

Armv8-M Architecture

Stack sealing and why it is needed in
TrustZone for Armv8-M
Non-Confidential Issue 1.0
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

Document ID: 102446

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 20

Armv8-M Architecture
Stack sealing and why it is needed in TrustZone for Armv8-M

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 28th April 2021 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

http://www.arm.com/company/policies/trademarks

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 20

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Web Address

www.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

https://www.arm.com/

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 20

Contents

1 Introduction ... 5

1.1 Abstract.. 5

1.2 Intended audience .. 5

1.3 Conventions ... 5

1.3.1 Glossary .. 5

1.4 Additional reading .. 5

2 Stack sealing overview ... 6

3 Normal operations of Non-secure function call and interrupt handling ... 7

4 Illegal return operations .. 9

4.1 Simple examples .. 9

4.2 Complex examples ... 10

4.3 How stack sealing can help .. 11

4.4 Stack sealing value ... 11

5 Examples ... 13

5.1 Example 1 – Underflow attack to the Secure Main Stack... 13

5.2 Example 2 – Underflow attack to the Secure process stack .. 14

5.3 Example 3 – Deprivileging a Secure interrupt handler .. 15

5.4 Example 4 – Corrupting EXC_RETURN in a Non-secure handler .. 17

6 Summary ... 20

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 20

1 Introduction

1.1 Abstract
This document explains what stack-sealing is - an operation that is applicable to Secure firmware
running on Armv8-M processors with TrustZone Security Extension enabled. It also covers how it
helps dealing with security threats from untrusted software.

1.2 Intended audience
This document is written for software developers writing Secure software for Armv8-M processors.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

1.4 Additional reading
This document contains information that is specific to this product. See the following documents for
other relevant information:

Table 1-1 Arm publications

Document name Document ID Licensee only

Armv8-M Architecture Reference Manual DDI0553 No

Secure software guidelines for ARMv8-M 100720 No

Arm Security Advisory Notice: Armv8-M Secure Stack
Sealing

NA No

https://developer.arm.com/glossary

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 20

2 Stack sealing overview
Stack sealing is a software method that ensures that a fault exception is always triggered if an
underflow attack happens in a Secure stack. Stack sealing is applicable to Armv8.0-M and Armv8.1-
M-based processor systems using the TrustZone Security Extension. Stack sealing is only needed for
Secure software. There is no need to apply stack sealing in software that runs on the Non-secure side.

If an Armv8-M based system does not use TrustZone security technology, then stack sealing is not
needed. Stack Sealing is also not required for Cortex-A processor systems.

Normally, TrustZone protects Secure stacks in the following ways:

• Non-secure software cannot access the Secure stack pointers and Secure stack limit
registers.

• Non-secure software cannot access Secure stack memories, if the Secure stacks are correctly
placed in Secure memories.

• Non-secure software cannot trigger an execution of Secure stack push/pop instructions.

However, there are two cases where a Non-secure software operation can trigger Secure stack
operations:

• When a Non-secure interrupt handler is completed and returns to the Secure world (that is,
exception return)

• When a Non-secure API that is called by Secure software is completed and returns to the
Secure world, that is, a function return.

When a stack has not been automatically protected by a hardware-generated stack frame, for
example an exception stack frame, or a function return stack frame, a malicious Non-secure software
agent can use an invalid exception return, or an invalid function return, to trigger a stack underflow
attack. This might occur, for example, when a stack is empty. The stack sealing operation ensures that
this type of attack is detected.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 20

3 Normal operations of Non-secure
function call and interrupt handling
Before we describe the detail of stack sealing operation, let’s look at an overview of the stack
operations that are involved during security state transitions:

• In normal Non-secure function calls, and

• In normal Non-secure interrupt handling during Secure code execution

When an Armv8-M processor executes Secure software, and if the Secure software calls a Non-
secure function using the BLXNS instruction, then two words of data are pushed to the currently
selected Secure stack. The data that is pushed to the stack includes:

• The return address

• The Interrupt Program Status Register (IPSR), which is part of the Program Status Register
(PSR).

