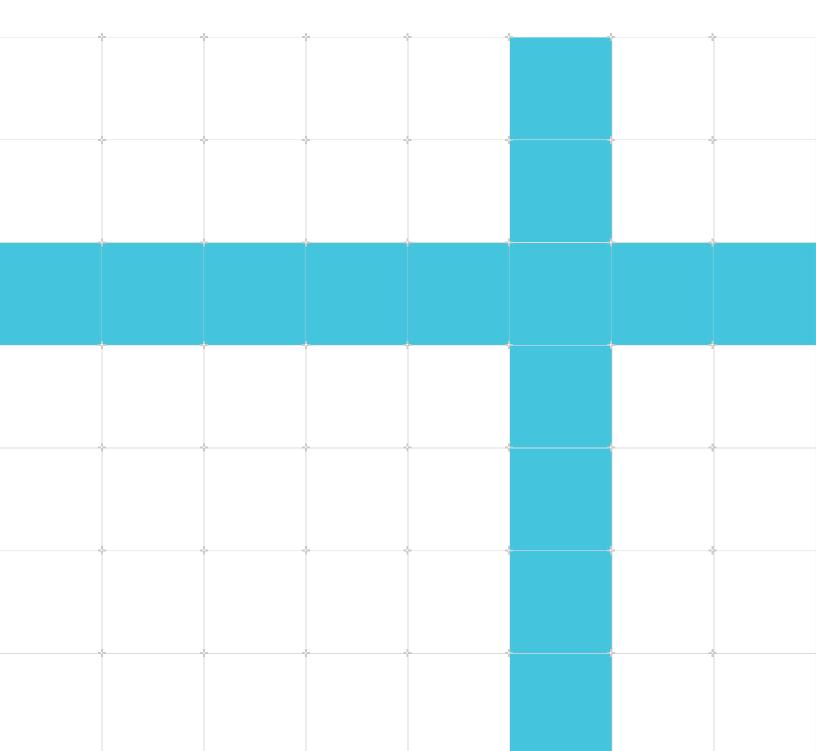


## Arm<sup>®</sup> CoreSight<sup>™</sup> DAP-Lite2


Revision: r2p1

## **Technical Reference Manual**

Non-Confidential

lssue 01

Copyright © 2016, 2019–2020, 2022 Arm Limited (or  $100572_0201_01_en$  its affiliates). All rights reserved.



### Arm<sup>®</sup> CoreSight<sup>™</sup> DAP-Lite2

#### Technical Reference Manual

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved.

#### **Release Information**

| Issue   | Date              | Confidentiality  | Change                     |
|---------|-------------------|------------------|----------------------------|
| 0000-00 | 16 September 2016 | Non-Confidential | First release for rOpO REL |
| 0100-00 | 18 June 2019      | Non-Confidential | First release for r1p0 REL |
| 0101-00 | 13 December 2019  | Non-Confidential | First release for r1p1 REL |
| 0200-00 | 27 March 2020     | Non-Confidential | First release for r2p0 REL |
| 0201-01 | 28 January 2022   | Non-Confidential | First release for r2p1 REL |

#### **Document history**

#### **Proprietary Notice**

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or <sup>™</sup> are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

#### **Confidentiality Status**

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

#### **Product Status**

The information in this document is Final, that is for a developed product.

#### Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/ documentation-feedback-survey.

#### Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue of this document.

To report offensive language in this document, email terms@arm.com.

# Contents

| 1 Introduction                                             | 7  |
|------------------------------------------------------------|----|
| 1.1 Product revision status                                | 7  |
| 1.2 Intended audience                                      | 7  |
| 1.3 Conventions                                            | 7  |
| 1.4 Additional reading                                     | 9  |
| 2 About the DAP-Lite2                                      | 11 |
| 2.1 About DAP-Lite2                                        |    |
| 2.2 Supported standards                                    |    |
| 2.3 Documentation                                          |    |
| 2.4 Design process                                         |    |
| 2.5 Component list                                         |    |
| 2.6 Product revisions                                      |    |
| 3 DAP-Lite2 functional description                         | 16 |
| 3.1 DAP-Lite2 for Arm Cortex-A and Arm Cortex-R processors |    |
| 3.2 DAP-Lite2 for Arm Cortex-M processors                  |    |
| 3.3 Interfaces                                             |    |
| 3.3.1 SWJ                                                  |    |
| 3.3.2 APB, daplite2_ar                                     |    |
| 3.3.3 AHB, daplite2_m                                      |    |
| 3.3.4 Power and reset control                              |    |
| 3.3.5 Q-Channel LPI                                        |    |
| 3.3.6 Access Port Enable                                   |    |
| 3.4 Clocks and resets                                      |    |
| 4 SoC-600 components functional description                | 20 |
| 4.1 Debug port                                             |    |
| 4.2 Memory access ports                                    |    |
| 4.2.1 APB Access Port                                      |    |
| 4.2.2 AHB Access Port                                      | 22 |
| 4.2.3 Error response handing                               |    |
| 4.3 APB interconnect                                       | 26 |
|                                                            |    |

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

| 4.3.1 Arbitration                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 4.3.2 Error response                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| 4.4 APB ROM Table                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                             |
| 4.5 APB asynchronous bridge                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| 4.6 APB3 to APB4 adapter                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| 4.7 APB4 to APB3 adapter                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
| 5 DAP-Lite2 programmers model                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| 5.1 DAP-Lite2 for Arm Cortex-A and Cortex-R processors                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |
| 5.1.1 Debug Port for Cortex-A and Cortex-R                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| 5.1.2 APB Access Port                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| 5.1.3 APB ROM table                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 5.1.4 Memory map                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
| 5.2 DAP-Lite2 for Arm Cortex-M processors                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| 5.2.1 Debug Port for Cortex-M                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| 5.2.2 AHB Access Port                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
| 5.2.3 Memory map                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| 6 SoC-600 components programmers model                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                             |
| 6 SoC-600 components programmers model<br>6.1 SoC-600 components programmers model                                                                                                                                                                                                                                                                                                                                                           |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| 6.1 SoC-600 components programmers model                                                                                                                                                                                                                                                                                                                                                                                                     | 35<br>35                                                       |
| <ul><li>6.1 SoC-600 components programmers model</li><li>6.2 css600_dp introduction</li></ul>                                                                                                                                                                                                                                                                                                                                                | 35<br>35<br>                                                   |
| <ul><li>6.1 SoC-600 components programmers model</li><li>6.2 css600_dp introduction</li><li>6.2.1 css600_dp register summary</li></ul>                                                                                                                                                                                                                                                                                                       |                                                                |
| <ul><li>6.1 SoC-600 components programmers model</li><li>6.2 css600_dp introduction</li><li>6.2.1 css600_dp register summary</li><li>6.2.2 css600_dp register descriptions</li></ul>                                                                                                                                                                                                                                                         |                                                                |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> </ul>                                                                                                                                                                                                             | 35<br>                                                         |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> <li>6.3.1 css600_apbap register summary</li> </ul>                                                                                                                                                                | 35<br>                                                         |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> <li>6.3.1 css600_apbap register summary</li> <li>6.3.2 css600_apbap register descriptions</li> </ul>                                                                                                              |                                                                |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> <li>6.3.1 css600_apbap register summary</li> <li>6.3.2 css600_apbap register descriptions</li></ul>                                                                                                               | 35<br>                                                         |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> <li>6.3.1 css600_apbap register summary</li> <li>6.3.2 css600_apbap register descriptions</li> <li>6.4 css600_ahbap introduction</li> <li>6.4.1 Register summary</li> </ul>                                       | 35<br>35<br>36<br>37<br>50<br>50<br>52<br>77<br>77<br>77<br>79 |
| <ul> <li>6.1 SoC-600 components programmers model.</li> <li>6.2 css600_dp introduction</li> <li>6.2.1 css600_dp register summary</li> <li>6.2.2 css600_dp register descriptions</li> <li>6.3 css600_apbap introduction</li> <li>6.3.1 css600_apbap register summary</li> <li>6.3.2 css600_apbap register descriptions</li> <li>6.4 css600_abbap introduction</li> <li>6.4.1 Register summary</li> <li>6.4.2 Register descriptions</li> </ul> |                                                                |
| <ul> <li>6.1 SoC-600 components programmers model</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  | 35<br>                                                         |
| <ul> <li>6.1 SoC-600 components programmers model</li> <li>6.2 css600_dp introduction</li></ul>                                                                                                                                                                                                                                                                                                                                              | 35<br>                                                         |

# 1 Introduction

## **1.1 Product revision status**

The  $r_{xp_y}$  identifier indicates the revision status of the product described in this manual, for example,  $r_{1p_2}$ , where:

**r***x* Identifies the major revision of the product, for example, r1.

**p**<sub>y</sub> Identifies the minor revision or modification status of the product, for example, p2.

## 1.2 Intended audience

This book is written for the following audiences:

- Hardware and software engineers who want to incorporate CoreSight<sup>™</sup> DAP-Lite2 into their design and produce real-time instruction and data trace information from a SoC.
- Software engineers writing tools to use CoreSight<sup>™</sup> DAP-Lite2.

This book assumes that readers are familiar with AMBA® bus design and JTAG methodology.

## **1.3 Conventions**

The following subsections describe conventions used in Arm documents.

