

Arm® Cortex®-X1 Core

Revision: r1p2

Software Optimization Guide
Non-Confidential Issue 4.0
Copyright © [2019-2021] Arm Limited (or its affiliates).
All rights reserved.

PJDOC-466751330-12804

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 59

Arm® Cortex®-X1 Core

Software Optimization Guide

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 25 March 2019 Confidential First release for r0p0

2.0 27 September 2019 Confidential First release for r1p0

3.0 29 May 2020 Non-Confidential First release for r1p1

4.0 28 April 2021 Non-Confidential First release for r1p2

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 59

document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 59

Contents

1 Introduction ... 6

 Product revision status ... 6

 Intended audience .. 6

 Scope ... 6

 Conventions ... 6

1.4.1 Glossary .. 6

1.4.2 Typographical conventions ... 8

 Additional reading .. 9

 Feedback.. 10

1.6.1 Feedback on this product ... 10

1.6.2 Feedback on content ... 10

2 Overview .. 11

 Pipeline overview ... 11

3 Instruction characteristics .. 14

 Instruction tables .. 14

 Legend for reading the utilized pipelines ... 14

 Branch instructions .. 15

 Arithmetic and logical instructions .. 15

 Move and shift instructions .. 17

 Divide and multiply instructions ... 18

 Saturating and parallel arithmetic instructions ... 20

 Miscellaneous data-processing instructions... 21

 Load instructions .. 23

 Store instructions .. 25

 FP data processing instructions .. 27

 FP miscellaneous instructions ... 29

 FP load instructions... 30

 FP store instructions ... 32

 ASIMD integer instructions.. 34

 ASIMD floating-point instructions .. 38

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 59

 ASIMD miscellaneous instructions .. 41

 ASIMD load instructions ... 43

 ASIMD store instructions ... 47

 Cryptography extensions .. 49

 CRC ... 50

4 Special considerations .. 51

 Dispatch constraints .. 51

 Dispatch stall .. 51

 Optimizing general-purpose register spills and fills ... 51

 Optimizing memory routines.. 51

 Load/Store alignment .. 53

4.6 Store to Load Forwarding .. 53

 AES encryption/decryption... 53

 Region based fast forwarding ... 54

 Branch instruction alignment ... 55

 FPCR self-synchronization ... 55

 Special register access .. 55

 Register forwarding hazards .. 57

 IT blocks .. 58

 Instruction fusion ... 58

 Zero Latency MOVs .. 58

 Mixing Arm and Thumb state... 59

 Cache maintenance operations .. 59

 Complex ASIMD instructions .. 59

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

1 Introduction

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 59

1 Introduction

 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example,
r1p2, where:

rx

 Identifies the major revision of the product, for example, r1.

py

 Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

 Scope

This document describes aspects of the Cortex-X1 core micro-architecture that influence software
performance. Micro-architectural detail is limited to that which is useful for software optimization.

Documentation extends only to software visible behavior of the Cortex-X1 core and not to the
hardware rationale behind the behavior.

 Conventions

The following subsections describe conventions used in Arm documents.

1.4.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

https://developer.arm.com/glossary

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

1 Introduction

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 59

1.4.1.1 Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

MOP Macro-OPeration

µOP Micro-OPeration

SQRT Square Root

T32 AArch32 Thumb® instruction set

FP Floating-point

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

1 Introduction

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 59

1.4.2 Typographical conventions

Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace

underline
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in
the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

1 Introduction

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 59

 Additional reading

This document contains information that is specific to this product. See the following documents for
other relevant information:

Table 1-1 Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual, Armv8, for Armv8-
A architecture profile

DDI 0487 No

Arm® Cortex®-X1 Core Technical Reference Manual 101433 No

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

1 Introduction

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 59

 Feedback

Arm welcomes feedback on this product and its documentation.

1.6.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.6.2 Feedback on content

If you have comments on content, send an email to errata@arm.com and give:

• The title Arm® Cortex®-X1 Core Software Optimization Guide.

• The number PJDOC-466751330-12804.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of
the represented document when used with any other PDF reader.

mailto:errata@arm.com?subject=Feedback%20on%20content

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

2 Overview

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 59

2 Overview
The Cortex-X1 core is a high-performance, low-power core that implements the Armv8-A
architecture with support for the Armv8.1-A extension, Armv8.2-A extension, including the RAS
extension, the Load acquire (LDAPR) instructions introduced in the Armv8.3-A extension, and the
Dot Product instructions introduced in the Armv8.4-A extension.

This document describes elements of the Cortex-X1 core micro-architecture that influence software
performance so that software and compilers can be optimized accordingly.

 Pipeline overview

The following figure describes the high-level Cortex-X1 instruction processing pipeline. Instructions
are first fetched and then decoded into internal Macro-OPerations (MOPs). From there, the MOPs
proceed through register renaming and dispatch stages. A MOP can be split into two Micro-
OPerations (µOPs) further down the pipeline after the decode stage. Once dispatched, µOPs wait for
their operands and issue out-of-order to one of fifteen issue pipelines. Each issue pipeline can accept
one µOP per cycle.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

2 Overview

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 59

Figure 2-1 Cortex-X1 core pipeline

The execution pipelines support different types of operations, as follows:

Fetch
Decode,
Rename,
Dispatch

Load/Store 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single /Multi-Cycle 0

FP/ASIMD 1

Load/Store 0

 I
ss

u
e

IN ORDER OUT OF ORDER

Integer Single /Multi-Cycle 1

Branch 0

Branch 1

Store data 0

Store data 1

Load 2

FP/ASIMD 0

FP/ASIMD 2

FP/ASIMD 3

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

2 Overview

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 59

Table 2-1 Cortex-X1 core operations

Instruction groups Instructions

Branch 0/1 Branch µOPs

Integer Single-Cycle 0/1 Integer ALU µOPs

Integer Single/Multi-cycle 0/1 Integer shift-ALU, multiply, divide, CRC and sum-of-absolute-differences µOPs

Load/Store 0/1 Load, Store address generation and special memory µOPs

Load 2 Load µOPs

Store data 0/1 Store data µOPs

FP/ASIMD-0 ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc, FP add, FP
multiply, FP divide, FP sqrt, crypto µOPs, store data µOPs

FP/ASIMD-1 ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD shift µOPs, store data
µOPs, crypto µOPs.

FP/ASIMD-2 ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc, FP add, FP
multiply, FP divide, FP sqrt

FP/ASIMD-3 ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD shift µOps

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 59

3 Instruction characteristics

 Instruction tables

This chapter describes high-level performance characteristics for most Armv8.2-A A32, T32, and A64
instructions. A series of tables summarize the effective execution latency and throughput (instruction
bandwidth per cycle), pipelines utilized, and special behaviours associated with each group of
instructions. Utilized pipelines correspond to the execution pipelines described in chapter 2.

In the tables below, Execution Latency is defined as the minimum latency seen by an operation
dependent on an instruction in the described group.

In the tables below, Execution Throughput is defined as the maximum throughput (in instructions per
cycle) of the specified instruction group that can be achieved in the entirety of the Cortex-X1
microarchitecture.

 Legend for reading the utilized pipelines

Table 3-1 Cortex-X1 core pipeline names and symbols

Pipeline name Symbol used in tables

Branch 0/1 B

Integer single Cycle 0/1 S

Integer single Cycle 0/1 and single/multicycle 0/1 I

Integer single/multicycle 0/1 M

Integer multicycle 0 M0

Load/Store 0/1 L01

Load/Store 0/1 and Load 2 L

Store data 0/1 D

FP/ASIMD 0/1/2/3 V

FP/ASIMD 0/1 V01

FP/ASIMD 0/2 V02

FP/ASIMD 1/3 V13

FP/ASIMD 0 V0

FP/ASIMD 1 V1

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 59

 Branch instructions

Table 3-2 AArch64 Branch instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Branch, immed B 1 2 B -

Branch, register BR, RET 1 2 B -

Branch and link, immed BL 1 2 B, S -

Branch and link, register BLR 1 2 B, S -

Compare and branch CBZ, CBNZ, TBZ,
TBNZ

1 2 B -

Table 3-3 AAarch32 Branch instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Branch, immed B 1 2 B -

Branch, register BX 1 2 B -

Branch and link, immed BL, BLX 1 2 B, S -

Branch and link, register BLX 1 2 B, S -

Compare and branch CBZ, CBNZ 1 2 B -

 Arithmetic and logical instructions

Table 3-4 AArch64 Arithmetic and logical instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic ADD, ADC, AND,
BIC, EON, EOR,
ORN, ORR, SUB,
SBC

1 4 I -

ALU, basic, flagset ADDS, ADCS,
ANDS, BICS, SUBS,
SBCS

1 3 I -

ALU, extend and shift ADD{S}, SUB{S} 2 2 M -

Arithmetic, LSL shift, shift <= 4 ADD, SUB 1 4 I -

Arithmetic, flagset, LSL shift,
shift <= 4

ADDS, SUBS 1 3 I -

Arithmetic, LSR/ASR/ROR shift
or LSL shift > 4

ADD{S}, SUB{S} 2 2 M -

Conditional compare CCMN, CCMP 1 4 I -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Conditional select CSEL, CSINC,
CSINV, CSNEG

1 4 I -

Logical, shift, no flagset AND, BIC, EON,
EOR, ORN, ORR

1 4 I -

Logical, shift, flagset ANDS, BICS 2 2 M -

Table 3-5 AArch32 Arithmetic and logical instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic, unconditional, no
flagset

ADD, ADC, ADR,
AND, BIC, EOR,
ORN, ORR, RSB,
RSC, SUB, SBC

1 4 I -

ALU, basic, unconditional,
flagset

ADDS, ADCS,
ANDS, BICS, CMN,
CMP, EORS, ORNS,
ORRS, RSBS, RSCS,
SUBS, SBCS, TEQ,
TST

1 3 I -

ALU, basic, conditional ADD{S}, ADC{S},
AND{S}, BIC{S},
CMN, CMP, EOR{S|,
ORN{S}, ORR{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S},
TEQ, TST

1 1 M0 -

ALU, basic, shift by register,
conditional

(same as ALU basic,
conditional)

