
Arm® Instruction Emulator
Version 22.0

Developer and Reference Guide

Non-Confidential
Copyright © 2020–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
102190_22.0_00_en

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Arm® Instruction Emulator
Developer and Reference Guide

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

2010-00 21 August 2020 Non-Confidential First release for Arm Instruction Emulator version 20.1

2100-00 30 March 2021 Non-Confidential Update for Arm Instruction Emulator version 21.0

2200-00 31 March 2022 Non-Confidential Update for Arm Instruction Emulator version 22.0

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 53

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 53

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Contents

Contents

List of Figures...6

List of Tables...7

1 Introduction... 8
1.1 Conventions..8
1.2 Other information... 9

2 Get started.. 10
2.1 Install Arm Instruction Emulator... 10
2.2 Get started with Arm Instruction Emulator... 13
2.3 Troubleshoot: Use -s..17

3 Tutorials..19
3.1 Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator.................19
3.2 Build an emulation-aware instrumentation client... 30
3.3 Building custom analysis instrumentation.. 37
3.4 About instrumentation clients... 44
3.5 View the drrun command.. 47

4 Reference...49
4.1 armie command reference..49
4.2 Emulation functions reference.. 51

5 Further resources.. 52
5.1 Arm Instruction Emulator resources.. 52
5.2 Scalable Vector Extension (SVE) resources.. 52

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

List of Figures

List of Figures

Figure 1: Plot of SVE Instructions... 24

Figure 2: Diagram showing the key functions in opcodes_emulated.cpp.............................45

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0
List of Tables

List of Tables

Table 1: armie command options...49

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0
Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 53

https://developer.arm.com/glossary

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0
Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 53

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

2 Get started
This section describes how to install and get started with Arm® Instruction Emulator.

Arm Instruction Emulator (armie) is an emulator that runs on any Armv8-A-based AArch64
platform and emulates Scalable Vector Extension (SVE) instructions. Arm Instruction Emulator lets
you develop SVE code without needing access to SVE-enabled hardware.

2.1 Install Arm Instruction Emulator
Follow these steps to download and install Arm® Instruction Emulator.

Before you begin
Ensure that either Environment Modules or the Lmod Environment Modules system are installed
on your machine. Some information on how to install Environment Modules is available in the Arm
Allinea Studio environment configuration documentation.

Procedure
1. Download the appropriate Arm Instruction Emulator package for your Linux host platform. To

download Arm Instruction Emulator, see the Arm Instruction Emulator downloads page on the
Arm Developer website.

2. Extract the downloaded package:
tar -xvzf <package_name>.tar.gz

replacing <package_name> with the full name of the downloaded package.
3. To see the extracted files, change to the extracted package directory:

cd <package_name>

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 53

https://modules.readthedocs.io/en/latest/index.html
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/index.html
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

4. Run the installation script as a privileged user:
sudo ./arm-instruction-emulator-22.0*_aarch64-linux-rpm.sh <option> <option>

where <option> are options supported by the installation script. Supported options include:

-a, --accept

Automatically accept the EULA (the EULA still displays).

-i, --install-to <location>

Install to the given directory.

Use this option if you do not have sudo rights to install to /opt/arm or another central
location.

-f, --force

Force an install attempt to a non empty directory.

-h, --help

Display this table in the form of a help message in the terminal.

If no options are supplied, and you run a default installation, the packages are unpacked to /
opt/arm/<package_name>. If you use the -i (or --install-to) option to specify a custom install
location, such as <install-dir>:

./<package_name>.sh --install-to <install_dir>

The package will be installed to the <install_dir> that you pass to -i (or --install-to).

If you use the --install-to option, you need to manually make the installation
and module files available to other users, if they require them.

5. Unless you have included the -a (or --accept) option, the installer displays the EULA
and prompts you to agree to the terms. To agree, type 'yes' at the prompt. For more
information about the release contents, see the release notes, located in the <install-dir>/
<package_name> directory.

Results
Arm Instruction Emulator is installed on your system.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

Next steps
• Configure your Linux environment:

1. To see which environment modules are available on your system, run:

module avail

2. If you do not see the Arm Instruction Emulator environment module, configure the
MODULEPATH environment variable to include the Arm Instruction Emulator installation
directory:

export MODULEPATH=$MODULEPATH:<install-dir>/modulefiles/

Re-check which which environment modules are now available on your system:

module avail

3. Load the appropriate Arm Instruction Emulator module for the processors in your system,
and for the compiler you are using:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load armie22/22.0

Tip: Add the module load command to your .profile to run it automatically every time you
log in.

4. Check your environment by examining the PATH variable. It should contain the appropriate
Arm Instruction Emulator bin directory from <install-dir>/:

echo $PATH /opt/arm/arm-instruction-emulator-22.0_Generic-
AArch64_RHEL-8_aarch64-linux/bin64:...

• To learn how to use Arm Instruction Emulator, refer to Get started with Arm Instruction
Emulator.

• For information about environment variables used by the Arm-provided suite of server and
High Performance Computing (HPC) tools, see the Environment variables reference topic.

• To uninstall Arm Instruction Emulator, run the uninstall.sh script located in <install-dir>/
arm-instruction-emulator-<version>_<microarch>_<OS>-<OS_Version>_aarch64-linux/
uninstall.sh

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/help/help-and-tutorials/environment-variables-reference-for-arm-hpc-tools

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

2.2 Get started with Arm Instruction Emulator
This tutorial uses a couple of simple examples to demonstrate how to compile Scalable Vector
Extension (SVE) code and run the resulting binary with Arm® Instruction Emulator.

Before you begin
• This task uses Arm Compiler for Linux (part of Arm Allinea Studio) as the compiler. Alternatively,

you can use GCC for the compilation steps.

If you want to use Arm Compiler for Linux, download and install Arm Compiler for Linux for
your platform.

• Load the Arm Instruction Emulator module for your platform:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load armie22/22.0

To check that your environment is now configured to run Arm Instruction Emulator, examine
the PATH variable and confirm that it contains the appropriate Arm Instruction Emulator bin
directory from your installation location <install-dir>:

echo $PATH /<install-dir>/arm-instruction-emulator-22.0_Generic-
AArch64_RHEL-8_aarch64-linux/bin:...

Procedure
1. Compile your source code and generate an executable binary.

2. Run the binary with Arm Instruction Emulator. Either:

a. Invoke Arm Instruction Emulator and specify the vector length to use:

armie -msve-vector-bits=<length> ./<binary>

b. Invoke Arm Instruction Emulator with an instrumentation (-i) or emulation (-e) client, and
specify the vector length to use:

armie -msve-vector-bits=<arg> -e <emulation_client> -i
 <instrumentation_client> -- ./<binary>

Instrumentation and emulation clients enable you to extract data on the execution of your
binary.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

Example: Compile and run a 'Hello World' application
In this example you will write a simple 'Hello World' application in C, compile it with Arm Compiler
for Linux, and then run it using Arm Instruction Emulator. The example does not contain SVE code.

1. Load the Arm Compiler for Linux module for your platform:

module load acfl/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load acfl22/22.0

2. Create a simple 'Hello World' C application and save it as a file named hello.c.

/* Hello World */
#include <stdio.h>
int main()
{
 printf("Hello World\n");
 return 0;
}

3. To generate an executable binary, compile your application with Arm C/C++ Compiler.

armclang -O3 -march=armv8-a+sve -o hello hello.c

The -O3 option ensures the highest optimization level with auto-vectorization is enabled. The -
march=armv8-a+sve option targets hardware with the Armv8-A architecture, and generates SVE
instructions in the executable binary.

In this example, no SVE code is used. However, it is good practice to enable the
highest level of auto-vectorization and target an SVE-enabled architecture when
compiling any code to be run using Arm Instruction Emulator.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

4. Run the generated binary hello using Arm Instruction Emulator:

armie -msve-vector-bits=256 ./hello

Which returns:

Hello World

For this simple 'Hello World' example, Arm Instruction Emulator runs the code on an emulated
SVE-enabled architecture without using SVE instructions.

To use Arm Instruction Emulator to its full potential, that is, to emulate SVE instructions, we
must look at a more complex application. An example of an application containing SVE code is
available in the next section of this tutorial.

Example: Compile, vectorize, and run an application with SVE code
This example compiles and vectorizes some C code that targets an SVE-enabled Armv8-A
architecture, then uses Arm Instruction Emulator to run the SVE binary.