#### Glossary

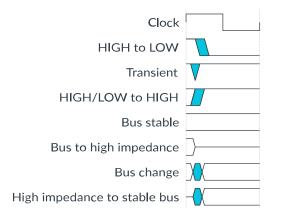
The Arm<sup>®</sup> Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

| Convention | Use                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------|
| italic     | Citations.                                                                                          |
| bold       | Interface elements, such as menu names.<br>Signal names.                                            |
|            | Terms in descriptive lists, where appropriate.                                                      |
| monospace  | Text that you can enter at the keyboard, such as commands, file and program names, and source code. |

#### Typographic conventions

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential


| Convention                 | Use                                                                                                                                                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| monospace bold             | Language keywords when used outside example code.                                                                                                                                                                                 |
| monospace <u>underline</u> | A permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.                                                                                                   |
| <and></and>                | Encloses replaceable terms for assembler syntax where they appear in code or code fragments.                                                                                                                                      |
|                            | For example:                                                                                                                                                                                                                      |
|                            | MRC p15, 0, <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>                                                                                                                                                            |
| SMALL CAPITALS             | Terms that have specific technical meanings as defined in the <i>Arm</i> <sup>®</sup> <i>Glossary</i> . For example, <b>IMPLEMENTATION DEFINED</b> , <b>IMPLEMENTATION SPECIFIC</b> , <b>UNKNOWN</b> , and <b>UNPREDICTABLE</b> . |
| Caution                    | Recommendations. Not following these recommendations might lead to system failure or damage.                                                                                                                                      |
| Warning                    | Requirements for the system. Not following these requirements might result in system failure or damage.                                                                                                                           |
| Danger                     | Requirements for the system. Not following these requirements will result in system failure or damage.                                                                                                                            |
| Note                       | An important piece of information that needs your attention.                                                                                                                                                                      |
| - Ç                        | A useful tip that might make it easier, better or faster to perform a task.                                                                                                                                                       |
| Remember                   | A reminder of something important that relates to the information you are reading.                                                                                                                                                |

#### **Timing diagrams**

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

#### Figure 1-1: Key to timing diagram conventions



#### Signals

The signal conventions are:

#### Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

#### Lowercase n

At the start or end of a signal name, n denotes an active-LOW signal.

## 1.4 Additional reading

This document contains information that is specific to this product. See the following documents for other relevant information:

#### Table 1-2: Arm publications

| Document name                                                                  | Document ID | Licensee only |
|--------------------------------------------------------------------------------|-------------|---------------|
| Arm <sup>®</sup> AMBA <sup>®</sup> Low Power Interface Specification           | IHI 0068    | No            |
| Arm <sup>®</sup> AMBA <sup>®</sup> 5 AHB Protocol Specification AHB5, AHB-Lite | IHI 0033    | No            |
| Arm® CoreLink™ LPD-500 Low Power Distributor Technical Reference Manual        | 100361      | No            |
| Arm® CoreSight™ Architecture Specification v3.0                                | IHI 0029    | No            |
| Arm® CoreSight™ Base System Architecture Specification v1.0                    | DEN 0068    | No            |
| Arm® Debug Interface Architecture Specification ADIv6.0                        | IHI 0074    | No            |
| Arm® Power Control System Architecture Specification Version 1.0               | DEN 0050    | Yes           |

#### Table 1-3: Other publications

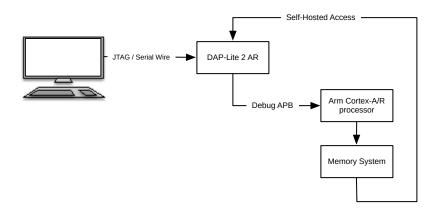
| Organization | Document name                            |
|--------------|------------------------------------------|
| Accellera    | IP-XACT version 1685-2009                |
| IEEE         | Verilog-2001 Standard IEEE Std 1364-2001 |



Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of its documents when used with any other PDF reader.

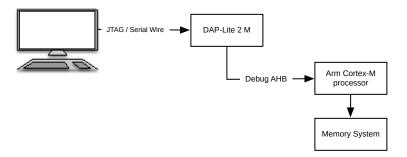
Adobe PDF reader products can be downloaded at http://www.adobe.com

# 2 About the DAP-Lite2


This chapter introduces the CoreSight<sup>™</sup> DAP-Lite2.

## 2.1 About DAP-Lite2

CoreSight<sup>™</sup> DAP-Lite2 enables an off-chip debugger to connect to a target system using a low pincount JTAG or Serial Wire interface. The debugger can then control the target processor during a debug session.


DAP-Lite2 provides two *Debug Access Ports* (DAPs) that are compliant with *Arm® Debug Interface Architecture Specification ADIv6.0*. One supports application and real-time processors with AMBA APB4 debug interfaces. The other supports microcontroller processors with AMBA AHB5 debug interfaces.

DAP-Lite2 is designed for use in SoC designs that comprise single, or MPCore, Arm<sup>®</sup> Cortex<sup>®</sup>-based processors.



#### Figure 2-1: DAP-Lite2 Cortex-A and Cortex-R system diagram







DAP-Lite2 does not support the capture and export of trace data. If you require trace, contact Arm<sup>®</sup> to ask about alternative CoreSight<sup>™</sup> products that provide such support.

DAP-Lite2 is built on Arm<sup>®</sup> CoreSight SoC-600 IP and provides the following features:

- Support for the Arm Debug Interface (ADI) v6 and CoreSight v3 architectures that enable you to build debug functionality into your systems
- Q-Channel interfaces for clock and power quiescence
- Arm<sup>®</sup> CoreLink LPD-500 can be integrated with DAP-Lite2 as part of a full-chip power and clock control methodology.

The DAP-Lite2 package includes:

- Two DAP components that are written in Verilog, and that are compliant with the Verilog-2001 Standard (IEEE Std 1364-2001)
- A configuration flow that:
  - Validates your component configuration choices
  - Generates IP-XACT descriptions for your chosen component configuration
  - Copies all required design files into your target directory
  - Generates UPF constraint files at component level for signals that are able to cross power domain boundaries
- Example timing constraint files for each component in SDC format
- Verification IP to assist verification of the integration of DAP-Lite2 with Arm<sup>®</sup> Cortex<sup>®</sup>-based processors



If you are building a system that implements dynamic debug authorization, contact Arm to ask about CoreSight products that provide architected support for introducing certificates to the system.

## 2.2 Supported standards

CoreSight<sup>™</sup> DAP-Lite2 is compliant with the following standards.

- Arm<sup>®</sup> CoreSight<sup>™</sup> Architecture Specification v3.0
- AMBA<sup>®</sup> APB Protocol Specification Version 2.0
- Arm<sup>®</sup> Debug Interface Architecture Specification ADIv6.0
- Arm<sup>®</sup> AMBA<sup>®</sup> 5 AHB Protocol Specification AHB5, AHB-Lite
- Arm<sup>®</sup>AMBA<sup>®</sup> Low Power Interface Specification.

- Verilog-2001 Standard
- Accellera, IP-XACT version 1685-2009
- IEEE 1149.1-2001 IEEE Standard Test Access Port and Boundary Scan Architecture (JTAG)

## 2.3 Documentation

The DAP-Lite2 documentation includes a *Technical Reference Manual* (TRM) and a *Configuration and Integration Manual* (CIM). These books relate to the DAP-Lite2 design flow.

#### **Technical Reference Manual**

The TRM describes the functionality and the effects of functional options on the behavior of the DAP-Lite2 components. It is required at all stages of the design flow. The choices that you make in the design flow can mean that some behavior that is described in the TRM is not relevant. If you are programming a device that is based on DAP-Lite2 components, then contact the integrator to determine the configuration of your device.

#### **Configuration and Integration Manual**

The CIM describes:

- How to configure the DAP-Lite2 components
- How to integrate the DAP-Lite2 components into your SoC design and how to configure system-specific Identification Registers
- How to implement the DAP-Lite2 components to produce a hard macrocell of the design. This description includes custom cell replacement, a description of the power domains, and a description of the design synthesis.

The CIM is a confidential book that is only available to licensees.

## 2.4 Design process

The DAP-Lite2 components are delivered as synthesizable Verilog RTL.

Before the DAP-Lite2 components can be used in a product, they must go through the following processes:

#### System design

Determines the necessary structure and interconnections of the DAP-Lite2 components that form the CoreSight<sup>™</sup> debug and trace subsystem

#### Configuration

Defines the memory map of the system and the functional configuration of the DAP-Lite2 components

#### Integration

Connects the DAP-Lite2 components together, and to the SoC memory system and peripherals

#### Verification

Verifies that the CoreSight<sup>™</sup> debug and trace subsystem has been correctly integrated to the processor or processors in your SoC

#### Implementation

Uses the Verilog RTL in an implementation flow to produce a hard macrocell

The operation of the final device depends on:

#### Configuration

The implementer chooses the options that affect how the RTL source files are pre-processed. These options usually include, or exclude, logic that affects one or more of the area, maximum frequency, and features of the resulting macrocell.

#### Software configuration

The programmer configures the CoreSight<sup>™</sup> debug and trace subsystem by programming specific values into registers that affect the behavior of the DAP-Lite2 components.



Arm recommends that you follow the guidance Arm<sup>®</sup> CoreSight Base System Architecture v1.0 to ensure wide support across the Arm debug ecosystem.

## 2.5 Component list

The following tables show the components and their versions.

#### Table 2-1: DAP-Lite2 component list

| Name        | Description                                    | Version | Revision | IP-XACT version |
|-------------|------------------------------------------------|---------|----------|-----------------|
| daplite2_ar | DAP-Lite2 for Cortex-A and Cortex-R processors | r2p1    | -        | r2p1_0          |
| daplite2_m  | DAP-Lite2 for Cortex-M processors              | r2p1    | -        | r2p1_0          |

#### Table 2-2: SoC-600 components used in DAP-Lite2 modules

| Name                  | Description             | DAP-Lite2 module       | Version | Revision |
|-----------------------|-------------------------|------------------------|---------|----------|
| css600_ahbap          | AHB Access Port         | daplite2_m             | r2p1    | 4        |
| css600_apbap          | APB Access Port         | daplite2_ar            | r1p1    | 3        |
| css600_apbasyncbridge | APB asynchronous bridge | daplite2_ar            | r0p3    | -        |
| css600_apbic          | APB interconnect        | daplite2_ar            | r0p2    | -        |
| css600_apbrom         | APB ROM table           | daplite2_ar            | r0p1    | -        |
| css600_dp             | Debug Port              | daplite2_ar,daplite2_m | r0p4    | 4        |

The following SoC-600 components are supplied to support integration of the daplite2\_ar into your system. Use of these components is optional.

#### Table 2-3: daplite2\_ar supporting components

| Name                     | Description          | Version | Revision | IP-XACT version |
|--------------------------|----------------------|---------|----------|-----------------|
| css600_apb3toapb4adapter | APB3 to APB4 adapter | r0p0    | -        | r0p0_1          |
| css600_apb4toapb3adapter | APB4 to APB3 adapter | r0p0    | -        | r0p0_1          |



The Revision column only applies to components that have a programmers model. In these cases, the value that is shown is for the PIDR2.REVISION field.