2 1 I, M0 -

ALU, basic, shift by register,
unconditional, flagset

(same as ALU, basic,
unconditional,
flagset)

2 1 M0 -

Arithmetic, shift by register,
unconditional, no flagset

ADD, ADC, RSB,
RSC, SUB, SBC

2 1 M0 -

Logical, shift by register,
unconditional, no flagset

AND, BIC, EOR,
ORN, ORR

1 1 M0 -

Arithmetic, LSL shift by immed,
shift <= 4, unconditional, no
flagset

ADD, ADC, RSB,
RSC, SUB, SBC

1 4 I -

Arithmetic, LSL shift by immed,
shift <= 4, unconditional, flagset

ADDS, ADCS, RSBS,
RSCS, SUBS, SBCS

1 3 I -

Arithmetic, LSL shift by immed,
shift <= 4, conditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

1 1 M0 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, LSR/ASR/ROR shift
by immed or LSL shift by immed
> 4, unconditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

2 2 M -

Arithmetic, LSR/ASR/ROR shift
by immed or LSL shift by immed
> 4, conditional

ADD{S}, ADC{S},
RSB{S}, RSC{S},
SUB{S}, SBC{S}

2 1 M0 -

Logical, shift by immed, no
flagset, unconditional

AND, BIC, EOR,
ORN, ORR

1 4 I -

Logical, shift by immed, no
flagset, conditional

AND, BIC, EOR,
ORN, ORR

1 1 M0 -

Logical, shift by immed, flagset,
unconditional

ANDS, BICS, EORS,
ORNS, ORRS

2 2 M -

Logical, shift by immed, flagset,
conditional

ANDS, BICS, EORS,
ORNS, ORRS

2 1 M0 -

Test/Compare, shift by immed CMN, CMP, TEQ,
TST

2 2 M -

Branch forms - +1 2 +B 1

Notes:

1. Branch forms are possible when the instruction destination register is the PC. For those cases, an additional
branch µOP is required. This adds 1 cycle to the latency.

 Move and shift instructions

Table 3-6 AArch32 Move and shift instructions

Instruction Group AArch32
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Move, basic MOV{S}, MOVW,
MVN{S}

1 4 I -

Move, shift by immed, no flagset ASR, LSL, LSR, ROR,
RRX, MVN

1 4 I -

Move, shift by immed, flagset ASRS, LSLS, LSRS,
RORS, RRXS, MVNS

2 2 M -

Move, shift by register, no
flagset, unconditional

ASR, LSL, LSR, ROR,
RRX, MVN

1 4 I -

Move, shift by register, no
flagset, conditional

ASR, LSL, LSR, ROR,
RRX, MVN

2 2 I -

Move, shift by register, flagset ASRS, LSLS, LSRS,
RORS, RRXS, MVNS

2 1 M0 -

Move, top MOVT 1 4 I -

Move, branch forms - +1 2 +B -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 59

 Divide and multiply instructions

Table 3-7 AArch64 Divide and multiply instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Divide, W-form SDIV, UDIV 5 to 12 1/12 to 1/5 M0 1

Divide, X-form SDIV, UDIV 5 to 20 1/20 to 1/5 M0 1

Multiply MUL, MNEG 2 2 M -

Multiply accumulate, W-form MADD, MSUB 2(1) 1 M0 2

Multiply accumulate, X-form MADD, MSUB 2(1) 1 M0 2

Multiply accumulate long SMADDL, SMSUBL,
UMADDL, UMSUBL

2(1) 2 M0 2

Multiply high SMULH, UMULH 3 2 M 2

Multiply long SMNEGL, SMULL,
UMNEGL, UMULL

2 2 M -

Table 3-8 AArch32 Divide and multiply instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Divide SDIV, UDIV 5 to 12 1/12 to 1/5 M0 1

Multiply, unconditional MUL, SMULBB,
SMULBT, SMULTB,
SMULTT, SMULWB,
SMULWT,
SMMUL{R},
SMUAD{X},
SMUSD{X}

2 2 M -

Multiply, conditional MUL, SMULBB,
SMULBT, SMULTB,
SMULTT, SMULWB,
SMULWT,
SMMUL{R},
SMUAD{X},
SMUSD{X}

2 1 M0 -

Multiply accumulate,
conditional

MLA, MLS,
SMLABB, SMLABT,
SMLATB, SMLATT,
SMLAWB,
SMLAWT,
SMLAD{X},
SMLSD{X},
SMMLA{R},
SMMLS{R}

3 1 M0, I -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Multiply accumulate,
unconditional

MLA, MLS,
SMLABB, SMLABT,
SMLATB, SMLATT,
SMLAWB,
SMLAWT,
SMLAD{X},
SMLSD{X},
SMMLA{R},
SMMLS{R}

2(1) 1 M0 2

Multiply accumulate
accumulate long, conditional

UMAAL 4 1 I, M0 -

Multiply accumulate
accumulate long, unconditional

UMAAL 3 1 I, M0 -

Multiply accumulate long, no
flagset

SMLAL, SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT,
SMLALD{X},
SMLSLD{X}, UMLAL

3 1 M0, I -

Multiply accumulate long,
flagset

SMLAL, SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT,
SMLALD{X},
SMLSLD{X}, UMLAL

4 1 M0, I -

Multiply long, unconditional, no
flagset

SMULL, UMULL 2 2 M -

Multiply long, unconditional,
flagset

SMULLS, UMULLS 3 1 M, I -

Multiply long, conditional, SMULL{S},
UMULL{S}

3 1 M, I -

Notes:

1. Integer divides are performed using an iterative algorithm and block any subsequent divide operations until
complete. Early termination is possible, depending upon the data values.

2. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses). Accumulator forwarding is not supported for consumers of 64 bit multiply high operations.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 59

 Saturating and parallel arithmetic instructions

Table 3-9 AArch32 Saturating and parallel arithmetic instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Parallel arith, unconditional SADD16, SADD8,
SSUB16, SSUB8,
UADD16, UADD8,
USUB16, USUB8

2 1 M -

Parallel arith, conditional SADD16, SADD8,
SSUB16, SSUB8,
UADD16, UADD8,
USUB16, USUB8

2(4) 1 M0, I 1

Parallel arith with exchange,
unconditional

SASX, SSAX, UASX,
USAX

3 2 I, M -

Parallel arith with exchange,
conditional

SASX, SSAX, UASX,
USAX

3(5) 1 I, M0 1

Parallel halving arith,
unconditional

SHADD16,
SHADD8,
SHSUB16, SHSUB8,
UHADD16,
UHADD8,
UHSUB16,
UHSUB8

2 2 M -

Parallel halving arith,
conditional

SHADD16,
SHADD8,
SHSUB16, SHSUB8,
UHADD16,
UHADD8,
UHSUB16,
UHSUB8

2 1 M0 -

Parallel halving arith with
exchange

SHASX, SHSAX,
UHASX, UHSAX

3 1 I, M0 -

Parallel saturating arith,
unconditional

QADD16, QADD8,
QSUB16, QSUB8,
UQADD16,
UQADD8,
UQSUB16,
UQSUB8

2 2 M -

Parallel saturating arith,
conditional

QADD16, QADD8,
QSUB16, QSUB8,
UQADD16,
UQADD8,
UQSUB16,
UQSUB8

2 1 M0 -

Parallel saturating arith with
exchange, unconditional

QASX, QSAX,
UQASX, UQSAX

3 2 I, M -

Parallel saturating arith with
exchange, conditional

QASX, QSAX,
UQASX, UQSAX

3 1 I, M0 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Saturate, unconditional SSAT, SSAT16,
USAT, USAT16

2 2 M -

Saturate, conditional SSAT, SSAT16,
USAT, USAT16

2 1 M0 -

Saturating arith, unconditional QADD, QSUB 2 2 M -

Saturating arith, conditional QADD, QSUB 2 1 M0 -

Saturating doubling arith,
unconditional

QDADD, QDSUB 3 1 M, M -

Saturating doubling arith
conditional

QDADD, QDSUB 3 1 M, M0 -

Notes:

1. Conditional GE-setting instructions require three extra µOPs and two additional cycles to conditionally update the
GE field (GE latency shown in parentheses).

 Miscellaneous data-processing instructions

Table 3-10 AArch64 Miscellaneous data-processing instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Address generation ADR, ADRP 1 4 I -

Bitfield extract, one reg EXTR 1 4 I 1

Bitfield extract, two regs EXTR 3 2 I, M -

Bitfield move, basic SBFM, UBFM 1 4 I -

Bitfield move, insert BFM 2 2 M -

Count leading CLS, CLZ 1 4 I -

Move immed MOVN, MOVK,
MOVZ

1 4 I -

Reverse bits/bytes RBIT, REV, REV16,
REV32

1 4 I -

Variable shift ASRV, LSLV, LSRV,
RORV

1 4 I -

Notes:

1. One reg form is when Rn==Rm or imm==0, all other forms are considered two regs.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 59

Table 3-11 AArch32 Miscellaneous data-processing instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Bit field extract SBFX, UBFX 1 4 I -

Bit field insert/clear,
unconditional

BFI, BFC 2 2 M -

Bit field insert/clear, conditional BFI, BFC 2 1 M0 -

Count leading zeros CLZ 1 4 I -

Pack halfword, unconditional PKH 2 2 M -

Pack halfword, conditional PKH 2 1 M0 -

Reverse bits/bytes RBIT, REV, REV16,
REVSH

1 4 I -

Select bytes, unconditional SEL 1 4 I -

Select bytes, conditional SEL 2 2 I -

Sign/zero extend, normal SXTB, SXTH, UXTB,
UXTH

1 4 I -

Sign/zero extend, parallel,
unconditional

SXTB16, UXTB16 2 2 M -

Sign/zero extend, parallel,
conditional

SXTB16, UXTB16 2 1 M0 -

Sign/zero extend and add,
normal, unconditional

SXTAB, SXTAH,
UXTAB, UXTAH

2 2 M -

Sign/zero extend and add,
normal, conditional

SXTAB, SXTAH,
UXTAB, UXTAH

2 1 M0 -

Sign/zero extend and add,
parallel, unconditional

SXTAB16,
UXTAB16

4 1 M -

Sign/zero extend and add,
parallel, conditional

SXTAB16,
UXTAB16

4 1 M, M0 -

Sum of absolute differences USAD8 2 1 M0 -

Sum of absolute differences
accumulate, unconditional

USADA8 2 1 M0 -

Sum of absolute differences
accumulate, conditional

USADA8 3 1 M0, I -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 59

 Load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the registers written by the instruction.

