes the result to the corresponding elements of the two SIMD and FP registers
without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.107 LD2 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1366
Non-Confidential

D6.108 LD2R (vector)
Load single 2-element structure and Replicate to all lanes of two registers.

Syntax

LD2R { Vt.T, Vt2.T }, [Xn|SP] ; No offset

LD2R { Vt.T, Vt2.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD2R { Vt.T, Vt2.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-
element structure from memory and replicates the structure to all the lanes of the two SIMD and FP
registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-23 LD2R (Immediate offset) specifier combinations

T imm

8B #2

16B #2

4H #4

8H #4

2S #8

4S #8

1D #16

2D #16

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.108 LD2R (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1367
Non-Confidential

D6.109 LD3 (vector, multiple structures)
Load multiple 3-element structures to three registers.

Syntax

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; No offset

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #24 or #48.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures
from memory and writes the result to the three SIMD and FP registers, with de-interleaving.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.109 LD3 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1368
Non-Confidential

D6.110 LD3 (vector, single structure)
Load single 3-element structure to one lane of three registers).

Syntax

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP] ; 8-bit

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP] ; 16-bit

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP] ; 32-bit

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP] ; 64-bit

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], #3 ; 8-bit, immediate offset, Post-index

LD3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-index

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], #6 ; 16-bit, immediate offset, Post-index

LD3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], Xm ; 16-bit, register offset, Post-index

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], #12 ; 32-bit, immediate offset

LD3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], Xm ; 32-bit, register offset

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], #24 ; 64-bit, immediate offset

LD3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Load single 3-element structure to one lane of three registers). This instruction loads a 3-element
structure from memory and writes the result to the corresponding elements of the three SIMD and FP
registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.110 LD3 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1369
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.110 LD3 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1370
Non-Confidential

D6.111 LD3R (vector)
Load single 3-element structure and Replicate to all lanes of three registers.

Syntax

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; No offset

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD3R { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-
element structure from memory and replicates the structure to all the lanes of the three SIMD and FP
registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-24 LD3R (Immediate offset) specifier combinations

T imm

8B #3

16B #3

4H #6

8H #6

2S #12

4S #12

1D #24

2D #24

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.111 LD3R (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1371
Non-Confidential

D6.112 LD4 (vector, multiple structures)
Load multiple 4-element structures to four registers.

Syntax

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; No offset

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #32 or #64.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures
from memory and writes the result to the four SIMD and FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.112 LD4 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1372
Non-Confidential

D6.113 LD4 (vector, single structure)
Load single 4-element structure to one lane of four registers.

Syntax

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP] ; 8-bit

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP] ; 16-bit

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP] ; 32-bit

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP] ; 64-bit

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], #4 ; 8-bit, immediate offset,
Post-index

LD4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], Xm ; 8-bit, register offset, Post-
index

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], #8 ; 16-bit, immediate offset,
Post-index

LD4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], Xm ; 16-bit, register offset,
Post-index

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], #16 ; 32-bit, immediate offset

LD4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], Xm ; 32-bit, register offset

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], #32 ; 64-bit, immediate offset

LD4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

D6 A64 SIMD Vector Instructions
D6.113 LD4 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1373
Non-Confidential

Usage

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure
from memory and writes the result to the corresponding elements of the four SIMD and FP registers
without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.113 LD4 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1374
Non-Confidential

D6.114 LD4R (vector)
Load single 4-element structure and Replicate to all lanes of four registers.

Syntax

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; No offset

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; Immediate offset, Post-index

LD4R { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; Register offset, Post-index

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be one of the values shown in Usage.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-
element structure from memory and replicates the structure to all the lanes of the four SIMD and FP
registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-25 LD4R (Immediate offset) specifier combinations

T imm

8B #4

16B #4

4H #8

8H #8

2S #16

4S #16

1D #32

2D #32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.114 LD4R (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1375
Non-Confidential

D6.115 MLA (vector, by element)
Multiply-Add to accumulator (vector, by element).

Syntax

MLA Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the
first source SIMD and FP register by the specified value in the second source SIMD and FP register, and
accumulates the results with the vector elements of the destination SIMD and FP register. All the values
in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-26 MLA (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.115 MLA (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1376
Non-Confidential

D6.116 MLA (vector)
Multiply-Add to accumulator (vector).

Syntax

MLA Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors
of the two source SIMD and FP registers, and accumulates the results with the vector elements of the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.116 MLA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1377
Non-Confidential

D6.117 MLS (vector, by element)
Multiply-Subtract from accumulator (vector, by element).

Syntax

MLS Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements
in the first source SIMD and FP register by the specified value in the second source SIMD and FP
register, and subtracts the results from the vector elements of the destination SIMD and FP register. All
the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-27 MLS (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.117 MLS (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1378
Non-Confidential

D6.118 MLS (vector)
Multiply-Subtract from accumulator (vector).

Syntax

MLS Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the
vectors of the two source SIMD and FP registers, and subtracts the results from the vector elements of
the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.118 MLS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1379
Non-Confidential

D6.119 MOV (vector, element)
Move vector element to another vector element.

This instruction is an alias of INS (element).

The equivalent instruction is INS Vd.Ts[index1], Vn.Ts[index2].

Syntax

MOV Vd.Ts[index1], Vn.Ts[index2]

Where:

Vd
Is the name of the SIMD and FP destination register.

Ts
Is an element size specifier, and can be one of the values shown in Usage.

index1
Is the destination element index, in the range shown in Usage.

Vn
Is the name of the SIMD and FP source register.

index2
Is the source element index in the range shown in Usage.

Usage

Move vector element to another vector element. This instruction copies the vector element of the source
SIMD and FP register to the specified vector element of the destination SIMD and FP register.

This instruction can insert data into individual elements within a SIMD and FP register without clearing
the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-28 MOV (Vector) specifier combinations

Ts index1 index2

B 0 to 15 0 to 15

H 0 to 7 0 to 7

S 0 to 3 0 to 3

D 0 or 1 0 or 1

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.119 MOV (vector, element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1380
Non-Confidential

D6.120 MOV (vector, from general)
Move general-purpose register to a vector element.

This instruction is an alias of INS (general).

The equivalent instruction is INS Vd.Ts[index], Rn.

Syntax

MOV Vd.Ts[index], Rn

Where:

Vd
Is the name of the SIMD and FP destination register.

Ts
Is an element size specifier, and can be one of the values shown in Usage.

index
Is the element index, in the range shown in Usage.

R
Is the width specifier for the general-purpose source register, and can be either W or X.

n
Is the number [0-30] of the general-purpose source register or ZR (31).

Usage

Move general-purpose register to a vector element. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD and FP register.

This instruction can insert data into individual elements within a SIMD and FP register without clearing
the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-29 MOV (Vector) specifier combinations

Ts index R

B 0 to 15 W

H 0 to 7 W

S 0 to 3 W

D 0 or 1 X

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.120 MOV (vector, from general)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1381
Non-Confidential

D6.121 MOV (vector)
Move vector.

This instruction is an alias of ORR (vector, register).

The equivalent instruction is ORR Vd.T, Vn.T, Vn.T.

Syntax

MOV Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Usage

Move vector. This instruction copies the vector in the source SIMD and FP register into the destination
SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.121 MOV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1382
Non-Confidential

D6.122 MOV (vector, to general)
Move vector element to general-purpose register.

This instruction is an alias of UMOV.

The equivalent instruction is UMOV Wd, Vn.S[index].

Syntax

MOV Wd, Vn.S[index] ; 32-bit

MOV Xd, Vn.D[index] ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

index

The value depends on the instruction variant:

32-bit
Is the element index.

64-bit
Is the element index and can be either 0 or 1.

Xd
Is the 64-bit name of the general-purpose destination register.

Vn
Is the name of the SIMD and FP source register.

Usage

Move vector element to general-purpose register. This instruction reads the unsigned integer from the
source SIMD and FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the
destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.122 MOV (vector, to general)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1383
Non-Confidential

D6.123 MOVI (vector)
Move Immediate (vector).

Syntax

MOVI Vd.T, #imm8{, LSL #0} ; 8-bit

MOVI Vd.T, #imm8{, LSL #amount} ; 16-bit shifted immediate

MOVI Vd.T, #imm8{, LSL #amount} ; 32-bit shifted immediate

MOVI Vd.T, #imm8, MSL #amount ; 32-bit shifting ones

MOVI Dd, #imm ; 64-bit scalar

MOVI Vd.2D, #imm ; 64-bit vector

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

8-bit
Can be one of 8B or 16B.

16-bit shifted immediate
Can be one of 4H or 8H.

32-bit shifted immediate
Can be one of 2S or 4S.

32-bit shifting ones
Can be one of 2S or 4S.

imm8
Is an 8-bit immediate.

amount

Is the shift amount:

16-bit shifted immediate
Can be one of 0 or 8.

32-bit shifted immediate
Can be one of 0, 8, 16 or 24.

32-bit shifting ones
Can be one of 8 or 16.

Defaults to zero if LSL is omitted.

Dd
Is the 64-bit name of the SIMD and FP destination register.

imm
Is a 64-bit immediate.

Usage

Move Immediate (vector). This instruction places an immediate constant into every vector element of the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.123 MOVI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1384
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.123 MOVI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1385
Non-Confidential

D6.124 MUL (vector, by element)
Multiply (vector, by element).

Syntax

MUL Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD
and FP register by the specified value in the second source SIMD and FP register, places the results in a
vector, and writes the vector to the destination SIMD and FP register. All the values in this instruction are
unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-30 MUL (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.124 MUL (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1386
Non-Confidential

D6.125 MUL (vector)
Multiply (vector).

Syntax

MUL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source
SIMD and FP registers, places the results in a vector, and writes the vector to the destination SIMD and
FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.125 MUL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1387
Non-Confidential

D6.126 MVN (vector)
Bitwise NOT (vector).

This instruction is an alias of NOT.

The equivalent instruction is NOT Vd.T, Vn.T.

Syntax

MVN Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the SIMD and FP source register.

Usage

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD and FP register,
places the inverse of each value into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.126 MVN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1388
Non-Confidential

D6.127 MVNI (vector)
Move inverted Immediate (vector).

Syntax

MVNI Vd.T, #imm8{, LSL #amount} ; 16-bit shifted immediate

MVNI Vd.T, #imm8{, LSL #amount} ; 32-bit shifted immediate

MVNI Vd.T, #imm8, MSL #amount ; 32-bit shifting ones

Where:

T

Is an arrangement specifier:

16-bit shifted immediate
Can be one of 4H or 8H.

32-bit shifted immediate
Can be one of 2S or 4S.

32-bit shifting ones
Can be one of 2S or 4S.

amount

Is the shift amount:

16-bit shifted immediate
Can be one of 0 or 8.

32-bit shifted immediate
Can be one of 0, 8, 16 or 24.

32-bit shifting ones
Can be one of 8 or 16.

Defaults to zero if LSL is omitted.

Vd
Is the name of the SIMD and FP destination register.

imm8
Is an 8-bit immediate.

Usage

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into
every vector element of the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.127 MVNI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1389
Non-Confidential

D6.128 NEG (vector)
Negate (vector).

Syntax

NEG Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Negate (vector). This instruction reads each vector element from the source SIMD and FP register,
negates each value, puts the result into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.128 NEG (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1390
Non-Confidential

D6.129 NOT (vector)
Bitwise NOT (vector).

This instruction is used by the alias MVN.

Syntax

NOT Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the SIMD and FP source register.

Usage

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD and FP register,
places the inverse of each value into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.129 NOT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1391
Non-Confidential

D6.130 ORN (vector)
Bitwise inclusive OR NOT (vector).

Syntax

ORN Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two
source SIMD and FP registers, and writes the result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.130 ORN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1392
Non-Confidential

D6.131 ORR (vector, immediate)
Bitwise inclusive OR (vector, immediate).

Syntax

ORR Vd.T, #imm8{, LSL #amount} ; 16-bit

ORR Vd.T, #imm8{, LSL #amount} ; 32-bit

Where:

T

Is an arrangement specifier:

16-bit
Can be one of 4H or 8H.

32-bit
Can be one of 2S or 4S.

amount

Is the shift amount:

16-bit
Can be one of 0 or 8.

32-bit
Can be one of 0, 8, 16 or 24.

Defaults to zero if LSL is omitted.

Vd
Is the name of the SIMD and FP register.

imm8
Is an 8-bit immediate.

Usage

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the
destination SIMD and FP register, performs a bitwise OR between each result and an immediate
constant, places the result into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.131 ORR (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1393
Non-Confidential

D6.132 ORR (vector, register)
Bitwise inclusive OR (vector, register).

This instruction is used by the alias MOV (vector).

Syntax

ORR Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source
SIMD and FP registers, and writes the result to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.132 ORR (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1394
Non-Confidential

D6.133 PMUL (vector)
Polynomial Multiply.

Syntax

PMUL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source
SIMD and FP registers, places the results in a vector, and writes the vector to the destination SIMD and
FP register.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1} in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.133 PMUL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1395
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.134 PMULL, PMULL2 (vector)
Polynomial Multiply Long.

Syntax

PMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, 8H.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half
of the vectors of the two source SIMD and FP registers, places the results in a vector, and writes the
vector to the destination SIMD and FP register. The destination vector elements are twice as long as the
elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1} in the Arm®

Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

The PMULL instruction extracts each source vector from the lower half of each source register, while the
PMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-31 PMULL, PMULL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.134 PMULL, PMULL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1396
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.135 RADDHN, RADDHN2 (vector)
Rounding Add returning High Narrow.

Syntax

RADDHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Rounding Add returning High Narrow. This instruction adds each vector element in the first source
SIMD and FP register to the corresponding vector element in the second source SIMD and FP register,
places the most significant half of the result into a vector, and writes the vector to the lower or upper half
of the destination SIMD and FP register.

The results are rounded. For truncated results, see D6.4 ADDHN, ADDHN2 (vector) on page D6-1256.

The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the RADDHN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-32 RADDHN, RADDHN2 (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.135 RADDHN, RADDHN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1397
Non-Confidential

D6.136 RBIT (vector)
Reverse Bit order (vector).

Syntax

RBIT Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the SIMD and FP source register.

Usage

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD and FP
register, reverses the bits of the element, places the results into a vector, and writes the vector to the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.136 RBIT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1398
Non-Confidential

D6.137 REV16 (vector)
Reverse elements in 16-bit halfwords (vector).

Syntax

REV16 Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 8B or 16B.

Vn
Is the name of the SIMD and FP source register.

Usage

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in
each halfword of the vector in the source SIMD and FP register, places the results into a vector, and
writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.137 REV16 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1399
Non-Confidential

D6.138 REV32 (vector)
Reverse elements in 32-bit words (vector).

Syntax

REV32 Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H or 8H.

Vn
Is the name of the SIMD and FP source register.

Usage

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements
in each word of the vector in the source SIMD and FP register, places the results into a vector, and writes
the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.138 REV32 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1400
Non-Confidential

D6.139 REV64 (vector)
Reverse elements in 64-bit doublewords (vector).

Syntax

REV64 Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Usage

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or
32-bit elements in each doubleword of the vector in the source SIMD and FP register, places the results
into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.139 REV64 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1401
Non-Confidential

D6.140 RSHRN, RSHRN2 (vector)
Rounding Shift Right Narrow (immediate).

Syntax

RSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the
vector in the source SIMD and FP register, right shifts each result by an immediate value, writes the final
result to a vector, and writes the vector to the lower or upper half of the destination SIMD and FP
register. The destination vector elements are half as long as the source vector elements. The results are
rounded. For truncated results, see D6.158 SHRN, SHRN2 (vector) on page D6-1420.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the RSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-33 RSHRN, RSHRN2 (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.140 RSHRN, RSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1402
Non-Confidential

D6.141 RSUBHN, RSUBHN2 (vector)
Rounding Subtract returning High Narrow.

Syntax

RSUBHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second
source SIMD and FP register from the corresponding vector element of the first source SIMD and FP
register, places the most significant half of the result into a vector, and writes the vector to the lower or
upper half of the destination SIMD and FP register.

The results are rounded. For truncated results, see D6.222 SUBHN, SUBHN2 (vector) on page D6-1491.

The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the RSUBHN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-34 RSUBHN, RSUBHN2 (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.141 RSUBHN, RSUBHN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1403
Non-Confidential

D6.142 SABA (vector)
Signed Absolute difference and Accumulate.

Syntax

SABA Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the
second source SIMD and FP register from the corresponding elements of the first source SIMD and FP
register, and accumulates the absolute values of the results into the elements of the vector of the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.142 SABA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1404
Non-Confidential

D6.143 SABAL, SABAL2 (vector)
Signed Absolute difference and Accumulate Long.

Syntax

SABAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the
lower or upper half of the second source SIMD and FP register from the corresponding vector elements
of the first source SIMD and FP register, and accumulates the absolute values of the results into the
vector elements of the destination SIMD and FP register. The destination vector elements are twice as
long as the source vector elements.

The SABAL instruction extracts each source vector from the lower half of each source register, while the
SABAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-35 SABAL, SABAL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.143 SABAL, SABAL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1405
Non-Confidential

D6.144 SABD (vector)
Signed Absolute Difference.

Syntax

SABD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source
SIMD and FP register from the corresponding elements of the first source SIMD and FP register, places
the absolute values of the results into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.144 SABD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1406
Non-Confidential

D6.145 SABDL, SABDL2 (vector)
Signed Absolute Difference Long.

Syntax

SABDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source
SIMD and FP register from the corresponding vector elements of the first source SIMD and FP register,
places the absolute value of the results into a vector, and writes the vector to the lower or upper half of
the destination SIMD and FP register. The destination vector elements are twice as long as the source
vector elements.

The SABDL instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SABDL2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-36 SABDL, SABDL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.145 SABDL, SABDL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1407
Non-Confidential

D6.146 SADALP (vector)
Signed Add and Accumulate Long Pairwise.

Syntax

SADALP Vd.Ta, Vn.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values
from the vector in the source SIMD and FP register and accumulates the results into the vector elements
of the destination SIMD and FP register. The destination vector elements are twice as long as the source
vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-37 SADALP (Vector) specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.146 SADALP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1408
Non-Confidential

D6.147 SADDL, SADDL2 (vector)
Signed Add Long (vector).

Syntax

SADDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the
first source SIMD and FP register to the corresponding vector element of the second source SIMD and
FP register, places the results into a vector, and writes the vector to the destination SIMD and FP register.
The destination vector elements are twice as long as the source vector elements. All the values in this
instruction are signed integer values.

The SADDL instruction extracts each source vector from the lower half of each source register, while the
SADDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-38 SADDL, SADDL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.147 SADDL, SADDL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1409
Non-Confidential

D6.148 SADDLP (vector)
Signed Add Long Pairwise.

