Arm® Architecture Reference
a r m Manual Supplement Armv9,

Document number
Document version
Document confidentiality

Document build information

for Armv9-A architecture
profile

DDI0608

Aa

Non-confidential

Printed on: May 21, 2021.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Release information

Date Version Changes

2021/May/20 EAC

e Initial EAC release.
* BRBE, ETE, TME, and TRBE specifications.

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349 version 21.0

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. iii
Aa Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement Armv9, for
Armv9-A architecture profile

Release information ii
Non-Confidential Proprietary Notice iii

Part A Preface

About this supplement

Conventions
Typographical conventions XViii
Numbers Xix
Pseudocode descriptions XixX
Assembler syntax descriptions L XixX
Rules-based writing
Contentitemidentifiers. XX
Contentitemrendering XX
Contentitemclasses XX
Additional reading
Feedback
Feedback on this supplement L. XXiii
Progressive terminology commitment oL Xxiii

Part B Armv9-A Architecture Introduction and Overview

Chapter B1 Introduction to the Armv9-A Architecture
B1.1 Architectural extensions added by Armv9-A oo oL 25
B1.1.1 FEAT_BRBE, Branch Record Buffer Extension 25
B1.1.2 FEAT_ETE, Embedded Trace Extension 26
B1.1.3 FEAT_SVE2, Scalable Vector Extension version2 26
B1.1.4 FEAT_TME, Transactional Memory Extension 26
B1.1.5 FEAT_TRBE, Trace Buffer Extension 26

Part C The Transactional Memory Extension

Chapter C1 Transactional Memory Extension
C1.1 Transactions 29
C1.1.1 Transactionalstate 29
C1.1.2 Transactional reservation granule, read and write sets 30
C1.2 Transaction failure 31
C1.21 Failurecauses 31
C1.22 Transaction checkpoint 32
C1.3 Memory model 34
C1.3.1 Externalvisibility 34
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. iv

A.a Non-confidential

Contents

C1.3.2 Atomicity e 35

C1.4 Transactions and memory attributes oo 0oL 36
C15 Addresstranslation 37
C1.5.1 Transactional translationtablewalks 37
C1.5.2 Hardware management of the Access flag and dirty state 37
C153 TLBshootdown. 37
C1.5.4 Translation table modifications inside transactions 38

C1.6 Modification of instructions in Transactional state 39
C1.7 Interruptmasking L 40
C1.8 A64 instruction behavior in Transactional state 41
C1.8.1 MRS . . e 42
C1.8.2 MSR(register) 43
C1.8.3 MSR(immediate) 43
C1.84 SYSaANd SYSL o i it e e e e 43
C1.8.5 WaitforEvent 43
C1.8.6 DMB . . . ittt 44
C1.8.7 ISB . o 44
C1.8.8 First-fault and Non-fault load instructions 44

C1.9 Reset e 46
C1.10 Identification mechanism L 47

Chapter C2 Debug, PMU, Trace

Cc2.1 Self-hosteddebug 48
C2.1.1 Breakpoint Instruction exceptions L. 48
C2.1.2 Breakpointexceptions 48
C2.1.3 Watchpointexceptions 48
C2.1.4 Software Stepexceptions Lo 49

c2.2 Externaldebug 50
C2.2.1 Breakpoint and Watchpointdebugevents 50
C2.2.2 Halting Instructiondebugevent 50
C2.2.3 Halting Stepdebugevents 50
C2.2.4 External Debug Requestdebugevent 50
C2.25 ResetCatchdebugevent. 51
C2.2.6 Other Haltingdebugevents. 51
C2.2.7 BehaviorinDebugstate 51
C2.2.8 The PC Sample-based Profiling Extension 52

Cc2.3 The Statistical Profiling Extension 53
C2.3.1 Memory accesses by profiling operations 53
C2.3.2 Eventspacketpayload 53
C2.3.3 Profile Buffer managementinterrupts 53

C24 The Embedded Trace Extension 54
C25 The Performance Monitors Extension 55
C2.5.1 Eventfiltering 55
C2.5.2 Accuracy of eventfiltering 55
C253 TSTART_RETIRED i 56
C254 TCOMMIT_RETIRED i 56
C2.55 TME_TRANSACTION_FAILED 56
C2.5.6 TME_INST_RETIRED_COMMITTED 56
C25.7 TME_CPU_CYCLES COMMITTED 56
C258 TME_FAILURE_CNCL i 57
C259 TME_FAILURE_ERR 57
C2.510 TME_FAILURE_IMP 57
C2.511 TME_FAILURE_MEM 57
C2.5.12 TME_FAILURE_NEST 57
C2.513 TME_FAILURE_SIZE 58
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. v

A.a

Non-confidential

Contents

Chapter C3

Chapter C4

Chapter C5
Chapter C6

C2.5.14 TME_FAILURE_TLBI 58
C2.5.15 TME_FAILURE_WSET 58
C2.5.16 Behavioronoverflow 58
System registers
C3.1 General system control registers 60
C3.1.1 CTR_ELO 60
C3.1.2 ID_AAB4ISARO_ELT 60
C3.1.3 TCR_ELT 60
C3.14 TCR_EL2 61
C3.1.5 ISS encoding for an exception from a TSTART instruction 62
C3.1.6 SCTLR_EL1 62
C3.1.7 SCTLR_EL2 64
C3.1.8 SCTLR_EL3 e 65
C3.1.9 HCR_EL2 66
C3.1.10 SCR_EL3 66
C3.2 Performance Monitors registers 67
C3.21 PMEVTYPER<n>_ELO 67
C3.22 PMCCFILTR_ELO e 67
C3.23 PMSEVFR_ELT 67
C3.3 Performance Monitors external registers 68
C3.3.1 PMPCSR 68
Instructions
C4.1 TCANCEL .+« v v i i i e e e e e e e e e e e e 70
C4.2 TCOMMIT '+ v vt e 71
C4.3 TSTART & v o ot e e e et e e e e e e e e e 72
C4.4 TTEST © o v o o e e e e e e e e e e e 73

Interaction with Memory Tagging Extension

Transactional Memory Extension additional reading

Part D The Embedded Trace Extension

Chapter D1

Chapter D2

DDI0608
A.a

Embedded Trace Extension

D1.1 Introduction 77
D1.1.1 Mathematical notation 77
D1.2 Attributes of tracing 79
D1.3 Self-hosted Trace e 80
D1.4 ExternalDebug 81
D1.5 Traceoutput e 82
D1.6 Trace Sessions 83
D1.7 Elements e 84
D1.8 Layer Model 85
D1.9 Trace protocol synchronization 86
D1.9.1 Non-periodic trace protocol synchronization 86
D1.9.2 Periodic trace protocol synchronization 86
D1.9.3 Synchronization of instructiontrace 87
D1.10 Speculation in the trace element stream 91
D1.10.1 Tracing Transactions 91
Trace Element Model
D2.1 Trace Infoelement 94
D2.2 POelement 95
Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Vi
Non-confidential

Contents

Chapter D3

Chapter D4

Chapter D5

DDI0608
A.a

D2.3

D2.4

D2.5

D2.6

D2.7

D221 AtomElement 95
D2.2.2 ExceptionElement L. 95
D2.2.3 Source AddressElement L. 97
D2.24 QElement e 98
D2.2.5 Transaction StartElement 98

Virtual Address Space Elements L. 99
D2.3.1 TraceOnElement 99
D2.3.2 Target AddressElement 99
D2.3.3 ContextElement. 99

Temporal Elements 100
D2.4.1 CycleCountElement 100
D2.42 TimestampElement. oL 100
D2.4.3 Timestamp Markerelement 101

Speculation Resolution Elements, 102
D2.5.1 CommitElement 102
D252 CancelElement 103
D253 DiscardElement. 103
D254 MispredictElement oo oo 103

Others e e 104
D2.6.1 EventElement. 104
D2.6.2 OverflowElement 104

Transactional Memory 105
D2.7.1 Transaction Startelement 105
D2.7.2 Transaction Commitelement 105
D2.7.3 Transaction Failureelement 105

Instruction and Exception classifications

D3.1 AArchB4 AB4 e e e 107
D3.1.1 Direct POinstructions 107
D3.1.2 Indirect POinstructions 107
D3.1.3 Branch with link instructions 108
D3.1.4 Meaning of Atomelements oL 108

D3.2 AArch32 A32 e e 109
D3.2.1 Direct POinstructions 109
D3.2.2 Indirect POinstructions 109
D3.2.3 Branch with link instructions 109
D3.24 Meaning of Atomelements Lo 110

D3.3 AArch32 T32 e e 110
D3.3.1 Direct PO instructions 110
D3.3.2 Indirect POinstructions 111
D3.3.3 Branch with link instructions 111
D3.3.4 Meaning of Atomelements oL 111

D3.4 WFI and WFE Instructions 112
D3.4.1 WFXT . . . e e e 112
D3.4.2 Meaning of Atomelements, 112

D3.5 Exceptions to Exception elementencodings 113

Recommended Configurations

D4.1 Configurations 116

Protocol Description

D5.1 Introduction 117

D5.2 Summary ... e 118

D5.3 EncodingSchemes 121
D5.3.1 Fieldencodings 121

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. vii
Non-confidential

Contents

D5.3.2 Instructionsetencoding oL 121

D5.4 Alignment Synchronization Packet 123
D5.5 Discard Packet 124
D5.6 Overflow Packet e 125
D5.7 Trace Info Packet 126
D5.8 Trace On Packet 130
D5.9 Timestamp Packet 131
D5.10 Timestamp Marker Packet 133
D5.11 Transaction Start Packet L 134
D5.12 Transaction Commit Packet 135
D5.13 Exception Exact Match Address Packet 136
D5.14 Exception Short Address ISOPacket 138
D5.15 Exception Short Address IST1 Packet 140
D5.16 Exception 32-bit Address ISOPacket 142
D5.17 Exception 32-bit Address IS1 Packet 144
D5.18 Exception 64-bit Address ISO Packet 146
D5.19 Exception 64-bit Address IS1 Packet 148
D5.20 Exception 32-bit Address IS0 with Context Packet 150
D5.21 Exception 32-bit Address IS1 with Context Packet 155
D5.22 Exception 64-bit Address ISO with Context Packet 160
D5.23 Exception 64-bit Address IS1 with Context Packet 167
D5.24 Transaction Failure Packet 174
D5.25 PEResetPacket 175
D5.26 Cycle Count Format 1_0 unknown countPacket 176
D5.27 Cycle Count Format 1_1 unknown count Packet 177
D5.28 Cycle Count Format 1_O withcountPacket 178
D5.29 Cycle Count Format 1_1 withcountPacket 180
D5.30 Cycle Count Format 2_0 small commitPacket 181
D5.31 Cycle Count Format 2_0 large commit Packet 182
D5.32 Cycle CountFormat2 1Packet 183
D5.33 Cycle Count Format3_OPacket 184
D5.34 Cycle Count Format3_1Packet 185
D5.35 Commit Packet 186
D5.36 Cancel Format1 Packet 187
D5.37 Cancel Format2 Packet 189
D5.38 Cancel Format3 Packet, 190
D5.39 Mispredict Packet 191
D5.40 Atom Format 1 Packet 192
D5.41 Atom Format2 Packet 193
D5.42 Atom Format3 Packet 194
D5.43 Atom Format4 Packet 196
D5.44 Atom Format 5.1 Packet 197
D5.45 Atom Format 5.2 Packet 198
D5.46 Atom Format6 Packet 199
D5.47 Target Address Short ISO Packet 200
D5.48 Target Address ShortIS1 Packet 201
D5.49 Target Address 32-bit ISO Packet 202
D5.50 Target Address 32-bit IS1 Packet, 203
D5.51 Target Address 64-bit ISO Packet 204
D5.52 Target Address 64-bit IS1 Packet 205
D5.53 Target Address ExactMatchPacket 206
D5.54 ContextSame Packet. 207
D5.55 Context Packet 208
D5.56 Target Address with Context 32-bit ISO Packet 211
D5.57 Target Address with Context 32-bit IS1 Packet 215
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. viii

A.a

Non-confidential

Contents

D5.58 Target Address with Context 64-bit ISO Packet 219
D5.59 Target Address with Context 64-bit IS1 Packet 223
D5.60 Source Address Short ISOPacket 227
D5.61 Source Address Short IS1 Packet 228
D5.62 Source Address 32-bit ISO Packet L. 229
D5.63 Source Address 32-bit IS1 Packet L. 230
D5.64 Source Address 64-bit ISOPacket L. 231
D5.65 Source Address 64-bit IS1 Packet 232
D5.66 Source Address Exact MatchPacket 233
D5.67 Ignore Packet 234
D5.68 EventPacket 235
D5.69 QPacket. 237
D5.70 QwithcountPacket 238
D5.71 Q with Exact match address Packet 239
D5.72 Qshortaddress ISOPacket 241
D5.73 Qshortaddress IS1 Packet 243
D5.74 Q32-bitaddress ISOPacket L. 245
D5.75 Q32-bitaddressIS1 Packet 247
Chapter D6 Trace Unit

D6.1 Resettingthetracewunit 250
D6.1.1 Traceunitreset 250

D6.2 System Behaviors 251
D6.2.1 Behavioronenabling 251
D6.2.2 Behaviorondisabling L 251
D6.2.3 Behavioronflushing 252
D6.24 Low-powerstate. 253
D6.2.5 Trace unit behavior when the PE is in a low-power state 253
D6.2.6 Trace unit behavior in the low-powerstate 253

D6.3 Trace unit behavior while the PE isin Debug state 255
D6.4 Trace unit behavior on a trace unit buffer overflow 256
D6.5 Trace unitpowerstates 257
D6.6 Visibility of the PE operation 259
D6.6.1 ETEftraceoperation. 260
D6.6.2 Impacton PEBehavior L 261
D6.6.3 BehavioronaPEWarmreset 261
D6.6.4 InstructionBlock 261
D6.6.5 Exposing Speculation 262
D6.6.6 Prohibited Regions 263
D6.6.7 Multi-threaded processor 264
D6.6.8 Sharing betweenmultiple PEs Lo 264

D6.7 Speculationresolution 265
D6.7.1 Initialization 265
D6.7.2 Newblockoperation 265
D6.7.3 Resolvedoperation 266
D6.7.4 Canceloperation 266

D6.8 Filtering trace generation L 267
D6.8.1 Viewlnstfunction, 267
D6.8.2 Viewlnst start/stop function filtering 268
D6.8.3 Viewlnst include/exclude function filtering 271
D6.8.4 Guidelines for interpreting the Viewlnst functionresult 272
D6.8.5 Rules for tracing Exceptional occurrences 274
D6.8.6 Forced tracing of Exceptional occurrences 275

D6.9 Element Generation 277
D6.9.1 Trace Info Element Generation 277
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. ix

A.a

Non-confidential

Contents

Chapter D7

DDI0608
A.a

D6.9.2 AtomElement
D6.9.3 ExceptionElement oL
D6.9.4 Source Address Element
D6.95 QElement
D6.9.6 EventElement.
D6.9.7 Cancel Element Generation
D6.9.8 Commit Element Generation
D6.9.9 TransactionStart
D6.9.10 TransactionCommit
D6.9.11 Transaction Failure
D6.9.12 ContextElement.
D6.9.13 Target Address Element
D6.9.14 MispredictElement
D6.9.15 Overflow Element
D6.9.16 TimestampElement.
D6.9.17 TraceOnElement
D6.9.18 Cycle CountElement
D6.9.19 DiscardElement. o
D6.10 Trace unitfeatures
D6.10.1 Branchbroadcasting
D6.10.2 QRegions
D6.10.3 Cycle Counting
D6.10.4 Timestamping L
D6.10.5 Stalling the executionofthe PE
D6.10.6 Nooverflow
D6.10.7 EventTrace
D6.10.8 Context identifiertracing L
D6.10.9 \Virtual context identifiertracing. oL
D6.11 Compression e e
D6.11.1 Impliedcommits
D6.11.2 Atompacking
D6.11.3 Address Compression
D6.11.4 Return Stack Address Matching
D6.11.5 Timestamp Value Compression

Resources
D7.1 Resource operation
D7.1.1 Behavior of the resources while in the Running state
D7.1.2 Behavior of the resources while in the Pausing state
D7.1.3 Behavior of the resources while in the Paused state
D7.1.4 Behavior of resources on a Trace synchronizationevent
D7.2 Resource organization
D7.21 Precise Resources
D7.2.2 Imprecise Resources e
D7.3 Selecting aresource ora pairofresources
D7.3.1 AResource Selectorpair
D7.4 Addresscomparators
D7.4.1 Single Address Comparators
D7.4.2 Address Range Comparators
D7.5 Context Identifier Comparator, .
D7.6 Virtual Context Identifier Comparators
D7.7 Counters
D7.7.1 Forming a larger Counter from two separate Counters
D7.7.2 Counter Operation in Self-reloadmode
D7.8 SequEeNCEr. e e

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Contents

D7.8.1 Pseudocode 326
D7.9 Single-shot Comparator Controls 330
D7.9.1 Single-shot Comparator Controlmodes 331
D7.9.2 Operation while in Pausedstate 332
D7.10 External Outputs 333
D7.10.1 Operation while in Paused state 333
D7.11 Externallnputs 334
D7.11.1 Operation while in Paused state 335
D7.11.2 Operation while in the Low-powerstate 335
D7.12 PEComparatorlnputs 336
Chapter D8 Register Description
D8.1 Accessing ETE registers e 337
D8.1.1 External debuggerinterface 337
D8.1.2 Systeminstructions L 339
D8.2 Synchronization of registerupdates 340
D8.2.1 AArch64 systemregisters 0. 340
D8.2.2 External Debuggerregisters 341
D8.2.3 Synchronization and the authentication interface 341
D8.3 Trace unit programming states L. 342
D8.4 External debugregisters L 346
D8.4.1 Trace registers, external debug registermap 346
D8.4.2 Management registers, external debug registermap 347
D8.4.3 Integrationregisters 348
Chapter D9 Trace Analyzer
Rules-based writing 349
D9.1 Introduction 350
D9.1.1 Using Trace Info elements to start trace analysis 350
D9.1.2 Encountering Trace Info elements after trace analysis has started . . . 350
D9.1.3 Decompression information oL 350
D9.2 Stage 1 - Parsingthe bytestream 351
D9.21 Retainedstate 351
D9.22 Parsing. 352
D9.2.3 AlignmentSyncpacket 353
D9.24 Discard. 354
D9.25 Overflow 354
D9.26 Tracelnfo 355
D9.2.7 TraceOn 356
D9.2.8 Speculation 356
D9.2.9 Mispredict 359
D9.210 AtomPackets 359
D9.2.11 QPackets 363
D9.2.12 Source Address Packets L 365
D9.2.13 Exceptions 366
D9.2.14 Addressandcontext 368
D9.2.15 Transactions L 374
D9.2.16 Timestamps 375
D9.2.17 EventTracing 377
D9.2.18 Functions 378
D9.3 Stage 2 - Speculation Resolution oL 380
D9.3.1 Emit() 380
D9.3.2 Tracelnfoelement 380
D9.3.3 Commitelement. 381
D9.3.4 Cancelelement 382
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Xi

A.a Non-confidential

Contents

Chapter D10

Chapter D11

Chapter D12

DDI0608
A.a

D9.3.5 Discardelement 383
D9.3.6 Stack 384
D9.4 Stage 2 - Transaction Resolution 385
D9.4.1 ProcessTransaction() 385
D9.42 Transaction Startelement 385
D9.4.3 Transaction Commitelement, 385
D9.4.4 Transaction Failureelement, 385
D9.5 Stage 3-Analysis 387
D9.5.1 AnalyzeElement() 387
D9.52 Retainedstate 387
D9.5.3 Operationofthereturnstack 388
D9.54 Atomelement 389
D9.5.5 Contextelement. 391
D9.5.6 Exceptionelement 391
D9.5.7 Source Addresselement L. 393
D9.5.8 TargetAddresselement 394
D9.5.9 Tracelnfoelement 395
D9.5.10 TraceOnelement 395
D9.5.11 Mispredictelement 395
D9.5.12 ETEEventelement 396
D9.5.13 Discardelement 396
D9.5.14 Overflowelement 396
D9.5.15 Qelement 397
D9.5.16 Timestampelement o 398
D9.5.17 Cycle Countelement 398
D9.5.18 Functions 398
Programming
D10.1 Example code sequences 401
D10.1.1 Enablingthetraceunit 401
D10.1.2 Disablingthetraceunit, 401
D10.1.3 Example save restore routine 402
D10.2 Minimal programming 403
D10.3 Filteringmodels e 404
D10.4 Filtering used the exclude function 405
D10.5 Filtering used the include function 405
D10.6 OS Save and Restoreroutines. 406
Trace Examples
D11.1 BasicExamples 408
D11.1.1 Simple example of basic programtrace 409
D11.1.2 Simple example of basic program trace filtering applied 410
D11.2 Transactions. e 411
D11.2.1 Simple successful transaction 412
D11.2.2 Simple Failed Transactionexample 413
D11.2.3 Canceled Transaction failureexample 414
D11.2.4 Speculated Transactionexample 415
Pseudocode
D12.1 ETEelement ASL 416
D12.1.1 Atomenumeration. 416
D12.1.2 AtomElement() 416
D12.1.3 QElement() 417
D12.1.4 CancelElement() 417
D12.1.5 CommitElement() 417
Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Xii

Non-confidential

Contents

Chapter D13

D12.1.6 ContextElement()
D12.1.7 CycleCountElement()
D12.1.8 DiscardElement()
D12.1.9 ExceptionElement()
D12.1.10 EventElement()
D12.1.11 MispredictElement() oL
D12.1.12 OverflowElement()
D12.1.13 TimestampElement(),
D12.1.14 TracelnfoElement()
D12.1.15 TraceOnElement()
D12.1.16 TargetAddressElement()
D12.1.17 SourceAddressElement() L.
D12.1.18 TransactionStartElement()
D12.1.19 TransactionCommitElement()
D12.1.20 TransactionFailureElement()
D12.2 ETE decompressor enumerations
D12.2.1 SublSA enumeration
D12.2.2 SynchronisationState enumeration.
D12.2.3 InstType enumeration
D12.3 ETE decompressor functions
D12.3.1 EndOfStream()
D12.3.2 ReservedEncoding()
D12.3.3 ReadAndConsume() i i
D12.3.4 LogDecompressor() v v v it e e
D12.35 SBZ().
D12.3.6 ResolutionQueue
D12.3.7 TransactionQueue
D12.3.8 ReturnStack
D12.3.9 AddressHistoryBufferEntry oo oL
D12.3.10 AddressHistoryBuffer
D12.3.11 Programlmage
D12.3.12 ExceptionWithUnknownAddress()
D12.4 ETEdataencodings
D12.4.1 POD() o o
D12.4.2 ULEB128() o oo
D12.4.3 BitReplacement()
D12.5 Common functions
D12.51 Replicate()
D125.2 Zeros() o

Functional Differences from ETMv4

Part E The Trace Buffer Extension

Chapter E1

DDI0608
A.a

Trace Buffer Extension

E1.1 Description
E1.1.1 About the Trace Buffer Extension
E1.1.2 Systemevents.
E1.1.3 Interrupts e

E1.2 Specification
E1.21 Thetracebuffer
E1.2.2 Trace buffermanagement
E1.2.3 Synchronization and the Trace BufferUnit.

E1.3 Events e

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

E1.3.1 Common microarchitecturalevents
E1.3.2 Common architecturalevents

Part F The Branch Record Buffer Extension

Chapter F1

Branch Record Buffer Extension

F1.1 Branch Record Buffer Extension specification
F1.1.1 Branchrecords
F1.1.2 Cyclecounting.
F1.1.3 Mispredictedbranches
F1.1.4 Prohibitedregions
F1.1.5 Branchrecords forexceptions
F1.1.6 Branch records for exceptionreturns
F1.1.7 Transactional Memory Extension
F1.1.8 PESpeculation
F1.1.9 Branchrecordfiltering
F1.1.10 Branch record bufferoperation
F1.1.11 Branchrecordbuffer
F1.1.12 Invalidating the Record Buffer
F1.1.13 ProgrammersModel,

F1.2 Events e
F1.21 Common architecturalevents

Part G Appendixes

Chapter G1
Chapter G2

Chapter G3

Chapter G4

Chapter G5

DDI0608
A.a

Synchronization requirements for System registers

Stages of execution
G2.1 Stages of execution without Transactional Memory Extension (TME)
G2.2 Stages of executionwith TME

Additional Trace Buffer Extension software usage notes
G3.1 Contextswitching L
G3.2 Controlling generation of trace buffer managementevents

Transactional Memory Extension (TME) Litmus tests

G4.1 Conventions e

G4.2 Transaction strongisolation,
G4.21 Containment
G4.22 Non-interference

G4.3 Transactions and barriers
G4.3.1 Simple weakly consistentordering
G4.3.2 Messagepassingo e e e

Transactional Memory Extension (TME) Transactional Lock Elision
G5.1 Overview e
G5.2 Conventions
G5.3 Acquiringalock e
G5.3.1 Checking the lock inside the transaction
G5.3.2 Checking the lock at the fallbackpath
G5.3.3 Synchronization between transactions and the fallback path
G5.4 Releasingalock
G5.4.1 Elisionandnesting

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Xiv

Contents
Contents

Chapter G6

Part H Glossary
Chapter H1

DDI0608
A.a

Transactional Memory Extension (TME) Implementation recommen-
dations

G6.1 Permitted architectural difference betweenPEs
G6.2 Individual operationlatency
G6.3 Read and write setcapacity
G6.4 Statetracking
G6.5 Transactional conflicts

Glossary

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

XV

Part A
Preface

About this supplement

This supplement is the Arm ® Architecture Reference Manual Supplement, Armv9-A, for Armv9-A architecture
profile. This book describes the changes and additions to the Armv8-A architecture that are introduced by the
Armv9-A architecture extensions, and therefore must be read with the Arm ® Architecture Reference Manual,
Armv8-A, for Armv8-A architecture profile.

This manual is organized into parts:

e Part B
Introduces the Arm ® Architecture Reference Manual Supplement, Armv9-A, for Armv9-A architecture profile.

e Part C
Describes the Transactional Memory Extension (TME).

e Part D
Describes the Embedded Trace Extensions (ETE).

e Part E
Describes the Trace Buffer Extension (TRBE).

e PartF
Describes the Branch Record Buffer Extension (BRBE).

* Part G
Provides additional information.
Chapter G1 provides system registers synchronization requirements.
Chapter G2 provides stages of execution information for FEAT_TRBE.
Chapter G3 provides software usage information for FEAT_TRBE.
Chapter G4 provides Transactional Memory Extension (TME) litmus tests.
Chapter G5 provides TME Transactional Lock Elision
Chapter G6 provides TME implementation recommendations.

e Part H

Glossary that defines terms used in this document that have a specialized meaning.

Xvii

Conventions

Typographical conventions

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Colored text

Indicates a link. This can be:

* A URL, for example http://developer.arm.com

* A cross-reference to another location within the document

* A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term.

{ and }
Braces, { and }, have two distinct uses:
Optional items

In syntax descriptions braces enclose optional items. In the following example they indicate
that the <shift> parameter is optional:

‘ADD <WdIWSP>, <WnIWSP>, #{, }*

Similarly they can be used in generalized field descriptions, for example TCR_ELXx.{I}PS
refers to a field in the TCR_ELXx registers that is called either IPS or PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set of
two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes

Notes are formatted as:

Xviii

http://developer.arm.com

Conventions

Note

This is a note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a Note
never provides any part of the definition of the architecture.

Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

» HIGH for active-HIGH signals.
* LOW for active-LOW signals.
Lower-case n

At the start or end of a signal name denotes an active-LOW signal.
Numbers
Numbers are normally written in decimal. Binary numbers are preceded by ob, and hexadecimal numbers by ox.
In both cases, the prefix and the associated value are written in a monospace font, for example oxrrrroooo. To

improve readability, long numbers can be written with an underscore separator between every four characters, for
example oxrrrr_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Xix
Aa Non-confidential

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

* Declaration

* Rule

* Goal

* Information

» Rationale

* Implementation note
* Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

Content item classes

Declaration

A Declaration is a statement that either

¢ introduces a concept, or

¢ introduces a term, or

¢ describes the structure of data, or
* describes the encoding of data.

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

XX

Rules-based writing

DDI0608
A.a

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.
A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label 1.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. XXi
Non-confidential

Additional reading

This section lists publications by Arm and by third parties.
See Arm Developer, http://developer.arm.com, for access to Arm documentation.
[1] Arm Architecture Reference Manual for ARMvS-A architecture profile. (ARM DDI 0487).

[2] Arm Architecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A.
(ARM DDI 614).

[3] Arm® Embedded Trace Macrocell Architecture Specification ETMv4. (ARM THI 0064).
[4] AMBA ATB Protocol Specification. (ARM IHI 0032).
[5] ARM CoreSight Architecture Specification. (ARM IHI 0029).

[6] Arm® Architecture Reference Manual Supplement; Memory System Resource Partitioning and Monitoring
(MPAM), for Armv8-A. (ARM DDI 0598).

This supplement should also be read with the following System register and ISA descriptions:

o System Register XML for Armv9-A.
* A64 ISA XML for Armv9-A.

XXii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this supplement

If you have comments on the content of this supplement, send an e-mail to errata@arm.com. Give:

* The title, Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile.
¢ The number, DDIO608 A.a.

* The page numbers to which your comments apply.

* The rule identifiers to which your comments apply, if applicable.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms @arm.com.

Xxiii

Part B
Armv9-A Architecture Introduction and Overview

Chapter B1
Introduction to the Armv9-A Architecture

B1.1 Architectural extensions added by Armv9-A

Any Armv9-A features must be implemented on top of a compliant Armv8.5-A implementation.
Any Armv9.1-A features must be implemented on top of a compliant Armv8.6-A implementation.
Any Armv9.2-A features must be implemented on top of a compliant Armv8.7-A implementation.

The AArch32 Execution state might optionally be implemented at ELO. The AArch32 Execution state is not
implemented at EL1, EL2, or EL3.

An implementation of the Armv9-A architecture must include all of the extensions that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv9-A architecture.

An implementation of the Armv9-A architecture cannot include an Embedded Trace Macrocell (ETM).

The Armv9-A architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

B1.1.1 FEAT_BRBE, Branch Record Buffer Extension

FEAT_BRBE provides a Branch record buffer for capturing control path history in a low cost manner.
FEAT_BRBE is an OPTIONAL feature from Armv9.2.

This feature is supported in both AArch64 and AArch32 states.

The ID_AA64DFRO_EL1.BRBE field identifies the presence of FEAT_BRBE.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 25
Aa Non-confidential

Chapter B1. Introduction to the Armv9-A Architecture
B1.1. Architectural extensions added by Armv9-A

B1.1.2 FEAT_ETE, Embedded Trace Extension

FEAT_ETE provides details about software control flow running on a Processing Element (PE), which can be
used to aid debugging or optimizing. The trace unit provides filtering functionality to allow the targeting of the
information to specific code regions or periods of operation.

FEAT_ETE is OPTIONAL.

FEAT_ETE requires FEAT_TRBE.

FEAT_ETE requires FEAT_TRF.

This feature is supported in both AArch64 and AArch32 states.

The ID_AA64DFRO_EL1.TraceVer field identifies the presence of FEAT _ETE.

B1.1.3 FEAT_SVEZ2, Scalable Vector Extension version 2

FEAT_SVE2 adds instructions that increase the range of data-processing and load/store addressing modes.
FEAT_SVE2 is OPTIONAL.

This feature is supported in AArch64 state only.

FEAT_SVE2 requires FEAT_SVE.

The following fields indicate the presence of FEAT_SVE2:

* ID_AAG64PFRO_EL1.SVE

* ID_AA64ZFRO_EL1.AES

* ID_AAG64ZFRO_EL1.BitPerm
* ID_AA64ZFRO_EL1.SHA3

* ID_AAG64ZFRO_EL1.SM4

* ID_AAG64ZFRO_EL1.SVEver

B1.1.4 FEAT_TME, Transactional Memory Extension

FEAT_TME adds the TCANCEL, TCOMMIT, TSTART, and TTEST instructions. These instructions support
hardware transactional memory, which means a group of instructions can appear to be collectively executed as a
single atomic operation.

FEAT_TME is OPTIONAL.
This feature is supported in AArch64 state only.
The ID_AAG64ISARO_EL1.TME field identifies the presence of FEAT_TME.

B1.1.5 FEAT_TRBE, Trace Buffer Extension

DDI0608
A.a

FEAT_TRBE enables support for a Trace Buffer Unit within a processing element (PE). When the Trace Buffer
Unit is enabled, program-flow trace generated by a Processing Element (PE) Trace Unit is written directly to
memory by the Trace Buffer Unit, rather than routing it to a trace fabric.

FEAT_TRBE is OPTIONAL.

FEAT_TRBE requires FEAT_ETE.

FEAT_TRBE requires FEAT_TRF.

This feature is supported in both AArch64 and AArch32 states.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 26
Non-confidential

Chapter B1. Introduction to the Armv9-A Architecture
B1.1. Architectural extensions added by Armv9-A

The ID_AA64DFRO_EL1.TraceBuffer field identifies the presence of FEAT_TRBE.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

27

Part C
The Transactional Memory Extension

Chapter C1
Transactional Memory Extension

C1.1 Transactions

Rroxs

R YQLB

C1.1.1

DDI0608
A.a

A transaction is a group of instructions executing in Transactional state.

Instructions outside a transaction execute in Non-transactional state.

Transactional state

C1.1.1.1 Entering transactional state: starting a transaction (TSTART)

When a tstarr instruction is committed for execution in Non-transactional state, it starts an outer transaction.
When starting an outer transaction, the Processing Element (PE) enters Transactional state.

When a Tstart instruction is committed for execution in Transactional state it starts a transaction nested within the
pre-existing transaction, or simply a nested transaction.

The transactional nesting depth indicates the degree of nesting of a transaction.
The architecture requires the maximum transactional nesting depth to be 255.
In Non-transactional state, the transactional nesting depth is 0.

When starting a transaction, the transactional nesting depth is incremented by 1.

In the rest of the document, unless explicitly prefixed with outer or nested, the term transaction will refer to an
outer transaction and all the nested transactions contained within.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 29
Non-confidential

Chapter C1. Transactional Memory Extension
C1.1. Transactions

Rppry

R.M

C1.1.1.2 Exiting transactional state by committing a transaction (TCOMMIT)

A transaction commits when a TcommiT instruction is committed for execution in Transactional state.
Transactional state is exited when committing an outer transaction.

When committing a transaction, the transactional nesting depth is decremented by 1.
C1.1.1.3 Exiting transactional state by cancelling (TCANCEL) or failing a transaction

A transaction is canceled when a tcancer instruction is committed for execution in Transactional state.

A transaction fails when the PE exits transactional state for any reason other than the execution of a tcomrr
instruction or the execution of a tcancer instruction.

When a transaction fails or is canceled, Transactional state is exited, and execution continues at the instruction that
follows the tstarT instruction of the outer transaction.

The result of the TstarT instruction of the outer transaction encodes the cause of the failure (see Section C1.2.1
Failure causes).

When a transaction fails or is canceled, the transactional nesting depth is set to 0.

C1.1.2 Transactional reservation granule, read and write sets

Rxcxc

R}{ JNK

Pl

DDI0608
A.a

The transactional reservation granule is defined as a contiguous memory block of size 2? bytes, formed by ignoring
the least significant bits of a memory access.

The size of the memory block is IMPLEMENTATION DEFINED in the range 4 — 512 words.
The Exclusive Reservation Granule CTR_ELO.ERG identifies the transactional reservation granule.

Below the notions of Location and read or write memory effects are as described in Arm Architecture Reference
Manual for ARMvS-A architecture profile [1] Basic definitions.

C1.1.2.1 Transactional read set

The transactional read set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory reads inside the transaction.

The reads in the transactional read set are referred to as transactional reads.
C1.1.2.2 Transactional write set

The transactional write set of a transaction is defined to be the set of transactional reservation granules containing
all Locations accessed by memory writes inside the transaction.

The writes in the transactional write set are referred to as transactional writes.

Limits to the transactional read set size and the transactional write set size are IMPLEMENTATION DEFINED.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 30
Non-confidential

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

C1.2 Transaction failure

C1.2.1 Failure causes

DDI0608
A.a

When a transaction fails or is canceled, the destination register of the Tstart instruction of the outer transaction
encodes the cause of the failure as follows.

For causes that are due to direct or attempted execution of an instruction, only the cause generated by the instruction
that appears first in program order is reported.

For causes that are not due to direct or attempted execution of an instruction, any number of causes may be
reported.

When more than one cause is reported, then RTRY is set to the logical AND of the prescribed or expected RTRY
value of each identified failure cause.

RTRY, bit [15]
When this bit is set it signifies that the transaction may commit on retry.
When this bit is clear the software should assume that the transaction will not commit on retry.
RTRY is not a failure cause.
REASON, bits [14:0]
This field holds the 15 low order bits of the rcancer operand value when CNCL is 1 else this field is O.
Bits [63:25]
Reserved, RESO.
TRIVIAL, bit [24]

When this bit is set it signifies that the system is currently running the trivial implementation enabled
by the bits described in ISS encoding for an exception from a TSTART instruction

The prescribed RTRY value is 0.
INT, bit [23]

When IMP=1, this bit indicates whether or not an unmasked interrupt was delivered in transactional
state but not subsequently taken in non-transactional state due to being masked by the PE. See Section
C1.7 Interrupt masking for more information.

The prescribed RTRY value is 0.

DBG, bit [22]
When this bit is set it signifies that a debug-related exception was encountered but not raised.
The prescribed RTRY value is 0.

NEST, bit [21]
When this bit is set it signifies that the maximum transactional nesting depth was exceeded.
The prescribed RTRY value is O.

SIZE, bit [20]

When this bit is set it signifies that the transaction failed because the transactional read set limit or the
transactional write set limit was exceeded.

The prescribed RTRY value is O.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 31
Non-confidential

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

R}?,.‘:A

C1.2.2

DDI0608
A.a

ERR, bit [19]

When this bit is set it signifies that an operation was attempted which is not architecturally permitted
in Transactional state. This includes but is not limited to attempting to raise a synchronous exception,
attempting to execute an instruction not permitted in Transactional state, or attempting to change
Exception level.

The prescribed RTRY value is 0.

IMP, bit [18]
When this bit is set it signifies a failure cause that does not fall under any of the other cases.
The expected RTRY value is 1 if the transaction may commit on retrying and O otherwise.

RTRY must not systematically be set to 1 with IMP cause. This is because it could prevent the forward
progress in finite time of at least one the threads that is accessing a location within the transactional
read or write sets.

MEM, bit [17]

When this bit is set it signifies that the transaction failed because a transactional memory conflict was
detected.

The expected RTRY value is 1.
CNCL, bit [16]
When this bit is set it signifies that the transaction was canceled by a tcancer instruction.

The RTRY value is the most significant bit of the rcancer immediate operand.

Transaction checkpoint

The transaction checkpoint defines the following subset of the AArch64 state:
* Registers in AArch64 execution state: RO-R30, SP, ICC_PMR_EL1.
* AArch64 process state: NZCV, DAIF.
* If both floating-point and SVE are enabled: Z0-Z31, PO-P15, FFR, FPCR, FPSR.
* If floating-point is enabled and SVE is disabled or trapped: VO-V31, FPCR, FPSR.

It is IMPLEMENTATION DEFINED if any of the System registers encoded with op0==0b11 and CRn==0b1x11 are

included in the transaction checkpoint.

No other System registers are included in the transaction checkpoint.

When a transaction fails or is canceled, the subset of the AArch64 state defined by the transaction checkpoint is
reverted to a state that is consistent with the PE having executed all of the instructions up to but not including the
point in the instruction stream where Transactional state was entered, and none afterwards, with the following

exceptions:

* The destination register of the rstart instruction of the outer transaction is updated to encode the transaction

failure cause.

* When executing at an Exception level that is constrained to use a vector length that is less than the maximum
implemented vector length, the bits beyond the constrained length of Z0-Z31, PO-P15, and FFR are restored
to a value of either zero or the value they had when Transactional state was entered. The choice between

these options is IMPLEMENTATION DEFINED and can vary dynamically.

Writes by a failed or canceled transaction do not generate write Memory effects. For the definition of Memory

effects, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Basic definitions.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Chapter C1. Transactional Memory Extension
C1.2. Transaction failure

Rxeas If SVE is disabled or trapped, the current vector length is considered to be constrained to 128 bits (see Arm Archi-
tecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A [2] Configurable
vector length).

Ryocr SPSel cannot be modified in Transactional state. For more information, see Section C1.8 A64 instruction behavior
in Transactional state.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 33
Aa Non-confidential

Chapter C1. Transactional Memory Extension
C1.3. Memory model

C1.3 Memory model

Transactional Memory Extension (TME) proposes the following additions to the memory ordering and observability
rules described in the Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Definition of the
Armv8 memory model.

C1.3.1 External visibility

Adding the following definitions:

Rrexe Locally-ordered-before

A read or a write RW1 is Locally-ordered-before a read or a write RW2 from the same Observer if and
only if any of the following cases apply:

RW1 is Dependency-ordered-before RW2.
RW1 is Atomic-ordered-before RW2.
RW!1 is Barrier-ordered-before RW2.

RWI1 is Locally-ordered-before a read or a write that is Locally-ordered-before RW2.

Rxpro Transactionally-observed-by

A read or a write RW1 from an Observer is Transactionally-observed-by a read or a write RW2 from a
different Observer if and only if any of the following cases apply:

There is a read or a write RW3 in the same transaction as RW1, and RW3 is Observed-by RW2.
There is a read or a write RW3 in the same transaction as RW2, and RW1 is Observed-by RW3.

Changing the definition of Barrier-ordered-before to the following:

Rreru Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A read or a write RW1 is Barrier-ordered-before a read or a write RW2 from the same
Observer if and only if RW1 appears in program order before RW2 and any of the following cases

apply:
RW!1 appears in program order before a oms rurs that appears in program order before RW2.

RW1 is a write W1 generated by an instruction with Release semantics and RW2 is a read R2 generated by
an instruction with Acquire semantics.

RWI1 is generated by an instruction with Acquire semantics.
RW?2 is generated by an instruction with Release semantics.
RW1 is aread R1 appearing in program order before a ome 1o that appears in program order before RW2.
RW?2 is a write W2 and either:
— RW1 is a write W1 appearing in program order before a oms st that appears in program order before W2.

— RWI1 appears in program order before a write W3 generated by an instruction with Release semantics
and W2 is Coherence-after W3.

RW1 and RW?2 are not in the same transaction, and at least one of RW1 or RW?2 is in the read or write set of
a committed transaction.

RW!1 appears in program order before a committed transaction that appears in program order before RW2.

Changing the definition of Ordered-before to the following:

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 34
Non-confidential

Chapter C1. Transactional Memory Extension
C1.3. Memory model

Raxro

C1.3.2

Rorra

RH\:‘.’}{

92]
=

DDI0608
A.a

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A read or a write RW1 is Ordered-before a read or a write RW2 if
and only if any of the following cases apply:

* RWI1 is Observed-by RW2.

e RWI is Transactionally-observed-by RW2.

* RWI is Locally-ordered-before RW2.

* RW1 is Ordered-before a read or a write that is Ordered-before RW2.

Conflicts are a natural consequence of the pre-existing External visibility requirement. For more information,
see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Ordering constraint. A cycle in
Ordered-before that involves a Transactionally-observed-by relation indicates a conflict.

A transaction is said to be conflicting if and only if committing the transaction would violate the external visibility
requirement, in which case the transaction fails with MEM cause.

In the event of repeated transactional conflicts the architecture does not guarantee forward progress for any
transactions involved, and the software must take appropriate measures for example by setting a threshold after
which the software takes a specific fallback path.