Table 3-12 AArch64 Load instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load register, literal LDR, LDRSW, PRFM 4 3 L -

Load register, unscaled immed LDUR, LDURB,
LDURH, LDURSB,
LDURSH, LDURSW,
PRFUM

4 3 L -

Load register, immed post-
index

LDR, LDRB, LDRH,
LDRSB, LDRSH,
LDRSW

4 3 L, I -

Load register, immed pre-index LDR, LDRB, LDRH,
LDRSB, LDRSH,
LDRSW

4 3 L, I -

Load register, immed
unprivileged

LDTR, LDTRB,
LDTRH, LDTRSB,
LDTRSH, LDTRSW

4 3 L -

Load register, unsigned immed LDR, LDRB, LDRH,
LDRSB, LDRSH,
LDRSW, PRFM

4 3 L -

Load register, register offset,
basic

LDR, LDRB, LDRH,
LDRSB, LDRSH,
LDRSW, PRFM

4 3 L -

Load register, register offset,
scale by 4/8

LDR, LDRSW, PRFM 4 3 L -

Load register, register offset,
scale by 2

LDRH, LDRSH 5 3 I, L -

Load register, register offset,
extend

LDR, LDRB, LDRH,
LDRSB, LDRSH,
LDRSW, PRFM

4 3 L -

Load register, register offset,
extend, scale by 4/8

LDR, LDRSW, PRFM 4 3 L -

Load register, register offset,
extend, scale by 2

LDRH, LDRSH 5 3 I, L -

Load pair, signed immed offset,
normal, W-form

LDP, LDNP 4 3 L -

Load pair, signed immed offset,
normal, X-form

LDP, LDNP 4 1.5 L -

Load pair, signed immed offset,
signed words

LDPSW 5 1.5 I, L -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load pair, immed post-index or
immed pre-index, normal, W-
form

LDP 4 3 L, I -

Load pair, immed post-index or
immed pre-index, normal, X-
form

LDP 4 1.5 L, I -

Load pair, immed post-index or
immed pre-index, signed words

LDPSW 5 1.5 I, L -

Table 3-13 AArch32 Load instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load, immed offset LDR{T}, LDRB{T},
LDRD, LDRH{T},
LDRSB{T},
LDRSH{T}

4 3 L 1, 2

Load, register offset, plus LDR, LDRB, LDRD,
LDRH, LDRSB,
LDRSH

4 3 L 1 ,2

Load, register offset, minus LDR, LDRB, LDRD,
LDRH, LDRSB,
LDRSH

5 3 I, L 1, 2

Load, scaled register offset,
plus, LSL2

LDR, LDRB 4 3 L 1, 2

Load, scaled register offset,
other

LDR, LDRB, LDRH,
LDRSB, LDRSH

5 3 I, L 1, 2

Load, immed pre-indexed LDR, LDRB, LDRD,
LDRH, LDRSB,
LDRSH

4 3 L, I 1, 2

Load, register pre-indexed LDRH, LDRSB,
LDRSH

5 3 I, L, M0 1, 2, 3

Load, register pre-indexed LDRD 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, plus, LSL2

LDR, LDRB 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, unshifted

LDR, LDRB 4 3 L, M0 1, 2, 3

Load, scaled register pre-
indexed, other

LDR, LDRB 5 3 I, L, M0 1, 2, 3

Load, immed post-indexed LDR{T}, LDRB{T},
LDRD, LDRH{T},
LDRSB{T},
LDRSH{T}

4 3 L, I 1, 2

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load, register post-indexed LDR{T}, LDRB{T},
LDRH{T}, LDRSB{T},
LDRSH{T}

5 3 I, L, M0 1, 2, 3

Load, register post-indexed LDRD 4 3 L, M0 1, 2, 3

Preload, immed offset PLD, PLDW 4 3 L -

Preload, register offset, plus,
LSL2 and unshifted

PLD, PLDW 4 3 L -

Preload, register offset, minus PLD, PLDW 5 3 I, L -

Load multiple, no writeback,
base reg not in list

LDMIA, LDMIB,
LDMDA, LDMDB

N 3/R L 1, 4, 5

Load multiple, no writeback,
base reg in list

LDMIA, LDMIB,
LDMDA, LDMDB

1+ N 3/R I, L 1, 4, 5

Load multiple, writeback LDMIA, LDMIB,
LDMDA, LDMDB,
POP

1+ N 3/R L, I 1, 4, 5

(Load, all branch forms) - +1 - + B 6

Notes:

1. Conditional loads have extra µOP(s) which goes down pipeline 'I' and have 1 cycle extra latency compared to their
unconditional counterparts.

2. Conditional loads go down L01 pipe and have an execution throughput of 2, whereas unconditional versions have
a throughput of 3.

3. The address update op goes down pipeline 'I' if the load is unconditional.

4. N is floor [(num_reg+5)/6].

5. R is floor [(num_reg +1)/2].

6. Branch forms are possible when the instruction destination register is the PC. For those cases, an additional
branch µOP is required. This adds 1 cycle to the latency.

 Store instructions

The following table describes performance characteristics for standard store instructions. Stores
µOPs are split into address and data µOPs. Once executed, stores are buffered and committed in the
background.

Table 3-14 AArch64 Store instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store register, unscaled immed STUR, STURB,
STURH

1 2 L01, D -

Store register, immed post-
index

STR, STRB, STRH 1 2 L01, D, I -

Store register, immed pre-index STR, STRB, STRH 1 2 L01, D, I -

Store register, immed
unprivileged

STTR, STTRB,
STTRH

1 2 L01, D -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store register, unsigned immed STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
basic

STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
scaled by 4/8

STR 1 2 L0,1 D -

Store register, register offset,
scaled by 2

STRH 2 2 I, L01, D -

Store register, register offset,
extend

STR, STRB, STRH 1 2 L01, D -

Store register, register offset,
extend, scale by 4/8

STR 1 2 L01, D -

Store register, register offset,
extend, scale by 1

STRH 2 2 I, L01, D -

Store pair, immed offset STP, STNP 1 2 L01, D -

Store pair, immed post-index STP 1 2 L01, D, I -

Store pair, immed pre-index STP 1 2 L01, D, I -

Table 3-15 AArch32 Store instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store, immed offset STR{T}, STRB{T},
STRD, STRH{T}

1 2 L01, D -

Store, register offset, plus STR, STRB, STRD,
STRH

1 2 L01, D -

Store, register offset, minus STR, STRB, STRD,
STRH

1 2 L01, D -

Store, scaled register
offset, plus, no shift

STR, STRB 1 2 L01, D -

Store, scaled register offset,
plus, LSL2

STR, STRB 1 2 L01, D -

Store, scaled register offset,
plus, other

STR, STRB 2 2 I, L01, D -

Store, scaled register offset,
minus

STR, STRB 2 2 I, L01, D -

Store, immed pre-indexed STR, STRB, STRD,
STRH

1 2 L01, D, I -

Store, register pre-indexed,
plus, no shift

STR, STRB, STRD,
STRH

1 2 L01, D, M0 1

Store, register pre-indexed,
minus

STR, STRB, STRD,
STRH

2 2 I, L01, D, M0 1

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store, scaled register pre-
indexed, plus LSL2

STR, STRB 1 2 L01, D, M0 1

Store, scaled register pre-
indexed, other

STR, STRB 2 2 I, L01, D, M0 1

Store, immed post-indexed STR{T}, STRB{T},
STRD, STRH{T}

1 2 L01, D, I -

Store, register post-indexed STRH{T}, STRD 1 2 L01, D, M0 1

Store, register post-indexed STR{T}, STRB{T} 1 2 L01, D, M0 1

Store, scaled register post-
indexed

STR{T}, STRB{T} 1 2 L01, D, M0 2

Store multiple, no writeback STMIA, STMIB,
STMDA, STMDB

N 1/N L01, D 3

Store multiple, writeback STMIA, STMIB,
STMDA, STMDB,
PUSH

N 1/N L01, D 3

Notes:

1. The address update op goes down pipeline ‘I’ if the store is unconditional.

2. The address update op goes down pipeline 'M' if the store is unconditional.

3. For store multiple instructions, N=floor((num_regs+3)/4).

 FP data processing instructions

Table 3-16 AArch64 FP data processing instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP absolute value FABS 2 4 V -

FP arithmetic FADD, FSUB 2 4 V -

FP compare FCCMP{E},
FCMP{E}

2 1 V0 -

FP divide, H-form FDIV 7 8/7 V02 1

FP divide, S-form FDIV 7 to 10 8/9 to 8/7 V02 1

FP divide, D-form FDIV 7 to 15 2/7 to 4/7 V02 1

FP min/max FMIN, FMINNM,
FMAX, FMAXNM

2 4 V -

FP multiply FMUL, FNMUL 3 4 V 2

FP multiply accumulate FMADD, FMSUB,
FNMADD,
FNMSUB

4 (2) 4 V 3

FP negate FNEG 2 4 V -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP round to integral FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

3 2 V02 -

FP select FCSEL 2 2 V02 -

FP square root, H-form FSQRT 7 8/7 V02 1

FP square root, S-form FSQRT 7 to 9 1 to 8/7 V02 1

FP square root, D-form FSQRT 7 to 16 4/15 to 4/7 V02 1

Table 3-17 AArch32 FP data processing instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP absolute value VABS 2 2 V01 -

VFP arith VADD, VSUB 2 2 V01 -

VFP compare, unconditional VCMP, VCMPE 2 1 V0 -

VFP compare, conditional VCMP, VCMPE 4 1 V01, V0 -

VFP convert VCVT{R}, VCVTB,
VCVTT, VCVTA,
VCVTM, VCVTN,
VCVTP

3 1 V0 -

VFP divide, H-form VDIV 7 4/7 V0 1

VFP divide, S-form VDIV 7 to 10 4/9 to 4/7 V0 1

VFP divide, D-form VDIV 7 to 15 1/7 to 2/7 V0 1

VFP max/min VMAXNM,
VMINNM

2 2 V01 -

VFP multiply VMUL, VNMUL 3 2 V01 2

VFP multiply accumulate
(chained)

VMLA, VMLS,
VNMLA, VNMLS

5 (2) 2 V01 3

VFP multiply accumulate
(fused)

VFMA, VFMS,
VFNMA, VFNMS

4 (2) 2 V01 3

VFP negate VNEG 2 2 V01 -

VFP round to integral VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTR, VRINTX,
VRINTZ

3 1 V0 -

VFP select VSELEQ, VSELGE,
VSELGT, VSELVS

2 2 V01 -

VFP square root, H-form VSQRT 7 4/7 V0 1

VFP square root, S-form VSQRT 7 to 9 1/2 to 4/7 V0 1

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP square root, D-form VSQRT 7 to 16 2/15 to 2/7 V0 1

Notes:

1. FP divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.

2. FP multiply-accumulate pipelines support late-forwarding of the result from FP multiply µOPs to the accumulate
operands of an FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after the FP multiply µOP
has been issued.