Before starting the execution of the Non-secure function which is called, the processor will also
change the Link Register (LR) to a Function Return value (FNC_RETURN), which has a value of
0xFEFFFFFF or 0xFEFFFFFE. This operation masks the real Secure program address that called
the Non-secure API. If the processor is in Handler mode, the value of the IPSR is switched to a value
of 1 for masking Secure interrupt information. 3.1 shows the stack operations involved when Secure
software calls a Non-secure function.

Figure 3.1: Stack operations when Secure software calls a Non-secure function

When the Non-secure function is completed, the FNC_RETURN value that was previously placed into
LR by the processor hardware is loaded into PC using a normal function return instruction, for
example, BX LR. This triggers the function return operation, which reads the function return stack
from the currently selected Secure stack. The function return operation:

• Carries out an integrity check of the IPSR. This ensures that the processor mode is
consistence with the stacked partial PSR.

• Restores the return address to the Program Counter and the partial PSR into IPSR.

The Secure software can then continue operations.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 20

Similarly, when a Non-secure interrupt occurred during Secure software execution, the contents of
the register bank are pushed to the currently selected Secure stack as an exception stack frame. The
last word of this stack frame has an integrity signature, 0xFEFA125A/ 0xFEFA125B, which will be
used for integrity check later. Figure 3.2 shows the stack operations involved when a Non-secure
exception is trigger during the execution of Secure software.

Figure 3.2: Stack operations when a Non-secure interrupt occurred during the execution of Secure
software

Before switching from Secure state to Non-secure state to execute the Non-secure interrupt handler,
the processor erases the contents of the register bank to prevent Secure information leakage. In
addition, the Link Register (LR) is switched to an Exception Return (EXC_RETURN) value, which is
0xFFFFFFxx.

At the end of the interrupt service routine, the EXC_RETURN value is loaded into the Program
Counter using a normal return instruction. This load operation triggers an exception return
operation, which. includes an integrity check of the integrity signature in the stack frame, and then
restoring the contents of the registers so that the interrupted Secure program can resume.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 20

4 Illegal return operations

4.1 Simple examples
Because the value in the Link Register can be modified by the Non-secure software during the
execution of the Non-secure function or the Non-secure interrupt handler, the Non-secure software
can trigger illegal return operations. Here are two examples:

• Example 1: The processor switched from Secure to Non-secure using a Non-secure function
call, but the Non-secure software attempt to return to the Secure world using an Exception
Return (instead of a Function Return).

• Example 2: The processor switched from Secure to Non-secure due to a Non-secure
interrupt, but the Non-secure software attempt to return to the Secure world using a
Function Return (instead of an Exception Return).

Figure 4.1 shows the sequences in examples 1 and 2.

Figure 4.1: Simple illegal return operations where EXC_RETURN and FNC_RETURN values are
interchanged.

In the first example, during the exception return operation the stacked return address in the function
return stack frame is compared against the integrity signature value. This integrity check will fail and
trigger an exception.

In the second example, the Secure software is interrupted by a Non-secure interrupt, and the Non-
secure interrupt service routine carries out a return using FNC_RETURN. This activity will also
trigger an exception because the value of the integrity signature is not an executable address. Based
on the architecture definition, the address with the same value as FNC_RETURN always has the
eXecute Never (XN) attribute.

In both examples, a fault exception in the Secure world is triggered. This is a good outcome, because
invalid returns can be detected, and the Secure software can do something about it.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 20

4.2 Complex examples
The situation gets much more complex when we consider that there are two Secure stack pointers in
an Armv8-M processor: The Secure Main stack pointer (MSP_S), and the Secure Process stack
pointer (PSP_S). The selection of the stack pointer is based on two factors as follows (Figure 4.2):

1. The current processor mode (either Thread or Handler) – If the processor is in Secure
Handler mode, MSP_S is selected.

2. The current value of CONTROL_S.SPSEL – If the processor is in Thread mode and
CONTROL_S.SPSEL is 0, then MSP_S is selected. If the processor is in Thread mode and
CONTROL_S.SPSEL is 1, then PSP_S is selected.

Figure 4.2: Secure stack pointer selection.