1. Load the Arm Compiler for Linux module for your platform:

module load acfl/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load acfl/22.0

2. Create a file called example.c, containing the following code:

// example.c
#include <stdio.h>
#include <stdlib.h>
#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
for (int i = 0; i < ARRAYSIZE; i++)
{
 a[i] = b[i] - c[i];
}
}
int main() {
for (int i = 0; i < ARRAYSIZE; i++)
{
 // Generate a random number between 200 and 300
 b[i] = (rand() % 100) + 200;
 // Generate a random number between 0 and 100
 c[i] = rand() % 100;
}
subtract_arrays(a, b, c);
printf("i \ta[i] \tb[i] \tc[i] \n");

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

printf("=============================\n");
for (int i = 0; i < ARRAYSIZE; i++)
{
 printf("%d \t%d \t%d \t%d\n", i, a[i], b[i], c[i]);
}
}

This C code subtracts corresponding elements in two arrays, and writes the result to a third
array. The three arrays are declared using the restrict keyword, which indicates to the
compiler that they do not overlap in memory.

3. Compile the C code with Arm C/C++ Compiler:

armclang -O3 -march=armv8-a+sve -o example example.c

4. Run the binary with Arm Instruction Emulator:

armie -msve-vector-bits=256 ./example

The application returns:

i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
\...
1021 165 234 69
1022 232 295 63
1023 204 235 31

The SVE architecture extension specifies an IMPLEMENTATION DEFINED vector length. The -
msve-vector-bits option lets you specify the vector length for Arm Instruction Emulator to
use. The vector length must be a multiple of 128 bits, with a maximum of 2048 bits. To list all
valid vector lengths, use the -mlist-vector-lengths option :

armie -mlist-vector-lengths

Which returns:

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Next Steps
To learn how to analyze your application using the emulation and instrumentation clients available
for Arm Instruction Emulator, see Analyze Scalable Vector Extension (SVE) applications with Arm
Instruction Emulator.

Related information
armie command reference on page 49
Troubleshoot: Use -s on page 17
Learn more about Arm Instruction Emulator

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

DynamoRIO dynamic binary instrumentation tool platform
DynamoRIO API
DynamoRIO API Usage Tutorial
Porting and Optimizing HPC Applications for Arm SVE guide

2.3 Troubleshoot: Use -s
Describes how you can use the -s option to better understand what the emulation commands
and files Arm® Instruction Emulator uses, and what to send to Arm Support if you require further
assistance.

The -s and --show-drrun-cmd options
To show how Arm Instruction Emulator used DynamoRIO's drrun command to emulate and
instrument an SVE binary, invoke the -s (or --show-drrun-cmd) option.

For example, in the following command line, libsve_512.so is the SVE emulation client and
libinscount_emulated.so is the instrumentation client:

armie -s -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

/path/to/armie/bin64/drrun -client /path/to/armie/lib64/release/libsve_512.so 0 "" -
client /path/to/armie/samples/bin64/libinscount_emulated.so 1 "" -max_bb_instrs 32 -
max_trace_bbs 4 -- ./example_sve
Client inscount is running
. . .

The -s option allows you to understand how Arm Instruction Emulator uses DynamoRIO, and can
be used to pass parameters and debug options to DynamoRIO's drrun command. For example, the
inscount client has an -only_from_app option which only counts the application instructions and
ignores libraries. Passing the -only_from_app option using the drrun command:

/path/to/install/bin64/drrun -client /path/to/install/lib64/release/libsve_512.so
 0 "" -client /path/to/install/samples/bin64/libinscount_emulated.so 1 "-
only_from_app" -max_bb_instrs 32 -max_trace_bbs 4 -- ./example_sve

returns:

Client inscount is running
955 instructions executed of which 709 were SVE instructions

which shows that the application used 955 non-SVE instructions, compared to 118497 when also
counting library instructions.

The preferred method to pass command line arguments to instrumentation clients is to use
the -a or --arg-iclient option. For more information, see armie command reference. The

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 53

http://dynamorio.org
https://dynamorio.org/files.html
https://dynamorio.org/files.html/API_tutorial
https://developer.arm.com/documentation/101726/latest

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Get started

preceding method, which uses the drrun command, is useful in cases where both the command
line arguments to instrumentation clients are required, as well as the parameters and debug options
to DynamoRIO's drrun command.

Contact Arm Support
In the event of a program crash, the operating system kernel creates a core dump file. The location
and name of this core dump file depends on your system's core dump configuration. If your
configuration specifies that core dump filenames include the name of the crashed binary, note that
this is the name of the executable being emulated rather than the Arm Instruction Emulator binary
name (armie).

Core dump files should be sent to Arm support along with the output of armie --version.
However, if you have confidentiality concerns regarding sensitive data in the core dump file, do not
send the core dump to Arm. However, without a core dump file, the Arm Support team might not
be able to investigate your issue.

To request technical support, Contact Arm Support.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 53

https://developer.arm.com/support

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

3 Tutorials
Learn how to build instrumentation clients and custom analysis instrumentation for Arm®

Instruction Emulator, and how to use Arm Instruction Emulator to analyze your Scalable Vector
Extension (SVE) applications.

3.1 Analyze Scalable Vector Extension (SVE) applications
with Arm Instruction Emulator

Describes how to use the instrumentation and emulation clients and run your applications with
Arm® Instruction Emulator.

You can use Arm Instruction Emulator without any instrumentation or emulation clients, as
described in Get started with Arm Instruction Emulator, to verify that the code you have developed
can run on SVE hardware. However, if you are developing high-performance applications and want
to gain insights into their execution behavior, runtime analysis is required . Runtime analysis enables
you to identify heavily-used loops and instruction sequences, so that improvements can be made
to execution speed and memory access.

To emulate and instrument SVE binaries on AArch64 hardware, Arm Instruction Emulator uses
DynamoRIO . DynamoRIO is a publicly available Dynamic Binary Instrumentation (DBI) tool
platform which supports x86 and Arm binaries. DynamoRIO provides an API which enables you to
write your own binary-level runtime instrumentation and supply some example instrumentation.
Each Arm Instruction Emulator release integrates a stable version of DynamoRIO.

Arm Instruction Emulator also provides a set of instrumentation clients which can be used
to analyze SVE binaries at runtime. In this context, 'instrumentation client' refers to how Arm
Instruction Emulator uses DynamoRIO to work as an analysis tool and an emulator.

Before looking at an example of an instrumentation client for emulated binaries
using Arm Instruction Emulator, Arm recommends that you understand the
basic principles of instrumenting binaries using the DynamoRIO API. For more
information, see the DynamoRIO API usage tutorial.

For example, one Arm Instruction Emulator instrumentation feature is called Regions-of-Interest
(RoI). Sometimes, when analyzing large, complex, and long running applications, it is necessary to
limit the amount of runtime data collected (such as memory traces, instruction, and opcode counts)
to specific parts of code. You can use the RoI feature to collect runtime data for regions of the code
that are marked with RoI markers. Before you can add RoI markers and build the application, you
must have access to the source code under analysis. To mark a RoI, use start and stop macros in
the source. These RoI markers are described in an example below.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 53

http://dynamorio.org
https://dynamorio.org/files.html
https://dynamorio.org/files.html/API_tutorial

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

There are restrictions to the use of RoI markers in source code. RoIs must not
be nested and they must not overlap. Violating these restrictions will result in
undefined behavior.

To emulate and analyze an SVE binary, invoke Arm Instruction Emulator with an instrumentation
client and the SVE binary. The client is a shared object file which uses the DynamoRIO API to
capture and process wanted runtime events.

Before you begin
• Ensure you have loaded the Arm Instruction Emulator environment module for your platform:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

• Ensure you have already compiled your application binary.

Procedure
1. Invoke Arm Instruction Emulator with an instrumentation (-i <instrumentation_client>) or

emulation (-e <emulation_client>) client and the binary, use:

armie -msve-vector-bits=<arg> -e <emulation_client> -i <instrumentation_client>
 -- ./<binary>

2. Analyze the results provided by the clients.

Example: Analyze an application with SVE code
The following example demonstrates how to count native AArch64 as well as emulated SVE
instructions.

event_bb_analysis() is the function which counts instructions in the sample client :file::<install-
dir>/arm-instruction-emulator/samples/inscount_emulated.cpp.

 /* Count instructions */
bb_counts.native_instrs = bb_counts.emulated_instrs = 0;
bool is_emulation = false;
for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
 next_instr = instr_get_next(instr);
 if (drmgr_is_emulation_start(instr)) { ←[1]
 bb_counts.emulated_instrs++;
 is_emulation = true;
 /* Data about the emulated instruction can be extracted from the
 * start label using drmgr_get_emulated_instr_data().
 */
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated); ←[2]
 dr_printf("SVE: %p\t", emulated.pc);
 int *sveinstr;
 sveinstr = ((int *)instr_get_raw_bits(emulated.instr));
 dr_printf("0x%08x\n", *sveinstr);
 continue;
 }

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 if (drmgr_is_emulation_end(instr)) { ←[3]
 is_emulation = false;
 continue;
 }
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 bb_counts.native_instrs++;
}
 /* Insert clean call */
 dr_insert_clean_call(drcontext, bb, instrlist_first_app(bb),
 (void *)inscount, false /* save fpstate */, 2,
 OPND_CREATE_INT64(bb_counts.native_instrs),
 OPND_CREATE_INT64(bb_counts.emulated_instrs))

The count instructions example function is inserted at the end of each basic-block, at
transformation time, and iterates over each instruction in a basic-block, at execution time.

