
1

February 2020

Today, the Arm architecture enables developers
to write high-performance portable code,
capable of running unmodified on billions
of devices. In contrast, the decline of Moore’s
law, combined with ever increasing demands for
computational performance at the edge, lead
to a need for product customization and
specialization. To address these challenges, Arm
Custom Instructions offer implementers the ability
to make tradeoffs specific to their own goals.

This white paper introduces Arm Custom
Instructions, which enable further innovation
with Arm-based system designs, highlighting their
features and benefits.

Arm Custom Instructions: Enabling
Innovation and Greater Flexibility on Arm

Lauranne Choquin, Staff Information Developer, Arm
Fred Piry, Lead Architect and Fellow, Arm

2

What are Arm Custom Instructions?
Arm Custom Instructions enable chip designers to push performance and efficiency further

by adding application domain-specific features in small embedded processors, while

maintaining the ecosystem advantages of Arm processors. Arm Custom Instructions are

currently available for the Cortex-M33 processor. In 2021, Arm Custom Instructions will

be enabled on the Cortex-M55 processor. In this context, Arm Custom Instructions aim to:

 Enable differentiation by giving you the power to innovate within the proven

 Arm architecture, a worldwide standard.

 Reduce time to market when exploring new classes of user-defined instructions for

 emerging algorithms and applications.

 Develop a domain-specific architecture by allowing you to implement a customized

accelerator with an Arm architecturally compliant CPU as a container.

One way to categorize accelerators based on the connection to the CPU is:

1. Memory-mapped accelerators, such as a GPU, directly connected to the

memory bus.

2. Coprocessor interface, recently introduced on the Arm Cortex-M33 processor and for

future Cortex-M processors including the Cortex-M55, enables you to build closely

coupled accelerators under the direct control of the CPU.

3. Arm Custom Instructions further expand this view of hardware accelerators

 by enabling tightly coupled accelerators with even closer coupling with the datapath

 of the processor.

1. Memory-mapped

• Decoupled from CPU

• Can have wide register
size and direct access
to memory

• Not limited by memory
bandwidth of CPU

• Runs in parallel to CPU

2. Coprocessor

• Integrated with CPU

• Additional customer
registers

• High-throughput
interface with CPU
(64 bits per cycle)

• Ideal for medium
latency operations
(3 cycles or more)

• Runs in parallel to CPU

3. Tightly coupled

• Tightly Integrated with
CPU

• Access to standard
registers

• Ideal for low-latency
operations
(1 to 3 cycles)

• Instructions
interleaved with Arm
standard instructions

Figure 1. Arm Custom
Instructions introduce
the ability to add tightly
coupled accelerators to
Arm Cortex-M CPUs

3

How do Arm Custom Instructions Work?
Arm redefines the coprocessor Instruction Set Architecure (ISA) encoding space to enable

custom instructions using the Arm architectural registers and flags. You can use this

encoding space to add your own, differentiating data processing instructions without

compromising performance.

Arm Custom Instructions add a customizable module inside the processor. This module

is driven by the pre-decoded instructions and shares the same interface as the standard

Arithmetic Logic Unit (ALU) of the CPU. This configuration space enables you to design

your own operations where:

 The CPU manages control and dependencies.

 Instructions are either single-cycle or multi-cycle and can be pipelined.

Implementations might contain one configuration space for the CPU and its general

purpose registers, and one configuration space for the Floating-Point Unit (FPU) and

its floating-point registers. purpose registers, and one configuration space for the FPU and

its floating-point registers.

There are multiple regions of the encoding space available for customization. You can

choose how many regions to use, up to eight, based on the type of instructions you want

to implement. For the regions that are not used, Arm decodes the instruction either for

the coprocessor interface, if present and enabled, or as a NOCP exception, if not present

or not accessible.

Figure 2. Arm Custom
Instructions
configuration space

4

Adding custom instructions to a customizable CPU requires two steps:

1. Providing a configuration file that lists the regions you want to use for

 adding your own custom instructions.
2. Building the datapath for your own custom instructions and integrating

it into the configuration space.

Decoding logic is automatically configured to decode your custom instructions and control

your custom datapath. On top of the decoder, the CPU resolves all required control signals,

instruction interlocking, and data dependencies.