Syntax

SADDLP Vd.Ta, Vn.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector
in the source SIMD and FP register, places the result into a vector, and writes the vector to the
destination SIMD and FP register. The destination vector elements are twice as long as the source vector
elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-39 SADDLP (Vector) specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.148 SADDLP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1410
Non-Confidential

D6.149 SADDLV (vector)
Signed Add Long across Vector.

Syntax

SADDLV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD and FP
register together, and writes the scalar result to the destination SIMD and FP register. The destination
scalar is twice as long as the source vector elements. All the values in this instruction are signed integer
values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-40 SADDLV (Vector) specifier combinations

V T

H 8B

H 16B

S 4H

S 8H

D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.149 SADDLV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1411
Non-Confidential

D6.150 SADDW, SADDW2 (vector)
Signed Add Wide.

Syntax

SADDW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Add Wide. This instruction adds vector elements of the first source SIMD and FP register to the
corresponding vector elements in the lower or upper half of the second source SIMD and FP register,
places the results in a vector, and writes the vector to the SIMD and FP destination register.

The SADDW instruction extracts the second source vector from the lower half of the second source register,
while the SADDW2 instruction extracts the second source vector from the upper half of the second source
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-41 SADDW, SADDW2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.150 SADDW, SADDW2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1412
Non-Confidential

D6.151 SCVTF (vector, fixed-point)
Signed fixed-point Convert to Floating-point (vector).

Syntax

SCVTF Vd.T, Vn.T, #fbits

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the element width.

Usage

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector
from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the
result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D6-42 SCVTF (Vector) specifier combinations

T fbits

4H

8H

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.151 SCVTF (vector, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1413
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.152 SCVTF (vector, integer)
Signed integer Convert to Floating-point (vector).

Syntax

SCVTF Vd.T, Vn.T ; Vector half precision

SCVTF Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector
from signed integer to floating-point using the rounding mode that is specified by the FPCR, and writes
the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.152 SCVTF (vector, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1414
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.153 SDOT (vector, by element)
Dot Product signed arithmetic (vector, by element).

Syntax

SDOT Vd.Ta, Vn.Tb, Vm.4B[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

index
Is the element index.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four
8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an
indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-
bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.153 SDOT (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1415
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.154 SDOT (vector)
Dot Product signed arithmetic (vector).

Syntax

SDOT Vd.Ta, Vn.Tb, Vm.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

For Armv8.2 and Armv8.2, this is an OPTIONAL instruction.

Usage

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.154 SDOT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1416
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.155 SHADD (vector)
Signed Halving Add.

Syntax

SHADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Halving Add. This instruction adds corresponding signed integer values from the two source
SIMD and FP registers, shifts each result right one bit, places the results into a vector, and writes the
vector to the destination SIMD and FP register.

The results are truncated. For rounded results, see D6.202 SRHADD (vector) on page D6-1467.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.155 SHADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1417
Non-Confidential

D6.156 SHL (vector)
Shift Left (immediate).

Syntax

SHL Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the element width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Shift Left (immediate). This instruction reads each value from a vector, right shifts each result by an
immediate value, writes the final result to a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-43 SHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.156 SHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1418
Non-Confidential

D6.157 SHLL, SHLL2 (vector)
Shift Left Long (by element size).

Syntax

SHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the left shift amount, which must be equal to the source element width in bits, and can be one
of the values shown in Usage.

Usage

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half
of the source SIMD and FP register, left shifts each result by the element size, writes the final result to a
vector, and writes the vector to the destination SIMD and FP register. The destination vector elements are
twice as long as the source vector elements.

The SHLL instruction extracts vector elements from the lower half of the source register, while the SHLL2
instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-44 SHLL, SHLL2 (Vector) specifier combinations

<Q> Ta Tb shift

- 8H 8B 8

2 8H 16B 8

- 4S 4H 16

2 4S 8H 16

- 2D 2S 32

2 2D 4S 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.157 SHLL, SHLL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1419
Non-Confidential

D6.158 SHRN, SHRN2 (vector)
Shift Right Narrow (immediate).

Syntax

SHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source
SIMD and FP register, right shifts each result by an immediate value, puts the final result into a vector,
and writes the vector to the lower or upper half of the destination SIMD and FP register. The destination
vector elements are half as long as the source vector elements. The results are truncated. For rounded
results, see D6.140 RSHRN, RSHRN2 (vector) on page D6-1402.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the RSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-45 SHRN, SHRN2 (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.158 SHRN, SHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1420
Non-Confidential

D6.159 SHSUB (vector)
Signed Halving Subtract.

Syntax

SHSUB Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD
and FP register from the corresponding elements in the vector in the first source SIMD and FP register,
shifts each result right one bit, places each result into elements of a vector, and writes the vector to the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.159 SHSUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1421
Non-Confidential

D6.160 SLI (vector)
Shift Left and Insert (immediate).

Syntax

SLI Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the element width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD and FP
register, left shifts each vector element by an immediate value, and inserts the result into the
corresponding vector element in the destination SIMD and FP register such that the new zero bits created
by the shift are not inserted but retain their existing value. Bits shifted out of the left of each vector
element in the source register are lost.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-46 SLI (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.160 SLI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1422
Non-Confidential

D6.161 SMAX (vector)
Signed Maximum (vector).

Syntax

SMAX Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two
source SIMD and FP registers, places the larger of each pair of signed integer values into a vector, and
writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.161 SMAX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1423
Non-Confidential

D6.162 SMAXP (vector)
Signed Maximum Pairwise.

Syntax

SMAXP Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the
first source SIMD and FP register after the vector elements of the second source SIMD and FP register,
reads each pair of adjacent vector elements in the two source SIMD and FP registers, writes the largest of
each pair of signed integer values into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.162 SMAXP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1424
Non-Confidential

D6.163 SMAXV (vector)
Signed Maximum across Vector.

Syntax

SMAXV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD
and FP register, and writes the largest of the values as a scalar to the destination SIMD and FP register.
All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-47 SMAXV (Vector) specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.163 SMAXV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1425
Non-Confidential

D6.164 SMIN (vector)
Signed Minimum (vector).

Syntax

SMIN Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two
source SIMD and FP registers, places the smaller of each of the two signed integer values into a vector,
and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.164 SMIN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1426
Non-Confidential

D6.165 SMINP (vector)
Signed Minimum Pairwise.

Syntax

SMINP Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the
first source SIMD and FP register after the vector elements of the second source SIMD and FP register,
reads each pair of adjacent vector elements in the two source SIMD and FP registers, writes the smallest
of each pair of signed integer values into a vector, and writes the vector to the destination SIMD and FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.165 SMINP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1427
Non-Confidential

D6.166 SMINV (vector)
Signed Minimum across Vector.

Syntax

SMINV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD
and FP register, and writes the smallest of the values as a scalar to the destination SIMD and FP register.
All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-48 SMINV (Vector) specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.166 SMINV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1428
Non-Confidential

D6.167 SMLAL, SMLAL2 (vector, by element)
Signed Multiply-Add Long (vector, by element).

Syntax

SMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD and FP register by the specified vector element in the
second source SIMD and FP register, and accumulates the results with the vector elements of the
destination SIMD and FP register. The destination vector elements are twice as long as the elements that
are multiplied. All the values in this instruction are signed integer values.

The SMLAL instruction extracts vector elements from the lower half of the first source register, while the
SMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-49 SMLAL, SMLAL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.167 SMLAL, SMLAL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1429
Non-Confidential

D6.168 SMLAL, SMLAL2 (vector)
Signed Multiply-Add Long (vector).

Syntax

SMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in
the lower or upper half of the vectors of the two source SIMD and FP registers, and accumulates the
results with the vector elements of the destination SIMD and FP register. The destination vector elements
are twice as long as the elements that are multiplied.

The SMLAL instruction extracts each source vector from the lower half of each source register, while the
SMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-50 SMLAL, SMLAL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.168 SMLAL, SMLAL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1430
Non-Confidential

D6.169 SMLSL, SMLSL2 (vector, by element)
Signed Multiply-Subtract Long (vector, by element).

Syntax

SMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in
the lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register and subtracts the results from the vector elements of the destination
SIMD and FP register. The destination vector elements are twice as long as the elements that are
multiplied.

The SMLSL instruction extracts vector elements from the lower half of the first source register, while the
SMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-51 SMLSL, SMLSL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.169 SMLSL, SMLSL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1431
Non-Confidential

D6.170 SMLSL, SMLSL2 (vector)
Signed Multiply-Subtract Long (vector).

Syntax

SMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values
in the lower or upper half of the vectors of the two source SIMD and FP registers, and subtracts the
results from the vector elements of the destination SIMD and FP register. The destination vector
elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts each source vector from the lower half of each source register, while the
SMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-52 SMLSL, SMLSL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.170 SMLSL, SMLSL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1432
Non-Confidential

D6.171 SMOV (vector)
Signed Move vector element to general-purpose register.

Syntax

SMOV Wd, Vn.Ts[index] ; 32-bit

SMOV Xd, Vn.Ts[index] ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Ts

Is an element size specifier:

32-bit
Can be one of B or H.

64-bit
Can be one of B, H or S.

index
Is the element index, in the range shown in Usage.

Xd
Is the 64-bit name of the general-purpose destination register.

Vn
Is the name of the SIMD and FP source register.

Usage

Signed Move vector element to general-purpose register. This instruction reads the signed integer from
the source SIMD and FP register, sign-extends it to form a 32-bit or 64-bit value, and writes the result to
destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following tables show valid specifier combinations:

Table D6-53 SMOV (32-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

Table D6-54 SMOV (64-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.171 SMOV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1433
Non-Confidential

D6.172 SMULL, SMULL2 (vector, by element)
Signed Multiply Long (vector, by element).

Syntax

SMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower
or upper half of the first source SIMD and FP register by the specified vector element of the second
source SIMD and FP register, places the result in a vector, and writes the vector to the destination SIMD
and FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts vector elements from the lower half of the first source register, while the
SMULL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-55 SMULL, SMULL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.172 SMULL, SMULL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1434
Non-Confidential

D6.173 SMULL, SMULL2 (vector)
Signed Multiply Long (vector).

Syntax

SMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the
lower or upper half of the vectors of the two source SIMD and FP registers, places the results in a vector,
and writes the vector to the destination SIMD and FP register.

The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts each source vector from the lower half of each source register, while the
SMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-56 SMULL, SMULL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.173 SMULL, SMULL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1435
Non-Confidential

D6.174 SQABS (vector)
Signed saturating Absolute value.

Syntax

SQABS Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD and
FP register, puts the absolute value of the result into a vector, and writes the vector to the destination
SIMD and FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.174 SQABS (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1436
Non-Confidential

D6.175 SQADD (vector)
Signed saturating Add.

Syntax

SQADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Add. This instruction adds the values of corresponding elements of the two source
SIMD and FP registers, places the results into a vector, and writes the vector to the destination SIMD and
FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.175 SQADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1437
Non-Confidential

D6.176 SQDMLAL, SQDMLAL2 (vector, by element)
Signed saturating Doubling Multiply-Add Long (by element).

Syntax

SQDMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector
element in the lower or upper half of the first source SIMD and FP register by the specified vector
element of the second source SIMD and FP register, doubles the results, and accumulates the final results
with the vector elements of the destination SIMD and FP register. The destination vector elements are
twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register, while
the SQDMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-57 SQDMLAL{2} (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

D6 A64 SIMD Vector Instructions
D6.176 SQDMLAL, SQDMLAL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1438
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.176 SQDMLAL, SQDMLAL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1439
Non-Confidential

D6.177 SQDMLAL, SQDMLAL2 (vector)
Signed saturating Doubling Multiply-Add Long.

Syntax

SQDMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer
values in the lower or upper half of the vectors of the two source SIMD and FP registers, doubles the
results, and accumulates the final results with the vector elements of the destination SIMD and FP
register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register, while
the SQDMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-58 SQDMLAL{2} (Vector) specifier combinations

<Q> Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.177 SQDMLAL, SQDMLAL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1440
Non-Confidential

D6.178 SQDMLSL, SQDMLSL2 (vector, by element)
Signed saturating Doubling Multiply-Subtract Long (by element).

Syntax

SQDMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector
element in the lower or upper half of the first source SIMD and FP register by the specified vector
element of the second source SIMD and FP register, doubles the results, and subtracts the final results
from the vector elements of the destination SIMD and FP register. The destination vector elements are
twice as long as the elements that are multiplied. All the values in this instruction are signed integer
values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register, while
the SQDMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-59 SQDMLSL{2} (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

D6 A64 SIMD Vector Instructions
D6.178 SQDMLSL, SQDMLSL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1441
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.178 SQDMLSL, SQDMLSL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1442
Non-Confidential

D6.179 SQDMLSL, SQDMLSL2 (vector)
Signed saturating Doubling Multiply-Subtract Long.

Syntax

SQDMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed
integer values in the lower or upper half of the vectors of the two source SIMD and FP registers, doubles
the results, and subtracts the final results from the vector elements of the destination SIMD and FP
register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register, while
the SQDMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-60 SQDMLSL{2} (Vector) specifier combinations

<Q> Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.179 SQDMLSL, SQDMLSL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1443
Non-Confidential

D6.180 SQDMULH (vector, by element)
Signed saturating Doubling Multiply returning High half (by element).

Syntax

SQDMULH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each
vector element in the first source SIMD and FP register by the specified vector element of the second
source SIMD and FP register, doubles the results, places the most significant half of the final results into
a vector, and writes the vector to the destination SIMD and FP register.

The results are truncated. For rounded results, see D6.189 SQRDMULH (vector, by element)
on page D6-1454.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-61 SQDMULH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.180 SQDMULH (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1444
Non-Confidential

D6.181 SQDMULH (vector)
Signed saturating Doubling Multiply returning High half.

Syntax

SQDMULH Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of
corresponding elements of the two source SIMD and FP registers, doubles the results, places the most
significant half of the final results into a vector, and writes the vector to the destination SIMD and FP
register.

The results are truncated. For rounded results, see D6.190 SQRDMULH (vector) on page D6-1455.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.181 SQDMULH (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1445
Non-Confidential

D6.182 SQDMULL, SQDMULL2 (vector, by element)
Signed saturating Doubling Multiply Long (by element).

Syntax

SQDMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element
in the lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register, doubles the results, places the final results in a vector, and writes
the vector to the destination SIMD and FP register. All the values in this instruction are signed integer
values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register,
while the SQDMULL2 instruction extracts the first source vector from the upper half of the first source
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-62 SQDMULL{2} (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

D6 A64 SIMD Vector Instructions
D6.182 SQDMULL, SQDMULL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1446
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.182 SQDMULL, SQDMULL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1447
Non-Confidential

D6.183 SQDMULL, SQDMULL2 (vector)
Signed saturating Doubling Multiply Long.

Syntax

SQDMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in
the lower or upper half of the two source SIMD and FP registers, doubles the results, places the final
results in a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register, while
the SQDMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-63 SQDMULL{2} (Vector) specifier combinations

<Q> Ta Tb

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.183 SQDMULL, SQDMULL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1448
Non-Confidential

D6.184 SQNEG (vector)
Signed saturating Negate.

Syntax

SQNEG Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Signed saturating Negate. This instruction reads each vector element from the source SIMD and FP
register, negates each value, places the result into a vector, and writes the vector to the destination SIMD
and FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.184 SQNEG (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1449
Non-Confidential

D6.185 SQRDMLAH (vector, by element)
Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element).

Syntax

SQRDMLAH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Architectures supported (vector)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This
instruction multiplies the vector elements of the first source SIMD and FP register with the value of a
vector element of the second source SIMD and FP register without saturating the multiply results,
doubles the results, and accumulates the most significant half of the final results with the vector elements
of the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-64 SQRDMLAH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.185 SQRDMLAH (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1450
Non-Confidential

D6.186 SQRDMLAH (vector)
Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector).

Syntax

SQRDMLAH Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This
instruction multiplies the vector elements of the first source SIMD and FP register with the
corresponding vector elements of the second source SIMD and FP register without saturating the
multiply results, doubles the results, and accumulates the most significant half of the final results with
the vector elements of the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.186 SQRDMLAH (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1451
Non-Confidential

D6.187 SQRDMLSH (vector, by element)
Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element).

Syntax

SQRDMLSH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Architectures supported (vector)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This
instruction multiplies the vector elements of the first source SIMD and FP register with the value of a
vector element of the second source SIMD and FP register without saturating the multiply results,
doubles the results, and subtracts the most significant half of the final results from the vector elements of
the destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-65 SQRDMLSH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.187 SQRDMLSH (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1452
Non-Confidential

D6.188 SQRDMLSH (vector)
Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).

Syntax

SQRDMLSH Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.1 architecture and later.

Usage

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction
multiplies the vector elements of the first source SIMD and FP register with the corresponding vector
elements of the second source SIMD and FP register without saturating the multiply results, doubles the
results, and subtracts the most significant half of the final results from the vector elements of the
destination SIMD and FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if
saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.188 SQRDMLSH (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1453
Non-Confidential

D6.189 SQRDMULH (vector, by element)
Signed saturating Rounding Doubling Multiply returning High half (by element).

Syntax

SQRDMULH Vd.T, Vn.T, Vm.Ts[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction
multiplies each vector element in the first source SIMD and FP register by the specified vector element
of the second source SIMD and FP register, doubles the results, places the most significant half of the
final results into a vector, and writes the vector to the destination SIMD and FP register.

The results are rounded. For truncated results, see D6.180 SQDMULH (vector, by element)
on page D6-1444.

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit
FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-66 SQRDMULH (Vector) specifier combinations

T Ts index

4H H 0 to 7

8H H 0 to 7

2S S 0 to 3

4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.189 SQRDMULH (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1454
Non-Confidential

D6.190 SQRDMULH (vector)
Signed saturating Rounding Doubling Multiply returning High half.

Syntax

SQRDMULH Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the
values of corresponding elements of the two source SIMD and FP registers, doubles the results, places
the most significant half of the final results into a vector, and writes the vector to the destination SIMD
and FP register.

The results are rounded. For truncated results, see D6.181 SQDMULH (vector) on page D6-1445.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.190 SQRDMULH (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1455
Non-Confidential

D6.191 SQRSHL (vector)
Signed saturating Rounding Shift Left (register).

Syntax

SQRSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first
source SIMD and FP register, shifts it by a value from the least significant byte of the corresponding
vector element of the second source SIMD and FP register, places the results into a vector, and writes the
vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
rounded. For truncated results, see D6.195 SQSHL (vector, register) on page D6-1460.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.191 SQRSHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1456
Non-Confidential

D6.192 SQRSHRN, SQRSHRN2 (vector)
Signed saturating Rounded Shift Right Narrow (immediate).