3. FP multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses).

 FP miscellaneous instructions

Table 3-18 AArch64 FP miscellaneous instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP convert, from vec to vec reg FCVT, FCVTXN 3 2 V02 -

FP convert, from gen to vec reg SCVTF, UCVTF 3 1 M0 -

FP convert, from vec to gen reg FCVTAS, FCVTAU,
FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU

3 1 V02 -

FP move, immed FMOV 2 4 V -

FP move, register FMOV 2 4 V -

FP transfer, from gen to low
half of vec reg

FMOV 3 1 M0 -

FP transfer, from gen to high
half of vec reg

FMOV 5 1 M0, V -

FP transfer, from vec to gen reg FMOV 2 1 V1 -

Table 3-19 AArch32 FP miscellaneous instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP move, immed VMOV 2 2 V01 -

VFP move, register VMOV 2 2 V01 -

VFP transfer, core to vfp, single
reg to S-reg, cond

VMOV 5 1 M0, V01 -

VFP transfer, core to vfp, single
reg to S-reg, uncond

VMOV 3 1 M0 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

VFP transfer, core to vfp, single
reg to upper/lower half of D-reg

VMOV 5 1 M0, V01 -

VFP transfer, core to vfp, 2 regs
to 2 S-regs, cond

VMOV 6 1/2 M0, V01 -

VFP transfer, core to vfp, 2 regs
to 2 S-regs, uncond

VMOV 4 1/2 M0 -

VFP transfer, core to vfp, 2 regs
to D-reg, cond

VMOV 5 1 M0, V01 -

VFP transfer, core to vfp, 2 regs
to D-reg, uncond

VMOV 3 1 M0 -

VFP transfer, vfp S-reg or
upper/lower half of vfp D-reg to
core reg, cond

VMOV 3 1 V1, I -

VFP transfer, vfp S-reg or
upper/lower half of vfp D-reg to
core reg, uncond

VMOV 2 1 V1 -

VFP transfer, vfp 2 S-regs or D-
reg to 2 core regs, cond

VMOV 3 1 V1, I -

VFP transfer, vfp 2 S-regs or D-
reg to 2 core regs, uncond

VMOV 2 1 V1 -

 FP load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-20 AArch64 FP load instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector reg, literal, S/D/Q
forms

LDR 6 3 L -

Load vector reg, unscaled
immed

LDUR 6 3 L -

Load vector reg, immed post-
index

LDR 6 3 L, I -

Load vector reg, immed pre-
index

LDR 6 3 L, I -

Load vector reg, unsigned
immed

LDR 6 3 L -

Load vector reg, register offset,
basic

LDR 6 3 L, I -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector reg, register offset,
scale, S/D-form

LDR 6 3 L -

Load vector reg, register offset,
scale, H/Q-form

LDR 7 3 I, L -

Load vector reg, register offset,
extend

LDR 6 3 L -

Load vector reg, register offset,
extend, scale, S/D-form

LDR 6 3 L -

Load vector reg, register offset,
extend, scale, H/Q-form

LDR 7 3 I, L -

Load vector pair, immed offset,
S/D-form

LDP, LDNP 6 3 L -

Load vector pair, immed offset,
Q-form

LDP, LDNP 6 3/2 L -

Load vector pair, immed post-
index, S/D-form

LDP 6 3 I, L -

Load vector pair, immed post-
index, Q-form

LDP 6 3/2 L, I -

Load vector pair, immed pre-
index, S/D-form

LDP 6 3 I, L -

Load vector pair, immed pre-
index, Q-form

LDP 6 3/2 L, I -

Table 3-21 AArch32 FP load instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP load, register VLDR 6 3(2) L 1, 7

FP load multiple, S form VLDMIA, VLDMDB,
VPOP

N (N*) 3/R (2/R) L 1, 2, 3, 4, 6, 7

FP load multiple, D form VLDMIA, VLDMDB,
VPOP

N (N*) 3/R (1/R) L, V 1, 2, 3, 4, 6, 7

(FP load, writeback forms) - (1) - + I 5, 7

Notes:

1. Condition loads have an extra uop which goes down pipeline 'V' and have 2 cycle extra latency compared to their
unconditional counterparts.

2. N is (num_reg)/6 + 5.

3. N* is (num_reg)/4 + 5.

4. R is num_reg/2.

5. Writeback forms of load instructions require an extra µOP to update the base address. This update is typically
performed in parallel with or prior to the load µOP (update latency shown in parentheses).

6. The number in parenthesis represents the latency and throughput of conditional loads.

7. Conditional loads go down L01 pipe.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 59

 FP store instructions

Stores MOPs are split into store address and store data µOPs at dispatch time. Once executed, stores
are buffered and committed in the background.

Table 3-22 AArch64 FP store instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector reg, unscaled
immed, B/H/S/D-form

STUR 2 2 L01, V01 -

Store vector reg, unscaled
immed, Q-form

STUR 2 2 L01, V01 -

Store vector reg, immed post-
index, B/H/S/D-form

STR 2 2 L01, V01, I -

Store vector reg, immed post-
index, Q-form

STR 2 2 L01, V01, I -

Store vector reg, immed pre-
index, B/H/S/D-form

STR 2 2 L01, V01, I -

Store vector reg, immed pre-
index, Q-form

STR 2 2 L01, V01, I -

Store vector reg, unsigned
immed, B/H/S/D-form

STR 2 2 L01, V01 -

Store vector reg, unsigned
immed, Q-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
basic, B/H/S/D-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
basic, Q-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
scale, H-form

STR 2 2 I, L01, V01 -

Store vector reg, register offset,
scale, S/D-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
scale, Q-form

STR 2 2 I, L01, V01 -

Store vector reg, register offset,
extend, B/H/S/D-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
extend, Q-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
extend, scale, H-form

STR 2 2 I, L01, V01 -

Store vector reg, register offset,
extend, scale, S/D-form

STR 2 2 L01, V01 -

Store vector reg, register offset,
extend, scale, Q-form

STR 2 2 I, L01, V01 -

Store vector pair, immed offset,
S-form

STP, STNP 2 2 L01, V01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector pair, immed offset,
D-form

STP, STNP 2 2 L01, V01 -

Store vector pair, immed offset,
Q-form

STP, STNP 2 2 L01, V01 -

Store vector pair, immed post-
index, S-form

STP 2 2 I, L01, V01 -

Store vector pair, immed post-
index, D-form

STP 2 2 I, L01, V01 -

Store vector pair, immed post-
index, Q-form

STP 2 1 I, L01, V01 -

Store vector pair, immed pre-
index, S-form

STP 2 2 I, L01, V01 -

Store vector pair, immed pre-
index, D-form

STP 2 2 I, L01, V01 -

Store vector pair, immed pre-
index, Q-form

STP 2 1 I, L01, V01 -

Table 3-23 AArch32 FP store instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP store, immed offset VSTR 2 2 L01, V01 -

FP store multiple, S-form VSTMIA, VSTMDB,
VPUSH

N+1 2/R L01, V01 1, 2

FP store multiple, D-form VSTMIA, VSTMDB,
VPUSH

N+1 2/R L01, V01 1, 2

(FP store, writeback forms) - (1) - + I 3

Notes:

1. For store multiple instructions, N = (num_regs/2).

2. R is num_regs.

3. Writeback forms of store instructions require an extra µOP to update the base address. This update is typically
performed in parallel with or prior to the store µOP.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 59

 ASIMD integer instructions

Table 3-24 AArch64 ASIMD integer instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff SABD, UABD 2 4 V -

ASIMD absolute diff accum SABA, UABA 4(1) 2 V13 2

ASIMD absolute diff accum long SABAL(2),
UABAL(2)

4(1) 2 V13 2

ASIMD absolute diff long SABDL(2),
UABDL(2)

2 4 V -

ASIMD arith, basic ABS, ADD, NEG,
SADDL(2),
SADDW(2),
SHADD, SHSUB,
SSUBL(2),
SSUBW(2), SUB,
UADDL(2),
UADDW(2),
UHADD, UHSUB,
USUBL(2),
USUBW(2)

2 4 V -

ASIMD arith, complex ADDHN(2),
RADDHN(2),
RSUBHN(2),
SQABS, SQADD,
SQNEG, SQSUB,
SRHADD,
SUBHN(2),
SUQADD, UQADD,
UQSUB, URHADD,
USQADD

2 4 V -

ASIMD arith, pair-wise ADDP, SADDLP,
UADDLP

2 4 V -

ASIMD arith, reduce, 4H/4S ADDV, SADDLV,
UADDLV

2 2 V13 -

ASIMD arith, reduce, 8B/8H ADDV, SADDLV,
UADDLV

4 2 V13, V -

ASIMD arith, reduce, 16B ADDV, SADDLV,
UADDLV

4 1 V13 -

ASIMD compare CMEQ, CMGE,
CMGT, CMHI,
CMHS, CMLE,
CMLT, CMTST

2 4 V -

ASIMD dot product SDOT, UDOT 2 (1) 4 V 2

ASIMD logical AND, BIC, EOR,
MOV, MVN, ORN,
ORR

2 4 V -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD max/min, basic and pair-
wise

SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP

2 4 V -

ASIMD max/min, reduce, 4H/4S SMAXV, SMINV,
UMAXV, UMINV

2 2 V13 -

ASIMD max/min, reduce,
8B/8H

SMAXV, SMINV,
UMAXV, UMINV

4 2 V13, V -

ASIMD max/min, reduce, 16B SMAXV, SMINV,
UMAXV, UMINV

4 1 V13 -

ASIMD multiply MUL, SQDMULH,
SQRDMULH

4 2 V02 -

ASIMD multiply accumulate MLA, MLS 4(1) 2 V02 1

ASIMD multiply accumulate
high

SQRDMLAH,
SQRDMLSH

4 2 V02 -

ASIMD multiply accumulate
long

SMLAL(2),
SMLSL(2),
UMLAL(2),
UMLSL(2)

4(1) 2 V02 1

ASIMD multiply accumulate
saturating long

SQDMLAL(2),
SQDMLSL(2)

4 2 V02 -

ASIMD multiply/multiply long
(8x8) polynomial, D-form

PMUL, PMULL(2) 3 2 V01 3

ASIMD multiply/multiply long
(8x8) polynomial, Q-form

PMUL, PMULL(2) 3 2 V01 3

ASIMD multiply long SMULL(2),
UMULL(2),
SQDMULL(2)

3 2 V02 -

ASIMD pairwise add and
accumulate long

SADALP, UADALP 4(1) 2 V13 2

ASIMD shift accumulate SSRA, SRSRA, USRA,
URSRA

4(1) 2 V13 2

ASIMD shift by immed, basic SHL, SHLL(2),
SHRN(2), SSHLL(2),
SSHR, SXTL(2),
USHLL(2), USHR,
UXTL(2)

2 2 V13 -

ASIMD shift by immed and
insert, basic

SLI, SRI 2 2 V13 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD shift by immed, complex RSHRN(2),
SQRSHRN(2),
SQRSHRUN(2),
SQSHL{U},
SQSHRN(2),
SQSHRUN(2),
SRSHR,
UQRSHRN(2),
UQSHL,
UQSHRN(2),
URSHR

4 2 V13 -

ASIMD shift by register, basic SSHL, USHL 2 2 V13 -

ASIMD shift by register,
complex

SRSHL, SQRSHL,
SQSHL, URSHL,
UQRSHL, UQSHL

4 2 V13 -

Table 3-25 AArch32 ASIMD integer instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff VABD 2 2 V01 -

ASIMD absolute diff accum VABA 4(1) 1 V1 2

ASIMD absolute diff accum long VABAL 4(1) 1 V1 2

ASIMD absolute diff long VABDL 2 2 V01 -

ASIMD arith, basic VADD, VADDL,
VADDW, VNEG,
VSUB, VSUBL,
VSUBW

2 2 V01 -

ASIMD arith, complex VABS, VADDHN,
VHADD, VHSUB,
VQABS, VQADD,
VQNEG, VQSUB,
VRADDHN,
VRHADD,
VRSUBHN,
VSUBHN

2 2 V01 -

ASIMD arith, pair-wise VPADD, VPADDL 2 2 V01 -

ASIMD compare VCEQ, VCGE,
VCGT, VCLE, VTST

2 2 V01 -

ASIMD logical VAND, VBIC,
VMVN, VORR,
VORN, VEOR

2 2 V01 -

ASIMD max/min VMAX, VMIN,
VPMAX, VPMIN

2 2 V01 -

ASIMD multiply VMUL, VQDMULH,
VQRDMULH

4 1 V0 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD multiply accumulate VMLA, VMLS 4(1) 1 V0 1

ASIMD multiply accumulate
long

VMLAL, VMLSL 4(1) 1 V0 1

ASIMD multiply accumulate
saturating long

VQDMLAL,
VQDMLSL

4 1 V0 -

ASIMD multiply/multiply long
(8x8) polynomial, D-form

VMUL (.P8), VMULL
(.P8)

3 1 V0 -

ASIMD multiply (8x8)
polynomial, Q-form

VMUL (.P8) 3 1 V0 -

ASIMD multiply long VMULL (.S, .I),
VQDMULL

3 1 V0 -

ASIMD pairwise add and
accumulate

VPADAL 4(1) 1 V1 1

ASIMD shift accumulate VSRA, VRSRA 4(1) 1 V1 1

ASIMD shift by immed, basic VMOVL, VSHL,
VSHLL, VSHR,
VSHRN

2 1 V1 -

ASIMD shift by immed and
insert, basic

VSLI, VSRI 2 1 V1 -

ASIMD shift by immed, complex VQRSHRN,
VQRSHRUN,
VQSHL{U},
VQSHRN,
VQSHRUN, VRSHR,
VRSHRN

4 1 V1 -

ASIMD shift by register, basic VSHL 2 1 V1 -

ASIMD shift by register,
complex

VQRSHL, VQSHL,
VRSHL

4 1 V1 -

Notes:

1. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of integer multiply-accumulate µOPs to issue one every cycle or one every other cycle
(accumulate latency shown in parentheses).

2. Other accumulate pipelines also support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of such µOPs to issue one every cycle (accumulate latency shown in parentheses).

3. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and “PMULL2 Vd.8H, Vn.16B,
Vm.16B”.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 59

 ASIMD floating-point instructions

Table 3-26 AArch64 ASIMD integer instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP absolute
value/difference

FABS, FABD 2 4 V -

ASIMD FP arith, normal FADD, FSUB,
FADDP

2 4 V -

ASIMD FP compare FACGE, FACGT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT

2 4 V -

ASIMD FP convert, long (F16 to
F32)

FCVTL(2) 4 1 V02 -

ASIMD FP convert, long (F32 to
F64)

FCVTL(2) 3 2 V02 -

ASIMD FP convert, narrow
(F32 to F16)

FCVTN(2) 4 1 V02 -

ASIMD FP convert, narrow
(F64 to F32)

FCVTN(2),
FCVTXN(2)

3 2 V02 -

ASIMD FP convert, other, D-
form F32 and Q-form F64

FCVTAS, FCVTAU,
FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

3 2 V02 -

ASIMD FP convert, other, D-
form F16 and Q-form F32

FCVTAS, VCVTAU,
FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

4 1 V02 -

ASIMD FP convert, other, Q-
form F16

FCVTAS, VCVTAU,
FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

6 1/2 V02 -

ASIMD FP divide, D-form, F16 FDIV 7 2/7 V02 3

ASIMD FP divide, D-form, F32 FDIV 7 to 10 4/9 to 4/7 V02 3

ASIMD FP divide, Q-form, F16 FDIV 10 to 13 2/13 to 1/5 V02 3

ASIMD FP divide, Q-form, F32 FDIV 7 to 10 2/9 to 2/7 V02 3

ASIMD FP divide, Q-form, F64 FDIV 7 to 15 1/7 to 2/7 V02 3

ASIMD FP max/min, normal FMAX, FMAXNM,
FMIN, FMINNM

2 4 V -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP max/min, pairwise FMAXP,
FMAXNMP, FMINP,
FMINNMP

2 4 V -

ASIMD FP max/min, reduce,
F32 and D-form F16

FMAXV,
FMAXNMV, FMINV,
FMINNMV

4 2 V -

ASIMD FP max/min, reduce, Q-
form F16

FMAXV,
FMAXNMV, FMINV,
FMINNMV

6

4/3

V -

ASIMD FP multiply FMUL, FMULX 3 4 V 2

ASIMD FP multiply accumulate FMLA, FMLS 4 (2) 4 V 1

ASIMD FP negate FNEG 2 4 V -

ASIMD FP round, D-form F32
and Q-form F64

FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

3 2 V02 -

ASIMD FP round, D-form F16
and Q-form F32

FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

4 1 V02 -

ASIMD FP round, Q-form F16 FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

6 1/2 V02 -

ASIMD FP square root, D-form,
F16

FSQRT 7 2/7 V02 3

ASIMD FP square root, D-form,
F32

FSQRT 7 to 10 4/9 to 4/7 V02 3

ASIMD FP square root, Q-form,
F16

FSQRT 11 to 13 2/13 to 2/11 V02 3

ASIMD FP square root, Q-form,
F32

FSQRT 7 to 10 2/9 to 2/7 V02 3

ASIMD FP square root, Q-form,
F64

FSQRT 7 to 16 2/15 to 2/7 V02 3

Table 3-27 AArch32 ASIMD integer instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP absolute value VABS 2 2 V01 -

ASIMD FP arith VABD, VADD,
VPADD, VSUB

2 2 V01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP compare VACGE, VACGT,
VACLE, VACLT,
VCEQ, VCGE,
VCGT, VCLE

2 2 V01 -

ASIMD FP convert, integer, D-
form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

3 1 V0 -

ASIMD FP convert, integer, Q-
form

VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

4 1 V0 -

ASIMD FP convert, fixed, D-
form

VCVT 3 1 V0 -

ASIMD FP convert, fixed, Q-
form

VCVT 4 1 V0 -

ASIMD FP convert, half-
precision

VCVT 4 1 V0 -

ASIMD FP max/min VMAX, VMIN,
VPMAX, VPMIN,
VMAXNM,
VMINNM

2 2 V -

ASIMD FP multiply VMUL, VNMUL 3 2 V 2

ASIMD FP chained multiply
accumulate

VMLA, VMLS 5(2) 2 V 1

ASIMD FP fused multiply
accumulate

VFMA, VFMS 4(2) 2 V 1

ASIMD FP negate VNEG 2 2 V

ASIMD FP round to integral, D-
form

VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

3 1 V0 -

ASIMD FP round to integral, Q-
form

VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

4 1 V0 -

Notes:

1. ASIMD multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs,
allowing a typical sequence of floating-point multiply-accumulate µOPs to issue one every N cycles (accumulate
latency N shown in parentheses).

2. ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD FP multiply µOPs to the
accumulate operands of an ASIMD FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after
the ASIMD FP multiply µOP has been issued.

3. ASIMD divide and square root operations are performed using an iterative algorithm and block subsequent
similar operations to the same pipeline until complete.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 59

 ASIMD miscellaneous instructions

Table 3-28 AArch64 ASIMD miscellaneous instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD bit reverse RBIT 2 4 V -

ASIMD bitwise insert BIF, BIT, BSL 2 4 V -

ASIMD count CLS, CLZ, CNT 2 4 V -

ASIMD duplicate, gen reg DUP 3 1 M0 -

ASIMD duplicate, element DUP 2 4 V -

ASIMD extract EXT 2 4 V -

ASIMD extract narrow XTN(2) 2 4 V -

ASIMD extract narrow,
saturating

SQXTN(2),
SQXTUN(2),
UQXTN(2)

4 2 V13 -

ASIMD insert, element to
element

INS 2 4 V -

ASIMD move, FP immed FMOV 2 4 V -

ASIMD move, integer immed MOVI 2 4 V -

ASIMD reciprocal and square
root estimate, D-form U32

URECPE, URSQRTE 3 2 V02 -

ASIMD reciprocal and square
root estimate, Q-form U32

URECPE, URSQRTE 4 1 V02 -

ASIMD reciprocal and square
root estimate, D-form F32 and
scalar forms

FRECPE, FRSQRTE 3 2 V02 -

ASIMD reciprocal and square
root estimate, D-form F16 and
Q-form F32

FRECPE, FRSQRTE 4 1 V02 -

ASIMD reciprocal and square
root estimate, Q-form F16

FRECPE, FRSQRTE 6 1/2 V02 -

ASIMD reciprocal exponent FRECPX 3 2 V02 -

ASIMD reciprocal step FRECPS, FRSQRTS 4 4 V -

ASIMD reverse REV16, REV32,
REV64

2 4 V -

ASIMD table lookup, 1 or 2
table regs

TBL 2 2 V01 -

ASIMD table lookup, 3 table
regs

TBL 4 1 V01 -

ASIMD table lookup, 4 table
regs

TBL 4 2/3 V01 -

ASIMD table lookup extension,
1 table reg

TBX 2 2 V01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD table lookup extension,
2 table reg

TBX 4 1 V01 -

ASIMD table lookup extension,
3 table reg

TBX 6 2/3 V01 -

ASIMD table lookup extension,
4 table reg

TBX 6 2/5 V01 -

ASIMD transfer, element to gen
reg

UMOV, SMOV 2 1 V -

ASIMD transfer, gen reg to
element

INS 5 1 M0, V -

ASIMD transpose TRN1, TRN2 2 4 V -

ASIMD unzip/zip UZP1, UZP2, ZIP1,
ZIP2

2 4 V -

Table 3-29 AArch32 ASIMD miscellaneous instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD bitwise insert VBIF, VBIT, VBSL 2 2 V01 -

ASIMD count VCLS, VCLZ, VCNT 2 2 V01 -

ASIMD duplicate, core reg VDUP 3 1 M0 -

ASIMD duplicate, scalar VDUP 2 2 V01 -

ASIMD extract VEXT 2 2 V01 -

ASIMD move, immed VMOV 2 2 V01 -

ASIMD move, register VMOV 2 2 V01 -

ASIMD move, narrowing VMOVN 2 2 V01 -

ASIMD move, saturating VQMOVN,
VQMOVUN

4 1 V1 -

ASIMD reciprocal estimate, D-
form F32 and F64

VRECPE, VRSQRTE 3 1 V0 -

ASIMD reciprocal estimate, D-
form F16 and Q-form F32

VRECPE, VRSQRTE 4 1 V0

ASIMD reciprocal estimate, Q-
form F16

VRECPE, VRSQRTE 6

1/4 V0 -

ASIMD reciprocal step VRECPS, VRSQRTS 5 2 V01 -

ASIMD reverse VREV16, VREV32,
VREV64

2 2 V01 -

ASIMD swap VSWP 4 2/3 V01 -

ASIMD table lookup, 1 or 2
table regs

VTBL 2 2 V01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD table lookup, 3 table
regs

VTBL 4 1 V01 -

ASIMD table lookup, 4 table
regs

VTBL 6 2/3 V01 -

ASIMD table lookup extension,
1 reg

VTBX 2 2 V01 -

ASIMD table lookup extension,
2 table reg

VTBX 4 1 V01 -

ASIMD table lookup extension,
3 table reg

VTBX 6 2/3 V01 -

ASIMD table lookup extension,
4 table reg

VTBX 6 2/5 V01 -

ASIMD transfer, scalar to core
reg, word

VMOV 2 1 V1 -

ASIMD transfer, scalar to core
reg, byte/hword

VMOV 3 1 V1, I -

ASIMD transfer, core reg to
scalar

VMOV 5 1 M0, V01 -

ASIMD transpose VTRN 4 2/3 V01 -

ASIMD unzip/zip VUZP, VZIP 4 2/3 V01 -

 ASIMD load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-30 AArch64 ASIMD load instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element,
multiple, 1 reg, D-form

LD1 6 3 L -

ASIMD load, 1 element,
multiple, 1 reg, Q-form

LD1 6 3 L -

ASIMD load, 1 element,
multiple, 2 reg, D-form

LD1 6 3/2 L -

ASIMD load, 1 element,
multiple, 2 reg, Q-form

LD1 6 3/2 L -

ASIMD load, 1 element,
multiple, 3 reg, D-form

LD1 6 1 L -

ASIMD load, 1 element,
multiple, 3 reg, Q-form

LD1 6 1 L -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element,
multiple, 4 reg, D-form

LD1 6 3/2 L -

ASIMD load, 1 element,
multiple, 4 reg, Q-form

LD1 7 3/4 L -

ASIMD load, 1 element, one
lane, B/H/S

LD1 8 3 L, V -

ASIMD load, 1 element, one
lane, D

LD1 8 3 L, V -

ASIMD load, 1 element, all
lanes, D-form, B/H/S

LD1R 8 3 L, V -

ASIMD load, 1 element, all
lanes, D-form, D

LD1R 8 3 L, V -

ASIMD load, 1 element, all
lanes, Q-form

LD1R 8 3 L, V -

ASIMD load, 2 element,
multiple, D-form, B/H/S

LD2 8 2 L, V -

ASIMD load, 2 element,
multiple, Q-form, B/H/S

LD2 8 3/2 L, V -

ASIMD load, 2 element,
multiple, Q-form, D

LD2 8 3/2 L, V -

ASIMD load, 2 element, one
lane, B/H

LD2 8 2 L, V -

ASIMD load, 2 element, one
lane, S

LD2 8 2 L, V -

ASIMD load, 2 element, one
lane, D

LD2 8 2 L, V -

ASIMD load, 2 element, all
lanes, D-form, B/H/S

LD2R 8 2 L, V -

ASIMD load, 2 element, all
lanes, D-form, D

LD2R 8 2 L, V -

ASIMD load, 2 element, all
lanes, Q-form

LD2R 8 2 L, V -

ASIMD load, 3 element,
multiple, D-form, B/H/S

LD3 8 4/3 L, V -

ASIMD load, 3 element,
multiple, Q-form, B/H/S

LD3 8 1 L, V -

ASIMD load, 3 element,
multiple, Q-form, D

LD3 8 1 L, V -

ASIMD load, 3 element, one
lane, B/H

LD3 8 4/3 L, V -

ASIMD load, 3 element, one
lane, S

LD3 8 4/3 L, V -

ASIMD load, 3 element, one
lane, D

LD3 8 4/3 L, V -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 3 element, all
lanes, D-form, B/H/S

LD3R 8 4/3 L, V -

ASIMD load, 3 element, all
lanes, D-form, D

LD3R 8 4/3 L, V -

ASIMD load, 3 element, all
lanes, Q-form, B/H/S

LD3R 8 4/3 L, V -

ASIMD load, 3 element, all
lanes, Q-form, D

LD3R 8 4/3 L, V -

ASIMD load, 4 element,
multiple, D-form, B/H/S

LD4 8 1 L, V -

ASIMD load, 4 element,
multiple, Q-form, B/H/S

LD4 9 1/2 L, V -

ASIMD load, 4 element,
multiple, Q-form, D

LD4 9 1/2 L, V -

ASIMD load, 4 element, one
lane, B/H

LD4 8 1 L, V -

ASIMD load, 4 element, one
lane, S

LD4 8 1 L, V -

ASIMD load, 4 element, one
lane, D

LD4 8 1 L, V -

ASIMD load, 4 element, all
lanes, D-form, B/H/S

LD4R 8 1 L, V -

ASIMD load, 4 element, all
lanes, D-form, D

LD4R 8 1 L, V -

ASIMD load, 4 element, all
lanes, Q-form, B/H/S

LD4R 8 1 L, V -

ASIMD load, 4 element, all
lanes, Q-form, D

LD4R 8 1 L, V -

(ASIMD load, writeback form) - - - I 1

Table 3-31 AArch32 ASIMD load instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element,
multiple, 1 reg

VLD1 6 3(2) L 2

ASIMD load, 1 element,
multiple, 2 reg

VLD1 6 3(2) L 2

ASIMD load, 1 element,
multiple, 3 reg

VLD1 6 3/2(1) L 2

ASIMD load, 1 element,
multiple, 4 reg

VLD1 6 3/2(1) L 2

ASIMD load, 1 element, one
lane

VLD1 8 3(2) L, V 2

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element, all
lanes, 1 reg

VLD1 8 3(2) L V 2

ASIMD load, 1 element, all
lanes, 2 reg

VLD1 8 2 L, V 2

ASIMD load, 2 element,
multiple, 2 reg

VLD2 8 2 L, V 2

ASIMD load, 2 element,
multiple, 4 reg

VLD2 8 1 L, V 2

ASIMD load, 2 element, one
lane, size 32

VLD2 8 2 L, V 2

ASIMD load, 2 element, one
lane, size 8/16

VLD2 8 2 L, V 2

ASIMD load, 2 element, all lanes VLD2 8 2 L, V 2

ASIMD load, 3 element,
multiple, 3 reg

VLD3 9 4/3 (1) L, V 2

ASIMD load, 3 element, one
lane, size 32

VLD3 8 4/3 (1) L, V 2

ASIMD load, 3 element, one
lane, size 8/16

VLD3 8 4/3 (1) L, V 2

ASIMD load, 3 element, all lanes VLD3 8 4/3 (1) L, V 2

ASIMD load, 4 element,
multiple, 4 reg

VLD4 8 1 L, V 2

ASIMD load, 4 element, one
lane, size 32

VLD4 8 1 L, V 2

ASIMD load, 4 element, one
lane, size 8/16

VLD4 8 1 L, V 2

ASIMD load, 4 element, all lanes VLD4 8 1 L, V 2

(ASIMD load, writeback form) - - - I 1

Notes:

1. Writeback forms of load instructions require an extra µOP to update the base address. This update is typically
performed in parallel with the load µOP.