Atomicity

This section documents the behavior of the A64 Load-Exclusive and Store-Exclusive instructions, and all A64
atomic instructions (cas, casp, Lp<op>, and swe) in Transactional state.

Transactional writes generated as side-effects from the above instructions follow the ordering and observability
rules described in the previous section.

A transactional store to an address marked for exclusive access in the global monitor for any other PE:
* Clears the marking if the transaction commits.
* May clear the marking if the transaction fails or is canceled.
When entering Transactional state or exiting Transactional state by committing, canceling or failing a transaction:
* The local monitor state of the executing PE transitions to the Open access state.
* The final state of the global monitor state machine for the executing PE is IMPLEMENTATION DEFINED.
* The global monitor state machine for any other PE is not affected.

If the global monitor state for a PE changes from Exclusive access to Open access because of entering or exiting
Transactional state, an event is generated and held in the Event register for that PE.

Inserting any of the A64 atomic primitive instructions inside a transaction does not provide any extra functionality
to software. Sharing code among the transaction and its fallback path may lead to such instructions being executed
in transactional state.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 35
Non-confidential

Chapter C1. Transactional Memory Extension
C1.4. Transactions and memory attributes

C1.4 Transactions and memory attributes

Ruzrz

Rpcur

DDI0608
A.a

Some system implementations might not support transactional accesses for all regions of the memory. This can
apply to:
* Any type of memory in the system that does not support hardware cache coherency.

* Device memory, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation
that does support hardware cache coherency.

In such implementations, it is defined by the system which address ranges or memory types support transactional
accesses.

The memory types for which it is architecturally guaranteed that transactional accesses are supported are:

¢ Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

¢ Quter Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

If transactional accesses are not supported for an address range or memory type, then performing a transactional
load or a transactional store to such a location fails the transaction with IMP cause.

Memory accesses generated by different instructions inside a transaction can have different shareability attributes.

When accesses to any two Locations generated by the same instruction inside a transaction have different
shareability attributes then the results are CONSTRAINED UNPREDICTABLE. For more information, see Arm
Architecture Reference Manual for ARMvS-A architecture profile [1] Memory access restrictions.

Accesses, including transactional accesses, by multiple PEs to a Location with mismatched attributes leads to
CONSTRAINED UNPREDICTABLE behavior. For more information, see Arm Architecture Reference Manual for
ARMVS-A architecture profile [1] Mismatched memory attributes.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 36
Non-confidential

Chapter C1. Transactional Memory Extension
C1.5. Address transiation

C1.5 Address translation

C1.5.1 Transactional translation table walks

C1.5.3

DDI0608
A.a

Transactional memory accesses to a given address are permitted to perform translation table walks, except when
the transactional memory access originates from ELO and either of the following cases holds:

* The address is translated using TTBRO_EL1, and TCR_EL1.NFDO==1.
* The address is translated using TTBR1_EL1, and TCR_EL1.NFD1==1.
* The address is translated using TTBRO_EL2, and TCR_EL2.NFD0O==1.
* The address is translated using TTBR1_EL2, and TCR_EL2.NFD1==1.

A transactional memory access that is not permitted to perform a translation table walk and would otherwise
generate an exception in Non-transactional state fails the transaction with ERR cause without generating an
exception.

This scheme addresses timing attacks on Kernel Address Space Layout Randomization. If TCR_EL1.NFD1 is set,
an ELO transaction that attempts to probe the kernel address space will always fail with the same timing and the
same failure cause because either there is a TLB miss and the transaction fails with ERR cause, or there is a TLB
hit and a suppressed MMU permission fault (assuming TTBR1_EL1 address range is protecting itself from ELO
accesses) fails the transaction with ERR cause. This way the malicious software should not be able to distinguish
between the two cases.

Hardware management of the Access flag and dirty state

TME requires that the implementation supports hardware management of the Access flag and dirty state. For more
information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1]1 Hardware management
of the Access flag and dirty state.

Transactional memory accesses follow the rules for updating the Access flag and dirty state as described in Arm
Architecture Reference Manual for ARMvS-A architecture profile [1] Hardware management of the Access flag and
dirty state and Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Ordering of hardware
updates to the translation tables.

When hardware updating of the Access flag is enabled, updates to the stage 1 and stage 2 Access flag generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

When hardware updating of the dirty state is enabled, updates to the stage 1 and stage 2 dirty state generated by
memory accesses in Transactional state may become observable even if the transaction fails or is canceled.

Arm requires hardware management of the Access flag and dirty state for performance reasons.

Software management of the Access flag would mean that when a page is accessed for the first time inside a
transaction, the transaction fails and is re-executed in Non-transactional state.

Arm requires allowing transactional dirty state updates to become observable even if the responsible transaction
fails or is canceled for performance reasons. Otherwise, every time a page is written for the first time inside a
transaction, then either the transaction fails which is bad for performance, or the hardware must manage the dirty
state updates until the PE exits Transactional state which increases implementation complexity.

TLB shoot-down

A T181 by another PE that applies to a Location in the transactional read set or the transactional write set of the
currently executing transaction causes that transaction to fail.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 37
Non-confidential

Chapter C1. Transactional Memory Extension
C1.5. Address transiation

Tvson In order to provide this functionality, an implementation needs to either track the Virtual to Physical Address
mappings for the Locations in the transactional read or write sets of the transaction that is currently executing, or fail
the transaction on any invalidation by another PE. In the former case, if a transaction exceeds the IMPLEMENTATION
DEFINED tracking limit of Virtual to Physical Address mappings, then the transaction fails.

IrrLg For performance reasons, Arm recommends that the implementation does not fail the transaction if the ASID and
VMID of an invalidation by another PE, does not match the one of the currently executing transaction.

C1.5.4 Translation table modifications inside transactions

Tkxre The required break-before-make sequence described in theArm Architecture Reference Manual for ARMvS-A
architecture profile [1] General TLB maintenance requirements for updating translation table entries cannot be
executed inside a transaction, since the required Tie1 and pse instructions lead to transaction failure (see Table
C1.4 and Table C1.6).

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 38
Aa Non-confidential

Chapter C1. Transactional Memory Extension
C1.6. Modification of instructions in Transactional state

C1.6 Modification of instructions in Transactional state

Rrirs

DDI0608
A.a

The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for shared memory locations. For more information, see Arm Architecture Reference Manual for ARMvS-A
architecture profile [1] Implication of caches for the application programmer.

TME follows the rules for concurrent modification and execution of instructions as explained in Arm Architecture
Reference Manual for ARMVvS-A architecture profile [1] Concurrent modification and execution of instructions.

TME does not guarantee that a transactional thread of execution T is isolated from a non-transactional thread of
execution making modifications to the instruction stream of T.

See also Table C1.6 for the behavior of 1se and pss instructions in Transactional state.

This implies that a transactional thread of execution cannot modify its own instruction stream, or other instruction
streams using the mechanism suggested in Arm Architecture Reference Manual for ARMvS-A architecture profile
[1] Concurrent modification and execution of instructions, since transactional writes are not observable until a
transaction commits and the psg instruction required for synchronization of the modifications fails the transaction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 39
Non-confidential

Chapter C1. Transactional Memory Extension
C1.7. Interrupt masking

C1.7 Interrupt masking

R‘l‘,f‘,j

DDI0608
A.a

In Transactional state, interrupts are pended, and unmasked interrupts are taken when Transactional state is exited.

In the absence of a specific requirement to take an interrupt, it is IMPLEMENTATION DEFINED if the delivery of an
unmasked interrupt fails the transaction, but the architecture requires that the interrupt is taken in finite time. For
more information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Prioritization and
recognition of interrupts.

If the delivery of an unmasked interrupt fails the transaction, the failure cause reported is IMP.

Transactional code with sufficient privileges can change the value of DAIF or ICC_PMR_EL1 to mask or unmask
interrupts.

A transaction fails with IMP cause and INT set if both of the following happen:

 an unmasked interrupt delivered to a PE leads to the currently executing transaction on the PE to fail, and
 upon restoring DAIF and ICC_PMR_EL1 the interrupt becomes masked again and will not be taken.

If the transaction fails or is canceled the DAIF and ICC_PMR_EL1 registers are restored to the values they held
before entering Transactional state. This action will affect the masking or unmasking of interrupts before the first
non-transactional instruction executes. If the implementation decides to fail the transaction when the interrupt
is delivered, then after the values of DAIF and ICC_PMR_EL1 are restored to their pre-transactional state, the
interrupt will be masked and will not be taken. But if the transaction restarts then, as soon as interrupts are
transactionally re-enabled, the transaction will fail because there is a pending interrupt. To avoid a livelock this is
reported as a non-restartable failure. For more information, see Section C1.2.2 Transaction checkpoint.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

C1.8 A64 instruction behavior in Transactional state

Ruenb Transactional state changes the execution of some A64 instructions.

This section includes the affected instructions and their expected behavior in Transactional state.

Ronys Any instruction not included in this section behaves the same in Transactional state as in Non-transactional state.

Rsuoc * Exception level changes cannot occur. Executing an instruction that would otherwise generate an Exception
level change fails the transaction with ERR cause as described in this document.

Ryxp » Synchronous exceptions are suppressed and fail the transaction with ERR cause. See Sections C2.1.1
Breakpoint Instruction exceptions, C2.1.2 Breakpoint exceptions, and C2.1.3 Watchpoint exceptions for
details.

Table C1.1: Exception generating instructions
Mnemonic Instruction Behavior
BRK Breakpoint Instruction See Section C2.1.1 Breakpoint Instruction exceptions
HLT Halt Instruction See Section C2.2.2 Halting Instruction debug event
HVC Generate exception targeting EL2 Transaction fails with ERR cause
sMC Generate exception targeting EL3 Transaction fails with ERR cause
sve Generate exception targeting EL1 Transaction fails with ERR cause
Table C1.2: Exception return instructions
Mnemonic Instruction Behavior
ERET Exception return using current ELR and SPSR Transaction fails with ERR cause

ERETAR, ERETAB EXception return with pointer authentication

Transaction fails with ERR cause

Table C1.3: System register instructions

Mnemonic

Instruction

Behavior

MRS

usr (register)

Move System register to general-purpose register

Move general-purpose register to System register

vsr (immediate) Move immediate to PSTATE field

See Section C1.8.1 MRS
See Section C1.8.2 MSR (register)

See Section C1.8.3 MSR (immediate)

DDI0608
A.a

Table C1.4: System instructions

Mnemonic Instruction Behavior
SYs System instruction See Section C1.8.4 SYSand SYSL
Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 41

Non-confidential

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

Mnemonic

Instruction

Behavior

SYSL

Iic

DC eXcept pc zva

DC ZVA

AT

TLBI

System instruction with result
Instruction cache maintenance
Data cache maintenance

Data cache zero

Address translation

TLB Invalidate

See Section C1.8.4 SYS and SYSL
Transaction fails with ERR cause
Transaction fails with ERR cause
Same as in Non-transactional state
Transaction fails with ERR cause

Transaction fails with ERR cause

Table C1.5: Hint instructions

Behavior

Same as in Non-transactional state
Same as in Non-transactional state
See Section C1.8.5 Wait for Event
Transaction fails with ERR cause

Same as in Non-transactional state
Same as in Non-transactional state

Same as in Non-transactional state

Table C1.6: Barrier and cirex instructions

Mnemonic

Mnemonic Instruction

NOP No operation

YIELD Yield hint

WFE Wait for event

WFT Wait for interrupt

SEV Send event

SEVL Send event local

HINT Unallocated hint
Instruction

Behavior

CLREX

DSB

DMB

ESB

ISB

PSB CSYNC

TSB CSYNC

Clear exclusive monitor

Data synchronization barrier

Data memory barrier

Error synchronization barrier
Instruction synchronization barrier
Profiling synchronization barrier

Trace synchronization barrier

Same as in Non-transactional state
Transaction fails with ERR cause
See C1.8.6 DMB

Transaction fails with ERR cause
See C1.8.7 ISB

Same as in Non-transactional state

Same as in Non-transactional state

Registers encoded with opO==on10 are not accessible at any Exception level.

C1.8.1 MRS
RiTmr
Ryry
are not accessible at any Exception level.
DDI0608
Aa

Non-confidential

Registers encoded with opO==0v11 and CRn==12, except ICC_HPPIRO_EL1, ICC_HPPIR1_EL1, ICC_RPR_ELI,

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 42

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

R}',L‘,?j

If enhanced nested virtualization is enabled and the read of a permitted System register is transformed to a read
from memory, then the generated read is considered transactional.

Attempting to read a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

If a read from memory generates any exception, the exception is suppressed and the transaction fails with ERR
cause without trapping.

C1.8.2 MSR (register)

Rekrn

Registers FPCR, FPSR, NZCV, DAIF, ICC_PMR_ELI, and PMSWINC_ELO are accessible at the same Exception
levels as in Non-transactional state.

All other registers are not accessible at any Exception level.

Attempting to write a register that is not accessible at the current Exception level fails the transaction with ERR
cause without trapping.

C1.8.3 MSR (immediate)

C1.8.4

Rkhilli

RexLr

C1.8.5

Tomzr

DDI0608
A.a

Only the instruction forms that select the MSR DAIFSet and MSR DAIFClIr instructions are defined.
All other encodings are reserved, and the corresponding instructions are UNDEFINED.

Attempting to execute an UNDEFINED instruction fails the transaction with ERR cause without trapping.

SYS and SYSL

The accessibility of the instructions encoded with opO=ov01 and CRn=ob1x11 is IMPLEMENTATION DEFINED.

Attempting to execute an undefined instruction fails the transaction with ERR cause without trapping.

Wait for Event

If executing a wre instruction in Non-transactional state would trap to a higher Exception level, then the transaction
fails with ERR cause without trapping.

Otherwise, the wre instruction behaves the same as in Non-transactional state.

A transaction that has entered low-power state due to the execution of a wre instruction is called a waiting
transaction.

A PE that enters a low-power state continues to track and respond to transactional conflicts with memory accesses
from other PEs.

It is IMPLEMENTATION DEFINED whether a waiting transaction that receives a WFE wake-up event resumes
execution without failing. For more information, see Arm Architecture Reference Manual for ARMvS-A architecture
profile [1] Wait for Event mechanism and Send event.

A waiting transaction is permitted to fail for any IMPLEMENTATION DEFINED reason before a wake-up event is
received.

Arm recommends that a waiting transaction fails on a transactional conflict with another PE, for performance
reasons.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 43
Non-confidential

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

T:L‘l’[

C1.8.7

Ryrmz

S
f\‘v HLW

C1.8.8

DDI0608
A.a

Arm recommends that waiting transactions do not fail upon receiving a wake-up event that is not an interrupt that
must be taken, for performance reasons.

The following is a non-exhaustive list of wake-up events that could safely resume a transaction:
* The execution of an sev instruction on any other PE in the multiprocessor system.

* An event sent by the timer event stream for the PE. For more information, see Arm Architecture Reference
Manual for ARMvS-A architecture profile [1] Event streams.

* An event caused by the clearing of the global monitor for the PE.

* A masked interrupt.

DMB

Transactional accesses to Device or Normal Non-cacheable memory that appear before the ovs in program order
are merged with transactional accesses to Device or Normal Non-cacheable memory of the same type (read or
write) to the same Location that appear in program order after the pue, if they are executed in the same transaction.

If transactional accesses, executing in the same transaction containing the ous, access the same memory-mapped
peripheral of arbitrary system-defined size, then it is not guaranteed that accesses in program order before the
pve that are accessing Device or Normal Non-cacheable memory will arrive at the peripheral before accesses in
program order after the oms that are accessing Device or Normal Non-cacheable memory.

ISB

Executing an 1ss instruction in Transactional state is a Context synchronization event, with the same effects of a
Context synchronization event in Non-transactional state except that unmasked interrupts that are pending at the
time of the Context synchronization event are not required to be taken.

If halting is allowed, any Halting debug event that is pending before the 1ss instruction is executed fails the
transaction with DBG cause.

It is IMPLEMENTATION DEFINED whether or not the transaction fails if there are pending unmasked interrupts
when the 1sB instruction is executed.

If the first instruction after exiting Transactional state generates a synchronous exception, then the architecture
does not define whether the PE takes the interrupt or the synchronous exception first.

See also Section C1.7 Interrupt masking.

First-fault and Non-fault load instructions

SVE provides a First-fault option for some SVE vector load instructions. For more information, see Arm
Architecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A [2] Glossary.

In Transactional state, SVE’s First-fault option causes memory access faults to be suppressed without causing the
transaction to fail if they do not occur as a result of the First active element of the vector.

Instead, the FFR is updated to indicate which of the active vector elements were not successfully loaded (see Arm
Architecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A (2] First Fault
Register, FFR).

SVE provides a Non-fault option for some SVE vector load instructions. For more information, see Arm
Architecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A [2] Glossary.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 44
Non-confidential

Chapter C1. Transactional Memory Extension
C1.8. A64 instruction behavior in Transactional state

Rovvr In Transactional state, SVE’s Non-fault option causes all memory access faults to be suppressed without causing
the transaction to fail.
Instead, the FFR is updated to indicate which of the active Vector elements were not successfully loaded (see Arm
Architecture Reference Manual Supplement, The Scalable Vector Extension 2 (SVE2), for ARMv9-A (2] First Fault
Register, FFR).

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 45
Aa Non-confidential

Chapter C1. Transactional Memory Extension
C1.9. Reset

C1.9 Reset

Rxrey All the rules described in the Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Reset
section apply whether or not the PE is in Transactional state when a Cold or a Warm reset is asserted.

Ryenk If the PE resets to AArch64 state using either a Cold or a Warm reset, the PE resets to Non-transactional state.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 46
Aa Non-confidential

Chapter C1. Transactional Memory Extension
C1.10. Identification mechanism

C1.10 Identification mechanism

Rysemr The implementation of TME is identified by ID_AA64ISARO_EL1.TME.

Turvr Although TME defines no instruction enables and disables, or trap controls, Arm recommends the addition of
an instruction disable control in ACTLR_ELXx for the highest implemented Exception level which if set has the
following effect:

* The bits in ID_AA64ISARO_EL1.TME are RESO.

e The TME instructions are UNDEFINED at ELO and above.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 47
Aa Non-confidential

Chapter C2
Debug, PMU, Trace

C2.1 Self-hosted debug

C2.1.1 Breakpoint Instruction exceptions

Retr In Transactional state, executing a breakpoint instruction fails the transaction with a DBG cause, without raising a
Breakpoint Instruction exception. For more information on breakpoint instructions, see Arm Architecture Reference
Manual for ARMvS-A architecture profile [1] Breakpoint Instruction exceptions.

Troms A transaction with a breakpoint instruction cannot make forward progress; it will always fail. The software is
responsible for reading the failure information returned by rstart and acting accordingly.

C2.1.2 Breakpoint exceptions

Ruvuz In Transactional state, Breakpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on breakpoint exceptions, see Arm Architecture Reference Manual for ARMvS-A architecture profile
[1] Breakpoint exceptions.

T A hardware breakpoint will continuously fail a restarting transaction until either the breakpoint conditions are
not met (e.g., the transactional code follows a different execution path), or the breakpoint is disabled. It is the
responsibility of the software to detect this situation and act accordingly.

C2.1.3 Watchpoint exceptions

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 48
Aa Non-confidential

Chapter C2. Debug, PMU, Trace
C2.1. Self-hosted debug

RHCZ}]}{

In Transactional state, Watchpoint exceptions are suppressed and fail the transaction with a DBG cause. For more
information on watchpoint exceptions, see Arm Architecture Reference Manual for ARMvS-A architecture profile
[1] Watchpoint exceptions.

A hardware watchpoint will continuously fail a restarting transaction until either the watchpoint conditions are not
met (e.g., the transactional code accesses different Locations), or the watchpoint is disabled. It is the responsibility
of the software to detect this situation and act accordingly.

C2.1.4 Software Step exceptions

RTU SR

DDI0608
A.a

In Non-transactional state, executing a rstart instruction when software step is active-not-pending fails the
transaction with DBG cause. For more information on active-not-pending, see Arm Architecture Reference Manual
for ARMvS-A architecture profile [1] Software Step exceptions.

Enabling or disabling software step is not possible in Transactional state because attempting to update
MDSCR_ELI.SS fails the transaction. For more information, see Section C1.8.2 MSR (register).

If PSTATE.D is cleared inside a transaction and MDSCR_ELI1.SS is 1 when entering Transactional state, the
transaction fails with DBG cause.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 49
Non-confidential

Chapter C2. Debug, PMU, Trace
C2.2. External debug

C2.2 External debug

For the definitions of the various Halting debug events, see Arm Architecture Reference Manual for ARMvS-A
architecture profile [1] Halting Debug Events.

C2.2.1 Breakpoint and Watchpoint debug events

Rerap

In Transactional state, a Breakpoint debug event or a Watchpoint debug event that would otherwise cause entry to
Debug state, fails the transaction with DBG cause without entering Debug state.

For more information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Breakpoint
and Watchpoint debug events.

C2.2.2 Halting Instruction debug event

Cc2.2.3

C2.24

DDI0608
A.a

If EDSCR.HDE == 0 or if halting is prohibited, then executing a HLT instruction in Transactional state fails the
transaction with ERR cause.

If EDSCR.HDE == 1 and halting is allowed, then executing a HLT instruction in Transactional state fails the
transaction with a DBG cause without entering Debug state.

For more information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Halt Instruction
debug event.

Halting Step debug events

In Non-transactional state, executing a tstarT instruction when Halting step is active-not-pending fails the
transaction with DBG cause. For more information on Halting step, see Arm Architecture Reference Manual for
ARMVS-A architecture profile [1] Halting Step debug events.

Enabling or disabling Halting step is not possible in Transactional state because attempting to update EDECR.SS
fails the transaction as per Section C1.8.2 MSR (register).

For more information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Halting Step
debug events.

External Debug Request debug event

If halting is allowed, all of the following applies:

e External Debug Request debug events asserted in Transactional state are pended.

e Unmasked External Debug Request debug events are taken when the Processing Element (PE) exits
Transactional state.

* In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of an
unmasked External Debug Request debug event fails the transaction, but the architecture requires that the
External Debug Request debug event is taken in finite time as per Arm Architecture Reference Manual for
ARMVS-A architecture profile [1] Synchronization and External Debug Request debug events.

* If the delivery of an unmasked External Debug Request debug event fails the transaction, the failure cause
reported is DBG.

See also:

o External Debug Request debug event in the Arm Architecture Reference Manual for ARMvS-A architecture
profile [1].

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

Chapter C2. Debug, PMU, Trace
C2.2. External debug

e C1.8.7 ISB.

C2.2.5 Reset Catch debug event

Rejrp If halting is allowed, all of the following applies:

* Reset Catch debug events asserted in Transactional state are pended and are taken when the PE exits
Transactional state.

¢ In the absence of a Context synchronization event, it is IMPLEMENTATION DEFINED if the delivery of a Reset
Catch debug event fails the transaction, but the architecture requires that the Reset Catch debug event is taken
in finite time as per Arm Architecture Reference Manual for ARMvS8-A architecture profile [1] Synchronization
and Halting debug events.

* If the delivery of a Reset Catch debug event fails the transaction, the failure cause reported is DBG.

See also:

* Reset Catch debug events in the Arm Architecture Reference Manual for ARMvS-A architecture profile [1].
* Cl1.8.7 18B.

C2.2.6 Other Halting debug events

Tyrrx Exception Catch debug events cannot occur inside a transaction because an exception entry or exception return
cannot occur inside a transaction. For more information on Exception Catch, see Arm Architecture Reference
Manual for ARMvS-A architecture profile [1] Exception Catch debug event.

T gyvr OS Unlock Catch debug events, and Software Access debug events cannot occur inside a transaction because they
are generated by accesses to System registers that cannot occur inside a transaction.

See also:

e OS Unlock Catch debug event in the Arm Architecture Reference Manual for ARMvS-A architecture profile
[1].
* Software Access debug event in the Arm Architecture Reference Manual for ARMvS-A architecture profile [1].

C2.2.7 Behavior in Debug state

REgxr The TcommrT instruction is unchanged in Debug state.

Trpre tcomrt follows the rules described in the Any instruction that is UNDEFINED in Non-debug state topic of the Arm
Architecture Reference Manual for ARMvS-A architecture profile [1] since the PE cannot enter Transactional state
in Debug state and tcommrt is UNDEFINED in Non-transactional state.

RRrvks rcanceL and TTesT are CONSTRAINED UNPREDICTABLE in Debug state.

Iokrc teancer and tTesT follow the rules described in the Arm Architecture Reference Manual for ARMvS-A architecture
profile [1] All other instructions.

Ryosu TsTarT IS CONSTRAINED UNPREDICTABLE in Debug state.
Ryvip tstarT behaves in one of the following ways:

e It is UNDEFINED.

¢ It executes as a NOP.

« It does not enter Transactional state and it returns an UNKNOWN value.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 51
Aa Non-confidential

Chapter C2. Debug, PMU, Trace
C2.2. External debug

C2.2.8 The PC Sample-based Profiling Extension

Rypos

DDI0608
A.a

All the rules described in Arm Architecture Reference Manual for ARMvS-A architecture profile [1] The PC
Sample-based Profiling Extension chapter apply to a PE in Transactional state too.

Additionally, Transactional Memory Extension (TME) extends PPMPCSR to indicate if a sample references an
instruction executed in Transactional state or Non-transactional state.

Like in Non-transaction state, only reference instructions that were committed for execution are sampled in
Transactional state.

Samples can reference instructions from failed or canceled transactions.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 52
Non-confidential

Chapter C2. Debug, PMU, Trace
C2.3. The Statistical Profiling Extension

C2.3 The Statistical Profiling Extension

C2.3.1

RTZI{L

Rrsis

C2.3.2

C23.3

I*]*iy:‘

DDI0608
A.a

Memory accesses by profiling operations

The profiling operation executes independently of the instructions that are executed on the PE and acts as a separate
memory observer from the PE in the system. For more information, see Arm Architecture Reference Manual for
ARMVS-A architecture profile [1] Synchronization and Statistical Profiling.

If a profiling write operation overlaps with the read-set or write-set of a transaction, it is constraint UNPREDICTABLE
whether:

* The write has the same effect on the transaction as a store by any other Observer to that address.
* The write has no effect on this transaction.

A profiling operation executes independently of the instruction or instructions that are executed on the PE and acts
as a separate memory observer from the PE in the system.

Writes to the Profiling Buffer generated by profiling operations in Transactional state are considered
non-transactional and as such:

* They are not part of the transactional write set.
» They are observable even if the transaction fails or is canceled.

For a sampled operation, if the operation is executed in Transactional state then Events packet.E[16] (Transactional)
is setto 1.

Software can use PMSEVFR_EL1[16] to filter recording of sampled operations based on the Transactional flag.

Events packet payload

TME extends existing the Statistical Profiling Extension (SPE) protocol with the following events packet payload:
E[16], byte 2 bit [0]

If TME is not implemented, this bit reads-as-zero. The possible values of this bit are:

0 Operation executed in Non-transactional state.

1 Operation executed in Transactional state.

Profile Buffer management interrupts

See Section C1.7 Interrupt masking for the treatment of interrupts in Transactional state.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 53
Non-confidential

Chapter C2. Debug, PMU, Trace

C2.4. The Embedded Trace Extension

C2.4 The Embedded Trace Extension

For all information, see Chapter D1 Embedded Trace Extension.

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

C2.5 The Performance Monitors Extension

C2.5.1 Event filtering

R: FKP

TME extends the filtering capabilities of the PMU to enable filtering by Transactional state.

For each Attributable event, if the value of PMEVTYPER<n>_ELO.T is 1, then the event is counted only if the PE
is in Transactional state.

Otherwise, for each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

TME adds new events that count transitions between Transactional and Non-transactional states. It is IMPLE-
MENTATION DEFINED if these events are considered to occur in Transactional or Non-transactional state. See the
description of the individual events in Table C2.2 for more details.

For the definition of Attributable and Unattributable, see Arm Architecture Reference Manual for ARMvS-A
architecture profile [1] Attributability.

C2.5.2 Accuracy of event filtering

Rogop TME does not require filtering by Transactional state to be accurate. For more information, see Arm Architecture
Reference Manual for ARMvS-A architecture profile [1] Accuracy of event filtering.

Torxn For many events, during a transition between Transactional and Non-transactional states, events generated by
instructions executed in one state can be counted in the other state.

Ryty It is not permitted for the following events to be counted in the wrong state:

* Any event classified as Instruction architecturally executed.
* Any event classified as Instruction architecturally executed, Condition code check pass.
* EXC_TAKEN, Exception taken.

Iy For the definition of Instruction architecturally executed, and Instruction architecturally executed, Condition code
check pass, see Arm Architecture Reference Manual for ARMvS8-A architecture profile [1] PMU events and event
numbers.

Rry TME adds the following required events.

Table C2.2: TME related events

Number Type Mnemonic Description
0x4030 Arch TSTART_RETIRED See C2.5.3 TSTART_RETIRED
0x4031 Arch TCOMMIT_RETIRED See C2.5.4 TCOMMIT_RETIRED
0x4032 Arch TME_TRANSACTION_FAILED See C2.5.5
TME_TRANSACTION_FAILED

0x4034 Arch TME_INST_RETIRED_COMMITTED See C2.5.6
TME_INST _RETIRED_COMMITTED

0x4035 Microarch TME_CPU_CYCLES_COMMITTED See C2.5.7
TME_CPU_CYCLES_COMMITTED

0x4038 Microarch TME_FAILURE_CNCL See C2.5.8 TME_FAILURE_CNCL
0x403A Microarch TME_FAILURE_ERR See C2.5.9 TME_FAILURE_ERR
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 55

A.a

Non-confidential

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

Number Type Mnemonic Description
0x403B Microarch TME_FAILURE_IMP See C2.5.10 TME_FAILURE_IMP
0x403C Microarch TME_FAILURE_MEM See C2.5.11 TME_FAILURE_MEM
0x4039 Microarch TME_FAILURE_NEST See C2.5.12 TME_FAILURE_NEST
0x403D Microarch TME_FAILURE_SIZE See C2.5.13 TME_FAILURE_SIZE
0x403E Microarch TME_FAILURE_TLBI See C2.5.14 TME_FAILURE_TLBI
0x403F Microarch TME_FAILURE_WSET See C2.5.15 TME_FAILURE_WSET

C2.5.3 TSTART_RETIRED

RyreB The counter increments for every architecturally executed rstarr instruction that starts an outer
transaction.
Rukcp If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not TSTART_RETIRED

increments the counter.

C2.5.4 TCOMMIT_RETIRED

Regyr The counter increments for every architecturally executed tcomvrT instruction that commits an outer
transaction.
Ryxcg If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not

TCOMMIT_RETIRED increments the counter.

C2.5.5 TME_TRANSACTION_FAILED

Ryvus The counter increments for every transaction that fails or is canceled.

Rykp If PMEVTYPER<n> ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_TRANSACTION_FAILED increments the counter.

C2.5.6 TME_INST_RETIRED_COMMITTED

Rrpzr The counter increments for every architecturally executed instruction in Transactional state if the
currently executing transaction commits.

Typay It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 232-1.

Tcame Two possible implementations of this functionality are:

* The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored

to the value it had when the transaction started.

* The implementation accumulates events without updating the counter. If the transaction commits, the counter

is updated with the accumulated value.

C2.5.7 TME_CPU_CYCLES_COMMITTED

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

Rrusc The counter increments on every cycle the PE is in Transactional state if the currently executing
transaction commits.

Rpsrp All counters are subject to changes in clock frequency, including when a WFI or WFE
instruction stops the clock. This means that it is CONSTRAINED UNPREDICTABLE whether or not
TME_CPU_CYCLES_COMMITTED continues to increment when the clocks are stopped by WFI and
WFEE instructions.

Ripo In a multithreaded implementation, TME_CPU_CYCLES_COMMITTED counts each cycle for the
processor for which this PE thread was active and could issue an instruction. For more information,
see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Cycle event counting on
multithreaded implementations.

TuMeD It is permissible for an implementation to limit the increment that the execution of a transaction can
generate to the counter to a maximum value of 2°2-1.

Tcrnn Two possible implementations of this functionality are:

* The implementation accumulates events to the counter directly. If the transaction fails, the counter is restored
to the value it had when the transaction started.

¢ The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value.

C2.5.8 TME_FAILURE_CNCL

Ry The counter increments for every transaction that fails with CNCL cause.

Rivax If PMEVTYPER<n> ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_CNCL increments the counter.

C2.5.9 TME_FAILURE_ERR

Ryaoxx The counter increments for every transaction that fails with ERR cause.

Rxpra If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_ERR increments the counter.

C2.5.10 TME_FAILURE_IMP

Rreny The counter increments for every transaction that fails with IMP cause.

Rsrg If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_IMP increments the counter.

C2.5.11 TME_FAILURE_MEM

Rppox The counter increments for every transaction that fails with MEM cause.

Rz 1oy If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_MEM increments the counter.

C2.5.12 TME_FAILURE_NEST

Rrrdc The counter increments for every transaction that fails with NEST cause.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 57
Aa Non-confidential

Chapter C2. Debug, PMU, Trace
C2.5. The Performance Monitors Extension

RT]"T?‘T

C2.5.15

DDI0608
A.a

If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_NEST increments the counter.

TME_FAILURE_SIZE

The counter increments for every transaction that fails with SIZE cause.

If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_SIZE increments the counter.

TME_FAILURE_TLBI

The counter increments for every transaction that fails with IMP cause due to the execution of a TLBI
instruction by another PE.

If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_TLBI increments the counter.

TME_FAILURE_WSET

The counter increments for every transaction that fails with SIZE cause due to a memory access that
causes an eviction of an entry from the transactional write set.

If PMEVTYPER<n>_ELO.T is 1, it is IMPLEMENTATION DEFINED whether or not
TME_FAILURE_WSET increments the counter.

Behavior on overflow

A Performance Monitors counter overflow while in Transactional state behaves the same as in Non-transactional
state. For more information, see Arm Architecture Reference Manual for ARMvS-A architecture profile [1] Behavior
on overflow.

A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not set the overflow status bit in PMOVSCLR if the currently
executing transaction fails.

A Performance Monitors counter that is configured to count the TME_INST_RETIRED_COMMITTED or the
TME_CPU_CYCLES_COMMITTED events does not generate an overflow interrupt request in Transactional
state.

Two possible implementations of this functionality are:

* The implementation accumulates events to the counter directly and sets the overflow status bit when the
counter overflows. If the system is programmed to generate an interrupt on overflow, the interrupt is not
generated until the transaction commits. If the transaction fails, both the counter and the overflow status bit
are restored to the value they had when the transaction started, and no interrupt is generated.

* The implementation accumulates events without updating the counter. If the transaction commits, the counter
is updated with the accumulated value. If the counter update overflows the counter value, then the overflow
status bit is set, and if the system is programmed to generate an interrupt on overflow, then an interrupt is
generated.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 58
Non-confidential

Chapter C3
System registers

Transactional Memory Extension (TME) extends existing AArch64 registers with the following fields.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

59

Chapter C3. System registers
C3.1. General system control registers

C3.1 General system control registers

C3.1.1

C3.1.2

C3.1.3

Ri] JGX

DDI0608
A.a

CTR_ELO

ERG, bits [23:20]

Exclusives reservation granule, and, if TME is implemented, transactional reservation granule. Log,
of the number of words of the maximum size of the reservation granule for the Load-Exclusive and
Store-Exclusive instructions, and, if TME is implemented, for detecting transactional conflicts.

A value of oboooo indicates that this register does not provide granule information and the architectural
maximum of 512 words (2KB) must be assumed.

Value ovooo1 and values greater than ob1001 are reserved.

ID_AAG4ISARO_EL1

TME, bits [27:24]

Indicates whether TME instructions are implemented. Defined values are:

0000 No TME instructions are implemented.

0001 tcancer, rcomurt, TsTart, and TTEST instructions are implemented.

TCR_ELA1

NFD1, bit [54]

Present only if SVE or TME is implemented.
Non-fault translation table walk disable for stage 1 translations using TTBR1_ELI.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from ELO for a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:
All accesses due to an SVE non-fault contiguous load instruction.

Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL1.
1 A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RESO.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 60
Non-confidential

Chapter C3. System registers
C3.1. General system control registers

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Rynzr NFDO, bit [53]
Present only if SVE or TME is implemented.
Non-fault translation table walk disable for stage 1 translations using TTBRO_ELI1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from ELO for a virtual address that is translated using TTBRO_ELI.

If SVE is implemented, the affected access types include:
* All accesses due to an SVE non-fault contiguous load instruction.

* Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

» Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBRO_EL1.
1 A TLB miss on a virtual address that is translated using TTBRO_EL1 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RESO.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C3.1.4 TCR_EL2

Rowck NFD1, bit [54]
Present only if SVE or TME is implemented.
Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from ELO for a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:
* All accesses due to an SVE non-fault contiguous load instruction.

¢ Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

» Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBR1_EL2.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 61
Aa Non-confidential

Chapter C3. System registers
C3.1. General system control registers

1 A TLB miss on a virtual address that is translated using TTBR1_EL2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RESO.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

,,,,, NFDO, bit [53]
Present only if SVE or TME is implemented.
Non-fault translation table walk disable for stage 1 translations using TTBRO_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault access
from ELO for a virtual address that is translated using TTBRO_EL2.

If SVE is implemented, the affected access types include:
¢ All accesses due to an SVE non-fault contiguous load instruction.

» Accesses due to an SVE first-fault gather load that are not for the First active element. Accesses due to an
SVE first-fault contiguous load instruction are not affected.

Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

If TME is implemented, the affected access types include all accesses generated by a load or store
instruction in Transactional state.

Defined values are:

0 Does not disable stage 1 translation table walks using TTBRO_EL2.
1 A TLB miss on a virtual address that is translated using TTBRO_EL?2 due to the specified access types

causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

If neither SVE nor TME is implemented, this field is RESO.

When this register has an architecturally-defined reset value, this field resets to a value that is
architecturally UNKNOWN.

C3.1.5 ISS encoding for an exception from a TSTART instruction

RurTz Bits [24:10] Reserved, RESO
Rd, Bits [9:5] The Rd value from the issued instruction, the general purpose register used for the destination.

Bits [4:0] Reserved, RESO

C3.1.6 SCTLR_EL1

Rys TMTO, bit [S50]
Forces a trivial implementation of TME at ELO.

The defined values are:

0Ob0O This control does not cause tstarT instructions to fail.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 62
Aa Non-confidential

Chapter C3. System registers
C3.1. General system control registers

Obl When the AArch64 rstart instruction is executed at ELO,

the transaction fails with TRIVIAL cause.

When ARMvS.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at ELO.

In a system where the Processing Element (PE) resets into EL1, this field resets to a value that is
architecturally UNKNOWN.

Otherwise:
Reserved, RESO.
Rognnt TMT, bit [51]
Forces a trivial implementation of TME at EL1.

The defined values are:

0b0 This control does not cause rstart instructions to fail.
0Obl When the AArch64 tstarT instruction is executed at ELL1,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.
Rycene TMEDJ, bit [52]
Enables the AArch64 rstarr instruction at ELO, otherwise traps to EL1.

The defined values are:

0b0 Any attempt at ELO to execute the AArch64 Tstarr instruction is trapped to EL1, (reported with ESR_ELx.EC
value ono11011), subject to the exception prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at ELO.

Obl This control does not cause tstart instructions to be trapped.

When ARMvVS8.1-VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at ELO.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.
Rygpy TME, bit [53]
Enables the AArch64 rstart instruction at EL1.

The defined values are:

0b0 Any attempt at EL1 to execute the AArch64 tstart instruction is trapped

to EL1, (reported with ESR_ELx.EC value ov011011), subject to the exception

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 63
Aa Non-confidential

Chapter C3. System registers
C3.1. General system control registers

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes tstarT to
be UNDEFINED at EL1.

0bl This control does not cause TstarT instructions to be trapped.

In a system where the PE resets into EL1, this field resets to a value that is architecturally UNKNOWN.
Otherwise:

Reserved, RESO.

C3.1.7 SCTLR_EL2

Ruvap TMTO, bit [50]
When HCR_EL2.{E2H,TGE} is {1,1}, forces a trivial implementation of TME at ELO.

The defined values are:

0b0 This control does not cause rstart instructions to fail.
Obl When the AArch64 tstart instruction is executed at ELO,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.
Rixp TMT, bit [51]
Forces a trivial implementation of TME at EL2.

The defined values are:

0 This control does not cause TsTart instructions to fail.
1 When the AArch64 TstarT instruction is executed at EL2,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.

Rozst TMEQO, bit [52]

When HCR_EL2.{E2H,TGE} is {1,1}, enables the AArch64 rstarr instruction at ELO, otherwise traps
to EL2.

The defined values are:

0b0 Any attempt at ELO to execute the AArch64 rsrarr instruction is trapped to EL2,

(reported with ESR_ELx.EC value ono11011), subject to the exception prioritization rules,

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 64
Aa Non-confidential

Chapter C3. System registers
C3.1. General system control registers

unless HCR_EL2.TME or SCR_EL3.TME causes rsrarT instructions to be UNDEFINED at ELQ.

Obl This control does not cause TsTart instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.
Runmy TME, bit [53]
Enables the AArch64 rstart instruction at EL2.

The defined values are:

0b0 Any attempt at EL2 to execute the AArch64 tstarT instruction is trapped
to EL2, (reported with ESR_ELx.EC value ov011011), subject to the exception
prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes tstarT to
be UNDEFINED at EL2.

0bl This control does not cause tstart instructions to be trapped.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.
Otherwise:

Reserved, RESO.

C3.1.8 SCTLR_EL3

Rypee TMT, bit [51]
Forces a trivial implementation of TME at EL3.

The defined values are:

0 This control does not cause Tstart instructions to fail.
1 When the AArch64 rstarrt instruction is executed at EL3,

the transaction fails with TRIVIAL cause.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.
Otherwise:
Reserved, RESO.
Rzrrr TME, bit [53]
Enables the AArch64 rstart instruction at EL3.

The defined values are:

0b0 Any attempt at EL3 to execute the AArch64 rstarr instruction is trapped

to EL3, (reported with ESR_ELx.EC value on011011), subject to the exception

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 65
Aa Non-confidential

Chapter C3. System registers
C3.1. General system control registers

prioritization rules, unless HCR_EL2.TME or SCR_EL3.TME causes tstarT to
be UNDEFINED at ELO, EL1 and EL2.

0bl This control does not cause TstarT instructions to be trapped.

In a system where the PE resets into EL3, this field resets to a value that is architecturally UNKNOWN.

Otherwise:

Reserved, RESO.

C3.1.9 HCR_EL2

Rysam TME, bit [39]
Enables the AArch64 Tstart, Tcommrt, TTEST and Tcancer instructions at EL{0,1}.

The defined values are:

0b0 The AArch64 tstarT, TcommIT, TTEST and TcanceL instructions are UNDEFINED
at EL{0,1}, and EL1 reads from ID_AA64ISARO_EL1.TME return 0, when EL2 is

enabled in the current Security state.

Obl This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL2, this field resets to a value that is architecturally UNKNOWN.

If EL2 is not implemented or is disabled in the current Security state, the system behaves as if this bit is
1.

Otherwise:

Reserved, RESO.

C3.1.10 SCR_EL3

Ryyxs TME, bit [34]
Enables the AArch64 Tstart, Tcommrt, TTEST and Tcancer instructions at EL{0,1,2}.

The defined values are:

0b0 The AArch64 Tsrart, TcomMiT, TTEST and rcanceL instructions are

UNDEFINED at EL{0,1,2}, and EL{1,2} reads from ID_AA64ISARO_EL1.TME return 0.

Obl This control does not cause these instructions to be UNDEFINED.