Although the value of CONTROL_S.SPSEL is accessible only by Secure privileged software, the
processor mode can be changed by the Non-secure software during the execution of the Non-secure
function or Non-secure interrupt handler. Therefore, the Non-secure software can trigger a return to
the Secure world using an incorrect Secure stack pointer. In addition, as explained in section 4.1, the
EXC_RETURN or FNC_RETURN value in the LR can also be modified by the Non-secure software. As
a result, it is possible for the Non-secure software to force the processor to return to Secure state via
an invalid execution path which use an incorrect stack pointer.

When an incorrect stack pointer is used, the memory location that the stack pointer points to might
contain unpredictable, unknown, or other data. For an invalid function return that uses the wrong
stack pointer, the unpredictable/unknown/other data could be used as a return address. This type of
illegal return might end up with an exception because:

• The value that is used as return address might represent an address that is either illegal, non-
executable, or the address is not in Secure address range.

• The integrity check for partial PSR might fail.

• The content of the memory that the incorrect return address points to does not have valid
program code, resulting in other fault exception events.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 20

However, there is still a chance that the invalid return is not detected immediately.

If an invalid exception return is carried out using an incorrect Secure stack pointer, the exception
return operation is likely to trigger a fault exception. This is because the memory that the stack
pointer points to is unlikely to have an integrity signature. But there is still a small chance that a data
value matching an integrity signature is present in the memory. This means that a fault exception is
not triggered immediately.

4.3 How stack sealing can help
To ensure that the illegal returns mentioned in section 4.2 trigger fault exception immediately, the
alternate Secure stack (the Secure stack that is not selected when switching from Secure state to
Non-secure state) should be sealed using stack sealing data. In the case of an illegal function return
using an incorrect stack pointer, the stack sealing value is used as return address. This value points to
a non-executable address location and triggers a fault exception immediately. The sequence is
illustrated in Figure 4.3.

Figure 4.3:Illegal function return always trigger faults.

In the case of an invalid exception return using an incorrect stack pointer, the stack sealing value is
compared against the integrity signature. This comparison will always mismatch and trigger a fault
exception. The sequence is illustrated in Figure 4.4.

Figure 4.4:Illegal exception return always trigger faults.

4.4 Stack sealing value
The recommended value for a stack sealing operation is specified in the Armv8-M Architecture
Reference Manual as 0xFEF5EDA5. This value is an eXecute Never (XN) address, and also does not
match the integrity signature.

To seal a stack, we need to push two words into the stack. Although we only need one word to detect
an invalid return, we must push two words to keep the stack doubleword-aligned. Double word stack
alignment is a requirement of the Procedure Call Standard for the Arm Architecture (AAPCS).

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 20

The stack sealing operation is shown in Figure 4.5.

Figure 4.5:Sealing a stack

The Secure stack that is not currently selected must be sealed so that a return using the wrong stack
must trigger a fault exception. For example:

• When Secure privileged software creates a new Process Stack for a new Secure thread.

• We also must seal the stacks when deprivileging a Secure interrupt handler. This process usually
involves creating a new Process Stack for the unprivileged handler code, which must be sealed. In
addition, when switching from the Secure privileged state to Secure unprivileged state, the
common practice is to trigger Secure SVC exception, which then create a fake exception return
stack in the Secure process stack so that the processor can return from an SVC handler to thread.

When dealing with this process, the top of the fake stack frame for the return process should
contain the stack seal value. In addition, the Secure main stack, which contains an exception stack
frame generated from the SVC exception entry, must also be sealed before the exception return
is carried out. This is because this stack frame does not have an integrity signature.

• The Secure stack or stacks must also be sealed before the initial switch to the Non-secure world.
Note:

o If a BLXNS instruction is used for the switching, then the current stack does not need
sealing because the stack would have a function return stack.

o If the SPSEL bit in the Secure CONTROL register is being kept as 0, then the Secure
Process Stack do not need to be seal as it will never be used.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 20

5 Examples
In this section of the paper, we provide a few examples of attacks and how stack sealing detects the
attack is explained.