The custom ALUs follow the execution resources available on the customizable CPU:

 Operating out of the extended register file, that is registers in the Floating-Point Unit

(FPU) or M-profile Vector Extension (MVE), is only possible on a CPU that implements

the extended register file.

 The support for multi-cycle instructions matches the supported latencies in the

customizable CPU.

Arm provides all required control signals and operands, and writes results into the register

file for the custom datapath. Arm control logic handles all hazarding logic. As a result, any

declared required operand or flag, and any declared result write, requires the appropriate

hazarding to be handled, even if not used by the custom instructions.

For CPUs with a coprocessor interface, the encoding space for each coprocessor

can be dedicated to either the external coprocessor or the customizable ISA extension,

with mutual exclusion.

Based on the configuration file you provided, Arm configures the instruction decoder

and provides all control logic to drive your custom datapath. Arm also verifies all the

control logic interlocks and forwarding. You design and verify the custom datapath.

Arm provides a set of assertions and properties to check compliance with the custom

datapath interface protocol.

Arm provides a testbench to verify the integration of the custom instructions into

the customizable CPU. You develop the integration test suites to execute the custom

instructions and check correctness.

5

Which Custom Instructions are
Now Enabled?
Arm introduces 2 × 3 classes of instruction extension in the coprocessor instruction space:

 Three classes operate on the general-purpose register file, including the

condition code flags APSR_nzcv.

Three classes operate on the floating-point/Single Instruction Multiple

Data (SIMD) register file only.

The three classes are defined by the following instruction patterns:

The destination register or the destination register pair of an instruction might be read,

as well as written (non-accumulator and accumulator variants).

The operation code can be split between a true operation code in the custom datapath

and an immediate value used in the custom datapath.

Immediate consequences of the above are:

 No operations on the floating-point registers can set condition codes.

 There are no operations using registers from both register files.

Operations on the general-purpose register file operate on 32-bit registers,

or a dual-register consisting of a 64-bit value constructed from an even-numbered,

general-purpose register and its immediately following odd pair.

<operation code> <destination register>

<operation code> <destination register>, <source register>

<operation code> <destination register>, <source register 1>, <source register 2>

Table 1. General-purpose

registers and NZCV flags

Instruction Assembly Inputs CPU Imm Outputs

CX1 {A} CX1{A} Pn, Rd, #imm Immediate and 1x 32-bit GPR/
NZCV {same as output}

M33,
M55

13b 1x 32-bit GPR or
NZCV

CX2 {A} CX2{A} Pn, Rd, Rn, #imm Immediate and 2x 32-bit GPR/
NZCV {one same as output}

M33,
M55

9b 1x 32-bit GPR or
NZCV

CX3 {A} CX3{A} Pn, Rd, Rn, Rm, #imm Immediate and 3x 32-bit GPR/
NZCV {one same as output}

M33,
M55

6b 1x 32-bit GPR or
NZCV

CX1D {A} CX1D{A} Pn, Rd, Rd+1, #imm Immediate and 1x 32-bit GPR/
NZCV {two same as output}

M33,
M55

13b 2x 32-bit GPR

CX2D {A} CX2D{A} Pn, Rd, Rd+1, Rn,
#imm

Immediate and 2x 32-bit GPR/
NZCV {two same as output}

M33,
M55

9b 2x 32-bit GPR

CX3D {A} CX3D{A} Pn, Rd, Rd+1, Rn,
Rm, #imm

Immediate and 3x 32-bit GPR/
NZCV {two same as output}

M33,
M55

6b 2x 32-bit GPR

6

For each class, the imm field can be partitioned between what operation is being requested

and a constant immediate value that the operation can consume.

Example in practice
Consider a population count function.

Table 2. FPU/M-Profile

Vector Extension (MVE)

registers

int popcount(uint32_t x) {
 int n = 0;

for (int i = 0; i < 32; ++i) {
 n += (x >> i) & 1;
}
return n;

}

Instruction Assembly Inputs CPU Imm Outputs

VCX1{A}.F VCX1{A}.F Pn, Sd, #imm Immediate and 1x 32-bit fp32
register {same as output}

M33,
M55

11b 1x 32-bit fp32
register

VCX2{A}.F VCX2{A}.F Pn, Sd, Sn, #imm Immediate and 2x 32-bit fp32
register {one same as output}