In a system where the PE resets into EL3, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RESO.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 66
Aa Non-confidential

Chapter C3. System registers
C3.2. Performance Monitors registers

C3.2 Performance Monitors registers

C3.2.1 PMEVTYPER<n>_ELO

Rpowk T, bit [23]

Transactional state filtering bit. Controls counting in Transactional state. If TME is not implemented,
this bit is RESO. The possible values of this bit are:

0 Count events in Non-transactional state and in Transactional state.

1 Count events in Transactional state only.

C3.2.2 PMCCFILTR_ELO

Rycnz T, bit [23]

Non-transactional state filtering bit. Controls counting in Non-transactional state. If TME or PMUv3
are not implemented, this bit is RESO. The possible values of this bit are:

0 Count cycles in Non-transactional state and in Transactional state.

1 Count cycles in Transactional state only.

This bit resets to an architecturally UNKNOWN value on a reset.

C3.2.3 PMSEVFR_EL1

Rrawx E, bit [16]

Transactional. The possible values of this bit are:

0 Transactional event is ignored.

1 Do not record samples that have event 16 (Transactional) == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

This bit resets to an architecturally UNKNOWN value on a reset.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 67
Aa Non-confidential

Chapter C3. System registers
C3.3. Performance Monitors external registers

C3.3 Performance Monitors external registers

C3.3.1 PMPCSR

Rregr T, bit [60]

Transactional state of the sample. Indicates the Transactional state that is associated with the most
recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

0 Sample is from Non-transactional state.

1 Sample is from Transactional state.

This field resets to a value that is architecturally UNKNOWN.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 68
Aa Non-confidential

Chapter C4
Instructions

Transactional Memory Extension (TME) adds the following instructions.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

69

Chapter C4. Instructions
C4.1. TCANCEL

C4.1 TCANCEL

Rypry The TcanceL instruction exits Transactional state and discards all state modifications that are due to instructions that
were executed transactionally.

Rpscr Execution continues at the instruction that follows the TsTart instruction of the outer transaction.
Ryrpe The destination register of the tstart instruction of the outer transaction is written with the immediate operand of
TCANCEL.

TCANCEL #<imm>

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 70
Aa Non-confidential

Chapter C4. Instructions
C4.2. TCOMMIT

C4.2 TCOMMIT

RyvnT The Tcomvrt instruction commits the current transaction.

Ryngrk If the current transaction is an outer transaction, then Transactional state is exited, and all state modifications due
to instructions that were executed transactionally are committed to the architectural state.

Ryxavo tcommrT takes no inputs and returns no value.
Rsgow Execution of TcommiT is UNDEFINED in Non-transactional state.
TCOMMIT
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 71

A.a Non-confidential

Chapter C4. Instructions
C4.3. TSTART

C4.3 TSTART

Rysav This instruction starts a new transaction.
Ruxxr If the transaction started successfully, the destination register is set to zero.
Rynim If the transaction failed or was canceled, then all state modifications that are due to instructions that were executed

transactionally are discarded and the destination registers is written with a non-zero value that encodes the cause of
the failure.

TSTART <Xd>

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 72
Aa Non-confidential

Chapter C4. Instructions

C4.4. TTEST

C4.4 TTEST

Rpzia The rrestT instruction takes no inputs.

RyLye The rrest instruction writes the depth of the transaction to the destination register, or the value O otherwise.

TTEST <Xd>

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

73

Chapter C5
Interaction with Memory Tagging Extension

DDI0608
A.a

This section describes the interaction of Transactional Memory Extension (TME) with the Memory Tagging
Extension introduced in v8.5.

The MTE instructions for Tag generation, Tag setting and getting, are allowed within a transaction. This means in
particular that the accesses to GCR_EL1 and RGSR_EL1 stemming from the MTE instructions are allowed within
a transaction, but it is IMPLEMENTATION DEFINED whether they are checkpointed.

In the case of an asynchronous Tag Check Failure within a Transaction:

e Tag check failures configured to asynchronously accumulate failure status should not expect transaction
failure with ERR cause.

* If the transaction succeeds then reading TFSR_ELx.TFy status determines if there are any errors.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 74
Non-confidential

Chapter C6
Transactional Memory Extension additional reading

For more information about the Transactional Memory Extension and litmus tests, elision locks and implementation
recommendations, see the appendixes of this document.

* Chapter G4 Transactional Memory Extension (TME) Litmus tests
* Chapter G5 Transactional Memory Extension (TME) Transactional Lock Elision
e Chapter G6 Transactional Memory Extension (TME) Implementation recommendations

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 75
Aa Non-confidential

Part D
The Embedded Trace Extension

Chapter D1
Embedded Trace Extension

D1.1 Introduction

T yrent The ETE provides details about software control flow running on a Processing Element (PE) which can be used to
aid debugging or optimizing. The trace unit provides filtering functionality to allow the targeting of the information
to specific code regions or periods of operation.

Irvkos The ETE overlaps with the ETMv4 architecture Arm® Embedded Trace Macrocell Architecture Specification
ETMv4 [3]. The ETE has additions to support new architecture features, and does not support all the features of
ETMv4. Readers familiar with ETMv4 should refer to Chapter D13 Functional Differences from ETMv4.

D1.1.1 Mathematical notation

To aid the understanding of some of the functions defined by the ETE architecture are described in mathematical
notation. This table provides a description and examples of the symbols used within this document.

Symbol Function Example

ANB AND 0ON0=0

1AN0=0

0ON1=0

1INl=1

AV B OR Ovo=0
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 77

A.a Non-confidential

Chapter D1. Embedded Trace Extension
D1.1. Introduction

Symbol Function Example
1vo=1
ovli=1
1vli=1

-A NOT(A) -0=1
-1=0

|JEQ) Product F(0) x f(1) x

n AN f(N)
> f(n) Sum FO) +£(1) +-+
n VeV f(N)
r mod q modular 5 mod4=1
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

Chapter D1. Embedded Trace Extension
D1.2. Attributes of tracing

D1.2 Attributes of tracing

XRGLSR The attributes of PE tracing are:

Trace is generated in real time
Trace provides a means of observing the PE operation while the PE is running. For diagnostic purposes, this
is useful as some types of erroneous behavior are only solvable by observing the system during runtime. In
addition, because the PE trace can include cycle counts, trace can be used for PE profiling purposes.

Trace has a minimal effect on functional performance of the PE
Usually, trace has no effect on the functional performance of the PE. This attribute does depend on the market
use of the PE being debugged, however, and on the trace requirements for the PE and the trace solution that
is adopted to meet those requirements. For some markets, some impact on PE performance is acceptable but
for others, most notably in real-time systems, an impact on PE performance might be unacceptable.

Trace is available for self-hosted analysis
The trace from a PE or process is available for analysis by software running on the target. See D1.3
Self-hosted Trace.

Trace is deeply embedded in an SoC
Trace provides a method of debugging software executing on PEs that are deeply embedded within an SoC.

Trace is available for external analysis
The trace from a PE or process can be exported off chip for analysis by external tools.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 79
Aa Non-confidential

Chapter D1. Embedded Trace Extension
D1.3. Self-hosted Trace

D1.3 Self-hosted Trace

XeNMRL Self-hosted trace is used for various purposes, including:

Non-invasive single stepping
The trace provides a history of execution similar to that obtained by single-stepping through code.

Failure logging
This is similar to a stack trace dump when a failure occurs.

Performance analysis
The trace might be used with other trace sources or performance analysis units to analyze program
performance.

Capturing the trace on-chip involves either:

Use of system memory
The trace output from the trace unit is directed to a buffer in main system memory via the Trace Buffer
Extension.

PE
MMU
S N
' | N ~A
e | Tce o T|r5axcteer?suigﬁr | Writes o) Memory

Figure D1.1: PE to memory flow

Use of existing shared system memory, where some main system memory is reserved for trace capture
The trace output from the trace unit is directed to the reserved memory over the main system bus, typically
using CoreSight technology such as a CoreSight Embedded Trace Router (ETR).

Use of a dedicated on-chip buffer
The trace output from the trace unit is directed to the dedicated memory, typically using CoreSight technology
such as a CoreSight Embedded Trace Buffer (ETB). A dedicated bus such as AMBA ATB is also usually
implemented between the trace unit and the dedicated memory. Use of dedicated memory means that PE
tracing can be performed with zero or minimal effect on system behavior.

See also:

e Chapter E1 Trace Buffer Extension

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 80
Aa Non-confidential

Chapter D1. Embedded Trace Extension
D1.4. External Debug

D1.4 External Debug

X‘l‘,gf BH
X
XpxsSE
DDI0608

A.a

External debug is commonly used in trace applications that require long-term logging of behavior. In addition,
external debug is more likely to be used when the impact of PE tracing on system performance must be minimized.

For example, external debug might be used:

* For debugging real-time systems.
e When analyzing programs that do not frequently vary their behavior.
* For debugging software, where a history of execution is required up to the point of failure.

Exporting the trace off-chip usually involves one of the following methodologies:
Real-time continuous export

This can be done using either:

* A dedicated trace port capable of sustaining the bandwidth of the trace.
* An existing interface on the SoC, such as a USB or other high-speed port.

Use of a dedicated trace port means that the trace can be exported off-chip with zero or minimum effect on system
behavior. An existing interface is usually used when system constraints, such as cost or package size, mean that a
dedicated trace port is not possible. However, use of an existing interface might affect system behavior, because
both trace and normal interface traffic use the same port.

Short-term on-chip capture with subsequent low speed export

This option is used when a low-cost method of exporting the trace is required, or when system constraints prevent
real-time continuous export. The trace output from the trace unit is stored temporarily on-chip, and then exported
using either:

* An existing debug port on the SoC, such as a JTAG-DP or SW-DP.
* Another existing interface on the SoC, such as USB.

Typically, the temporary storage is a circular buffer. If the buffer is full, newer trace overwrites older trace, which
means that the buffer always contains the most recent trace. In SoCs that employ Arm CoreSight technology, a
dedicated Embedded Trace Buffer (ETB) is provided for the on-chip capture of trace.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 81
Non-confidential

Chapter D1. Embedded Trace Extension
D1.5. Trace output

D1.5 Trace output

RsvpeD The trace unit outputs the trace byte stream to one or more of the following:

e The Trace Buffer Extension.
* A CoreSight subsystem, via an AMBA ATB interface.
¢ One or more IMPLEMENTATION DEFINED interfaces.

Rigvex If the Trace Buffer Extension is enabled, the trace byte stream is only output to the Trace Buffer Extension.
Rrorns If the Trace Buffer Extension is disabled, the trace byte stream is output to one or more of the other interfaces.
Rruprc If an AMBA ATB interface is implemented, the trace unit must support all of the following:
* ATB triggers, as defined in TRCIDRS.ATBTRIG.
e A 7-bit trace ID, as defined in TRCIDRS5.TRACEIDSIZE.
Tos If the trace unit implements an AMBA ATB interface, or an IMPLEMENTATION DEFINED interface for trace output,
Arm recommends that this path is not affected by a Warm reset of the PE. This ensures tracing is possible through
a Warm reset of the PE, which is useful for low level debugging scenarios.
Ryrsst While all trace outputs are disabled, the trace unit considers any generated trace data as having been output.
See also:
* Chapter E1 Trace Buffer Extension
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 82

A.a Non-confidential

Chapter D1. Embedded Trace Extension
D1.6. Trace Sessions

D1.6

5
l'\\ [ENWB

DDI0608
A.a

Trace Sessions

At any one time, the trace unit is either enabled or disabled. See D8.3 Trace unit programming states for more
details on the states of the trace unit.

A trace session is the period between the trace unit becoming enabled, and when the trace unit next becomes
disabled.

While the trace unit is enabled, the ViewInst function is either active or inactive. While Viewlnst is active, the
trace unit generates trace for instructions that are executed, unless trace generation is inoperative.

Trace generation is operative while neither of the following conditions exist:

* The trace unit is disabled.
 The trace unit is recovering from a trace unit buffer overflow.

Whether Viewlnst is active or inactive is independent of whether trace generation is operative or inoperative.

Trace generation becomes operative when trace generation transitions from being inoperative to operative, and
occurs:

e When the trace unit transitions from being disabled to being enabled.
¢ When the trace unit recovers from a trace unit buffer overflow.

Trace generation becomes inoperative when trace generation transitions from being operative to inoperative, and
occurs:

* When the trace unit transitions from being enabled to being disabled.
e When the trace unit encounters a trace unit buffer overflow.

When the trace unit is unable to generate at least one trace packet which is required by the architecture, a trace unit
buffer overflow occurs.

A trace unit buffer overflow is usually caused when any buffering in the trace unit is unable to receive any more
trace packets. Such inability to receive more trace packets is often caused by being unable to sustain output of
trace packets to any trace capture infrastructure.

Note

A trace unit buffer overflow is independent of the Trace Buffer Extension filling or wrapping a trace buffer in
memory. However a trace unit buffer overflow might be caused by the Trace Buffer Extension rejecting trace
data due to insufficient capacity, and the limit of any trace unit internal buffers is subsequently reached.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter D1. Embedded Trace Extension
D1.7. Elements

D1.7 Elements

DDI0608
A.a

The elements form an Abstract Syntax Tree (AST) which is used to describe the control flow of program execution.
Different sequences of the elements can be used to imply the same operation. In this way the ETE can be used by
different micro-architectures. This is similar to the approach used in previous trace protocols, see Arm® Embedded
Trace Macrocell Architecture Specification ETMv4 [3].

A trace unit compresses the information on the execution of the PE and outputs a trace byte stream that comprises
multiple packets of encoded data. Compression techniques that are used include:

The instruction trace element stream does not contain an element for every executed instruction
Instead, the trace unit generates PO elements in the trace element stream when certain types of instruction are
executed. These certain types of instructions are known as PO instructions. A PO element acts as a signpost
in the program flow, indicating that execution is proceeding along a given path.

Consequently, the stream of PO elements implies the execution of a greater number of instructions, and a
trace analyzer can reconstruct the stream of instructions that are executed between PO elements by using the
PO element stream and the program image.

Multiple elements can be encoded into a single packet
Common sequences of elements are encoded into single packets.

The trace unit can remove program addresses from the trace element stream
The trace analyzer can infer the addresses from the program image and previous history. This includes the
targets of direct branch instructions, where the target address is encoded in the instruction itself.

Removal of predictable elements
Some elements can be removed from the AST representation if the contents of the element can be predicted
by previous control flow choices in the software flow. For example the Target Address element for returning
from a subroutine might not be required if the branch to the subroutine has been traced.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 84
Non-confidential

Chapter D1. Embedded Trace Extension
D1.8. Layer Model

D1.8 Layer Model

DDI0608
A.a

The ETE is based on a layer model. Each layer deals with a unique aspect of tracing the PE.

Elements

Layer 3 [}-------- >

Layer 2

Layerl

Transport Layer

Figure D1.2: Layer model for compression and decompression

Transport Layer

The transport layer either provides a path off chip or a path to a memory buffer for trace to be stored.
Layer 1

Layer 1 provides compression by:

* Grouping elements together to form packets.
* Removing elements that can be implied.

» Compression against previous values.

* Leading zero compression.

* Reordering of elements.

Layer 2
Layer 2 provides:

 Speculation resolution.
* Transactional Memory resolution.

Layer 3
At layer 3:

* PE behavior is converted into elements.
» Compression is achieved by removing elements which can be predicted using the program image:
— Direct branch target addresses.
— Return stack optimization.
* Requires knowledge of the application to decompress:
— Processes that modify the instruction opcodes require additional information to allow debugging.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

D1.9 Trace protocol synchronization

Tenrewm The trace byte stream of a trace unit is typically stored in a circular buffer where, if the buffer is full, newer trace
overwrites older trace. To ensure that a trace stream can be analyzed when the trace has been stored in a circular
buffer, a trace unit must periodically generate trace protocol synchronization points in the trace byte stream.

Tspnsy To understand the different levels the following elements or packets are used to provide synchronization information
in the different layers.

Table D1.2: Control of each layer.

Layer Control
Layer 3 Context element and Target Address element
Layer 2 Trace Info element
Layer 1 Trace Info packet
Transport Layer Alignment Synchronization packet
Isexxp Whenever a trace analyzer receives a Trace Info packet, the trace analyzer receives information about the current

state of the trace. However, the trace analyzer cannot begin analysis of program execution until it knows the
context in which instructions are being executed and it has an instruction address to start analysis from.

Rpcupw When a Trace Info element is generated, the trace unit generates a Context element and a Target Address element
soon after the Trace Info element.

Note

There are common use cases where the ratio between the number of bytes associated with trace protocol
synchronization and other trace bytes increases significantly, resulting in a degradation of the usability of the
trace. Therefore Arm recommends that trace protocol synchronization only occurs when required.

D1.9.1 Non-periodic trace protocol synchronization

Rozrmo When the trace unit becomes operative, non-periodic trace protocol synchronization occurs.

RrrLac When non-periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet in the trace byte stream before any other trace packets are generated.

Ramper When non-periodic trace protocol synchronization occurs, the trace unit generates a Trace Info element in the trace
element stream before any other trace elements are generated, except Event elements.

Ton Arm recommends that if a trace protocol synchronization request occurs while ViewlInst is inactive, the Alignment
Synchronization packet is not output in the trace byte stream until just before either:

¢ Viewlnst becomes active.
* An Event packet is output.

D1.9.2 Periodic trace protocol synchronization

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 86
Aa Non-confidential

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

TILJ"Z‘.E

The trace unit can be programmed to generate trace protocol synchronization requests on a periodic basis, so
that the trace element streams and the trace byte streams can be analyzed when stored in a circular trace buffer.
TRCSYNCPR.PERIOD controls periodic trace protocol synchronization requests.

Periodic trace protocol synchronization can also be requested by the trace capture infrastructure, for example
if a trace protocol synchronization request is received on an Arm AMBA ATB interface AMBA ATB Protocol
Specification [4].

When periodic trace protocol synchronization is requested, either by TRCSYNCPR.PERIOD or by other sources,
the trace unit performs periodic trace protocol synchronization.

When periodic trace protocol synchronization occurs, the trace unit generates an Alignment Synchronization
packet and then generates a Trace Info element.

Arm recommends that an Alignment Synchronization packet is only output in the trace byte stream if other trace
packets have been output since the previous Alignment Synchronization packet. This strategy reduces the risk of a
circular buffer filling and overwriting trace.

If two or more periodic trace protocol synchronization requests occur, and no trace is generated between these two
requests, then Arm recommends that a non-periodic trace protocol synchronization occurs before any further trace
is generated. This ensures that when tracing has been inactive for a long period of time, the trace stream is fully
synchronized when tracing is re-activated.

D1.9.3 Synchronization of instruction trace

DDI0608
A.a

When non-periodic trace protocol synchronization occurs, the trace unit generates a Context element and a Target
Address element before any PO elements are generated, to provide the trace analyzer with Context information and
Address information.

When periodic trace protocol synchronization occurs, and Viewlnst is active when the corresponding Trace Info
element is generated, the trace unit generates a Context element and a Target Address element which provide the
Context information and Address information for the target of the most recent non-canceled PO element.

Note

If the trace unit generates the Context element and Target Address element immediately after the Trace Info
element, then the most recent non-canceled PO element might have occurred before the Trace Info element.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

PO

PO
A

.
.

Program Trace B
flow Info target of

.
.

.
.

Target
Address

v
PO

Figure D1.3: Example of Target Address element after Trace Info element.

Rprpyx When periodic trace protocol synchronization occurs, and ViewlInst is inactive when the corresponding Trace Info
element is generated, when Viewlnst becomes active and a Trace On element is generated, the trace unit generates
a Context element and a Target Address element before any Atom elements, Q elements, or Exception elements are
generated, to provide the trace analyzer with Context information and Address information.
Trace
Info
Trace
On
Program
flow
Target
Address
PO
Figure D1.4: Example of Target Address element after Trace Info element in a filtered region
Tyspcn If a Cancel element cancels any PO elements before a Trace Info element, then the trace analyzer discards all of the
following:
* The canceled PO elements.
* The Trace Info element.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 88
Aa

Non-confidential

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

 All elements after the Trace Info element, up to and including the Cancel element. This includes any Context
elements or Target Address elements.

Note

In this scenario, information from the canceled Trace Info element can still be used.

PO «-.

‘target of
Program Target . '-
flow Address - :target of

PO '

cancel (2))

Target .-
Address

Figure D1.5: Example of Target Address element after Trace Info element in a mispredicted region.

Rxg When a Cancel element is generated which cancels any PO elements before a Trace Info element, the trace unit
generates a new Context element and a new Target Address element, which indicate the target of the most recent
PO element that has not been canceled.

T cuTrM The Target Address element and Context element might indicate the target of a PO element from before the Trace
Info element, or might be delayed until after the next PO element, and therefore indicate the target of that PO
element.

Note
If the trace unit generates the new Context element and Target Address element prior to the next new PO element,
then this might prevent the indication of execution of some instructions before the Trace Info element.
Tysute If the Cancel element cancels all PO elements after a Trace Info element but no PO elements prior to the Trace Info
element, then it might be necessary for the trace unit to immediately generate a Context element and Target Address
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 89
Aa

Non-confidential

Chapter D1. Embedded Trace Extension
D1.9. Trace protocol synchronization

element. This is because a Context element and Target Address element might have been present in the element
stream after the Trace Info element, and those Context elements and Target Address elements are now discarded.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 90
Aa Non-confidential

Chapter D1. Embedded Trace Extension
D1.10. Speculation in the trace element stream

D1.10 Speculation in the trace element stream

IH VBWS

I?’ZTI‘CK

The ETE architecture supports the correction of trace. This might be because of:

* Tracing of speculative execution of instructions by a PE.
* For some implementations, the tracing of the Transactional Memory Extension.

An ETE trace unit traces speculatively-executed instructions in the same way as all other instructions, so that both
speculatively-executed instructions and architecturally-executed instructions appear in the instruction trace element
stream. This means that some of the program execution information that is shown in the trace element stream
might be incorrect, because some of the speculatively executed instructions might be mis-speculated.

Note

The level of speculation that is revealed in the trace is IMPLEMENTATION SPECIFIC.

The trace unit resolves this speculation by generating elements to confirm the status of each instruction in the
instruction trace element stream. That is, the trace unit generates elements to show whether each instruction has
been committed for execution, or canceled because of mis-speculation. This means that a trace analyzer does
not know the status of a traced instruction until the trace analyzer receives an element that indicates whether the
instruction has been committed for execution, or canceled because the instruction was mis-speculated.

When speculatively-executed instructions are traced, the trace unit subsequently generates elements that indicate
whether the instructions have been committed for execution, or have been canceled.

A trace analyzer takes the appropriate action, which might involve canceling some trace elements, to determine the
actual program execution.

Elements that resolve the status of a traced instruction are called speculation resolution elements. See D2.5
Speculation Resolution Elements.

When trace is generated for speculative execution, for mis-speculated execution, the trace unit does not trace any
information that cannot be accessed by software executing at the same or at a lower level of privilege than the
mis-speculated execution.

When a Context synchronization event is speculated as being taken or executed, the trace unit does not generate
trace for any speculative execution after the Context synchronization event until the Context synchronization event
is resolved.

When a speculated Context synchronization event is resolved as being not taken or not executed, the trace unit
does not generate trace for mis-speculated execution that occurred after the Context synchronization event.

When an exit from a prohibited region is speculated as being taken, the trace unit does not generate trace for any
speculative execution after the exit from the prohibited region, until the exit from the prohibited region is resolved.

When a speculated exit from a prohibited region is resolved as being not taken, the trace unit does not generate
trace for mis-speculated execution that occurred after the exit from a prohibited region.

D1.10.1 Tracing Transactions

lf“\:\‘ 1L

DDI0608
A.a

The Transactional Memory Extension defines the Transactional state. For instructions executed in Transactional
state, the trace stream indicates which instructions are executed in Transactional state, and provides indicators for a
trace analyzer to determine whether the transaction was successful or failed.

If the instruction is executed in Transactional state then the result of the instruction is not known until the transaction
succeeds or fails. Transactions can be of an arbitrary length and can be nested, so the ETE architecture does not
guarantee an entire transaction is traced, if any of the transaction is traced.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 91
Non-confidential

Chapter D1. Embedded Trace Extension
D1.10. Speculation in the trace element stream

DDI0608
A.a

The execution of transactions is represented in the trace element stream by 3 elements:

e Transaction Start element.
e Transaction Commit element.
e Transaction Failure element.

These provide markers in the trace element stream to indicate the sections which represent transactions. The
Transaction Start element indicates that any following instructions are executed in Transactional state. When the
PE leaves Transactional state, either the Transaction Commit element or Transaction Failure element are traced to
indicate the resolution of the transaction.

An entry to Transactional state might be traced using a Transaction Start element and the subsequent exit from
Transactional state might be traced, without tracing any execution in Transactional state. There might have been
no execution in Transactional state, or the trace unit might have been programmed to not trace such execution.

See also:

» Chapter C1 Transactional Memory Extension
D1.10.1.1 Implementation flexibility

If no speculation in the trace element stream is implemented, TRCIDR8.MAXSPEC == 0x0 and
TRCIDRO.COMMTRANS indicates that the Transaction Start element is a PO element.

D1.10.1.2 Filtering of trace

The ETE architecture supports filtering of the trace within a transaction.
Filtering of a transaction can be due to any of the following:

* The ViewlInst function.
* Prohibited regions.
* Asynchronous events.

Due to filtering the start of the transaction might not necessarily be traced. See the Transaction Start element for
details.

Due to filtering the end of a transaction might not necessarily be traced. See the Transaction Commit element and
Transaction Failure element for details.

If an instruction is traced which was executed in Transactional state, then the trace analyzer must be aware, so that
the effect of the instructions executed in the Transactional state can be determined.

When an instruction is traced and the PE is in Transactional state, the trace unit traces the result of the transaction
unless any of the following occur:

¢ The trace unit becomes disabled.
¢ A trace unit buffer overflow occurs.
* The PE enters a prohibited region.

In the above scenarios, the trace unit generates a Transaction Failure element, and the resolution of the transaction
is UNKNOWN.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 92
Non-confidential

Chapter D2
Trace Element Model

This chapter provides details on the different elements used to create an Abstract Syntax Tree (AST) for describing
the software control sequence.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 93
Aa Non-confidential

Chapter D2. Trace Element Model
D2.1. Trace Info element

D2.1 Trace Info element

T1ms25 A Trace Info element provides a point in the trace element stream where analysis of the trace element stream can
begin.

Trace Info elements include setup information about:
 The static trace programming that does not change during a trace session, including:
— Whether cycle counting is enabled, and if enabled, the cycle count threshold.
* Dynamic information that might change during a trace session, such as:

— The speculation depth. This indicates how many unresolved PO elements were traced before the Trace
Info element.

— Whether the Processing Element (PE) trace unit has traced that the PE is executing in Transactional
state.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 94
Aa Non-confidential

Chapter D2. Trace Element Model
D2.2. PO element

D2.2 PO element

PO elements imply the execution of instructions.

PO elements are generated speculatively and must be either committed or canceled (see D2.5 Speculation Resolution
Elements).

PO elements must be generated in simple sequential execution order.

D2.2.1 Atom Element

Ixprac

An Atom element implies that one or more instructions have been executed, up to and including the next PO
instruction. Only certain instructions generate an Atom element. See Chapter D3 Instruction and Exception
classifications for details of these instructions.

The Atom element is one of the following types:

e E Atom.
e N Atom.

The meaning of the type of an Afom element is dependent on the instruction it is encoding. For example, branch
instructions are represented as an E Afom element if the branch was taken and an N Arom element if not taken.

D2.2.2 Exception Element

T 1opy

R‘iP PRH

DDI0608
A.a

An Exception element indicates a change in program flow which cannot be calculated by the analysis of the
program image, or which is caused by an instruction which is not a PO instruction. Such a change in program flow
is described as an Exceptional occurrence.

An Exceptional occurrence consists of the following:

* PE Architectural exceptions.
* ETE defined exceptions.
* IMPLEMENTATION DEFINED exceptions.

Note

Transaction failure is not classified as an Exceptional occurrence, although it is traced using an Exception
packet.

An Exception element indicates:

* That an Exceptional occurrence has occurred.

* The type of Exceptional occurrence.

¢ The virtual address where the Exceptional occurrence was taken from, also known as the preferred exception
return address.

The instruction set for the preferred exception return address for a Exception element is one of the following:

e AArch64 A64.
e AArch32 A32.
e AArch32 T32.

An Exception element is a PO element.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 95
Non-confidential

Chapter D2. Trace Element Model
D2.2. PO element

D2.2.2.1 PE Architectural exceptions

RpzreL The following exception types are used to indicate PE Architectural exceptions:

* IRQ.

* FIQ.

* Trap.

* Call.

* Inst fault.

* Data fault.
* Inst debug.
e Data debug.
e Alignment.
* System Error.
e Debug halt.

See Chapter D3 Instruction and Exception classifications for details of the mapping between the PE Architectural
exceptions and these exception types.

Rsrymu Table D2.1 defines the preferred exception return address for each exception type for PE Architectural exceptions.

Table D2.1: Preferred exception return address for PE Architectural exceptions

Exception type Preferred exception return address

IRQ Instruction after the last executed instruction

FIQ Instruction after the last executed instruction

Trap For a trapped instruction or UNDEFINED instruction, the preferred exception return address

is the address of the instruction. For a trapped exception, the preferred exception return
address is the address of the instruction that caused the exception.

Call Instruction after the call instruction
Inst fault Instruction that caused the exception
Data fault Instruction that caused the exception
Inst debug Instruction that caused the exception
Data debug Instruction that caused the exception
Alignment Instruction that caused the alignment exception
System Error Instruction after the last executed instruction
Debug halt The instruction after the last executed instruction, that is, the value loaded into the DLR
register.
Tezkae The nature of System Error means that execution might not complete up to the preferred exception return address, or

it might perform some operations after the preferred exception return address. This behavior is IMPLEMENTATION
DEFINED and might vary depending on the cause of the exception.

Repoz When an imprecise System Error exception occurs, the preferred exception return address is the address stored in
the relevant ELR when the exception is taken.

SGrMTH When a System Error exception occurs, the trace analyzer must be aware that the preferred exception return address
might not indicate the exact point at which program execution was interrupted. The trace analyzer should not rely
on the preferred exception return address for inferring exactly which instructions were executed. This behavior
only occurs for imprecise System Error exceptions.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 96
Aa Non-confidential

Chapter D2. Trace Element Model
D2.2. PO element

Ryprut When an imprecise Debug halt exception occurs, the preferred exception return address is the address stored in
DLR or DLR_ELO when the exception is taken.

SrpIXM When an imprecise Debug halt exception occurs, the trace analyzer must be aware that the preferred exception
return address might not indicate the exact point at which program execution was interrupted. The trace analyzer
should not rely on the preferred exception return address for inferring exactly which instructions were executed.
An imprecise Debug halt exception can only occur under direct control of a debugger, usually by controlling
EDRCR.CBRRQ.

D2.2.2.2 ETE defined exceptions
RuzJ1J In addition to the Arm Architectural exceptions, the ETE specifies the following Exceptional occurrences that are
traced using Exception elements:
¢ PE Reset, which indicates that a PE Warm reset has occurred.
Ruracc Table D2.2 defines the preferred exception return address for each exception type for ETE defined exceptions.
Table D2.2: Preferred exception return address for ETE defined exceptions
Exception type Preferred exception return address
PE Reset UNKNOWN

Rurnys When a PE Reset occurs, the preferred exception return address and context are UNKNOWN. Therefore for an
Exception element indicating a PE Reset the preferred exception return address and context are UNKNOWN. No
instruction execution is indicated between the previous PO element and the Exception element.

Tosvyz When an Exception element indicating a PE Reset occurs:

* The target address and target context of the previous PO element might be UNKNOWN.
¢ If there are no PO elements between a Trace On element and the Exception element, then the initial address
and context after the previous Trace On element might be UNKNOWN.
D2.2.2.3 IMPLEMENTATION DEFINED exceptions
Rzvyc ETE defines some exception types which are IMPLEMENTATION DEFINED, including but not limited to:
¢ Error Correction Code (ECC) error correction.
* Generic replay of program execution.

IxurLI The use of the IMPLEMENTATION DEFINED exceptions is optional and IMPLEMENTATION DEFINED. IMPLEMEN-
TATION DEFINED exceptions are not required to be traced but are intended to be used to simplify tracing of certain
micro-architectural situations.

Ioring In general, the preferred exception return address is the address of the instruction after the last executed instruction,

before the exception occurs.

D2.2.3 Source Address Element

Iporer

DDI0608
A.a

The Source Address element indicates execution up to and including a provided PO instruction address, and
indicates the PO instruction is taken. All PO instructions except the final PO instruction are not taken, which means
that explicit N Afom elements are not required to be traced for those PO instructions. A Source Address element
indicates both of the following for the final PO instruction:

¢ The instruction set.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 97
Non-confidential

Chapter D2. Trace Element Model
D2.2. PO element

* The virtual address of the instruction.
The instruction set for a Source Address element is one of the following:

* AArch64 A64.
* AArch32 A32.
* AArch32 T32.

A Source Address element is a PO element.

D2.2.4 Q Element

R JREYT

A Q element belongs to the PO element group in the instruction trace element stream, and must be explicitly
resolved or canceled.

A Q element can optionally include a number, M. The number is a count of the instructions that are executed since
the most recent PO element, which might be a Q element. If it does not include a count of instructions, then the
number of instructions that are executed since the most recent PO element is UNKNOWN.

The trace unit generates Q elements in the program order in which they occur, and the trace protocol encode and
decode process maintains this order.

A Q element does not imply Exceptional occurrences.

When a Q element implies an Exception Return instruction which is taken, that instruction is the last instruction
that is implied by the Q element.

When a Q element implies an executed 1se instruction, this is the last instruction implied by the Q element if
execution continues from a new context after the 1ss.

When execution continues from a new context after a Q element is generated, the trace unit generates a Context
element after the Q element.

The Context element might be generated before or after the Target Address element that is also required after the Q
element.

If a context change occurs at a point that is not a Context synchronization event, then the last instruction that is
implied by a Q element must be the last instruction that is executed with the old context. The trace unit can then
generate a Context element after the Q element to indicate the new context.

D2.2.5 Transaction Start Element

Reroxn

DDI0608
A.a

TRCIDRO.COMMTRANS indicates whether the Transaction Start element is a PO element. See D2.7.1 Transac-
tion Start element for more details about the Transaction Start element.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 98
Non-confidential

Chapter D2. Trace Element Model
D2.3. Virtual Address Space Elements

D2.3 Virtual Address Space Elements

D2.3.1 Trace On Element

RNH: CF

R‘l\ LYH

Rokres

D2.3.2

D2.3.3

R';'H; YV

DDI0608
A.a

A Trace On element indicates a discontinuity in the trace element stream. The trace unit inserts a Trace On element
after a gap in the generation of the trace element stream:

* When the trace generation becomes operative and before any PO elements.
« If some instructions are filtered out of the trace.
e The first traced instructions after:
— a prohibited region.
— the PE leaves Debug state.
¢ When instruction trace is lost because a trace unit buffer overflow occurs.

When a Trace On element is generated, the trace unit generates a Target Address element before the next PO
element.

When a Trace On element is generated, the trace unit generates a Context element before the next Afom element,
Exception element or Q element, to indicate where tracing starts, unless the context has not changed since the
previous Context element was output.

When the first Trace On element is generated, the trace unit outputs the corresponding Context element before the
first PO element.

Target Address Element

A Target Address element indicates both of the following for the next instruction to be executed:

¢ The instruction set.
e The virtual address of the instruction.

The instruction set for a Target Address element is one of the following:

* AArch64 A64.
* AArch32 A32.
* AArch32 T32.

The trace unit generates Target Address elements in program order relative to other PO elements.

Target Address element values can be corrected by another Target Address element if both Target Address elements
are generated before the next PO element or Trace On element.

Context Element

The Context element indicates the execution context for the next instruction to be executed.
The Context element provides the following Context information:

* The Security state, either Secure or Non-secure.
* The Exception level, ELO to EL3.
* Whether the PE is executing in AArch64 state or AArch32 state.

The Context element can optionally provide the following Context information:

¢ The Context identifier.
e The Virtual context identifier.

The trace unit generates Context elements in program order relative to PO elements.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 99
Non-confidential

Chapter D2. Trace Element Model
D2.4. Temporal Elements

D2.4 Temporal Elements

I HHXND

Temporal elements provide information about the passage of time within the trace element stream. The following
temporal elements are supported by ETE:

The Cycle Count element.
Indicates the passage of PE clock cycles within the trace element stream.

The Timestamp element.
Indicates the passage of time within the trace element stream.

The Timestamp Marker element.
Indicates the most recent PO element or Event element has been timestamped, and that a Timestamp element
will follow containing the timestamp value.

D2.4.1 Cycle Count Element

R:liﬂ E

Tyopr

DDI0608
A.a

Each Cycle Count element is associated with a Commit element, and when a Commit element is generated, a Cycle
Count element might also be generated.

Each Cycle Count element is associated with the most recent Commit element.

A Cycle Count element indicates the number of PE clock cycles between the two most recent Commit elements
that both have an associated Cycle Count element.

Not every Commit element is required to have an associated Cycle Count element.

Cycle Count elements are generated in order relative to Commit elements.

Timestamp Element

The Timestamp element inserts a global timestamp value into the trace element stream.
The source for timestamp reported in the timestamp element is controlled by:

* TRFCR_ELI.TS
* TRFCR_EL2.TS

A timestamp value of zero indicates that the timestamp value is UNKNOWN.

An UNKNOWN timestamp value might occur if the system does not support timestamping or if the timestamp is
temporarily unavailable.

The source for the payload of Timestamp elements is controlled by the TRFCR registers and the virtual timers. It is
expected that these registers will be changed by context switch software. As a result it is possible that payloads of
Timestamp elements might appear to have discontinuities, and even go backwards, if the source of the timestamp
changes, or any context switching changes the system registers which control the timestamp value.

If FEAT_ETEvlpl is implemented, when there has been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent PO element or Event element
before the Timestamp Marker element.

If FEAT_ETEvlpl is not implemented or if there has not been a Timestamp Marker element before the Timestamp
element, the Timestamp element contains the timestamp value of the most recent PO element or Event element
before the Timestamp element.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 100
Non-confidential

Chapter D2. Trace Element Model
D2.4. Temporal Elements

If TRCIDRO.TSMARK is Obl and there is no previous Timestamp Marker element, the Timestamp element is for a
PO element or Event element which is before the start of the trace. This scenario might occur when trace analysis
starts at a Trace Info element which is not the first Trace Info element, and the Timestamp Marker element was
generated before the Trace Info element.

The requirement for a Timestamp Marker element for every Timestamp element is to avoid needing to indicate if
there’s been a Timestamp Marker element at a Trace Info point. This allows a trace analyzer to assume there’s one
(or not) before the Trace Info, based on a static piece of information.

D2.4.3 Timestamp Marker element

R,\L”‘i,‘,

DDI0608
A.a

The Timestamp Marker element indicates the most recent PO element or Event element has been timestamped, and
that a Timestamp element will follow containing the timestamp value.

Timestamp Marker elements are generated in order with respect to PO elements and Event elements.
Timestamp Marker elements are not canceled by Cancel elements.

A Cancel element might cause a PO element to be canceled and if there is a Timestamp Marker element that is
associated with that PO element then the Timestamp Marker element is not associated with any PO element. The
Timestamp element which is associated with the Timestamp Marker element is unaffected, and is still useable for
timestamping the approximate position in the trace stream.

If 2 Timestamp Marker elements occur without a Timestamp element between them, the oldest Timestamp Marker
element is ignored.

If an Overflow element or Discard element occurs after a Timestamp Marker element and before a Timestamp
element, the Timestamp Marker element is ignored.

If Timestamp Marker elements are generated by the trace unit, every Timestamp element must have a corresponding
Timestamp Marker element generated before the Timestamp element.

The generation of Timestamp Marker elements is indicated in TRCIDRO.TSMARK.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 101
Non-confidential

Chapter D2. Trace Element Model
D2.5. Speculation Resolution Elements

D2.5 Speculation Resolution Elements

I YYMXT

The ETE architecture allows trace to be generated speculatively and then later committed or removed by the
decompression process. Each PO element is traced and is is considered speculative until either committed by a
Commit element or canceled by a Cancel element. This method of generating speculative trace allows for the
tracing of speculative execution, including the tracing of transactions when the Transactional Memory Extension is
implemented in the PE.

Speculation resolution elements provide a trace analyzer with information about which trace elements were
correctly or incorrectly generated, and ensure the trace analyzer can reconstruct the program execution. The
following speculation resolution elements are supported by ETE:

The Mispredict element.
Corrects the most recent Atom element.

The Cancel element.
Indicates that one or more PO elements are canceled.

The Commit element.
Indicates that one or more PO elements are resolved for execution.

The Discard element.
Removes all speculative PO elements.

TRCIDR8.MAXSPEC specifies the maximum number of uncommitted PO elements which can be discarded at a
later stage using Cancel elements.

D2.5.1 Commit Element

DDI0608
A.a

A Commit element indicates that a number of unresolved PO elements have been resolved for execution. The
resolved PO elements are the oldest PO elements.

The Commit element resolves all types of PO element.

Commit elements might be merged if the total number of PO elements resolved is less than TRCIDRS.MAXSPEC.
Commit elements are merged by adding their respective commit count values together.

F
PO ---9 E
—_—p Commit 2 —fp
PO ---p B
A F
Figure D2.1: Commit Operation Example
Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 102

Non-confidential

Chapter D2. Trace Element Model
D2.5. Speculation Resolution Elements

D2.5.2 Cancel Element

IMrGLC The Cancel element indicates the number of youngest unresolved and un-canceled PO elements that are canceled
from execution. A trace unit might cancel elements because of many reasons, including but not limited to:

* A PO instruction is mis-speculated.
¢ An exception occurs.
Run.rnx The Cancel element cancels all types of PO element.

T NDoKN Cancel elements might be merged if no PO elements have been generated in between. Cancel elements are merged
by adding their respective cancel numbers together.

—p Cancel2 —pp

Figure D2.2: Cancel Operation Example

D2.5.3 Discard Element

I rewen A Discard element is generated if uncommitted PO elements remain when trace generation becomes inoperative or
if the resolution of uncommitted PO elements cannot be output by the trace unit.
Tsrxoz If trace generation remains inoperative, the outcomes of instructions that are traced by PO elements, such as

conditional PO instructions, cannot be resolved, and therefore a Discard element indicates that all uncommitted PO
elements must be discarded.

D2.5.4 Mispredict Element

T GBrEO The Mispredict element indicates that the most recent non-canceled Atom element has the incorrect E or N status.

Irgvan For example, if a branch instruction is predicted as taken, it is traced with an E Afom element. If the prediction
becomes incorrect then a Mispredict element is traced to indicate to a trace analyzer that the E Afom element
changes to an N Afom element.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 103
Aa Non-confidential

Chapter D2. Trace Element Model
D2.6. Others

D2.6 Others

D2.6.1 Event Element

Irekyz The Event element indicates when a programmed ETEEvent occurs and its payload contains a number to identify
the ETEEvent number. See TRCEVENTCTLOR, and TRCEVENTCTLIR, for information about the programming
of arbitrary ETEEvents.

RgmLve Event elements maintain order relative to other Event elements.

D2.6.2 Overflow Element

TRroKz The Overflow element indicates that the trace unit buffer has overflowed, and at least one trace element might have
been lost.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 104
Aa Non-confidential

Chapter D2. Trace Element Model
D2.7. Transactional Memory

D2.7 Transactional Memory

Rppnee

RrreLy

D2.7.3

IL{HL?G

DDI0608
A.a

The rstarT instruction is a PO instruction.

Transaction Start element

The Transaction Start element indicates that subsequent elements are within a transaction, until any of the following
are traced:

e A Transaction Failure element.
e A Transaction Commit element.
¢ A Cancel element which cancels the Transaction Start element.

When the PE enters Transactional state, a Transaction Start element is generated before any instructions are traced.
This indicates to the trace analyzer that subsequent elements have been executed in Transactional state.

Only a single Transaction Start element is generated for each outer transaction, unless the trace unit indicated the
transaction had finished by generating a Transaction Failure element.