5.1 Example 1 – Underflow attack to the Secure Main
Stack
You can see the first example in Figure 5.1:

Figure 5.1: Attack example 1: Non-secure software uses a fake function return to attack the Secure main
stack

Here are the steps that occur this attack example:

1. The Secure unprivileged software that runs on the processor calls a Non-secure API.

2. Non-secure code triggers a Non-secure exception

3. The Non-secure handler uses a fake FNC_RETURN to return to the Secure world.

4. Secure software executes code from an unintended address location.

Because the processor is now in handler mode, the Secure Main stack pointer is used for the function
return, which might be empty or contain other data.

If the Secure Main Stack is sealed, the stack sealing value is interpreted as a return address. This
interpretation triggers a fault exception because it attempts to execute from a non-executable region.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 20

5.2 Example 2 – Underflow attack to the Secure process
stack
In the second example, which you can see in Figure 5.2, the program flow goes the other way round:

Figure 5.2: Attack example 2: Non-secure software uses a fake function return to attack the Secure
process stack

Here are the steps for this attack example:

1. The Secure handler code, which uses the Secure Main Stack, switches to Non-secure handler
mode because the code called a Non-secure function, or because the code is interrupted by a
Non-secure exception.

2. Within the Non-secure code, a fake exception return is used to switch the processor into
Non-secure thread mode.

3. A fake function return is used to switch to the Secure world.

4. Secure software executes code from an unintended address location.

If the SPSEL bit in the Secure CONTROL register is 1 (that is, CONTROL_S.SPSEL), the Secure
Process Stack is used for the return operation. If the Secure process stack was empty, the memory
contents at memory[PSP_S] and memory[PSP_S+4] could be UNPREDICTABLE, or contain data from
other part of Secure software.

At step 4, the processor treats memory[PSP_S] like the return address, and memory[PSP_S+4] like
the stacked partial PSR. If the lowest 9 bits of the value in memory[PSP_S+4] are zero, the integrity

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 20

check for IPSR passes. If the value in memory[PSP_S] points to a valid Secure address, the processor
could jump into that address.

If the Process Stack is sealed, then the stack seal value is used as a return address and triggers a fault
exception because it points to a non-executable address. To eliminate timing window where it is
possible to launch this attack, the Process Stack should be sealed before the PSP_S is set to its
address and CONTROL_S.SPSEL is set to 1.

5.3 Example 3 – Deprivileging a Secure interrupt handler
The third attack example, which is shown in Figure 5.3, has the following sequent of events:

1. A low priority Secure exception is triggered. It does not matter whether the processor is in
Secure or Non-secure world in this step.

2. The processor starts the execution of the Secure exception handler.

3. This Secure interrupt handler is deprivileged so that some parts of the handler can be
executed in an unprivileged level. To execute a part of the interrupt service in an unprivileged
level, the Secure interrupt handler in step 2 triggers an SVC handler (step 3), which creates a
fake exception stack frame, which is then used for an exception return that switch the
processor into Secure unprivileged thread in step 4.

4. The processor executes a part of the Secure handler in Secure thread mode.

5. The unprivileged Secure handler calls a Non-secure function, which is then interrupted by a
high priority Non-secure exception, or

6. The Secure unprivileged handler is interrupted by a high priority Non-secure exception. With
either path, the processor reached Non-secure Handler mode. This Non-secure handler uses
a fake exception return to switch the processor to Secure state. Because the processor is in
the handler mode, the return to Secure world used the Secure MSP.

7. Secure software executes code from an unintended address location.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 20

Figure 5.3: Attack example 3: Attack to the Secure Main Stack following a handler deprivileging operation

To ensure that the attack showing in Figure 5.3 is detected, the Secure main stack need to be sealed
before the exception return in the Secure SVC handler. By doing so, the attack showing in Figure 5.3
triggers a fault exception. This is because the value of the stack seal value points to a non-executable
address.

When Secure handler deprivileged itself to execute a part of the handler with unprivileged state,
there is an additional attack possibility: After the exception return from Secure SVC to Secure thread
in Step 4, the Secure process stack for the unprivileged handler code could be empty. If a high priority
Non-secure exception take place, and the Non-secure exception handler uses a fake FNC_RETURN
to return to the Secure world, an underflow could take place on the Secure main stack.