## 2.6 Product revisions

This section describes the differences in functionality between product revisions of the CoreSight DAP-Lite2.

#### r0p0

First release of CoreSight<sup>™</sup> DAP-Lite2. Based on CoreSight Architecture v2.0 and ADIv5.0. Support for Arm Cortex-A and Arm Cortex-R processor families only.

#### r1p0

Second release of CoreSight<sup>™</sup> DAP-Lite2. Based on CoreSight SoC-600 components, and CoreSight Architecture v3.0 and ADIv6.0. Support for Arm Cortex-A, Arm Cortex-R, and Arm Cortex-M processor families.

#### r1p1

Third release of CoreSight<sup>™</sup> DAP-Lite2. DP component errata fixes.

#### r2p0

Fourth release of CoreSight<sup>™</sup> DAP-Lite2. AHB-AP component enhancement to extend support of AHB access HPROT attributes.



This changes the programmers model of the AHB-AP. See CSW for the extension of HPROT support. See IDR and PIDR2 for identifying these changes.

#### r2p1

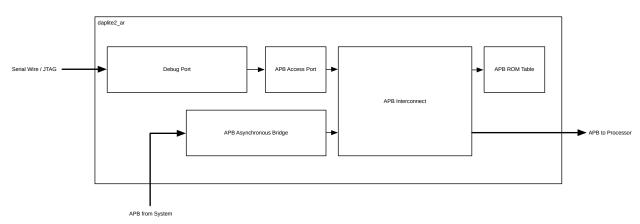
Fifth release of CoreSight DAP-Lite2. AHB-AP and APB-AP components updated.

## 3 DAP-Lite2 functional description

This chapter describes the functionality of the DAP-Lite2 modules.

# 3.1 DAP-Lite2 for Arm Cortex-A and Arm Cortex-R processors

The daplite2\_ar block is the top level of the DAP-Lite2 for Arm Cortex-A and Arm Cortex-R processors.


daplite2\_ar integrates several SoC-600 components to provide the necessary signals to interface to:

- An external debugger
- An Arm Cortex-A processor or Arm Cortex-R processor
- The memory system of the processor, for self-hosted debug access
- A system-level power and reset controller
- An authentication controller

daplite2\_ar is an integration of:

- css600 dp Debug Port
- css600 apbap APB Access Port
- css600 apbic APB interconnect
- css600 apbrom APB ROM table
- css600 apbasynbridge APB asynchronous bridge

#### Figure 3-1: DAP-Lite2 AR block diagram

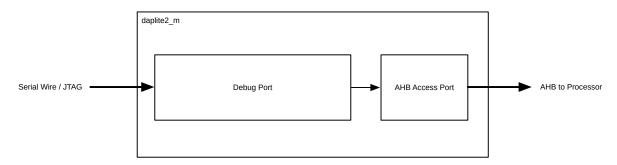


See 6 SoC-600 components programmers model on page 35 for details of the components.

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

## 3.2 DAP-Lite2 for Arm Cortex-M processors

The daplite2\_m block is the top level of the DAP-Lite2 for Arm Cortex-M processors.


daplite2\_m integrates several SoC-600 components to provide the necessary signals to interface to:

- An external debugger
- An Arm Cortex-M processor
- A system-level power and reset controller
- An authentication controller

daplite2\_m is an integration of:

- css600\_dp Debug Port
- css600\_ahbap AHB Access Port

#### Figure 3-2: DAP-Lite2 M block diagram



See 6 SoC-600 components programmers model on page 35 for details of the components.

## 3.3 Interfaces

DAP-Lite2 has the following interfaces.

#### 3.3.1 SWJ

The *Serial Wire JTAG* (SWJ) interface provides a low pin-count interface to an off-chip external debugger.

The SWJ interface supports both *Serial Wire Debug* (SWD) and JTAG data link protocols on a single set of shared pins, with dynamic switching between the two protocols.

The Serial Wire protocol requires two hardware pins and is targeted at pin-constrained systems.

The JTAG protocol requires four hardware pins, and allows for an extra, optional, reset signal. The JTAG interface requires more interface pins than Serial Wire. However, it can be daisy-chained with other JTAG TAPs on chip, for example, boundary scan controllers.

#### 3.3.2 APB, daplite2\_ar

The AMBA 4 APB interfaces provide connection into the debug subsystem and connection from the memory system.

Extra wakeup signals are provided. These augment standard AMBA 4 APB functionality. They enable integration into systems that support aggressive clock gating for minimization of dynamic power.

#### 3.3.3 AHB, daplite2\_m

The AMBA 5 Advanced High-performance Bus (AHB) interface provides connection into the debug subsystem.

Extra wakeup signals are provided. They augment standard AMBA 5 AHB functionality. They enable integration into systems that support aggressive clock gating for minimization of dynamic power.

#### 3.3.4 Power and reset control

The Power and Reset control interfaces provide request and acknowledge signals for integration with a system power and reset controller.

In systems that support independent power control of the debug subsystem, the request and acknowledge signals permit static power to be minimized when the system is not being debugged.

#### 3.3.5 Q-Channel LPI

The *Q*-Channel Low-Power Interfaces (LPIs) provide a standard mechanism for interfacing to a system clock and power controller.

The LPIs enable the power controller to request clock and power quiescence to minimise power consumption.

#### 3.3.6 Access Port Enable

The Access Port enable interface provides a standard mechanism for the system security controller to grant permission to the DAP-Lite2 to perform accesses in the debug subsystem.

## 3.4 Clocks and resets

DAP-Lite2 implements multiple clock and reset domains for integration into the target system.

The external debugger drives the SWJ interface clock **swclktck**.

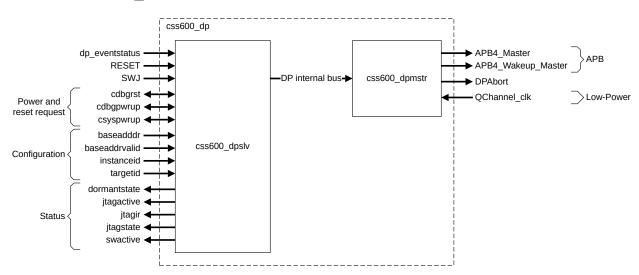
The daplite2\_ar APB master and slave interfaces, and daplite2\_m AHB master interface, are on separate clocks that must be driven by the system.

All DAP-Lite2 clocks may be asynchronous to each other.

# 4 SoC-600 components functional description

This chapter describes the functionality of the the SoC-600 components that are integrated into the DAP-Lite2 modules. Note that this chapter is for reference. Your configuration is determined by the DAP-Lite2 module that you use.

## 4.1 Debug port


The css600\_dp module implements the JTAG and Serial Wire Debug Port protocols. Either of these protocols can be omitted to save area in systems that do not require both protocols.

The debug port communicates with the debug components through the APB infrastructure that is connected to the debug port APB master interface.

The debug port implements the following features:

- ADIv6 architecture
- Single clock domain in each part
- Asynchronous bridge between the slave and master parts
- 4-bit or 8-bit Instruction register for JTAG implementation
- Separate slave and master components, implementing JTAG, Serial Wire, or both in the slave, and APB in the master

The following figure shows the external connections on the Debug Port (DP).



#### Figure 4-1: css600\_dp logical connections

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

## 4.2 Memory access ports

*Memory Access Ports* (MEM-APs) connect one memory system to another using one of the AMBA bus protocols: AHB or APB.

The Arm<sup>®</sup> Debug Interface Architecture Specification ADIv6.0 defines a MEM-AP. This definition provides two logical views of the access port to the debugger. These two views are referred to as twin APs or logical APs. In SoC-600, these two logical APs are contiguous in the memory map and each one of them occupies 4KB address space. An external debugger can only discover one of the twin APs through the ROM table. The other AP is dedicated for self-hosted debug. The MEM-AP itself is not capable of differentiating which of the twin APs is visible in the ROM table. The MEM-AP decodes the access requests on the APB slave interface and maps them to AP-L0 or AP-L1, based on the value of **paddr\_s[12]**.



*daplite2\_m* and *daplite2\_ar* do not have twin APs.

#### 4.2.1 APB Access Port

The css600\_apbap module is a *Memory Access Port* (MEM-AP). The css600\_apbap is an APB4 slave component that provides access to another APB4 memory system.

Use the css600\_apbap to provide access to an APB4 memory space, for example:

- A subsystem of CoreSight<sup>™</sup> components that includes Arm<sup>®</sup> Cortex<sup>®</sup>-A or Cortex<sup>®</sup>-R processors
- A subsystem of CoreSight<sup>™</sup> components
- Any other APB4 memory system

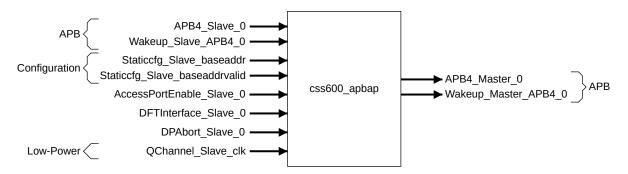
The APB Access Port allows visibility into another memory system from the debug APB infrastructure.

The APB-AP provides an AMBA APB4 slave interface for programming and an AMBA APB4 master interface for accessing the target memory system. The programmers model contains the details of the registers for accessing the features of the APB4 master interface.

The APB-AP provides the following features:

- Error response
- Stalling accesses
- Little-endian only
- Single clock domain

- 32-bit data access only
- Auto-incrementing *Transfer Address Register* (TAR)
- An APB4 slave interface
- An APB4 master interface
- An Access Port Enable interface
- CoreSight Component base pointer register
- A Q-Channel LPI for high-level clock management


The APB-AP does not support subword write transfers.



If the DP issues an abort over the Debug APB interface, the APB-AP completes the transaction on its Debug APB slave interface immediately. The DAP transfer abort does not cancel the ongoing APB transfer on the APB master interface.

The following figure shows the external connections on the APB Access Port.

#### Figure 4-2: css600\_apbap logical connections



#### 4.2.2 AHB Access Port

The css600\_ahbap module is a *Memory Access Port* (MEM-AP). The css600\_ahbap is an APB4 slave component that provides access to an AHB5 memory system.