M33,
M55

6b 1x 32-bit fp32
register

VCX3{A}.F VCX3{A}.F Pn, Sd, Sn, Sm,
#imm

Immediate and 3x 32-bit fp32
register {one same as output}

M33,
M55

3b 1x 32-bit fp32
register

VCX1{A}.D VCX1{A}.D Pn, Dd, #imm Immediate and 1x 64-bit fp64
register {same as output}

M55 11b 1x 64-bit fp64
register

VCX2{A}.D VCX2{A}.D Pn, Dd, Dn, #imm Immediate and 2x 64-bit fp64
register {one same as output}

M55 6b 1x 64-bit fp64
register

VCX3{A}.D VCX3{A}.D Pn, Dd, Dn, Dm,
#imm

Immediate and 3x 64-bit fp64
register {one same as output}

M55 3b 1x 64-bit fp64
register

VCX1{A}.Q VCX1{A}.Q Pn, Qd, #imm Immediate and 1x 128-bit
vector register {same as output}

M55 12b 1x 128-bit vector
register

VCX2{A}.Q VCX2{A}.Q Pn, Qd, Qn, #imm Immediate and 2x 128-bit
vector register {one same
as output}

M55 7b 1x 128-bit vector
register

VCX3{A}.Q VCX3{A}.Q Pn, Qd, Qn, Qm,
#imm

Immediate and 3x 128-bit
vector register {one same
as output}

M55 4b 1x 128-bit vector
register

7

This could be replaced with a single user-defined instruction that can be implemented

in one cycle:

Such an instruction can be used either directly in a specialized library or be added

as an intrinsic instruction within C code. All standard compilers conform to a future

release of Arm C Language Extension (ACLE) will support intrinsic functions for user-

defined instructions.

MOV.W r1, #0x55555555
AND.W r1, r1, r0, LSR #1
SUBS r0, r0, r1
MOV.W r1, #0x33333333
AND.W r1, r1, r0, LSR #2
BIC r0, r0, #0xCCCCCCCC
ADD r0, r1
MOV.W r1, #0x01010101
ADD.W r0, r0, r0, LSR #4
BIC r0, r0, #0xF0F0F0F0
MULS r0, r1, r0
LSRS r0, r0, #24

CX1A p0, r0, #0 // population in r0, return r0

A standard, hand-optimized Arm implementation would look like this:

8

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments
and improvements All particulars of the product and its use contained in this document are given in good faith. All warranties implied or
expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is
intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable for
any loss or damage arising from the use of any information in this document or any error or omission in such information.

What are the Benefits of Arm Custom
Instructions?
The possibility to add built-in instructions into the CPU provides significant benefits for

some use cases.

Arm introduces an extended datapath and instructions pre-decoded by the decode

function. The CPU manages Read/Write registers, as well as control and dependencies.

The set of custom instructions is defined in the Arm architecture, therefore, all major

compilers support it. Also, because the encoding of the custom instructions is integrated

with tools, such as compilers and debuggers, you do not need to develop or distribute any

special version of the tools.

Arm Custom Instructions bring three main benefits:

 Performance boost for low-latency instructions.

 Easy integration with the existing software ecosystem.

 Scalability across Arm Cortex-M CPUs.

Although a strictly compatible interface across multiple CPUs might not be achievable,

Arm aims to maintain consistency between different implementations to simplify porting

accelerators across the Arm Cortex-M portfolio.

Innovate with Greater Flexibility
and Differentiation
The growth of on-device processing means that optimization and the use of accelerators

are key. Arm Custom Instructions offer more flexibility to innovate within the Arm

worldwide standard, by integrating an accelerator for specific use cases, using the CPU

as a container. Arm Custom Instructions allow you to customize your Cortex-M33

and Cortex-M55 (available in 2021) CPU further by adding your own data processing

instructions, while boosting the performance of your CPU. With Arm Custom Instructions,

you have more flexibility to innovate within the Arm worldwide standard at your own pace.

Arm Custom Instructions ensure easy integration with the existing software ecosystem and

are scalable across Arm Cortex-M CPUs.

Find more information on Arm Custom Instructions here. Alternatively, if you

have any questions, get in touch with an Arm expert here.

© Arm Ltd. 2020

https://developer.arm.com/architectures/instruction-sets/custom-instructions
https://www.arm.com/company/contact-us/product-enquiries