Syntax

SQRSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element
in the source SIMD and FP register, right shifts each result by an immediate value, saturates each shifted
result to a value that is half the original width, puts the final result into a vector, and writes the vector to
the lower or upper half of the destination SIMD and FP register. All the values in this instruction are
signed integer values. The destination vector elements are half as long as the source vector elements. The
results are rounded. For truncated results, see D6.197 SQSHRN, SQSHRN2 (vector) on page D6-1462.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQRSHRN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-67 SQRSHRN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.192 SQRSHRN, SQRSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1457
Non-Confidential

D6.193 SQRSHRUN, SQRSHRUN2 (vector)
Signed saturating Rounded Shift Right Unsigned Narrow (immediate).

Syntax

SQRSHRUN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed
integer value in the vector of the source SIMD and FP register, right shifts each value by an immediate
value, saturates the result to an unsigned integer value that is half the original width, places the final
result into a vector, and writes the vector to the destination SIMD and FP register. The results are
rounded. For truncated results, see D6.198 SQSHRUN, SQSHRUN2 (vector) on page D6-1463.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQRSHRUN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-68 SQRSHRUN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.193 SQRSHRUN, SQRSHRUN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1458
Non-Confidential

D6.194 SQSHL (vector, immediate)
Signed saturating Shift Left (immediate).

Syntax

SQSHL Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the element width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD
and FP register, shifts each result by an immediate value, places the final result in a vector, and writes the
vector to the destination SIMD and FP register. The results are truncated. For rounded results, see
D6.258 UQRSHL (vector) on page D6-1527.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-69 SQSHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.194 SQSHL (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1459
Non-Confidential

D6.195 SQSHL (vector, register)
Signed saturating Shift Left (register).

Syntax

SQSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source
SIMD and FP register, shifts each element by a value from the least significant byte of the corresponding
element of the second source SIMD and FP register, places the results in a vector, and writes the vector
to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
truncated. For rounded results, see D6.191 SQRSHL (vector) on page D6-1456.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.195 SQSHL (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1460
Non-Confidential

D6.196 SQSHLU (vector)
Signed saturating Shift Left Unsigned (immediate).

Syntax

SQSHLU Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the element width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in
the vector of the source SIMD and FP register, shifts each value by an immediate value, saturates the
shifted result to an unsigned integer value, places the result in a vector, and writes the vector to the
destination SIMD and FP register. The results are truncated. For rounded results, see D6.258 UQRSHL
(vector) on page D6-1527.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-70 SQSHLU (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.196 SQSHLU (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1461
Non-Confidential

D6.197 SQSHRN, SQSHRN2 (vector)
Signed saturating Shift Right Narrow (immediate).

Syntax

SQSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts and truncates each result by an immediate value, saturates each
shifted result to a value that is half the original width, puts the final result into a vector, and writes the
vector to the lower or upper half of the destination SIMD and FP register. All the values in this
instruction are signed integer values. The destination vector elements are half as long as the source vector
elements. For rounded results, see D6.192 SQRSHRN, SQRSHRN2 (vector) on page D6-1457.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-71 SQSHRN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.197 SQSHRN, SQSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1462
Non-Confidential

D6.198 SQSHRUN, SQSHRUN2 (vector)
Signed saturating Shift Right Unsigned Narrow (immediate).

Syntax

SQSHRUN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer
value in the vector of the source SIMD and FP register, right shifts each value by an immediate value,
saturates the result to an unsigned integer value that is half the original width, places the final result into
a vector, and writes the vector to the destination SIMD and FP register. The results are truncated. For
rounded results, see D6.193 SQRSHRUN, SQRSHRUN2 (vector) on page D6-1458.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the SQSHRUN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-72 SQSHRUN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.198 SQSHRUN, SQSHRUN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1463
Non-Confidential

D6.199 SQSUB (vector)
Signed saturating Subtract.

Syntax

SQSUB Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD and
FP register from the corresponding element values of the first source SIMD and FP register, places the
results into a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.199 SQSUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1464
Non-Confidential

D6.200 SQXTN, SQXTN2 (vector)
Signed saturating extract Narrow.

Syntax

SQXTN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD and
FP register, saturates the value to half the original width, places the result into a vector, and writes the
vector to the lower or upper half of the destination SIMD and FP register. The destination vector
elements are half as long as the source vector elements. All the values in this instruction are signed
integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQXTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-73 SQXTN{2} (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.200 SQXTN, SQXTN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1465
Non-Confidential

D6.201 SQXTUN, SQXTUN2 (vector)
Signed saturating extract Unsigned Narrow.

Syntax

SQXTUN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector
of the source SIMD and FP register, saturates the value to an unsigned integer value that is half the
original width, places the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD and FP register. The destination vector elements are half as long as the source vector
elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SQXTUN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-74 SQXTUN{2} (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.201 SQXTUN, SQXTUN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1466
Non-Confidential

D6.202 SRHADD (vector)
Signed Rounding Halving Add.

Syntax

SRHADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two
source SIMD and FP registers, shifts each result right one bit, places the results into a vector, and writes
the vector to the destination SIMD and FP register.

The results are rounded. For truncated results, see D6.155 SHADD (vector) on page D6-1417.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.202 SRHADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1467
Non-Confidential

D6.203 SRI (vector)
Shift Right and Insert (immediate).

Syntax

SRI Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD and
FP register, right shifts each vector element by an immediate value, and inserts the result into the
corresponding vector element in the destination SIMD and FP register such that the new zero bits created
by the shift are not inserted but retain their existing value. Bits shifted out of the right of each vector
element of the source register are lost.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-75 SRI (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.203 SRI (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1468
Non-Confidential

D6.204 SRSHL (vector)
Signed Rounding Shift Left (register).

Syntax

SRSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of
the first source SIMD and FP register, shifts it by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right
shift. For a truncating shift, see D6.207 SSHL (vector) on page D6-1472.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.204 SRSHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1469
Non-Confidential

D6.205 SRSHR (vector)
Signed Rounding Shift Right (immediate).

Syntax

SRSHR Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, places the final result into a vector,
and writes the vector to the destination SIMD and FP register. All the values in this instruction are signed
integer values. The results are rounded. For truncated results, see D6.209 SSHR (vector)
on page D6-1474.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-76 SRSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.205 SRSHR (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1470
Non-Confidential

D6.206 SRSRA (vector)
Signed Rounding Shift Right and Accumulate (immediate).

Syntax

SRSRA Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in
the source SIMD and FP register, right shifts each result by an immediate value, and accumulates the
final results with the vector elements of the destination SIMD and FP register. All the values in this
instruction are signed integer values. The results are rounded. For truncated results, see D6.210 SSRA
(vector) on page D6-1475.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-77 SRSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.206 SRSRA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1471
Non-Confidential

D6.207 SSHL (vector)
Signed Shift Left (register).

Syntax

SSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first
source SIMD and FP register, shifts each value by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating
right shift. For a rounding shift, see D6.204 SRSHL (vector) on page D6-1469.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.207 SSHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1472
Non-Confidential

D6.208 SSHLL, SSHLL2 (vector)
Signed Shift Left Long (immediate).

This instruction is used by the alias SXTL, SXTL2, SXTL, SXTL22.

Syntax

SSHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the left shift amount, in the range 0 to the source element width in bits minus 1, and can be
one of the values shown in Usage.

Usage

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD
and FP register, left shifts each vector element by the specified shift amount, places the result into a
vector, and writes the vector to the destination SIMD and FP register. The destination vector elements are
twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SSHLL instruction extracts vector elements from the lower half of the source register, while the
SSHLL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-78 SSHLL, SSHLL2 (Vector) specifier combinations

<Q> Ta Tb shift

- 8H 8B 0 to 7

2 8H 16B 0 to 7

- 4S 4H 0 to 15

2 4S 8H 0 to 15

- 2D 2S 0 to 31

2 2D 4S 0 to 31

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.208 SSHLL, SSHLL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1473
Non-Confidential

D6.209 SSHR (vector)
Signed Shift Right (immediate).

Syntax

SSHR Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD and FP
register, right shifts each result by an immediate value, places the final result into a vector, and writes the
vector to the destination SIMD and FP register. All the values in this instruction are signed integer
values. The results are truncated. For rounded results, see D6.205 SRSHR (vector) on page D6-1470.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-79 SSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.209 SSHR (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1474
Non-Confidential

D6.210 SSRA (vector)
Signed Shift Right and Accumulate (immediate).

Syntax

SSRA Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, and accumulates the final results
with the vector elements of the destination SIMD and FP register. All the values in this instruction are
signed integer values. The results are truncated. For rounded results, see D6.206 SRSRA (vector)
on page D6-1471.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-80 SSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.210 SSRA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1475
Non-Confidential

D6.211 SSUBL, SSUBL2 (vector)
Signed Subtract Long.

Syntax

SSUBL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the
second source SIMD and FP register from the corresponding vector element of the first source SIMD and
FP register, places the results into a vector, and writes the vector to the destination SIMD and FP register.
All the values in this instruction are signed integer values. The destination vector elements are twice as
long as the source vector elements.

The SSUBL instruction extracts each source vector from the lower half of each source register, while the
SSUBL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-81 SSUBL, SSUBL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.211 SSUBL, SSUBL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1476
Non-Confidential

D6.212 SSUBW, SSUBW2 (vector)
Signed Subtract Wide.

Syntax

SSUBW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the
second source SIMD and FP register from the corresponding vector element in the first source SIMD and
FP register, places the result in a vector, and writes the vector to the SIMD and FP destination register.
All the values in this instruction are signed integer values.

The SSUBW instruction extracts the second source vector from the lower half of the second source register,
while the SSUBW2 instruction extracts the second source vector from the upper half of the second source
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-82 SSUBW, SSUBW2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.212 SSUBW, SSUBW2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1477
Non-Confidential

D6.213 ST1 (vector, multiple structures)
Store multiple single-element structures from one, two, three, or four registers.

Syntax

ST1 { Vt.T }, [Xn|SP] ; T1 One register

ST1 { Vt.T, Vt2.T }, [Xn|SP] ; T1 Two registers

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; T1 Three registers

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ; T1 Four registers

ST1 { Vt.T }, [Xn|SP], imm ; T1 One register, immediate offset, Post-index

ST1 { Vt.T }, [Xn|SP], Xm ; T1 One register, register offset, Post-index

ST1 { Vt.T, Vt2.T }, [Xn|SP], imm ; T1 Two registers, immediate offset, Post-index

ST1 { Vt.T, Vt2.T }, [Xn|SP], Xm ; T1 Two registers, register offset, Post-index

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; T1 Three registers, immediate offset,
Post-index

ST1 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; T1 Three registers, register offset, Post-
index

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ; T1 Four registers, immediate
offset, Post-index

ST1 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ; T1 Four registers, register offset,
Post-index

Where:

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

imm

Is the post-index immediate offset:

One register, immediate offset
Can be one of #8 or #16.

Two registers, immediate offset
Can be one of #16 or #32.

Three registers, immediate offset
Can be one of #24 or #48.

Four registers, immediate offset
Can be one of #32 or #64.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Vt
Is the name of the first or only SIMD and FP register to be transferred.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

D6 A64 SIMD Vector Instructions
D6.213 ST1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1478
Non-Confidential

Usage

Store multiple single-element structures from one, two, three, or four registers. This instruction stores
elements to memory from one, two, three, or four SIMD and FP registers, without interleaving. Every
element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following tables show valid specifier combinations:

Table D6-83 ST1 (One register, immediate offset) specifier combinations

T imm

8B #8

16B #16

4H #8

8H #16

2S #8

4S #16

1D #8

2D #16

Table D6-84 ST1 (Two registers, immediate offset) specifier combinations

T imm

8B #16

16B #32

4H #16

8H #32

2S #16

4S #32

1D #16

2D #32

Table D6-85 ST1 (Three registers, immediate offset) specifier combinations

T imm

8B #24

16B #48

4H #24

8H #48

2S #24

4S #48

D6 A64 SIMD Vector Instructions
D6.213 ST1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1479
Non-Confidential

Table D6-85 ST1 (Three registers, immediate offset) specifier combinations (continued)

T imm

1D #24

2D #48

Table D6-86 ST1 (Four registers, immediate offset) specifier combinations

T imm

8B #32

16B #64

4H #32

8H #64

2S #32

4S #64

1D #32

2D #64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.213 ST1 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1480
Non-Confidential

D6.214 ST1 (vector, single structure)
Store a single-element structure from one lane of one register.

Syntax

ST1 { Vt.B }[index], [Xn|SP] ; T1 8-bit

ST1 { Vt.H }[index], [Xn|SP] ; T1 16-bit

ST1 { Vt.S }[index], [Xn|SP] ; 32-bit

ST1 { Vt.D }[index], [Xn|SP] ; 64-bit

ST1 { Vt.B }[index], [Xn|SP], #1 ; T1 8-bit, immediate offset, Post-index

ST1 { Vt.B }[index], [Xn|SP], Xm ; T1 8-bit, register offset, Post-index

ST1 { Vt.H }[index], [Xn|SP], #2 ; T1 16-bit, immediate offset, Post-index

ST1 { Vt.H }[index], [Xn|SP], Xm ; T1 16-bit, register offset, Post-index

ST1 { Vt.S }[index], [Xn|SP], #4 ; 32-bit, immediate offset

ST1 { Vt.S }[index], [Xn|SP], Xm ; 32-bit, register offset

ST1 { Vt.D }[index], [Xn|SP], #8 ; 64-bit, immediate offset

ST1 { Vt.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Store a single-element structure from one lane of one register. This instruction stores the specified
element of a SIMD and FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.214 ST1 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1481
Non-Confidential

D6.215 ST2 (vector, multiple structures)
Store multiple 2-element structures from two registers.

Syntax

ST2 { Vt.T, Vt2.T }, [Xn|SP] ; T2

ST2 { Vt.T, Vt2.T }, [Xn|SP], imm ; T2

ST2 { Vt.T, Vt2.T }, [Xn|SP], Xm ; T2

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #16 or #32.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element
structures from two SIMD and FP registers to memory, with interleaving. Every element of each register
is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.215 ST2 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1482
Non-Confidential

D6.216 ST2 (vector, single structure)
Store single 2-element structure from one lane of two registers.

Syntax

ST2 { Vt.B, Vt2.B }[index], [Xn|SP] ; T2

ST2 { Vt.H, Vt2.H }[index], [Xn|SP] ; T2

ST2 { Vt.S, Vt2.S }[index], [Xn|SP] ; 32-bit

ST2 { Vt.D, Vt2.D }[index], [Xn|SP] ; 64-bit

ST2 { Vt.B, Vt2.B }[index], [Xn|SP], #2 ; T2

ST2 { Vt.B, Vt2.B }[index], [Xn|SP], Xm ; T2

ST2 { Vt.H, Vt2.H }[index], [Xn|SP], #4 ; T2

ST2 { Vt.H, Vt2.H }[index], [Xn|SP], Xm ; T2

ST2 { Vt.S, Vt2.S }[index], [Xn|SP], #8 ; 32-bit, immediate offset

ST2 { Vt.S, Vt2.S }[index], [Xn|SP], Xm ; 32-bit, register offset

ST2 { Vt.D, Vt2.D }[index], [Xn|SP], #16 ; 64-bit, immediate offset

ST2 { Vt.D, Vt2.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element
structure to memory from corresponding elements of two SIMD and FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.216 ST2 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1483
Non-Confidential

D6.217 ST3 (vector, multiple structures)
Store multiple 3-element structures from three registers.

Syntax

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP] ; T3

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], imm ; T3

ST3 { Vt.T, Vt2.T, Vt3.T }, [Xn|SP], Xm ; T3

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #24 or #48.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element
structures to memory from three SIMD and FP registers, with interleaving. Every element of each
register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.217 ST3 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1484
Non-Confidential

D6.218 ST3 (vector, single structure)
Store single 3-element structure from one lane of three registers.

Syntax

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP] ; T3

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP] ; T3

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP] ; 32-bit

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP] ; 64-bit

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], #3 ; T3

ST3 { Vt.B, Vt2.B, Vt3.B }[index], [Xn|SP], Xm ; T3

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], #6 ; T3

ST3 { Vt.H, Vt2.H, Vt3.H }[index], [Xn|SP], Xm ; T3

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], #12 ; 32-bit, immediate offset

ST3 { Vt.S, Vt2.S, Vt3.S }[index], [Xn|SP], Xm ; 32-bit, register offset

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], #24 ; 64-bit, immediate offset

ST3 { Vt.D, Vt2.D, Vt3.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element
structure to memory from corresponding elements of three SIMD and FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

D6 A64 SIMD Vector Instructions
D6.218 ST3 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1485
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.218 ST3 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1486
Non-Confidential

D6.219 ST4 (vector, multiple structures)
Store multiple 4-element structures from four registers.

Syntax

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP] ;

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], imm ;

ST4 { Vt.T, Vt2.T, Vt3.T, Vt4.T }, [Xn|SP], Xm ;

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

imm
Is the post-index immediate offset, and can be either #32 or #64.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Usage

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element
structures to memory from four SIMD and FP registers, with interleaving. Every element of each register
is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.219 ST4 (vector, multiple structures)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1487
Non-Confidential

D6.220 ST4 (vector, single structure)
Store single 4-element structure from one lane of four registers.

Syntax

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP] ;

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP] ;

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP] ; 32-bit

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP] ; 64-bit

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], #4 ;

ST4 { Vt.B, Vt2.B, Vt3.B, Vt4.B }[index], [Xn|SP], Xm ;

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], #8 ;

ST4 { Vt.H, Vt2.H, Vt3.H, Vt4.H }[index], [Xn|SP], Xm ;

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], #16 ; 32-bit, immediate offset

ST4 { Vt.S, Vt2.S, Vt3.S, Vt4.S }[index], [Xn|SP], Xm ; 32-bit, register offset

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], #32 ; 64-bit, immediate offset

ST4 { Vt.D, Vt2.D, Vt3.D, Vt4.D }[index], [Xn|SP], Xm ; 64-bit, register offset

Where:

Vt
Is the name of the first or only SIMD and FP register to be transferred.

Vt2
Is the name of the second SIMD and FP register to be transferred.

Vt3
Is the name of the third SIMD and FP register to be transferred.

Vt4
Is the name of the fourth SIMD and FP register to be transferred.

index

The value depends on the instruction variant:

8-bit
Is the element index, in the range 0 to 15.

16-bit
Is the element index, in the range 0 to 7.

32-bit
Is the element index, in the range 0 to 3.

64-bit
Is the element index, and can be either 0 or 1.

Xn|SP
Is the 64-bit name of the general-purpose base register or stack pointer.

Xm
Is the 64-bit name of the general-purpose post-index register, excluding XZR.

Usage

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element
structure to memory from corresponding elements of four SIMD and FP registers.

D6 A64 SIMD Vector Instructions
D6.220 ST4 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1488
Non-Confidential

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.220 ST4 (vector, single structure)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1489
Non-Confidential

D6.221 SUB (vector)
Subtract (vector).