An example of when the trace unit generates a Transaction Failure element without the PE leaving Transactional
state is when a trace unit buffer overflow occurs. In this example, tracing might resume after the trace unit buffer
overflow, and if the PE is still in the same outer transaction then a new Transaction Start element would be
generated.

The Transaction Start element appears in program order relative to other PO elements.

When a rstarr instruction for an outer transaction is traced and tracing continues in Transactional state, the trace
unit generates a Transaction Start element after the PO element that is generated by the Tstart instruction, and
before any subsequent PO element.

When a rstart instruction for an outer transaction is not traced and tracing becomes active while the PE is in
Transactional state, the trace unit generates a Transaction Start element after the Trace On element and before any
PO elements.

Transaction Commit element

The Transaction Commit element indicates that the PE has exited Transactional state, that the transaction has
completed successfully, and that all execution since the most recent Transaction Start element has been executed.

Transaction Failure element

The Transaction Failure element indicates that the transaction did not complete successfully and the trace analyzer
discards all the execution since the most recent Transaction Start element, including any PO elements which have
been committed by Commit elements.

A sophisticated trace analyzer might be able to use the discarded elements to create a heuristic on why the
transaction failed.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 105
Non-confidential

Chapter D3
Instruction and Exception classifications

InMIBZ This chapter defines all of the PO instructions.
Rpgyzy PO instructions comprise all of the following:

e All direct PO instructions.
e All indirect PO instructions.

Rgrnry Direct PO instructions comprise all of the following:

¢ All direct branch instructions.

* 1sp instructions.

e TsTART instructions.

* wrE, WrET, wrI, and writ instructions, when indicated by TRCIDR2.WFXMODE.

Rpamom Indirect PO instructions comprise all of the following:

¢ All indirect branch instructions.

RyoTern All uses of 1ss in this specification apply to all variants of the 1ss instruction, including the CP15ISB instruction.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 106
Aa Non-confidential

Chapter D3. Instruction and Exception classifications
D3.1. AArch64 A64

D3.1 AArch64 A64

D3.1.1 Direct PO instructions

Table D3.1: A64 direct PO instructions

Instruction

Description

B

B.cond

BL

CBZ or CBNZ
ISB

TBZ or TBNZ
TSTART

Unconditional Branch.
Conditional Branch.
Branch with link.

Compare with zero and branch.

Instruction Synchronization Barrier.

Test and branch.

Initiates a new transaction.

D3.1.2 Indirect PO instructions

Table D3.2: A64 indirect PO instructions

Instruction Description

BLR Branch with link to register.

BLRAA Authenticate and branch with link.

BLRAAZ Authenticate and branch with link.

BLRAB Authenticate and branch with link.

BLRABZ Authenticate and branch with link.

BR Branch to register.

BRAA Authenticate and branch.

BRAAZ Authenticate and branch.

BRAB Authenticate and branch.

BRABZ Authenticate and branch.

ERET Return From Exception.

ERETAA Authenticate and Exception return.

ERETAB Authenticate and Exception return.

RET Return From subroutine.

RETAA Authenticate and function return.

RETAB Authenticate and function return.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 107

A.a

Non-confidential

Chapter D3. Instruction and Exception classifications

D3.1. AArch64 A64

D3.1.3 Branch with link instructions

Table D3.3: A64 branch with link instructions

Instruction Description

BL Branch with link.

BLR Branch with link to register.
BLRAA Authenticate and branch with link.
BLRAAZ Authenticate and branch with link.
BLRAB Authenticate and branch with link.
BLRABZ Authenticate and branch with link.

D3.1.4 Meaning of Atom elements

Table D3.4: Meaning of Atom elements in AArch64 A64

Instruction E N

B The branch was taken. RESERVED.

B.cond The branch was taken. The branch was not taken.
BL The branch was taken. RESERVED.

BLR The branch was taken. RESERVED.

BLRAA The branch was taken. RESERVED.

BLRAAZ The branch was taken. RESERVED.

BLRAB The branch was taken. RESERVED.

BLRABZ The branch was taken. RESERVED.

BR The branch was taken. RESERVED.

BRAA The branch was taken. RESERVED.

BRAAZ The branch was taken. RESERVED.

BRAB The branch was taken. RESERVED.

BRABZ The branch was taken. RESERVED.

CBZ or CBNZ The branch was taken. The branch was not taken.
ERET The PE returned from the Exception. RESERVED.

ERETAA The PE returned from Exception. RESERVED.

ERETAB The PE returned from Exception. RESERVED.

ISB The ISB performed a Context RESERVED.

synchronization event.
RET The PE returned from the subroutine. =~ RESERVED.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 108

A.a

Non-confidential

Chapter D3. Instruction and Exception classifications
D3.2. AArch32 A32

Instruction E N

RETAA The PE returned from the subroutine. = RESERVED.

RETAB The PE returned from the subroutine. RESERVED.

TBZ or TBNZ The branch was taken. The branch was not taken.
TSTART Transaction started. RESERVED.

D3.2 AArch32 A32

D3.2.1 Direct PO instructions

Table D3.5: A32 direct PO instructions

Instruction Description

B Unconditional Branch.

B.cond Conditional Branch.

BL Branch with link

BLX <immed> Branch with link and exchange.
ISB Instruction Synchronization Barrier.

D3.2.2 Indirect PO instructions

Table D3.6: A32 indirect PO instructions

Instruction Description

BLX <reg>. Branch with Link and Exchange.
BX Branch and Exchange.

BXJ Branch and Exchange.

Data processing -
instructions that modify

the PC.

ERET Exception Return.

LDM including the PC. Load Multiple to the PC.
LDR PC Load a word to the PC.
RFE Return From Exception.

D3.2.3 Branch with link instructions

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

109

Chapter D3. Instruction and Exception classifications
D3.3. AArch32 732

Table D3.7: A32 branch with link instructions

Instruction Description

BL Branch with link

BLX <immed> Branch with link and exchange.
BLX <reg>. Branch with Link and Exchange.

D3.2.4 Meaning of Atom elements

Table D3.8: Meaning of Atom elements in AArch32 A32

Instruction E N

B The branch was taken. The branch was not taken.
B.cond The branch was taken. The branch was not taken.
BL The branch was taken. The branch was not taken.
BLX <immed> The branch was taken. The branch was not taken.
BLX <reg>. The branch was taken. The branch was not taken.
BX The branch was taken. The branch was not taken.
BXJ The branch was taken. The branch was not taken.

Data processing instructions that
modify the PC.

ERET

ISB

LDM including the PC.
LDR PC
RFE

The branch was taken.

The PE returned from an Exception.

The ISB performed a Context
synchronization event.

The branch was taken.

The branch was taken.

Exception.

The PE returned from the Exception. = RESERVED.

The branch was not taken.

The PE did not return from an

The branch was not taken.

The branch was not taken.

The ISB did not perform a Context
synchronization event.

D3.3 AArch32 T32

D3.3.1 Direct PO instructions

DDI0608

A.a

Table D3.9: T32 direct PO instructions

Instruction Description
B Unconditional Branch.
B<ce> Conditional Branch.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter D3. Instruction and Exception classifications
D3.3. AArch32 732

Instruction Description

BL Branch with Link.

BLX <immed> Branch with Link and Exchange.

CBNZ Compare and Branch on Nonzero.

CBZ Compare and Branch on Zero.

ISB Instruction Synchronization Barrier, including CP15
encodings.

D3.3.2 Indirect PO instructions

Table D3.10: T32 indirect PO instructions

Instruction Description

BLX <reg> Branch with Link and Exchange.
BX Branch and Exchange.

BXJ Branch and Exchange.

Data processing -
instructions that modify

the PC.

LDM including the PC. Load Multiple including to the PC.
LDR to the PC. Load to the PC.

POP {...PC} Load the PC from the stack.

RFE Return From Exception.

TBB Table Branch.

TBH Table Branch.

D3.3.3 Branch with link instructions

Table D3.11: T32 branch with link instructions

Instruction Description

BL Branch with Link.

BLX <immed> Branch with Link and Exchange.
BLX <reg> Branch with Link and Exchange.

D3.3.4 Meaning of Atom elements

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 111
Aa Non-confidential

Chapter D3. Instruction and Exception classifications
D3.4. WFI and WFE Instructions

Table D3.12: Meaning of Atom elements in AArch32 T32

Instruction E N

B The branch was taken. The branch was not taken.
B<cce> The branch was taken. The branch was not taken.
BL The branch was taken. The branch was not taken.
BLX <immed> The branch was taken. The branch was not taken.
BLX <reg> The branch was taken. The branch was not taken.
BX The branch was taken. The branch was not taken.
BXJ The branch was taken. The branch was not taken.
CBNZ The branch was taken. The branch was not taken.
CBZ The branch was taken. The branch was not taken.

Data processing instructions that
modify the PC.

ISB

LDM including the PC.
LDR to the PC.

POP {..,.PC}

RFE

TBB
TBH

The branch was taken.

The ISB performed a Context
synchronization event.

The branch was taken.
The branch was taken.

The branch was taken.

The PE returned from the Exception.

The branch was taken.

The branch was taken.

The branch was not taken.

The ISB did not perform a Context
synchronization event.

The branch was not taken.
The branch was not taken.
The branch was not taken.

The PE did not return from the
Exception.

The branch was not taken.

The branch was not taken.

D3.4 WFI and WFE Instructions

wrt and wre instructions, when indicated by TRCIDR2.WFXMODE, are PO instructions.

D3.4.1 WFxT

Reponn

D3.4.2 Meaning of Atom elements

DDI0608
A.a

If FEAT_WEFXT is implemented and TRCIDR2.WFXMODE is ov1, wrt and wret instructions are classified as
direct branch instructions.

Throughout the Embedded Trace Extension part of this manual, any reference to the wre instruction also includes
the wreT instruction, and any reference to the wr1 instruction also includes the wr1t instruction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 112
Non-confidential

Chapter D3. Instruction and Exception classifications
D3.5. Exceptions to Exception element encodings

Instruction E N
WFI The instruction either passed its The instruction did not pass its
condition code check or failed its condition code check.

condition code check.

WFE The instruction either passed its The instruction did not pass its
condition code check or failed its condition code check.
condition code check.

D3.5 Exceptions to Exception element encodings

Table D3.14: Exception mapping for exceptions taken to AArch64 state

Reason Type
Branch Target exception Inst fault
Breakpoint Inst debug
FIQ FIQ

HVC Call
Halting debug event Debug halt
IRQ IRQ
Illegal execution state Trap
Instruction Abort Inst fault
Instruction or event trapped by a Trap
control bit

Misaligned PC Alignment
PAC Fail Data fault

SError interrupt

System Error

SMC Call

SvC Call
Software Breakpoint Instruction Inst debug
Software Step Inst debug
Stack Pointer Misalignment Alignment
Synchronous Data Abort Data fault
UNDEFINED instruction Trap
Watchpoint Data debug

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter D3. Instruction and Exception classifications
D3.5. Exceptions to Exception element encodings

Table D3.15: Exception mapping for exceptions taken to AArch32 state

Reason Type

Breakpoint Inst fault

FIQ FIQ

HVC Call

Halting debug event Debug halt

IRQ IRQ

Illegal execution state Trap

Instruction or event trapped by a Trap

control bit

Prefetch Abort Inst fault

SError interrupt System Error

SMC Call

Svc Call

Software Breakpoint Instruction Inst fault

Synchronous Data Abort Data fault

UNDEFINED instruction Trap

Vector Catch exception Inst fault

Watchpoint Data fault
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 114

A.a Non-confidential

Chapter D4
Recommended Configurations

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 115
Aa Non-confidential

Chapter D4. Recommended Configurations
D4.1. Configurations

D4.1 Configurations

Tyervp This section describes which ETE features Arm recommends are implemented. For optional features not described
here, it is IMPLEMENTATION DEFINED whether the feature is implemented. For features which have an 1M-
PLEMENTATION DEFINED size or number, and are not described here, the size or number of that feature is
IMPLEMENTATION DEFINED.

Parameter Description Configuration
ATBTRIG ATB Trigger Support Yes, if ATB is implemented
NUMACPAIRS Address Comparator pairs 4
NUMCIDC Context Identifier Comparators >=1
NUMVMIDC Virtual Context Identifier Comparators >= 1, if EL2 is implemented
NUMCNTR Number of Counters 2
NUMEVENT Number of ETEEvents 4
NUMEXTINSEL Number of External Input Selectors 4
NUMRSPAIR Number of Resource selection pairs >=8§
NUMSEQSTATE Number of Sequencer states 4
NUMSSCC Number of Single-shot Comparator Controls >=1
RETSTACK Return stack Yes
STALLCTL Processing Element (PE) stalling capability Yes
TRACEIDSIZE Trace ID size 7-bits, if ATB is implemented
CCITMIN Cycle count minimum threshold 4
CCSIZE Cycle counter size >=12
WFXMODE wrr and wre instruction classification wrr and wrEe instructions are classified as PO
instructions
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 116

A.a

Non-confidential

Chapter D5
Protocol Description

D5.1 Introduction

Txcenc An ETE trace unit generates a trace byte stream. The protocol is a byte-based packet protocol, which means that
the trace byte stream is constructed of multiple packets, where each packet contains one or more bytes of data.

REyTNx A packet consists of a single header byte, followed by zero or more payload bytes.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 117
Aa Non-confidential

Chapter D5. Protocol Description

D5.2. Summary

D5.2 Summary

Header
byte Name Purpose
00000000 Alignment Synchronization Packet Identifies a packet boundary.
00000000 Discard Packet Indicates a Discard element.
00000000 Overflow Packet Indicates that a trace unit buffer overflow has occurred.
00000001 Trace Info Packet Resets trace compression to a known architectural state.
0000001x Timestamp Packet Indicates a Timestamp element.
00000100 Trace On Packet Indicates that there has been a discontinuity in the trace
element stream.
00000110 PE Reset Packet Indicates that a PE Reset has occurred.
00000110 Transaction Failure Packet Indicates that a Transaction Failure has occurred.
00000110 Exception 32-bit Address ISO with Context Indicates that an exception has occurred.
Packet
00000110 Exception 32-bit Address IS1 with Context Indicates that an exception has occurred.
Packet
00000110 Exception 64-bit Address ISO with Context Indicates that an exception has occurred.
Packet
00000110 Exception 64-bit Address IS1 with Context Indicates that an exception has occurred.
Packet
00000110 Exception Exact Match Address Packet Indicates that an exception has occurred.
00000110 Exception Short Address ISO Packet Indicates that an exception has occurred.
00000110 Exception Short Address IS1 Packet Indicates that an exception has occurred.
00000110 Exception 32-bit Address ISO Packet Indicates that an exception has occurred.
00000110 Exception 32-bit Address IS1 Packet Indicates that an exception has occurred.
00000110 Exception 64-bit Address ISO Packet Indicates that an exception has occurred.
00000110 Exception 64-bit Address IS1 Packet Indicates that an exception has occurred.
00001010 Transaction Start Packet Indicates that the PE has started to execute in Transactional
State.
00001011 Transaction Commit Packet Indicates that the PE has successfully finished an outer
transaction and is leaving Transactional state.
00001100 Cycle Count Format 2_0 small commit Packet Indicates a Commit element and a Cycle Count element.
00001101 Cycle Count Format 2_1 Packet Indicates a Cycle Count element.
00001101 Cycle Count Format 2_0 large commit Packet Indicates a Commit element and a Cycle Count element.
00001110 Cycle Count Format 1_1 with count Packet Indicates a Cycle Count element.
00001110 Cycle Count Format 1_0 with count Packet Indicates zero or one Commit elements followed by a Cycle
Count element.
00001111 Cycle Count Format 1_1 unknown count Packet Indicates a Cycle Count element.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 118

A.a

Non-confidential

Chapter D5. Protocol Description

D5.2. Summary

Header

byte Name Purpose

00001111 Cycle Count Format 1_0 unknown count Packet Indicates zero or one Commit elements followed by a Cycle
Count element with an UNKNOWN cycle count value.

000100xx Cycle Count Format 3_1 Packet Indicates a Cycle Count element.

0001xxxx Cycle Count Format 3_0 Packet Indicates a Commit element and a Cycle Count element.

00101101 Commit Packet Indicates a Commit element.

0010111x Cancel Format 1 Packet Indicates a Cancel element optionally followed by a
Mispredict element.

001100xx Mispredict Packet Indicates 0-2 E or N Atom elements followed by one
Mispredict element.

001101xx Cancel Format 2 Packet Indicates zero or more E or N Afom elements followed by a
Cancel element and a Mispredict element.

00111xxx Cancel Format 3 Packet Indicates zero or one E Atom element followed by a Cancel
element with a payload of 2-5 and one Mispredict element.

01110000 Ignore Packet To align packet boundary to memory boundary.

0111xxxx Event Packet Indicates 1-4 Event elements.

10000000 Context Same Packet Indicates a Context element.

10000001 Context Packet Indicates a Context element.

10000010 Target Address with Context 32-bit ISO Packet Indicates a Target Address element and a Context element.

10000011 Target Address with Context 32-bit IS1 Packet Indicates a Target Address element and a Context element.

10000101 Target Address with Context 64-bit ISO Packet Indicates a Target Address element and a Context element.

10000110 Target Address with Context 64-bit IS1 Packet Indicates a Target Address element and a Context element.

10001000 Timestamp Marker Packet Indicates a Timestamp Marker element.

100100xx Target Address Exact Match Packet Indicates a Target Address element.

10010101 Target Address Short ISO Packet Indicates a Target Address element.

10010110 Target Address Short IS1 Packet Indicates a Target Address element.

10011010 Target Address 32-bit ISO Packet Indicates a Target Address element.

10011011 Target Address 32-bit IS1 Packet Indicates a Target Address element.

10011101 Target Address 64-bit ISO Packet Indicates a Target Address element.

10011110 Target Address 64-bit IS1 Packet Indicates a Target Address element.

101000xx Q with Exact match address Packet Indicates that some instructions have executed with an
address of the next instruction.

10100101 Q short address ISO Packet Indicates that some instructions have executed with an
address of the next instruction.

10100110 Q short address IS1 Packet Indicates that some instructions have executed with an
address of the next instruction.

10101010 Q 32-bit address ISO Packet Indicates that some instructions have executed with an
address of the next instruction.

10101011 Q 32-bit address IS1 Packet Indicates that some instructions have executed with an
address of the next instruction.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 119

A.a

Non-confidential

Chapter D5. Protocol Description

D5.2. Summary

Header

byte Name Purpose

10101100 Q with count Packet Indicates that some instructions have executed.

10101111 Q Packet Indicates that some instructions have executed, without a
count of the number of instructions.

101100xx Source Address Exact Match Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10110100 Source Address Short ISO Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10110101 Source Address Short IS1 Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10110110 Source Address 32-bit ISO Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10110111 Source Address 32-bit IS1 Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10111000 Source Address 64-bit ISO Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

10111001 Source Address 64-bit IS1 Packet Indicates the source address of a PO instruction, and that
the instruction was taken.

110101xx Atom Format 5.2 Packet Indicates five Atom elements.

110110xx Atom Format 2 Packet Indicates two Atom elements.

110111xx Atom Format 4 Packet Indicates four Atom elements.

11110101 Atom Format 5.1 Packet Indicates five Atom elements.

1111011x Atom Format 1 Packet Indicates one Atom element.

11111xxx Atom Format 3 Packet Indicates three Atom elements.

11xxxxXXX Atom Format 6 Packet Indicates 3-23 E Atom elements, plus a subsequent E Atom
or N Atom element.

All other values are reserved. Reserved values might be defined in a future version of the architecture.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 120

A.a

Non-confidential

Chapter D5. Protocol Description
D5.3. Encoding Schemes

D5.3 Encoding Schemes

D5.3.1 Field encodings

Irerr2 Bit Replacement
The packet outputs bits which update a piece of state. Bits output by the packet replace only those bits in the
piece of state. Bits not output by the packet remain unchanged in the piece of state.

TyrpMmy Unsigned LE128n
The data is encoded as an unsigned number. The least significant bits of the number are output in the least
significant bits of the packet. Bits not output by the packet are o.

Twyeae POD
The encoding is specific to the packet.

T oxHHT Unary code
The sequence for this variable is one of the following:

e Ao.
* A number of 1 followed by a o.
» All 1 for the size of the variable, as defined by the packet.

For example the permitted values for a 4-bit variable are:

¢ o.

¢ 10.

® 110.
® 1110.
® 1111.

D5.3.2 Instruction set encoding

Rpxno: For any virtual instruction address, the instruction set is output as a combination of the following two pieces of
information:

* The SF bit encoded in Context packets.
* The sub_isa encoded by the type of the following groups of packets:
— Target Address packets.
— Exception packets.
— Q packets.
— Source Address packets.

The sub_isa indicates either:

* ISO.
» ISI.

Table D5.2 indicates how the combination of the SF bit and sub_isa indicate the instruction set.

Table D5.2: Instruction set encodings

SF Bit sub_isa Instruction Set
0b0 IS0 AArch32 A32
0b0 IS1 AArch32 T32
Obl IS0 AArch64 A64
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 121

A.a Non-confidential

Chapter D5. Protocol Description
D5.3. Encoding Schemes

Tuxunt, The sub_isa also indicates the alignment of the virtual instruction addresses. Table D5.3 indicates the alignment of
each sub_isa.

Table D5.3: Virtual instruction address alignment

sub_isa Alignment
IS0 Word-Aligned
IS1 Halfword-Aligned

InszMB The following packets encode the sub_isa:

* Exception Short Address IS0 Packet.

» Exception Short Address IS1 Packet.

» Exception 32-bit Address ISO Packet.

* Exception 32-bit Address IS1 Packet.

» Exception 64-bit Address ISO Packet.

» Exception 64-bit Address IS1 Packet.

* Exception 32-bit Address ISO with Context Packet.
» Exception 32-bit Address IS1 with Context Packet.
» Exception 64-bit Address ISO with Context Packet.
* Exception 64-bit Address IS1 with Context Packet.
 Target Address Short ISO Packet.

* Target Address Short IS1 Packet.

» Target Address 32-bit ISO Packet.

» Target Address 32-bit IS1 Packet.

» Target Address 64-bit ISO Packet.

» Target Address 64-bit IS1 Packet.

 Target Address with Context 32-bit ISO Packet.

* Target Address with Context 32-bit IS1 Packet.

» Target Address with Context 64-bit ISO Packet.

* Target Address with Context 64-bit IS1 Packet.

* Source Address Short ISO Packet.

* Source Address Short IS1 Packet.

* Source Address 32-bit ISO Packet.

* Source Address 32-bit IS1 Packet.

* Source Address 64-bit ISO Packet.

* Source Address 64-bit IS1 Packet.

¢ Q short address IS0 Packet.

¢ Q short address IS1 Packet.

¢ (Q 32-bit address ISO Packet.

¢ (Q 32-bit address IS1 Packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 122
Aa Non-confidential

Chapter D5. Protocol Description
D5.4. Alignment Synchronization Packet

D5.4 Alignment Synchronization Packet

Purpose
Identifies a packet boundary.

Configurations
All.

This packet forms a unique bit and byte pattern. Searching for this pattern allows the trace analyzer to identify
packet boundaries.

Packet Layout

[l el Neh Nol Noll ol Noll Nol Nol Nokl Nell Nel EN|
[«} Neol Nol Noll Noll Noll Noll Noll Noll Nol Noll Nel fol
[N Neoll Noll Noll Noll Noll Noll Noll Noll Nol Noll Nel §é)]
[«} Noll Nol Nol Noll Noll Noll Nl Nl ol Noll Nel P
[«} Neol Nol Noll Noll Noll Noll Noll Noll Nol Noll Nel o]
[N Noll Noll Noll Noll Noll Noll Noll Noll Nol Nell Nell §]
(e} ol Noh Noll Noll Noll Noll Noll Noll Noll Nol Nl §F
[«} Neol Nol Noll Noll Noll Noll Noll Noll Noll Noll Nol fo]

Figure D5.1: Alignment Synchronization Packet

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

Rexzz5 Any byte that follows this unique sequence of bits is the header byte of a new packet.
RyrkLp This packet must be output before the first Trace Info packet.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 123

A.a Non-confidential

Chapter D5. Protocol Description
D5.5. Discard Packet

D5.5 Discard Packet

Purpose
Indicates a Discard element.

Configurations
All.

Indicates a Discard element.

Packet Layout

Figure D5.2: Discard Packet

Element sequence

This packet encodes the following sequence:

1. Discard element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

Irrrpp This packet is used to discard any speculative trace that the trace analyzer might still be holding onto.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 124
Aa Non-confidential

Chapter D5. Protocol Description
D5.6. Overflow Packet

D5.6 Overflow Packet

Purpose
Indicates that a trace unit buffer overflow has occurred.

Configurations
All.

Indicates that a trace unit buffer overflow has occurred and data might have been lost.

Packet Layout

Figure D5.3: Overflow Packet

Element sequence

This packet encodes the following sequence:

1. Overflow element.
2. Discard element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 125
Aa Non-confidential

Chapter D5. Protocol Description
D5.7. Trace Info Packet

D5.7 Trace Info Packet

Purpose

Resets trace compression to a known architectural state.

Configurations
All.

The trace info packet resets the trace compression to a known state.

Any fields which are not output are treated as if the value is zero.

Packet Layout - Variant 1

Packet Layout - Variant 2

Packet Layout - Variant 3

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1

0o 0 o0 0|o|o|o|o

Figure D5.4: Trace Info Packet (1)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

o 0 o0 0|o|o|o 1

O[7T] ©oOO@O |cc

Figure D5.5: Trace Info Packet (2)

7 6 5 4 3 2 1 0

0 0 0 0o 0 0 1
o o o ofof1]o]o
co SPEC[6:0]
co SPEC[13:7]
co SPEC[20:14]
co SPEC[27:21]

(0) (0) (0) (0) SPEC[31:28]

Figure D5.6: Trace Info Packet (3)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 126

A.a

Non-confidential

Chapter D5. Protocol Description
D5.7. Trace Info Packet

Packet Layout - Variant 4

7 6 5 4 3 2 1 0
0 0 0 0 0O 0 0 1
o o ofof1[o]1
O[T ©ooOO |cc
Co SPEC[6:0]
co SPEC[13:7]
co SPEC[20:14]
co SPEC[27:21]
(0) (0) (0) (0) SPEC[31:28]
Figure D5.7: Trace Info Packet (4)
Packet Layout - Variant 5
7 6 5 4 3 2 1 0
0o 0 0 0O O 0 0 1
o o o of1[ofofo
ct | CYCT[6:0]
©©© | CYCT[11:7]
Figure D5.8: Trace Info Packet (5)
Packet Layout - Variant 6
6 5 4 3 2 1 0
0o 0o 0 0 O0 0 1
o o o of1[ofof1
O[7T] ©oOO©O |cc
c1 CYCT[6:0]
©©© | CYCT[11:7]
Figure D5.9: Trace Info Packet (6)
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 127

A.a Non-confidential

Chapter D5. Protocol Description
D5.7. Trace Info Packet

Packet Layout - Variant 7

6 5 4 3 2 1 0

0o 0 0 0 0 0 1
O 0 0 O | 1 | 1 | 0 | 0
co SPEC[6:0]

co SPEC[13:7]

co SPEC[20:14]

co SPEC[27:21]

(0(0)(©(© | SPEC[31:28]

ct | CYCT[6:0]

©©© | CYCT[11:7]

Figure D5.10: Trace Info Packet (7)

Packet Layout - Variant 8

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 1
o o o of1fa1]o]1
O[T ©oooO |cc
co SPECI[6:0]
co SPEC[13:7]
co SPEC[20:14]
co SPEC[27:21]
©©©© | sPeC[128)
ct | CYCT[6:0]
©©© | CYCT[11:7]
Figure D5.11: Trace Info Packet (8)
Field descriptions
C0 Continuation Bit.
The encoding for this field is Unary code.
0b0 Last byte in this section.
0b1l At least one more byte follows in this section.
C1 Continuation Bit.
The encoding for this field is Unary code.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 128

A.a Non-confidential

Chapter D5. Protocol Description
D5.7. Trace Info Packet

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

CC Cycle count enable indicator.
When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

0b0 Cycle counting is not enabled.

0b1 Cycle counting is enabled.

CYCT
The cycle count threshold.

When this field is not output, it is treated as if it is zero.
The encoding for this field is unsigned LE128n.

SPEC
The number of uncommitted PO elements in the trace.

When this field is not output, it is treated as if it is zero.
The encoding for this field is unsigned LE128n.

T Transactional state indicator.
When this field is not output, it is treated as if it is zero.

The encoding for this field is POD.

000 The PE is not currently executing in Transactional state.

0b1 The PE is currently executing in Transactional state.

Element sequence

This packet encodes the following sequence:

1. Trace Info element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 129
Aa Non-confidential

Chapter D5. Protocol Description
D5.8. Trace On Packet

D5.8 Trace On Packet

DDI0608
A.a

Purpose
Indicates that there has been a discontinuity in the trace element stream.

Configurations
All.

A Trace On packet indicates to a trace analyzer that the trace unit has generated a Trace On element.

Packet Layout

Figure D5.12: Trace On Packet

Element sequence

This packet encodes the following sequence:

1. Trace On element.

Additional information

For more information about the decoding of this packet see decode.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 130
Non-confidential

Chapter D5. Protocol Description
D5.9. Timestamp Packet

D5.9 Timestamp Packet

Purpose
Indicates a Timestamp element.

Configurations
TRCIDRO.TSSIZE != oboo000.

Packet Layout - Variant 1

7 6 5 4 3 2 1 0

0 o0 0 0 0 1]o0

co TS[6:0]
co TS[13:7]
co TS[20:14]
co TS[27:21]
co TS[34:28]
co TS[41:35]
co TS[48:42]
co TS[55:49]

TS[63:56]

Figure D5.13: Timestamp Packet (1)

Packet Layout - Variant 2

5 4 3 2 1 0

o 0 0 0o 0 0 1]1
co TS[6:0]
co TS[13:7]
co TS[20:14]
co TS[27:21]
co TS[34:28]
co TS[41:35]
co TS[48:42]
co TS[55:49]
TS[63:56]
c1 COUNT[6:0]
c1 COUNT[13:7]
(0) (0) COUNT[19:14]

Figure D5.14: Timestamp Packet (2)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 131
Aa Non-confidential

Chapter D5. Protocol Description
D5.9. Timestamp Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

Obl At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.
0b1 At least one more byte follows in this section.
COUNT
The number of PE clock cycles between the most recent Cycle Count element and the element related to the
Timestamp.

The encoding for this field is unsigned LE128n.
TS Timestamp Value.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Timestamp element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 132
Aa Non-confidential

Chapter D5. Protocol Description
D5.10. Timestamp Marker Packet

D5.10 Timestamp Marker Packet

Purpose
Indicates a Timestamp Marker element.

Configurations
TRCIDRO.TSSIZE != 000000 and TRCIDRO.TSMARK == o1

Packet Layout

Figure D5.15: Timestamp Marker Packet

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 133
Aa Non-confidential

Chapter D5. Protocol Description
D5.11. Transaction Start Packet

D5.11 Transaction Start Packet

Purpose
Indicates that the PE has started to execute in Transactional state.

Configurations
All.

Packet Layout

Figure D5.16: Transaction Start Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Start element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 134
Aa Non-confidential

Chapter D5. Protocol Description
D5.12. Transaction Commit Packet

D5.12 Transaction Commit Packet

Purpose
Indicates that the PE has successfully finished an outer transaction and is leaving Transactional state.

Configurations
All.

Packet Layout

Figure D5.17: Transaction Commit Packet

Element sequence

This packet encodes the following sequence:

1. Transaction Commit element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 135
Aa Non-confidential

Chapter D5. Protocol Description
D5.13. Exception Exact Match Address Packet

D5.13 Exception Exact Match Address Packet

Purpose

Indicates that an exception has occurred.

Configurations
All.

Packet Layout

Field descriptions

A Preferred Exception Return address.

The encoding for this field is POD.

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

ER TYPE [E[0]
1 0 o 1 0o of A

Figure D5.18: Exception Exact Match Address Packet

0b00

0b01

0b10

The Preferred Exception Return is the same as address
history buffer entry 0.

The Preferred Exception Return is the same as address
history buffer entry 1.

The Preferred Exception Return is the same as address
history buffer entry 2.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01

0b10

1. Exception element (TYPE, ADDRESS).

1. Target Address element (ADDRESS).
2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE
The exception type.

The encoding for this field is POD.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 136
Aa Non-confidential

Chapter D5. Protocol Description
D5.13. Exception Exact Match Address Packet

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

000000

0b00001

0b00010

0b00011

000100

0b00110

0000111

001010

0b01011

0b01100

001110

0b01111

0b10000

0010001

0b10010

0b10011

0b10100

0010101

010110

0b10111

0011000

PE Reset, also see PE Reset Packet.
Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED O.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.
IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

137

Chapter D5. Protocol Description
D5.14. Exception Short Address IS0 Packet

D5.14 Exception Short Address IS0 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0

o 0 0 0 0 1 1 0
o [en| TYPE E[0]
1 0 0 1 0 1 o0 1
co | A[8:2]
A[16:9]

Figure D5.19: Exception Short Address IS0 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

oeot 1. Exception element (TYPE, ADDRESS).

opto 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 138
Aa Non-confidential

Chapter D5. Protocol Description
D5.14. Exception Short Address IS0 Packet

TYPE
The exception type.

The encoding for this field is POD.

0b00000

0b00001

000010

000011

0b00100

0000110

000111

001010

0b01011

001100

001110

0b01111

0b10000

0b10001

0010010

0b10011

0010100

0010101

0b10110

0b10111

011000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

139

Chapter D5. Protocol Description
D5.15. Exception Short Address IS1 Packet

D5.15 Exception Short Address IS1 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0

o 0 0 0 0 1 1 O
o [en| TYPE E[0]
1 0 0 1 0 1 1 O
co | A[7:1]
A[15:8]

Figure D5.20: Exception Short Address IS1 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1 At least one more byte follows in this section.

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

oeot 1. Exception element (TYPE, ADDRESS).

opto 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 140
Aa Non-confidential

Chapter D5. Protocol Description
D5.15. Exception Short Address IS1 Packet

TYPE
The exception type.

The encoding for this field is POD.

0b00000

0b00001

000010

000011

0b00100

0000110

000111

001010

0b01011

001100

001110

0b01111

0b10000

0b10001

0010010

0b10011

0010100

0010101

0b10110

0b10111

011000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

141

Chapter D5. Protocol Description
D5.16. Exception 32-bit Address ISO Packet

D5.16 Exception 32-bit Address IS0 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0
o 0o 0 0 0 1 1 O
o [en| TYPE E[0]
1 0 0 1 1 0 1 O
©) A8:2]
©) A[15:9]

A[23:16]

A[31:24]

Figure D5.21: Exception 32-bit Address IS0 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.
E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

opot 1. Exception element (TYPE, ADDRESS).

opto 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE
The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 142
Aa Non-confidential

Chapter D5. Protocol Description
D5.16. Exception 32-bit Address ISO Packet

DDI0608
A.a

000001

0b00010

0b00011

000100

000110

0b00111

0001010

0b01011

0b01100

0b01110

0b01111

010000

0b10001

0010010

0b10011

010100

0b10101

0010110

0b10111

0b11000

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.
IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter D5. Protocol Description
D5.17. Exception 32-bit Address IS1 Packet

D5.17 Exception 32-bit Address IS1 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0

o 0o 0 0 0 1 1 O
o [en| TYPE E[0]
1 0o 0 1 1 0 1 1
o | A[7:1]

A[15:8]

A[23:16]

A[31:24]

Figure D5.22: Exception 32-bit Address IS1 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

0b01

1. Exception element (TYPE, ADDRESS).

opto 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE
The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 144
Aa Non-confidential

Chapter D5. Protocol Description
D5.17. Exception 32-bit Address IS1 Packet

DDI0608
A.a

000001

0b00010

0b00011

000100

000110

0b00111

0001010

0b01011

0b01100

0b01110

0b01111

010000

0b10001

0010010

0b10011

010100

0b10101

0010110

0b10111

0b11000

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.
IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter D5. Protocol Description
D5.18. Exception 64-bit Address ISO Packet

D5.18 Exception 64-bit Address IS0 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

Ef] TYPE E[0]

o o 1 1 1 0 1
©) A8:2]
) A[15:9]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]
A[63:56]

rlo]lo|~
o
o
o
o
[E
[o
o

Figure D5.23: Exception 64-bit Address IS0 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.
E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

opot 1. Exception element (TYPE, ADDRESS).

opte 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE
The exception type.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 146
Aa Non-confidential

Chapter D5. Protocol Description
D5.18. Exception 64-bit Address ISO Packet

The encoding for this field is POD.

000000

000001

0b00010

0b00011

000100

000110

0b00111

0001010

0b01011

0b01100

0b01110

0b01111

010000

0b10001

010010

0b10011

010100

0b10101

0010110

0b10111

0b11000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

147

Chapter D5. Protocol Description
D5.19. Exception 64-bit Address IS1 Packet

D5.19 Exception 64-bit Address IS1 Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

ER TYPE E[0]
1 0 0 1 1 1 1 0
0 | A[7:1]

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.24: Exception 64-bit Address IS1 Packet

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

opot 1. Exception element (TYPE, ADDRESS).

opte 1. Target Address element (ADDRESS).

2. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

TYPE
The exception type.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 148
Aa Non-confidential

Chapter D5. Protocol Description
D5.19. Exception 64-bit Address IS1 Packet

The encoding for this field is POD.

000000

000001

0b00010

0b00011

000100

000110

0b00111

0001010

0b01011

0b01100

0b01110

0b01111

010000

0b10001

010010

0b10011

010100

0b10101

0010110

0b10111

0b11000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

149

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

D5.20 Exception 32-bit Address IS0 with Context Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout - Variant 1

7 6 5 4 3 2 1 0
o 0 0 0 0 1 1 O
o [en| TYPE E[0]
1 0 0 0 0 0 1 O
©) A8:2]
) A[15:9]

A[23:16]

A[31:24]
o|o|ns|sFlo o] E

Figure D5.25: Exception 32-bit Address IS0 with Context Packet (1)

Packet Layout - Variant 2

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

o [en| TYPE E[0]
1 0 0 0 0 0 1 O
©) A8:2]
©) A[15:9]

A[23:16]

A[31:24]

1{o]|ns[srloo| e
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.26: Exception 32-bit Address IS0 with Context Packet (2)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 150
Aa Non-confidential

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

Packet Layout - Variant 3

Rrlo|lo|~
o
o
o
o
[
=
o

©) Al8:2]
©) Al15:9]
A[23:16]
A[31:24]
0 | 1 |NS|SF|(0) |(0) | EL
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]

Figure D5.27: Exception 32-bit Address IS0 with Context Packet (3)

Packet Layout - Variant 4

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

0 |E[l]| TYPE E[0]
1 0 0 0 0 O 1 O
©) A8:2]
) A[15:9]
A[23:16]
A[31:24]
1 | 1 |NS|SF|(O) |(0)| EL
VMID[7:0]
VMID[15:8]
VMID[23:16]

VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.28: Exception 32-bit Address IS0 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 151
Aa Non-confidential

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

Preferred Exception Return address bits[1:0] always have the value ovoo0.

The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

¢ This field is not traced.
» This field contains a value of zero.

The encoding for this field is POD.

See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

The encoding for this field is POD.

0b01

0b10

Context element.

Exception element (TYPE, ADDRESS).

Target Address element (ADDRESS).
Context element.

Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00

0b01

0b10

0b1l1l

ELO.
EL1.
EL2.
EL3.

NS Security state

When this field is not output, the Security state is the same as the most recently output Security state.

The encoding for this field is POD.

0b0 The PE is in Secure state.
Ob1l The PE is in Non-secure state.
SF AArch64 state.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 152

A.a Non-confidential

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

The encoding for this field is POD.

0b0

0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

TYPE
The exception type.

The encoding for this field is POD.

000000

0b00001

000010

000011

0b00100

0b00110

000111

001010

0b01011

0001100

001110

0b01111

0b10000

0b10001

010010

0b10011

010100

0010101

0b10110

0b10111

011000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual

context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

e This field is not traced.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

153

Chapter D5. Protocol Description
D5.20. Exception 32-bit Address IS0 with Context Packet

» This field contains a value of zero.
The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 154
Aa Non-confidential

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

D5.21 Exception 32-bit Address IS1 with Context Packet

DDI0608
A.a

Purpose

Indicates that an exception has occurred.

Configurations
All.

Packet Layout - Variant 1

Packet Layout - Variant 2

7 6 5 4 3 2 0
o o 0o 0 0 1 0
o [en| TYPE E[0]
1 0 0 0 0 O 1
o | A[7:1]

A[15:8]

A[23:16]

A[31:24]
o|o|ns|sFlo o] E

Figure D5.29: Exception 32-bit Address IS1 with Context Packet (1)

7 6 5 4 3 2 0
o o 0o 0 0 1 0
o [en| TYPE E[0]
1 0 0 0 0 O 1
o | A[7:1]

A[15:8]

A[23:16]

A[31:24]
1{o]|ns[srloo| e

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.30: Exception 32-bit Address IS1 with Context Packet (2)

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

155

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

Packet Layout - Variant 3

7 6 5 4 3 2 1 0

o 0 0 0 0 1 1 o0
0 |E[1]| TYPE E[0]
1 0 0o 0 0 o0 1 1
(0)| A[7:1]

A[15:8]

A[23:16]

A[31:24]
0|1|NS|SF|(0)|(O)| EL
VMID[7:0]

VMID[15:8]
VMID[23:16]
VMID[31:24]

Figure D5.31: Exception 32-bit Address IS1 with Context Packet (3)

Packet Layout - Variant 4

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

0 |E[l]| TYPE E[0]
1 0 0 0 0 0 1 1
o | A[7:1]
A[15:8]
A[23:16]
A[31:24]
1 | 1 |NS|SF|(O) |(0)| EL
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.32: Exception 32-bit Address IS1 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 156
Aa Non-confidential

Chapter D5. Protocol Description

D5.21. Exception 32-bit Address IS1 with Context Packet
Preferred Exception Return address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.

If Context identifier tracing is disabled, then one of the following must occur:

¢ This field is not traced.
» This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

0b01
1. Context element.

2. Exception element (TYPE, ADDRESS).

opto 1. Target Address element (ADDRESS).

2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0600 ELO.
0601 ELI.
0b10 EL2.
0b11 EL3.

NS Security state.
The encoding for this field is POD.

0b0 The PE is in Secure state.

0bl The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

157

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

0b0

O0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

TYPE
The exception type.

The encoding for this field is POD.

0b00000

000001

000010

0b00011

0b00100

000110

0b00111

0b01010

001011

001100

0b01110

0b01111

010000

010001

0b10010

0b10011

010100

0b10101

0b10110

0b10111

011000

PE Reset, also see PE Reset Packet.

Debug halt.

Call.

Trap.

System Error.

Inst debug.

Data debug.

Alignment.

Inst Fault.

Data Fault.

IRQ.

FIQ.

IMPLEMENTATION DEFINED 0.
IMPLEMENTATION DEFINED 1.
IMPLEMENTATION DEFINED 2.
IMPLEMENTATION DEFINED 3.
IMPLEMENTATION DEFINED 4.
IMPLEMENTATION DEFINED 5.
IMPLEMENTATION DEFINED 6.

IMPLEMENTATION DEFINED 7.

Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual

context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

158

Chapter D5. Protocol Description
D5.21. Exception 32-bit Address IS1 with Context Packet

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 159
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

D5.22 Exception 64-bit Address IS0 with Context Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout - Variant 1

rlo]|lol|~
o
o
o
o
[
[o
o

©) A8:2]
©) A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
o|o|ns|sFlo o] E

Figure D5.33: Exception 64-bit Address IS0 with Context Packet (1)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 160
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 2

7 6 5 4 3 2 1 0
o 0 0 0 0 1 1 0
o [en| TYPE E[0]
1 0 0 0 0 1 o0 1
) A8:2]
(0) A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
1{o]|ns[srlo|o| e
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.34: Exception 64-bit Address IS0 with Context Packet (2)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 161
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 3

] TYPE E[0]

o o o 0o 1 0 1
©) A8:2]
©) A[15:9]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]

A[63:56]
o|1ns|sFlo o] E
VMID[7:0]

VMID[15:8]
VMID[23:16]
VMID[31:24]

rlolol|~
o
o
o
o
[
-
o

Figure D5.35: Exception 64-bit Address IS0 with Context Packet (3)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 162
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

Packet Layout - Variant 4

] TYPE E[0]
o o o 0o 1 0 1
©) A8:2]
©) A[15:9]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]
A[63:56]
1| 1]nsfsrlo o e
VMID[7:0]
VMID[15:8]
VMID[23:16]

VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

rlolo|~
o
o
o
o
[
=
o

Figure D5.36: Exception 64-bit Address IS0 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bits[1:0] always have the value ovoo0.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 163
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

The encoding for this field is POD.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 164
Aa Non-confidential

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

0b01

0b10

1. Context element.
2. Exception element (TYPE, ADDRESS).

1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00

0b01

0b10

0bl1l

ELO.
EL1.
EL2.
EL3.

NS Security state
The encoding for this field is POD.

0b0

O0bl

The PE is in Secure state.

The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0

O0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

TYPE
The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.
0600001 Debug halt.
0600010 Call.
0600011 Trap.
0600100 System Error.
000110 Inst debug.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

165

Chapter D5. Protocol Description
D5.22. Exception 64-bit Address IS0 with Context Packet

0600111 Data debug.

0601010 Alignment.

0001011 Inst Fault.

0601100 Data Fault.

0001110 IRQ.

0b01111 FIQ.

0610000 IMPLEMENTATION DEFINED 0.
0610001 IMPLEMENTATION DEFINED 1.
0610010 IMPLEMENTATION DEFINED 2.
0b10011 IMPLEMENTATION DEFINED 3.
0610100 IMPLEMENTATION DEFINED 4.
0610101 IMPLEMENTATION DEFINED 5.
0b10110 IMPLEMENTATION DEFINED 6.
0610111 IMPLEMENTATION DEFINED 7.
0611000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

¢ This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 166
Aa Non-confidential

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

D5.23 Exception 64-bit Address IS1 with Context Packet

Purpose
Indicates that an exception has occurred.

Configurations
All.

Packet Layout - Variant 1

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

o [en| TYPE E[0]
1 0 0 0 0 1 1 O
o | A[7:1]

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
o|o|ns|sFlo o] E

Figure D5.37: Exception 64-bit Address IS1 with Context Packet (1)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 167
Aa Non-confidential

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

DDI0608
A.a

Packet Layout - Variant 2

7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0

0 |E[l] | TYPE E[0]

1 0 0 0 0 1 1 0

0) | A[7:1]

A[15:8]

A[23:16]

Al31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

1{o]|ns[srlo|o| e

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.38: Exception 64-bit Address IS1 with Context Packet (2)

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

168

Chapter D5. Protocol Description

D5.23. Exception 64-bit Address IS1 with Context Packet

Packet Layout - Variant 3

DDI0608
A.a

7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0

o [en| TYPE E[0]

1 0 0 0 0 1 1 0

o | A[7:1]

A[15:8]

A[23:16]

Al31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

o|1ns|sFlo o] E

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.39: Exception 64-bit Address IS1 with Context Packet (3)

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

169

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

Packet Layout - Variant 4

7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0

o [en| TYPE E[0]
1 0 0 0 0 1 1 O
o | A[7:1]

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
1| 1]nsfsrlo o e

VMID[7:0]

VMID[15:8]

VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.40: Exception 64-bit Address IS1 with Context Packet (4)

Field descriptions

A Preferred Exception Return address.
Preferred Exception Return address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

E Identifies the elements that are indicated by this packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 170
Aa Non-confidential

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

The encoding for this field is POD.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 171
Aa Non-confidential

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

0b01

0b10

1. Context element.
2. Exception element (TYPE, ADDRESS).

1. Target Address element (ADDRESS).
2. Context element.
3. Exception element (TYPE, ADDRESS).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

EL Exception level at the Preferred Exception Return address.

The encoding for this field is POD.

0b00

0b01

0b10

0bl1l

ELO.
EL1.
EL2.
EL3.

NS Security state
The encoding for this field is POD.

0b0

O0bl

The PE is in Secure state.

The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0

O0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

TYPE
The exception type.

The encoding for this field is POD.

0b00000 PE Reset, also see PE Reset Packet.
0600001 Debug halt.
0600010 Call.
0600011 Trap.
0600100 System Error.
000110 Inst debug.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

172

Chapter D5. Protocol Description
D5.23. Exception 64-bit Address IS1 with Context Packet

0600111 Data debug.

0601010 Alignment.

0001011 Inst Fault.

0601100 Data Fault.

0001110 IRQ.

0b01111 FIQ.

0610000 IMPLEMENTATION DEFINED 0.
0610001 IMPLEMENTATION DEFINED 1.
0610010 IMPLEMENTATION DEFINED 2.
0b10011 IMPLEMENTATION DEFINED 3.
0610100 IMPLEMENTATION DEFINED 4.
0610101 IMPLEMENTATION DEFINED 5.
0b10110 IMPLEMENTATION DEFINED 6.
0610111 IMPLEMENTATION DEFINED 7.
0611000 Reserved. See Transaction Failure Packet.

All other values are reserved. Reserved values might be defined in a future version of the architecture.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

¢ This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 173
Aa Non-confidential

Chapter D5. Protocol Description
D5.24. Transaction Failure Packet

D5.24 Transaction Failure Packet

Purpose
Indicates that a Transaction Failure has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0
o 0 0 0 0 1 1 O
o[emf1 1 o o o [eo
o 1 1 1 0 0 0 O

Figure D5.41: Transaction Failure Packet

Field descriptions

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

0b01) .
1. Transaction Failure element.

opto 1. Target Address element (UNKNOWN).

2. Transaction Failure element.

All other values are reserved. Reserved values might be defined in a future version of the architecture.
Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 174
Aa Non-confidential

Chapter D5. Protocol Description
D5.25. PE Reset Packet

D5.25 PE Reset Packet

Purpose
Indicates that a PE Reset has occurred.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0
o 0 0 0 0 1 1 O
o [Emfo o o o o [eo
o 1 1 1 0 0 0 O

Figure D5.42: PE Reset Packet

Field descriptions

E Identifies the elements that are indicated by this packet.
The encoding for this field is POD.

0601 .
1. Exception element (PE_Reset, UNKNOWN).

opto 1. Target Address element (UNKNOWN).

2. Exception element (PE_Reset, UNKNOWN).

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 175
Aa Non-confidential

Chapter D5. Protocol Description
D5.26. Cycle Count Format 1_0 unknown count Packet

D5.26 Cycle Count Format 1_0 unknown count Packet

Purpose
Indicates zero or one Commit elements followed by a Cycle Count element with an UNKNOWN cycle count
value.

Configurations
All the following conditions must be met:

e TRCIDRO.COMMOPT == ono.
* TRCIDRO.TRCCCI == op1.

Packet Layout

6 5 4 3 2 1 0

0o 0o o0 o0 1 1 1 1
Co COMMIT[6:0]
co COMMIT[13:7]
co COMMIT[20:14]
co COMMIT[27:21]
(0) (0) (0) (0) COMMIT[31:28]

Figure D5.43: Cycle Count Format 1_0 unknown count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

b1 At least one more byte follows in this section.

COMMIT
If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the Cycle Count
element and this field indicates the number of PO elements committed by the Commit element.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 176
Aa Non-confidential

Chapter D5. Protocol Description
D5.27. Cycle Count Format 1_1 unknown count Packet

D5.27 Cycle Count Format 1_1 unknown count Packet

Purpose
Indicates a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == op1.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

Figure D5.44: Cycle Count Format 1_1 unknown count Packet

Element sequence

This packet encodes the following sequence:

1. Cycle Count element with an unknown cycle count.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 177
Aa Non-confidential

Chapter D5. Protocol Description
D5.28. Cycle Count Format 1_0 with count Packet

D5.28 Cycle Count Format 1_0 with count Packet

Purpose
Indicates zero or one Commit elements followed by a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == oro0.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

6 5 4 3 2 1 0

0 0 0 1 1 1 0

co COMMIT[6:0]

co COMMIT[13:7]

co COMMIT[20:14]

Co COMMIT[27:21]

00 ©@© | commTsizg]

C1 COUNTI6:0]

C1 COUNT[13:7]

©© | COUNT[19:14]

Figure D5.45: Cycle Count Format 1_0 with count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0b1l At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

COMMIT
If this field is zero, there is no Commit element. Otherwise, there is a Commit element before the Cycle Count
element and this field indicates the number of PO elements committed by the Commit element.

The encoding for this field is unsigned LE128n.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 178
Aa Non-confidential

Chapter D5. Protocol Description
D5.28. Cycle Count Format 1_0 with count Packet

COUNT
Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit elements that

both had a Cycle Count element associated with them. The cycle count is COUNT+cc_threshold.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 179
Aa Non-confidential

Chapter D5. Protocol Description
D5.29. Cycle Count Format 1_1 with count Packet

D5.29 Cycle Count Format 1_1 with count Packet

Purpose
Indicates a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == op1.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

6 5 4 3 2 1 0
0o 0o 0 1 1 1 o
co COUNT[6:0]
co COUNT[13:7]

(0) (0)

COUNT[19:14]

Figure D5.46: Cycle Count Format 1_1 with count Packet

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

000 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT

Indicates the number of PE clock cycles that have occurred between the 2 most recent Commit elements that

both had a Cycle Count element associated with them. The cycle count is COUNT+-cc_threshold.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

180

Chapter D5. Protocol Description
D5.30. Cycle Count Format 2_0 small commit Packet

D5.30 Cycle Count Format 2_0 small commit Packet

Purpose
Indicates a Commit element and a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == oro0.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

AAAA BBBB

Figure D5.47: Cycle Count Format 2_0 small commit Packet

Field descriptions

AAAA
Indicates the number of PO elements to be resolved indicated by this field + 1.
The encoding for this field is POD.

BBBB
Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 181
Aa Non-confidential

Chapter D5. Protocol Description
D5.31. Cycle Count Format 2_0 large commit Packet

D5.31 Cycle Count Format 2_0 large commit Packet

Purpose
Indicates a Commit element and a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == oro0.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

AAAA BBBB

Figure D5.48: Cycle Count Format 2_0 large commit Packet

Field descriptions

AAAA
Indicates the number of PO elements to be resolved indicated by TRCIDR8.MAXSPEC + field - 15.
The number of PO elements to be resolved must be greater than 0.

If the number of PO elements to be resolved is less than 17 then it is preferred that a Cycle Count Format 2_0
small commit Packet is used.

The encoding for this field is POD.

BBBB
Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 182
Aa Non-confidential

Chapter D5. Protocol Description
D5.32. Cycle Count Format 2_1 Packet

D5.32 Cycle Count Format 2_1 Packet

Purpose
Indicates a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == op1.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

4 3 2 1 0

1 1 1 1 BBBB

Figure D5.49: Cycle Count Format 2_1 Packet

Field descriptions

BBBB
Indicates the cycle value. The cycle count is calculated from cc_threshold + BBBB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 183
Aa Non-confidential

Chapter D5. Protocol Description
D5.33. Cycle Count Format 3_0 Packet

D5.33 Cycle Count Format 3_0 Packet

Purpose
Indicates a Commit element and a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == oro0.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

Figure D5.50: Cycle Count Format 3_0 Packet

Field descriptions

AA The number of PO elements to be resolved indicated by this field + 1.
The encoding for this field is POD.
BB Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Commit element.
2. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 184
Aa Non-confidential

Chapter D5. Protocol Description
D5.34. Cycle Count Format 3_1 Packet

D5.34 Cycle Count Format 3_1 Packet

Purpose
Indicates a Cycle Count element.

Configurations
All the following conditions must be met:

* TRCIDRO.COMMOPT == op1.
* TRCIDRO.TRCCCI == ob1.

Packet Layout

Figure D5.51: Cycle Count Format 3_1 Packet

Field descriptions

BB Indicates the cycle value. The cycle count is calculated from cc_threshold + BB.

The encoding for this field is POD.

Element sequence

This packet encodes the following sequence:

1. Cycle Count element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 185
Aa Non-confidential

Chapter D5. Protocol Description
D5.35. Commit Packet

D5.35 Commit Packet

Purpose
Indicates a Commit element.

Configurations
TRCIDR8.MAXSPEC > 0x0.

Packet Layout

Field descriptions

CO0 Continuation Bit.

The encoding for this field is Unary code.

7 5 4 3 2 1
0 1 0 1 1 o0
co COMMIT[6:0]
co COMMIT[13:7]
Co COMMIT[20:14]
Co COMMIT[27:21]

(0) (0) (0) (0) COMMIT[31:28]

Figure D5.52: Commit Packet

0b0

0bl

Last byte in this section.

At least one more byte follows in this section.

COMMIT

The number of PO elements to be resolved.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Commit element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

186

Chapter D5. Protocol Description
D5.36. Cancel Format 1 Packet

D5.36 Cancel Format 1 Packet

Purpose
Indicates a Cancel element optionally followed by a Mispredict element.

Configurations
TRCIDR8.MAXSPEC > 0x0.

Packet Layout

7 6 5 4 3 2 1 0

0 1 0 1 1 1|M
co CANCEL[6:0]
co CANCEL[13:7]
co CANCEL[20:14]
co CANCEL[27:21]

(0) (0) (0) (0) CANCEL[31:28]

Figure D5.53: Cancel Format 1 Packet

Field descriptions

CO0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

CANCEL
The number of PO elements to be canceled.

The encoding for this field is unsigned LE128n.

0b0 Reserved

M Mispredict element included in the packet.
The encoding for this field is POD.

000 No Mispredict element occurred
0b1l A Mispredict element occurred after the Cancel element
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 187

A.a Non-confidential

Chapter D5. Protocol Description
D5.36. Cancel Format 1 Packet

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 188
Aa Non-confidential

Chapter D5. Protocol Description
D5.37. Cancel Format 2 Packet

D5.37 Cancel Format 2 Packet

DDI0608
A.a

Purpose
Indicates zero or more E or N Atom elements followed by a Cancel element and a Mispredict element.

Configurations
TRCIDR8.MAXSPEC > 0x0.

Packet Layout

Figure D5.54: Cancel Format 2 Packet

Field descriptions

A Indicates the number of Afom elements that occurred before the Cancel element.

The encoding for this field is POD.

0600
1. Cancel element.

2. Mispredict element.

0b01
1. E Atom element.

2. Cancel element.
3. Mispredict element.

0b10
. E Atom element.

. E Atom element.
. Cancel element.
. Mispredict element.

A~ WD =

0bl1l

—

. N Atom element.
2. Cancel element.
3. Mispredict element.

Additional information

For more information about the decoding of this packet see decode.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter D5. Protocol Description
D5.38. Cancel Format 3 Packet

D5.38 Cancel Format 3 Packet

Purpose

Indicates zero or one E Afom element followed by a Cancel element with a payload of 2-5 and one Mispredict

element.

Configurations
TRCIDR8.MAXSPEC > 0x0.

Packet Layout

Field descriptions

A Indicates the number of Afom elements that occurred before the Cancel element.

The encoding for this field is POD.

[l K421

Figure D5.55: Cancel Format 3 Packet

0b0

O0b1l

1. Cancel element.

1. E Atom element.

2. Cancel element.

CC The number of PO elements to be canceled.

The encoding for this field is POD.

0b00

0b01

0b10

0bl1l

Cancel 2 PO elements
Cancel 3 PO elements
Cancel 4 PO elements

Cancel 5 PO elements

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

190

Chapter D5. Protocol Description
D5.39. Mispredict Packet

D5.39 Mispredict Packet

Purpose
Indicates 0-2 E or N Atom elements followed by one Mispredict element.

Configurations
All.

Packet Layout

Figure D5.56: Mispredict Packet

Field descriptions

A Indicates the number of Afom elements that occurred before the Mispredict element.

The encoding for this field is POD.

0500 . .
1. Mispredict element.

0b01
1. E Atom element.

2. Mispredict element.

0b10
1. E Atom element.

2. E Atom element.
3. Mispredict element.

0b11
1. N Atom element.

2. Mispredict element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 191
Aa Non-confidential

Chapter D5. Protocol Description
D5.40. Atom Format 1 Packet

D5.40 Atom Format 1 Packet

Purpose
Indicates one Atom element.

Configurations
All.

Packet Layout

Field descriptions

A Indicates a single Afom element.

The encoding for this field is POD.

1 0

[K42

LAl

Figure D5.57: Atom Format 1 Packet

0b0

O0bl

One N Arom element

One E Atom element

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

192

Chapter D5. Protocol Description
D5.41. Atom Format 2 Packet

D5.41 Atom Format 2 Packet

Purpose
Indicates two Atom elements.

Configurations
All.

Packet Layout

Figure D5.58: Atom Format 2 Packet

Field descriptions

A Indicates a specific sequence of Afom elements.

The encoding for this field is POD.

0600
1. N Atom element.

2. N Atom element.

0b01
1. E Atom element.

2. N Atom element.

0b10
1. N Atom element.

2. E Atom element.

0b11
1. E Atom element.

2. E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 193
Aa Non-confidential

Chapter D5. Protocol Description
D5.42. Atom Format 3 Packet

D5.42 Atom Format 3 Packet

Purpose
Indicates three Atom elements.

Configurations
All.

Packet Layout

Figure D5.59: Atom Format 3 Packet

Field descriptions

A Indicates a specific sequence of Afom elements.

The encoding for this field is POD.

06000
1. N Atom element.

2. N Atom element.
3. N Atom element.

0b001
1. E Atom element.

2. N Atom element.
3. N Arom element.

06010
1. N Atom element.

2. E Atom element.
3. N Arom element.

00011
1. E Atom element.

2. E Atom element.
3. N Arom element.

06100
1. N Atom element.

2. N Atom element.
3. E Atom element.

0b101
1. E Atom element.

2. N Atom element.
3. E Atom element.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 194
Aa Non-confidential

Chapter D5. Protocol Description
D5.42. Atom Format 3 Packet

DDI0608
A.a

0b110

O0b111

N Arom element.
E Atom element.
E Atom element.

E Atom element.
E Atom element.
E Atom element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

195

Chapter D5. Protocol Description
D5.43. Atom Format 4 Packet

D5.43 Atom Format 4 Packet

Purpose
Indicates four Atom elements.

Configurations
All.

Packet Layout

Figure D5.60: Atom Format 4 Packet

Field descriptions

A Indicates a specific sequence of Afom elements.

The encoding for this field is POD.

0600
N Atom element.

E Atom element.
E Atom element.
E Atom element.

v

0601
N Atom element.

N Atom element.
N Atom element.
N Arom element.

el NS

0b10
N Arom element.

E Atom element.
N Atom element.
E Atom element.

e

0bl1l
E Atom element.

N Atom element.
E Atom element.
N Atom element.

el

Additional information
For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 196
Aa Non-confidential

Chapter D5. Protocol Description
D5.44. Atom Format 5.1 Packet

D5.44 Atom Format 5.1 Packet

Purpose
Indicates five Atom elements.

Configurations
All.

Packet Layout

Figure D5.61: Atom Format 5.1 Packet

Element sequence

This packet encodes the following sequence:

N Atom element.
E Atom element.
E Atom element.
. E Atom element.
. E Atom element.

e

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 197
Aa Non-confidential

Chapter D5. Protocol Description
D5.45. Atom Format 5.2 Packet

D5.45 Atom Format 5.2 Packet

Purpose
Indicates five Atom elements.

Configurations
All.

Packet Layout

Figure D5.62: Atom Format 5.2 Packet

Field descriptions

A Indicates a specific sequence of Afom elements.

The encoding for this field is POD.

0601
N Atom element.

N Arom element.
N Atom element.
N Atom element.
N Atom element.

Nk w =

0b10
N Atom element.

E Atom element.
N Atom element.
E Atom element.
N Arom element.

Nk =

0bl1l
E Atom element.

N Arom element.
E Atom element.
N Atom element.
E Atom element.

Nk w =

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 198
Aa Non-confidential

Chapter D5. Protocol Description
D5.46. Atom Format 6 Packet

D5.46 Atom Format 6 Packet

Purpose
Indicates 3-23 E Atom elements, plus a subsequent E Atom or N Atom element.

Configurations
All.

Packet Layout

7 6 5 4 3 2 1 0
|11|A| COUNT

Figure D5.63: Atom Format 6 Packet

Field descriptions

A Indicates an E Afom element or N Atom element, after the E Atom elements indicated by COUNT.
The encoding for this field is POD.

0b0 One E Atom element
Ob1l One N Arom element
COUNT
Indicates a number of E Afom elements. The number is 3 + COUNT. Permitted values of COUNT are 000000
t0 0010100.

The encoding for this field is POD.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 199
Aa Non-confidential

Chapter D5. Protocol Description
D5.47. Target Address Short IS0 Packet

D5.47 Target Address Short IS0 Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

co A[8:2]
A[16:9]

Figure D5.64: Target Address Short ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovo0.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 200
Aa Non-confidential

Chapter D5. Protocol Description
D5.48. Target Address Short IS1 Packet

D5.48 Target Address Short IS1 Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

co Al7:1]
A[15:8]

Figure D5.65: Target Address Short IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 201
Aa Non-confidential

Chapter D5. Protocol Description
D5.49. Target Address 32-bit ISO Packet

D5.49 Target Address 32-bit ISO Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

(0)

Al8:2]

(0)

A[15:9]

A[23:16]

A[31:24]

Figure D5.66: Target Address 32-bit ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo0.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

202

Chapter D5. Protocol Description
D5.50. Target Address 32-bit IS1 Packet

D5.50 Target Address 32-bit IS1 Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

1 0 0o 1 1 o0 1 1
(0) Al7:1]

A[15:8]

A[23:16]

A[31:24]

Figure D5.67: Target Address 32-bit IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 203
Aa Non-confidential

Chapter D5. Protocol Description
D5.51. Target Address 64-bit ISO Packet

D5.51 Target Address 64-bit ISO Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

(0)

Al8:2]

(0)

A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.68: Target Address 64-bit ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

204

Chapter D5. Protocol Description
D5.52. Target Address 64-bit IS1 Packet

D5.52 Target Address 64-bit IS1 Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

Al7:1]

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.69: Target Address 64-bit IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

205

Chapter D5. Protocol Description
D5.53. Target Address Exact Match Packet

D5.53 Target Address Exact Match Packet

Purpose
Indicates a Target Address element.

Configurations
All.

Packet Layout

Field descriptions

QE Instruction virtual address.

The encoding for this field is POD.

6 5 4 3 2 1 0
0100|QE|

Figure D5.70: Target Address Exact Match Packet

0b00

0b01

0b10

The address is the same as address history buffer entry 0.
The address is the same as address history buffer entry 1.

The address is the same as address history buffer entry 2.

Element sequence

This packet encodes the following sequence:

1. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 206
Aa Non-confidential

Chapter D5. Protocol Description
D5.54. Context Same Packet

D5.54 Context Same Packet

Purpose
Indicates a Context element.

Configurations
All.

Packet Layout

Figure D5.71: Context Same Packet

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 207
Aa Non-confidential

Chapter D5. Protocol Description
D5.55. Context Packet

D5.55 Context Packet

Purpose
Indicates a Context element.

Configurations
All.

Packet Layout - Variant 1

7 6 5 4 3 2 1 0
1 0 0 0 0 0 0 1

o|o|ns|sFlo o] E

Figure D5.72: Context Packet (1)

Packet Layout - Variant 2

7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 1

1{o]|ns[srloo| e
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.73: Context Packet (2)

Packet Layout - Variant 3

7 6 5 4 3 2 1 0

1 0 0 0 O 0 0 1

o|1ns|sFlo o] E
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]

Figure D5.74: Context Packet (3)

DDI0608

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa

208
Non-confidential

Chapter D5. Protocol Description
D5.55. Context Packet

Packet Layout - Variant 4

7 6 5 4 3 2 1 0
1 0 0 0 0 0 0 1

1| 1]nsfsrlo|o| e
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.75: Context Packet (4)

Field descriptions

CONTEXTID
Context identifier.
When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
 This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

EL Exception level.
The encoding for this field is POD.

0600 ELO
0601 EL1
0b10 EL2
0b11l EL3

NS Security state.
The encoding for this field is POD.

0b0 The PE is in Secure state.
0bl The PE is in Non-secure state.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 209

A.a Non-confidential

Chapter D5. Protocol Description
D5.55. Context Packet

SF AArch64 state.
The encoding for this field is POD.

0b0 The PE is in AArch32 state.
0b1l The PE is in AArch64 state.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

¢ This field is not traced.
» This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Context element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 210
Aa Non-confidential

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit ISO Packet

D5.56 Target Address with Context 32-bit ISO Packet

Purpose
Indicates a Target Address element and a Context element.

Configurations
All.

Packet Layout - Variant 1

1 0 0 0 0 1 o0
©) A8:2]
©) A[15:9]

A[23:16]

A[31:24]
o|o|ns|sFlo o] E

Figure D5.76: Target Address with Context 32-bit IS0 Packet (1)

Packet Layout - Variant 2

©) A8:2]
©) A[15:9]

A[23:16]

A[31:24]
1{o]|ns[sFlo|o@| e

CONTEXTID[7:0]
CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.77: Target Address with Context 32-bit IS0 Packet (2)

DDI0608

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa

211
Non-confidential

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit ISO Packet

Packet Layout - Variant 3

©) Al8:2]
©) Al15:9]
A[23:16]
A[31:24]
0 | 1 |NS|SF|(0) |(0) | EL
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]

Figure D5.78: Target Address with Context 32-bit IS0 Packet (3)

Packet Layout - Variant 4

©) A8:2]
©) A[15:9]
A[23:16]
A[31:24]
1| 1]nsfsrlo o] e
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.79: Target Address with Context 32-bit IS0 Packet (4)

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 212
Aa Non-confidential

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit ISO Packet

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
 This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

EL Exception level at this address.
The encoding for this field is POD.

0600 ELO
0601 EL1
0b10 EL2
0b11l EL3

NS Security state.
The encoding for this field is POD.

0b0 The PE is in Secure state.

0bl The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0 The PE is in AArch32 state.
Ob1l The PE is in AArch64 state.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

e This field is not traced.
e This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 213
Aa Non-confidential

Chapter D5. Protocol Description
D5.56. Target Address with Context 32-bit ISO Packet

Element sequence

This packet encodes the following sequence:
1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 214
Aa Non-confidential

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

D5.57 Target Address with Context 32-bit IS1 Packet

Purpose
Indicates a Target Address element and a Context element.

Configurations
All.

Packet Layout - Variant 1

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
o|o|ns|sFlo o] E

Figure D5.80: Target Address with Context 32-bit IS1 Packet (1)

Packet Layout - Variant 2

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
1{o]|ns[sFlo|o@| e
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.81: Target Address with Context 32-bit IS1 Packet (2)

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 215

DDI0608
Non-confidential

A.a

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

Packet Layout - Variant 3

©) A7:1]
A[15:8]
A[23:16]
A[31:24]
0 | 1 |NS|SF|(0) |(0) | EL
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]

Figure D5.82: Target Address with Context 32-bit IS1 Packet (3)

Packet Layout - Variant 4

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
1| 1]nsfsrlo o] e
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.83: Target Address with Context 32-bit IS1 Packet (4)

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 216
Aa Non-confidential

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
 This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

EL Exception level at this address.
The encoding for this field is POD.

0600 ELO
0601 EL1
0b10 EL2
0b11l EL3

NS Security state.
The encoding for this field is POD.

0b0 The PE is in Secure state.

0bl The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0 The PE is in AArch32 state.
Ob1l The PE is in AArch64 state.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual
context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

e This field is not traced.
e This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 217
Aa Non-confidential

Chapter D5. Protocol Description
D5.57. Target Address with Context 32-bit IS1 Packet

Element sequence

This packet encodes the following sequence:
1. Target Address element.

2. Context element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 218
Aa Non-confidential

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit ISO Packet

D5.58 Target Address with Context 64-bit ISO Packet

Purpose
Indicates a Target Address element and a Context element.

Configurations
All.

Packet Layout - Variant 1

(0)

Al8:2]

(0)

A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

o|o|ns|[sFl@ o |

EL

Figure D5.84: Target Address with Context 64-bit ISO Packet (1)

Packet Layout - Variant 2

()

Al8:2]

(0)

A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

1| o|ns[sFl@ o |

EL

CONTEXTID[7:0]

CONTEXTID[15:8]

CONTEXTID[23:16]

CONTEXTID[31:24]

Figure D5.85: Target Address with Context 64-bit IS0 Packet (2)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

219

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit ISO Packet

DDI0608
A.a

Packet Layout - Variant 3

(0)

A[8:2]

()

A[15:9]

A[23:16]

Al31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

o|1|ns|sFl@ o |

EL

VMID[7:0]

VMID[15:8]

VMID[23:16]

VMID[31:24]

Figure D5.86: Target Address with Context 64-bit ISO Packet (3)

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Non-confidential

220

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit ISO Packet

Packet Layout - Variant 4

©) A8:2]
©) A[15:9]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]
A[63:56]
1| 1]nsfsrlo o e
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.87: Target Address with Context 64-bit ISO Packet (4)

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

EL Exception level at this address.
The encoding for this field is POD.

0b00 ELO

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 221
Aa Non-confidential

Chapter D5. Protocol Description
D5.58. Target Address with Context 64-bit ISO Packet

DDI0608
A.a

0b01

0b10

0bl1l

EL1
EL2
EL3

NS Security state.
The encoding for this field is POD.

0b0

0bl

The PE is in Secure state.

The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0

O0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual

context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

e This field is not traced.

¢ This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.
2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

D5.59 Target Address with Context 64-bit IS1 Packet

Purpose
Indicates a Target Address element and a Context element.

Configurations
All.

Packet Layout - Variant 1

©) A[7:1]

A[15:8]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]
o|o|ns|sFlo o] E

Figure D5.88: Target Address with Context 64-bit IS1 Packet (1)

Packet Layout - Variant 2

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]

A[63:56]
1{o]|ns[srlo]o@| e
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.89: Target Address with Context 64-bit IS1 Packet (2)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 223
Aa Non-confidential

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

Packet Layout - Variant 3

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]

A[63:56]
o|1ns|sFlo o] E
VMID[7:0]

VMID[15:8]

VMID[23:16]
VMID[31:24]

Figure D5.90: Target Address with Context 64-bit IS1 Packet (3)

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 224
Aa Non-confidential

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

Packet Layout - Variant 4

©) A[7:1]
A[15:8]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]
A[63:56]
1| 1]nsfsrlo o e
VMID[7:0]
VMID[15:8]
VMID[23:16]
VMID[31:24]
CONTEXTID[7:0]
CONTEXTID[15:8]
CONTEXTID[23:16]
CONTEXTID[31:24]

Figure D5.91: Target Address with Context 64-bit IS1 Packet (4)

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

CONTEXTID
Context identifier.

When this field is not output, the Context identifier is the same as the most recently output Context identifier.
If Context identifier tracing is disabled, then one of the following must occur:

» This field is not traced.
¢ This field contains a value of zero.

The encoding for this field is POD.
See Context identifier tracing.

EL Exception level at this address.
The encoding for this field is POD.

0b00 ELO

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 225
Aa Non-confidential

Chapter D5. Protocol Description
D5.59. Target Address with Context 64-bit IS1 Packet

DDI0608
A.a

0b01

0b10

0bl1l

EL1
EL2
EL3

NS Security state.
The encoding for this field is POD.

0b0

0bl

The PE is in Secure state.

The PE is in Non-secure state.

SF AArch64 state.
The encoding for this field is POD.

0b0

O0bl

The PE is in AArch32 state.
The PE is in AArch64 state.

VMID
Virtual context identifier.

When this field is not output, the Virtual context identifier is the same as the most recently output Virtual

context identifier.

If Virtual context identifier tracing is disabled, then one of the following must occur:

e This field is not traced.

¢ This field contains a value of zero.

The encoding for this field is POD.

See Virtual context identifier tracing.

Element sequence

This packet encodes the following sequence:

1. Target Address element.
2. Context element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter D5. Protocol Description
D5.60. Source Address Short ISO Packet

D5.60 Source Address Short ISO Packet

Purpose
Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

co A[8:2]
A[16:9]

Figure D5.92: Source Address Short ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovo0.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 227
Aa Non-confidential

Chapter D5. Protocol Description
D5.61. Source Address Short IS1 Packet

D5.61 Source Address Short IS1 Packet

Purpose
Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

co Al7:1]
A[15:8]

Figure D5.93: Source Address Short IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

b1 At least one more byte follows in this section.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 228
Aa Non-confidential

Chapter D5. Protocol Description
D5.62. Source Address 32-bit ISO Packet

D5.62 Source Address 32-bit IS0 Packet

Purpose
Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

1 0 1 1 0 1 1 o0
0) A[8:2]
0) A[15:9]

A[23:16]

A[31:24]

Figure D5.94: Source Address 32-bit ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo0.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 229
Aa Non-confidential

Chapter D5. Protocol Description
D5.63. Source Address 32-bit IS1 Packet

D5.63 Source Address 32-bit IS1 Packet

Purpose
Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

1 0 1 1 0 1 1 1
(0) Al7:1]

A[15:8]

A[23:16]

A[31:24]

Figure D5.95: Source Address 32-bit IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 230
Aa Non-confidential

Chapter D5. Protocol Description
D5.64. Source Address 64-bit ISO Packet

D5.64 Source Address 64-bit IS0 Packet

Purpose

Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

(0)

Al8:2]

(0)

A[15:9]

A[23:16]

A[31:24]

A[39:32]

A[47:40]

A[55:48]

A[63:56]

Figure D5.96: Source Address 64-bit ISO Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

231

Chapter D5. Protocol Description
D5.65. Source Address 64-bit IS1 Packet

D5.65 Source Address 64-bit IS1 Packet

Purpose
Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

(0) Al7:1]
A[15:8]
A[23:16]
A[31:24]
A[39:32]
A[47:40]
A[55:48]
A[63:56]

Figure D5.97: Source Address 64-bit IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.

The encoding for this field is Bit replacement.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 232
Aa Non-confidential

Chapter D5. Protocol Description
D5.66. Source Address Exact Match Packet

D5.66 Source Address Exact Match Packet

Purpose

Indicates the source address of a PO instruction, and that the instruction was taken.

Configurations
All.

Packet Layout

Field descriptions

QE Instruction virtual address.

The encoding for this field is POD.

6 5 4 3 2 1 0
1100|QE|

Figure D5.98: Source Address Exact Match Packet

0b00

0b01

0b10

The address is the same as address history buffer entry 0.
The address is the same as address history buffer entry 1.

The address is the same as address history buffer entry 2.

Element sequence

This packet encodes the following sequence:

1. Source Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 233
Aa Non-confidential

Chapter D5. Protocol Description
D5.67. Ignore Packet

D5.67 Ignore Packet

Purpose
To align packet boundary to memory boundary.

Configurations
All.

Packet Layout

Figure D5.99: Ignore Packet

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 234
Aa Non-confidential

Chapter D5. Protocol Description
D5.68. Event Packet

D5.68 Event Packet

Purpose

Indicates 1-4 Event elements.

Configurations

All

Packet Layout

Field descriptions

Vo

Vi1

V2

V3

DDI0608
A.a

Event 0 indicator.

The encoding for this field is POD.

6 5 4 3 2 1 0
1 1 1]va|va|vi|vol
Figure D5.100: Event Packet
0b0 ETEFEvent O did not occur
Ob1l ETEEvent 0 occurred

Event 1 indicator.

The encoding for this field is POD.

0b0

0bl

ETEEvent 1 did not occur
ETEEvent 1 occurred

Event 2 indicator.

The encoding for this field is POD.

0b0

0bl

ETEEvent 2 did not occur
ETEFEvent 2 occurred

Event 3 indicator.

The encoding for this field is POD.

0b0

O0bl

ETEEvent 3 did not occur
ETEFEvent 3 occurred

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter D5. Protocol Description
D5.68. Event Packet

Additional information

For more information about the decoding of this packet see decode.

Note

[V3, V2, V1, VO] != oboooo as this is decoded as an Ignore Packet.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 236
Aa Non-confidential

Chapter D5. Protocol Description
D5.69. Q Packet

D5.69 Q Packet

Purpose
Indicates that some instructions have executed, without a count of the number of instructions.

Configurations
All.

Packet Layout

Figure D5.101: Q Packet

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 237
Aa Non-confidential

Chapter D5. Protocol Description
D5.70. Q with count Packet

D5.70 Q with count Packet

Purpose

Indicates that some instructions have executed.

Configurations
All.

Packet Layout

Field descriptions

CO0 Continuation Bit.

The encoding for this field is Unary code.

6 5 4 3 2 1

0o 1 0 1 1 0
co COUNT[6:0]
co COUNT[13:7]
co COUNT[20:14]
co COUNT[27:21]

(0) (0) (0) (0)

COUNT([31:28]

Figure D5.102: Q with count Packet

0b0

0bl

Last byte in this section.

At least one more byte follows in this section.

COUNT
The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

1. Q element.

Additional information

For more information about the decoding of this packet see decode.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

A.a Non-confidential

238

Chapter D5. Protocol Description
D5.71. Q with Exact match address Packet

D5.71 Q with Exact match address Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations
All.

Packet Layout

Field descriptions

C0 Continuation Bit.

The encoding for this field is Unary code.

6 5 4 3 2 1 0
1 0 1 0 0 0 TYPE

co COUNT[6:0]

co COUNT[13:7]
co COUNT[20:14]
co COUNT[27:21]

(0) (0) (0) (0) COUNT([31:28]

Figure D5.103: Q with Exact match address Packet

0b0

0bl

Last byte in this section.

At least one more byte follows in this section.

COUNT
The number of instructions executed.

The encoding for this field is unsigned LE128n.

TYPE

The TYPE field indicates what form the rest of the Packet takes.

The encoding for this field is POD.

0b00

0b01

0b10

DDI0608

A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry O.

A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry 1.

A packet with this TYPE value also indicates a Target
Address element with an address the same as address history
buffer entry 2.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 239

A.a Non-confidential

Chapter D5. Protocol Description
D5.71. Q with Exact match address Packet

0b1l RESERVED

Element sequence

This packet encodes the following sequence:

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the generation of this packet see generation.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 240
Aa Non-confidential

Chapter D5. Protocol Description
D5.72. Q short address IS0 Packet

D5.72 Q short address IS0 Packet

Purpose
Indicates that some instructions have executed with an address of the next instruction.

Configurations
All.

Packet Layout

1 0 1 0 0 1 o0 1
Co A8:2]
A[16:9]

C1 COUNTI[6:0]
C1l COUNT[13:7]
C1 COUNT[20:14]
C1l COUNT[27:21]

(0) (0) (0) (0) COUNT[31:28]

Figure D5.104: Q short address IS0 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo0.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

000 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT
The number of instructions executed.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 241
Aa Non-confidential

Chapter D5. Protocol Description
D5.72. Q short address IS0 Packet

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:
1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 242
Aa Non-confidential

Chapter D5. Protocol Description
D5.73. Q short address IS1 Packet

D5.73 Q short address IS1 Packet

Purpose
Indicates that some instructions have executed with an address of the next instruction.

Configurations
All.

Packet Layout

1 0 1 0 0 1 1 o
Co Al7:1]
A[15:8]

C1 COUNT[6:0]

C1l COUNT[13:7]

C1 COUNTI[20:14]

C1l COUNT[27:21]

(0) (0) (0) (0) COUNT[31:28]

Figure D5.105: Q short address IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

C1 Continuation Bit.

The encoding for this field is Unary code.

000 Last byte in this section.

0b1 At least one more byte follows in this section.

COUNT
The number of instructions executed.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 243
Aa Non-confidential

Chapter D5. Protocol Description
D5.73. Q short address IS1 Packet

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:
1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.
For more information about the generation of this packet see generation.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 244
Aa Non-confidential

Chapter D5. Protocol Description
D5.74. Q 32-bit address IS0 Packet

D5.74 Q 32-bit address IS0 Packet

Purpose

Indicates that some instructions have executed with an address of the next instruction.

Configurations
All.

Packet Layout

7 6 5 4 3 2

1 0 1 0 1 0

(0) A[8:2]

(0) A[15:9]
A[23:16]
A[31:24]

Co COUNT[6:0]

Co COUNT[13:7]

Co COUNTI[20:14]

Co COUNT[27:21]

(0) (0) (0) (0) COUNT[31:28]

Figure D5.106: Q 32-bit address IS0 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bits[1:0] always have the value ovoo0.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

COUNT
The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Aa Non-confidential

245

Chapter D5. Protocol Description
D5.74. Q 32-bit address IS0 Packet

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 246
Aa Non-confidential

Chapter D5. Protocol Description
D5.75. Q 32-bit address IS1 Packet

D5.75 Q 32-bit address IS1 Packet

Purpose
Indicates that some instructions have executed with an address of the next instruction.

Configurations
All.

Packet Layout

1 0 1 0 1 o0 1 1
(0) A[7:1]
A[15:8]
A[23:16]
A[31:24]
Co COUNT[6:0]
Co COUNT[13:7]
Co COUNTI[20:14]
Co COUNT[27:21]
(0) (0) (0) (0) COUNT[31:28]

Figure D5.107: Q 32-bit address IS1 Packet

Field descriptions

A Instruction virtual address.
Instruction virtual address bit[0] always has the value ovo.
The address is compressed relative to address history buffer entry 0.
The encoding for this field is Bit replacement.

C0 Continuation Bit.

The encoding for this field is Unary code.

0b0 Last byte in this section.

0bl At least one more byte follows in this section.

COUNT
The number of instructions executed.

The encoding for this field is unsigned LE128n.

Element sequence

This packet encodes the following sequence:

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 247
Aa Non-confidential

Chapter D5. Protocol Description
D5.75. Q 32-bit address IS1 Packet

1. Q element.
2. Target Address element.

Additional information

For more information about the decoding of this packet see decode.

For more information about the encoding of this packet see encoding.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 248
Aa Non-confidential

Chapter D6
Trace Unit

This chapter describes the behavior of a ETE trace unit.

Element Packet

PE ——p» Resources ——pp»{ Filtering —p» Generation Generation

——p» Trace byte stream

Figure D6.1: Stages of trace generation

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 249
Aa Non-confidential

Chapter D6. Trace Unit
D6.1. Resetting the trace unit

D6.1 Resetting the trace unit

D6.1.1 Trace unit reset

%

DDI0608
A.a

A trace unit has a trace unit reset, that resets all trace unit trace registers and trace unit management registers.
When the trace unit core power domain is powered up, a trace unit reset is applied.
It is IMPLEMENTATION DEFINED whether the system has a mechanism to initiate a trace unit reset on demand.

In a Processing Element (PE) with FEAT_TREF, a PE Cold reset causes EDSCR.TFO to be reset to ‘Ob0’ which
means that tracing is prohibited after the Cold reset until explicitly permitted by software. If tracing from a Cold
reset is required, the debugger needs to ensure any relevant controls, including EDSCR.TFO, are programmed

to permit tracing. Programming such registers might involve causing the PE to enter Debug state to ensure the
registers can be programmed before the PE starts executing instructions.

Behavior on a trace unit reset

When a trace unit reset is applied, the trace unit resets the values of all trace unit registers to the values described
in the individual register descriptions.

Note

Some previous trace architectures from Arm supported multiple types of reset for the trace unit.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 250
Non-confidential

Chapter D6. Trace Unit
D6.2. System Behaviors

D6.2 System Behaviors

RerMrE

The trace unit outputs all of the trace byte stream, without external stimulus, within finite time.