The difference between transformation and execution is described in the Code
Transformation and code Execution section of About instrumentation clients.

In the count instructions example function:

• bb_counts.native_instrs and bb_counts.emulated_instrs, increment depending on if the
instruction is emulated or not.

The count instructions example function distinguishes between emulated and native
instructions using the drmgr_is_emulation_start() ([1]) and drmgr_is_emulation_end() ([3])
functions of DynamoRIO.

• Where an instruction is the start of a sequence of instructions that emulate an SVE instruction,
drmgr_is_emulation_start() returns true.

The drmgr_is_emulation_start() instruction also contains data about the instruction being
emulated. The instruction data can be extracted using drmgr_get_emulated_instr_data() ([2]).

• Where an instruction is the last instruction of a sequence of instructions that emulate an SVE
instruction, drmgr_is_emulation_end() returns true.

The reference documentation for these functions is available on the DynamoRIO
web site. For a full description of these functions, see

• drmgr_is_emulation_start()

• drmgr_is_emulation_end()

• drmgr_get_emulated_instr_data()

• emulated_instr_t

To extract useful information about the instruction being emulated, you can use the
drmgr_get_emulated_instr_data() function, the PC address, and the instruction encoding.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 53

https://dynamorio.org/group__drmgr.html#gae4a20b19e779581dccac41eca9bf8321
https://dynamorio.org/group__drmgr.html#gaf2227473141100828d097eb98828b954
https://dynamorio.org/group__drmgr.html#ga85b025c766a84bee841288d822b15380
https://dynamorio.org/struct__emulated__instr__t.html

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

1. Run Arm Instruction Emulator with the libinscount_emulated.so instrumentation client on
your example code:

armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running
SVE: 0x000000000040053c 0x04a0e3ef
SVE: 0x0000000000400554 0x04a14001
SVE: 0x000000000040055c 0x25aa1fe0
SVE: 0x0000000000400560 0x05a039e0
SVE: 0x0000000000400570 0xe5494101
SVE: 0x0000000000400574 0x04b0e3e9
SVE: 0x0000000000400578 0x04a00021
SVE: 0x000000000040057c 0x25aa1d20
SVE: 0x0000000000400570 0xe5494101
SVE: 0x0000000000400574 0x04b0e3e9
SVE: 0x0000000000400578 0x04a00021
SVE: 0x000000000040057c 0x25aa1d20
SVE: 0x00000000004005a8 0x25ac1fe0
SVE: 0x00000000004005b4 0xa5494100
SVE: 0x00000000004005b8 0xa54941a1
SVE: 0x00000000004005bc 0x85604140
SVE: 0x00000000004005c0 0x04a10000
SVE: 0x00000000004005c4 0xe5494160
SVE: 0x00000000004005c8 0x04b0e3e9
SVE: 0x00000000004005cc 0x25ac1d20
SVE: 0x00000000004005b4 0xa5494100
SVE: 0x00000000004005b8 0xa54941a1
SVE: 0x00000000004005bc 0x85604140
SVE: 0x00000000004005c0 0x04a10000
SVE: 0x00000000004005c4 0xe5494160
SVE: 0x00000000004005c8 0x04b0e3e9
SVE: 0x00000000004005cc 0x25ac1d20
120827 instructions executed of which 709 were emulated instructions

2. To convert the encodings output by dr_printf("0x%08x\n", *sveinstr) to instruction
mnemonics, use the example helper script /<install-dir>/arm-instruction-emulator/bin64/
enc2instr.py. enc2instr.py shows the use of the enc2instr() function and can be copied and
modified for your own output transformations.

Example: Analyze the effect of the vector length on the number of AArch64 and
emulated SVE instructions
This example uses the same instrumentation client that was used in the preceding
example, libinscount_emulated.so. However, in this example we show how you can use
libinscount_emulated.so to investigate the effect that vector length has on the number of SVE
instructions. For example, to minimize them and help reduce time spent in execution.

1. Invoke Arm Instruction Emulator with an instrumentation client named
libinscount_emulated.so and run the example binary:

armie -msve-vector-bits=128 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

SVE: 0x00000000004006c8 0x25a91fe0
SVE: 0x00000000004006d0 0xa54842a0
SVE: 0x00000000004006d4 0xa54842c1
SVE: 0x00000000004006d8 0x04a10400
SVE: 0x00000000004006dc 0xe54842e0
SVE: 0x00000000004006e0 0x04b0e3e8
SVE: 0x00000000004006e4 0x25a91d00
SVE: 0x00000000004006d0 0xa54842a0
SVE: 0x00000000004006d4 0xa54842c1
SVE: 0x00000000004006d8 0x04a10400
SVE: 0x00000000004006dc 0xe54842e0
SVE: 0x00000000004006e0 0x04b0e3e8
SVE: 0x00000000004006e4 0x25a91d00
i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
3 194 286 92
. . .
1019 243 290 47
1020 185 261 76
1021 165 234 69
1022 232 295 63
1023 204 235 31
2134094 instructions executed of which 1537 were emulated instructions

Notice the difference in output from the preceding example shown in Get started with Arm
Instruction Emulator (see section Compile, vectorize, and run an application with SVE code)
which did not use -i libinscount_emulated.so. The additional information is what the
instrumentation client, libinscount_emulated.so, outputs as part of its analysis of the example
binary as it runs:

Client inscount is running
SVE: 0x00000000004006c8 0x25a91fe0
...
2134094 instructions executed of which 1537 were emulated instructions

2. Run the example binary with each vector length and tabulate the results:

Vector Length 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

SVE Instructions 1537 769 517 385 313 259 223 193 175 157 145 133 121 115 109 97

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

3. Plot the results on a line graph:

Figure 3-1: Plot of SVE Instructions

The graph shows us that the largest reduction in SVE instructions executed occurs between
128 and about 512 bits. This type of analysis of the runtime behavior of an application can
be used with other types of analysis. For example, to study the impact of vector length on
performance.

Example: Analyze Regions-of-Interest (RoI)
To avoid large trace files and focus on trace behavior of specific sections of code, you can insert
start and stop trace macros into the source code being analyzed:

#define __START_TRACE() {asm volatile (".inst 0x2520e020");}
#define __STOP_TRACE() {asm volatile (".inst 0x2520e040");}

These start and stop macros instruct Arm Instruction Emulator to start and stop collecting trace
data, which allows you to focus your analysis on specific areas of code, instead of analyzing the
entire application. Focussing on specific sections of code makes the analysis of large long-running
applications much easier and less time-consuming.

The code in this example illustrates the use of the libinscount_emulated.so client, an
instrumentation client that allows you to limit the amount of runtime data collected to specific
parts of code. Limiting the amount of runtime data is particularly useful when analyzing large,
complex, or long-running applications.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

The application used in this example, loops, contains two loops. This example uses the RoI feature
to limit instruction counting to a single loop. First, the first loop is investigated, then the second is
investigated and compared. The initial source code for loops is:

#define N 42
int a[N], b[N], c[N];
int main(void) {
 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];
for(int i=0; i<N; ++1)
 c[i] = i;
for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];
}

1. Build and run the example loops application with the libinscount_emulated.so client:

armie -msve-vector-bits=512 -i libinscount_emulated.so ./loops

which returns:

Client inscount is running
89539 instructions executed of which 36 were emulated instructions

All executed instructions are counted.

2. To limit instruction counting to a specific area of code, or the region of interest (RoI), add RoI
markers to the loops source:

• To indicate where to start counting, add the __START_TRACE() marker.

• To indicate where to stop counting, add the __STOP_TRACE() marker.

For example, to wrap the first loop of the loops code in RoI markers, use:

#define N 42
int a[N], b[N], c[N];
#define __START_TRACE() { asm volatile (".inst 0x2520e020"); }
#define __STOP_TRACE() { asm volatile (".inst 0x2520e040"); }
int main(void) {
 __START_TRACE();
 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];
for(int i=0; i<N; ++i)
 c[i] = i;
 __STOP_TRACE();
 for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];
}

3. Build the new binary and call it first_loop.

4. Run first_loop with the libinscount_emulated.so client:

armie -msve-vector-bits=512 -i libinscount_emulated.so -a -roi ./first_loop
Client inscount is running

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

31 instructions executed of which 16 were emulated instructions

The results are different to the loops run:

• Only the first loop has been instrumented and as a result fewer executed instructions have
been counted at runtime.