Use the css600\_ahbap to provide access to an AHB5 memory space, for example:

- An Arm<sup>®</sup> Cortex<sup>®</sup>-M processor and subsystem
- Any other AHB5 memory system

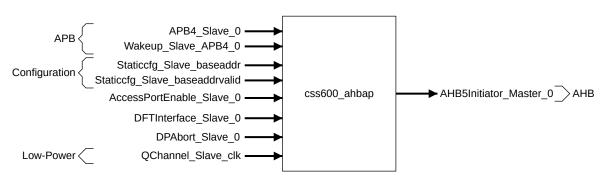
The AHB Access Port allows visibility into another memory system from the debug APB infrastructure.

The AHB-AP provides an AMBA<sup>®</sup> APB4 slave interface for programming and an AMBA<sup>®</sup> AHB5 master interface for accessing the target memory system. The programmers model contains the details of the registers for accessing the features of the AHB master interface.

The AHB-AP provides the following features:

- Error response
- Stalling accesses
- Little-endian only
- Single clock domain
- Auto-incrementing Transfer Address Register (TAR)
- An APB4 slave interface
- An AHB5 master interface
- An Access Port Enable interface
- 8-bit, 16-bit, or 32-bit data access
- CoreSight Component base pointer register
- Support for AHB5 TrustZone<sup>®</sup> signaling
- A Q-Channel LPI for high-level clock management

The AHB-AP does not support:


- Exclusive accesses
- Unaligned transfers
- BURST or SEQ transactions



If the DP issues an abort over the Debug APB interface, the AHB-AP completes the transaction on its Debug APB slave interface immediately. The DAP transfer abort does not cancel the ongoing AHB transfer.

The following figure shows the external connections on the AHB Access Port.

#### Figure 4-3: css600\_ahbap logical connections



Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

#### 4.2.3 Error response handing

CoreSight<sup>™</sup> DAP-Lite2 *Memory Access Ports* (MEM-APs) implement Error Response Handling Version 1.

Error Response Handling V1 is defined in the *Arm® Debug Interface Architecture Specification ADIv6.0.* Support for this error handling mechanism is indicated in the CFG.ERR register field. The three register bits CSW.ERRNPASS, CSW.ERRSTOP, and TRR.ERR are used to define the behavior of this feature. See the relevant programmers model register descriptions for more information.

The MEM-AP logs errors in Transfer Response Register by setting TRR.ERR bit to 1. When set, this bit remains set until software clears it by writing 1 to it. The following types of memory access errors are logged:

| Authentication | This error is due to an unauthenticated memory access attempt, such as:                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------|
| failure        | <ul> <li>Any memory access when <b>ap_en</b> is LOW</li> </ul>                                                  |
|                | <ul> <li>A Secure memory access when ap_secure_en is LOW</li> </ul>                                             |
| Stopped on     | This error is due to a memory access attempt when TRR.ERR=1 and                                                 |
| error          | CSW.ERRSTOP=1.                                                                                                  |
| AHB/APB        | This is an error response that is received on the AP master interface                                           |
| error          | indicating that the memory access failed.                                                                       |
| Abort          | These are aborted memory transfers.                                                                             |
| Master busy    | This error happens if a memory access is attempted after an abort, but while the CSW.TrInProg bit is still set. |

Internal register access errors are not logged in the TRR but are always passed on the APB slave interface. If a register write is attempted after an abort while the CSW.TrInProg bit is set, an error is generated.

The register bit CSW.ERRNPASS controls whether a memory access error is passed back to the requestor. The internal register access errors are always passed back on the APB slave interface regardless of the value of this bit.

The CSW.ERRNPASS bit has the following effect on behavior:

- **0** Memory access errors are passed back on the APB slave interface.
- **1** Memory access errors are not passed back on the APB slave interface. In this case, a normal APB response is returned even for failed memory transactions.

There are exceptions to this rule. In these cases, the error is always passed on the APB slave interface, regardless of the status of the CSW.ERRNPASS bit. The exceptions are:

- If the memory transaction is aborted
- If the error is generated due to a memory access attempt, while the CSW.TrInProg bit is still set from a previously aborted access

The APB read data for all transactions that generate an error is **UNKNOWN**.

If no previous memory access errors are logged, that is TRR.ERR=0, memory accesses are allowed, regardless of the state of CSW.ERRSTOP.

If a previous memory access error is still logged, that is TRR.ERR=1, the register field CSW.ERRSTOP controls whether to prevent memory accesses as follows:

- If CSW.ERRSTOP is programmed as 0, new memory accesses are allowed.
- If CSW.ERRSTOP is programmed as 1, no new memory accesses are allowed. Any new memory accesses result in an error response on the APB slave interface, provided CSW.ERRNPASS is 0. In this case, TRR.ERR remains set and the memory transfer is not initiated.

The following table summarizes this MEM-AP behavior for memory errors other than Abort and Master Busy.

#### Table 4-1: MEM-AP behavior for memory errors other than Abort and Master Busy

| TRR.ERR | CSW.ERRNPASS | CSW.ERRSTOP | New memory access  | Slave<br>error | Error<br>logged |
|---------|--------------|-------------|--------------------|----------------|-----------------|
| 0       | 0            | x           | otherwise blocked. | Passed         | Yes             |
| 0       | 1            | x           |                    | Not<br>passed  | Yes             |
| 1       | 0            | 0           |                    | Passed         | Yes             |
| 1       | 1            | 0           |                    | Not<br>passed  | Yes             |
| 1       | 0            | 1           | Blocked            | Passed         | Yes             |
| 1       | 1            | 1           | Blocked            | Not<br>passed  | Yes             |

The twin logical APs implement error handling independently, and the errors that are received or generated on one do not affect the other.



daplite2\_m and daplite2\_ar do not have twin APs.

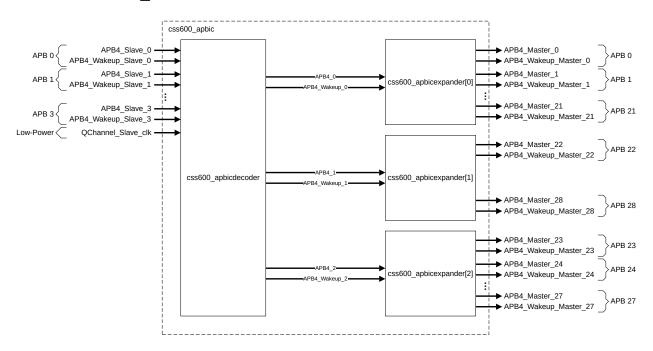
Memory errors, other than Abort and Master-Busy, are maskable errors. That is, they can be masked from appearing on an APB slave interface by setting the CSW.ERRNPASS bit. It is possible for a single memory access to cause multiple error sources to generate errors at the same time. For example, a memory access can trigger a stop-on-error and an authentication failure.

If an error is masked, an error response is passed on the APB slave interface, even if CSW.ERRNPASS is 1, and if at least one of the sources of error is non-maskable (Abort or Master-Busy). If all the triggered error sources are maskable, the error is passed only if CSW.ERRNPASS is 0.

If the Access Port Enable interface signals change while a memory transfer is in progress, the MEM-AP still completes the ongoing transfer normally. The new Access Port Enable interface values then take effect from the next transaction. If a memory access request is received while the

MEM-AP is in Q\_STOPPED state, the authentication signal values are sampled only after entering Q\_RUN state in the first cycle, and that value is used to determine whether to allow or block the pending APB transfer.

## 4.3 APB interconnect


The css600\_apbic is used to provide connections between APB4 masters and APB4 slaves anywhere in a CoreSight system.

APB4 masters can be debug ports, APB Access Ports, or other APB masters from a compute subsystem. It is a two-part meta-component that has the following features:

- Single clock domain
- Decoder component configurable for up to four slave interfaces and up to 64 master interfaces
- Physical grouping of decoded master interfaces using one or more configurable expander components
- Option to insert APB asynchronous or synchronous bridges between decoder and expander instances to cross power and clock domain boundaries
- Configurable APB address widths to suit addressable ranges
- A Q-Channel LPI for high-level clock management

The following figure shows the external connections on the APB interconnect.

#### Figure 4-4: css600 apbic logical connections



Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

### 4.3.1 Arbitration

The internal arbiter arbitrates between competing slave interfaces for access to the debug APB.

When a slave interface raises a request, the arbiter gives the highest priority to the slave interface with the lowest instance suffix. For example, Slave Interface 0 > Slave Interface 1 > Slave Interface 2 > Slave Interface 3. The order in which the slave interfaces raised their requests relative to each other is not used in arbitration.

The arbitration is re-evaluated after every access.

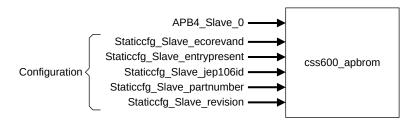
#### 4.3.2 Error response

The APB interconnect returns an error on its slave interface under certain conditions.

An error response is returned when either:

- The targeted APB slave returns an error response
- A slave interface accesses an address that does not decode to any connected APB slave

## 4.4 APB ROM Table


The css600 apbrom module is a ROM Table with an APB4 slave interface.

Use the css600\_apbrom to:

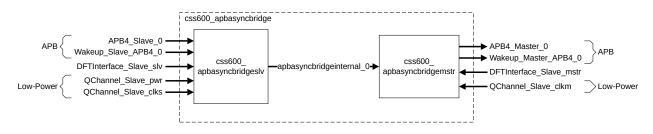
- Identify part of your system or subsystem.
- Indicate the locations of other CoreSight<sup>™</sup> components in the same address space to an External Debugger.

The following figure shows the external connections on the APB ROM Table.

#### Figure 4-5: css600\_apbrom logical connections



## 4.5 APB asynchronous bridge


The css600\_apbasyncbridge is used where an AMBA APB4 bus is required to cross a clock or power domain boundary.

The APB asynchronous bridge provides the following features:

- Two independent clock domains with any phase or frequency alignment
- Two independent power domains, either of which can be switched relative to the other
- Three Q-Channel LPIs for slave side clock, master side clock, and power switching management
- A two-part meta-component with separate slave and master side components
- Configurable APB address width
- Configurable 2- or 3-deep synchronizers

The following figure shows the external connections on the APB asynchronous bridge.