Syntax

SUB Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Subtract (vector). This instruction subtracts each vector element in the second source SIMD and FP
register from the corresponding vector element in the first source SIMD and FP register, places the result
into a vector, and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.221 SUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1490
Non-Confidential

D6.222 SUBHN, SUBHN2 (vector)
Subtract returning High Narrow.

Syntax

SUBHN{2} Vd.Tb, Vn.Ta, Vm.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Subtract returning High Narrow. This instruction subtracts each vector element in the second source
SIMD and FP register from the corresponding vector element in the first source SIMD and FP register,
places the most significant half of the result into a vector, and writes the vector to the lower or upper half
of the destination SIMD and FP register. All the values in this instruction are signed integer values.

The results are truncated. For rounded results, see D6.141 RSUBHN, RSUBHN2 (vector)
on page D6-1403.

The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the SUBHN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-87 SUBHN, SUBHN2 (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.222 SUBHN, SUBHN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1491
Non-Confidential

D6.223 SUQADD (vector)
Signed saturating Accumulate of Unsigned value.

Syntax

SUQADD Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of
the vector elements in the source SIMD and FP register to corresponding signed integer values of the
vector elements in the destination SIMD and FP register, and writes the resulting signed integer values to
the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.223 SUQADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1492
Non-Confidential

D6.224 SXTL, SXTL2 (vector)
Signed extend Long.

This instruction is an alias of SSHLL, SSHLL2.

The equivalent instruction is SSHLL{2} Vd.Ta, Vn.Tb, #0.

Syntax

SXTL{2} Vd.Ta, Vn.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the
source SIMD and FP register into a vector, and writes the vector to the destination SIMD and FP register.
The destination vector elements are twice as long as the source vector elements. All the values in this
instruction are signed integer values.

The SXTL instruction extracts the source vector from the lower half of the source register, while the
SXTL2 instruction extracts the source vector from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-88 SXTL, SXTL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.224 SXTL, SXTL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1493
Non-Confidential

D6.225 TBL (vector)
Table vector Lookup.

Syntax

TBL Vd.Ta, { Vn.16B }, Vm.Ta ; Single register table

TBL Vd.Ta, { Vn.16B, <Vn+1>.16B }, Vm.Ta ; Two register table

TBL Vd.Ta, { Vn.16B, <Vn+1>.16B, <Vn+2>.16B }, Vm.Ta ; Three register table

TBL Vd.Ta, { Vn.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, Vm.Ta ; Four register
table

Where:

Vn

The value depends on the instruction variant:

Single register table
Is the name of the SIMD and FP table register

Two, Three, or Four register table
Is the name of the first SIMD and FP table register

<Vn+1>
Is the name of the second SIMD and FP table register.

<Vn+2>
Is the name of the third SIMD and FP table register.

<Vn+3>
Is the name of the fourth SIMD and FP table register.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the SIMD and FP index register.

Usage

Table vector Lookup. This instruction reads each value from the vector elements in the index source
SIMD and FP register, uses each result as an index to perform a lookup in a table of bytes that is
described by one to four source table SIMD and FP registers, places the lookup result in a vector, and
writes the vector to the destination SIMD and FP register. If an index is out of range for the table, the
result for that lookup is 0. If more than one source register is used to describe the table, the first source
register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.225 TBL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1494
Non-Confidential

D6.226 TBX (vector)
Table vector lookup extension.

Syntax

TBX Vd.Ta, { Vn.16B }, Vm.Ta ; Single register table

TBX Vd.Ta, { Vn.16B, <Vn+1>.16B }, Vm.Ta ; Two register table

TBX Vd.Ta, { Vn.16B, <Vn+1>.16B, <Vn+2>.16B }, Vm.Ta ; Three register table

TBX Vd.Ta, { Vn.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, Vm.Ta ; Four register
table

Where:

Vn

The value depends on the instruction variant:

Single register table
Is the name of the SIMD and FP table register

Two, Three, or Four register table
Is the name of the first SIMD and FP table register

<Vn+1>
Is the name of the second SIMD and FP table register.

<Vn+2>
Is the name of the third SIMD and FP table register.

<Vn+3>
Is the name of the fourth SIMD and FP table register.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the SIMD and FP index register.

Usage

Table vector lookup extension. This instruction reads each value from the vector elements in the index
source SIMD and FP register, uses each result as an index to perform a lookup in a table of bytes that is
described by one to four source table SIMD and FP registers, places the lookup result in a vector, and
writes the vector to the destination SIMD and FP register. If an index is out of range for the table, the
existing value in the vector element of the destination register is left unchanged. If more than one source
register is used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.226 TBX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1495
Non-Confidential

D6.227 TRN1 (vector)
Transpose vectors (primary).

Syntax

TRN1 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from
the two source SIMD and FP registers, starting at zero, places each result into consecutive elements of a
vector, and writes the vector to the destination SIMD and FP register. Vector elements from the first
source register are placed into even-numbered elements of the destination vector, starting at zero, while
vector elements from the second source register are placed into odd-numbered elements of the
destination vector.

 Note

By using this instruction with TRN2, a 2 x 2 matrix can be transposed.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.227 TRN1 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1496
Non-Confidential

D6.228 TRN2 (vector)
Transpose vectors (secondary).

Syntax

TRN2 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from
the two source SIMD and FP registers, places each result into consecutive elements of a vector, and
writes the vector to the destination SIMD and FP register. Vector elements from the first source register
are placed into even-numbered elements of the destination vector, starting at zero, while vector elements
from the second source register are placed into odd-numbered elements of the destination vector.

 Note

By using this instruction with TRN1, a 2 x 2 matrix can be transposed.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.228 TRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1497
Non-Confidential

D6.229 UABA (vector)
Unsigned Absolute difference and Accumulate.

Syntax

UABA Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of
the second source SIMD and FP register from the corresponding elements of the first source SIMD and
FP register, and accumulates the absolute values of the results into the elements of the vector of the
destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.229 UABA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1498
Non-Confidential

D6.230 UABAL, UABAL2 (vector)
Unsigned Absolute difference and Accumulate Long.

Syntax

UABAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in
the lower or upper half of the second source SIMD and FP register from the corresponding vector
elements of the first source SIMD and FP register, and accumulates the absolute values of the results into
the vector elements of the destination SIMD and FP register. The destination vector elements are twice as
long as the source vector elements. All the values in this instruction are unsigned integer values.

The UABAL instruction extracts each source vector from the lower half of each source register, while the
UABAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-89 UABAL, UABAL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.230 UABAL, UABAL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1499
Non-Confidential

D6.231 UABD (vector)
Unsigned Absolute Difference (vector).

Syntax

UABD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the
second source SIMD and FP register from the corresponding elements of the first source SIMD and FP
register, places the absolute values of the results into a vector, and writes the vector to the destination
SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.231 UABD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1500
Non-Confidential

D6.232 UABDL, UABDL2 (vector)
Unsigned Absolute Difference Long.

Syntax

UABDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper
half of the second source SIMD and FP register from the corresponding vector elements of the first
source SIMD and FP register, places the absolute value of the result into a vector, and writes the vector to
the destination SIMD and FP register. The destination vector elements are twice as long as the source
vector elements. All the values in this instruction are unsigned integer values.

The UABDL instruction extracts each source vector from the lower half of each source register, while the
UABDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-90 UABDL, UABDL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.232 UABDL, UABDL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1501
Non-Confidential

D6.233 UADALP (vector)
Unsigned Add and Accumulate Long Pairwise.

Syntax

UADALP Vd.Ta, Vn.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer
values from the vector in the source SIMD and FP register and accumulates the results with the vector
elements of the destination SIMD and FP register. The destination vector elements are twice as long as
the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-91 UADALP (Vector) specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.233 UADALP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1502
Non-Confidential

D6.234 UADDL, UADDL2 (vector)
Unsigned Add Long (vector).

Syntax

UADDL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the
first source SIMD and FP register to the corresponding vector element of the second source SIMD and
FP register, places the result into a vector, and writes the vector to the destination SIMD and FP register.
The destination vector elements are twice as long as the source vector elements. All the values in this
instruction are unsigned integer values.

The UADDL instruction extracts each source vector from the lower half of each source register, while the
UADDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-92 UADDL, UADDL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.234 UADDL, UADDL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1503
Non-Confidential

D6.235 UADDLP (vector)
Unsigned Add Long Pairwise.

Syntax

UADDLP Vd.Ta, Vn.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the
vector in the source SIMD and FP register, places the result into a vector, and writes the vector to the
destination SIMD and FP register. The destination vector elements are twice as long as the source vector
elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-93 UADDLP (Vector) specifier combinations

Ta Tb

4H 8B

8H 16B

2S 4H

4S 8H

1D 2S

2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.235 UADDLP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1504
Non-Confidential

D6.236 UADDLV (vector)
Unsigned sum Long across Vector.

Syntax

UADDLV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD and
FP register together, and writes the scalar result to the destination SIMD and FP register. The destination
scalar is twice as long as the source vector elements. All the values in this instruction are unsigned
integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-94 UADDLV (Vector) specifier combinations

V T

H 8B

H 16B

S 4H

S 8H

D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.236 UADDLV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1505
Non-Confidential

D6.237 UADDW, UADDW2 (vector)
Unsigned Add Wide.

Syntax

UADDW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD and FP register
to the corresponding vector elements in the lower or upper half of the second source SIMD and FP
register, places the result in a vector, and writes the vector to the SIMD and FP destination register. The
vector elements of the destination register and the first source register are twice as long as the vector
elements of the second source register. All the values in this instruction are unsigned integer values.

The UADDW instruction extracts vector elements from the lower half of the second source register, while
the UADDW2 instruction extracts vector elements from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-95 UADDW, UADDW2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.237 UADDW, UADDW2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1506
Non-Confidential

D6.238 UCVTF (vector, fixed-point)
Unsigned fixed-point Convert to Floating-point (vector).

Syntax

UCVTF Vd.T, Vn.T, #fbits

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

fbits
Is the number of fractional bits, in the range 1 to the element width.

Usage

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a
vector from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

The following table shows the valid specifier combinations:

Table D6-96 UCVTF (Vector) specifier combinations

T fbits

4H

8H

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.238 UCVTF (vector, fixed-point)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1507
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.239 UCVTF (vector, integer)
Unsigned integer Convert to Floating-point (vector).

Syntax

UCVTF Vd.T, Vn.T ; Vector half precision

UCVTF Vd.T, Vn.T ; Vector single-precision and double-precision

Where:

Vd
Is the name of the SIMD and FP destination register

T

Is an arrangement specifier:

Vector half precision
Can be one of 4H or 8H.

Vector single-precision and double-precision
Can be one of 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

Usage

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector
from an unsigned integer value to a floating-point value using the rounding mode that is specified by the
FPCR, and writes the result to the SIMD and FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the
exception results in either a flag being set in FPSR, or a synchronous exception being generated. For
more information, see Floating-point exception traps in the Arm® Architecture Reference Manual
Arm®v8, for Arm®v8‑A architecture profile.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security
state and Exception level in which the instruction is executed, an attempt to execute the instruction might
be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243
Related information
Arm Architecture Reference Manual Armv8, for Armv8‑A architecture profile

D6 A64 SIMD Vector Instructions
D6.239 UCVTF (vector, integer)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1508
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.240 UDOT (vector, by element)
Dot Product unsigned arithmetic (vector, by element).

Syntax

UDOT Vd.Ta, Vn.Tb, Vm.4B[index]

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the second SIMD and FP source register in the range 0 to 31.

index
Is the element index.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the
four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an
indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-
bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.240 UDOT (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1509
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.241 UDOT (vector)
Dot Product unsigned arithmetic (vector).

Syntax

UDOT Vd.Ta, Vn.Tb, Vm.Tb

Where:

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be either 8B or 16B.

Vm
Is the name of the second SIMD and FP source register.

Architectures supported (vector)

Supported in the Armv8.2 architecture and later.

For Armv8.2 and Armv8.3, this is an OPTIONAL instruction.

Usage

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of the
corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

 Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported. See ID_AA64ISAR0_EL1 in
the Arm® Architecture Reference Manual Arm®v8, for Arm®v8‑A architecture profile.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.241 UDOT (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1510
Non-Confidential

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

D6.242 UHADD (vector)
Unsigned Halving Add.

Syntax

UHADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD and FP registers, shifts each result right one bit, places the results into a vector, and writes the
vector to the destination SIMD and FP register.

The results are truncated. For rounded results, see D6.266 URHADD (vector) on page D6-1536.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.242 UHADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1511
Non-Confidential

D6.243 UHSUB (vector)
Unsigned Halving Subtract.

Syntax

UHSUB Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD
and FP register from the corresponding vector elements in the first source SIMD and FP register, shifts
each result right one bit, places each result into a vector, and writes the vector to the destination SIMD
and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.243 UHSUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1512
Non-Confidential

D6.244 UMAX (vector)
Unsigned Maximum (vector).

Syntax

UMAX Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two
source SIMD and FP registers, places the larger of each pair of unsigned integer values into a vector, and
writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.244 UMAX (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1513
Non-Confidential

D6.245 UMAXP (vector)
Unsigned Maximum Pairwise.

Syntax

UMAXP Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of
the first source SIMD and FP register after the vector elements of the second source SIMD and FP
register, reads each pair of adjacent vector elements in the two source SIMD and FP registers, writes the
largest of each pair of unsigned integer values into a vector, and writes the vector to the destination
SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.245 UMAXP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1514
Non-Confidential

D6.246 UMAXV (vector)
Unsigned Maximum across Vector.

Syntax

UMAXV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD
and FP register, and writes the largest of the values as a scalar to the destination SIMD and FP register.
All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-97 UMAXV (Vector) specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.246 UMAXV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1515
Non-Confidential

D6.247 UMIN (vector)
Unsigned Minimum (vector).

Syntax

UMIN Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source
SIMD and FP registers, places the smaller of each of the two unsigned integer values into a vector, and
writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.247 UMIN (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1516
Non-Confidential

D6.248 UMINP (vector)
Unsigned Minimum Pairwise.

Syntax

UMINP Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of
the first source SIMD and FP register after the vector elements of the second source SIMD and FP
register, reads each pair of adjacent vector elements in the two source SIMD and FP registers, writes the
smallest of each pair of unsigned integer values into a vector, and writes the vector to the destination
SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.248 UMINP (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1517
Non-Confidential

D6.249 UMINV (vector)
Unsigned Minimum across Vector.

Syntax

UMINV Vd, Vn.T

Where:

V
Is the destination width specifier, and can be one of the values shown in Usage.

d
Is the number of the SIMD and FP destination register.

Vn
Is the name of the SIMD and FP source register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD
and FP register, and writes the smallest of the values as a scalar to the destination SIMD and FP register.
All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-98 UMINV (Vector) specifier combinations

V T

B 8B

B 16B

H 4H

H 8H

S 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.249 UMINV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1518
Non-Confidential

D6.250 UMLAL, UMLAL2 (vector, by element)
Unsigned Multiply-Add Long (vector, by element).

Syntax

UMLAL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register and accumulates the results with the vector elements of the
destination SIMD and FP register. The destination vector elements are twice as long as the elements that
are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register, while the
UMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-99 UMLAL, UMLAL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.250 UMLAL, UMLAL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1519
Non-Confidential

D6.251 UMLAL, UMLAL2 (vector)
Unsigned Multiply-Add Long (vector).

Syntax

UMLAL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or
upper half of the first source SIMD and FP register by the corresponding vector elements of the second
source SIMD and FP register, and accumulates the results with the vector elements of the destination
SIMD and FP register. The destination vector elements are twice as long as the elements that are
multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register, while the
UMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-100 UMLAL, UMLAL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.251 UMLAL, UMLAL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1520
Non-Confidential

D6.252 UMLSL, UMLSL2 (vector, by element)
Unsigned Multiply-Subtract Long (vector, by element).

Syntax

UMLSL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in
the lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register and subtracts the results from the vector elements of the destination
SIMD and FP register. The destination vector elements are twice as long as the elements that are
multiplied.

The UMLSL instruction extracts vector elements from the lower half of the first source register, while the
UMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-101 UMLSL, UMLSL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.252 UMLSL, UMLSL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1521
Non-Confidential

D6.253 UMLSL, UMLSL2 (vector)
Unsigned Multiply-Subtract Long (vector).

Syntax

UMLSL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in
the lower or upper half of the two source SIMD and FP registers, and subtracts the results from the
vector elements of the destination SIMD and FP register. The destination vector elements are twice as
long as the elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMLSL instruction extracts each source vector from the lower half of each source register, while the
UMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-102 UMLSL, UMLSL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.253 UMLSL, UMLSL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1522
Non-Confidential

D6.254 UMOV (vector)
Unsigned Move vector element to general-purpose register.

This instruction is used by the alias MOV (to general).

Syntax

UMOV Wd, Vn.Ts[index] ; 32-bit

UMOV Xd, Vn.Ts[index] ; 64-bit

Where:

Wd
Is the 32-bit name of the general-purpose destination register.

Ts

Is an element size specifier:

32-bit
Can be one of B, H or S.

64-bit
Must be D.

index

The value depends on the instruction variant:

32-bit
Is the element index, in the range shown in Usage.

64-bit
Is the element index and can be either 0 or 1.

Xd
Is the 64-bit name of the general-purpose destination register.

Vn
Is the name of the SIMD and FP source register.

Usage

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer
from the source SIMD and FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the
result to the destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Table D6-103 UMOV (32-bit) specifier combinations

Ts index

B 0 to 15

H 0 to 7

S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.254 UMOV (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1523
Non-Confidential

D6.255 UMULL, UMULL2 (vector, by element)
Unsigned Multiply Long (vector, by element).

Syntax

UMULL{2} Vd.Ta, Vn.Tb, Vm.Ts[index]

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be either 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register:
• If Ts is H, then Vm must be in the range V0 to V15.
• If Ts is S, then Vm must be in the range V0 to V31.

Ts
Is an element size specifier, and can be either H or S.

index
Is the element index, in the range shown in Usage.

Usage

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD and FP register by the specified vector element of the
second source SIMD and FP register, places the results in a vector, and writes the vector to the
destination SIMD and FP register. The destination vector elements are twice as long as the elements that
are multiplied.

The UMULL instruction extracts vector elements from the lower half of the first source register, while the
UMULL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-104 UMULL, UMULL2 (Vector) specifier combinations

<Q> Ta Tb Ts index

- 4S 4H H 0 to 7

2 4S 8H H 0 to 7

- 2D 2S S 0 to 3

2 2D 4S S 0 to 3

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.255 UMULL, UMULL2 (vector, by element)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1524
Non-Confidential

D6.256 UMULL, UMULL2 (vector)
Unsigned Multiply long (vector).