• The armie command includes the -a -roi option to inform the libinscount_emulated.so
client. a roi informs the client to enable and disable instruction counting, based on the
__START_TRACE() and __STOP_TRACE() macros. Without the -a -roi option, the client
ignores the macros and counts all instructions producing the same output as for the loops
run above:

armie -msve-vector-bits=512 -i libinscount_emulated.so ./first_loop
Client inscount is running
89539 instructions executed of which 36 were emulated instructions

The -a option enables you to pass command line arguments to instrumentation clients. In
this case, the argument is -roi but it can be any string which the client can use to adjust its
behavior at execution time. For a description of the -a option, run armie --help or, see the
armie command reference section.

5. Next, analyze the second loop. Move the __START_TRACE() and __STOP_TRACE markers to
surround the second for loop:

#define N 42
int a[N], b[N], c[N];
#define __START_TRACE() { asm volatile (".inst 0x2520e020"); }
#define __STOP_TRACE() { asm volatile (".inst 0x2520e040"); }
int main(void) {
 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];
 for(int i=0; i<N; ++i)
 c[i] = i;
 __START_TRACE();
 for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];
 __STOP_TRACE();
}

6. Build the new binary and call it second_loop.

7. Run and analyze the second_loop binary:

armie -msve-vector-bits=512 -i libinscount_emulated.so -a -roi ./second_loop

Which returns:

Client inscount is running
31 instructions executed of which 20 were emulated instructions

In the second_loop run, more SVE instructions are executed than in the first_loop run. More
instructions are run because of the extra vector load and arithmetic instructions in the second
loop.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

The example source code is in the samples directory of your Arm Instruction
Emulator installation. You can modify these clients for your own custom analysis
requirements.

Traces can be used in post-processing to prune any non-SVE accesses outside the RoI.

In addition to the libinscount_emulated client, the following clients also support __START_TRACE
and __STOP_TRACE: memtrace_emulated, instrace_emulated, meminstrace_emulated, and
opcodes_emulated.

To enable RoIs, all these clients accept the -a -roi Arm Instruction Emulator option. If you do not
use the -a -roi option, RoIs are ignored and all instructions are counted or traced.

Example: Count the dynamic instruction counts
Dynamic instruction counts, or in other words, counting instructions executed by a binary at
runtime, is a useful way of assessing the performance-related behavior of an application. An
instruction count client, libinscount.so, is supplied as an example of how to use the DynamoRIO
API with SVE emulation. The client source code is available as a DynamoRIO example in api/
samples/inscount.cpp. Use the -i (or --iclient) option to run the client with armie, for example:

armie -msve-vector-bits=512 -i libinscount.so -- ./example_sve

Which returns:

Client inscount is running
Instrumentation results: 106384 instructions executed

To compare the number of SVE instructions to the number of native AArch64 instructions
executed, use the libinscount_emulated.so client, for example:

armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running
106384 instructions executed of which 22 were emulated instructions

The source code is available in samples/inscount_emulated.cpp.

Another useful way of assessing the performance-related behavior of an application is to count
instructions executed by opcode type. Such a count can give you more detailed insights into
execution behavior than a total instruction count. For an example, see the Emulating SVE on Armv8
using DynamoRIO and ArmIE blog.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 53

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Example: Examine memory access behavior
The memory access behavior of an executable is another useful aspect of performance. Memory
trace emulation clients for all vector lengths, libmemtrace_sve_<vector length>.so are supplied
to work with the DynamoRIO instrumentation client, libmemtrace_emulated.so. To trace memory
accesses, use the -e and -i options of armie. For example:

armie -e libmemtrace_sve_512.so -i libmemtrace_emulated.so -- ./example_sve

This command creates two trace files in the current directory: a non-SVE AArch64 trace from
libmemtrace_emulated.so, and an SVE trace from libmemtrace_sve_512.so. For example:

head memtrace.example_sve.10120.0000.log
0: 0, 0, 0, 8, 0xffffe31ea730, 0x40043c
1: 0, 0, 0, 8, 0x400460, 0x400448
2: 0, 0, 0, 8, 0x400468, 0x40044c
3: 0, 0, 0, 8, 0x400470, 0x400450
4: 0, 0, 0, 8, 0x420000, 0x400404
5: 0, 0, 1, 16, 0xffffe31ea720, 0x4003e0
6: 0, 0, 0, 8, 0x41fff8, 0x4003e8
7: 0, 0, 1, 16, 0xffffe31ea5c0, 0x400610
8: 0, 0, 1, 16, 0xffffe31ea5d8, 0x400618

head sve-memtrace.example_sve.10120.log
27, -1, 0, 1, 0, (nil), (nil)
40, 0, 0, 0, 64, 0x4200d8, 0x4005e4
41, 0, 0, 0, 64, 0x420030, 0x4005e8
42, 0, 3, 0, 4, 0x420030, 0x4005ec
43, 0, 2, 0, 4, 0x420034, 0x4005ec
44, 0, 2, 0, 4, 0x420038, 0x4005ec
45, 0, 2, 0, 4, 0x42003c, 0x4005ec
46, 0, 2, 0, 4, 0x420040, 0x4005ec
47, 0, 2, 0, 4, 0x420044, 0x4005ec
48, 0, 2, 0, 4, 0x420048, 0x4005ec
. . .
86, 0, 2, 0, 4, 0x4200c8, 0x4005ec
87, 0, 2, 0, 4, 0x4200cc, 0x4005ec
88, 0, 6, 0, 4, 0x4200d0, 0x4005ec
89, 0, 0, 0, 36, 0x420200, 0x4005f4
90, -2, 0, 1, 0, (nil), (nil)

The SVE trace includes start and stop trace entries to delimit the chosen Region-of-Interest (RoI):

start -> xx, -1, 0, 1, 0, (nil), (nil)
stop -> xx, -2, 0, 1, 0, (nil), (nil)

For an explanation on RoI, see the previous example.

The sequence number of the SVE trace is delimited by a comma. The sequence number of a non-
SVE trace is delimited by a colon.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

To enable you to analyze memory trace files, utilities are provided. For example, the merge utility
produces one file with each trace, in chronological order, from a non-SVE AArch64 trace file and an
SVE trace file:

merge memtrace.example_sve.10120.0000.log sve-memtrace.example_sve.10120.log >
 merged-memtrace.log

Memory tracing format

The memory trace uses a comma-separated-value format with the following fields:

sequence, tid, bundle, isWrite, size, addr, pc

Where:

sequence

Sequence number which orders the load/stores across multiple trace files.

tid

Thread id

bundle

Support bundling of multiple mem_refs for gather/scatter/strided accesses.

isWrite

true if store, false if load.

size

Number of bytes that are stored or loaded.

addr

Load or store address.

pc

Instruction address.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Next steps
• Further instrumentation clients are available, that provide different insights, including:

◦ inscount_emulated.cpp

◦ instrace_emulated.c

◦ meminstrace_emulated.c

◦ memtrace_emulated.c

◦ opcodes_emulated.cpp

These are RoI-capable and their source code is in the Arm Instruction Emulator installation
samples directory:

/path/to/your/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/
samples/

You can modify and enhance these clients for your specific analysis requirements. For
examples and guidance on how to modify and enhance clients, see Building custom analysis
instrumentation.

• For more advanced analysis examples of a real-world application, see Emulating SVE on existing
Armv8-A hardware using DynamoRIO and ArmIE. The blog includes use-case examples of
libopcodes_emulated.so and libmemtrace_simple.so.

Related information
Building custom analysis instrumentation on page 37
Porting and Optimizing HPC Applications for Arm SVE
Arm Instruction Emulator

3.2 Build an emulation-aware instrumentation client
The ability to instrument emulated applications is a recent addition to the DynamoRIO API.
Therefore, most of the samples which come with DynamoRIO (and Arm® Instruction Emulator)
are not capable of interpreting emulated instructions. This tutorial demonstrates how to modify
existing native-only clients to also handle emulated instructions, and how to write your own
emulation aware clients.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 53

https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://developer.arm.com/docs/101726/latest
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Before you begin
• This tutorial assumes that you have a good working knowledge about the DynamoRIO API.

Documentation is available at:

https://dynamorio.org/files.html

and includes the event driven usage model of DynamoRIO and example clients, from which the
following clients are derived:

◦ samples/inscount_emulated.cpp

◦ samples/instrace_emulated.c

◦ samples/memtrace_simple.c

◦ samples/memtrace_emulated.c

◦ samples/meminstrace_emulated.c

◦ samples/opcodes_emulated.cpp

• Understand the About instrumentation clients.

• Understand how to run a pre-built instrumentation client. For more information on running
instruction clients, see Analyze Scalable Vector Extension (SVE) applications with Arm
Instruction Emulator.

About this task
Arm Instruction Emulator allows developers to use the API of DynamoRIO API to write
instrumentation clients, which run alongside emulation clients, to analyze emulated binaries at
runtime.