#### Figure 4-6: css600\_apbasyncbridge logical connections



## 4.6 APB3 to APB4 adapter

The css600\_apb3toapb4adapter is an IP-XACT phantom component that is provided to support stitching in an IP-XACT tooling product.

There is no Verilog module for css600\_apb3toapb4adapter.

Use the css600 apb3toapb4adapter to connect an APB3 master to an APB4 slave interface.

The following figure shows the external connections on the APB3 to APB4 adapter.

#### Figure 4-7: css600\_apb3toapb4adapter logical connections

APB\_Slave\_0 ----- css600\_apb3toapb4adapter ----- APB4\_Master\_0

## 4.7 APB4 to APB3 adapter

The css600\_apb4toapb3adapter is an IP-XACT phantom component that is provided to support stitching in an IP-XACT tooling product.

There is no Verilog module for css600 apb4toapb3adapter.

Use the css600\_apb4toapb3adapter to connect an APB4 master to an APB3 slave interface.

The following figure shows the external connections on the APB4 to APB3 adapter.

#### Figure 4-8: css600 apb4toapb3adapter logical connections

APB\_Slave\_0 ----- css600\_apb4toapb3adapter ----- APB\_Master\_0

## 5 DAP-Lite2 programmers model

This chapter describes the values and configuration details that are specific to the CoreSight<sup>™</sup> DAP-Lite2 modules.

## 5.1 DAP-Lite2 for Arm Cortex-A and Cortex-R processors

This section describes the DAP-Lite2 AR programmers model.

#### 5.1.1 Debug Port for Cortex-A and Cortex-R

The following tables list values and configuration details that are specific to the daplite2\_ar.

| Register.Field | Value | Description    |
|----------------|-------|----------------|
| DPIDR1.ASIZE   | 0x0C  | 12-bit address |



The DP is configured with a 12-bit address space, so only the first 4KB of the APB-AP registers are accessible. daplite2\_ar does not support multiple masters accessing the APB-AP.

| Register.Field Value |       | Description                 |  |
|----------------------|-------|-----------------------------|--|
| BASEPTRO.PTR         | 0x000 | The DP points to the APB-AP |  |
| BASEPTRO.VALID       | 0b1   | Base Address is valid       |  |

| Register.Field     | Value                  | Description                      |
|--------------------|------------------------|----------------------------------|
| TARGETID.TREVISION | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| TARGETID.TPARTNO   | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| TARGETID.TDESIGNER | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| DLPIDR.TINSTANCE   | IMPLEMENTATION DEFINED | Driven from <i>dp_instanceid</i> |

These values depend on the integration of daplite2\_ar in the system. They should identify the SoC and its designer. If you require the values of these fields, consult the system integrator.

#### 5.1.2 APB Access Port

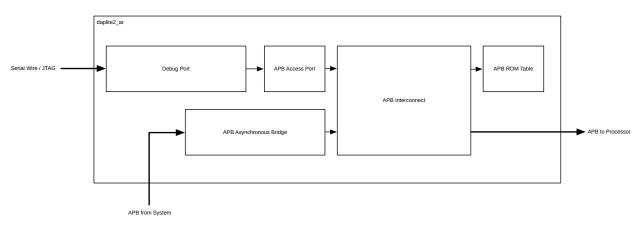
The following table lists values and configuration details that are specific to the daplite2\_ar.

| Register.Field    | Value                  | Description                                      |
|-------------------|------------------------|--------------------------------------------------|
| BASE.BASEADDR     | IMPLEMENTATION DEFINED | Defined by configuration parameter ROM_BASE_ADDR |
| BASE.EntryPresent | 0b1                    | ROM Entry points to a CoreSight component        |

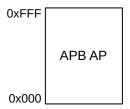
Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential The APB Access Port is configured to point to the ROM Table inside <code>daplite2\_ar</code>. If you require the values of these fields, consult the system integrator.

#### 5.1.3 APB ROM table

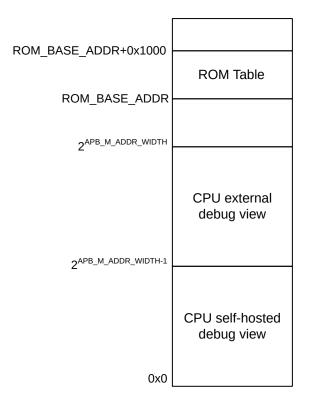
The following table lists values and configuration details that are specific to the daplite2\_ar.


| Register.Field | Value                  | Description                      |
|----------------|------------------------|----------------------------------|
| DEVID.SYSMEM   | 0d0                    | Dedicated debug bus              |
| PIDR4.DES_2    | IMPLEMENTATION DEFINED | Driven from <i>rom_jep106_id</i> |
| PIDR2.REVISION | IMPLEMENTATION DEFINED | Driven from <i>rom_revision</i>  |
| PIDR2.DES_1    | IMPLEMENTATION DEFINED | Driven from <i>rom_jep106_id</i> |
| PIDR1.DES_0    | IMPLEMENTATION DEFINED | Driven from <i>rom_jep106_id</i> |
| PIDR1.PART_1   | IMPLEMENTATION DEFINED | Driven from rom_part_number      |
| PIDRO.PART_0   | IMPLEMENTATION DEFINED | Driven from rom_part_number      |

These values depend on the integration of daplite2\_ar in the system. They should identify the SoC and its designer. If you require the values of these fields, consult the system integrator.


#### 5.1.4 Memory map

The following figures show the daplite2\_ar block diagram and memory maps.


#### Figure 5-1: daplite2\_ar block diagram



#### Figure 5-2: daplite2\_ar DP memory map



#### Figure 5-3: daplite2\_ar AP memory map



## 5.2 DAP-Lite2 for Arm Cortex-M processors

This section describes the DAP-Lite2 M programmers model.

## 5.2.1 Debug Port for Cortex-M

The following table lists values and configuration details that are specific to the daplite2\_m.

| Register.Field | Value | Description    |
|----------------|-------|----------------|
| DPIDR1.ASIZE   | 0x0C  | 12-bit address |



The DP is configured with a 12-bit address space, so only the first 4KB of the AHB-AP registers are accessible. daplite2\_m does not support multiple masters accessing the AHB-AP.

| Register.Field Value |       | Description             |  |
|----------------------|-------|-------------------------|--|
| BASEPTRO.PTR         | 0x000 | DP points to the AHB-AP |  |
| BASEPTRO.VALID       | 0b1   | Base Address is valid   |  |

| Register.Field     | Value                  | Description                      |
|--------------------|------------------------|----------------------------------|
| TARGETID.TREVISION | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| TARGETID.TPARTNO   | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| TARGETID.TDESIGNER | IMPLEMENTATION DEFINED | Driven from <i>dp_targetid</i>   |
| DLPIDR.TINSTANCE   | IMPLEMENTATION DEFINED | Driven from <i>dp_instanceid</i> |

These values depend on the integration of daplite2\_m in the system. They should identify the SoC and its designer. If you require the values of these fields, consult the system integrator.

#### 5.2.2 AHB Access Port

The following table lists values and configuration details that are specific to the daplite2\_m.

| Register.Field    | Value                  | Description                   |
|-------------------|------------------------|-------------------------------|
| BASE.BASEADDR     | IMPLEMENTATION DEFINED | Driven from ap_baseaddr       |
| BASE.EntryPresent | IMPLEMENTATION DEFINED | Driven from ap_baseaddr_valid |

These values depend on the integration of daplite2\_m in the system. They should point to another CoreSight component, typically a ROM Table. If you require the values of these fields, consult the system integrator.

#### 5.2.3 Memory map

The following figures show the daplite2\_m block diagram and memory maps.

Figure 5-4: daplite2\_m block diagram

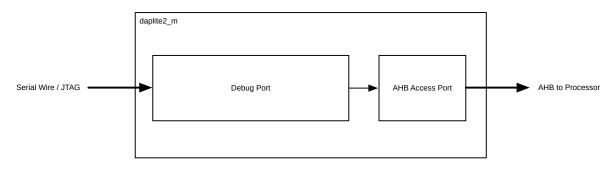



Figure 5-5: daplite2\_m DP memory map

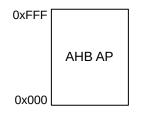
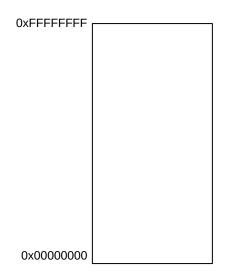




Figure 5-6: daplite2\_m AP memory map



Your system integration determines the AP memory map.

# 6 SoC-600 components programmers model

This chapter describes the programmers models for the SoC-600 components used in DAP-Lite2 modules.

## 6.1 SoC-600 components programmers model

These SoC-600 programmers' models are for the components that make up the DAP-Lite2 modules.

Where the SoC-600 components have configuration dependencies or dependencies on tie-offs, you must also refer to the relevant DAP-Lite2 module information in 5 DAP-Lite2 programmers model on page 30 for details of that configuration.

The following information applies to the SoC-600 components registers:

- The base address of any component is not fixed, and can be different for any particular system implementation. The offset of each register within a component from the component base address is fixed.
- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in **UNPREDICTABLE** behavior.
- Unless otherwise stated in the accompanying text:
  - Do not modify undefined register bits.
  - Ignore undefined register bits on reads.
  - All register bits are reset to the reset value specified in the register summary table for the component.
- Access types are described as follows:
  - **RW** Read and write
  - **RO** Read only
  - WO Write only

## 6.2 css600\_dp introduction

This section describes the programmers model of the css600\_dp.

The register block in the SoC-600 DP is shared between two different protocol engines, the JTAG-DP and the SW-DP.

The DP programmers model consists of the following registers. The programmers model is based on the Arm<sup>®</sup> Debug Interface Architecture Specification ADIv6.0. Because the DP only supports 32-

bit addressing, any read to BASEPTR1 always returns 0 and any writes to SELECT1 register are ignored.

#### 6.2.1 css600\_dp register summary

The following table shows the registers in offset order from the base memory address.

More than one register can appear at a given address, depending on the value of SELECT.DPBANKSEL. The combinations of address offset and SELECT.DPBANKSEL value, and whether the register is accessible by the JTAG-DP, SW-DP, or both, are all shown in the following table.



A reset value containing one or more '-' means that this register contains **UNKNOWN** or **IMPLEMENTATION-DEFINED** values. See the relevant register description for more information.