2. Conditional loads go down L01 pipe and the number in parenthesis represents their throughput when different
from the unconditional forms.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 59

 ASIMD store instructions

Stores MOPs are split into store address and store data µOPs at dispatch time. Once executed, stores
are buffered and committed in the background.

Table 3-32 AArch64 ASIMD store instructions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 1 reg, D-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 1 reg, Q-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, D-form

ST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, Q-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, D-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, Q-form

ST1 2 2/3 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, D-form

ST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, Q-form

ST1 2 1/2 L01, V -

ASIMD store, 1 element, one
lane, B/H/S

ST1 4 2 L01, V -

ASIMD store, 1 element, one
lane, D

ST1 4 2 L01, V -

ASIMD store, 2 element,
multiple, D-form, B/H/S

ST2 4 2 V, L01 -

ASIMD store, 2 element,
multiple, Q-form, B/H/S

ST2 4 1 V, L01 -

ASIMD store, 2 element,
multiple, Q-form, D

ST2 4 1 V, L01 -

ASIMD store, 2 element, one
lane, B/H/S

ST2 4 2 V, L01 -

ASIMD store, 2 element, one
lane, D

ST2 4 2 V, L01 -

ASIMD store, 3 element,
multiple, D-form, B/H/S

ST3 4 1 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, B/H/S

ST3 5 2/3 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, D

ST3 5 2/3 V, L01 -

ASIMD store, 3 element, one
lane, B/H

ST3 4 1 V, L01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 59

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 3 element, one
lane, S

ST3 4 1 V, L01 -

ASIMD store, 3 element, one
lane, D

ST3 4 1 V, L01 -

ASIMD store, 4 element,
multiple, D-form, B/H/S

ST4 6 2/3 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, B/H/S

ST4 7 1/3 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, D

ST4 4 1/2 V, L01 -

ASIMD store, 4 element, one
lane, B/H

ST4 6 4/3 V, L01 -

ASIMD store, 4 element, one
lane, S

ST4 6 4/3 V, L01 -

ASIMD store, 4 element, one
lane, D

ST4 4 1 V, L01 -

(ASIMD store, writeback form) - - - I 1

Table 3-33 AArch32 ASIMD store instructions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 1 reg

VST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg

VST1 2 2 L01, V -

ASIMD store, 1 element,
multiple, 3 reg

VST1 2 1 L01, V -

ASIMD store, 1 element,
multiple, 4 reg

VST1 2 1 L01, V -

ASIMD store, 1 element, one
lane

VST1 4 2 V, L01 -

ASIMD store, 2 element,
multiple, 2 reg

VST2 4 4/3 V, L01 -

ASIMD store, 2 element,
multiple, 4 reg

VST2 4 2/3 V, L01 -

ASIMD store, 2 element, one
lane

VST2 4 2 V, L01 -

ASIMD store, 3 element,
multiple, 3 reg

VST3 4 1 V, L01 -

ASIMD store, 3 element, one
lane, size 32

VST3 4 1 V, L01 -

ASIMD store, 3 element, one
lane, size 8/16

VST3 4 1 V, L01 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 4 element,
multiple, 4 reg

VST4 4 2/3 V, L01 -

ASIMD store, 4 element, one
lane, size 32

VST4 4 4/3 V, L01 -

ASIMD store, 4 element, one
lane, size 8/16

VST4 4 4/3 V, L01 -

(ASIMD store, writeback form) - (1) - +I 1

Notes:

1. Writeback forms of store instructions require an extra µOP to update the base address. This update is typically
performed in parallel with the store µOP.

 Cryptography extensions

Table 3-34 AArch64 Cryptography extensions

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V01 1

Crypto polynomial (64x64)
multiply long

PMULL (2) 2 2 V01 -

Crypto SHA1 hash acceleration
ops

SHA1H 2 1 V0 -

Crypto SHA1 hash acceleration
ops

SHA1C, SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256 schedule
acceleration ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Table 3-35 AArch32 Cryptography extensions

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V 1

Crypto polynomial (64x64)
multiply long

VMULL.P64 2 1 V0 -

Crypto SHA1 hash acceleration
ops

SHA1H 2 1 V0 -

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

3 Instruction characteristics

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 59

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto SHA1 hash acceleration
ops

SHA1C, SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256 schedule
acceleration ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Notes:

1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs will exhibit the
performance characteristics described in Section 4.6.

 CRC

Table 3-36 AArch64 CRC

Instruction Group AArch64
Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

CRC checksum ops CRC32, CRC32C 2 1 M0 1

Table 3-37 AArch32 CRC

Instruction Group AArch32

Instructions

Execution
Latency

Execution
Throughput

Utilized
Pipelines

Notes

CRC checksum ops CRC32, CRC32C 2 1 M0 1

Notes:

1. CRC execution supports late-forwarding of the result from a producer µOP to a consumer µOP. This results in a 1
cycle reduction in latency as seen by the consumer.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 59

4 Special considerations

 Dispatch constraints

Dispatch of µOPs from the in-order portion to the out-of-order portion of the microarchitecture
includes several constraints. It is important to consider these constraints during code generation to
maximize the effective dispatch bandwidth and subsequent execution bandwidth of Cortex-X1.

The dispatch stage can process up to 8 MOPs per cycle and dispatch up to 16 µOPs per cycle, with the
following limitations on the number of µOPs of each type that may be simultaneously dispatched.

• Up to 4 µOPs utilizing the S or B pipelines

• Up to 4 µOPs utilizing the M pipelines

• Up to 2 µOPs utilizing the M0 pipelines

• Up to 2 µOPs utilizing the V0 pipeline

• Up to 2 µOPs utilizing the V1 pipeline

• Up to 6 µOPs utilizing the L pipelines

In the event there are more µOPs available to be dispatched in a given cycle than can be supported by
the constraints above, µOPs will be dispatched in oldest to youngest age-order to the extent allowed
by the above.

 Dispatch stall

In the event of a V-pipeline µOP containing more than 1 quad-word register source, a portion or all of
which was previously written as one or multiple single words, that µOP will stall in dispatch for three
cycles. This stall occurs only on the first such instance, and subsequent consumers of the same
register will not experience this stall.

 Optimizing general-purpose register spills and fills

Register transfers between general-purpose registers (GPR) and ASIMD registers (VPR) are lower
latency than reads and writes to the cache hierarchy, thus it is recommended that GPR registers be
filled/spilled to the VPR rather to memory, when possible.

 Optimizing memory routines

To achieve maximum throughput for memory copy (or similar loops), one should do the following:

• Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 59

• Use non-writeback forms of LDP and STP instructions interleaving them like shown in the
example below:
Loop_start:

 SUBS x2,x2,#96

 LDP q3,q4,[x1,#0]

 STP q3,q4,[x0,#0]

 LDP q3,q4,[x1,#32]

 STP q3,q4,[x0,#32]

 LDP q3,q4,[x1,#64]

 STP q3,q4,[x0,#64]

 ADD x1,x1,#96

 ADD x0,x0,#96

 BGT Loop_start

A recommended copy routine for AArch32 would look like the sequence above but would use
LDRD/STRD instructions. Avoid load-/store-multiple instruction encodings (such as LDM and STM).

To achieve maximum throughput on memset, it is recommended that one do the following:

• Unroll the loop to include multiple load and store operations per iteration, minimizing the
overheads of looping.
Loop_start:

 STP q1,q3,[x0,#0]

 STP q1,q3,[x0,#0x20]

 STP q1,q3,[x0,#0x40]

 STP q1,q3,[x0,#0x60]

 ADD x0,x0,#0x80

 SUBS x2,x2,#0x80

 B.GT Loop_start

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA
instead of STP. An optimal routine might look something like the following:
Loop_start:

 SUBS x2,x2,#0x80

 DC ZVA,x0

 ADD x0,x0,#0x40

 DC ZVA,x0

 ADD x0,x0,#0x40

 B.GT Loop_start

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 59

 Load/Store alignment

The Armv8.2-A architecture allows many types of load and store accesses to be arbitrarily aligned.
The Cortex-X1 core handles most unaligned accesses without performance penalties. However, there
are cases which could reduce bandwidth or incur additional latency, as described below:

• Load operations that cross a cache-line (64-byte) boundary

• Quad-word load operations that are not 4B aligned

• Store operations that cross a 32B boundary

4.6 Store to Load Forwarding

The Cortex-X1 core allows data to be forwarded from store instructions to a load instruction with the
restrictions mentioned below:

• Load start address should align with the start or middle address of the older store. This does not
apply to LDPs that load 2 32b registers or LDRDs

• Loads of size greater than 8 bytes can get the data forwarded from a maximum of 2 stores. If
there are 2 stores, then each store should forward to either first or second half of the load

• Loads of size less than or equal to 8 bytes can get their data forwarded from only 1 store

 AES encryption/decryption

Cortex-X1 can issue two AESE/AESMC/AESD/AESIMC instruction every cycle (fully pipelined) with
an execution latency of two cycles. This means encryption or decryption for at least four data chunks
should be interleaved for maximum performance:
AESE data0, key0

AESMC data0, data0

AESE data1, key0

AESMC data1, data1

AESE data2, key0

AESMC data2, data2

AESE data3, key1

AESMC data3, data3

AESE data0, key0

...