Syntax

UMULL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower
or upper half of the two source SIMD and FP registers, places the result in a vector, and writes the vector
to the destination SIMD and FP register. The destination vector elements are twice as long as the
elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMULL instruction extracts each source vector from the lower half of each source register, while the
UMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-105 UMULL, UMULL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.256 UMULL, UMULL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1525
Non-Confidential

D6.257 UQADD (vector)
Unsigned saturating Add.

Syntax

UQADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source
SIMD and FP registers, places the results into a vector, and writes the vector to the destination SIMD and
FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.257 UQADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1526
Non-Confidential

D6.258 UQRSHL (vector)
Unsigned saturating Rounding Shift Left (register).

Syntax

UQRSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first
source SIMD and FP register, shifts the vector element by a value from the least significant byte of the
corresponding vector element of the second source SIMD and FP register, places the results into a vector,
and writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
rounded. For truncated results, see D6.260 UQSHL (vector, immediate) on page D6-1529.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.258 UQRSHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1527
Non-Confidential

D6.259 UQRSHRN, UQRSHRN2 (vector)
Unsigned saturating Rounded Shift Right Narrow (immediate).

Syntax

UQRSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector
element in the source SIMD and FP register, right shifts each result by an immediate value, puts the final
result into a vector, and writes the vector to the lower or upper half of the destination SIMD and FP
register. All the values in this instruction are unsigned integer values. The results are rounded. For
truncated results, see D6.262 UQSHRN, UQSHRN2 (vector) on page D6-1531.

The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the
upper half, while the UQRSHRN2 instruction writes the vector to the upper half of the destination register
without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-106 UQRSHRN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.259 UQRSHRN, UQRSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1528
Non-Confidential

D6.260 UQSHL (vector, immediate)
Unsigned saturating Shift Left (immediate).

Syntax

UQSHL Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the left shift amount, in the range 0 to the element width in bits minus 1, and can be one of the
values shown in Usage.

Usage

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source
SIMD and FP register, shifts it by an immediate value, places the results in a vector, and writes the vector
to the destination SIMD and FP register. The results are truncated. For rounded results, see
D6.258 UQRSHL (vector) on page D6-1527.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-107 UQSHL (Vector) specifier combinations

T shift

8B 0 to 7

16B 0 to 7

4H 0 to 15

8H 0 to 15

2S 0 to 31

4S 0 to 31

2D 0 to 63

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.260 UQSHL (vector, immediate)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1529
Non-Confidential

D6.261 UQSHL (vector, register)
Unsigned saturating Shift Left (register).

Syntax

UQSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first
source SIMD and FP register, shifts the element by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are
truncated. For rounded results, see D6.258 UQRSHL (vector) on page D6-1527.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.261 UQSHL (vector, register)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1530
Non-Confidential

D6.262 UQSHRN, UQSHRN2 (vector)
Unsigned saturating Shift Right Narrow (immediate).

Syntax

UQSHRN{2} Vd.Tb, Vn.Ta, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the right shift amount, in the range 1 to the destination element width in bits, and can be one
of the values shown in Usage.

Usage

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts each result by an immediate value, saturates each shifted result
to a value that is half the original width, puts the final result into a vector, and writes the vector to the
lower or upper half of the destination SIMD and FP register. All the values in this instruction are
unsigned integer values. The results are truncated. For rounded results, see D6.259 UQRSHRN,
UQRSHRN2 (vector) on page D6-1528.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the UQSHRN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-108 UQSHRN{2} (Vector) specifier combinations

<Q> Tb Ta shift

- 8B 8H 1 to 8

2 16B 8H 1 to 8

- 4H 4S 1 to 16

2 8H 4S 1 to 16

- 2S 2D 1 to 32

2 4S 2D 1 to 32

D6 A64 SIMD Vector Instructions
D6.262 UQSHRN, UQSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1531
Non-Confidential

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.262 UQSHRN, UQSHRN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1532
Non-Confidential

D6.263 UQSUB (vector)
Unsigned saturating Subtract.

Syntax

UQSUB Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD
and FP register from the corresponding element values of the first source SIMD and FP register, places
the results into a vector, and writes the vector to the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.263 UQSUB (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1533
Non-Confidential

D6.264 UQXTN, UQXTN2 (vector)
Unsigned saturating extract Narrow.

Syntax

UQXTN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD
and FP register, saturates each value to half the original width, places the result into a vector, and writes
the vector to the destination SIMD and FP register. All the values in this instruction are unsigned integer
values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the UQXTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-109 UQXTN{2} (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.264 UQXTN, UQXTN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1534
Non-Confidential

D6.265 URECPE (vector)
Unsigned Reciprocal Estimate.

Syntax

URECPE Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Usage

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD and FP
register, calculates an approximate inverse for the unsigned integer value, places the result into a vector,
and writes the vector to the destination SIMD and FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.265 URECPE (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1535
Non-Confidential

D6.266 URHADD (vector)
Unsigned Rounding Halving Add.

Syntax

URHADD Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S or 4S.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the
two source SIMD and FP registers, shifts each result right one bit, places the results into a vector, and
writes the vector to the destination SIMD and FP register.

The results are rounded. For truncated results, see D6.242 UHADD (vector) on page D6-1511.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.266 URHADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1536
Non-Confidential

D6.267 URSHL (vector)
Unsigned Rounding Shift Left (register).

Syntax

URSHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first
source SIMD and FP register, shifts the vector element by a value from the least significant byte of the
corresponding element of the second source SIMD and FP register, places the results in a vector, and
writes the vector to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right
shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.267 URSHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1537
Non-Confidential

D6.268 URSHR (vector)
Unsigned Rounding Shift Right (immediate).

Syntax

URSHR Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source
SIMD and FP register, right shifts each result by an immediate value, writes the final result to a vector,
and writes the vector to the destination SIMD and FP register. All the values in this instruction are
unsigned integer values. The results are rounded. For truncated results, see D6.273 USHR (vector)
on page D6-1543.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-110 URSHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.268 URSHR (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1538
Non-Confidential

D6.269 URSQRTE (vector)
Unsigned Reciprocal Square Root Estimate.

Syntax

URSQRTE Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be either 2S or 4S.

Vn
Is the name of the SIMD and FP source register.

Usage

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source
SIMD and FP register, calculates an approximate inverse square root for each value, places the result into
a vector, and writes the vector to the destination SIMD and FP register. All the values in this instruction
are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.269 URSQRTE (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1539
Non-Confidential

D6.270 URSRA (vector)
Unsigned Rounding Shift Right and Accumulate (immediate).

Syntax

URSRA Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element
in the source SIMD and FP register, right shifts each result by an immediate value, and accumulates the
final results with the vector elements of the destination SIMD and FP register. All the values in this
instruction are unsigned integer values. The results are rounded. For truncated results, see D6.275 USRA
(vector) on page D6-1545.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-111 URSRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.270 URSRA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1540
Non-Confidential

D6.271 USHL (vector)
Unsigned Shift Left (register).

Syntax

USHL Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD
and FP register, shifts each element by a value from the least significant byte of the corresponding
element of the second source SIMD and FP register, places the results in a vector, and writes the vector
to the destination SIMD and FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating
right shift. For a rounding shift, see D6.267 URSHL (vector) on page D6-1537.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.271 USHL (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1541
Non-Confidential

D6.272 USHLL, USHLL2 (vector)
Unsigned Shift Left Long (immediate).

This instruction is used by the alias UXTL, UXTL2, UXTL, UXTL22.

Syntax

USHLL{2} Vd.Ta, Vn.Tb, #shift

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

shift
Is the left shift amount, in the range 0 to the source element width in bits minus 1, and can be
one of the values shown in Usage.

Usage

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper
half of the source SIMD and FP register, shifts the unsigned integer value left by the specified number of
bits, places the result into a vector, and writes the vector to the destination SIMD and FP register. The
destination vector elements are twice as long as the source vector elements.

The USHLL instruction extracts vector elements from the lower half of the source register, while the
USHLL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-112 USHLL, USHLL2 (Vector) specifier combinations

<Q> Ta Tb shift

- 8H 8B 0 to 7

2 8H 16B 0 to 7

- 4S 4H 0 to 15

2 4S 8H 0 to 15

- 2D 2S 0 to 31

2 2D 4S 0 to 31

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.272 USHLL, USHLL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1542
Non-Confidential

D6.273 USHR (vector)
Unsigned Shift Right (immediate).

Syntax

USHR Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD and FP
register, right shifts each result by an immediate value, writes the final result to a vector, and writes the
vector to the destination SIMD and FP register. All the values in this instruction are unsigned integer
values. The results are truncated. For rounded results, see D6.268 URSHR (vector) on page D6-1538.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-113 USHR (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.273 USHR (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1543
Non-Confidential

D6.274 USQADD (vector)
Unsigned saturating Accumulate of Signed value.

Syntax

USQADD Vd.T, Vn.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the SIMD and FP source register.

Usage

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the
vector elements in the source SIMD and FP register to corresponding unsigned integer values of the
vector elements in the destination SIMD and FP register, and accumulates the resulting unsigned integer
values with the vector elements of the destination SIMD and FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative
saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.274 USQADD (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1544
Non-Confidential

D6.275 USRA (vector)
Unsigned Shift Right and Accumulate (immediate).

Syntax

USRA Vd.T, Vn.T, #shift

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

shift
Is the right shift amount, in the range 1 to the element width in bits, and can be one of the values
shown in Usage.

Usage

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the
source SIMD and FP register, right shifts each result by an immediate value, and accumulates the final
results with the vector elements of the destination SIMD and FP register. All the values in this instruction
are unsigned integer values. The results are truncated. For rounded results, see D6.270 URSRA (vector)
on page D6-1540.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-114 USRA (Vector) specifier combinations

T shift

8B 1 to 8

16B 1 to 8

4H 1 to 16

8H 1 to 16

2S 1 to 32

4S 1 to 32

2D 1 to 64

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.275 USRA (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1545
Non-Confidential

D6.276 USUBL, USUBL2 (vector)
Unsigned Subtract Long.

Syntax

USUBL{2} Vd.Ta, Vn.Tb, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vm
Is the name of the second SIMD and FP source register.

Usage

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the
second source SIMD and FP register from the corresponding vector element of the first source SIMD and
FP register, places the result into a vector, and writes the vector to the destination SIMD and FP register.
All the values in this instruction are unsigned integer values. The destination vector elements are twice as
long as the source vector elements.

The USUBL instruction extracts each source vector from the lower half of each source register, while the
USUBL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-115 USUBL, USUBL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.276 USUBL, USUBL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1546
Non-Confidential

D6.277 USUBW, USUBW2 (vector)
Unsigned Subtract Wide.

Syntax

USUBW{2} Vd.Ta, Vn.Ta, Vm.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD and
FP register from the corresponding vector element in the lower or upper half of the first source SIMD
and FP register, places the result in a vector, and writes the vector to the SIMD and FP destination
register. All the values in this instruction are signed integer values.

The vector elements of the destination register and the first source register are twice as long as the vector
elements of the second source register.

The USUBW instruction extracts vector elements from the lower half of the first source register, while the
USUBW2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-116 USUBW, USUBW2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.277 USUBW, USUBW2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1547
Non-Confidential

D6.278 UXTL, UXTL2 (vector)
Unsigned extend Long.

This instruction is an alias of USHLL, USHLL2.

The equivalent instruction is USHLL{2} Vd.Ta, Vn.Tb, #0.

Syntax

UXTL{2} Vd.Ta, Vn.Tb

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the
source SIMD and FP register into a vector, and writes the vector to the destination SIMD and FP register.
The destination vector elements are twice as long as the source vector elements.

The UXTL instruction extracts vector elements from the lower half of the source register, while the UXTL2
instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-117 UXTL, UXTL2 (Vector) specifier combinations

<Q> Ta Tb

- 8H 8B

2 8H 16B

- 4S 4H

2 4S 8H

- 2D 2S

2 2D 4S

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.278 UXTL, UXTL2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1548
Non-Confidential

D6.279 UZP1 (vector)
Unzip vectors (primary).

Syntax

UZP1 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the
two source SIMD and FP registers, starting at zero, places the result from the first source register into
consecutive elements in the lower half of a vector, and the result from the second source register into
consecutive elements in the upper half of a vector, and writes the vector to the destination SIMD and FP
register.

 Note

This instruction can be used with UZP2 to de-interleave two vectors.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.279 UZP1 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1549
Non-Confidential

D6.280 UZP2 (vector)
Unzip vectors (secondary).

Syntax

UZP2 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the
two source SIMD and FP registers, places the result from the first source register into consecutive
elements in the lower half of a vector, and the result from the second source register into consecutive
elements in the upper half of a vector, and writes the vector to the destination SIMD and FP register.

 Note

This instruction can be used with UZP1 to de-interleave two vectors.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.280 UZP2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1550
Non-Confidential

D6.281 XTN, XTN2 (vector)
Extract Narrow.

Syntax

XTN{2} Vd.Tb, Vn.Ta

Where:

2
Is the second and upper half specifier. If present it causes the operation to be performed on the
upper 64 bits of the registers holding the narrower elements. See <Q> in the Usage table.

Vd
Is the name of the SIMD and FP destination register.

Tb
Is an arrangement specifier, and can be one of the values shown in Usage.

Vn
Is the name of the SIMD and FP source register.

Ta
Is an arrangement specifier, and can be one of the values shown in Usage.

Usage

Extract Narrow. This instruction reads each vector element from the source SIMD and FP register,
narrows each value to half the original width, places the result into a vector, and writes the vector to the
lower or upper half of the destination SIMD and FP register. The destination vector elements are half as
long as the source vector elements.

The XTN instruction writes the vector to the lower half of the destination register and clears the upper
half, while the XTN2 instruction writes the vector to the upper half of the destination register without
affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

The following table shows the valid specifier combinations:

Table D6-118 XTN, XTN2 (Vector) specifier combinations

<Q> Tb Ta

- 8B 8H

2 16B 8H

- 4H 4S

2 8H 4S

- 2S 2D

2 4S 2D

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.281 XTN, XTN2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1551
Non-Confidential

D6.282 ZIP1 (vector)
Zip vectors (primary).

Syntax

ZIP1 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Zip vectors (primary). This instruction reads adjacent vector elements from the upper half of two source
SIMD and FP registers as pairs, interleaves the pairs and places them into a vector, and writes the vector
to the destination SIMD and FP register. The first pair from the first source register is placed into the two
lowest vector elements, with subsequent pairs taken alternately from each source register.

 Note

This instruction can be used with ZIP2 to interleave two vectors.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.282 ZIP1 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1552
Non-Confidential

D6.283 ZIP2 (vector)
Zip vectors (secondary).

Syntax

ZIP2 Vd.T, Vn.T, Vm.T

Where:

Vd
Is the name of the SIMD and FP destination register.

T
Is an arrangement specifier, and can be one of 8B, 16B, 4H, 8H, 2S, 4S or 2D.

Vn
Is the name of the first SIMD and FP source register.

Vm
Is the name of the second SIMD and FP source register.

Usage
Zip vectors (secondary). This instruction reads adjacent vector elements from the lower half of two
source SIMD and FP registers as pairs, interleaves the pairs and places them into a vector, and writes the
vector to the destination SIMD and FP register. The first pair from the first source register is placed into
the two lowest vector elements, with subsequent pairs taken alternately from each source register.

 Note

This instruction can be used with ZIP1 to interleave two vectors.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current
Security state and Exception level, an attempt to execute the instruction might be trapped.

Related reference
D6.1 A64 SIMD Vector instructions in alphabetical order on page D6-1243

D6 A64 SIMD Vector Instructions
D6.283 ZIP2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1553
Non-Confidential

D6 A64 SIMD Vector Instructions
D6.283 ZIP2 (vector)

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D6-1554
Non-Confidential

Chapter D7
A64 Cryptographic Algorithms

Lists the algorithms that A64 SIMD instructions support.

It contains the following section:
• D7.1 A64 Cryptographic instructions on page D7-1556.

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D7-1555
Non-Confidential

D7.1 A64 Cryptographic instructions
A set of A64 cryptographic instructions is available in the Armv8 architecture.

These instructions use the 128-bit Advanced SIMD registers and support the acceleration of the
following cryptographic and hash algorithms:
• AES.
• SHA1.
• SHA256.
• SHA3, optional in architectures Armv8.2-A and later.
• SHA512, optional in architectures Armv8.2-A and later.
• SM3, optional in architectures Armv8.2-A and later.
• SM4, optional in architectures Armv8.2-A and later.