The following emulation aware functions can be used in an instrumentation client:

• bool drmgr_is_emulation_start(instr_t *instr)

• bool drmgr_is_emulation_end(instr_t *instr)

• bool drmgr_get_emulated_instr_data(instr_t *instr, emulated_instr_t *emulated)

typedef struct _emulated_instr_t {
 size_t size;
 app_pc pc;
 instr_t *instr;
} emulated_instr_t;

Procedure
1. Run the pre-built libbbcount.so client with Arm Instruction Emulator, which counts the

number of basic blocks executed by an application:
armie -msve-vector-bits=128 -i libbbcount.so -- ./example

Which returns:

Client bbcount is running
i a[i] b[i] c[i]

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 53

https://dynamorio.org/files.html
https://dynamorio.org/files.html/using
https://dynamorio.org/files.html/API_samples

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

=============================
0 197 283 86
1 262 277 15
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31
Instrumentation results:
449561 basic block executions
 1971 basic blocks needed flag saving
 0 basic blocks did not

We will change the code to write both native and emulated basic block execution counts to
stdout.

2. Add the emulated instruction counter variable. Copy the bbcount.cpp file to bbcount_tut2.cpp
in: /<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/samples.
Where bbcount.cpp, is:

/* we only have a global count */
static int global_count;
#ifdef SHOW_RESULTS
/* some meta-stats: static (not per-execution) */
static int bbs_eflags_saved;
static int bbs_no_eflags_saved;
#endif
static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[512];
 int len;
 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Instrumentation results:\n"
 "%10d basic block executions\n"
 "%10d basic blocks needed flag saving\n"
 "%10d basic blocks did not\n",
 global_count, bbs_eflags_saved, bbs_no_eflags_saved);
 DR_ASSERT(len > 0);
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 drx_exit();
 drreg_exit();
 drmgr_exit();
}

Edit bbcount_tut2.cpp to add a global emulation counter variable:

/* we have global native and emulated counts */
static int native_count;
static int emulated_count;
#ifdef SHOW_RESULTS
/* some meta-stats: static (not per-execution) */
static int bbs_eflags_saved;
static int bbs_no_eflags_saved;
#endif
static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[512];
 int len;

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Instrumentation results:\n"
 "%10d native basic block executions\n
 "%10d emulated basic block executions
 "%10d basic blocks needed flag saving
 "%10d basic blocks did not\n",
 native_count, emulated_count,
 bbs_eflags_saved, bbs_no_eflags_saved
 DR_ASSERT(len > 0);
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 drx_exit();
 drreg_exit();
 drmgr_exit();
}

3. Add the basic block emulation counting function. Modify the instrumentation callback function
event_app_instruction() to look for at least one emulated instruction in a block, and if found,
increment emulated_count when the block is executed.
bbcount.c:

static dr_emit_flags_t
event_app_instruction(void *drcontext, void *tag, instrlist_t *bb, instr_t *inst,
 bool for_trace, bool translating, void *user_data)
{
#ifdef SHOW_RESULTS
 bool aflags_dead;
#endif
 /* By default drmgr enables auto-predication, which predicates all
 instructions with
 * the predicate of the current instruction on ARM.
 * We disable it here because we want to unconditionally execute the following
 * instrumentation.
 */
 drmgr_disable_auto_predication(drcontext, bb);
 if (!drmgr_is_first_instr(drcontext, inst))
 return DR_EMIT_DEFAULT;
#ifdef VERBOSE
 dr_printf("in dynamorio_basic_block(tag=" PFX ")\n", tag);
ifdef VERBOSE_VERBOSE
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
endif
#endif
#ifdef SHOW_RESULTS
 if (drreg_are_aflags_dead(drcontext, inst, &aflags_dead) == DRREG_SUCCESS
 && !aflags_dead)
 bbs_eflags_saved++;
 else
 bbs_no_eflags_saved++;
#endif
 /* racy update on the counter for better performance */
 drx_insert_counter_update(drcontext, bb, inst,
 /* We're using drmgr, so these slots
 * here won't be used: drreg's slots will be.
 */
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & global_count, 1,
 0);
#if defined(VERBOSE) && defined(VERBOSE_VERBOSE)
 dr_printf("Finished instrumenting dynamorio_basic_block(tag=" PFX ")\n",
 tag);
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
#endif
 return DR_EMIT_DEFAULT;

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

}

bbcount_tut2.c:

static dr_emit_flags_t
event_app_instruction(void *drcontext, void *tag, instrlist_t *bb, instr_t *inst,
 bool for_trace, bool translating, void *user_data)
{
 instr_t *instr, *next_instr;
#ifdef SHOW_RESULTS
 bool aflags_dead;
#endif
 /* By default drmgr enables auto-predication, which predicates all
 instructions wi
 * the predicate of the current instruction on ARM.
 * We disable it here because we want to unconditionally execute the following
 * instrumentation.
 */
 drmgr_disable_auto_predication(drcontext, bb);
 if (!drmgr_is_first_instr(drcontext, inst))
 return DR_EMIT_DEFAULT;
#ifdef VERBOSE
 dr_printf("in dynamorio_basic_block(tag=" PFX ")\n", tag);
ifdef VERBOSE_VERBOSE
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
endif
#endif
#ifdef SHOW_RESULTS
 if (drreg_are_aflags_dead(drcontext, inst, &aflags_dead) == DRREG_SUCCESS
 && !aflags_dead)
 bbs_eflags_saved++;
 else
 bbs_no_eflags_saved++;
#endif
 for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
 next_instr = instr_get_next(instr);
 if (drmgr_is_emulation_start(instr)) {
 drx_insert_counter_update(drcontext, bb, inst,
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & emulated_count, 1, 0);
 return DR_EMIT_DEFAULT;
 }
 }
 /* racy update on the counter for better performance */
 drx_insert_counter_update(drcontext, bb, inst,
 /* We're using drmgr, so these slots
 * here won't be used: drreg's slots will be.
 */
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & native_count, 1,
 0);
#if defined(VERBOSE) && defined(VERBOSE_VERBOSE)
 dr_printf("Finished instrumenting dynamorio_basic_block(tag=" PFX ")\n",
 tag);
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
#endif
 return DR_EMIT_DEFAULT;
}

There are three things to note about this code change:

a) The for() loop uses instrlist_first() and instr_get_next() to look at each instruction
in a block. Using instrlist_first() and instr_get_next() to look at each instruction in a
block is a standard DynamoRIO method used in many clients.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

b) The drmgr_is_emulation_start() function is used to detect if an instruction is the
start of a sequence of instructions which are emulating a non-native instruction. There
is also a drmgr_is_emulation_end() function which detects the end of the sequence
but it is not required in this client as we only want to know if there is at least one
emulated instruction in the block. See opcodes_emulated.cpp as an example of how
drmgr_is_emulation_start()and drmgr_is_emulation_end() are used together.

The reference documentation for these functions is not yet available at
the DynamoRIO web site. See Emulation functions reference for a full
description of these functions.

c) Instead of using dr_insert_clean_call(), as in opcodes_emulated.cpp, the client uses
drx_insert_counter_update() to increment native_count and emulated_count. The
difference is that dr_insert_clean_call()inserts a user-defined function, which is run
when the block is executed. Whereas, drx_insert_counter_update()inserts its own code
to increment a variable, which is run when the block is executed. See the DynamoRIO API
reference documentation for more details.

4. Download the files bbcount.c and bbcount_tut2.c and compare them with a diff viewer to look
at the modifications in full.

5. To build the modified client, add bbcount_tut2.c to /<path/to/your/installation>/
arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/

CMakeLists.txt:
. . .
add_sample_client(bbcount "bbcount.c" "drmgr;drreg;drx")
add_sample_client(bbcount_tut2 "bbcount_tut2.c" "drmgr;drreg;drx")
add_sample_client(bbsize "bbsize.c" "drmgr")
. . .

6. Run cmake.

The current version of Arm Instruction Emulator (22.0) requires that clients are
built with GCC version 7.1.0 or higher:

cmake .

which returns:

-- The C compiler identification is GNU 7.1.0
-- The CXX compiler identification is GNU 7.1.0
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/cc
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/c++

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 53

https://dynamorio.org/files.html
https://dynamorio.org/files.html
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/bbcount.c
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/bbcount_tut2.c

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/c++ -- works
-- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features -- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples

7. Run make:
make

Which returns:

. . .
Scanning dependencies of target bbcount_tut2
[46%] Building C object CMakeFiles/bbcount_tut2.dir/bbcount_tut2.c.o
[48%] Linking C shared library bin/libbbcount_tut2.so
Usage: pass to drconfig or drrun: -c /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin/
libbbcount_tut2.so
[48%] Built target bbcount_tut2
. . .