A DPBANKSEL value containing an 'X' means that the DPBANKSEL value is ignored.

Locations that are not listed in the table are Reserved.

| Offset     | DPBANKSEL | Name      | JTAG-<br>DP | SW-<br>DP | Reset                       | Description                                                                         |
|------------|-----------|-----------|-------------|-----------|-----------------------------|-------------------------------------------------------------------------------------|
| -          | Х         | IDCODE    | No          | No        | 0x4BA06477 or<br>0x4BA07477 | 6.2.2.1 css600_dp JTAG TAP ID Register, IDCODE on page 37                           |
| -          | Х         | ABORT     | No          | Yes       | 0x0000000                   | 6.2.2.2 css600_dp AP Abort Register, ABORT on page 38                               |
| 0x000000   | 0x0       | DPIDR     | Yes         | Yes       | 0x4C013477                  | 6.2.2.3 css600_dp Debug Port Identification Register,<br>DPIDR on page 39           |
| 0x0000     | 0x1       | DPIDR1    | Yes         | Yes       | 0x00000                     | 6.2.2.4 css600_dp Debug Port Identification Register 1,<br>DPIDR1 on page 39        |
| 0x00000000 | 0x2       | BASEPTRO  | Yes         | Yes       | 0x00-                       | 6.2.2.5 css600_dp Base Pointer Register 0, BASEPTRO on page 40                      |
| 0x0000     | 0x3       | BASEPTR1  | Yes         | Yes       | 0x0000000                   | 6.2.2.6 css600_dp Base Pointer Register 1, BASEPTR1 on page 41                      |
| 0x0004     | 0x0       | CTRLSTAT  | Yes         | Yes       | 0x000000                    | 6.2.2.7 css600_dp Control/Status Register, CTRLSTAT on page 42                      |
| 0x0004     | 0x1       | DLCR      | No          | Yes       | 0x0000040                   | 6.2.2.8 css600_dp Data Link Control Register, DLCR on page 43                       |
| 0x0004     | 0x2       | TARGETID  | Yes         | Yes       | 0x                          | 6.2.2.9 css600_dp Target Identification Register,<br>TARGETID on page 44            |
| 0x0004     | 0x3       | DLPIDR    | Yes         | Yes       | 0x-0000001                  | 6.2.2.10 css600_dp Data Link Protocol Identification<br>Register, DLPIDR on page 45 |
| 0x0004     | 0x4       | EVENTSTAT | Yes         | Yes       | 0x000000-                   | 6.2.2.11 css600_dp Event Status Register, EVENTSTAT on page 45                      |

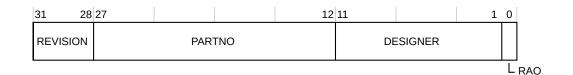
#### Table 6-1: css600\_dp register summary

| Offset | DPBANKSEL   | Name      | JTAG-<br>DP | SW-<br>DP | Reset     | Description                                                           |
|--------|-------------|-----------|-------------|-----------|-----------|-----------------------------------------------------------------------|
| 0x0004 | 0x5         | SELECT1   | Yes         | Yes       | 0x0000000 | 6.2.2.12 css600_dp Select Register 1, SELECT1 on page 46              |
| 0x0008 | X on reads  | RESEND    | No          | Yes       | 0x0000000 | 6.2.2.13 css600_dp Read Resend Register, RESEND on page 47            |
| 0x0008 | X on writes | SELECT    | Yes         | Yes       | 0x0000000 | 6.2.2.14 css600_dp Select Register, SELECT on page 48                 |
| 0x000C | X on reads  | RDBUFF    | No          | Yes       | 0x0000000 | 6.2.2.15 css600_dp Read Buffer Register, RDBUFF on page 48            |
| 0x000C | X on writes | TARGETSEL | No          | Yes       | 0x0000000 | 6.2.2.16 css600_dp Target Selection Register,<br>TARGETSEL on page 49 |

# 6.2.2 css600\_dp register descriptions

This section describes the css600\_dp registers.

6.2.1 css600\_dp register summary on page 36 provides cross references to individual registers.


### 6.2.2.1 css600 dp JTAG TAP ID Register, IDCODE

The IDCODE value enables a debugger to identify the JTAG DP to which it is connected.

JTAG-DP Access is through its own scan-chain using the IDCODE instruction in the JTAG IR. SW-DP There is no IDCODE register in the SW-DP.

The following figure shows the bit assignments.

### Figure 6-1: IDCODE register bit assignments



The following table shows the bit assignments.

#### Table 6-2: IDCODE register bit assignments

| Bits    | Reset value | Name | Function                                                                                                                                                                      |
|---------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | 0x4         |      | Revision. An incremental value starting at 0x0 for the first design of a component. See the Component list in Chapter 1 for information on the RTL revision of the component. |

| Bits    | Reset value               | Name     | Function                                                                                                    |  |
|---------|---------------------------|----------|-------------------------------------------------------------------------------------------------------------|--|
| [27:20] | IMPLEMENTATION<br>DEFINED | PARTNO   | Part Number of the DP. The value depends on the Instruction Register length configuration of the css600_dp: |  |
|         |                           |          | 0xBA06                                                                                                      |  |
|         |                           |          | 4-bit IR                                                                                                    |  |
|         |                           |          | 0xBA07                                                                                                      |  |
|         |                           |          | 8-bit IR                                                                                                    |  |
| [11:1]  | 0x23B                     | DESIGNER | Designer ID based on 11-bit JEDEC JEP106 continuation and identity code 0x23B, Arm Ltd                      |  |
| [0]     | 0b1                       | RAO      | RAO                                                                                                         |  |

See Arm<sup>®</sup> Debug Interface Architecture Specification ADIv6.0 for details about accessing the IDCODE value in a JTAG DP.

# 6.2.2.2 css600 dp AP Abort Register, ABORT

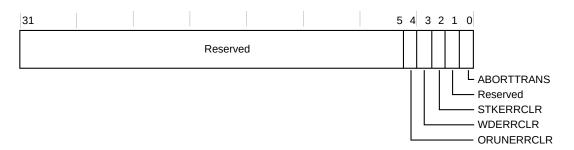
The ABORT register drives the **dp\_abort** pin on the DP, which goes to APs to abort the current transaction.

JTAG- Access is through its own scan-chain using the ABORT instruction in the JTAG IR.

DP

**SW-** Access is by a write to offset  $0 \times 0$  of the DP register map.

DP


The ABORT register characteristics are:

### Attributes

| Offset | 0x0000     |
|--------|------------|
| Туре   | Write-only |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

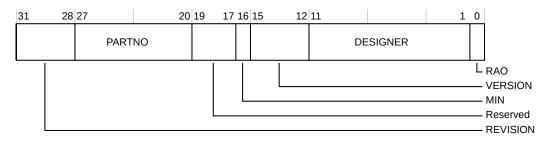
### Figure 6-2: ABORT register bit assignments



| Bits | Reset value    | Name       | Function                                                                         |
|------|----------------|------------|----------------------------------------------------------------------------------|
| [4]  | 0b0            | ORUNERRCLR | Write 1 to this bit to clear the CTRLSTAT.STICKYORUN overrun error bit to 0      |
| [3]  | 0d0            | WDERRCLR   | Write 1 to this bit to clear the CTRLSTAT.WDATAERR write data error bit to 0     |
| [2]  | 0d0            | STKERRCLR  | Write 1 to this bit to clear the CTRLSTAT.STICKYERR sticky error bit to 0        |
| [0]  | 0b0 ABORTTRANS |            | Write 1 to this bit to generate an abort. This aborts the current AP transaction |

# 6.2.2.3 css600 dp Debug Port Identification Register, DPIDR

The DPIDR provides information about the DP.


The DPIDR register characteristics are:

### Attributes

| 0x0000     |
|------------|
| Read-only  |
| 0x4C013477 |
| 32         |
|            |

The following figure shows the bit assignments.

### Figure 6-3: DPIDR register bit assignments



The following table shows the bit assignments.

### Table 6-4: DPIDR register bit assignments

| Bits    | Reset value   | Name     | Function                                                                                                       |  |
|---------|---------------|----------|----------------------------------------------------------------------------------------------------------------|--|
| [31:28] | 0b0100        | REVISION | Revision code: 0b0100 - rOp4                                                                                   |  |
| [27:20] | 0b11000000    | PARTNO   | Part Number of the DP                                                                                          |  |
| [16]    | 0b1           | MIN      | Transaction counter, Pushed-verify, and Pushed-find operations are not implemented                             |  |
| [15:12] | 0b0011        | VERSION  | Version of DP architecture implemented: DAP-Lite2 is DPv3, so the value of this field is $0x3$                 |  |
| [11:1]  | 0b01000111011 | DESIGNER | Designer ID based on 11-bit JEDEC JEP106 continuation and identity code: the Arm value is 0x23B for this field |  |
| [O]     | 0b1           | RAO      | RAO                                                                                                            |  |

# 6.2.2.4 css600\_dp Debug Port Identification Register 1, DPIDR1

The DPIDR1 register is the extension of DPIDR and provides information about the DP.

The DPIDR1 register characteristics are:

Attributes

| Offset | 0x0000    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

### Figure 6-4: DPIDR1 register bit assignments



The following table shows the bit assignments.

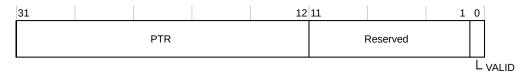
#### Table 6-5: DPIDR1 register bit assignments

| Bits  | Reset value               | Name    | Function                                                                                                                          |
|-------|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------|
| [7]   | 0b1                       | ERRMODE | Error reporting mode support:                                                                                                     |
|       |                           |         | 1 CTRLSTAT.ERRMODE implemented.                                                                                                   |
| [6:0] | IMPLEMENTATION<br>DEFINED | ASIZE   | Address size. This defines the size of the address in the SELECT register, and the BASEPTRO register. Allowed values are:         |
|       |                           |         | 0x0C                                                                                                                              |
|       |                           |         | 12-bit address                                                                                                                    |
|       |                           |         | 0x14                                                                                                                              |
|       |                           |         | 20-bit address                                                                                                                    |
|       |                           |         | 0x20                                                                                                                              |
|       |                           |         | 32-bit address                                                                                                                    |
|       |                           |         | All other values are reserved. This is an <b>IMPLEMENTATION-DEFINED</b> value that depends on the configuration of the component. |

### 6.2.2.5 css600 dp Base Pointer Register 0, BASEPTRO

BASEPTRO and BASEPTR1 together provide an initial system address for the first component in the system. Typically, this is the address of a top-level ROM table that indicates where APv2 APs are located. The size of the address is defined in DPIDR1.ASIZE, which defines the size of the

whole address even though bits [11:0] are always zero, as the minimum address space for each component is 4KB.