D6.2.1 Behavior on enabling

E{ﬂ'EQJZ"

w2

TTPTKU

D6.2.2

TczpM

RT LTE

DDI0608
A.a

While both of the following are true, the trace unit is enabled:

* TRCPRGCTLR.EN is set to ob1.
e The OS Lock is unlocked.

Note

Previous trace architectures from Arm had a dedicated trace unit OS Lock, whereas ETE is dependent on the PE
OS Lock.

While the trace unit is enabled, the trace unit can trace all PE execution, except when any of the following are true:

* A trace unit buffer overflow occurs.
* The authentication interface prohibits the tracing of certain pieces of code.
* The PE Self-hosted Trace extension prohibits the tracing of certain pieces of code.

No sequences of code or PE operations are exempt from this requirement. However, while the trace unit is
transitioning from an enabled to a disabled state, or from a disabled to an enabled state, some loss of trace is
permitted.

While the trace unit is enabled, writes to most trace unit trace registers might be ignored. It is UNKNOWN whether
writes to these registers succeed. When the writes are successful, the behavior of the trace unit is UNPREDICTABLE.

Trace analyzers must not write to most trace unit trace registers while the trace unit is enabled or TRCSTATR.IDLE
indicates that the trace unit is not idle.

While the trace unit is enabled or idle, all resources that are visible in the programmers’ model might have unstable
values. Therefore, a trace analysis tool must be aware that the following values might be dynamically changing as
they are being read:

e The Counter values. These are indicated by the TRCCNTVR<n>.

* The Sequencer state. This is indicated by TRCSEQSTR.

* The ViewlInst start/stop function. This is indicated by TRCVICTLR.

* The Single-shot Comparator Control status. This is indicated by the TRCSSCSR<n>.

When the trace unit becomes enabled, the trace unit does not reset the state of any of the resources in the trace unit,
including the Counters, the Sequencer, and the ViewlInst start/stop function.

While the trace unit is disabled, and before it is enabled, a trace analyzer ensures the trace unit resources are
programmed with a valid initial state.

Behavior on disabling

While the trace unit is disabled, the trace unit is not enabled to generate trace and the trace unit resources are
disabled.

While either of the following is true, the trace unit is disabled:

¢ TRCPRGCTLR.EN is set to ovo.
¢ The OS Lock is locked.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 251
Non-confidential

Chapter D6. Trace Unit
D6.2. System Behaviors

R‘v\‘\ d

DDI0608
A.a

Note

Previous trace architectures from Arm had a dedicated trace unit OS Lock, whereas ETE is dependent on the PE
OS Lock.

When the trace unit becomes disabled, the trace unit stops generating trace and empties the trace buffers by
outputting any data in them.

When the trace buffers are empty, after the trace unit has become idle after becoming disabled, TRCSTATR.IDLE
indicates that the trace unit is idle.

When the trace unit becomes disabled, all resources that are visible in the programmers’ model retain their values
and become stable at those values.

‘When the trace unit becomes disabled, when the resources are stable, TRCSTATR.PMSTABLE indicates that the
programmers’ model is stable.

For more information, see D7.1.2 Behavior of the resources while in the Pausing state.

When the trace unit becomes disabled after the trace unit has generated Event elements, the trace unit outputs the
Event elements before TRCSTATR.IDLE indicates that the trace unit is idle.

While the trace unit is disabled, the following are true:

* No trace is generated.
¢ All trace unit resources and ETEEvents are disabled.

Behavior on flushing

The trace unit is allowed to buffer the trace byte stream to make efficient use of system infrastructure.

As the trace unit is allowed to delay the output of the trace byte stream to the system infrastructure, there are
system events that require all of the trace byte stream to be observable to other observers in the system.

Making the trace byte stream visible to other observers is known as a trace unit flush.
When any of the following occur, a trace unit flush is requested:

 The trace unit transitions from an enabled to a disabled state.
* The trace capture infrastructure requests a trace unit flush.
* A rsB csync instruction is executed while the Trace Buffer Extension is implemented and enabled.

A trace unit flush might be requested for IMPLEMENTATION DEFINED reasons. For example:

* Before the trace unit enters either:
— The low-power state.
— A powerdown state.

e The PE enters Debug state.

An example of a trace unit flush is one requested on an Arm AMBA ATB interface AMBA ATB Protocol
Specification [4].
When a trace unit flush is requested, the trace unit performs the following tasks before responding to the flush

request:

1. Encode any remaining elements into trace packets.
2. Complete any packets that are in the process of being generated.
3. Output all trace packets for all PE execution that occurred before the flush request was received.

An example of when the trace unit might need to encode remaining elements into trace packets before a trace unit
flush is when there are Commit elements that are not yet encoded.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 252
Non-confidential

Chapter D6. Trace Unit
D6.2. System Behaviors

D6.2.4

X GHHNW

When a trace unit flush occurs while the trace unit is recovering from a trace unit buffer overflow, the trace unit
outputs the corresponding Overflow element before responding to the flush request.

When a trace unit flush occurs, the trace unit either continues to generate trace or stops generating trace, depending
on what condition caused the trace flush. For example, if a flush occurs because the trace unit is entering a disabled
state, then tracing becomes inactive after the trace flush.

When a condition causes both a trace unit flush and the trace unit to stop generating trace, the trace unit stops
generating trace before responding to the flush request, and before indicating that the trace unit is idle.

On entry to Debug state, Arm recommends that the Exception element indicating entry to Debug state is included
in the flushed trace data if tracing is active.

When a trace unit flush is requested, the trace unit outputs the data within a finite period.

When a trace unit flush is requested and the cause of the flush request requires an acknowledgement, the trace unit
generates the acknowledgement within a finite period.

The flush request mechanism on AMBA ATB is an example of a cause of a flush request that also requires an
acknowledgement.

Low-power state

The low-power state in the trace unit is a mechanism to improve energy efficiency during periods where trace
generation is limited.

Scenarios where the trace unit might be in the low-power state are any of the following:

e The PE is in a low-power state.
* The PE is in Debug state.

The trace unit is only permitted to be in the low-power state when any of the following are true:

* The PE is in a low-power state due to the Wait for Event mechanism.

* The PE is in a low-power state due to the Wait for Interrupt mechanism.
* The PE is in Debug state.

* The trace unit is Disabled.

D6.2.5 Trace unit behavior when the PE is in a low-power state

The PE that is being traced might support a low-power state where no execution occurs. This low-power state
might be invoked, for example, when the PE executes a wr1 or a wre instruction.

While the trace unit is in the Disabled state, the trace unit does not stop the PE from entering a low-power state.

While the trace unit is in Low-power Override Mode, the trace unit does not affect the operation of the PE.

D6.2.6 Trace unit behavior in the low-power state

DDI0608
A.a

While the trace unit is enabled, when the trace unit enters the low-power state, the trace unit continues to appear
enabled throughout the time it is in the low-power state.

When the trace unit enters or leaves the low-power state, the trace unit does not lose resource events that are in
transition through the trace unit, except those permitted when moving through the Pausing state of the resources.
See D7.1.2 Behavior of the resources while in the Pausing state for details on the resource events that are permitted
to be lost when in the Pausing state.

Observation of resource events that are in transition through the trace unit when it enters the low-power state might
not occur until after the trace unit leaves the low-power state.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 253
Non-confidential

Chapter D6. Trace Unit
D6.2. System Behaviors

Ry HYHC

Rpnkpv

R'fH SEL

I FRMMP

DDI0608
A.a

While the trace unit is not in the low-power state, and before it enters the low-power state, the resources enter the
Paused state. See D7.1.3 Behavior of the resources while in the Paused state.

If wrr and wre instructions are classified as PO instructions, see TRCIDR2.WFXMODE, and the trace unit enters
the low-power state as a result of a we1 or wre instruction, Arm strongly recommends that the following elements
are generated before the trace unit enters the low-power state:

* The Atom element that represents the wr1 or wre instruction.
* Any pending Commit elements.

While the trace unit is in the low-power state, the trace unit does not generate trace, including ETEEvent trace.

While the trace unit is in the low-power state, the resources remain in the state that they were in before the trace
unit entered the low-power state.

The resources are:

* The Counters.

* The Sequencer.

* The ViewlInst start/stop function.

* The Single-shot Comparator Controls.

While the trace unit is in the low-power state, the trace unit drives all External Outputs low.

While the trace-unit is in the low-power state, the PE and external debugger are able to access the trace unit trace
registers and trace unit management registers unaffected.

While the trace unit is in the low-power state, when a trace protocol synchronization request occurs, the trace
unit handles the trace protocol synchronization request correctly. See D1.9 Trace protocol synchronization for
information on how the trace unit handles trace protocol synchronization requests.

While the trace unit is a retention state, external debugger accesses to the trace unit behave as if there is no power
to the trace unit core power domain.

While the trace unit is in the low-power state, the trace unit might not recognize external events, such as the
assertion of any External Inputs.

While the trace unit is in the low-power state, it is IMPLEMENTATION DEFINED whether the cycle counter continues
to count or not.

While the trace unit is in the low-power state, timestamp requests might be ignored.

It is possible that the trace unit might intermittently leave and re-enter the low-power state while the PE is in a
low-power state. If this happens, the trace unit resources might become intermittently active during this time. In
addition, trace generation might also become intermittently active, and this means that the trace unit might output
some packets. This behavior is IMPLEMENTATION DEFINED.

There is no additional requirement for the trace unit to generate a Trace Info element or Trace On element when
leaving the low-power state. However, if the trace unit entered the low-power state because the PE was in Debug
state, the normal requirements for restarting trace after leaving Debug state apply, including generation of a Trace
On element. See D6.3 Trace unit behavior while the PE is in Debug state.

The trace unit can be programmed so that it does not enter the low-power state, by enabling Low-power Override
Mode. Low-power Override Mode is selected using TRCEVENTCTL1R.LPOVERRIDE.

When Low-power Override Mode is enabled, the resources continue operating and the trace unit can generate trace.

Low-power Override Mode does not affect the operation of the PE, however it is not required to prevent the PE
from entering a low-power state. This means that even though the trace unit can generate trace, it might only
generate Event elements.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 254
Non-confidential

Chapter D6. Trace Unit
D6.3. Trace unit behavior while the PE is in Debug state

D6.3 Trace unit behavior while the PE is in Debug state

TypoLt

DDI0608
A.a

While Viewlnst is active, when the PE enters Debug state, the trace unit generates an Exception element which
indicates that the PE has entered Debug state.

When the PE enters Debug state, ViewInst becomes inactive, and remains inactive throughout the time the PE is in
Debug state.

While the PE is in Debug state, the trace unit does not trace instructions that are executed.
When the PE exits Debug state and ViewlInst becomes active, the trace unit generates a Trace On element.
While the PE is in Debug state, the Viewlnst start/stop function maintains its state.

If an Exceptional occurrence occurs between the PE exiting Debug state and the PE executing the first instruction,
the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced. In general, if the entry to
Debug state was traced then TRCRSR.TA will be set to oo1, and therefore this Exceptional occurrence on exit
from Debug state is traced.

If a PE Reset occurs when the PE is in Debug state this is treated as leaving Debug state. This means that a Trace
On element and an Exception element indicating a PE Reset are traced if tracing is not prohibited and either of the
following are true:

* TRCRSR.TA is Obl1.
* Forced tracing of PE Resets is active.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 255
Non-confidential

Chapter D6. Trace Unit
D6.4. Trace unit behavior on a trace unit buffer overflow

D6.4

T‘l‘,»”[T

R]’; QOBDH

YYNRC

DDI0608
A.a

Trace unit behavior on a trace unit buffer overflow

When a trace unit buffer overflow occurs, trace generation becomes inoperative until the trace unit can recover
from the overflow.

When a trace unit buffer overflow occurs, the trace unit does not output a partial trace packet, that is, the trace unit
can only output complete packets.

The Overflow element indicates to a trace analyzer that a trace unit buffer overflow has occurred. See D6.9.15
Overflow Element for details on the generation of an Overflow element.

See D6.9.6 Event Element for details of the effect of a trace unit buffer overflow on Event element generation.
When the trace unit recovers from a trace unit buffer overflow, the following occur:

* Trace protocol synchronization is requested.
* Trace protocol synchronization occurs before the trace unit outputs any packets.

When an Overflow packet is generated, the trace unit might output any of the following packets before it outputs
an Alignment Synchronization packet:

* Event packet.

* Overflow packet.
* Discard packet.
* Ignore packet.

Arm recommends that the Alignment Synchronization packet is the first packet output after the Overflow packet.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 256
Non-confidential

Chapter D6. Trace Unit
D6.5. Trace unit power states

D6.5 Trace unit power states

The Arm architecture Arm Architecture Reference Manual for ARMvS-A architecture profile [1] defines the
following power-states:

Normal
The trace unit core power domain is fully powered up and the trace unit registers are accessible.

Standby
The trace unit core power domain is on, but there are measures to reduce energy consumption. Standby
is transparent, meaning that to software and to an external debugger it is indistinguishable from normal
operation.

Retention
The OS takes some measures, including IMPLEMENTATION DEFINED code sequences and registers, to reduce
energy consumption. Trace unit registers cannot be accessed. A trace unit reset does not occur on leaving
Retention.

Powerdown
The OS takes some measures to reduce energy consumption by turning the trace unit core power domain off.
Trace registers cannot be accessed. A trace unit reset occurs on leaving Powerdown.

A trace unit might support a low-power state, which is equivalent to the Standby state.

A trace unit might support a Retention state or a Powerdown state, and both of these states are considered to be a
state where the trace unit core power domain is powered down.

If the trace unit is implemented in a power domain which is separate from the PE power domain, all of the following
are true:

* The trace unit core power domain might be able to be powered down without powering down the PE power
domain.
 The trace unit core power domain is always powered down when the PE power domain is powered down.

A read of TRCPDSR returns information about the current state of the trace unit and Table D6.1 shows the
meanings of the returned value.

Table D6.1: Meaning of TRCPDSR values

STICKYPD POWER Meaning

0b0

Obl

Ob1l The trace unit core power domain is powered and the trace unit registers are accessible.

Obl The trace unit core power domain is powered and the trace unit registers are accessible.
A trace unit reset or power interruption has occurred so the trace unit register state
might not be valid.

DDI0608
A.a

When the trace unit core power domain transitions from powered down to powered up, if the trace unit register
state has been preserved over the power down then TRCPDSR.STICKYPD is restored to the value before power
down.

When the trace unit core power domain transitions from powered down to powered up, if the trace unit register
state has not been preserved over the power down then TRCPDSR.STICKYPD is set to ob1.

Note

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 257
Non-confidential

Chapter D6. Trace Unit
D6.5. Trace unit power states

Previous trace architectures from Arm supported multiple power domains in the trace unit. ETE only supports a
single power domain and therefore TRCPDSR.POWER is always ob1.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 258
Aa Non-confidential

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

D6.6 Visibility of the PE operation

Lovapz

RT;"TFf

DDI0608
A.a

This section describes the ability of the trace unit to trace the execution of the operation of the PE.

When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with Context synchronization events.

When the trace unit performs indirect reads of PE System registers, the trace unit complies with the rules associated
with the tss csync instruction as defined in Chapter E1 Trace Buffer Extension.

When instructions are executed outside of any prohibited region, the trace unit observes the execution.

When observable instructions are executed, the trace unit observes all execution before a PE Context
synchronization event occurs, as defined in Chapter E1 Trace Buffer Extension.

When an Exceptional occurrence occurs outside of any prohibited region, the trace unit observes the Exceptional
occurrence.

Executing a tse csync instruction generates a Trace synchronization event as defined in Chapter E1 Trace Buffer
Extension.

When a tse csync instruction is executed in a prohibited region, the tss csync instruction does not become
Microarchitecturally-finished until the resources are in the Paused state or the trace unit is in the Idle or Stable
state.

While the PE is outside a transaction, after a sz csync instruction executed inside a prohibited region generates
a Trace synchronization event, the Trace synchronization event is microarchitecturally-finished when the trace
operation has microarchitecturally-finished for every instruction before the Context synchronization event before
the tsB csync instruction that generated the Trace synchronization event.

For more details on the Tse csync instruction, see Ryrvpr.

While the PE is inside a transaction, when a Trace synchronization event occurs, the Trace synchronization event
becomes Microarchitecturally-finished within a finite period.

While the PE is inside a transaction, the completion of a Trace synchronization event is not dependent on the
resolution of the transaction. It might still be dependent on other aspects of the trace operation.

When a 1s8 csync instruction executed in a prohibited region becomes Microarchitecturally-finished, the trace unit
generates no more trace until the PE leaves the prohibited region.

When a 7se csync is executed in a prohibited region, the rules around generation of a trace flush and requiring no
more trace to be generated in the prohibited region mean that only whole trace packets are output, and the last byte
output is the end of a packet.

These rules ensure that no new trace is generated and allows various system registers to be changed, such as those
controlling the Trace Buffer Extension, without the risk of any trace being generated while those registers are
being changed.

When the trace unit becomes enabled in a prohibited region, the trace unit generates no trace until the PE leaves
the prohibited region.

The above rule ensures that no trace is generated until the PE leaves the prohibited region, and therefore allows
various system registers to be changed, such as those controlling the Trace Buffer Extension, without the risk of
any trace being generated while those registers are being changed.

The trace operation as defined in Chapter E1 Trace Buffer Extension can be split into operations that are performed
by one of the following:

e The PE.
e The ETE trace unit.
¢ The trace buffer.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 259
Non-confidential

Chapter D6. Trace Unit

D6.6. Visibility of the PE operation

Rrroon

The operation of the trace unit is defined by the ETE trace operation.

If the Trace Buffer Extension is implemented and enabled, when a Trace synchronization event occurs, and after
all of the trace byte stream generated by the trace unit is flushed to the trace buffer, the Trace synchronization event

completes.
Table D6.2: Labels for ordering diagrams
Notation Name Description
po program-order head is in program order after fail.
rf Reads-from tail Reads-from head.
co Coherence-after head is Coherence-after rail.
fr from-read As co, except that the operation at head is a read.
ob Observed-by tail is Observed-by head. Only applies for different Observers.
tb traced-by head is the trace operation for the instruction at zail.
gb generated by head is an operation generated by the instruction at zail.
seo speculative The PE speculated that the instruction at head was executed after tail, but
execution-order the instruction was later Canceled or was part of a Transaction that Failed
or was Canceled. An seo arrow might be paired with a can arrow that
shows this.
can canceled The instruction at tail was Canceled when the instruction at head was

resolved, or the Transaction containing zail Failed or was Canceled.

D6.6.1 ETE trace operation

Rycas

YCJIXC

Torrer

DDI0608
A.a

Each instruction has all of the following state information:

PSTATE.T.
PSTATE.EL.

The Security state.
CONTEXTIDR_EL1.PROCID.
CONTEXTIDR_EL2.PROCID.
TRFCR_ELI.
TRFCR_EL2.
MDCR_EL3.STE.
TxNestingLevel.

The trace information generated contains Address information in Target Address elements, Source Address elements,
Exception elements, and Q elements. The Address information contains:

e The virtual address of an instruction.
¢ The instruction set, known as the sub_isa.

The trace information generated contains Context information in Context elements. The Context information

contains:

* The current Security state.
* The current Exception level.

¢ The current Execution state, which is AArch32 or AArch64.
e The current Context identifer, as stored in CONTEXTIDR_EL1.PROCID.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 260

Non-confidential

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation
¢ The current Virtual context identifer, as stored in CONTEXTIDR_EL2.PROCID.

RuBcRN When an instruction is executed and all the trace elements for the instruction have been generated, the trace
operation for the instruction is complete.

Trace elements generated for an instruction might include:

* Global timestamp elements.

* Cycle count elements.

* Speculation resolution elements.
* Transaction resolution elements.

TrxTry For example, the tracing of PE execution is where:

* Resolved instruction A is executed in program order before a Resolved instruction B.
* t, is all the trace elements that are generated due to the tracing of instruction A.

* tg is all the trace elements that are generated due to the tracing of instruction B.

¢ The trace elements for t, must be observed before tg.

Figure D6.2 shows this.

A2 3B
N N
N tb N th
N
RN Ta
b
th-- >t

Figure D6.2: Trace operation

D6.6.2 Impact on PE Behavior

Tirkr The ETE architecture places no requirements on the impact that trace generation has on the functional performance
of a PE. Arm expects that trace unit implementations are designed according to the market requirements of the PEs
being traced, and according to the trace requirements for those PEs. For some markets and trace requirements, the
trace solution might always have some performance impact on the PE and the ETE architecture does not prohibit
this.

D6.6.3 Behavior on a PE Warm reset

Ryyuss A PE Warm reset does not cause a Trace unit reset.

XzroTC This ensures that tracing is possible through a PE Warm reset.

Tomscx A PE Warm reset might occur at the same time as a Trace unit reset, however, these are asynchronous and unrelated
events.

D6.6.4 Instruction Block

Xrvxnr How instructions are executed can vary significantly between PE designs. To allow for these variations the ETE
architecture allows some flexibility within the filtering model. Rather than applying the filtering model to individual
instructions it is applied to blocks of instructions.

ReoreL An instruction block contains one or more instructions.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 261
Aa Non-confidential

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation
Repzey An instruction block can contain zero or one PO instructions.

Revac When an instruction block is generated which contains a PO instruction, the instruction block has the PO instruction
as the last instruction in the block.

RupoTp Exceptional occurrences do not occur between instructions in an instruction block.

Ripoxz The addresses of the instructions within an instruction block are sequential.

T sconc The number of instructions in a block can vary from block to block and can vary each time the same sequence of
instructions are executed.

T urBiG For example, the tracing of an instruction block is where:

* Resolved instruction A is executed in program order before a Resolved instruction B.
* t, is all the trace elements that are generated due to the tracing of instruction A.
* t is all the trace elements that are generated due to the tracing of instruction B.

Figure D6.3 shows this.

A%B
N N
. ~th
< N
~ _th ~a
T ->t,

Figure D6.3: Instruction block trace operation

D6.6.5 Exposing Speculation

Ipeono For some PE microarchitectures the tracing of execution-order only might not be achievable. The ETE architecture
provides the ability to trace speculatively executed instructions.

RrrVLX When speculative instructions are observed, the trace unit indicates whether each instruction is resolved or canceled
with a resolve operation or a cancel operation.

Ropgsk A resolve operation indicates that one or more instructions have, or will be, architecturally executed.

RuzpLy A cancel operation indicates that one or more instructions, although observed by the trace unit, did not
architecturally execute.

Txovze There is no requirement to expose any speculation to the trace unit.
T pxpub For example, the tracing of speculation execution is where:
* Sis executed in speculative execution-order after a Resolved instruction A.
* A is executed in program order before a Resolved instruction B.
* S is not in speculative execution-order after B.
* Q is executed in speculative execution-order after a Resolved instruction B.

Figure D6.4 shows this.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 262
Aa Non-confidential

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

AP 3B
\\seo \\SGO
N N
N N
‘.can N N\
g Q
N
\\tb N tb
N N
\& \A
ob
tS)tQ

Figure D6.4: Observation of Speculative Trace operation

D6.6.6 Prohibited Regions

X‘\‘H’, BC

I RJYNL

DDI0608
A.a

Prohibited Regions are instruction address regions or periods of execution by the PE that are not to be traced.
Instructions and Exceptional occurrences which are not prohibited are not necessarily traced because the trace unit
has a number of trace filtering functions to limit the amount of trace generated to the sections or periods of interest.

An executable program might contain regions of code that are prohibited to trace. These regions might be associated
with a higher Security state, or with the PE entering a privileged mode so that it can execute the instructions that
are contained within them.

Tracing might be prohibited while the PE is operating in certain states or modes. For example:

* Non-invasive debug might be prohibited while the PE is in Secure state.
* The Self Hosted Trace Extension might prohibit tracing.

Trace might also become prohibited if, while tracing program execution, an authentication interface changes the
currently permitted level of non-invasive debug. For example, if trace is permitted and active while the PE is
operating in Secure state, and then the permitted level of non-invasive debug changes from being permitted for
Secure state, to not permitted, then trace becomes prohibited.

If an optional authentication interface is implemented, while Secure non-invasive debug is disabled according to
the optional authentication interface, for execution in Secure state, the PE executes in a prohibited region.

An example of an optional authentication interface is the CoreSight Authentication interface ARM CoreSight
Architecture Specification [5].

While the PE is executing code from a prohibited region, the trace unit does not trace instructions or Exceptional
occurrences, including PE Resets.

While the PE is executing code from a prohibited region, instruction Address Comparators do not match on any
instructions in the prohibited region.

While cycle counting is enabled and the PE is executing code from a prohibited region, the cycle counter continues
to count.

When the PE leaves a prohibited region and tracing restarts, the cycle counter includes cycles spent in the prohibited
region in the cycle count.

The behavior of the resources when entering a prohibited region is defined in D7.1.3 Behavior of the resources
while in the Paused state.

While the PE is executing code from a prohibited region, the trace unit does not output any trace that might provide
information about the execution in the prohibited region.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 263
Non-confidential

Chapter D6. Trace Unit
D6.6. Visibility of the PE operation

Toskir
Tukows
Rraevp
Rerzms
Rrxuar
Toc
LsrTB
Tpuxper
D6.6.7
RkrzTz
Tyn
IrrsnL
D6.6.8
Rr1naso
DDI0608

A.a

Examples of information about execution in a prohibited region that trace might provide are the context of
execution, instruction addresses, and the address of the first instruction in the prohibited region.

The most common cause of an entry into a prohibited region is an Exceptional occurrence or Context
synchronization event.

When an Exceptional occurrence that must be traced causes the PE to enter a prohibited region, the trace unit
generates an Exception element that indicates the exception type.

When the PE enters a prohibited region and there are unresolved speculative PO elements remaining in the trace
byte stream, when the resolution of the speculative elements is known the trace unit generates the appropriate
Commit elements or Cancel elements.

When the PE leaves a prohibited region and Viewlnst is active, that is, any filtering applied dictates that ViewInst
is active, the trace unit generates a Trace On element.

The purpose of the trace unit generating a Trace On element when the PE exits a prohibited region and ViewlInst is
active is to indicate to the trace analyzer that there has been a discontinuity in the trace element stream.

If the PE leaves a prohibited region other than when a Context synchronization event occurs, the prohibited region
is permitted to extend up to the next Context synchronization event. Typically, a PE leaves a prohibited region
via a Context synchronization event, but a PE might leave a prohibited region when the authentication interface
changes, or when moving from Secure to Non-secure state without an exception return.

If an Exceptional occurrence occurs between the PE exiting a prohibited region and the PE executing the first
instruction, the value of TRCRSR.TA is used to determine if the Exceptional occurrence is traced.

Multi-threaded processor

Processors with multiple threads or PEs have a trace unit for each thread or PE.

The processor might support enabling and disabling of threads, either at PE Reset time or dynamically. The trace
units for the threads that are disabled might behave in one of the following ways:

¢ The trace unit core power domain is powered down.
* The trace unit core power domain is held in the trace unit reset state.

Arm recommends that the trace units for threads that are permanently disabled are not visible: either they are not
included, or they are marked as not present in any ROM tables that describe the system.

Sharing between multiple PEs

Note

Previous Trace architectures have allowed the trace unit to be shared between multiple PEs.

A trace unit only traces a single PE, that is, it cannot be shared between multiple PEs.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 264
Non-confidential

Chapter D6. Trace Unit
D6.7. Speculation resolution

D6.7 Speculation resolution

D6.7.1

The trace unit implements a maximum speculation depth, that is, the maximum permitted number of PO elements
that can be speculative at any instance. TRCIDR8.MAXSPEC indicates the IMPLEMENTATION DEFINED maximum
speculation depth.

The trace unit never outputs more speculative PO elements than the maximum speculation depth.

If a trace unit is not exposed to any speculative execution, then Arm recommends that the trace unit implements a
maximum speculation depth of zero, and in this case:

e Cancel elements are not generated.

* Commit elements are generated after each PO element, causing each PO element to be immediately resolved
when it is generated. The instruction trace protocol implicitly generates these Commit elements for each PO
element, meaning that explicit Commit packets are not required.

* Mispredict elements are not generated.

ETE defines Commit element and Cancel elements to allow the speculation of the PO elements to be resolved
by the trace analyzer. The trace unit is required to calculate the number of PO elements which are committed or
canceled. There are many methods by which these numbers can be calculated, but in the generic case the trace unit
can use the following mathematical procedure.

The PE can speculatively indicate blocks of instructions to the trace unit. Each block of instructions is given a tag
where tag € 0, ..., m and m = “Number of rewind points supported by the PE”.

The number of instructions per block can be random from the set N and there is a maximum of one PO instruction
per block. The order in which the tags are used can be random, but a tag cannot be reused until the previous block
with that tag has been resolved, canceled or merged.

This procedure generates a transform from the potentially random sequence of core tags to a more useable space.
The transform T evolves over time as the tags are reused and provides the mapping onto the new space,

T; = [coy- - Cm)] (D6.1)

and ¢; is the mapping for core tag i.

c; €0,...,q,where g >m

Initialization

To perform the necessary calculations, the trace unit tracks the transform of the last resolved block. ; = “last
committed indicator”. The algorithm is initialized at £ = 0 to

Vie0,...,m:Tp[i] =0 (D6.2)
o =70 (D63)

D6.7.2 New block operation
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 265

A.a

Non-confidential

Chapter D6. Trace Unit
D6.7. Speculation resolution

T sMasc The sequence of the numbers in the transformed space, x;, is defined by the following equation:

1 d If a traced *PO instruction*
Cpay = |(z: 4+ 1) mod ¢ a rac.e instruction (D6.4)
Ty Otherwise
¢ + 1) mod If a traced *PO instruction*
Tt+1 [tagt} = |(t) q| . (D65)
Ti[tag:] Otherwise
D6.7.3 Resolved operation
IssrLR The PE can resolve one or more blocks in an atomic operation. This is performed by indicating the youngest
block’s tag to be resolved, and by inference all older blocks. [= youngest block’s tag
The number required by the Commit element is calculated by
ny = |(Till] %) mod g (D6.6)
The state of the transform is updated by
Yi4+1 = Tt [l] (D67)
D6.7.4 Cancel operation
Tusvon The PE can cancel one or more blocks in an atomic operation. This is performed by indicating the oldest block to
be canceled. = oldest block’s tag
The number required by the Cancel element is calculated by
n— = [(z; — T3[r]) mod q| (D6.8)
The state of the transform is updated by
Ti4+1 = Tt [T] (D69)
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 266

A.a Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

D6.8 Filtering trace generation

The amount of trace that can be generated by the trace unit can be significant. Not all the operations of the PE are
always relevant. The amount of trace generated can be reduced by the use of the trace unit filter functions.

D6.8.1 Viewlnst function

Reorss

DDI0608
A.a

The filtering function of the instruction trace is expressed as a calculation evaluated for each instruction.

0 When Prohibited
Viewlnst; = < 0 When in Debug state (D6.10)
S; N1I; N E; NN; Otherwise

S; = Viewlnst start/stop function (D6.11)
I; = Viewlnst include/exclude function (D6.12)
E; = Exception level filtering (D6.13)
N; = Resource event based filtering (D6.14)

While ViewlInst; is high, the trace unit traces all instructions.

Instructions for which Viewlnst; is low might be traced. This might be as a result of tracing the next PO element or
optimizations in the trace unit.

When ViewlInst; is high for an instruction in an instruction block, the trace unit traces the entire instruction block.
When ViewlInst; becomes high, the trace unit traces the next PO instruction or Exceptional occurrence.

Some instruction types cause the trace unit to generate PO elements, so that they are explicitly traced. Other
instruction types however are not explicitly traced. The execution of these other instruction types can be inferred
from the PO elements. This means that the following scenario is possible:

* While Viewlnst is high, some instructions are executed. This means that ViewlInst is indicating that those
instructions must be traced. However, none of the executed instructions cause the trace unit to generate a PO
element, therefore none of the instructions are traced.

* Viewlnst then goes low.

* The PE then executes an instruction that, whenever Viewlnst is high, causes the trace unit to generate a PO
element.

In this scenario, although ViewlInst is low when the instruction in step 3 is executed, indicating that the instruction
is not traced, tracing of the instruction is permitted because this is the only way that the preceding instructions can
be traced.

There is no requirement for the target address of a PO instruction or Exceptional occurrence to be traced if ViewlInst
has transitioned to a low state by the time program execution has moved to the target.

Unless the target instruction block is traced, any Target Address elements indicating the target address of a PO
instruction or Exceptional occurrence cannot be relied upon.

Resource event based filtering

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 267
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Reonmwe
T xoa
Tpuwvr
R”T:',",:p
Rsru
Tan
Riwygr

The resource event based filtering part of the Viewlnst function is expressed as the following equation:

N; = Fn(TRCVICTLR.EVENT.SEL, TRCVICTLR.EVENT.TYPE) (D6.15)

Where Fn(TRCVICTLR.EVENT.SEL, TRCVICTLR.EVENT.TYPE) selects the combination of Resource
Selectors used for resource event based filtering.

The timing of the resource event based filtering is IMPLEMENTATION SPECIFIC.

Resource event based filtering can be used to make ViewlInst active based on system conditions or on trace unit
resources. For example:

¢ Sampling based on instruction counts.
» Activating tracing on the n' function call.
 Performance Monitoring Unit events.

When an instruction block is processed by the trace unit during a cycle, the trace unit samples the ViewInst function
resource event input during that cycle.

When no instruction blocks are processed by the trace unit during a cycle, the trace unit does not sample the
ViewlInst function resource event input during that cycle.

Exception level filtering

This function provides a simple method of filtering out information about different Exception levels without the
need to use of additional resources.

The Exception level based filtering part of the ViewInst function is expressed as the following equation:

—TRCVICTLR.EXLEVEL_S_ELO Secure ELO
—TRCVICTLR.EXLEVEL_S_EL1 Secure EL1
—TRCVICTLR.EXLEVEL_S_EL2 Secure EL2

E; = ¢ “TRCVICTLR.EXLEVEL_S_EL3 EL3 (D6.16)

—TRCVICTLR.EXLEVEL_NS_ELO Non-Secure ELO
—TRCVICTLR.EXLEVEL_NS_EL1 Non-Secure EL1
—TRCVICTLR.EXLEVEL_NS_EL2 Non-Secure EL2

D6.8.2 Viewlnst start/stop function filtering

DDI0608
A.a

The Viewlnst start/stop function is useful when the requirement is to trace a particular piece of code with all the
functions that the piece of code calls.

The ViewlInst start/stop function uses the Single Address Comparators and the PE Comparator Inputs to define
start points and stop points.

A start point is any of the following:

* The instruction address which matches a Single Address Comparator selected for the ViewlInst start/stop
function using TRCVISSCTLR.START.

* The instruction address which matches a PE Comparator selected for the ViewInst start/stop function using
TRCVIPCSSCTLR.START.

A stop point is any of the following:

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 268
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

RH',T YN

DDI0608
A.a

* The instruction address which matches a Single Address Comparator selected for the Viewlnst start/stop
function using TRCVISSCTLR.STOP.

¢ The instruction address which matches a PE Comparator selected for the ViewlInst start/stop function using
TRCVIPCSSCTLR.STOP.

Multiple start points can be selected. Multiple stop points can be selected.

When a start point is encountered, the ViewlInst start/stop function becomes active for the instruction at the start
point.

When a stop point is encountered, the Viewlnst start/stop function becomes inactive immediately after the
instruction at the stop point.

When the Viewlnst start/stop function causes ViewlInst to become active, the trace unit traces the instruction at the
start address.

When the ViewlInst start/stop function causes ViewInst to become inactive, the trace unit traces up to and including
the instruction at the stop address.

While a Viewlnst start/stop function start address is the same as a stop address, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

The ViewlInst start/stop function part of the ViewlInst function is expressed as the following equations:

TRCVICTLR.SSSTATUS, ;1 = S; A =Stop; (D6.17)
S; = TRCVICTLR.SSSTATUS; V Start; (D6.18)
(D6.19)

If TRCIDR4.NUMPC == 0b0000 then

Start; = (SAC[n] A TRCVISSCTLR.START[n]) (D6.20)

n

Stop; = Y _(SAC[n] A TRCVISSCTLR.STOP|n]) (D6.21)

n

If TRCIDR4.NUMPC != 0b0000 then

Start; = Y (SAC[n] A TRCVISSCTLR .START|n])

" (D6.22)
v Z(PECMP [m] A TRCVIPCSSCTLR.START[m])

Stop; = Y _(SAC[n] A TRCVISSCTLR.STOP/[n))

" (D6.23)
V' > _(PECMP[m] A TRCVIPCSSCTLR.STOP[m))

The following have no effect on the ViewlInst start/stop function:

e Exceptional occurrences.
 Execution in Debug state.

» Execution in a prohibited region.
* A trace unit buffer overflow.

When disabling the trace unit, the ViewlInst start/stop function becomes static and retains its state until the trace
unit is enabled again.

If required, the state of the ViewInst start/stop function can be changed while the trace unit is disabled.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 269
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Rzprer

DDI0608
A.a

TRCVICTLR.SSSTATUS, TRCVISSCTLR and TRCVIPCSSCTLR, if implemented, must be programmed with
an initial state when the trace unit is programmed before a trace session.

If an implementation makes speculation visible to the trace unit, the ViewlInst start/stop function behaves as if no
speculation has occurred. That is, when the instruction at a start or stop point is executed speculatively and is later
canceled, the ViewlInst start/stop function behaves as if the instruction at the start or stop point was not executed.

When the trace unit becomes disabled and there are instructions at start points or stop points which are still
speculative, the behavior of the Viewlnst start/stop function is IMPLEMENTATION DEFINED and one of the
following:

» The ViewlInst start/stop function behaves as if the instructions at the start points or stop points were incorrectly
speculated. That is, the trace unit behaves as if those start points and stop points did not occur.

» The Viewlnst start/stop function behaves as if the instructions at the start points or stop points were correctly
speculated. That is, the trace unit updates the state of the ViewlInst start/stop function as if those start points
and stop points occurred.

When mis-speculation occurs and the PE returns to a point in execution before the trace unit was enabled, the
Viewlnst start/stop function reverts to the state it was in when the trace unit became enabled.

When a transaction failure occurs the Viewlnst start/stop function reverts back to the state to point immediately
after the Tstarrt instruction for the outer transaction.

This is the value of TRCVICTLR.SSSTATUS; for the instruction block that contains the rstart instruction for the
outer transaction.

When a transaction failure causes the PE to return to a point in execution before the trace unit was enabled, the
Viewlnst start/stop function reverts to the state it was in when the trace unit became enabled.

When the trace unit becomes disabled and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

* The Viewlnst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

* The ViewlInst start/stop function behaves as if the transaction was successful. That is, the trace unit updates
the state of the ViewlInst start/stop function as if those start points and stop points occurred.

When tracing becomes prohibited and the PE is executing in Transactional state, the behavior of the ViewInst
start/stop function is IMPLEMENTATION DEFINED and one of the following:

* The Viewlnst start/stop function behaves as if the transaction failed. That is, the trace unit behaves as if those
start points and stop points did not occur.

» The ViewlInst start/stop function behaves as if the transaction was successful. That is, the trace unit behaves
as if those start points and stop points did occur.

» The Viewlnst start/stop function uses the real resolution of the transaction, when that resolution is eventually
known.

When the state of the ViewlInst start/stop function is changed by anything other than a direct write to TRCVICTLR,
the PE considers the write to be an indirect write to TRCVICTLR.SSSTATUS.

Note

In many common usage scenarios, entry to a prohibited region or disabling of the trace unit does not occur while
in a transaction.

Instruction blocks

When an instruction block that contains instructions at ViewlInst start points and no instructions at ViewInst stop
points is executed, the ViewlInst start/stop function remains active for the entire instruction block.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 270
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Rl\t LMR

Rsrxze

D6.8.3

Inpyrc

DDI0608
A.a

While the ViewlInst start/stop function is active, when an instruction block is executed that contains at least one
Viewlnst stop address and no ViewInst start addresses, the Viewlnst start/stop function remains active for the whole
instruction block and becomes inactive for the next instruction block, unless the next instruction block contains a
Viewlnst start address.

When an instruction block that contains at least one instruction at a ViewInst start point and at least one instruction
at a ViewlInst stop point is executed, the ViewInst start/stop function obeys the order of the start and stop points in
the block, with the following consequences:

* The ViewlInst start/stop function is active for the whole of the instruction block.

* When the final instruction in the block at a ViewlInst start or stop point is at a Viewlnst start point, the
Viewlnst start/stop function is active for the next instruction block.

* When the final instruction in the block at a ViewlInst start or stop point is at a ViewInst stop point, the ViewInst
start/stop function is inactive for the next instruction block, unless the next block contains an instruction at a
new ViewlInst start point.

The trace analyzer ensures that for all of the Single Address Comparators (SACs) selected for ViewlInst start points
or stop points, any Single Address Comparator (SAC) programmed with a lower address than another SAC is a
lower-numbered SAC than the other SAC. That is, the SACs contain addresses in address order.

While the SACs selected for Viewlnst do not contain addresses in address order, the behavior of the ViewInst
start/stop function is UNPREDICTABLE.

The trace analyzer ensures that for all of the PE Comparator Inputs selected for ViewlInst start points or stop
points, any PE comparator programmed with a lower address than another PE comparator is a lower-numbered PE
comparator than the other PE comparator. That is, the PE comparators contain addresses in address order.

While the PE Comparator Inputs selected for ViewInst do not contain addresses in address order, the behavior of
the ViewlInst start/stop function is UNPREDICTABLE.

Note

If more than one instruction Address Comparator is programmed with the same instruction address, then
programming one or more of those comparators as start comparators, and one or more as stop comparators,
results in the following CONSTRAINED UNPREDICTABLE behavior of the ViewlInst start/stop function:

» The ViewlInst start/stop function is either active or inactive for the instruction at that address.
» The Viewlnst start/stop function is either active or inactive after that instruction.

Viewlnst include/exclude function filtering

The Viewlnst include/exclude function is useful if:

 Specific ranges of instructions are required to be included in the trace.
* Specific ranges of instructions are required to be excluded from the trace.
* A combination of including and excluding instruction ranges is required.

The ViewlInst include/exclude function is comprised of two functions:

Viewlnst include function Includes one or more instruction address
ranges

Viewlnst exclude function Excludes one or more instruction address
ranges

There are between zero and eight instruction Address Range Comparators available for the ViewInst include/exclude

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 271
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

function. Some of these comparators can be selected for the ViewlInst include function, and some for the ViewInst
exclude function.

n

For example, if all instructions in the address range from oxoo to ox2c are required, but no other instructions are
required, an Address Range Comparator can be selected for the ViewInst include function and be programmed with
these two addresses. All instructions that are in this address range, including those at the start and end addresses,
are traced.

TykLoR The ViewlInst include/exclude function differs from the ViewlInst start/stop function in the following ways:

* When the Viewlnst start/stop function is used, the trace unit starts tracing on a specified start instruction
address and stops tracing on a specified stop instruction address. However, if execution branches or jumps
to an address between the start and stop points, without first accessing the instruction at the start address,
then the instruction that it has branched or jumped to is not traced. Instructions in the start/stop range are
only traced if the instruction at the start address is accessed, so that the trace unit is triggered to start tracing.
When triggered, and as execution continues sequentially towards the stop address, all functions that the piece
of code calls are traced.

e When the Viewlnst include/exclude function is used, for example by programming an Address Range
Comparator with an include address range, then if execution branches or jumps to any instruction address
anywhere in that range, that instruction is always traced. This is true regardless of whether the instruction at
the start address has been accessed or not.

In addition, unlike the ViewInst start/stop function, as program execution continues through the address range
towards the end address, no functions that the piece of code calls are traced.

Rsxzn The ViewlInst include/exclude function part of the Viewlnst function is expressed as the following equations:

I; = Include; A —Exclude; (D6.24)
Include; = Z(ARC[n] A TRCVIECTLR.INCLUDE(n]) V H —~TRCVIIECTLR.INCLUDE[n| (D6.25)

n

Exclude; = Y (ARC[n] A TRCVIECTLR EXCLUDE[n]) (D6.26)

n

D6.8.3.1 Instruction blocks

Rrypwp When an instruction in an instruction block is included to be traced by the ViewlInst include/exclude function, the
trace unit traces all of the instruction block.