8. Copy the built client from /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin to /<path/to/your/
installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/

samples/bin64:
cp bin/libbbcount_tut2.so ./bin64/
file bin64/libbbcount_tut2.so bin64/libbbcount_tut2.so: ELF 64-bit LSB shared
 object, ARM aarch64, version 1 (SYSV), dynamically linked, not stripped

9. Run the modified client:
armie -msve-vector-bits=128 -i libbbcount_tut2.so -- ./example

The output now includes a count for blocks which contain at least one emulated instruction:

Client bbcount is running
i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31
Instrumentation results:
449306 native basic block executions
 256 emulated basic block executions
 1971 basic blocks needed flag saving
 0 basic blocks did not

Results
The output now includes a count for blocks which contain at least one emulated instruction.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Example 3-1: Examples

For examples of typical usage, see:

• samples/inscount_emulated.cpp

• samples/instrace_emulated.c

• samples/memtrace_simple.c

• samples/memtrace_emulated.c

• samples/meminstrace_emulated.c

• samples/opcodes_emulated.cpp

and the examples described in Analyze Scalable Vector Extension (SVE) applications with Arm
Instruction Emulator.

Related information
Building custom analysis instrumentation on page 37
Emulation functions reference on page 51
About instrumentation clients on page 44
Arm Instruction Emulator

3.3 Building custom analysis instrumentation
Using the DynamoRIO API, you can change existing instrumentation clients or write your own from
scratch. This tutorial describes how to modify the instrumentation of an existing client for your
own purposes and build and execute the modified client with Arm® Instruction Emulator.

Before you begin
• You need a good working knowledge about the DynamoRIO API. DynamoRIO documentation

is available and includes DynamoRIO's event driven usage model example clients, from which
inscount_emulated.cpp, opcodes_emulated.cpp, and memtrace_simple.c are derived.

• To learn how to run a pre-built instrumentation client, work through Analyze Scalable Vector
Extension (SVE) applications with Arm Instruction Emulator.

• Understand the About instrumentation clients, libopcodes_emulated.so and its implementation
in the file opcodes_emulated.cpp.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://dynamorio.org/files.html

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Procedure
1. Use the following command to run Arm Instruction Emulator, with the pre-built instrumentation

client, libopcodes_emulated.so. This client writes native AArch64 opcode counts to stdout and
emulated counts to a file:

armie -msve-vector-bits=128 -i libopcodes_emulated.so -- ./example

Which returns:

Client opcodes_emulated is running
i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
. . .
1022 232 295 63
1023 204 235 31
Opcode execution counts in AArch64 mode:
 34900 : bl
 39725 : and
 41232 : csel
 44149 : ret
 54344 : ldrb
 68104 : cbnz
 73037 : ldp
 77676 : cbz
 79184 : stp
 100349 : sub
 110960 : movz
 126343 : str
 144182 : bcond
 171068 : subs
 171899 : orr
 183813 : add
 234517 : ldr
7 unique emulated instructions written to undecoded.txt

The file undecoded.txt contains:

256 : 0xe54842e0
256 : 0xa54842c1
256 : 0xa54842a0
256 : 0x25a91d00
256 : 0x04b0e3e8
256 : 0x04a10400
 1 : 0x25a91fe0

We are going to modify this instrumentation client, so that it writes both native and emulated
counts to stdout in a format which makes it easier to be parsed by scripts when running and
collating output from many applications, typically in an automated test environment.

To correctly modify the libopcodes_emulated.so client, you must understand its
existing implementation, opcodes_emulated.cpp. Refer to About instrumentation
clients for a detailed description of instrumentation client structure.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

2. Copy the opcodes_emulated.cpp file to a new file, opcodes_emulated_tut1.cpp and save it in
the following location:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/samples

3. Edit opcodes_emulated_tut1.cpp to merge opcount() and record_emulated_inst() into one
function:

opcodes_emulated.cpp:

static void
record_emulated_inst(uint code)
{
 emulated[code]++;
}
static void
opcount(uint opcode)
{
 count[opcode]++;
}

opcodes_emulated_tut1.cpp:

static void
opcount(uint opcode, int is_emulated)
{
 if (is_emulated == 0)
 count[opcode]++;
 else
 emulated[opcode]++;
}

4. Update the dr_insert_clean_call() calls which insert opcount():

opcodes_emulated.cpp:

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
 bool for_trace, bool translating)
{
 instr_t *instr;
 for (instr = instrlist_first(bb);
 instr != NULL;
 instr = instr_get_next(instr)) {
 if (drmgr_is_emulation_start(instr)) {
 is_emulation = true;
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated);
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)record_emulated_inst, false, 1,
 OPND_CREATE_INT32(
 instr_get_raw_word(emulated.instr, 0)));
 }
 if (drmgr_is_emulation_end(instr))
 is_emulation = false;
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 1,

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 OPND_CREATE_INT32(instr_get_opcode(instr)));
 }
 return DR_EMIT_DEFAULT;
}

opcodes_emulated_tut1.cpp:

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
 bool for_trace, bool translating)
{
 instr_t *instr;
 for (instr = instrlist_first(bb);
 instr != NULL;
 instr = instr_get_next(instr)) {
 if (drmgr_is_emulation_start(instr)) {
 is_emulation = true;
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated);
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 2,
 OPND_CREATE_INT32(instr_get_raw_word(emulated.instr, 0)),
 OPND_CREATE_INT(1));
 }
 if (drmgr_is_emulation_end(instr))
 is_emulation = false;
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 2,
 OPND_CREATE_INT32(instr_get_opcode(instr)),
 OPND_CREATE_INT(0));
 }
 return DR_EMIT_DEFAULT;
}

Notice that by merging opcount() and record_emulated_inst() into one callback function,
opcount(), the dr_insert_clean_call() functions, which insert opcount(), must now define
two input parameters, rather than one. The dr_insert_clean_call() functions must also pass
1 for emulated instructions and 0 for native instructions.

5. Update event_exit() to write the emulated instruction data to stdout rather than a file:

opcodes_emulated.cpp:

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[(NUM_COUNT_SHOW + 2) * 80];
 int len, i;
 size_t sofar = 0;
 /* First, sort the counts */
 uint indices[NUM_COUNT];
 /* Initialise indices */
 for (i = 0; i < NUM_COUNT; i++)
 indices[i] = i;
 qsort(indices, NUM_COUNT, sizeof(indices[0]), compare_counts);
 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Opcode execution counts in AArch64 mode:\n");
 DR_ASSERT(len > 0);
 sofar += len;

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 for (i = OP_LAST - 1 - NUM_COUNT_SHOW; i <= OP_LAST; i++) {
 if(count[indices[i]] != 0) {
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 " %9lu : %-15s\n", count[indices[i]],
 decode_opcode_name(indices[i]));
 DR_ASSERT(len > 0);
 sofar += len;
 }
 }
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 "%u unique emulated instructions written to undecoded.txt\n",
 emulated.size());
 DR_ASSERT(len > 0);
 sofar += len;
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 map<uint,long>::iterator iter;
 multimap<long,uint>::reverse_iterator iter2;
 for(iter=emulated.begin(); iter!=emulated.end();++iter) {
 ranks.insert(make_pair(iter->second,iter->first));
 }
 for(iter2=ranks.rbegin(); iter2!=ranks.rend(); ++iter2) {
 fprintf(file, "%9lu : 0x%08x\n", iter2->first, iter2->second);
 }
 fclose(file);
 emulated.clear();
 if (!drmgr_unregister_bb_app2app_event(event_basic_block))
 DR_ASSERT(false);
 drmgr_exit();
}

opcodes_emulated_tut1.cpp:

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[(NUM_COUNT_SHOW + 2) * 80];
 int len, i;
 size_t sofar = 0;
 /* First, sort the counts */
 uint indices[NUM_COUNT];
 /* Initialise indices */
 for (i = 0; i < NUM_COUNT; i++)
 indices[i] = i;
 qsort(indices, NUM_COUNT, sizeof(indices[0]), compare_counts);
 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Opcode execution counts for AArch64 instructions:\n");
 DR_ASSERT(len > 0);
 sofar += len;
 for (i = OP_LAST - 1 - NUM_COUNT_SHOW; i <= OP_LAST; i++) {
 if(count[indices[i]] != 0) {
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 " %9lu : %-15s\n", count[indices[i]],
 decode_opcode_name(indices[i]));
 DR_ASSERT(len > 0);
 sofar += len;
 }
 }
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 "Instruction execution counts for %u emulated instructions:",
 emulated.size());
 DR_ASSERT(len > 0);
 sofar += len;
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 map<uint,long>::iterator iter;
 multimap<long,uint>::reverse_iterator iter2;
 for(iter=emulated.begin(); iter!=emulated.end();++iter) {
 ranks.insert(make_pair(iter->second,iter->first));
 }
 for(iter2=ranks.rbegin(); iter2!=ranks.rend(); ++iter2) {
 dr_printf(" %9lu : 0x%08x\n", iter2->first, iter2->second);
 }
 fclose(file);
 emulated.clear();
 if (!drmgr_unregister_bb_app2app_event(event_basic_block))
 DR_ASSERT(false);
 drmgr_exit();
}

Download the files for opcodes_emulated.cpp and opcodes_emulated_tut1.cpp and compare
them with a diff viewer to view the modifications in full.