To minimize the security risk, the fake exception stack frame created for switching from step 3 to step
4 needs to contain the stack sealing value at the top of the fake stack frame (Figure 5.4). Because
CONTROL_S.SPSEL is zero during the SVC handler execution, the bottom of the fake stack frame is
not required to be sealed.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 20

Figure 5.4: Recommended use of the stack sealing value on top of the fake stack frame for the Secure SVC
handler to return to Secure thread.

5.4 Example 4 – Corrupting EXC_RETURN in a Non-secure
handler
In addition to stack sealing, other mechanisms help to detect illegal returns, including:

• The integrity signature in the stack frame

• The integrity check in the interrupt Program Status Register

Figure 5.5 shows an example where an illegal return is detected due to these mechanisms. The event

1. During the execution of a Secure software, a Secure interrupt takes place.

2. Secure handler starts, with an exception stack frame in the Secure process stack.

3. During the execution of the Secure handler (2), either a higher priority Non-secure exception
(for example, an interrupt) takes place and entered the Non-secure interrupt handler, or the
Secure handler calls a Non-secure function.

4. The Non-secure handler attempts to return to the Secure thread mode instead of Secure
handler by corrupting the EXC_RETURN value in the Link Register (LR).

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 20

Figure 5.5: Attack example 4: Attack to the Secure main stack by attempting to return to incorrect
processor mode

This attack scenario always triggers fault exception even without stack sealing operation. The
explanation is as follows:

• When the processor switches from Step 1 to Step 2, the SPSEL bit in the Secure CONTROL
register is cleared to zero so that the Secure main stack is used. The exception stack frame
being pushed to the Secure process stack does not have the integrity signature and is not
sealed.

• When the processor switches from Step 2 to Step 3:

o If the transition is a Non-secure function call, then a function return stack frame is
pushed to the Secure main stack.

o If the transition is a Non-secure transition, then an exception stack frame is pushed to
the Secure main stack, which has an integrity signature.

• After reaching the Non-secure code, a Non-secure software can trigger an invalid exception
return. When the processor switches from Step 3 to Step 4, the Secure main stack is used
because the CONTROL_S.SPSEL bit is 0.

o If the transition from Step 2 to Step 3 was a Non-secure function call, a fault is raised.
This is because the return address in the function return stack frame will not match
the integrity signature expected.

o If the transition from Step 2 to Step 3 was a Non-secure exception, although the stack
frame has an integrity signature, the exception return fails an integrity check for IPSR.
This is because the EXC_RETURN value indicates return-to-thread, but the restored
IPSR value from the stack frame is not 0. The processor is running an exception
handler when it was interrupted.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 20

• If the Secure software uses the Secure Memory Protection Unit (MPU) for stack protection,
the illegal return operation also triggers a Secure MemManagment fault exception. This is
because the processor is returning to Secure unprivileged thread. However, the stack
memory used for the unstacking is the main stack, which is marked as only accessible to
privileged code.

Armv8-M Architecture: Stack sealing and why it is
needed in TrustZone for Armv8-M

Document ID: 102446
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 20

6 Summary
The stack sealing operation, together with various security checking mechanisms implemented in the
Armv8-M processors, ensures that illegal returns to the Secure world using exception return and
function return are detected and always triggers fault exceptions. The fault exception handler can
then deal with the issue. This means that stack sealing reduces the security risk.

	1 Introduction
	1.1 Abstract
	1.2 Intended audience
	1.3 Conventions
	1.3.1 Glossary

	1.4 Additional reading

	2 Stack sealing overview
	3 Normal operations of Non-secure function call and interrupt handling
	4 Illegal return operations
	4.1 Simple examples
	4.2 Complex examples
	4.3 How stack sealing can help
	4.4 Stack sealing value

	5 Examples
	5.1 Example 1 – Underflow attack to the Secure Main Stack
	5.2 Example 2 – Underflow attack to the Secure process stack
	5.3 Example 3 – Deprivileging a Secure interrupt handler
	5.4 Example 4 – Corrupting EXC_RETURN in a Non-secure handler

	6 Summary