The BASEPTRO register characteristics are:

### Attributes

| Offset | 0x00-      |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x0000000- |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-5: BASEPTRO register bit assignments



The following table shows the bit assignments.

### Table 6-6: BASEPTRO register bit assignments

| Bits    | Reset value               | Name  | Function                                                                                                                                                                                                      |  |
|---------|---------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:12] | IMPLEMENTATION<br>DEFINED | PTR   | Base address bits [31:12] of first component in the system. The address is aligned to a 4KB boundary.<br>This <b>IMPLEMENTATION-DEFINED</b> value depends on the interface tie-off value of <b>baseaddr</b> . |  |
| [0]     | IMPLEMENTATION<br>DEFINED | VALID | Indicates whether the base address is valid. Depends on the interface tie-off value of baseaddr_valid.0No base address specified. PTR is UNKNOWN.1Base address is specified in PTR.                           |  |

### 6.2.2.6 css600 dp Base Pointer Register 1, BASEPTR1

Since the SoC-600 supports 32-bit addressing only, BASEPTR1 always reads 0s.

The BASEPTR1 register characteristics are:

### Attributes

| Offset | 0x0000     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

### Figure 6-6: BASEPTR1 register bit assignments

| 31 |  |     |  | 0 |
|----|--|-----|--|---|
|    |  | DTD |  |   |
|    |  | PIR |  |   |

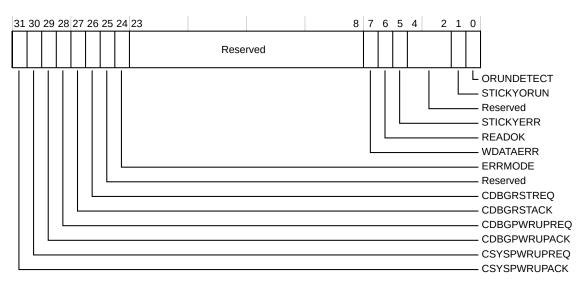
The following table shows the bit assignments.

#### Table 6-7: BASEPTR1 register bit assignments

| Bits   | Reset value | Name | Function                                                                     |
|--------|-------------|------|------------------------------------------------------------------------------|
| [31:0] | 0x0         | PTR  | Base address bits [63:32] of first component in the system. Always reads Os. |

# 6.2.2.7 css600\_dp Control/Status Register, CTRLSTAT

The Control/Status register provides control of the DP and status information about the DP.


The CTRLSTAT register characteristics are:

### Attributes

| 0x0004     |
|------------|
| Read-write |
| 0x000000   |
| 32         |
|            |

The following figure shows the bit assignments.

### Figure 6-7: CTRLSTAT register bit assignments



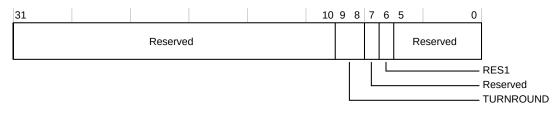
### Table 6-8: CTRLSTAT register bit assignments

| Bits | Reset<br>value | Name         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31] | UNKNOWN        | CSYSPWRUPACK | System powerup acknowledge. Status of <b>CSYSPWRUPACK</b> interface signal.                                                                                                                                                                                                                                                                                                                                                                                                      |
| [30] | 0b0            | CSYSPWRUPREQ | System powerup request. This bit controls the <b>CSYSPWRUPREQ</b> signal on the interface.                                                                                                                                                                                                                                                                                                                                                                                       |
| [29] | UNKNOWN        | CDBGPWRUPACK | Debug powerup acknowledge. Status of <b>CDBGPWRUPACK</b> interface signal.                                                                                                                                                                                                                                                                                                                                                                                                       |
| [28] | 0b0            | CDBGPWRUPREQ | Debug powerup request. This bit controls the <b>CDBGPRWUPREQ</b> signal on the interface.                                                                                                                                                                                                                                                                                                                                                                                        |
| [27] | UNKNOWN        | CDBGRSTACK   | Debug reset acknowledge. Indicates the status of the <b>CDBGRSTACK</b> signal on the interface.                                                                                                                                                                                                                                                                                                                                                                                  |
| [26] | 0b0            | CDBGRSTREQ   | Debug reset request. This bit controls the <b>CDBGRSTREQ</b> signal on interface.                                                                                                                                                                                                                                                                                                                                                                                                |
| [24] | 000            | ERRMODE      | Error Mode.         0       Errors on AP transactions set CTRLSTAT.STICKYERR         1       Errors on AP transactions do not set CTRLSTAT.STICKYERR                                                                                                                                                                                                                                                                                                                             |
| [7]  | 0d0            | WDATAERR     | This bit is <b>DATA LINK DEFINED</b> , such that on a JTAG-DP this bit is reserved, RESO, and on an SW-DP this bit is RO. This bit is set to 1 if a Write Data Error occurs. This happens if there is a parity or framing error on the data phase of a write, or a write that has been accepted by the DP is then discarded without being submitted to the AP. On an SW-DP, this bit is cleared to 0 by writing 1 to the ABORT.WDERRCLR bit.                                     |
| [6]  | 0d0            | READOK       | This flag always indicates the response to the last AP read access. This bit is <b>DATA LINK DEFINED</b> . On JTAG-DP, the bit is reserved, RESO, and on SW-DP, access is RO. If the response to the previous AP read or RDBUFF read was OK, then the bit is set to 1. If the response was not OK, then it is cleared to 0.                                                                                                                                                      |
| [5]  | 040            | STICKYERR    | If an error is returned by an AP transaction, and CTRLSTAT.ERRMODE is b0, then this bit is set to 1.<br>The behavior on writing is <b>DATA LINK DEFINED</b> : On a JTAG-DP, access is R/W1C. On a SW-DP, access<br>is RO/WI.<br>Clearing this bit to 0 is also <b>DATA LINK DEFINED</b> : On a JTAG-DP, the bit is cleared by writing 1 to this<br>bit, or by writing 1 to the ABORT.STKERRCLR field. On SW-DP, the bit is cleared by writing 1 to the<br>ABORT.STKERRCLR field. |
| [1]  | 000            | STICKYORUN   | If overrun detection is enabled, this bit is set to 1 when an overrun occurs. The behavior on writing is <b>DATA LINK DEFINED</b> : on a JTAG-DP, access is R/W1C. On a SW-DP, access is RO/WI.<br>Clearing this bit to 0 is also <b>DATA LINK DEFINED</b> : On a JTAG-DP, the bit is cleared by writing 1 to this bit, or by writing 1 to the ABORT.ORUNERRCLR field. On SW-DP, the bit is cleared by writing 1 to the ABORT.ORUNERRCLR field.                                  |
| [0]  | 0b0            | ORUNDETECT   | This bit is set to 1 to enable overrun detection                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# 6.2.2.8 css600 dp Data Link Control Register, DLCR

The DLCR controls the operating mode of the Data link. Access to this register is **DATA LINK DEFINED**. For JTAG-DP, this register is Reserved RESO. For SW-DP, the register is as shown in the following table.

The DLCR register characteristics are:


### Attributes

| Offset | 0x0004     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x0000040  |
| Width  | 32         |

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

The following figure shows the bit assignments.

### Figure 6-8: DLCR register bit assignments



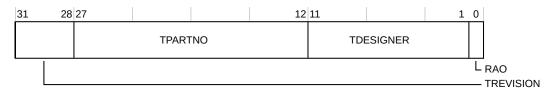
The following table shows the bit assignments.

### Table 6-9: DLCR register bit assignments

| Bits  | Reset value | Name      | Function                                                            |
|-------|-------------|-----------|---------------------------------------------------------------------|
| [9:8] | 0000        | TURNROUND | Turnaround tristate period:                                         |
|       |             |           | 0x01 data period0x12 data periods0x23 data periods0x34 data periods |
| [6]   | 0b1         | RES1      | Reserved, RES1                                                      |

### 6.2.2.9 css600 dp Target Identification Register, TARGETID

The TARGETID register provides information about the target when the host is connected to a single device.


The TARGETID register characteristics are:

### Attributes

| Offset | 0x0004    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x        |
| Width  | 32        |
|        |           |

The following figure shows the bit assignments.

### Figure 6-9: TARGETID register bit assignments

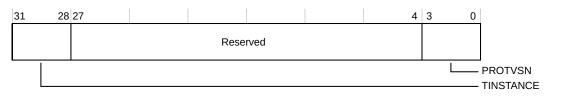


### Table 6-10: TARGETID register bit assignments

| Bits    | Reset value               | Name      | Function                                                                                                                                  |
|---------|---------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | IMPLEMENTATION<br>DEFINED | TREVISION | Target revision. The value comes from the tie-off signal <b>targetid[31:28]</b> .                                                         |
| [27:12] | IMPLEMENTATION<br>DEFINED | TPARTNO   | Target part number. The value comes from the tie-off signal <b>targetid[27:12]</b> .                                                      |
| [11:1]  | IMPLEMENTATION<br>DEFINED |           | Designer ID, based on 11-bit JEDEC JEP106 continuation and identity code. The value comes from the tie-off signal <b>targetid[11:1]</b> . |
| [0]     | 0b1                       | RAO       | Reserved, RAO                                                                                                                             |

# 6.2.2.10 css600 dp Data Link Protocol Identification Register, DLPIDR

The DLPIDR provides protocol version information. The contents of this register are **DATA LINK DEFINED**.


The DLPIDR register characteristics are:

### Attributes

| Offset | 0x0004     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x-0000001 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-10: DLPIDR register bit assignments



The following table shows the bit assignments.