Summary of A64 cryptographic instructions

The following table lists the A64 cryptographic instructions that are supported:

Table D7-1 Summary of A64 cryptographic instructions

Mnemonic Brief description

AESD AES single round decryption

AESE AES single round encryption

AESIMC AES inverse mix columns

AESMC AES mix columns

BCAX SHA3 Bit Clear and XOR

EOR3 SHA3 Three-way Exclusive OR

RAX1 SHA3 Rotate and Exclusive OR

SHA1C SHA1 hash update (choose)

SHA1H SHA1 fixed rotate

SHA1M SHA1 hash update (majority)

SHA1P SHA1 hash update (parity)

SHA1SU0 SHA1 schedule update 0

SHA1SU1 SHA1 schedule update 1

SHA256H2 SHA256 hash update (part 2)

SHA256H SHA256 hash update (part 1)

SHA256SU0 SHA256 schedule update 0

SHA256SU1 SHA256 schedule update 1

SHA512H2 SHA512 Hash update part 2

SHA512H SHA512 Hash update part 1

SHA512SU0 SHA512 Schedule Update 0

SHA512SU1 SHA512 Schedule Update 1

SM3PARTW1 SM3 three-way exclusive OR on the combination of three 128-bit vectors

SM3PARTW2 SM3 three-way exclusive OR on the combination of three 128-bit vectors

D7 A64 Cryptographic Algorithms
D7.1 A64 Cryptographic instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D7-1556
Non-Confidential

Table D7-1 Summary of A64 cryptographic instructions (continued)

Mnemonic Brief description

SM3SS1 SM3 perform rotates and adds on three 128-bit vectors combined into a destination 128-bit SIMD and FP register

SM3TT1A SM3 three-way exclusive OR on the combination of three 128-bit vectors and a 2-bit immediate index value

SM3TT1B SM3 perform 32-bit majority function on the combination of three 128-bit vectors and 2-bit immediate index value

SM3TT2A SM3 three-way exclusive OR of combined three 128-bit vectors and a 2-bit immediate index value

SM3TT2B SM3 perform 32-bit majority function on the combination of three 128-bit vectors and 2-bit immediate index value

SM4E SM4 Encode

SM4EKEY SM4 Key

XAR SHA3 Exclusive OR and Rotate

D7 A64 Cryptographic Algorithms
D7.1 A64 Cryptographic instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D7-1557
Non-Confidential

D7 A64 Cryptographic Algorithms
D7.1 A64 Cryptographic instructions

100076_0100_00_en Copyright © 2018 Arm Limited or its affiliates. All rights reserved. D7-1558
Non-Confidential

	Arm® Instruction Set Reference Guide
	Table of Contents
	List of Figures
	List of Figures
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	Part A : Instruction Set Overview
	A1 : Overview of the Arm® Architecture
	A1.1 : About the Arm® architecture
	A1.2 : Differences between the A64, A32, and T32 instruction sets
	A1.3 : Changing between AArch64 and AArch32 states
	A1.4 : Advanced SIMD
	A1.5 : Floating-point hardware

	A2 : Overview of AArch32 state
	A2.1 : Changing between A32 and T32 instruction set states
	A2.2 : Processor modes, and privileged and unprivileged software execution
	A2.3 : Processor modes in Armv6‑M, Armv7‑M, and Armv8‑M
	A2.4 : Registers in AArch32 state
	A2.5 : General-purpose registers in AArch32 state
	A2.6 : Register accesses in AArch32 state
	A2.7 : Predeclared core register names in AArch32 state
	A2.8 : Predeclared extension register names in AArch32 state
	A2.9 : Program Counter in AArch32 state
	A2.10 : The Q flag in AArch32 state
	A2.11 : Application Program Status Register
	A2.12 : Current Program Status Register in AArch32 state
	A2.13 : Saved Program Status Registers in AArch32 state
	A2.14 : A32 and T32 instruction set overview
	A2.15 : Access to the inline barrel shifter in AArch32 state

	A3 : Overview of AArch64 state
	A3.1 : Registers in AArch64 state
	A3.2 : Exception levels
	A3.3 : Link registers
	A3.4 : Stack Pointer register
	A3.5 : Predeclared core register names in AArch64 state
	A3.6 : Predeclared extension register names in AArch64 state
	A3.7 : Program Counter in AArch64 state
	A3.8 : Conditional execution in AArch64 state
	A3.9 : The Q flag in AArch64 state
	A3.10 : Process State
	A3.11 : Saved Program Status Registers in AArch64 state
	A3.12 : A64 instruction set overview

	Part B : Advanced SIMD and Floating-point Programming
	B1 : Advanced SIMD Programming
	B1.1 : Architecture support for Advanced SIMD
	B1.2 : Extension register bank mapping for Advanced SIMD in AArch32 state
	B1.3 : Extension register bank mapping for Advanced SIMD in AArch64 state
	B1.4 : Views of the Advanced SIMD register bank in AArch32 state
	B1.5 : Views of the Advanced SIMD register bank in AArch64 state
	B1.6 : Differences between A32/T32 and A64 Advanced SIMD instruction syntax
	B1.7 : Load values to Advanced SIMD registers
	B1.8 : Conditional execution of A32/T32 Advanced SIMD instructions
	B1.9 : Floating-point exceptions for Advanced SIMD in A32/T32 instructions
	B1.10 : Advanced SIMD data types in A32/T32 instructions
	B1.11 : Polynomial arithmetic over {0,1}
	B1.12 : Advanced SIMD vectors
	B1.13 : Normal, long, wide, and narrow Advanced SIMD instructions
	B1.14 : Saturating Advanced SIMD instructions
	B1.15 : Advanced SIMD scalars
	B1.16 : Extended notation extension for Advanced SIMD in A32/T32 code
	B1.17 : Advanced SIMD system registers in AArch32 state
	B1.18 : Flush-to-zero mode in Advanced SIMD
	B1.19 : When to use flush-to-zero mode in Advanced SIMD
	B1.20 : The effects of using flush-to-zero mode in Advanced SIMD
	B1.21 : Advanced SIMD operations not affected by flush-to-zero mode

	B2 : Floating-point Programming
	B2.1 : Architecture support for floating-point
	B2.2 : Extension register bank mapping for floating-point in AArch32 state
	B2.3 : Extension register bank mapping in AArch64 state
	B2.4 : Views of the floating-point extension register bank in AArch32 state
	B2.5 : Views of the floating-point extension register bank in AArch64 state
	B2.6 : Differences between A32/T32 and A64 floating-point instruction syntax
	B2.7 : Load values to floating-point registers
	B2.8 : Conditional execution of A32/T32 floating-point instructions
	B2.9 : Floating-point exceptions for floating-point in A32/T32 instructions
	B2.10 : Floating-point data types in A32/T32 instructions
	B2.11 : Extended notation extension for floating-point in A32/T32 code
	B2.12 : Floating-point system registers in AArch32 state
	B2.13 : Flush-to-zero mode in floating-point
	B2.14 : When to use flush-to-zero mode in floating-point
	B2.15 : The effects of using flush-to-zero mode in floating-point
	B2.16 : Floating-point operations not affected by flush-to-zero mode

	Part C : A32/T32 Instruction Set Reference
	C1 : Condition Codes
	C1.1 : Conditional instructions
	C1.2 : Conditional execution in A32 code
	C1.3 : Conditional execution in T32 code
	C1.4 : Condition flags
	C1.5 : Updates to the condition flags in A32/T32 code
	C1.6 : Floating-point instructions that update the condition flags
	C1.7 : Carry flag
	C1.8 : Overflow flag
	C1.9 : Condition code suffixes
	C1.10 : Condition code suffixes and related flags
	C1.11 : Comparison of condition code meanings in integer and floating-point code
	C1.12 : Benefits of using conditional execution in A32 and T32 code
	C1.13 : Example showing the benefits of conditional instructions in A32 and T32 code
	C1.14 : Optimization for execution speed

	C2 : A32 and T32 Instructions
	C2.1 : A32 and T32 instruction summary
	C2.2 : Instruction width specifiers
	C2.3 : Flexible second operand (Operand2)
	C2.4 : Syntax of Operand2 as a constant
	C2.5 : Syntax of Operand2 as a register with optional shift
	C2.6 : Shift operations
	C2.7 : Saturating instructions
	C2.8 : ADC
	C2.9 : ADD
	C2.10 : ADR (PC-relative)
	C2.11 : ADR (register-relative)
	C2.12 : AND
	C2.13 : ASR
	C2.14 : B
	C2.15 : BFC
	C2.16 : BFI
	C2.17 : BIC
	C2.18 : BKPT
	C2.19 : BL
	C2.20 : BLX, BLXNS
	C2.21 : BX, BXNS
	C2.22 : BXJ
	C2.23 : CBZ and CBNZ
	C2.24 : CDP and CDP2
	C2.25 : CLREX
	C2.26 : CLZ
	C2.27 : CMP and CMN
	C2.28 : CPS
	C2.29 : CRC32
	C2.30 : CRC32C
	C2.31 : CSDB
	C2.32 : DBG
	C2.33 : DCPS1 (T32 instruction)
	C2.34 : DCPS2 (T32 instruction)
	C2.35 : DCPS3 (T32 instruction)
	C2.36 : DMB
	C2.37 : DSB
	C2.38 : EOR
	C2.39 : ERET
	C2.40 : ESB
	C2.41 : HLT
	C2.42 : HVC
	C2.43 : ISB
	C2.44 : IT
	C2.45 : LDA
	C2.46 : LDAEX
	C2.47 : LDC and LDC2
	C2.48 : LDM
	C2.49 : LDR (immediate offset)
	C2.50 : LDR (PC-relative)
	C2.51 : LDR (register offset)
	C2.52 : LDR (register-relative)
	C2.53 : LDR, unprivileged
	C2.54 : LDREX
	C2.55 : LSL
	C2.56 : LSR
	C2.57 : MCR and MCR2
	C2.58 : MCRR and MCRR2
	C2.59 : MLA
	C2.60 : MLS
	C2.61 : MOV
	C2.62 : MOVT
	C2.63 : MRC and MRC2
	C2.64 : MRRC and MRRC2
	C2.65 : MRS (PSR to general-purpose register)
	C2.66 : MRS (system coprocessor register to general-purpose register)
	C2.67 : MSR (general-purpose register to system coprocessor register)
	C2.68 : MSR (general-purpose register to PSR)
	C2.69 : MUL
	C2.70 : MVN
	C2.71 : NOP
	C2.72 : ORN (T32 only)
	C2.73 : ORR
	C2.74 : PKHBT and PKHTB
	C2.75 : PLD, PLDW, and PLI
	C2.76 : POP
	C2.77 : PUSH
	C2.78 : QADD
	C2.79 : QADD8
	C2.80 : QADD16
	C2.81 : QASX
	C2.82 : QDADD
	C2.83 : QDSUB
	C2.84 : QSAX
	C2.85 : QSUB
	C2.86 : QSUB8
	C2.87 : QSUB16
	C2.88 : RBIT
	C2.89 : REV
	C2.90 : REV16
	C2.91 : REVSH
	C2.92 : RFE
	C2.93 : ROR
	C2.94 : RRX
	C2.95 : RSB
	C2.96 : RSC
	C2.97 : SADD8
	C2.98 : SADD16
	C2.99 : SASX
	C2.100 : SBC
	C2.101 : SBFX
	C2.102 : SDIV
	C2.103 : SEL
	C2.104 : SETEND
	C2.105 : SETPAN
	C2.106 : SEV
	C2.107 : SEVL
	C2.108 : SG
	C2.109 : SHADD8
	C2.110 : SHADD16
	C2.111 : SHASX
	C2.112 : SHSAX
	C2.113 : SHSUB8
	C2.114 : SHSUB16
	C2.115 : SMC
	C2.116 : SMLAxy
	C2.117 : SMLAD
	C2.118 : SMLAL
	C2.119 : SMLALD
	C2.120 : SMLALxy
	C2.121 : SMLAWy
	C2.122 : SMLSD
	C2.123 : SMLSLD
	C2.124 : SMMLA
	C2.125 : SMMLS
	C2.126 : SMMUL
	C2.127 : SMUAD
	C2.128 : SMULxy
	C2.129 : SMULL
	C2.130 : SMULWy
	C2.131 : SMUSD
	C2.132 : SRS
	C2.133 : SSAT
	C2.134 : SSAT16
	C2.135 : SSAX
	C2.136 : SSUB8
	C2.137 : SSUB16
	C2.138 : STC and STC2
	C2.139 : STL
	C2.140 : STLEX
	C2.141 : STM
	C2.142 : STR (immediate offset)
	C2.143 : STR (register offset)
	C2.144 : STR, unprivileged
	C2.145 : STREX
	C2.146 : SUB
	C2.147 : SUBS pc, lr
	C2.148 : SVC
	C2.149 : SWP and SWPB
	C2.150 : SXTAB
	C2.151 : SXTAB16
	C2.152 : SXTAH
	C2.153 : SXTB
	C2.154 : SXTB16
	C2.155 : SXTH
	C2.156 : SYS
	C2.157 : TBB and TBH
	C2.158 : TEQ
	C2.159 : TST
	C2.160 : TT, TTT, TTA, TTAT
	C2.161 : UADD8
	C2.162 : UADD16
	C2.163 : UASX
	C2.164 : UBFX
	C2.165 : UDF
	C2.166 : UDIV
	C2.167 : UHADD8
	C2.168 : UHADD16
	C2.169 : UHASX
	C2.170 : UHSAX
	C2.171 : UHSUB8
	C2.172 : UHSUB16
	C2.173 : UMAAL
	C2.174 : UMLAL
	C2.175 : UMULL
	C2.176 : UQADD8
	C2.177 : UQADD16
	C2.178 : UQASX
	C2.179 : UQSAX
	C2.180 : UQSUB8
	C2.181 : UQSUB16
	C2.182 : USAD8
	C2.183 : USADA8
	C2.184 : USAT
	C2.185 : USAT16
	C2.186 : USAX
	C2.187 : USUB8
	C2.188 : USUB16
	C2.189 : UXTAB
	C2.190 : UXTAB16
	C2.191 : UXTAH
	C2.192 : UXTB
	C2.193 : UXTB16
	C2.194 : UXTH
	C2.195 : WFE
	C2.196 : WFI
	C2.197 : YIELD

	C3 : Advanced SIMD Instructions (32-bit)
	C3.1 : Summary of Advanced SIMD instructions
	C3.2 : Summary of shared Advanced SIMD and floating-point instructions
	C3.3 : Interleaving provided by load and store element and structure instructions
	C3.4 : Alignment restrictions in load and store element and structure instructions
	C3.5 : FLDMDBX, FLDMIAX
	C3.6 : FSTMDBX, FSTMIAX
	C3.7 : VABA and VABAL
	C3.8 : VABD and VABDL
	C3.9 : VABS
	C3.10 : VACLE, VACLT, VACGE and VACGT
	C3.11 : VADD
	C3.12 : VADDHN
	C3.13 : VADDL and VADDW
	C3.14 : VAND (immediate)
	C3.15 : VAND (register)
	C3.16 : VBIC (immediate)
	C3.17 : VBIC (register)
	C3.18 : VBIF
	C3.19 : VBIT
	C3.20 : VBSL
	C3.21 : VCADD
	C3.22 : VCEQ (immediate #0)
	C3.23 : VCEQ (register)
	C3.24 : VCGE (immediate #0)
	C3.25 : VCGE (register)
	C3.26 : VCGT (immediate #0)
	C3.27 : VCGT (register)
	C3.28 : VCLE (immediate #0)
	C3.29 : VCLS
	C3.30 : VCLE (register)
	C3.31 : VCLT (immediate #0)
	C3.32 : VCLT (register)
	C3.33 : VCLZ
	C3.34 : VCMLA
	C3.35 : VCMLA (by element)
	C3.36 : VCNT
	C3.37 : VCVT (between fixed-point or integer, and floating-point)
	C3.38 : VCVT (between half-precision and single-precision floating-point)
	C3.39 : VCVT (from floating-point to integer with directed rounding modes)
	C3.40 : VCVTB, VCVTT (between half-precision and double-precision)
	C3.41 : VDUP
	C3.42 : VEOR
	C3.43 : VEXT
	C3.44 : VFMA, VFMS
	C3.45 : VFMAL (by scalar)
	C3.46 : VFMAL (vector)
	C3.47 : VFMSL (by scalar)
	C3.48 : VFMSL (vector)
	C3.49 : VHADD
	C3.50 : VHSUB
	C3.51 : VLDn (single n-element structure to one lane)
	C3.52 : VLDn (single n-element structure to all lanes)
	C3.53 : VLDn (multiple n-element structures)
	C3.54 : VLDM
	C3.55 : VLDR
	C3.56 : VLDR (post-increment and pre-decrement)
	C3.57 : VLDR pseudo-instruction
	C3.58 : VMAX and VMIN
	C3.59 : VMAXNM, VMINNM
	C3.60 : VMLA
	C3.61 : VMLA (by scalar)
	C3.62 : VMLAL (by scalar)
	C3.63 : VMLAL
	C3.64 : VMLS (by scalar)
	C3.65 : VMLS
	C3.66 : VMLSL
	C3.67 : VMLSL (by scalar)
	C3.68 : VMOV (immediate)
	C3.69 : VMOV (register)
	C3.70 : VMOV (between two general-purpose registers and a 64-bit extension register)
	C3.71 : VMOV (between a general-purpose register and an Advanced SIMD scalar)
	C3.72 : VMOVL
	C3.73 : VMOVN
	C3.74 : VMOV2
	C3.75 : VMRS
	C3.76 : VMSR
	C3.77 : VMUL
	C3.78 : VMUL (by scalar)
	C3.79 : VMULL
	C3.80 : VMULL (by scalar)
	C3.81 : VMVN (register)
	C3.82 : VMVN (immediate)
	C3.83 : VNEG
	C3.84 : VORN (register)
	C3.85 : VORN (immediate)
	C3.86 : VORR (register)
	C3.87 : VORR (immediate)
	C3.88 : VPADAL
	C3.89 : VPADD
	C3.90 : VPADDL
	C3.91 : VPMAX and VPMIN
	C3.92 : VPOP
	C3.93 : VPUSH
	C3.94 : VQABS
	C3.95 : VQADD
	C3.96 : VQDMLAL and VQDMLSL (by vector or by scalar)
	C3.97 : VQDMULH (by vector or by scalar)
	C3.98 : VQDMULL (by vector or by scalar)
	C3.99 : VQMOVN and VQMOVUN
	C3.100 : VQNEG
	C3.101 : VQRDMULH (by vector or by scalar)
	C3.102 : VQRSHL (by signed variable)
	C3.103 : VQRSHRN and VQRSHRUN (by immediate)
	C3.104 : VQSHL (by signed variable)
	C3.105 : VQSHL and VQSHLU (by immediate)
	C3.106 : VQSHRN and VQSHRUN (by immediate)
	C3.107 : VQSUB
	C3.108 : VRADDHN
	C3.109 : VRECPE
	C3.110 : VRECPS
	C3.111 : VREV16, VREV32, and VREV64
	C3.112 : VRHADD
	C3.113 : VRSHL (by signed variable)
	C3.114 : VRSHR (by immediate)
	C3.115 : VRSHRN (by immediate)
	C3.116 : VRINT
	C3.117 : VRSQRTE
	C3.118 : VRSQRTS
	C3.119 : VRSRA (by immediate)
	C3.120 : VRSUBHN
	C3.121 : VSDOT (vector)
	C3.122 : VSDOT (by element)
	C3.123 : VSHL (by immediate)
	C3.124 : VSHL (by signed variable)
	C3.125 : VSHLL (by immediate)
	C3.126 : VSHR (by immediate)
	C3.127 : VSHRN (by immediate)
	C3.128 : VSLI
	C3.129 : VSRA (by immediate)
	C3.130 : VSRI
	C3.131 : VSTM
	C3.132 : VSTn (multiple n-element structures)
	C3.133 : VSTn (single n-element structure to one lane)
	C3.134 : VSTR
	C3.135 : VSTR (post-increment and pre-decrement)
	C3.136 : VSUB
	C3.137 : VSUBHN
	C3.138 : VSUBL and VSUBW
	C3.139 : VSWP
	C3.140 : VTBL and VTBX
	C3.141 : VTRN
	C3.142 : VTST
	C3.143 : VUDOT (vector)
	C3.144 : VUDOT (by element)
	C3.145 : VUZP
	C3.146 : VZIP