Pairs of dependent AESE/AESMC and AESD/AESIMC instructions exhibit higher performance when
they are adjacent in the program code and both instructions use the same destination register.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 59

 Region based fast forwarding

The forwarding logic in the V pipelines is optimized to provide optimal latency for instructions which
are expected to commonly forward to one another. The effective latency of FP and ASIMD
instructions as described in section 3 is increased by one cycle if the producer and consumer
instructions are not part of the same forwarding region. These optimized forwarding regions are
defined in the following table.

Table 4-1 Optimized forwarding regions

Region Instruction Types Notes

1 ASIMD integer ALU, ASIMD integer shift, ASIMD/scalar insert and move, ASIMD
integer abs/cmp/max/min and the ASIMD miscellaneous instructions in tables 3-28
and 3-29.

1

2 FP/ASIMD floating-point multiply, FP/ASIMD floating point multiply-accumulate,
FP/ASIMD compare, FP/ASIMD add/sub and the ASIMD miscellaneous instructions
in tables 3-28 and 3-29.

1,2,3

3 Crypto and SHA1/SHA256 -

4 AES, polynomial multiply and all the instruction types in region 1. 1

Notes:

1. Reciprocal step and estimate instructions are excluded from this region.

2. ASIMD extract narrow, saturating instructions are excluded from this region.

3. ASIMD miscellaneous instructions can only be consumers of this region.

The following instructions are not a part of any region:

• FP/ASIMD floating-point div/sqrt

• FP/ASIMD convert and rounding instructions that do not write to general purpose registers

• ASIMD integer mul/mac

• ASIMD integer reduction

In addition to the regions mentioned in the table above, all instructions in regions 1 and 2 can fast
forward to FP/ASIMD stores, FP/ASIMD vector to integer register transfers and ASIMD converts
that write to general purpose registers.

More special notes about the forwarding region in table 4-1:

• Fast forwarding will not occur in AArch32 mode if the consuming register’s width is greater than
that of the producer.

• Element sources (the non-vector operand in "by element" multiplies) used by ASIMD floating-
point multiply and multiply-accumulate operations cannot be consumers.

• Complex shift by immediate/register and shift accumulate instructions cannot be producers (see
section 3.15) in region 1.

• Extract narrow, saturating instructions cannot be producers (see section 3.17) in region 1.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 59

• Absolute difference accumulate and pairwise add and accumulate instructions cannot be
producers (see section 3.15) in region 1.

• For floating-point producer-consumer pairs, the precision of the instructions should match
(single, double or half) in region 2.

• Pair-wise floating-point instructions cannot be producers or consumers in region 2.

It is not advisable to interleave instructions belonging to different regions. Also, certain instructions
can only be producers or consumers in a particular region but not both (see footnote 3 for table 4-1).
For example, the code below interleaves producers and consumers from regions 1 and 2. This will
result in and additional latency of 1 cycle as seen by FMUL.

FSUB v27.2s, v28.2s, v20.2s – Region 2

FADD v20.2s, v28.2s, v20.2s – Region 2

MOV v27.s[1], v20.s[1] - Region 2 producer but not a region 2 consumer

FMUL v26.2s, v27.2s, v6.2s – Region 2

 Branch instruction alignment

Branch instruction and branch target instruction alignment and density can affect performance.

For best case performance, avoid placing more than four branch instructions within an aligned 32-
byte instruction memory region.

 FPCR self-synchronization

Programmers and compiler writers should note that writes to the FPCR register are self-
synchronizing, i.e. its effect on subsequent instructions can be relied upon without an intervening
context synchronizing operation.

 Special register access

The Cortex-X1 core performs register renaming for general purpose registers to enable speculative
and out-of-order instruction execution. But most special-purpose registers are not renamed.
Instructions that read or write non-renamed registers are subjected to one or more of the following
additional execution constraints.

• Non-Speculative Execution – Instructions may only execute non-speculatively.

• In-Order Execution – Instructions must execute in-order with respect to other similar
instructions or in some cases all instructions.

• Flush Side-Effects – Instructions trigger a flush side-effect after executing for synchronization.

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 59

The table below summarizes various special-purpose register read accesses and the associated
execution constraints or side-effects.

Table 4-2 Special-purpose register read accesses

Register Read Non-Speculative In-Order Flush Side-Effect Notes

APSR Yes Yes No 3

CurrentEL No Yes No -

DAIF No Yes No -

DLR_EL0 No Yes No -

DSPSR_EL0 No Yes No -

ELR_* No Yes No -

FPCR No Yes No -

FPSCR Yes Yes No 2

FPSR Yes Yes No 2

NZCV No No No 1

SP_* No No No 1

SPSel No Yes No -

SPSR_* No Yes No -

Notes:

1. The NZCV and SP registers are fully renamed.

2. FPSR/FPSCR reads must wait for all prior instructions that may update the status flags to execute and retire.

3. APSR reads must wait for all prior instructions that may set the Q bit to execute and retire.

The table below summarizes various special-purpose register write accesses and the associated
execution constraints or side-effects.

Table 4-3 Special-purpose register write accesses

Register Write Non-Speculative In-Order Flush Side-Effect Notes

APSR Yes Yes No 4

DAIF Yes Yes No -

DLR_EL0 Yes Yes No -

DSPSR_EL0 Yes Yes No -

ELR_* Yes Yes No -

FPCR Yes Yes Maybe 2

FPSCR Yes Yes Maybe 2, 3

FPSR Yes Yes No 3

NZCV No No No 1

SP_* No No No 1

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 59

Register Write Non-Speculative In-Order Flush Side-Effect Notes

SPSel Yes Yes Yes -

SPSR_* Yes Yes No -

Notes:

1. The NZCV and SP registers are fully renamed.

2. If the FPCR/FPSCR write is predicted to change the control field values, it will introduce a barrier which prevents
subsequent instructions from executing. If the FPCR/FPSCR write is predicted to not change the control field
values, it will execute without a barrier but trigger a flush if the values change.

3. FPSR/FPSCR writes must stall at dispatch if another FPSR/FPSCR write is still pending.

4. APSR writes that set the Q bit will introduce a barrier which prevents subsequent instructions from executing until
the write completes.

 Register forwarding hazards

The Armv8-A architecture allows FP/ASIMD instructions to read and write 32-bit S-registers. In
AArch32, each S-register corresponds to one half (upper or lower) of an overlaid 64-bit D-register. A
Q-register in turn consists of two overlaid D-register. Register forwarding hazards may occur when
one µOP reads a Q-register operand that has recently been written with one or more S-register
result. Consider the following scenario:

VADD S0, S1, S2

VADD Q6, Q5, Q0

The first instruction writes S0, which corresponds to the lowest part of Q0. The second instruction
then requires Q0 as an input operand. In this scenario, there is a RAW dependency between the first
and the second instructions. In most cases, Cortex-X1 performs slightly worse in such situations.

Cortex-X1 is able to avoid this register-hazard condition for certain cases. The following rules
describe the conditions under which a register-hazard can occur:

• The producer writes an S-register (not a D[x] scalar)

• The consumer reads an overlapping Q-register (not as a D[x] scalar)

• The consumer is a FP/ASIMD µOP (not a store or MOV µOP)

To avoid unnecessary hazards, it is recommended that the programmer use D[x] scalar writes when
populating registers prior to ASIMD operations. For example, either of the following instruction
forms would safely prevent a subsequent hazard.

VLD1.32 D0[x], [address]

VADD Q1, Q0, Q2F

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 59

 IT blocks

The Armv8-A architecture performance deprecates some uses of the IT instruction in such a way that
software may be written using multiple naïve single instruction IT blocks. It is preferred that software
instead generate multi instruction IT blocks rather than single instruction blocks.

 Instruction fusion

Cortex-X1 can accelerate certain instruction pairs in an operation called fusion. Specific Aarch64
instruction pairs that can be fused are as follows:

1. CMP/CMN (immediate) + B.cond

2. CMP/CMN (register) + B.cond

3. TST (immediate) + B.cond

4. TST (register) + B.cond

5. BICS (register) + B.cond

6. NOP + Any instruction

The following instruction pairs are fused in both Aarch32 and Aarch64 modes:

1. AESE + AESMC (see Section 4.6 on AES Encryption/Decryption)

2. AESD + AESIMC (see Section 4.6 on AES Encryption/Decryption)

These instruction pairs must be adjacent to each other in program code.

 Zero Latency MOVs

A subset of register-to-register move operations and move immediate operations are executed with
zero latency. These instructions do not utilize the scheduling and execution resources of the machine.
These are as follows:

MOV Xd, #0

MOV Xd, XZR

MOV Wd, #0

MOV Wd, WZR

MOV Rd, #0 (AArch32)

MOV Wd, Wn

MOV Xd, Xn

MOV Rd, Rn (AArch32)

Arm® Cortex®-X1 Core Software Optimization Guide PJDOC-466751330-12804
Issue 4.0

4 Special considerations

Copyright © [2019-2021] Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 59

The last 3 instructions may not be executed with zero latency under certain conditions.

 Mixing Arm and Thumb state

Mixing Arm and Thumb instructions in the same cache-line should be avoided. In particular, old-style
interworking veneers to switch from Thumb to Arm state using BX pc may be very slow. This
overhead can be reduced by inserting a direct branch or return between indirect branches in one
state and code in the other state. For example:

BX pc // Thumb to Arm veneer

B.-2 // never executed

… Arm code

However, it is preferable to remove the indirect branch by using only Thumb-2 or Arm code for each
veneer.

 Cache maintenance operations

While using set way invalidation operations on L1 cache, it is recommended that software be written
to traverse the sets in the inner loop and ways in the out loop.

 Complex ASIMD instructions

The bandwidth of the following ASIMD instructions is limited by decode constraints and it is advisable
to avoid them when high performing code is desired.

1. LD4R, post-indexed addressing, element size = 64b.

2. LD4, single 4-element structure, post indexed addressing mode, element size = 64b.

3. LD4, multiple 4-element structures, quad form.

4. LD4, multiple structures, double word form.

5. ST4, multiple 4-element structures, quad form, element size less than 64b.

6. ST4, multiple 4-element structures, quad form, element size = 64b, post indexed addressing
mode.