Rprcog When an instruction block contains at least one instruction excluded by the Viewlnst include/exclude function,
and only when all the instructions in the instruction block are excluded, the ViewlInst include/exclude function
excludes the instruction block.

D6.8.4 Guidelines for interpreting the Viewlnst function result

Ireg The result of the ViewlInst function is either:

High Indicates that instructions being
executed must be traced

Low It is expected that instructions being
executed are not traced

If it is expected that instructions being executed are not traced, then there are occasions when it is permitted to

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 272
Aa Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

DDI0608
A.a

trace some of those instructions. This section provides guidelines for when it is permitted to trace instructions that
ViewlInst indicates are not traced.

D6.8.4.1 When Viewlnst transitions from low to high

If execution occurs while Viewlnst is low, it is permitted for a trace unit to trace instructions in certain circumstances.
See D6.8.4.2 Occasions when tracing instructions when Viewlnst is low is permitted.

Tracing of instructions is permitted while ViewInst is low, but if no instructions or Exceptional occurrences that
occur are traced, then there is a discontinuity in the trace. When a discontinuity in the trace occurs, when ViewlInst
becomes high, a Trace On element must be generated.

Any instructions that are executed while ViewlInst is high must be traced.
D6.8.4.2 Occasions when tracing instructions when Viewlnst is low is permitted

ETE permits tracing of instructions when ViewlInst is low, in the following scenarios:

e When the instruction that ViewlInst indicates is not to be traced is in the same instruction block as an
instruction that ViewlInst indicates must be traced. This is because the only way to trace the instruction that
must be traced is to trace the whole instruction block.

* When the instruction that ViewlInst indicates is not to be traced is in an instruction block that precedes or
follows an instruction block containing an instruction that ViewInst indicates must be traced.

An implementation always traces the instruction block that contains an instruction that must be traced. However,
additional blocks of instructions might also be traced. This is more likely to occur when many instructions are
executed in close proximity.

Except for the scenarios that are mentioned, if the ViewInst function indicates that an instruction is not to be traced,
then in general it is expected that it is not traced.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 273
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

I.\‘ \ZR

DDI0608
A.a

Block 1
§§
=
&

c
&

)

N

ViewlInst

Traced ¢ \

Z /Anstructiony/ Z

7 7(PO inst. Y7/ 7

ViewlInst 4 \

Block 2

Traced b \

Figure D6.5: Example of close proximity

In the above diagram the instruction block 1 is in execution order before instruction block 2. The ViewlInst
calculation for the second block returns true, as indicated by the transition labeled (a). As ViewlInst is true for this
instruction block then all the instructions in this block must be traced, as indicated by the transition labeled (»).
Instruction block 1 might be traced as it is in the same PE cycle as block 2, as indicated by the transition labeled

().

Rules for tracing Exceptional occurrences

When an Exceptional occurrence occurs, the Exceptional occurrence does not affect the comparators used by the
Viewlnst function, and none of the comparators used by the Viewlnst function match.

The comparators used by the ViewlInst function include the following:

* Single Address Comparators.

* Address Range Comparators.
 Context Identifier Comparators.

* Virtual Context Identifier Comparators.

When an Exception element is traced, it might indicate execution of instructions up to a specified address. These
instructions might have an impact on the comparators, but the Exceptional occurrence itself does not.

This means that when an Exceptional occurrence occurs, the ViewlInst function does not indicate whether the
Exceptional occurrence must be traced. However, it is useful to trace Exceptional occurrences, to determine why
execution has departed from the normal program flow.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 274
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Isvexz

RH ['TK

Rearam

Rppmpo

D6.8.6

THL‘T, ND

DDI0608
A.a

When an instruction executes or Exceptional occurrence occurs outside a prohibited region, the trace unit
remembers whether the instruction or Exceptional occurrence was traced. The trace unit performs indirect
writes to TRCRSR.TA to store this state. When an Exceptional occurrence occurs, the trace unit uses TRCRSR.TA
to determine whether to trace the Exceptional occurrence.

When an instruction executes or Exceptional occurrence occurs outside a prohibited region and the instruction or
Exceptional occurrence is traced, TRCRSR.TA is set to ob1.

When an instruction executes or Exceptional occurrence occurs outside a prohibited region and the instruction or
Exceptional occurrence is not traced, TRCRSR.TA is set to obo.

When an instruction or Exceptional occurrence is canceled, TRCRSR.TA is set to the value of TRCRSR.TA
immediately before the canceled instruction or Exceptional occurrence.

When an Exceptional occurrence occurs and TRCRSR.TA is ob1, the Exceptional occurrence is traced.
While any of the following are true, TRCRSR.TA is unchanged by any execution:

* The PE is in Debug state.
e The PE is in a prohibited region.

‘When a trace unit buffer overflow occurs, the behavior of TRCRSR.TA is IMPLEMENTATION DEFINED and is one
of the following:

¢ TRCRSR.TA is set to obo.
¢« TRCRSR.TA is set to the value of TRCRSR.TA for the most recent instruction or Exceptional occurrence
before the trace unit buffer overflow occurred.

Forced tracing of Exceptional occurrences

The trace unit can be programmed so that it always traces certain Exceptional occurrences, regardless of whether
the instruction or Exceptional occurrence immediately before the Exceptional occurrence must be traced. This
option is enabled by setting either or both:

* TRCVICTLR.TRCERR to oo1. This forces the trace unit to trace System Error exceptions regardless of the
value of ViewlInst.

* TRCVICTLR.TRCRESET to ob1. This forces the trace unit to trace PE Resets regardless of the value of
Viewlnst.

While the PE is executing in a prohibited region, forced tracing of System Error exceptions is inactive.

While the PE is not executing a prohibited region and forced tracing of System Error exceptions is enabled, forced
tracing of System Error exceptions is active.

While forced tracing of System Error exceptions is active, when a System Error exception occurs, the trace unit
generates an Exception element indicating a System Error exception, regardless of the value of ViewlInst.

While the PE is executing in a prohibited region, forced tracing of PE Resets is inactive, regardless of whether the
PE Reset causes the PE to leave a prohibited region or not.

While the PE is not executing in a prohibited region, while forced tracing of PE Resets is enabled, forced tracing
of PE Resets is active.

While forced tracing of PE Resets is active, when a PE Reset occurs, the trace unit generates an Exception element
indicating a PE Reset, regardless of the value of ViewlInst.

While tracing is inactive, before an Exception element is generated due to forced tracing of either a PE Reset of a
System Error exception, the trace unit generates a Trace On element and then a Target Address element.

When an Exception element is generated as a result of forced tracing, the Trace On element generated before the
Exception element indicates that tracing becomes active, and the Target Address element indicates where tracing
becomes active.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 275
Non-confidential

Chapter D6. Trace Unit
D6.8. Filtering trace generation

Tscvsy

L sxonr

RH\«: IE'S

DDI0608
A.a

When a System Error exception occurs and TRCRSR.TA is ovo and the exception is traced because forced tracing
of System Error exceptions is enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to ob1 or
remains at ooo.

When a PE Reset occurs and TRCRSR.TA is ono and the PE Reset is traced because forced tracing of PE Resets is
enabled, then it is IMPLEMENTATION DEFINED whether TRCRSR.TA is set to ob1 or remains at obo.

In scenarios where a System Error exception occurs at approximately the same time as an exit from a prohibited
region, after all execution inside the prohibited region and before any instruction execution outside the prohibited
region, it is UNPREDICTABLE whether the System Error exception is considered to have occurred inside or outside
the prohibited region. It is also UNPREDICTABLE whether the forced tracing of System Error exceptions is active
for this exception.

These scenarios do not include scenarios where the System Error exception caused the exit from a prohibited
region, because the System Error exception occurred inside the prohibited region.

In scenarios where a System Error exception occurs at approximately the same time as an entry to a prohibited
region, after all execution before the prohibited region and before any instruction execution inside the prohibited
region, it is UNPREDICTABLE whether the System Error exception is considered to have occurred inside or outside
the prohibited region. It is also UNPREDICTABLE whether the forced tracing of System Error exceptions is active
for this exception.

These scenarios do not include scenarios where the System Error exception caused the entry to a prohibited region,
because the System Error exception occurred outside the prohibited region.

When a System Error exception occurs immediately after the PE exits a prohibited region and the System Error
exception is traced, the preferred exception return address in the Exception element indicating the System Error
exception does not include information about the prohibited region.

In scenarios where a PE Reset occurs at approximately the same time as an exit from a prohibited region, after
all execution inside the prohibited region and before any instruction execution outside the prohibited region, it is
UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the prohibited region. It is
UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the exit from a prohibited region, because the
PE Reset occurred inside the prohibited region.

In scenarios where a PE Reset occurs at approximately the same time as an entry to a prohibited region, after
all execution before the prohibited region and before any instruction execution inside the prohibited region, it is
UNPREDICTABLE whether the PE Reset is considered to have occurred inside or outside the prohibited region. It is
UNPREDICTABLE whether the forced tracing of PE Resets is active for this PE Reset.

These scenarios do not include scenarios where the PE Reset caused the entry to a prohibited region, because the
PE Reset occurred outside the prohibited region.

When a PE Reset occurs immediately after the PE exits a prohibited region and the PE Reset is traced, the preferred
exception return address in the Exception element indicating the PE Reset does not include information about the
prohibited region.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 276
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

D6.9 Element Generation

D6.9.1 Trace Info Element Generation

RTF; RM

When a trace protocol synchronization request is serviced, the trace unit generates a Trace Info element.

Note

There is no requirement to generate a new Trace Info element every time that ViewlInst becomes active. This
is because, despite the discontinuity in the trace that is caused by the filtering, the programming of the trace
remains the same.

While the PE is in Transactional state and the trace unit has previously generated a Transaction Start element for
this transaction, when a Trace Info element is generated, the trace unit sets the Transactional state indicator in the
Trace Info element to ov1.

While the PE is not in Transactional state, or the PE is in Transactional state but the trace unit has not generated
a Transaction Start element for this transaction, when a Trace Info element is generated, the trace unit sets the
Transactional state indicator in the Trace Info element to ovo.

When the trace unit generates the first Trace Info element after an Overflow element, the Transactional state
indicator is set to obo.

When an Overflow element is generated, before any subsequent PO elements indicating execution in Transactional
state are traced, the trace unit generates a new Transaction Start element, even if a Transaction Start element has
previously been traced for this transaction prior to the Overflow element.

D6.9.2 Atom Element

R SRYKV

Rgll‘l’,"l{

DDI0608
A.a

When a PO instruction is taken, the trace unit generates one of the following:

e An E Atom element.
e A Source Address element.

When a PO instruction is not taken, the trace unit generates one of the following:

e An N Atom element.
* Nothing.

When a PO instruction is not taken and the trace unit does not generate an N Arom element, for all future not taken
PO instructions until the next taken PO instruction or Exceptional occurrence, the trace unit does not generate an N
Atom element.

When a PO instruction is not taken and the trace unit does not generate an N Afom element, when an Exceptional
occurrence occurs before the next taken PO instruction, the trace unit generates an Exception element.

When a PO instruction is not taken and the trace unit does not generate an N Arom element, when no Exceptional
occurrence occurs before the next taken PO instruction, the trace unit generates a Source Address element for the
next taken PO instruction.

When a PO instruction is not taken and the trace unit does not generate an N Atom element, and the PO instruction
is subsequently mispredicted, the trace unit generates a Source Address element and does not generate a Mispredict
element.

The trace unit generates Atom elements in the program order in which they occur, and the trace protocol encode
and decode process maintains this order.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 277
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

DDI0608
A.a

For conditional branch instructions, an E Atom element indicates that the instruction passed its condition code
check, and an N Arom element indicates that the instruction failed its condition code check, although a trace unit
might use a Mispredict element to modify the Atom element.

The trace unit might trace unconditional PO instructions using an E Atom element or an N Atom element.

When an unconditional PO instruction is traced using an N Atom element, the trace unit generates either a Mispredict
element or a Cancel element to correct the N Atom element.

When an 1s8 instruction does not pass the condition code check, and the 1sg instruction does not perform a Context
synchronization event, the trace unit treats the rss instruction as a not taken instruction.

When an 1ss instruction does not pass the condition code check, and the 1ss instruction performs a Context
synchronization event, the trace unit treats the se instruction as a taken instruction.

When an 1se instruction passes the condition code check, the trace unit treats the 1ss instruction as a taken
instruction.

Note

For an 1se instruction, a trace analyzer must not infer the value of the PSTATE condition flags from an Arom
element.

It is IMPLEMENTATION DEFINED whether the trace unit classifies wrz and wrr instructions as PO instructions.
When wrr and wre are classified as PO instructions, execution of these instructions generates an Atom element. See
D6.2.4 Low-power state and TRCIDR2.WFXMODE.

When wre and wr1 instructions are classified as PO instructions and a conditional wre or wrI instruction is executed,
if the instruction passes its condition code check then an E Afom element is generated.

When wre and wrr instructions are classified as PO instructions and a conditional wre or wr1 instruction is executed,
if the instruction fails its condition code check then either an E Atom element or an N Afom element is generated.

Note

For a wre or wrr instruction which is classified as a PO instruction, a trace analyzer must not infer the value of
the PSTATE condition flags from an E Atom element.

PO instructions that fail or are predicted to fail their condition code check either generate an Undefined Instruction
exception or are executed as a NOP, if the instruction is also UNDEFINED.

When a PO instruction fails or is predicted to fail its condition code check, and the PO instruction is executed as a
NOP, the trace unit generates an N Arom element for the PO instruction.

When a PO instruction fails or is predicted to fail its condition code check, and the PO instruction generates an
Undefined Instruction exception, the trace unit does not generate an Atom element for the instruction and generates
an Exception element instead. The preferred exception return address for the generated Exception element is the
undefined instruction, which indicates that the instruction did not execute.

The trace unit generates all Arom elements speculatively, and explicitly resolves or cancels each Atom element by
generating Commit elements or Cancel elements.

A trace analyzer can infer execution from an Atom element, but only after the Atom element has been resolved by a
Commit element.

For taken direct PO instructions, a trace analyzer must infer the target address and instruction set of the instruction
from the opcode in the program image.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 278
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

D6.9.3

D6.9.4

Rpcspo

D6.9.5

DDI0608
A.a

If a taken direct PO instruction is from a branch broadcasting region, the trace analyzer does not need to infer the
target address and instruction set because this is explicitly traced using a Target Address element.

Exception Element

When an Exceptional occurrence occurs, if the Exceptional occurrence is required to be traced, the trace unit
generates an Exception element.

The trace unit generates Exception elements in program order relative to other PO elements.

To be consistent with the rules for generating Target Address elements, under the following scenarios the trace unit
must generate a Target Address element before an Exception element, unless the Target Address element would be
removed due to a return stack match:

* The Exceptional occurrence is taken from the target of a taken indirect PO instruction.

* The Exceptional occurrence is taken from the target of a taken direct PO instruction in a branch broadcasting
region.

* The Exceptional occurrence is taken from the target of another Exception element.

When an Exceptional occurrence occurs, if the Context information changes at the target of the PO element
preceding the Exceptional occurrence, then the trace unit generates a Context element before the Exception element.
The Context element provides Context information about the address and context where the Exceptional occurrence
was taken from.

An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as the maximum virtual
address size supported by the PE.

When the PE attempts to execute an instruction at an invalid address and the trace unit generates an Exception
element, the preferred exception return address in the Exception element indicates one of the following:

¢ The full 64-bit invalid address.
* Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

Arm recommends that when the PE attempts to execute an instruction at an invalid address and the trace unit
generates an Exception element, the preferred exception return address in the Exception element indicates the full
64-bit invalid address.

Source Address Element

When a PO instruction which must be traced is not taken and the trace unit does not generate an N Atom element,
then when a subsequent PO instruction is taken, the trace unit generates a Source Address element.

A trace unit can generate a Source Address element to imply that at least one instruction has been executed,
including a taken PO instruction.

When the trace unit generates a Source Address element to imply that a taken PO instruction has been executed, the
address associated with the Source Address element is the virtual address of the taken PO instruction.

Q Element

A trace unit can generate a Q element to imply that at least one instruction has been executed, possibly including
PO instructions.

When a Q element is generated, the trace unit generates a Target Address element that indicates where execution is
to continue after all the instructions that are implied by the Q element have been executed.

When a Q element is generated and the last instruction implied by the Q element is a PO instruction, the trace unit
generates a Target Address element that indicates the target of the PO instruction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 279
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

Repury

R;

D6.9.6

D6.9.8

DDI0608
A.a

When a Q element is generated and the last instruction implied by the Q element is not a PO instruction, the
trace unit generates a Target Address element that indicates the instruction address immediately following the last
instruction that is implied by the Q element.

When the PE leaves a region where Q elements are permitted, either by a PO instruction or by sequential execution
out of the region, and a Q element implies the execution of the last instruction in the region, the Q element does
not imply any more instructions after the last instruction in the region.

When the PE enters a region where Q elements are permitted, either by a PO instruction or by an Exceptional
occurrence, the trace unit traces the PO instruction or Exceptional occurrence using elements other than Q elements.

Note

Although the trace unit does not trace with Q elements a PO instruction or Exceptional occurrence that causes
the PE to enter a region where Q elements are permitted, any subsequent instructions in the region where Q
elements are permitted might be traced using Q elements.

When the PE enters by sequential execution a region where Q elements are permitted, any instructions that
are executed since the last PO element outside the permitted region might be traced using a Q element. These
instructions can always be inferred unambiguously from the Q element.

When the PE enters by sequential execution a region where Q elements are permitted, and PO instructions executed
since the last PO element outside the permitted region are traced by a Q element, the Q element does not indicate
execution of any PO instructions outside the permitted region.

Event Element

The trace unit generates Event elements independently of ViewlInst.

While TRCEVENTCTLI1R.INSTEN<n> is oo1 and the resource event selected by TRCEVENTCTLOR.EVENT<n>
is active, while trace generation is operative, the trace unit generates an Event element <n> on each PE clock cycle.

When an Event element is generated between two PO elements or at the same time as a PO element that follows
another, the trace unit inserts the Event element after the first PO element but before the PO element that is an
IMPLEMENTATION DEFINED number of PO elements after the first PO element.

Arm recommends that the IMPLEMENTATION DEFINED number of PO elements is less than or equal to the number
of PO elements the PE can process simultaneously.

While trace generation is inoperative due to a trace unit buffer overflow, when a programmed ETEEvent <n> occurs,
the trace unit generates at least one Event element <n> before it generates the Overflow element corresponding to
the trace unit buffer overflow.

Cancel Element Generation

When one or more PO elements are canceled, the trace unit generates a Cancel element.
The trace unit generates Cancel elements in execution order relative to PO elements.

When a Cancel element causes execution to return to a point in the program flow that is not adjacent to a PO
instruction, the trace unit generates an Exception element that indicates which instructions were executed up to
that point in the program flow before it generates any PO elements.

Commit Element Generation

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 280
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

Rzuwop

When one or more traced PO elements are resolved for execution, the trace unit generates a Commit element.
An Atom element might be be corrected using a Mispredict element after it has been resolved.
The trace unit never generates more speculative PO elements than the maximum speculation depth of the trace unit.

When trace generation becomes inoperative due to the trace unit being disabled, the trace unit outputs any Commit
elements which have not been output.

If cycle counting is enabled some Commit elements have Cycle Count elements associated with them, that provide
counts of processor clock cycles. The cycle count values given in Cycle Count elements can be used to obtain a
cumulative count.

Commit elements with associated Cycle Count elements cannot be merged with later Commit elements.

For more information, see D2.4.1 Cycle Count Element.

D6.9.9 Transaction Start

When the PE enters an outer transaction, before the first instruction is traced, the trace unit generates a Transaction
Start element.

A Transaction Start element is not required for each Trace On element if the instructions are all part of the same
outer transaction.

When the PE leaves Transactional state and a Transaction Start element was generated for the transaction, the trace
unit traces the result of the transaction using one of the following:

e A Transaction Commit element, if the transaction was successful.
e A Transaction Failure element, if the transaction failed.
e A Cancel element which cancels the Transaction Start element.

The trace element stream only indicates that the PE is in Transactional state. It does not indicate the transactional
nesting depth.

D6.9.10 Transaction Commit

R:“ sMKL

When the PE exits Transactional state successfully, and a Transaction Start element was generated for the
transaction, the trace unit generates a Transaction Commit element.

When a Transaction Commit element is generated, the trace unit traces the Transaction Commit element after the
PO element which is generated before the tcommrt instruction, and before the next Transaction Start element is
traced.

Arm recommends that the Transaction Commit element is generated and output as soon as possible after the PE
leaves Transactional state.

Note

These rules mean that a Transaction Commit element is permitted to be output later than the PO element which
implies execution of the tcomuit instruction.

The tcomvr instruction is not a PO instruction. This means that the Transaction Commit element might be traced
before the PO element which implies execution of the rcommrt instruction.

D6.9.11 Transaction Failure

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 281
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

RI THBCC

When a transaction failure occurs, and a Transaction Start element was generated for the transaction, the trace unit
generates a Transaction Failure element.

When the PE enters a prohibited region and is in Transactional state, and a Transaction Start element was generated
for the transaction, the trace unit generates a Transaction Failure element.

When the trace unit becomes disabled and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

When a trace unit buffer overflow occurs and the PE is in Transactional state, and a Transaction Start element was
generated for the transaction, the trace unit generates a Transaction Failure element.

A Transaction Failure element is encoded as an Exception packet with a type of Transaction Failure.
When a Transaction Failure element is generated, the following behavior applies:

* The target address and target context of the previous PO element might be UNKNOWN.
* If there are no PO elements between a Trace On element and the Transaction Failure element, the initial
address and context after the previous Trace On element might be UNKNOWN.

When a PE Reset occurs and the PE is in Transactional state, and a Transaction Start element was generated for
the transaction, the trace unit generates a Transaction Failure element.

Note

A Transaction Failure element caused by a PE Reset might be traced using any of the following:

* 1. A single Exception packet with TYPE indicating PE Reset. This packet can imply the Transaction
Failure element.

* 1. An Exception packet with TYPE indicating Transaction Failure.
2. An Exception packet with TYPE indicating PE Reset, if the PE Reset is required to be traced.

D6.9.12 Context Element

R JNXJT

l‘H,‘,,‘— L

Ruxkzy

DDI0608
A.a

The trace unit generates a Context element in the following situations:

* While tracing is active, when any of the Context information changes, prior to any PO element which indicates
execution from the new context.

» After a Trace Info element is generated due to a non-periodic trace protocol synchronization request, and
prior to any PO element.

» After a Trace Info element is generated due to a periodic trace protocol synchronization request.

* When mis-speculation results in an incorrect Context element being output, prior to any PO element which
indicates execution from the correct context.

While Virtual context identifier tracing is enabled and TRFCR_EL2.CX disallows the tracing of the Virtual context
identifier, when the trace unit generates a Context element, the Virtual context identifier in the Context element has
the value oxo.

A Context element might also be output at other points, which might include after all Context synchronization
events, or at any other point at which the Context information changes.

If the highest implemented Exception level is using AArch64, the Context identifier value is the value of
CONTEXTIDR_ELI1.

Some of the Context information might change at points other than at Context synchronization events. These
changes occur when system instructions are used to change a piece of Context information, including:

e Writes to the current CONTEXTIDR_EL1.
* Writes to the CONTEXTIDR_EL2.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 282
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

» Changes from Secure to Non-secure state without using an exception return.
» Changes in Exception level other than via an exception or an exception return.

When a system instruction writes to a system register and the Context information changes, the trace unit generates
a Context element containing the new context value, after the PO element prior to the system instruction but before
the PO element following a Context synchronization event after the system instruction.

Note

If the Context element is output before the first PO element after the system instruction, this might imply that
some instructions before the system instruction were executed with the new context. This is acceptable because
the code which changes the context is usually executed in a state where it does not matter whether the old or
new context values are used.

If the PE takes an exception after performing a write to a system register that changes the context, but a PO element
has not been generated since the write, then a Context element indicating the new context is not required to be
output before the Exception element. This is because no instructions or Exceptional occurrences are indicated
to have been executed from the new context. A Context element indicating the new context must be generated
after the Exception element if the Exceptional occurrence is a Context synchronization event. If the Exceptional
occurrence changes the context, then the Context element must indicate the new context. This might happen if, for
example, the Security state changes.

When a PE Reset occurs, until the relevant PE registers are updated, the trace unit traces the Context identifier and
Virtual context identifier as zero.

A trace unit is not required to generate a Context element if tracing becomes inactive before any instructions are
executed in the new context.

Additional Context elements might be output by a trace unit in some scenarios, but these must only be output
where they do no affect the analysis of the trace element stream. Such a scenario might include when a change in
the Context information is incorrectly speculated and a subsequent Context element corrects the value of a previous
incorrect Context element. Arm recommends that the generation of additional unnecessary Context elements is
minimized to ensure trace bandwidth is minimized.

D6.9.13 Target Address Element

Ry

DDI0608
A.a

When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates a Target
Address element.

Occasions when the trace analyzer might not be able to infer the address or instruction set from previous trace
include:

* At the target of an indirect PO instruction which is taken.

* At the target of a direct PO instruction which is taken in a branch broadcasting region, see TRCBBCTLR for
more information.

* At the target of an Exceptional occurrence.

* At the target of an Transaction Failure element.

* When mis-speculation occurs and the address cannot be inferred.

» After a Q element is generated.

When the trace analyzer cannot infer the address or instruction set from the trace, the trace unit generates the
resulting Target Address element before the next PO element, unless any of the following are true:

e The Target Address element can be omitted because of a return stack match.
* Tracing is inactive at the target of the PO instruction or Exceptional occurrence.
* A transaction failure occurs and tracing is inactive at the target of the transaction failure.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 283
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

DDI0608
A.a

When non-periodic trace protocol synchronization occurs, the trace unit generates a Target Address element after
the Trace Info element and Trace On element corresponding to the non-periodic trace protocol synchronization,
and before the next PO element is generated.

When periodic trace protocol synchronization occurs, after the corresponding Trace Info element has been generated,
the trace unit generates a Target Address element containing the address of the target of the most recent PO element
before the Target Address element.

When non-periodic trace protocol synchronization occurs, the Target Address element does not need to indicate the
target of the most recent PO element, since tracing might not become active at the target of a PO element.

When periodic trace protocol synchronization occurs, the Target Address element needs to indicate the target of the
most recent PO element, since tracing is continuing from that PO element. Furthermore, the Target Address element
might indicate the target of a PO element from before the Trace Info element.

When a Trace On element is generated, the trace unit generates a Target Address element before the next PO
element.

Typically, a Target Address element is required after an Exception element to indicate the target of the Exceptional
occurrence, since a trace analyzer is not usually able to infer the target of an Exceptional occurrence.

In some scenarios, an Exception element might be generated in the trace where the Exceptional occurrence target
address is the next sequential instruction from the last instruction before the Exceptional occurrence. This behavior
depends on many factors and might only occur for IMPLEMENTATION DEFINED Exceptional occurrences. If an
Exceptional occurrence is taken to the next sequential instruction, the trace unit is not required to output a Target
Address element indicating the target address of the Exceptional occurrence because this can be inferred from the
previous execution.

A trace analyzer needs both a Target Address element and a Context element before it can determine the instruction
set in use, because the Target Address element provides the instruction set and the Context element provides
information on whether the PE is in AArch32 or AArch64 state.

When a change of instruction set occurs that switches between AArch32 state and AArch64 state, the trace unit
generates a Context element indicating the new state.

An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as the maximum virtual
address size supported by the PE.

When the PE attempts to execute an instruction at an invalid address and the trace unit generates a Target Address
element, the Target Address element indicates one of the following:

¢ The full 64-bit invalid address.
* Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

Arm recommends that when the PE attempts to execute an instruction at an invalid address and the trace unit
generates a Target Address element, the Target Address element indicates the full 64-bit invalid address.

While tagged addresses are in use, the virtual address in the trace element stream does not include the tag and is
the PC value, that is, depending on the state of the PE at the address, bits[63:56] are one of the following:

* The sign-extension of bit[55].
* Zero.

The Translation Control Registers, TCR_ELx, contain the TBI field for controlling whether to ignore the top byte
of an address. If the current TBI field is changed from oxo to o»1, and before the next Context synchronization event
the PE takes an exception because of an invalid top address byte, the branch target address to the invalid address
or the preferred exception return address of the Exception element might not contain the full invalid address and
might contain the address with the top byte masked. Furthermore, the branch target address might be the invalid
address and therefore might be different from the preferred exception return address. Trace analysis tools must
be aware that if a branch target address is substantially different from a preferred exception return address which
follows, then there might have been a change in the TBI field which caused this large change in address.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 284
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

R:H:’J B

D6.9.15

R::TLIE',Z

D6.9.16

Ryywrr

DDI0608
A.a

When a pointer authentication check fails and an exception is taken from the resulting invalid address, the preferred
exception return address is one of the following:

¢ The full 64-bit invalid address.
* Any other invalid address, with address bits [P-1:0] the same as the full invalid address.

Arm recommends that when a pointer authentication check fails and an exception is taken from the resulting invalid
address, the preferred exception return address is the full 64-bit invalid address.

The bottom bits of an address are ignored, in the following way:
* Bits[1:0] of addresses that are used in A64 or A32 instructions are always traced as zero.
* Bit[0] of addresses that are used in T32 instructions is always traced as zero.

Additional Target Address elements might be output by a trace unit in some scenarios, but these must only be
output where they do not affect the analysis of the trace element stream. These scenarios include, but are not
limited to:

* When an instruction address is incorrectly speculated, and a subsequent Target Address element corrects the
value of a previous incorrect Target Address element.

* When an instruction address can be inferred by the trace analyzer, for example for the target of a direct PO
instruction, but a Target Address element is output anyway with the same address.

Arm recommends that the generation of additional unnecessary Target Address elements is minimized to ensure
trace bandwidth is minimized.

Mispredict Element

When the status of the last non-canceled Atom element has been changed by the PE, the trace unit generates a
Mispredict element.

The trace unit only generates a Mispredict element to change the status of an Afom element.

A trace unit might generate multiple Mispredict elements for the same Atom element. A trace analyzer must use
each Mispredict element to determine the final status of the Atom element. For example, if an E Atom element has
two Mispredict elements, the first Mispredict element indicates the Afom element is an N Atom element and the
second Mispredict element indicates it is an E Atom element.

If a PE mispredicts only the target address of a PO element then it does not generate a Mispredict element.

The trace unit uses a Target Address element to correct the mispredicted target address. When analyzing a
Mispredict element, any Target Address elements between the mispredicted Afom element and the Mispredict
element must be discarded.

Overflow Element

When a trace unit buffer overflow occurs, after all trace elements that were generated prior to the trace unit buffer
overflow are output, the trace unit outputs an Overflow element.

When a trace unit buffer overflow occurs, and the trace unit is disabled after recovering from the trace unit buffer
overflow, the trace unit outputs the corresponding Overflow element before the trace unit becomes idle.

Timestamp Element

While TRCCONFIGR.TS is on1 and any of the following occur, a timestamp request occurs:

* The timestamp resource event occurs, as controlled by TRCTSCTLR.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 285
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

RI NGXNQ

DDI0608
A.a

* The trace unit generates a Trace Info element.

* The trace unit recovers from a trace unit buffer overflow.

* When not in a prohibited region and a Context synchronization event is caused by any of the following:
— The PE takes an exception.
— The PE returns from an exception.
— An 1ss instruction is executed.

* A trace unit flush is requested.

* When not in a prohibited region, a Tse csync instruction is executed.

While TRCCONFIGR.TS is ob1 and when not in a prohibited region, a timestamp request might occur when any
of the following occur but do not cause a Context synchronization event:

* The PE takes an exception.
* The PE returns from an exception.
* An 1ss instruction is executed.
The state of the ViewlInst function does not affect whether a timestamp request occurs.

When a timestamp request occurs and ViewlInst is inactive, the timestamp request is permitted to be delayed until
the first of the following occurs:

¢ Viewlnst becomes active.
* An Event element is generated.

There is no requirement for a Timestamp element to be generated in the trace element stream on each occasion that
Viewlnst becomes active.

When a timestamp request occurs and is not ignored, the trace unit generates a Timestamp element.

When a timestamp request occurs but the trace unit does not have the capacity to generate the Timestamp element
immediately, then the generation of the Timestamp element is delayed until there is capacity.

A trace unit might not have the capacity to generate a Timestamp element for multiple reasons, including avoiding
a trace unit buffer overflow. A delayed Timestamp element means that a timestamp value might not be the exact
time of the incident that resulted in the timestamp request. A timestamp is only a time indicator inserted in the
trace element stream somewhere near the time of the request.

When a timestamp request occurs while in a prohibited region, then the generation of the Timestamp element is
delayed until the PE leaves the prohibited region.

When the first timestamp request occurs after trace generation becomes operative, the trace unit delays generation
of the corresponding Timestamp element until after the trace unit has generated either a PO element or an Event
element.

This is so that the timestamp value can correspond to the most recent of these elements.

A timestamp request is permitted to be ignored if a previous timestamp request has not yet generated a Timestamp
element, due to a delay in the generation.

While TRCCONFIGR.CCI is ob1, each Timestamp element contains a cycle count that indicates the number of
cycles between the previous Cycle Count element and the element with which the Timestamp is associated.

The cycle count associated with a Timestamp element is different from the Cycle Count element in the following
ways:

* The cycle count does not affect the cumulative cycle count.
* The cycle count value can be zero.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 286
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

Tureem

Ronsww

RHP YKS

D6.9.17

IHH; B

D6.9.18

RT'J}]ZI{

R?{ JXDK

DDI0608
A.a

When the cycle count associated with a Timestamp element is zero, this indicates that no cycles passed between the
previous Cycle Count element and the element with which the Timestamp element is associated.

Note

The cycle count associated with a Timestamp element is not a Cycle Count element, and therefore has no effect
on the cycle counter.

When the trace unit is first enabled, while cycle counting is enabled, when a Timestamp element is generated before
any Cycle Count elements, the Timestamp element reports the cycle count as UNKNOWN.

When a Timestamp element is generated and the cycle counter has exceeded the maximum supported value, the
Timestamp element reports the cycle count as UNKNOWN.

Trace On Element

When an instruction block is traced immediately after an instruction block was not traced or a trace unit buffer
overflow occurred, the trace unit generates a Trace On element.

When an Exception element indicating a PE Reset is traced, the preferred exception return address is UNKNOWN.
Any instructions since the most recent unresolved PO element are not traced. If Viewlnst was active for these
instructions, this is not considered a gap in the trace element stream and a Trace On element is not required.

In some scenarios where mis-speculation occurs or instructions are canceled, after Cancel elements have been
processed there might be Trace On elements in the trace element stream even though no trace discontinuity occurred
in the architecturally-executed instruction trace. This typically only occurs when the trace is filtered using the
Viewlnst function, which causes the Trace On element to be inserted.

Trace analyzers must be aware that these additional Trace On elements might be traced.

Cycle Count Element

The cycle counter has an IMPLEMENTATION DEFINED size of between 12 and 20 bits, as indicated by
TRCIDR2.CCSIZE. The cycle counter therefore supports values from 1 to 22°-1.

While TRCCONFIGR.CCI is oo1 and the cycle count is equal to or greater than the value of
TRCCCCTLR.THRESHOLD, when a Commit element is generated, a Cycle Count element request occurs.

While TRCCCCTLR.THRESHOLD is programmed with a value less than TRCIDR3.CCITMIN, the generation of
Cycle Count elements is CONSTRAINED UNPREDICTABLE.

When a request for a Cycle Count element occurs, one of the following occurs:
* The trace unit generates a Cycle Count element immediately and before any future Commit element.

* The trace unit delays generation of the Cycle Count element until after one or more further Commit elements
have been generated.

Arm recommends that when a request for a Cycle Count element occurs, the Cycle Count element is generated
immediately, and that Cycle Count element generation is only delayed in rare and non-repetitive circumstances.

When a Cycle Count element is generated, the Cycle Count element contains the value of the cycle counter at the
time the most recent Commit element was generated, and the cycle counter is reset to the number of cycles since
the most recent Commit element was generated.

A value of 0 indicates that the cycle count value is UNKNOWN.

When the cycle counter exceeds the maximum supported value, the cycle count value is UNKNOWN.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 287
Non-confidential

Chapter D6. Trace Unit
D6.9. Element Generation

R YEMWB

T;g:bl

D6.9.19

RT”T"T'FG' /

DDI0608
A.a

When the trace unit becomes enabled, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

When a trace unit buffer overflow occurs, an UNKNOWN cycle count value occurs for the first Cycle Count element
generated.

The first Cycle Count element after the PE clock has been restarted should have an UNKNOWN cycle count.

Discard Element

When trace generation becomes inoperative and any of the following are true, the trace unit generates a Discard
element:

* PO elements have been generated but the trace unit is unable to output the resolution of those PO elements.

* A Transaction Start element has been generated and trace generation becomes inoperative before the
transaction either succeeds or fails.

When trace generation becomes inoperative due to the trace unit becoming disabled, and a Discard element is
generated, the trace unit outputs the Discard element after all other elements.

When a PE Reset occurs and any of the following are true, the trace unit generates a Discard element:
* PO elements have been generated but the trace unit is unable to output the resolution of those PO elements.

* A Transaction Start element has been generated and the PE Reset occurs before the transaction either
succeeds or fails.

A trace unit might not generate a Discard element if no PO elements are speculative.
A trace unit might generate a Discard element even if no PO elements are speculative.

When a Discard element is generated, all uncommitted PO elements are discarded, that is, the current speculation
depth is set to zero.

When a Discard element is generated, and a Transaction Start element has been traced but the transaction has not
succeeded or failed, the trace unit does not indicate the resolution of the transaction.

When a Discard element is generated and tracing subsequently becomes operative for the same transaction, the
trace unit generates a new Transaction Start element before any PO elements are generated for the transaction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 288
Non-confidential

Chapter D6. Trace Unit
D6.10. Trace unit features

D6.10 Trace unit features

I:‘t‘:i b

D6.10.1

RHHI?”

The architecture defines a number of optional and mandatory features that are provided to modify the trace element
stream to provide additional information to aid debugging. These features include the following:

e *Q element* regions.

* Branch broadcasting.

* Context identifier tracing.

* Cycle counting.

* Event trace.

* No overflow.

* PE Stalling and overflow avoidance.
* Timestamping.

* Virtual context identifier tracing.

For the optional features, the inclusion of these optional features is indicated in TRCIDRO-TRCIDR13.

Branch broadcasting

The branch broadcasting feature forces the trace unit to explicitly trace the target addresses of taken direct PO
instructions.

The target addresses are traced using Target Address elements in the instruction trace stream.
Branch broadcasting is enabled by performing both of the following actions:
¢ Setting TRCCONFIGR.BB to ob1.

* Programming TRCBBCTLR to specify how branch broadcasting behaves. TRCBBCTLR selects Address
Range Comparators to define when branch broadcasting is active, and selects the operating mode of branch
broadcasting:

— Branch broadcasting is active for all instructions inside the selected ranges. This is known as include
mode.

— Branch broadcasting is active for all instructions outside the selected ranges. This is known as exclude
mode.

When a direct PO instruction for which branch broadcasting is active is taken, the trace unit generates a Target
Address element to explicitly trace the target of the instruction, regardless of whether the PO instruction is
mispredicted.

While branch broadcasting is enabled, while the return stack is enabled, the trace unit prioritizes branch broadcasting
over the return stack, that is, the return stack does not match on the target of any instruction for which branch
broadcasting is active.

If TRCBBCTLR is not implemented, while branch broadcasting is enabled, branch broadcasting is active for all
instructions.

D6.10.2 Q Regions

DDI0608
A.a

Q elements are a optional feature, as indicated by TRCIDRO.QSUPP.
The use of Q elements must be explicitly enabled if the trace unit is to use them.

While Q elements are enabled, the trace element stream might not contain enough information to determine the
complete program flow, because some changes in flow might not be explicitly indicated.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 289
Non-confidential

Chapter D6. Trace Unit
D6.10. Trace unit features

e

Arm recommends that Q elements are only used in cases where generating the full ETE instruction trace element
stream might cause the performance of the PE being traced to degrade significantly.

The use of Q elements degrades the information that can be extracted from the trace element stream. Arm
recommends that Q element filtering, as indicated by TRCIDRO.QFILT, is also implemented.

If TRCQCTLR is implemented, the trace unit supports the ability to control when Q elements are permitted in
the trace element stream using Address Range Comparators (ARCs). The Q element filtering operates in either
Exclude mode, or Include mode, selected by TRCQCTLR.MODE.

If Q elements are enabled and Q element filtering is in Include mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are permitted.

If O elements are enabled and Q element filtering is in Exclude mode, the ARCs selected by TRCQCTLR.RANGE
define where Q elements are not permitted.

When an instruction block contains at least one instruction where Q elements are permitted, the entire instruction
block is permitted to generate Q elements.

The following equation is calculated for each instruction block and defines when Q elements are permitted.

> " ARC;[n] A TRCQCTLR.RANGE|n] Include mode

Q_PERMITTED; = { " (D6.27)
=) ARC;[n] A TRCQCTLR.RANGE[n] Exclude mode

While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit does not generate any Q elements.

While TRCCONFIGR.QE indicates that Q elements are disabled, the trace unit is able to generate all of the
elements required to trace the instruction sequence.

D6.10.3 Cycle Counting

IHV QVC

Irveey

R SHYWB

Ikk‘LLTL

DDI0608
A.a

The use of the cycle counting feature introduces Cycle Count elements into the trace element stream to indicate the
passage of PE clock cycles.

Counting the number of clock cycles the PE uses to perform a certain function can be useful as a way of measuring
program performance, or for profiling the PE.

While cycle counting is enabled, the trace unit outputs Cycle Count packets that contain processor clock cycle
count values.

Cycle Count elements are associated with Commit elements, so that when a Commit element is generated,
a Cycle Count element might also be generated. Whether a Cycle Count element is generated when a
Commit element is generated depends on what cycle count threshold has been specified when programming
TRCCCCTLR.THRESHOLD.

When a Commit element is generated and the cycle count value is equal to or more than the threshold value, then a
Cycle Count element is generated and a Cycle Count packet is output. The cycle count value that is contained in
that packet is associated with the Commit element that triggered it.

While cycle counting is enabled, and when a Commit element is generated and the cycle count value is greater than
or equal to the threshold value that is programmed in TRCCCCTLR. THRESHOLD, the trace unit generates a
Cycle Count element.

Also, because cycle counting is associated with Commit elements, a Cycle Count packet might imply the generation
of Commit elements, and so in addition to the cycle count value, some Cycle Count packets also contain a value for
the number of Commit elements that the trace unit has generated.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 290
Non-confidential

Chapter D6. Trace Unit
D6.10. Trace unit features

TII?,.‘Q[Z

The value of cycle count that is given in a new Cycle Count packet indicates the number of processor clock cycles
between the new Commit element that the packet is associated with, and the most recent Commit element prior to
the new Commit element that had a Cycle Count element associated with it.

This means that if there is a requirement for a cumulative cycle count total, the cycle count values from the
successive Cycle Count packets can be added together to obtain this.

D6.10.4 Timestamping

I YEPDZ

The trace unit supports Timestamping, where a common global time value is inserted in to the trace stream. These
timestamps may be used to correlate between multiple trace streams, including those from other PEs or other
sources of trace. These timestamps may be used to determine the passage of time, for analysing performance.

When timestamping is enabled, the trace unit inserts Timestamp elements in to the trace stream. Each Timestamping
element indicates the time that a recent PO element or Event element occurred, and can be used to accurately
determine when that element occurred.