	C4 : Floating-point Instructions (32-bit)
	C4.1 : Summary of floating-point instructions
	C4.2 : VABS (floating-point)
	C4.3 : VADD (floating-point)
	C4.4 : VCMP, VCMPE
	C4.5 : VCVT (between single-precision and double-precision)
	C4.6 : VCVT (between floating-point and integer)
	C4.7 : VCVT (from floating-point to integer with directed rounding modes)
	C4.8 : VCVT (between floating-point and fixed-point)
	C4.9 : VCVTB, VCVTT (half-precision extension)
	C4.10 : VCVTB, VCVTT (between half-precision and double-precision)
	C4.11 : VDIV
	C4.12 : VFMA, VFMS, VFNMA, VFNMS (floating-point)
	C4.13 : VJCVT
	C4.14 : VLDM (floating-point)
	C4.15 : VLDR (floating-point)
	C4.16 : VLDR (post-increment and pre-decrement, floating-point)
	C4.17 : VLLDM
	C4.18 : VLSTM
	C4.19 : VMAXNM, VMINNM (floating-point)
	C4.20 : VMLA (floating-point)
	C4.21 : VMLS (floating-point)
	C4.22 : VMOV (floating-point)
	C4.23 : VMOV (between one general-purpose register and single precision floating-point register)
	C4.24 : VMOV (between two general-purpose registers and one or two extension registers)
	C4.25 : VMOV (between a general-purpose register and half a double precision floating-point register)
	C4.26 : VMRS (floating-point)
	C4.27 : VMSR (floating-point)
	C4.28 : VMUL (floating-point)
	C4.29 : VNEG (floating-point)
	C4.30 : VNMLA (floating-point)
	C4.31 : VNMLS (floating-point)
	C4.32 : VNMUL (floating-point)
	C4.33 : VPOP (floating-point)
	C4.34 : VPUSH (floating-point)
	C4.35 : VRINT (floating-point)
	C4.36 : VSEL
	C4.37 : VSQRT
	C4.38 : VSTM (floating-point)
	C4.39 : VSTR (floating-point)
	C4.40 : VSTR (post-increment and pre-decrement, floating-point)
	C4.41 : VSUB (floating-point)

	C5 : A32/T32 Cryptographic Algorithms
	C5.1 : A32/T32 Cryptographic instructions

	Part D : A64 Instruction Set Reference
	D1 : Condition Codes
	D1.1 : Conditional execution in A64 code
	D1.2 : Condition flags
	D1.3 : Updates to the condition flags in A64 code
	D1.4 : Floating-point instructions that update the condition flags
	D1.5 : Carry flag
	D1.6 : Overflow flag
	D1.7 : Condition code suffixes
	D1.8 : Condition code suffixes and related flags
	D1.9 : Optimization for execution speed

	D2 : A64 General Instructions
	D2.1 : A64 instructions in alphabetical order
	D2.2 : Register restrictions for A64 instructions
	D2.3 : ADC
	D2.4 : ADCS
	D2.5 : ADD (extended register)
	D2.6 : ADD (immediate)
	D2.7 : ADD (shifted register)
	D2.8 : ADDG
	D2.9 : ADDS (extended register)
	D2.10 : ADDS (immediate)
	D2.11 : ADDS (shifted register)
	D2.12 : ADR
	D2.13 : ADRP
	D2.14 : AND (immediate)
	D2.15 : AND (shifted register)
	D2.16 : ANDS (immediate)
	D2.17 : ANDS (shifted register)
	D2.18 : ASR (register)
	D2.19 : ASR (immediate)
	D2.20 : ASRV
	D2.21 : AT
	D2.22 : AUTDA, AUTDZA
	D2.23 : AUTDB, AUTDZB
	D2.24 : AUTIA, AUTIZA, AUTIA1716, AUTIASP, AUTIAZ
	D2.25 : AUTIB, AUTIZB, AUTIB1716, AUTIBSP, AUTIBZ
	D2.26 : AXFlag
	D2.27 : B.cond
	D2.28 : B
	D2.29 : BFC
	D2.30 : BFI
	D2.31 : BFM
	D2.32 : BFXIL
	D2.33 : BIC (shifted register)
	D2.34 : BICS (shifted register)
	D2.35 : BL
	D2.36 : BLR
	D2.37 : BLRAA, BLRAAZ, BLRAB, BLRABZ
	D2.38 : BR
	D2.39 : BRAA, BRAAZ, BRAB, BRABZ
	D2.40 : BRK
	D2.41 : BTI
	D2.42 : CBNZ
	D2.43 : CBZ
	D2.44 : CCMN (immediate)
	D2.45 : CCMN (register)
	D2.46 : CCMP (immediate)
	D2.47 : CCMP (register)
	D2.48 : CINC
	D2.49 : CINV
	D2.50 : CLREX
	D2.51 : CLS
	D2.52 : CLZ
	D2.53 : CMN (extended register)
	D2.54 : CMN (immediate)
	D2.55 : CMN (shifted register)
	D2.56 : CMP (extended register)
	D2.57 : CMP (immediate)
	D2.58 : CMP (shifted register)
	D2.59 : CMPP
	D2.60 : CNEG
	D2.61 : CRC32B, CRC32H, CRC32W, CRC32X
	D2.62 : CRC32CB, CRC32CH, CRC32CW, CRC32CX
	D2.63 : CSDB
	D2.64 : CSEL
	D2.65 : CSET
	D2.66 : CSETM
	D2.67 : CSINC
	D2.68 : CSINV
	D2.69 : CSNEG
	D2.70 : DC
	D2.71 : DCPS1
	D2.72 : DCPS2
	D2.73 : DCPS3
	D2.74 : DMB
	D2.75 : DRPS
	D2.76 : DSB
	D2.77 : EON (shifted register)
	D2.78 : EOR (immediate)
	D2.79 : EOR (shifted register)
	D2.80 : ERET
	D2.81 : ERETAA, ERETAB
	D2.82 : ESB
	D2.83 : EXTR
	D2.84 : GMI
	D2.85 : HINT
	D2.86 : HLT
	D2.87 : HVC
	D2.88 : IC
	D2.89 : IRG
	D2.90 : ISB
	D2.91 : LDG
	D2.92 : LDGV
	D2.93 : LSL (register)
	D2.94 : LSL (immediate)
	D2.95 : LSLV
	D2.96 : LSR (register)
	D2.97 : LSR (immediate)
	D2.98 : LSRV
	D2.99 : MADD
	D2.100 : MNEG
	D2.101 : MOV (to or from SP)
	D2.102 : MOV (inverted wide immediate)
	D2.103 : MOV (wide immediate)
	D2.104 : MOV (bitmask immediate)
	D2.105 : MOV (register)
	D2.106 : MOVK
	D2.107 : MOVN
	D2.108 : MOVZ
	D2.109 : MRS
	D2.110 : MSR (immediate)
	D2.111 : MSR (register)
	D2.112 : MSUB
	D2.113 : MUL
	D2.114 : MVN
	D2.115 : NEG (shifted register)
	D2.116 : NEGS
	D2.117 : NGC
	D2.118 : NGCS
	D2.119 : NOP
	D2.120 : ORN (shifted register)
	D2.121 : ORR (immediate)
	D2.122 : ORR (shifted register)
	D2.123 : PACDA, PACDZA
	D2.124 : PACDB, PACDZB
	D2.125 : PACGA
	D2.126 : PACIA, PACIZA, PACIA1716, PACIASP, PACIAZ
	D2.127 : PACIB, PACIZB, PACIB1716, PACIBSP, PACIBZ
	D2.128 : PSB
	D2.129 : RBIT
	D2.130 : RET
	D2.131 : RETAA, RETAB
	D2.132 : REV16
	D2.133 : REV32
	D2.134 : REV64
	D2.135 : REV
	D2.136 : ROR (immediate)
	D2.137 : ROR (register)
	D2.138 : RORV
	D2.139 : SBC
	D2.140 : SBCS
	D2.141 : SBFIZ
	D2.142 : SBFM
	D2.143 : SBFX
	D2.144 : SDIV
	D2.145 : SEV
	D2.146 : SEVL
	D2.147 : SMADDL
	D2.148 : SMC
	D2.149 : SMNEGL
	D2.150 : SMSUBL
	D2.151 : SMULH
	D2.152 : SMULL
	D2.153 : ST2G
	D2.154 : STG
	D2.155 : STGP
	D2.156 : STGV
	D2.157 : STZ2G
	D2.158 : STZG
	D2.159 : SUB (extended register)
	D2.160 : SUB (immediate)
	D2.161 : SUB (shifted register)
	D2.162 : SUBG
	D2.163 : SUBP
	D2.164 : SUBPS
	D2.165 : SUBS (extended register)
	D2.166 : SUBS (immediate)
	D2.167 : SUBS (shifted register)
	D2.168 : SVC
	D2.169 : SXTB
	D2.170 : SXTH
	D2.171 : SXTW
	D2.172 : SYS
	D2.173 : SYSL
	D2.174 : TBNZ
	D2.175 : TBZ
	D2.176 : TLBI
	D2.177 : TST (immediate)
	D2.178 : TST (shifted register)
	D2.179 : UBFIZ
	D2.180 : UBFM
	D2.181 : UBFX
	D2.182 : UDIV
	D2.183 : UMADDL
	D2.184 : UMNEGL
	D2.185 : UMSUBL
	D2.186 : UMULH
	D2.187 : UMULL
	D2.188 : UXTB
	D2.189 : UXTH
	D2.190 : XAFlag
	D2.191 : WFE
	D2.192 : WFI
	D2.193 : XPACD, XPACI, XPACLRI
	D2.194 : YIELD

	D3 : A64 Data Transfer Instructions
	D3.1 : A64 data transfer instructions in alphabetical order
	D3.2 : CASA, CASAL, CAS, CASL, CASAL, CAS, CASL
	D3.3 : CASAB, CASALB, CASB, CASLB
	D3.4 : CASAH, CASALH, CASH, CASLH
	D3.5 : CASPA, CASPAL, CASP, CASPL, CASPAL, CASP, CASPL
	D3.6 : LDADDA, LDADDAL, LDADD, LDADDL, LDADDAL, LDADD, LDADDL
	D3.7 : LDADDAB, LDADDALB, LDADDB, LDADDLB
	D3.8 : LDADDAH, LDADDALH, LDADDH, LDADDLH
	D3.9 : LDAPR
	D3.10 : LDAPRB
	D3.11 : LDAPRH
	D3.12 : LDAR
	D3.13 : LDARB
	D3.14 : LDARH
	D3.15 : LDAXP
	D3.16 : LDAXR
	D3.17 : LDAXRB
	D3.18 : LDAXRH
	D3.19 : LDCLRA, LDCLRAL, LDCLR, LDCLRL, LDCLRAL, LDCLR, LDCLRL
	D3.20 : LDCLRAB, LDCLRALB, LDCLRB, LDCLRLB
	D3.21 : LDCLRAH, LDCLRALH, LDCLRH, LDCLRLH
	D3.22 : LDEORA, LDEORAL, LDEOR, LDEORL, LDEORAL, LDEOR, LDEORL
	D3.23 : LDEORAB, LDEORALB, LDEORB, LDEORLB
	D3.24 : LDEORAH, LDEORALH, LDEORH, LDEORLH
	D3.25 : LDLAR
	D3.26 : LDLARB
	D3.27 : LDLARH
	D3.28 : LDNP
	D3.29 : LDP
	D3.30 : LDPSW
	D3.31 : LDR (immediate)
	D3.32 : LDR (literal)
	D3.33 : LDR (register)
	D3.34 : LDRAA, LDRAB, LDRAB
	D3.35 : LDRB (immediate)
	D3.36 : LDRB (register)
	D3.37 : LDRH (immediate)
	D3.38 : LDRH (register)
	D3.39 : LDRSB (immediate)
	D3.40 : LDRSB (register)
	D3.41 : LDRSH (immediate)
	D3.42 : LDRSH (register)
	D3.43 : LDRSW (immediate)
	D3.44 : LDRSW (literal)
	D3.45 : LDRSW (register)
	D3.46 : LDSETA, LDSETAL, LDSET, LDSETL, LDSETAL, LDSET, LDSETL
	D3.47 : LDSETAB, LDSETALB, LDSETB, LDSETLB
	D3.48 : LDSETAH, LDSETALH, LDSETH, LDSETLH
	D3.49 : LDSMAXA, LDSMAXAL, LDSMAX, LDSMAXL, LDSMAXAL, LDSMAX, LDSMAXL
	D3.50 : LDSMAXAB, LDSMAXALB, LDSMAXB, LDSMAXLB
	D3.51 : LDSMAXAH, LDSMAXALH, LDSMAXH, LDSMAXLH
	D3.52 : LDSMINA, LDSMINAL, LDSMIN, LDSMINL, LDSMINAL, LDSMIN, LDSMINL
	D3.53 : LDSMINAB, LDSMINALB, LDSMINB, LDSMINLB
	D3.54 : LDSMINAH, LDSMINALH, LDSMINH, LDSMINLH
	D3.55 : LDTR
	D3.56 : LDTRB
	D3.57 : LDTRH
	D3.58 : LDTRSB
	D3.59 : LDTRSH
	D3.60 : LDTRSW
	D3.61 : LDUMAXA, LDUMAXAL, LDUMAX, LDUMAXL, LDUMAXAL, LDUMAX, LDUMAXL
	D3.62 : LDUMAXAB, LDUMAXALB, LDUMAXB, LDUMAXLB
	D3.63 : LDUMAXAH, LDUMAXALH, LDUMAXH, LDUMAXLH
	D3.64 : LDUMINA, LDUMINAL, LDUMIN, LDUMINL, LDUMINAL, LDUMIN, LDUMINL
	D3.65 : LDUMINAB, LDUMINALB, LDUMINB, LDUMINLB
	D3.66 : LDUMINAH, LDUMINALH, LDUMINH, LDUMINLH
	D3.67 : LDUR
	D3.68 : LDURB
	D3.69 : LDURH
	D3.70 : LDURSB
	D3.71 : LDURSH
	D3.72 : LDURSW
	D3.73 : LDXP
	D3.74 : LDXR
	D3.75 : LDXRB
	D3.76 : LDXRH
	D3.77 : PRFM (immediate)
	D3.78 : PRFM (literal)
	D3.79 : PRFM (register)
	D3.80 : PRFUM (unscaled offset)
	D3.81 : STADD, STADDL, STADDL
	D3.82 : STADDB, STADDLB
	D3.83 : STADDH, STADDLH
	D3.84 : STCLR, STCLRL, STCLRL
	D3.85 : STCLRB, STCLRLB
	D3.86 : STCLRH, STCLRLH
	D3.87 : STEOR, STEORL, STEORL
	D3.88 : STEORB, STEORLB
	D3.89 : STEORH, STEORLH
	D3.90 : STLLR
	D3.91 : STLLRB
	D3.92 : STLLRH
	D3.93 : STLR
	D3.94 : STLRB
	D3.95 : STLRH
	D3.96 : STLXP
	D3.97 : STLXR
	D3.98 : STLXRB
	D3.99 : STLXRH
	D3.100 : STNP
	D3.101 : STP
	D3.102 : STR (immediate)
	D3.103 : STR (register)
	D3.104 : STRB (immediate)
	D3.105 : STRB (register)
	D3.106 : STRH (immediate)
	D3.107 : STRH (register)
	D3.108 : STSET, STSETL, STSETL
	D3.109 : STSETB, STSETLB
	D3.110 : STSETH, STSETLH
	D3.111 : STSMAX, STSMAXL, STSMAXL
	D3.112 : STSMAXB, STSMAXLB
	D3.113 : STSMAXH, STSMAXLH
	D3.114 : STSMIN, STSMINL, STSMINL
	D3.115 : STSMINB, STSMINLB
	D3.116 : STSMINH, STSMINLH
	D3.117 : STTR
	D3.118 : STTRB
	D3.119 : STTRH
	D3.120 : STUMAX, STUMAXL, STUMAXL
	D3.121 : STUMAXB, STUMAXLB
	D3.122 : STUMAXH, STUMAXLH
	D3.123 : STUMIN, STUMINL, STUMINL
	D3.124 : STUMINB, STUMINLB
	D3.125 : STUMINH, STUMINLH
	D3.126 : STUR
	D3.127 : STURB
	D3.128 : STURH
	D3.129 : STXP
	D3.130 : STXR
	D3.131 : STXRB
	D3.132 : STXRH
	D3.133 : SWPA, SWPAL, SWP, SWPL, SWPAL, SWP, SWPL
	D3.134 : SWPAB, SWPALB, SWPB, SWPLB
	D3.135 : SWPAH, SWPALH, SWPH, SWPLH

	D4 : A64 Floating-point Instructions
	D4.1 : A64 floating-point instructions in alphabetical order
	D4.2 : Register restrictions for A64 instructions
	D4.3 : FABS (scalar)
	D4.4 : FADD (scalar)
	D4.5 : FCCMP
	D4.6 : FCCMPE
	D4.7 : FCMP
	D4.8 : FCMPE
	D4.9 : FCSEL
	D4.10 : FCVT
	D4.11 : FCVTAS (scalar)
	D4.12 : FCVTAU (scalar)
	D4.13 : FCVTMS (scalar)
	D4.14 : FCVTMU (scalar)
	D4.15 : FCVTNS (scalar)
	D4.16 : FCVTNU (scalar)
	D4.17 : FCVTPS (scalar)
	D4.18 : FCVTPU (scalar)
	D4.19 : FCVTZS (scalar, fixed-point)
	D4.20 : FCVTZS (scalar, integer)
	D4.21 : FCVTZU (scalar, fixed-point)
	D4.22 : FCVTZU (scalar, integer)
	D4.23 : FDIV (scalar)
	D4.24 : FJCVTZS
	D4.25 : FMADD
	D4.26 : FMAX (scalar)
	D4.27 : FMAXNM (scalar)
	D4.28 : FMIN (scalar)
	D4.29 : FMINNM (scalar)
	D4.30 : FMOV (register)
	D4.31 : FMOV (general)
	D4.32 : FMOV (scalar, immediate)
	D4.33 : FMSUB
	D4.34 : FMUL (scalar)
	D4.35 : FNEG (scalar)
	D4.36 : FNMADD
	D4.37 : FNMSUB
	D4.38 : FNMUL (scalar)
	D4.39 : FRINTA (scalar)
	D4.40 : FRINTI (scalar)
	D4.41 : FRINTM (scalar)
	D4.42 : FRINTN (scalar)
	D4.43 : FRINTP (scalar)
	D4.44 : FRINTX (scalar)
	D4.45 : FRINTZ (scalar)
	D4.46 : FSQRT (scalar)
	D4.47 : FSUB (scalar)
	D4.48 : LDNP (SIMD and FP)
	D4.49 : LDP (SIMD and FP)
	D4.50 : LDR (immediate, SIMD and FP)
	D4.51 : LDR (literal, SIMD and FP)
	D4.52 : LDR (register, SIMD and FP)
	D4.53 : LDUR (SIMD and FP)
	D4.54 : SCVTF (scalar, fixed-point)
	D4.55 : SCVTF (scalar, integer)
	D4.56 : STNP (SIMD and FP)
	D4.57 : STP (SIMD and FP)
	D4.58 : STR (immediate, SIMD and FP)
	D4.59 : STR (register, SIMD and FP)
	D4.60 : STUR (SIMD and FP)
	D4.61 : UCVTF (scalar, fixed-point)
	D4.62 : UCVTF (scalar, integer)