6. To build the modified client, add opcodes_emulated_tut1.cpp to /<path/to/your/
installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/
samples/CMakeLists.txt:

. . .
add_sample_client(opcodes "opcodes.c" "drmgr;drreg;drx")
add_sample_client(opcodes_emulated "opcodes_emulated.cpp" "drmgr;drreg")
add_sample_client(opcodes_emulated_tut1 "opcodes_emulated_tut1.cpp"
 "drmgr;drreg")
add_sample_client(stl_test "stl_test.cpp" "")
. . .

7. Run cmake.

The current version of Arm Instruction Emulator (22.0) requires that clients are
built with GCC version 7.1.0 or higher:

cmake .

Which returns:

-- The C compiler identification is GNU 7.1.0
-- The CXX compiler identification is GNU 7.1.0
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/cc
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/cc -- works
-- Detecting C compiler ABI info -- Detecting C compiler ABI info - done --
 Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/c++
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-
AArch64_SUSE-12_aarch64-linux/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features -- Detecting CXX compile features - done
-- Configuring done
-- Generating done

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

-- Build files have been written to: /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples

8. Run make:

make

Which returns:

. . .
Scanning dependencies of target opcodes_emulated_tut1
[7%] Building CXX object CMakeFiles/opcodes_emulated_tut1.dir/
opcodes_emulated_tut1.cpp.o
[9%] Linking CXX shared library bin/libopcodes_emulated_tut1.so
Usage: pass to drconfig or drrun: -c /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin/
libopcodes_emulated_tut1.so
[9%] Built target opcodes_emulated_tut1
. . .

9. Copy the built client from:

For example:

cp bin/libopcodes_emulated_tut1.so ./bin64/
file ./libopcodes_emulated_tut1.so ./libopcodes_emulated_tut1.so: ELF 64-bit LSB
 shared object, ARM aarch64, version 1 (SYSV), dynamically linked, not stripped

10. Run the modified client. Now, the emulated instruction output is written to stdout and the
undecoded.txt file is not created:

armie -msve-vector-bits=128 -i libopcodes_emulated_tut1.so -- ./example

Which returns:

. . .
1022 232 295 63
1023 204 235 31
Opcode execution counts for AArch64 instructions:
 34900 : bl
 39725 : and
 41232 : csel
 44149 : ret
 54344 : ldrb
 68104 : cbnz
 73037 : ldp
 77676 : cbz
 79184 : stp
 100349 : sub
 110960 : movz
 126343 : str
 144182 : bcond
 171068 : subs
 171899 : orr
 183813 : add
 234517 : ldr
Instruction execution counts for 7 emulated instructions:
 256 : 0xe54842e0
 256 : 0xa54842c1
 256 : 0xa54842a0

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

 256 : 0x25a91d00
 256 : 0x04b0e3e8
 256 : 0x04a10400
 1 : 0x25a91fe0

Results
Notice that the emulated instructions appear as raw encodings rather than mnemonics. This is a
reflection of the current state of emulation support in the Public DynamoRIO API. Arm is working
to improve such emulated instrumentation features and more comprehensive features will be
available in the public API for future Arm Instruction Emulator releases.

Until then, as a workaround, a helper script is provided with Arm Instruction Emulator,
enc2instr.py, which can be used to disassemble the encodings in your own post-processing
scripts:

export LLVM_MC=/<install-dir>/arm-linux-compiler-<xx.y>_Generic-AArch64_<OS>-<OS-
version>_aarch64-linux/llvm-bin/llvm-mc
echo 0xe54842e0 | /<install-dir>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux//bin64/enc2instr.py 0xe54842e0 : st1w {z0.s}, p0, [x23,
 x8, lsl #2]

Next steps
• Build an emulation-aware instrumentation client

Related information
Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator on page 19
Arm Instruction Emulator

3.4 About instrumentation clients
This topic describes the basic structure of an instrumentation client, including the main events
which occur during execution and what is typically done in each event.

Arm® Instruction Emulator provides a set of instrumentation clients which can be used to analyze
SVE binaries at runtime. The term 'instrumentation client' in this context refers to how Arm
Instruction Emulator uses DynamoRIO to work as an analysis tool as well as an emulator. Arm
Instruction Emulator is invoked with an instrumentation client and the SVE binary to be emulated
and analyzed. The client is simply a shared object file which uses the DynamoRIO API to capture
and process wanted run-time events.

To correctly modify the libopcodes_emulated.so client, you must understand its existing
implementation, opcodes_emulated.cpp (download opcodes_emulated.cpp). The diagram below
shows the key functions in opcodes_emulated.cpp and how they relate to each other.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
http://dynamorio.org
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/opcodes_emulated.cpp

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

Figure 3-2: Diagram showing the key functions in opcodes_emulated.cpp

The easiest way to understand the client is to think of it as event-driven. Each function is called as
a result of events which occur as the application is running:

1. DynamoRIO loads and runs the client, calling dr_client_main(), before beginning to execute
the application.

2. In dr_client_main(), the client registers a function which is called just before the client stops
running, event_exit(). Registering such a function for an event is usually referred to as a
'callback function'.

3. In dr_client_main(), the client registers a callback function as each block of code in the
application is prepared before being executed.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

4. In event_basic_block(), the client registers a callback function which is executed for each
emulated instruction which appears in the code of the application, record_emulated_inst().
The record_emulated_inst() function is the instrumentation which is the purpose of the client.

5. In event_basic_block(), the client registers a callback function which is executed for each
native instruction which appears in the code of the application, opcount(). The opcount()
function is the instrumentation which is the purpose of the client.

6. The application stops running and DynamoRIO calls event_exit().

The preceding information is a simplified explanation of how a client operates. For a more detailed
information, read the opcodes_emulated.cpp file, which can be downloaded from the Arm
Developer website, and refer to details of key functions in the DynamoRIO functions reference
manual, especially:

• dr_insert_clean_call(), which implements the instrumentation you
want.

• drmgr_register_bb_app2app_event(), which defines where the
instrumentation must be inserted.

Code Transformation and code Execution
If you are new to the DynamoRIO Dynamic Binary Instrumentation (DBI) tool platform in general,
and DynamoRIO in particular, ensure you understand the method by which instrumentation is
added to application code.

Remember that instrumentation occurs in two phases, transformation and execution:

• Transformation - Instrumentation code is inserted into the application code.

• Execution - The application code runs, including the instrumentation code which was inserted
during transformation.

DynamoRIO performs transformation and execution transparently, provided that you conform to
the rules of its API.

In the preceding example, event_basic_block() is the transformation phase. Calls to opcount()
or record_emulated_inst() are inserted for each instruction but are not called at transformation
time. If or when a particular block of code is run at execution time, those functions are called, to
increment and store the instruction and count.

This is a subtle distinction for new users. The best way to think of the difference is to recognize
that dr_insert_clean_call() will be called once when a block of application code is transformed
but the function it registered may be called many times when the block is executed.

Related information
Building custom analysis instrumentation on page 37
Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator on page 19
Emulation functions reference on page 51
Arm Instruction Emulator

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 53

https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/opcodes_emulated.cpp
https://dynamorio.org/files.html
https://dynamorio.org/files.html
http://dynamorio.org
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

3.5 View the drrun command
This topic describes how to use the -s or --show-drrun-cmd Arm® Instruction Emulator option to
output the full DynamoRIO drrun command that Arm Instruction Emulator uses.

About this task
The -s option is provided to enable the full range of options for drrun, and to pass command-
line arguments to clients. Without this feature, options and arguments are required to be passed
through the -a or -arg-iclient options.

Procedure
1. Run Arm Instruction Emulator with the -s option, using the example described in Get started

with Arm Instruction Emulator:
armie -msve-vector-bits=128 -s -- ./example

Which returns:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/bin64/drrun -max_bb_instrs 32 -max_trace_bbs 4
 -c /<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/lib64/release/libsve_128.so -- ./example
 i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31

Notice that drrun uses the emulation client libsve_128.so to run the example binary.
2. If an instrumentation client is specified:

armie -msve-vector-bits=128 -s -i libinscount_emulated.so -- ./example

Which returns:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/bin64/drrun -client /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/lib64/release/
libsve_128.so 0 "" -client /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin64/libinscount_emulated.so 1
 "" -max_bb_instrs 32 -max_trace_bbs 4 -- ./example
Client inscount is running
. . .
1022 232 295 63
1023 204 235 31
 2134094 instructions executed of which 1537 were emulated instructions

Notice that drrun now uses two clients: the emulation client libsve_128.so and
libinscount_emulated.so to run and count instructions executed by example.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Tutorials

3. The -only_from_app option for the libinscount_emulated.so client only counts instructions
executed by the application, rather than also including linked libraries. You can copy and paste
the above command and add -only_from_app:
/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/bin64/drrun -client /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/lib64/release/
libsve_128.so 0 "" -client /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin64/libinscount_emulated.so 1
 "-only_from_app" -max_bb_instrs 32 -max_trace_bbs 4 -- ./example
Client inscount is running
 . . .
 1021 165 234 69
 1022 232 295 63
 1023 204 235 31
 42902 instructions executed of which 1537 were emulated instructions

Notice that the native AArch64 instruction count has dropped to 42902, from 2134094, due
to the exclusion of library instructions.