The time value included in Timestamp elements is selected by TRFCR_EL1 and TRFCR_EL?2 and is one of:

 Physical time, as seen by the generic timers in the PE.
 Virtual time, as seen by the generic timers in the PE.
* An IMPLEMENTATION DEFINED time value, often supplied by a CoreSight system.

The insertion of Timestamp elements is controlled by TRCCONFIGR.TS and TRCTSCTLR.

D6.10.5 Stalling the execution of the PE

Tvpeve

DDI0608
A.a

The trace unit can be programmed to reduce the likelihood of a trace unit buffer overflow. If the trace unit
is configured to support PE stalling, TRCIDR3.STALLCTL indicates that PE stalling is implemented and
TRCIDR3.SYSSTALL indicates that PE stalling is permitted, then the execution of the PE can be slowed.

It is permissible that the operation of the PE can be affected by the programming of the trace unit. The amount of
intrusion and when stalling occurs is IMPLEMENTATION DEFINED. Additional stalling of the PE execution can be
achieved by enabling this feature.

Trace unit stalling of the PE is independent of the operation of the PE.

PE operations which explicitly interact with the trace unit complete independently of the programming of the
ability of the trace unit to stall the PE.

The trace unit does not stall the PE while any of the following are true:

¢ The trace unit is in the Disabled state.

* The PE is executing in a prohibited region (see D6.6.6 Prohibited Regions).

* The PE is in Debug State.

* The PE does not allow stalling, that is, TRCIDR3.SYSSTALL == ovo.

® SelfHostedTraceEnabled()== FALSE and ExternalInvasiveDebugEnabled ()== FALSE.

¢ When TRCSTALLCTLR.ISTALL == ob0 and TRCSTALLCTLR.NOOVERFLOW == oro.
* Trace output is disabled.

When all of the following are true, the trace unit is permitted to stall the PE:

« Stalling of the PE is not prohibited by Rgcryy.
¢ TRCSTALLCTLR.ISTALL == o»1.
* Any of the following are true:
— TRCSTALLCTLR.NOOVERFLOW == op1.
— The available space in the internal storage of the trace unit is below the level indicated in
TRCSTALLCTLR.LEVEL.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 291
Non-confidential

Chapter D6. Trace Unit
D6.10. Trace unit features

Otherwise, the trace unit does not stall the PE due to the stalling feature or no overflow feature.

Ryvkxx The trace unit does not indefinitely stall the operation of the PE.

Typro. In a multi-threaded processor, if the trace unit stalls a PE, Arm recommends that stalling or disruption of the
processing of other PEs is minimized. In particular, if tracing of one or more PEs in a multi-threaded processor
is enabled but tracing of other PEs in the multi-threaded processor is disabled, Arm recommends that if the PEs
being traced are stalled by their respective trace units then the stall has minimal effect on the PEs which are not

being traced.

I ZROBK

and TRCIDR3.SYSSTALL == ob1.

Table D6.5: Summary of TRCSTALLCTLR stalling

The levels indicated in TRCSTALLCTLR.LEVEL are the levels of intrusion allowed.
A summary of the stalling and no overflow scenarios is shown in Table D6.5, when TRCIDR3.STALLCTL == on1

and no overflow features

ISTALL

NOOVERFLOW LEVEL

Description

0

0 X

0 Zero

0 non-zero

1 Zero

1 non-zero

Stalling is disabled

It is CONSTRAINED
UNPREDICTABLE whether
the no overflow feature is
enabled or stalling is
disabled

Stalling is enabled at the
minimum level

Stalling is enabled and is
based on the value in
TRCSTALLCTLR.LEVEL

The no overflow feature is
enabled, preventing
overflows

The no overflow feature is
enabled, preventing
overflows, and
TRCSTALLCTLR.LEVEL
might cause stalling earlier
than necessary to prevent
overflows

D6.10.6 No overflow

Ipgerx

A trace unit might include an optional feature to prevent

overflows,

TRCIDR3.NOOVERFLOW.

DDI0608
A.a

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

which 1is indicated by

292

Chapter D6. Trace Unit
D6.10. Trace unit features

RL‘Z,’AL

n

R VHMZ X

Ruymgw

R JYYLV

TRCSTALLCTLR.NOOVERFLOW controls the no overflow feature.
Enabling the no overflow feature might have a significant impact on PE performance.

While the no overflow feature is enabled, and while the number or frequency of ETEEvents is below an IMPLE-
MENTATION DEFINED threshold, the trace unit does not overflow.

The threshold is greater than or equal to one of each numbered ETEEvent, for each trace session.

When TRCIDR3.SYSSTALL is owo the effective value of TRCSTALLCTLR.NOOVERFLOW is ono which means
the no overflow feature is disabled.

When TRCSTALLCTLR.ISTALL == 0n0 and TRCSTALLCTLR.NOOVERFLOW is ob1, it is CONSTRAINED
UNPREDICTABLE whether any stalling is disabled or whether the no overflow feature is enabled.

D6.10.7 Event Trace

The ETE architecture supports the tracing of additional information in the trace stream. These are known as
ETEEvents, also known as Event trace. The trace unit supports up to 4 ETEEvents. The generation of ETEEvents
is controlled by selecting resources selectors. The occurrence of ETEEvents can be communicated in the following
ways:

¢ To the system by D7.10 External Outputs.
* To the trace analyzer by D5.68 Event Packet.

D6.10.8 Context identifier tracing

The trace unit can be programmed to include information about the current execution context of the program being
executed on the PE, including:

 The current process identifier, stored in CONTEXTIDR_EL1. This is known as the Context identifier.
¢ The current virtual machine identifier, stored in CONTEXTIDR_EL?2. This is known as the Virtual context
identifier.

The trace unit supports tracing of the Context identifier, with TRCIDR2.CIDSIZE indicating a 32-bit Context
identifier size.

D6.10.9 Virtual context identifier tracing

DDI0608
A.a

Whether an implementation supports Virtual context identifier tracing is IMPLEMENTATION DEFINED. If it does,
the trace unit can be programmed to output the identifier of a virtual machine that the PE is executing.

This option is enabled by setting TRCCONFIGR.VMID to ob1.

If the PE implements the Virtualization Host Extensions, the trace unit supports a 32-bit Virtual context identifier,
with TRCIDR2.VMIDSIZE indicating a 32-bit Virtual context identifier size. The source of the Virtual context
identifier is CONTEXTIDR_EL2.PROCID.

If the PE does not implement EL2, the trace unit does not support a Virtual context identifier, with
TRCIDR2.VMIDSIZE indicating Virtual context identifier tracing is not supported.

Note

Previous trace architectures from Arm supported the ability to select the source of the Virtual context
identifier. This specification does not support Virtual context identifier selection, and only permits
CONTEXTIDR_EL2.PROCID as the source of the Virtual context identifier. See TRCIDR2.VMIDOPT

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 293
Non-confidential

Chapter D6. Trace Unit
D6.10. Trace unit features

for more details.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 294
Aa Non-confidential

Chapter D6. Trace Unit
D6.11. Compression

D6.11 Compression

TyveMT Additional compression of the trace byte stream is achieved by the following methods:
* Removing elements that can be implied by the trace analyzer:

— Implying the existence of Commit elements based on the tracing of other elements.
— Removing Target Address elements that can calculated by the trace analyzer by analysis of previous
traced PE execution.

* Combining multiple elements together into a single packet:

— Combining Afom elements into a single packet.
— Combining Cancel elements and Mispredict elements into a single packet.

D6.11.1 Implied commits

Trrecx The ETE trace protocol provides mechanisms to minimize the amount of Commit elements which need to be
explicitly output in the trace byte stream. When a P0 element is output in the trace byte stream, if the number of
speculative PO elements output exceeds TRCIDR8.MAXSPEC, then a Commit element is implied which resolves
the oldest speculative PO element. For more details on the packets which imply Commit elements, see Chapter D5
Protocol Description.

R The trace unit does not generate commit packets for Commit elements that have been implied by the trace protocol.

YKLRM

D6.11.2 Atom packing

T omvnp The ETE trace protocol provides packets which allow groups of consecutive Afom elements to be packed into
a single trace packet. The diagram below shows the decision tree for generating the different formats of Atom
packets.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 295

A.a Non-confidential

Chapter D6. Trace Unit
D6.11. Compression

FMT1

FMT2

FMT3

FMT4

FMT5

N
Figure D6.6: Atom packing

Tyxscs Cancel Packets can indicate a number of Afom elements as well as the Cancel element.
T kuwnp The Mispredict Packets can indicate a number of Atom elements as well as the Mispredict element.

D6.11.3 Address Compression

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 296
Aa Non-confidential

Chapter D6. Trace Unit
D6.11. Compression

I LFFCR

The trace unit can remove program addresses from the trace stream. The trace analyzer can infer the addresses
from the program image and previous history.

This includes the targets of direct PO instructions, where the target address is encoded in the instruction itself.

The trace unit retains the Address information of up to the last three addresses that were explicitly output in the
trace protocol, as contained in:

» Target Address packets.

* Source Address packets.

» Exception packets.

* Transaction Failure packets.
* PE Reset packets.

* Q packets.

The explicitly output addresses that the trace unit retains are known as the address history buffer.
For optimized trace protocol efficiency, Arm recommends that the address history buffer is three entries deep.

When any of the following packets are generated, the trace unit pushes the address value and sub_isa to the address
history buffer:

» Target Address packet.
* Source Address packet.
* Q packet that implies a Target Address element.

When an Exception packet is generated, the trace unit pushes the preferred exception return address value and
sub_isa to the address history buffer.

When one of the following packets is generated with an UNKNOWN address, the trace unit pushes an address value
of 0x0 and sub_isa of IS0 to the address history buffer.

* Transaction Failure packet.
* PE Reset packet.

When a Target Address packet is generated, the trace unit uses the address history buffer to identify when a Target
Address Exact Match packet can be used. When a Target Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Target Address packet selection.

When a Source Address packet is generated, the trace unit uses the address history buffer to identify when a Source
Address Exact Match packet can be used. When a Source Address Exact Match packet cannot be used, the most
recent entry in the address history buffer is used for the Source Address packet selection.

When an Exception packet is generated, the trace unit uses the address history buffer to identify when an Exception
Exact Match Address packet can be used. When an Exception Exact Match Address packet cannot be used, the
most recent entry in the address history buffer is used for the Exception Address packet selection.

When a Q packet is generated which implies a Target Address element, the trace unit uses the address history buffer
to identify when a Q with Exact Match Address packet can be used. When a Q with Exact Match Address packet
cannot be used, the most recent entry in the address history buffer is used for the Q Address packet selection.

When a Trace Info packet is generated, the trace unit sets all entries of the address history buffer to have an address
value of oxo and sub_isa of ISO.

D6.11.4 Return Stack Address Matching

IHH‘.J Z

DDI0608
A.a

The trace unit might contain the optional return stack function. The return stack operates when Branch with Link
instructions or indirect PO instructions are taken, and provides a mechanism to allow the trace unit to remove
certain Target Address elements from the trace element stream. The trace analyzer maintains an independent copy
of the return stack which is used to determine when Target Address elements have been removed and then infer the
target of indirect PO instructions.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 297
Non-confidential

Chapter D6. Trace Unit
D6.11. Compression

RTITT'IV

Reaane

DDI0608

A.a

The depth of the return stack is IMPLEMENTATION DEFINED from O to 15 entries.

For optimized trace protocol efficiency, Arm recommends the trace unit implements the return stack with at least 3
entries.

While TRCCONFIGR.RS is o1, when a Branch with Link instruction is predicted as taken and is traced, the trace
unit pushes the following Address information to the return stack:

¢ The instruction address + the instruction size, that is, the return address for the Branch with Link instruction.
* The sub_isa from the instruction set encoding (see D5.3.2 Instruction set encoding).

When a return stack push occurs, all existing entries are shifted down one place on the return stack and the new
entry is pushed to the top entry of the return stack.

While the return stack is full, when a return stack push occurs, the oldest entry on the return stack is discarded.

When a Branch with Link instruction is predicted as taken and traced with an E Atom element, when a return
stack push occurs, the trace unit pushes to the return stack, even if the prediction is incorrect and is subsequently
corrected to an N Atom element.

When a Branch with Link instruction is predicted as not taken and traced with an N Atom element, the trace unit
does not push to the return stack, even if the prediction is incorrect and is subsequently corrected to an E Atom
element.

When a Branch with Link instruction is implied by a Q element, the trace unit does not push to the return stack.

When a Branch with Link instruction is executed in a branch broadcasting region, the trace unit does not push to
the return stack.

When an indirect PO instruction is taken and traced, and the Address information in the resultant Target Address
element matches the address and sub_isa on the top of the return stack, the trace unit performs a return stack pop.

When a return stack pop occurs, both of the following occur:

* The trace unit discards the Target Address element that matches the address and sub_isa on the top of the
return stack.
* The trace unit removes the top entry of the return stack, and shifts each older entry up one position.

When an indirect PO instruction is implied by a Q element, the trace unit does not perform a return stack pop.
When an indirect PO instruction is taken, it is possible that the target address is predicted incorrectly by the PE.

When the target address of a taken indirect PO instruction is incorrectly predicted, and the incorrect target address
is traced with a Target Address element, the trace unit corrects the incorrect address by generating a new Target
Address element with the correct target address, and neither of the target addresses cause a return stack pop.

When the target address of a taken indirect PO instruction is incorrectly predicted, and the incorrect target address
matches the top entry of the return stack, the trace unit subsequently generates a Target Address element with the
correct target address, and neither of the target addresses cause a return stack pop.

When the final status of the Atom element corresponding to an indirect PO instruction is E, including when one or
more Mispredict elements change the status of the Afom element, the trace unit performs a return stack pop.

Note

A return stack push only occurs if the initial Atom element state for the Branch with Link instruction is E.
Conversely, a return stack pop only occurs if the final Atom element state for the indirect PO instruction is E.

When an instruction that is both a Branch with Link instruction and an indirect PO instruction is executed, the trace
unit performs the following actions on the return stack, in order:

1. Determine whether a return stack push is possible and push if required.

2. Determine whether a return stack pop is possible and pop if required.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 298
Non-confidential

Chapter D6. Trace Unit
D6.11. Compression

Rsszgs

Note

Some previous trace architectures from Arm use a different order of operations.

When any of the following occur, the trace unit discards the contents of the return stack:

* The trace unit generates a Trace Info element.
* The trace unit generates a Trace On element.
* The PE enters a branch broadcasting region.

A trace unit might discard the contents of the return stack at any time.

When the return stack contents are discarded, there is no requirement for the trace analyzer to be aware that this
discard operation has occurred. This is because even though the contents of the trace unit return stack are discarded,
there are no adverse consequences if the contents of the trace analyzer return stack are retained, but never used.

After a Trace Info element, a Target Address element and a Context element are required but might not be generated
immediately. If the Target Address element and the Context element are not generated before the next PO element,
then any Branch with Link instructions must not push on to the return stack until both the Target Address element
and the Context element have been generated.

Note

This restriction prevents the trace unit from performing return stack pushes for instructions that the trace analyzer
cannot analyze, because it is not yet fully synchronized.

D6.11.5 Timestamp Value Compression

DDI0608
A.a

The trace analyzer maintains a copy of the last Timestamp element value broadcast. The Timestamp element value
might be compressed relative to the last value and only the bits that have changed need to be encoded.

When a Trace Info packet is generated, the trace unit sets its maintained value of the last Timestamp element to
zero, and when the trace unit generates a subsequent Timestamp packet the value is compressed relative to this
new zero value. This means that the first Timestamp packet after a Trace Info packet contains all non-zero bits of
the Timestamp value.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 299
Non-confidential

Chapter D7

Resources
Iekene The ETE architecture has a number of resources that can be used to be provide advanced filtering functionality.
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 300

A.a Non-confidential

Chapter D7. Resources
D7.1. Resource operation

D7.1 Resource operation

Rpuzx The resources operate in one of the following states:

Running
All the resources are active.

Pausing
The resources are progressing to the Paused state.

Paused
All the resources are static and inactive except for External Input Selectors.

Paused

Figure D7.1: Resources operation

Tawvyk As described in D6.2 System Behaviors, the trace unit can be disabled by either:

¢ Setting TRCPRGCTLR.EN to oxo.
* Locking the OS Lock, by setting OSLAR_EL1.0OSLK to ob1.

RyLLvn While the resources are in the Running state, and when any of the following are occur, the resources enter the
Pausing state:

* The trace unit becomes disabled.
* The trace unit enters the low-power state.
* The Processing Element (PE) begins executing in a prohibited region.

Rywpva While the resources are in the Pausing state, the resources enter the Paused state in finite time.
RLyFDT While the trace unit is in the Paused state, when all of the following are true, the resources enter the Running state:

* The trace unit is enabled.
* The trace unit is not in the low-power state.
* The PE is not executing in a prohibited region.

Rompzz A trace unit buffer overflow has no impact on the behavior of the resources.

D7.1.1 Behavior of the resources while in the Running state

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 301
Aa Non-confidential

Chapter D7. Resources
D7.1. Resource operation

S svyop The time taken for the resources to operate might vary between different trace unit implementations.

D7.1.2 Behavior of the resources while in the Pausing state

Rrpcec When the resources enter the Pausing state, the resources perform the following procedure:

1. All resources, except for the Sequencer and any Counters, are driven low as inputs to the Resource Selector
logic. The Counters and the Sequencer behave as normal.

2. The states that the inputs were at before they were driven low are propagated through the Resource Selector
logic.

3. The states of the Counters and the Sequencer are propagated through the Resource Selector logic one more
time. That is, the states of the Counters and the Sequencer are propagated through the Resource Selector
logic for the length of time that it takes for the state of a resource to be propagated through the Resource
Selector logic.

4. The resources enter the Paused state.

I1GuRK The procedure that the resources perform when the resources are in the Pausing state has the result that, for resource
events that are activated by a resource that is not a Counter or a Sequencer, no activity is lost, because all those
resource events are updated.

T coney When Counter and Sequencer states are propagated back as resources, so that a loop is created, then the following
are true:

« If a Counter at zero resource is being used to activate either the Sequencer or a Counter, then that Counter at
zero resource might be propagating through the Resource Selector logic at the time when the procedure ends.
In this case, the Sequencer state resource or other Counter at zero resource that is activated by that Counter at
zero resource might be lost.

« If a Sequencer state resource is being used to activate a Counter, then that Sequencer state resource might
be propagating through the Resource Selector logic at the time when the procedure ends. In this case, the
Counter at zero resource that is activated by that Sequencer state resource might be lost.

Torzxy When the trace unit becomes disabled, the behavior of the resources in the Pausing state ensures that the
programmers model provides a consistent view of the state of the trace unit resources. That is, with regard
to the Counters and the Sequencer, the following are true:

« If the state of the Sequencer is selected to be propagated back as a resource, then the view of the Sequencer
as a resource event and the view of the Sequencer resource state each show the same Sequencer state.

« If the state of a Counter is propagated back as a resource, then the view of the Counter as a resource event
and the view of the Counter resource state each show the same Counter state. The Counter state might be
either of the following:

— The Counter is at zero.
— The Counter is not at zero.

D7.1.3 Behavior of the resources while in the Paused state

Tyxkso The behavior of the resources when the PE enters the low-power state or a prohibited region differs from other
trace architectures defined by Arm.

Rravow While the resources are in the Paused state and the trace unit is not disabled, the resources do not lose resource
events that are in transition, except those permitted when moving through the Pausing state of the resources. See
D7.1.2 Behavior of the resources while in the Pausing state for details on the resource events that are permitted to
be lost when in the Pausing state.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 302
Aa Non-confidential

Chapter D7. Resources
D7.1. Resource operation

Thzrss While the resources are in the Paused state, the resources might not observe resource events that are in transition
until after the resources leave the Paused state.

Rywono While the resources are in the Paused state, the resources remain in the state they are in.
Reosmy While the resources are in the Paused state, the trace unit drives all External Outputs low.
Ruvzyp When the trace unit becomes disabled and the resources enter the Paused state, and not before, the trace unit might

set TRCSTATR.PMSTABLE to ob1.

RrunTs While TRCSTATR.PMSTABLE is set to ov1, all resources and resource events remain in a quiescent state.

Note

The behavior of the External Input Selectors is detailed in D7.11.1 Operation while in Paused state.

D7.1.4 Behavior of resources on a Trace synchronization event

Rrrsry When the following resources have finished calculations for all instructions prior to the previous Context
synchronization event, a Trace synchronization event completes:

* Address Comparators.

 Context Identifier Comparators.

* Virtual Context Identifier Comparators.
* Single-shot Comparator Controls.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 303
Aa Non-confidential

Chapter D7. Resources
D7.2. Resource organization

D7.2 Resource organization

INJIRE There are 2 types of resources:

* Precise resources.
* Imprecise resources.

T scrLL Each resources has a current state, which is output as a Resource state. The Resource state is selected by Resource
Selectors, and then used by various trace unit functions as a Resource event, see Figure D7.2.

Trace unit
Resources |——— Resource state ——p» Pfglzgigf — Resource event ——P» o o

Figure D7.2: Resources organization

D7.2.1 Precise Resources

Tospx The precise resources are used in the evaluation of the ViewlInst include/exclude function and the ViewlInst start/stop
function.
Runcpa The trace unit evaluates the precise resources for each instruction block. See D6.6.4 Instruction Block for more
details.
Ryrpey The trace unit maintains execution order of the precise resources.
Context Identifier ViewlInst include/exclude
Comparators function
Address .
Comparators P> ViewlInst
Virtual
Context ——P»| Viewlnst start/stop
Identifier function
Comparators
PE Comparator
Inputs
Figure D7.3: Precise Resource Path
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 304

A.a Non-confidential

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

D7.2.2 Imprecise Resources

Address
Comparators ——P»

Context

Identifier ——P
Comparators

Virtual Counters

Context
Identifier >

Comparators

Sequencer

Single-shot

Comparator ——p»
Controls

Resource Resource

Selectors [EventBus Viewlnst

Counters —P»

Timestamp
Control

Sequencer (——P»

ETEEvents

PE Comparator
Inputs >

External Input
PMU Events Selectors >

Figure D7.4: Resources organization

D7.3 Selecting a resource or a pair of resources

Ierorw A resource is selected by using a Resource Selector.

Ropay Each Resource Selector uses one of the 30 TRCRSCTLR<n> registers. The trace unit implements Resource
Selectors in pairs, so that a maximum of 15 programmable pairs can be implemented.

Rursan Resource Selector 0 always provides a FALSE result.

While the resources are in the Running state, Resource Selector 1 provides a TRUE result.
Trovks TRCIDR4.NUMRSPAIR indicates how many pairs of Resource Selectors are implemented.

SmsHwC Resource Selectors can be used in pairs or used individually. When a pair of Resource Selectors is used, a Boolean
function can be applied to the outputs of the combination of selected resources. See Figure D7.6.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 305
Aa Non-confidential

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

Ryuzvpo While TRCRSCTLR<n>.SELECT[m] is ov1, the Resource Selector selects the Resource Number m of the group
selected by TRCRSCTLR<n>.GROUP as described in Table D7.1.

Table D7.1: Resource grouping

Group Resource Number Resource
060000 0-3 External Input Selectors 0-3
4-15 RESERVED
060001 0-7 PE Comparator Inputs 0-7
8-15 RESERVED
060010 0 Counter 0 at zero
1 Counter 1 at zero
2 Counter 2 at zero
3 Counter 3 at zero
4 Sequencer state 0
5 Sequencer state 1
6 Sequencer state 2
7 Sequencer state 3
8-15 RESERVED
060011 0-7 Single-shot Comparator Control 0-7
8-15 RESERVED
060100 0-15 Single Address Comparator 0-15
060101 0-7 Address Range Comparator 0-7
8-15 RESERVED
060110 0-7 Context Identifier Comparator 0-7
8-15 RESERVED
0b0111 0-7 Virtual Context Identifier Comparator 0-7
8-15 RESERVED
0blxxx 0-15 RESERVED
RuvNoG While TRCRSCTLR<n>.INV is set to obo and one or more resources in a group are selected, when any of the

outputs of the selected resources are high, the Resource Selector fires.

Ryramy While TRCRSCTLR<n>.INV is set to op1, when none of the outputs of the selected resources are high, the
Resource Selector fires.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 306
Aa Non-confidential

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

Resource Selector N Resources

INV | GROUP | SELECT

4 16

Apply mask to
select one or more
resources from N

lN

OR

XOR

Resource output

Figure D7.5: A Resource Selector

D7.3.1 A Resource Selector pair

IprrMy The Resource Selectors are arranged in pairs, and the result of each of a pair of Resource Selectors can be combined
using a boolean function and used to drive other resources and events in the trace unit.

RkTNIM For each TRCRSCTLR<n> register which is the lower register for a pair of Resource Selectors, the
TRCRSCTLR<n> register has the TRCRSCTLR<n>.PAIRINV field.

TI,‘}LI;,H For example:

¢ TRCRSCTLR2 and TRCRSCTLR3 constitute a Resource Selector pair. In this case:
— TRCRSCTLR?2 is the lower register.
— TRCRSCTLR2.PAIRINYV optionally inverts the result of the Boolean function that is applied to the
outputs of the combination of selected resources.
— TRCRSCTLRS3 is the upper register.
— TRCRSCTLR3.PAIRINV is RESO.

This means that, when a Resource Selector pair is used, the following scenario is possible:

* One TRCRSCTLR<n> might select only one resource within the group.

* The other TRCRSCTLR<n> might select more than one resource from the group, so that the result is a
logical OR of the selected resources.

* A Boolean function, for example a logical AND, might be applied to the outputs of the combination of
selected resources.

* The result of that Boolean function might be inverted by using PAIRINV. Figure D7.6 shows this.

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 307
Aa Non-confidential

Chapter D7. Resources
D7.3. Selecting a resource or a pair of resources

Tipaxk In Figure D7.6, the Boolean function is selected by using the INV field for each Resource Selector, with the
PAIRINYV field for each Resource Selector pair, see Table D7.2.

Lower Resource Selector N Resources Upper Resource Selector

PAIRINV | INV | GROUP | SELECT INV | GROUP | SELECT

N o

Apply mask to
select one or more
resources from N

/N

4 16

Apply mask to
select one or more
resources from N

IN

OR
XOR
AND
XOR
Resource A Combined Resource Resource B
Figure D7.6: A Resource Selector pair
Table D7.2: Selecting a boolean function
Function Resource A INV Resource B INV PAIRINV
AANB 0b0 0b0 0b0
-AV B 0b0 0b0 0bl
RESERVED 0b0 Obl 0b0
-AVB 0b0 0bl Ob1l
-AANB 0bl 0b0 0b0
RESERVED 0bl 0b0 0b1l
-A A B 0bl 0b1l 0b0
AVB 0bl 0bl 0bl
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 308

A.a Non-confidential

Chapter D7. Resources
D7.4. Address comparators

D7.4 Address comparators

Rv\ WLR

Rpkcr

Rornsk

DDI0608
A.a

An ETE trace unit provides between 0 and 16 Single Address Comparators (SACs) that each compare the instruction
address with a user-programmed value.

The trace unit implements SACs in pairs, so that a trace unit implementation contains an even number of SACs.
TRCIDR4. NUMACPAIRS indicates how many pairs of SACs are implemented.

When the PE executes instructions in Debug state, Address Comparators do not match.

When the PE executes instructions in a prohibited region, Address Comparators do not match.

Address Comparators might match in failed transactions.

Address Comparators might match on speculative execution.

Single Address Comparators

A Single Address Comparator (SAC) can be used in the following ways:

* As inputs to the ViewlInst start/stop function in the Viewlnst function (see D6.8.2 Viewlnst start/stop function
filtering).

* As an individual resource.

* The comparator can be programmed so that, whenever the PE is in Non-secure state, the comparator only
matches in certain Exception levels.

* The comparator can be programmed so that, whenever the PE is in Secure state, the comparator only matches
in certain Exception levels.

An SAC only matches on Exception levels and Security states as indicated by TRCACATR<n>.

—“TRCACATRn.EXLEVEL_S_ELO Secure ELO
—TRCACATRn.EXLEVEL_S_EL1 Secure EL1
—~TRCACATRn.EXLEVEL_S_EL2 Secure EL2

SAC_EL;[n] = { =TRCACATRn.EXLEVEL_S_EL3 EL3 (D7.1)

—TRCACATRn.EXLEVEL_NS_ELO Non-Secure ELO
—~TRCACATRn.EXLEVEL_NS_EL1 Non-Secure EL1
—TRCACATRn.EXLEVEL_NS_EL2 Non-Secure EL2

An SAC only matches on the context indicated by TRCACATR<n>.CONTEXT and
TRCACATR<n>.CONTEXTTYPE.

m = TRCACATRn.CONTEXT (D7.2)
type = TRCACATRn.CONTEXTTYPE (D7.3)
1 type is 0
CIDCOMP|m)| type is 1
SAC_CONTEXT;[n] = { VMIDCOMP[m] type is 2 (D7.4)
CIDCOMP[m] A

VMIDCOMP[m] type is 3

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 309
Non-confidential

Chapter D7. Resources
D7.4. Address comparators

Rpymzy

D7.4.2

DDI0608
A.a

When an instruction is executed, and the address of the lowest byte of the instruction exactly matches the
programmed address of an SAC, the SAC matches.

SAC_ADDR;[n] = (ThisInstrAddr(); = TRCACVRn.ADDRESS) (D7.5)

For example, for a 4-byte instruction at address ox1000:

* The lowest byte of the instruction is at ox1000.
* The second byte of the instruction is at ox1001.
* The third byte of the instruction is at ox1002.

* The highest byte of the instruction is at 0x1003.

If an SAC is programmed with ox1000, then it always matches on that instruction at address ox1000.

It is IMPLEMENTATION DEFINED whether an SAC matches when its programmed address matches any byte of an
instruction which is not the lowest byte of the instruction.

The Arm architecture supports disabling 1t instructions on more than one subsequent instruction, using the ITD
bits in the SCTLR, HSCTLR, and SCTLR_EL1 System registers. If any of the ITD bits are set to ob1 and are
affecting rr operation, and a SAC is programmed to match on the address of the instruction that is immediately
after an 1t instruction, when the instruction immediately after the 11 instruction is executed it iS CONSTRAINED
UNPREDICTABLE whether that comparator matches.

If any of the ITD bits are set to on1, Arm recommends that a SAC is programmed to match on the address of the 1t
instruction, instead of the instruction immediately after the 1t instruction.

To avoid unexpected behavior from an SAC, Arm recommends that the SAC is always programmed with an address
that is for the lowest byte of an instruction.

When the instruction immediately after a moverrx instruction is executed, if a SAC is programmed to match on the
address of this instruction, then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

Arm recommends that a SAC is programmed to match on the address of the moverrx instruction, instead of the
instruction immediately after the moverrx instruction.

The operation of a SAC is as follows:

0 When Prohibited
SAC;[n] =40 When in Debug State ~ (D7.6)
SAC_ADDR;[n] A SAC_EL;[n] A SAC_CONTEXT;[n] Otherwise

Address Range Comparators

Pairs of SACs are arranged to form one Address Range Comparator (ARC). An ARC is programmed with an
address range, so that whenever any address in that range is accessed, the ARC matches. A trace unit contains
between zero and eight Address Range Comparators (ARCs). ARCs can be used in the following ways:

¢ Selected for the ViewlInst include/exclude function in the ViewlInst function (see D6.8.3 Viewlnst include/ex-
clude function filtering).
¢ As individual resources.

An ARC is programmed by programming the SACs as follows:

* The first SAC is programmed with the start address of the instruction range.
* The second SAC is programmed with the end address of the instruction range.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 310
Non-confidential

Chapter D7. Resources
D7.4. Address comparators

n

DDI0608
A.a

The address that the second SAC is programmed with must be greater than or equal to the address that the first
SAC is programmed with, that is, the end address must be greater than or equal to the start address.

While the start address of an ARC is greater than the end address, the behavior of the ARC is CONSTRAINED
UNPREDICTABLE, that is, at any time the ARC might do either of the following:

e Match.
¢ Not match.

While the TRCACATR<n> registers for the SACs in an ARC are programmed to different values, the behavior of
the ARC is CONSTRAINED UNPREDICTABLE.

While an ARC is programmed with an instruction address range, when the PE executes an instruction at an address
in the following range, the ARC matches:

start_address = TRCACVRn.ADDRESS (D7.7)
end_address = TRCACVR(n+1).ADDRESS (D7.8)

ARC_ADDR;[n/2] = (ThisInstrAddr(); > start_address) A (ThisInstrAddr(); < end_address) (D7.9)

When an instruction is executed, and the address of the lowest byte of the instruction is within the programmed
address range of an ARC, the ARC matches.

When an instruction is executed and the programmed address range of an ARC contains addresses for one
or more bytes of the instruction, but does not contain the address for the lowest byte of the instruction, it is
IMPLEMENTATION SPECIFIC whether the ARC matches.

For example, for a 4-byte instruction at address ox1000:

* The lowest byte of the instruction is at ox1000.
* The second byte of the instruction is at ox1001.
* The third byte of the instruction is at ox1002.

* The highest byte of the instruction is at 0x1003.

If the programmed address range contains ox1000, then the ARC always matches. However, if the programmed
address range starts at either 0x1001, 0x1002, Or 0x1003, then it is IMPLEMENTATION SPECIFIC whether the ARC
matches.

To avoid unexpected behavior from an ARC, Arm recommends that the ARC is always programmed with an
address range that starts with an address for the lowest byte of an instruction.

The Arm architecture supports disabling 1t instructions on more than one subsequent instruction, using the ITD
bits in the SCTLR, HSCTLR, and SCTLR_ELI1 System registers. If any of the ITD bits are set to ob1 and are
affecting 1t operation, and an ARC is programmed to include the address of the instruction that is immediately
after an 1t instruction but not include the 1t instruction, when the instruction immediately after the 1t instruction is
executed then it is CONSTRAINED UNPREDICTABLE whether that comparator matches.

If any of the ITD bits are set to ob1, Arm recommends that an ARC is programmed to include both the 17 instruction
and the instruction immediately after the 1t instruction.

When the instruction immediately after a moverrx instruction is executed, if an ARC is programmed to include the
address of the instruction that is after the moverrx instruction but not the moverrx instruction, then it is CONSTRAINED
UNPREDICTABLE whether that comparator matches.

Arm recommends that an ARC is programmed to include both the woverrx instruction and the instruction
immediately after the moverrx instruction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 311
Non-confidential

Chapter D7. Resources
D7.4. Address comparators

Romeax

DDI0608
A.a

It might be possible for multiple matches to occur simultaneously. The definition of when matches occur
simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions. However, an
example of when multiple matches might occur simultaneously is when multiple instructions are observed in the
same processor clock cycle, so that multiple comparisons take place with each address in the programmed range.
In this case, either or both of the following might occur:

* An address in the range is matched more than once.
* More than one address in the range is matched simultaneously.

When multiple ARC matches occur simultaneously for one ARC, both of the following are true:

* The ARC signals a match at least once.
e The ARC does not signal more matches than the number of instructions that are executed with an address
that matches an address in the programmed range.

Each ARC can be used with one, or a combination of, the following:

* A Context Identifier Comparator.
A Virtual Context Identifier Comparator.

An ARC only matches on Exception levels and Security states as indicated by TRCACATR<2n>.

—TRCACATR<2n>EXLEVEL_S_EL0O Secure ELO
—-TRCACATR<2n>.EXLEVEL_S_EL1 Secure EL1
—TRCACATR<2n>.EXLEVEL_S_EL2 Secure EL2

ARC_EL;[n] = { “-TRCACATR<2n>EXLEVEL_S_EL3 EL3 (D7.10)

—TRCACATR<2n>EXLEVEL_NS_ELO Non-Secure ELO
—TRCACATR<2n>EXLEVEL_NS_EL1 Non-Secure EL1
—-TRCACATR<2n>.EXLEVEL_NS_EL2 Non-Secure EL2

An ARC only matches on the context indicated by TRCACATR<2n>.CONTEXT and
TRCACATR<2n>.CONTEXTTYPE.

m = TRCACATR<2n>.CONTEXT (D7.11)
type = TRCACATR<2n>.CONTEXTTYPE (D7.12)
1 type is 0
CIDCOMP|m)| typeis 1
ARC_CONTEXT;[n] = { VMIDCOMP[m] type is 2 (D7.13)
CIDCOMP[m]A

VMIDCOMP[m] type is 3

The operation of an ARC is as follows:

0 When Prohibited
ARGC;[n] =<0 When in Debug State (D7.14)
ARC_ADDR;[n] A ARC_EL;[n] A ARC_CONTEXT;[n] Otherwise

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 312
Non-confidential

Chapter D7. Resources
D7.5. Context Identifier Comparator

D7.5

Rpeepy

RIIL‘J:‘.:

DDI0608
A.a

Context Identifier Comparator

An ETE trace unit provides between zero and eight Context Identifier Comparators. Each Context Identifier
Comparator can be used in any of the following ways:

¢ Associated with a SAC.
¢ Associated with an ARC.
¢ As an individual resource.

While a Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is executing
with the Context identifier that the Context Identifier Comparator is programmed with and when an address is
accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

While a Context Identifier Comparator is used as an individual resource, when an instruction block is executed
with the Context identifier that the Context Identifier Comparator is programmed with, the Context Identifier
Comparator matches.

When using a Context Identifier Comparator as an independent resource to activate a resource event, the time that
the resource event is activated relative to the time that the Context Identifier Comparator becomes active might be
imprecise.

It might be possible for multiple matches of a Context Identifier Comparator to occur simultaneously. The
definition of when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of
runtime conditions. However, an example of when multiple matches might occur simultaneously is when multiple
instructions are observed in the same processor clock cycle, so that multiple comparisons take place.

When multiple Context Identifier Comparator matches occur simultaneously for one Context Identifier Comparator,
both of the following are true:

* The Context Identifier Comparator signals a match at least once.
* The Context Identifier Comparator does not signal more matches than the number of instructions that are
executed with the Context identifier that the Context Identifier Comparator is programmed with.

A Context Identifier Comparator might match on speculative execution, that is, a Context Identifier Comparator
might match if the PE speculatively changes the Context identifier.

When the PE executes instructions in Debug state, Context Identifier Comparators do not match.
When the PE executes instructions in a prohibited region, Context Identifier Comparators do not match.

The Context identifier might change at points that are not Context synchronization events, for example when
a system instruction is used to write to the current Context identifier register. In these scenarios, the Context
Identifier Comparator might compare against the old or new Context identifier value for any instruction after the
PO element before the system instruction, up to the Context synchronization event after the system instruction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 313
Non-confidential

Chapter D7. Resources
D7.5. Context Identifier Comparator

TRCCIDCCTLRO.COMPO n =

TRCCIDCCTLRO.COMPI n=1

TRCCIDCCTLRO.COMP2 n =2

TRCCIDCCTLRO.COMP3 n =3

m= (D7.15)
TRCCIDCCTLRI.COMP4 n=4

TRCCIDCCTLRI.COMP5S n=5

TRCCIDCCTLRI.COMP6 n =6

TRCCIDCCTLR1.COMP7 n="7

v = TRCCIDCVRn.VALUE (D7.16)
cid = CONTEXTIDR_EL1.PROCID D7.17)
0 When Prohibited
When in Debug State
CIDCOMP|n| = 7 (D7.18)
H (v[Sj +7:8j]=cid[8j +7:8j]) Vv m[j]) Otherwise
=0
DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 314

A.a Non-confidential

Chapter D7. Resources
D7.6. Virtual Context Identifier Comparators

D7.6 Virtual Context Identifier Comparators

R PKBR

Iyppcr

DDI0608
A.a

An ETE trace unit provides between zero and eight Virtual Context Identifier Comparators. Each Virtual Context
Identifier Comparator can be used in any of the following ways:

¢ Associated with a SAC.
¢ Associated with an ARC.
¢ As an individual resource.

While a Virtual Context Identifier Comparator is associated with either an SAC or an ARC, only while the PE is
executing with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed with and
when an address is accessed which the SAC or ARC is programmed to match on, the SAC or ARC signals a match.

While a Virtual Context Identifier Comparator is used as an individual resource, when an instruction block is
executed with the Virtual context identifier that matches the Virtual Context Identifier Comparator value, the
Virtual Context Identifier Comparator matches.

While TRFCR_EL2.CX indicates that Virtual Context Identifier Comparators cannot match, Virtual Context
Identifier Comparators do not match.

When the PE executes instructions in Debug state, Virtual Context Identifier Comparators do not match.
When the PE executes instructions in a prohibited region, Virtual Context Identifier Comparators do not match.

When using a Virtual Context Identifier Comparator as an independent resource to activate a resource event, the
time at which the resource event is activated relative to the time at which the Virtual Context Identifier Comparator
becomes active might be imprecise.

A Virtual Context Identifier Comparator is associated with an SAC by programming TRCACATR<n>.CONTEXT
for the SAC.

It might be possible for multiple matches of a Virtual context identifier to occur simultaneously. The definition of
when matches occur simultaneously is IMPLEMENTATION SPECIFIC, and might vary because of runtime conditions.
However, an example of when multiple matches might occur simultaneously is when multiple instructions are
observed in the same processor clock cycle, so that multiple comparisons take place.

When multiple Virtual Context Identifier Comparator matches occur simultaneously for one Virtual Context
Identifier Comparator, both of the following are true:

* The Virtual Context Identifier Comparator signals a match at least once.

* The Virtual Context Identifier Comparator does not signal more matches than the number of instructions that
are executed with the Virtual context identifier that the Virtual Context Identifier Comparator is programmed
with.

A Virtual Context Identifier Comparator might signal a match on speculative execution, that is, a Virtual Context
Identifier Comparator might signal a match when the PE speculatively changes the Virtual context identifier.

The Virtual context identifier might change at points which are not Context synchronization events, for example
when a system instruction is used to write to CONTEXTIDR_EL?2. In these scenarios, the Virtual Context Identifier
Comparator might compare against the old or new Virtual context identifier value for any instruction after the PO
element before the system instruction, up to the Context synchronization event after the system instruction.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 315
Non-confidential

Chapter D7. Resources
D7.6. Virtual Context Identifier Comparators

TRCVMIDCCTLRO.COMPO 1 =0

TRCVMIDCCTLRO.COMP1 n=1

TRCVMIDCCTLRO.COMP2 n =2

TRCVMIDCCTLRO.COMP3 n =3

m= (D7.19)
TRCVMIDCCTLRI.COMP4 n =4

TRCVMIDCCTLRI.COMP5 n=5

TRCVMIDCCTLRI.COMP6 1 =6

TRCVMIDCCTLR1.COMP7 n="7

VMID = CONTEXTIDR_EL2.PROCID (D7.20)
v = TRCVMIDCVRn.VALUE (D7.21)
0 When Prohibited
When in Debug State
VMIDCOMP[n| =< 7 (D7.22)
(v[8j +7:8j] = VMID[8j + 7 : 8j]) V m[j}) Otherwise
§=0

DDI0608 Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 316
Aa Non-confidential

Chapter D7. Resources
D7.7. Counters

D7.7

RS’ELJ QM

DDI0608
A.a

Counters

The Counters that are employed by the ETE architecture are all decrement counters.

The ETE architecture enables a trace unit to connect Counter outputs to resource events, so that a Counter at zero
state can be used as a resource to activate a resource event. For example, a Counter at zero state might be used to
assert an External Output or to make ViewlInst active.

An ETE trace unit provides up to four 16-bit Counters. TRCIDR5.NUMCNTR indicates how many Counters are
implemented. For each Counter, the following can be specified:

* The initial counter value. This can be programmed using TRCCNTVR<n>.

* The reload value. This can be programmed using TRCCNTRLDVR<n>.

¢ The resource event that causes the Counter to reload with the reload value. This resource event is called
RLDEVENT. In addition, if required, the Counter can be programmed so that it automatically reloads
whenever it reaches zero.

¢ The resource event that enables the Counter to decrement. This resource event is called CNTEVENT. The
Counter decrements whenever CNTEVENT is ac