	D5 : A64 SIMD Scalar Instructions
	D5.1 : A64 SIMD scalar instructions in alphabetical order
	D5.2 : ABS (scalar)
	D5.3 : ADD (scalar)
	D5.4 : ADDP (scalar)
	D5.5 : CMEQ (scalar, register)
	D5.6 : CMEQ (scalar, zero)
	D5.7 : CMGE (scalar, register)
	D5.8 : CMGE (scalar, zero)
	D5.9 : CMGT (scalar, register)
	D5.10 : CMGT (scalar, zero)
	D5.11 : CMHI (scalar, register)
	D5.12 : CMHS (scalar, register)
	D5.13 : CMLE (scalar, zero)
	D5.14 : CMLT (scalar, zero)
	D5.15 : CMTST (scalar)
	D5.16 : DUP (scalar, element)
	D5.17 : FABD (scalar)
	D5.18 : FACGE (scalar)
	D5.19 : FACGT (scalar)
	D5.20 : FADDP (scalar)
	D5.21 : FCMEQ (scalar, register)
	D5.22 : FCMEQ (scalar, zero)
	D5.23 : FCMGE (scalar, register)
	D5.24 : FCMGE (scalar, zero)
	D5.25 : FCMGT (scalar, register)
	D5.26 : FCMGT (scalar, zero)
	D5.27 : FCMLA (scalar, by element)
	D5.28 : FCMLE (scalar, zero)
	D5.29 : FCMLT (scalar, zero)
	D5.30 : FCVTAS (scalar)
	D5.31 : FCVTAU (scalar)
	D5.32 : FCVTMS (scalar)
	D5.33 : FCVTMU (scalar)
	D5.34 : FCVTNS (scalar)
	D5.35 : FCVTNU (scalar)
	D5.36 : FCVTPS (scalar)
	D5.37 : FCVTPU (scalar)
	D5.38 : FCVTXN (scalar)
	D5.39 : FCVTZS (scalar, fixed-point)
	D5.40 : FCVTZS (scalar, integer)
	D5.41 : FCVTZU (scalar, fixed-point)
	D5.42 : FCVTZU (scalar, integer)
	D5.43 : FMAXNMP (scalar)
	D5.44 : FMAXP (scalar)
	D5.45 : FMINNMP (scalar)
	D5.46 : FMINP (scalar)
	D5.47 : FMLA (scalar, by element)
	D5.48 : FMLAL, (scalar, by element)
	D5.49 : FMLS (scalar, by element)
	D5.50 : FMLSL, (scalar, by element)
	D5.51 : FMUL (scalar, by element)
	D5.52 : FMULX (scalar, by element)
	D5.53 : FMULX (scalar)
	D5.54 : FRECPE (scalar)
	D5.55 : FRECPS (scalar)
	D5.56 : FRSQRTE (scalar)
	D5.57 : FRSQRTS (scalar)
	D5.58 : MOV (scalar)
	D5.59 : NEG (scalar)
	D5.60 : SCVTF (scalar, fixed-point)
	D5.61 : SCVTF (scalar, integer)
	D5.62 : SHL (scalar)
	D5.63 : SLI (scalar)
	D5.64 : SQABS (scalar)
	D5.65 : SQADD (scalar)
	D5.66 : SQDMLAL (scalar, by element)
	D5.67 : SQDMLAL (scalar)
	D5.68 : SQDMLSL (scalar, by element)
	D5.69 : SQDMLSL (scalar)
	D5.70 : SQDMULH (scalar, by element)
	D5.71 : SQDMULH (scalar)
	D5.72 : SQDMULL (scalar, by element)
	D5.73 : SQDMULL (scalar)
	D5.74 : SQNEG (scalar)
	D5.75 : SQRDMLAH (scalar, by element)
	D5.76 : SQRDMLAH (scalar)
	D5.77 : SQRDMLSH (scalar, by element)
	D5.78 : SQRDMLSH (scalar)
	D5.79 : SQRDMULH (scalar, by element)
	D5.80 : SQRDMULH (scalar)
	D5.81 : SQRSHL (scalar)
	D5.82 : SQRSHRN (scalar)
	D5.83 : SQRSHRUN (scalar)
	D5.84 : SQSHL (scalar, immediate)
	D5.85 : SQSHL (scalar, register)
	D5.86 : SQSHLU (scalar)
	D5.87 : SQSHRN (scalar)
	D5.88 : SQSHRUN (scalar)
	D5.89 : SQSUB (scalar)
	D5.90 : SQXTN (scalar)
	D5.91 : SQXTUN (scalar)
	D5.92 : SRI (scalar)
	D5.93 : SRSHL (scalar)
	D5.94 : SRSHR (scalar)
	D5.95 : SRSRA (scalar)
	D5.96 : SSHL (scalar)
	D5.97 : SSHR (scalar)
	D5.98 : SSRA (scalar)
	D5.99 : SUB (scalar)
	D5.100 : SUQADD (scalar)
	D5.101 : UCVTF (scalar, fixed-point)
	D5.102 : UCVTF (scalar, integer)
	D5.103 : UQADD (scalar)
	D5.104 : UQRSHL (scalar)
	D5.105 : UQRSHRN (scalar)
	D5.106 : UQSHL (scalar, immediate)
	D5.107 : UQSHL (scalar, register)
	D5.108 : UQSHRN (scalar)
	D5.109 : UQSUB (scalar)
	D5.110 : UQXTN (scalar)
	D5.111 : URSHL (scalar)
	D5.112 : URSHR (scalar)
	D5.113 : URSRA (scalar)
	D5.114 : USHL (scalar)
	D5.115 : USHR (scalar)
	D5.116 : USQADD (scalar)
	D5.117 : USRA (scalar)

	D6 : A64 SIMD Vector Instructions
	D6.1 : A64 SIMD Vector instructions in alphabetical order
	D6.2 : ABS (vector)
	D6.3 : ADD (vector)
	D6.4 : ADDHN, ADDHN2 (vector)
	D6.5 : ADDP (vector)
	D6.6 : ADDV (vector)
	D6.7 : AND (vector)
	D6.8 : BIC (vector, immediate)
	D6.9 : BIC (vector, register)
	D6.10 : BIF (vector)
	D6.11 : BIT (vector)
	D6.12 : BSL (vector)
	D6.13 : CLS (vector)
	D6.14 : CLZ (vector)
	D6.15 : CMEQ (vector, register)
	D6.16 : CMEQ (vector, zero)
	D6.17 : CMGE (vector, register)
	D6.18 : CMGE (vector, zero)
	D6.19 : CMGT (vector, register)
	D6.20 : CMGT (vector, zero)
	D6.21 : CMHI (vector, register)
	D6.22 : CMHS (vector, register)
	D6.23 : CMLE (vector, zero)
	D6.24 : CMLT (vector, zero)
	D6.25 : CMTST (vector)
	D6.26 : CNT (vector)
	D6.27 : DUP (vector, element)
	D6.28 : DUP (vector, general)
	D6.29 : EOR (vector)
	D6.30 : EXT (vector)
	D6.31 : FABD (vector)
	D6.32 : FABS (vector)
	D6.33 : FACGE (vector)
	D6.34 : FACGT (vector)
	D6.35 : FADD (vector)
	D6.36 : FADDP (vector)
	D6.37 : FCADD (vector)
	D6.38 : FCMEQ (vector, register)
	D6.39 : FCMEQ (vector, zero)
	D6.40 : FCMGE (vector, register)
	D6.41 : FCMGE (vector, zero)
	D6.42 : FCMGT (vector, register)
	D6.43 : FCMGT (vector, zero)
	D6.44 : FCMLA (vector)
	D6.45 : FCMLE (vector, zero)
	D6.46 : FCMLT (vector, zero)
	D6.47 : FCVTAS (vector)
	D6.48 : FCVTAU (vector)
	D6.49 : FCVTL, FCVTL2 (vector)
	D6.50 : FCVTMS (vector)
	D6.51 : FCVTMU (vector)
	D6.52 : FCVTN, FCVTN2 (vector)
	D6.53 : FCVTNS (vector)
	D6.54 : FCVTNU (vector)
	D6.55 : FCVTPS (vector)
	D6.56 : FCVTPU (vector)
	D6.57 : FCVTXN, FCVTXN2 (vector)
	D6.58 : FCVTZS (vector, fixed-point)
	D6.59 : FCVTZS (vector, integer)
	D6.60 : FCVTZU (vector, fixed-point)
	D6.61 : FCVTZU (vector, integer)
	D6.62 : FDIV (vector)
	D6.63 : FMAX (vector)
	D6.64 : FMAXNM (vector)
	D6.65 : FMAXNMP (vector)
	D6.66 : FMAXNMV (vector)
	D6.67 : FMAXP (vector)
	D6.68 : FMAXV (vector)
	D6.69 : FMIN (vector)
	D6.70 : FMINNM (vector)
	D6.71 : FMINNMP (vector)
	D6.72 : FMINNMV (vector)
	D6.73 : FMINP (vector)
	D6.74 : FMINV (vector)
	D6.75 : FMLA (vector, by element)
	D6.76 : FMLA (vector)
	D6.77 : FMLAL, (vector)
	D6.78 : FMLS (vector, by element)
	D6.79 : FMLS (vector)
	D6.80 : FMLSL, (vector)
	D6.81 : FMOV (vector, immediate)
	D6.82 : FMUL (vector, by element)
	D6.83 : FMUL (vector)
	D6.84 : FMULX (vector, by element)
	D6.85 : FMULX (vector)
	D6.86 : FNEG (vector)
	D6.87 : FRECPE (vector)
	D6.88 : FRECPS (vector)
	D6.89 : FRECPX (vector)
	D6.90 : FRINTA (vector)
	D6.91 : FRINTI (vector)
	D6.92 : FRINTM (vector)
	D6.93 : FRINTN (vector)
	D6.94 : FRINTP (vector)
	D6.95 : FRINTX (vector)
	D6.96 : FRINTZ (vector)
	D6.97 : FRSQRTE (vector)
	D6.98 : FRSQRTS (vector)
	D6.99 : FSQRT (vector)
	D6.100 : FSUB (vector)
	D6.101 : INS (vector, element)
	D6.102 : INS (vector, general)
	D6.103 : LD1 (vector, multiple structures)
	D6.104 : LD1 (vector, single structure)
	D6.105 : LD1R (vector)
	D6.106 : LD2 (vector, multiple structures)
	D6.107 : LD2 (vector, single structure)
	D6.108 : LD2R (vector)
	D6.109 : LD3 (vector, multiple structures)
	D6.110 : LD3 (vector, single structure)
	D6.111 : LD3R (vector)
	D6.112 : LD4 (vector, multiple structures)
	D6.113 : LD4 (vector, single structure)
	D6.114 : LD4R (vector)
	D6.115 : MLA (vector, by element)
	D6.116 : MLA (vector)
	D6.117 : MLS (vector, by element)
	D6.118 : MLS (vector)
	D6.119 : MOV (vector, element)
	D6.120 : MOV (vector, from general)
	D6.121 : MOV (vector)
	D6.122 : MOV (vector, to general)
	D6.123 : MOVI (vector)
	D6.124 : MUL (vector, by element)
	D6.125 : MUL (vector)
	D6.126 : MVN (vector)
	D6.127 : MVNI (vector)
	D6.128 : NEG (vector)
	D6.129 : NOT (vector)
	D6.130 : ORN (vector)
	D6.131 : ORR (vector, immediate)
	D6.132 : ORR (vector, register)
	D6.133 : PMUL (vector)
	D6.134 : PMULL, PMULL2 (vector)
	D6.135 : RADDHN, RADDHN2 (vector)
	D6.136 : RBIT (vector)
	D6.137 : REV16 (vector)
	D6.138 : REV32 (vector)
	D6.139 : REV64 (vector)
	D6.140 : RSHRN, RSHRN2 (vector)
	D6.141 : RSUBHN, RSUBHN2 (vector)
	D6.142 : SABA (vector)
	D6.143 : SABAL, SABAL2 (vector)
	D6.144 : SABD (vector)
	D6.145 : SABDL, SABDL2 (vector)
	D6.146 : SADALP (vector)
	D6.147 : SADDL, SADDL2 (vector)
	D6.148 : SADDLP (vector)
	D6.149 : SADDLV (vector)
	D6.150 : SADDW, SADDW2 (vector)
	D6.151 : SCVTF (vector, fixed-point)
	D6.152 : SCVTF (vector, integer)
	D6.153 : SDOT (vector, by element)
	D6.154 : SDOT (vector)
	D6.155 : SHADD (vector)
	D6.156 : SHL (vector)
	D6.157 : SHLL, SHLL2 (vector)
	D6.158 : SHRN, SHRN2 (vector)
	D6.159 : SHSUB (vector)
	D6.160 : SLI (vector)
	D6.161 : SMAX (vector)
	D6.162 : SMAXP (vector)
	D6.163 : SMAXV (vector)
	D6.164 : SMIN (vector)
	D6.165 : SMINP (vector)
	D6.166 : SMINV (vector)
	D6.167 : SMLAL, SMLAL2 (vector, by element)
	D6.168 : SMLAL, SMLAL2 (vector)
	D6.169 : SMLSL, SMLSL2 (vector, by element)
	D6.170 : SMLSL, SMLSL2 (vector)
	D6.171 : SMOV (vector)
	D6.172 : SMULL, SMULL2 (vector, by element)
	D6.173 : SMULL, SMULL2 (vector)
	D6.174 : SQABS (vector)
	D6.175 : SQADD (vector)
	D6.176 : SQDMLAL, SQDMLAL2 (vector, by element)
	D6.177 : SQDMLAL, SQDMLAL2 (vector)
	D6.178 : SQDMLSL, SQDMLSL2 (vector, by element)
	D6.179 : SQDMLSL, SQDMLSL2 (vector)
	D6.180 : SQDMULH (vector, by element)
	D6.181 : SQDMULH (vector)
	D6.182 : SQDMULL, SQDMULL2 (vector, by element)
	D6.183 : SQDMULL, SQDMULL2 (vector)
	D6.184 : SQNEG (vector)
	D6.185 : SQRDMLAH (vector, by element)
	D6.186 : SQRDMLAH (vector)
	D6.187 : SQRDMLSH (vector, by element)
	D6.188 : SQRDMLSH (vector)
	D6.189 : SQRDMULH (vector, by element)
	D6.190 : SQRDMULH (vector)
	D6.191 : SQRSHL (vector)
	D6.192 : SQRSHRN, SQRSHRN2 (vector)
	D6.193 : SQRSHRUN, SQRSHRUN2 (vector)
	D6.194 : SQSHL (vector, immediate)
	D6.195 : SQSHL (vector, register)
	D6.196 : SQSHLU (vector)
	D6.197 : SQSHRN, SQSHRN2 (vector)
	D6.198 : SQSHRUN, SQSHRUN2 (vector)
	D6.199 : SQSUB (vector)
	D6.200 : SQXTN, SQXTN2 (vector)
	D6.201 : SQXTUN, SQXTUN2 (vector)
	D6.202 : SRHADD (vector)
	D6.203 : SRI (vector)
	D6.204 : SRSHL (vector)
	D6.205 : SRSHR (vector)
	D6.206 : SRSRA (vector)
	D6.207 : SSHL (vector)
	D6.208 : SSHLL, SSHLL2 (vector)
	D6.209 : SSHR (vector)
	D6.210 : SSRA (vector)
	D6.211 : SSUBL, SSUBL2 (vector)
	D6.212 : SSUBW, SSUBW2 (vector)
	D6.213 : ST1 (vector, multiple structures)
	D6.214 : ST1 (vector, single structure)
	D6.215 : ST2 (vector, multiple structures)
	D6.216 : ST2 (vector, single structure)
	D6.217 : ST3 (vector, multiple structures)
	D6.218 : ST3 (vector, single structure)
	D6.219 : ST4 (vector, multiple structures)
	D6.220 : ST4 (vector, single structure)
	D6.221 : SUB (vector)
	D6.222 : SUBHN, SUBHN2 (vector)
	D6.223 : SUQADD (vector)
	D6.224 : SXTL, SXTL2 (vector)
	D6.225 : TBL (vector)
	D6.226 : TBX (vector)
	D6.227 : TRN1 (vector)
	D6.228 : TRN2 (vector)
	D6.229 : UABA (vector)
	D6.230 : UABAL, UABAL2 (vector)
	D6.231 : UABD (vector)
	D6.232 : UABDL, UABDL2 (vector)
	D6.233 : UADALP (vector)
	D6.234 : UADDL, UADDL2 (vector)
	D6.235 : UADDLP (vector)
	D6.236 : UADDLV (vector)
	D6.237 : UADDW, UADDW2 (vector)
	D6.238 : UCVTF (vector, fixed-point)
	D6.239 : UCVTF (vector, integer)
	D6.240 : UDOT (vector, by element)
	D6.241 : UDOT (vector)
	D6.242 : UHADD (vector)
	D6.243 : UHSUB (vector)
	D6.244 : UMAX (vector)
	D6.245 : UMAXP (vector)
	D6.246 : UMAXV (vector)
	D6.247 : UMIN (vector)
	D6.248 : UMINP (vector)
	D6.249 : UMINV (vector)
	D6.250 : UMLAL, UMLAL2 (vector, by element)
	D6.251 : UMLAL, UMLAL2 (vector)
	D6.252 : UMLSL, UMLSL2 (vector, by element)
	D6.253 : UMLSL, UMLSL2 (vector)
	D6.254 : UMOV (vector)
	D6.255 : UMULL, UMULL2 (vector, by element)
	D6.256 : UMULL, UMULL2 (vector)
	D6.257 : UQADD (vector)
	D6.258 : UQRSHL (vector)
	D6.259 : UQRSHRN, UQRSHRN2 (vector)
	D6.260 : UQSHL (vector, immediate)
	D6.261 : UQSHL (vector, register)
	D6.262 : UQSHRN, UQSHRN2 (vector)
	D6.263 : UQSUB (vector)
	D6.264 : UQXTN, UQXTN2 (vector)
	D6.265 : URECPE (vector)
	D6.266 : URHADD (vector)
	D6.267 : URSHL (vector)
	D6.268 : URSHR (vector)
	D6.269 : URSQRTE (vector)
	D6.270 : URSRA (vector)
	D6.271 : USHL (vector)
	D6.272 : USHLL, USHLL2 (vector)
	D6.273 : USHR (vector)
	D6.274 : USQADD (vector)
	D6.275 : USRA (vector)
	D6.276 : USUBL, USUBL2 (vector)
	D6.277 : USUBW, USUBW2 (vector)
	D6.278 : UXTL, UXTL2 (vector)
	D6.279 : UZP1 (vector)
	D6.280 : UZP2 (vector)
	D6.281 : XTN, XTN2 (vector)
	D6.282 : ZIP1 (vector)
	D6.283 : ZIP2 (vector)

	D7 : A64 Cryptographic Algorithms
	D7.1 : A64 Cryptographic instructions