Related information
Building custom analysis instrumentation on page 37
Get started with Arm Instruction Emulator on page 12
Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator on page 19
Arm Instruction Emulator

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Reference

4 Reference
This section contains reference information for armie command and the emulation functions
included with Arm® Instruction Emulator.

4.1 armie command reference
The armie command runs a compiled binary using Arm® Instruction Emulator. Arm Instruction
Emulator is an emulator that can execute AArch64 Scalable Vector Extension (SVE) instructions on
any Armv8-A-based hardware.

The following content is relevant for Arm Instruction Emulator versions 18.2 and
later. If you are using a previous version of Arm Instruction Emulator, download the
Arm Instruction Emulator v1.2.1 user guide.

Usage
To execute and provide operational instructions to the Arm Instruction Emulator, use:

armie [options] -- <command to execute>

Options
Table 4-1: armie command options

Option Description

-m<string>

-msve-vector-bits=<uint>

-mlist-vector-lengths

Architecture-specific options.

-msve-vector-bits=<uint> specifies the vector length to use.
<uint> must be a multiple of 128 bits, up to a maxiumum of 2048
bits.

-mlist-vector-lengths lists all the valid vector lengths.

-e <client>

--eclient <client>

Use a DynamoRIO API-based emulation client.

The libmemtrace_sve_<width>.so SVE emulation clients (in
lib64/release) can be used with the memory tracing instrumentation
clients. <width> is the vector width between 128 bits and 2048
bits (in increments of 128 bits).

Note:
If an SVE emulation client is not specified, the default SVE client is
used by armie.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 53

https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/arm_instruction_emulator_user_guide_101212_0121_01_en.pdf
https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/arm_instruction_emulator_user_guide_101212_0121_01_en.pdf

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Reference

Option Description
-i <client>

--iclient <client>

Use a DynamoRIO API-based instrumentation client.

The following instrumentation clients are provided with Arm
Instruction Emulator (in samples/bin64):

• libinscount_emulated.so

• libinstrace_emulated.so

• libmeminstrace_emulated.so

• libmemtrace_emulated.so

• libopcodes_emulated.so

• libemulated_regs.so

To learn how to create your own custom instrumentation client, see
Building custom analysis instrumentation and Build an emulation-
aware instrumentation client

-a

--arg-iclient <string>

Pass an (optional) <string> argument to the instrumentation
client.

-x

--unsafe-ldstex

This options is DEPRECATED

The -x and --unsafe-ldstex options enable a workaround to
avoid an exclusive load/store bug on specific AArch64 hardware. -
x is always enabled and is no longer set from the command line, if
required.

For more information about the details of the need
for this workaround, see the Known Issues section in
RELEASE_NOTES.txt.

-y

--safe-ldstex

Use -y in the unlikely event that -x or --unsafe-ldstex must
be disabled.

-s

--show-drrun-cmd

Write the full DynamoRIO drrun command used to execute
armie to stderr.

-s can be useful when debugging or developing clients.

-h

--help

Show the command help.

-V

--version

Print the version.

Example: Use -mlist-vector-lengths to list the valid vector lengths
To list all valid vector lengths, use:

armie -mlist-vector-lengths

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 53

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Reference

Which returns:

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Example: Use '-msve-vector-bits' to specify the number of vector bits
To run the compiled binary 'sve_program' with 256-bit vectors, use:

armie -msve-vector-bits=256 -- ./sve_program

Related information
Get started with Arm Instruction Emulator on page 12
Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator on page 19

4.2 Emulation functions reference
This topic describes the emulation functions applicable to Arm® Instruction Emulator.

Arm Instruction Emulator (ArmIE) is based on the DynamoRIO Dynamic Binary Instrumentation
(DBI) tool platform and allows developers to use the API of DynamoRIO to write instrumentation
clients which run alongside the SVE emulation client. These instrumentation clients can allow you
to analyze SVE binaries at runtime:

• drmgr_is_emulation_start(): See the DynamoRIO documentation for
drmgr_is_emulation_start()

• drmgr_is_emulation_end(): See the DynamoRIO documentation for drmgr_is_emulation_end()

• drmgr_get_emulated_instr_data(): See the DynamoRIO documentation for
drmgr_get_emulated_instr_data()

• emulated_instr_t: See the DynamoRIO documentation for emulated_instr_t

Related information
Get started with Arm Instruction Emulator on page 12
Arm Instruction Emulator
API Usage Tutorial
Learn about SVE

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 53

http://dynamorio.org
http://dynamorio.org
https://dynamorio.org/files.html
https://dynamorio.org/group__drmgr.html#gae4a20b19e779581dccac41eca9bf8321
https://dynamorio.org/group__drmgr.html#gaf2227473141100828d097eb98828b954
https://dynamorio.org/group__drmgr.html#ga85b025c766a84bee841288d822b15380
https://dynamorio.org/struct__emulated__instr__t.html
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://dynamorio.org/page_tutorials.html
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Further resources

5 Further resources
Lists the additional resources available which you can to use to learn more about Arm® Instruction
Emulator or the Scalable Vector Extension (SVE).

5.1 Arm Instruction Emulator resources
This topic lists some useful resources where you can read more about Arm® Instruction Emulator.

• Arm Instruction Emulator

• Download Arm Instruction Emulator

• Release history

• Get help

• Blog: DynamoRIO and ArmIE

• Blog: Optimizing HPCG for Arm SVE

5.2 Scalable Vector Extension (SVE) resources
This topic lists some useful resources you can use to learn more about the Scalable Vector
Extension (SVE).

• Porting and Tuning HPC Applications for Arm SVE

A guide to the tools and methodologies to porting your applications to SVE-enabled hardware,
or to emulate with Arm® Instruction Emulator.

• Past presentations and hackathon materials

Past presentations at Arm events, including downloadable SVE Hackathon materials.

• White Paper: A sneak peek into SVE and VLA programming

An overview of SVE with information on the new registers, the new instructions, and the
Vector Length Agnostic (VLA) programming technique, with some examples.

• White Paper: Arm Scalable Vector Extension and application to Machine Learning

In this white paper, code examples are presented that show how to vectorize some of the core
computational kernels that are part of a machine learning system. The examples are written
using the Vector Length Agnostic (VLA) approach introduced by the Scalable Vector Extension
(SVE).

• Arm C Language Extensions (ACLE) for SVE

The SVE ACLE defines a set of C and C++ types and accessors for SVE vectors and predicates.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 53

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download/release-history
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-help
https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/optimizing-hpcg-for-arm-sve
https://developer.arm.com/documentation/101726/latest
https://developer.arm.com/solutions/hpc/presentations
https://developer.arm.com/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/documentation/100987/latest

Arm® Instruction Emulator Developer and Reference Guide Document ID: 102190_22.0_00_en
Version 22.0

Further resources

• DWARF for the ARM® 64-bit Architecture (AArch64) with SVE support

This document describes the use of the DWARF debug table format in the Application Binary
Interface (ABI) for the Arm 64-bit architecture.

• Procedure Call Standard for the ARM 64-bit Architecture (AArch64) with SVE support

This document describes the Procedure Call Standard use by the Application Binary Interface
(ABI) for the Arm 64-bit architecture.

• Arm Architecture Reference Manual for A-profile architecture

This guide includes information that describes the Scalable Vector Extension to the Armv8-A
architecture profile.

Copyright © 2020–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 53

https://developer.arm.com/documentation/100985/latest
https://developer.arm.com/documentation/100986/latest
https://developer.arm.com/documentation/ddi0487/latest

	Arm® Instruction Emulator Developer and Reference Guide
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Conventions
	1.2 Other information

	2 Get started
	2.1 Install Arm Instruction Emulator
	2.2 Get started with Arm Instruction Emulator
	2.3 Troubleshoot: Use -s

	3 Tutorials
	3.1 Analyze Scalable Vector Extension (SVE) applications with Arm Instruction Emulator
	3.2 Build an emulation-aware instrumentation client
	3.3 Building custom analysis instrumentation
	3.4 About instrumentation clients
	3.5 View the drrun command

	4 Reference
	4.1 armie command reference
	4.2 Emulation functions reference

	5 Further resources
	5.1 Arm Instruction Emulator resources
	5.2 Scalable Vector Extension (SVE) resources