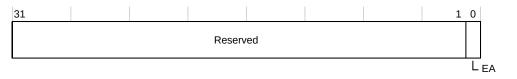
### Table 6-11: DLPIDR register bit assignments

| Bits    | Reset value               | Name | Function                                                                                                                                                                                 |
|---------|---------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | IMPLEMENTATION<br>DEFINED |      | The instance number for this device. For JTAG-DP: Reserved, RESO, and for SW-DP: The value comes from the tie-off signal <b>instanceid[3:0]</b> . Must be unique in a multi-drop system. |
| [3:0]   | 0b0001                    |      | Defines the protocol version that is implemented. For JTAG-DP: $0x1$ , as JTAG protocol version 1 is implemented, and for SW-DP: $0x1$ as SW protocol version 2 is implemented.          |

# 6.2.2.11 css600\_dp Event Status Register, EVENTSTAT

The EVENTSTAT register is used by the system to signal an event to the external debugger.

DAP-Lite2 implements the EVENTSTAT register with top-level input **dp\_eventstatus**, connected to an output trigger of a CoreSight *Cross-Trigger Interface* (CTI) with software acknowledge. This input signal **dp\_eventstatus** coming from CTI trigout is inverted and synchronized in the DP before it goes to the EVENTSTAT register.


The EVENTSTAT register characteristics are:

### Attributes

| Offset | 0x0004    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000- |
| Width  | 32        |
|        |           |

The following figure shows the bit assignments.

### Figure 6-11: EVENTSTAT register bit assignments



The following table shows the bit assignments.

#### Table 6-12: EVENTSTAT register bit assignments

| Bits | Reset value | Name | Function                                                                                        |  |
|------|-------------|------|-------------------------------------------------------------------------------------------------|--|
| [0]  | UNKNOWN     | EA   | Event status flag. Valid values for this bit are:                                               |  |
|      |             |      | <ul><li>0 An event requires attention</li><li>1 There is no event requiring attention</li></ul> |  |

### 6.2.2.12 css600 dp Select Register 1, SELECT1

The SELECT1 register is not used as CoreSight<sup>™</sup> DAP-Lite2 only supports 32-bit addressing.

The SELECT1 register characteristics are:

### Attributes

| Offset | 0x0004     |
|--------|------------|
| Туре   | Write-only |
| Reset  | 0x00000000 |
| Width  | 32         |

### Figure 6-12: SELECT1 register bit assignments



The following table shows the bit assignments.

#### Table 6-13: SELECT1 register bit assignments

| Bits   | Reset value | Name     | Function |
|--------|-------------|----------|----------|
| [31:0] | 0x0         | Reserved | Not used |

### 6.2.2.13 css600 dp Read Resend Register, RESEND

The RESEND register enables the read data to be recovered from a corrupted debugger transfer without repeating the original AP transfer.

For JTAG-DP, this register is Reserved and any access is RESO. For SW-DP, a read to this register does not capture new data from the AP, but returns the value that was returned by the last AP read or DP RDBUFF read.

The RESEND register characteristics are:

### Attributes

| Offset | 0x0008     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-13: RESEND register bit assignments



The following table shows the bit assignments.

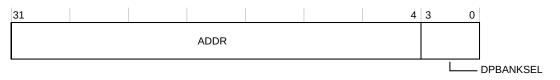
### Table 6-14: RESEND register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                         |
|--------|----------------|------|------------------------------------------------------------------------------------------------------------------|
| [31:0] | 0x0            |      | The register can only be accessed when the DP is in SW-DP configuration. Returns last AP read or DP RDBUFF read. |

# 6.2.2.14 css600 dp Select Register, SELECT

The SELECT register selects the DP address bank, and also provides the address for other components in the system, which is used by the APB Master interface on the DP to drive the APB address line.

The address on the address line driven by SELECT register is set at the start of the transfer, and does not change until the next transfer. DPIDR1.ASIZE indicates the width, in bits, of the APB master interface address bus. It is defined by the configuration parameter <u>APB\_ADDR\_WIDTH</u>. The DP can only issue word-aligned addresses, so **paddr[1:0]** are always zero. Bits [3:2] come from APACC, and higher order bits come from the SELECT register. The size of the address in SELECT is defined in DPIDR1.ASIZE. Unimplemented address bits are WI.


The SELECT register characteristics are:

### Attributes

| Offset | 0x0080     |
|--------|------------|
| Туре   | Write-only |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-14: SELECT register bit assignments



The following table shows the bit assignments.

### Table 6-15: SELECT register bit assignments

| Bits   | Reset<br>value | Name      | Function                                                                                                                                     |  |
|--------|----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:4] | 0x0            |           | Address Output bits [31:4]. Selects a four-word bank of system locations to access. Address bits [3:2] are provided with APACC transactions. |  |
| [3:0]  | 0000d0         | DPBANKSEL | Debug Port Address bank select                                                                                                               |  |

# 6.2.2.15 css600 dp Read Buffer Register, RDBUFF

The RDBUFF register captures data from the AP, presented as the result of a previous read.

Access to this register is **DATA LINK DEFINED**. On JTAG-DP, Read Buffer is always RAZ/WI. On SW-DP, the behavior is as follows.

The RDBUFF register characteristics are:

### Attributes

| Offset | 0x000C     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-15: RDBUFF register bit assignments



The following table shows the bit assignments.

#### Table 6-16: RDBUFF register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                                                        |
|--------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | 0x0            |      | Performing a read of the Read Buffer captures data from the AP, presented as the result of a previous read, without initiating a new AP transaction. This means that reading the Read Buffer returns the result of the last AP read access, without generating a new AP access. |
|        |                |      | After you have read the DP Read Buffer, its contents are no longer valid. The result of a second read of the DP<br>Read Buffer returns the result of the last AP read access.                                                                                                   |

# 6.2.2.16 css600\_dp Target Selection Register, TARGETSEL


The TARGETSEL register selects the target device in a Serial Wire Debug multi-drop system. On a JTAG-DP, any access to this register is reserved, RESO. For SW-DP, the register is as shown in the description.

The TARGETSEL register characteristics are:

### Attributes

| Offset | 0x000C     |
|--------|------------|
| Туре   | Write-only |
| Reset  | 0x00000000 |
| Width  | 32         |

### Figure 6-16: TARGETSEL register bit assignments



The following table shows the bit assignments.

#### Table 6-17: TARGETSEL register bit assignments

| Bits    | Reset value                             | Name      | Function                                                                                                    |  |
|---------|-----------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------|--|
| [31:28] | 00000                                   | TINSTANCE | SW-DP: Instance number for this device. Must be unique in a multi-drop system. Must match DLPIDR.TINSTANCE. |  |
| [27:12] | 0x0                                     | TPARTNO   | Target part number. Must match TARGETID.TPARTNO.                                                            |  |
| [11:1]  | 000000000000000000000000000000000000000 | TDESIGNER | Designer ID. Must match TARGETID.TDESIGNER.                                                                 |  |

# 6.3 css600\_apbap introduction

This section describes the programmers model of the css600\_apbap.

# 6.3.1 css600\_apbap register summary

The following table shows the registers in offset order from the base memory address.

A reset value containing one or more '-' means that this register contains **UNKNOWN** or **IMPLEMENTATION-DEFINED** values. See the relevant register description for more information.

Locations that are not listed in the table are Reserved.



The 8KB memory map contains two views of the registers, one starting at  $0 \times 00000000$ , and the other at  $0 \times 00001000$ .

Only 4KB can be accessed as there is no twin AP.

In the case of RW registers, the two views provide independent physical registers. Writing to a RW register in one view does not affect the contents of the same register in the other view. For all read-only registers, the two views provide read access to the same physical register. In this case, reading from either view results in the same data being read.

### Table 6-18: css600\_apbap - APB4\_Slave\_0 register summary

| Offset | Name       | Туре | Reset      | Width | Description                                                     |
|--------|------------|------|------------|-------|-----------------------------------------------------------------|
| 0x0000 | DARO       | RW   | 0x         | 32    | 6.3.2.1 Direct Access Register 0, DAR0 on page 52               |
| 0x0004 | DAR1       | RW   | 0x         | 32    | 6.3.2.2 Direct Access Register 1, DAR1 on page 53               |
| 0x0008 | DAR2       | RW   | 0x         | 32    | 6.3.2.3 Direct Access Register 2, DAR2 on page 54               |
|        |            |      |            |       |                                                                 |
| 0x03FC | DAR255     | RW   | 0x         | 32    | 6.3.2.4 Direct Access Register 255, DAR255 on page 54           |
| 0x0D00 | CSW        | RW   | 0x30-000-2 | 32    | 6.3.2.5 Control Status Word register, CSW on page 55            |
| 0x0D04 | TAR        | RW   | 0x         | 32    | 6.3.2.6 Transfer Address Register, TAR on page 57               |
| 0x0D0C | DRW        | RW   | 0x         | 32    | 6.3.2.7 Data Read/Write register, DRW on page 57                |
| 0x0D10 | BD0        | RW   | 0x         | 32    | 6.3.2.8 Banked Data register 0, BD0 on page 58                  |
| 0x0D14 | BD1        | RW   | 0x         | 32    | 6.3.2.9 Banked Data register 1, BD1 on page 59                  |
| 0x0D18 | BD2        | RW   | 0x         | 32    | 6.3.2.10 Banked Data register 2, BD2 on page 59                 |
| 0x0D1C | BD3        | RW   | 0x         | 32    | 6.3.2.11 Banked Data register 3, BD3 on page 60                 |
| 0x0D24 | TRR        | RW   | 0x0000000  | 32    | 6.3.2.12 Transfer Response Register, TRR on page 61             |
| 0x0DF4 | CFG        | RO   | 0x000101A0 | 32    | 6.3.2.13 Configuration register, CFG on page 61                 |
| 0x0DF8 | BASE       | RO   | 0x00-      | 32    | 6.3.2.14 Debug Base Address register, BASE on page 62           |
| 0x0DFC | IDR        | RO   | 0x34770006 | 32    | 6.3.2.15 Identification Register, IDR on page 63                |
| 0x0EFC | ITSTATUS   | RW   | 0x0000000  | 32    | 6.3.2.16 Integration Test Status register, ITSTATUS on page 64  |
| 0x0F00 | ITCTRL     | RW   | 0x0000000  | 32    | 6.3.2.17 Integration Mode Control Register, ITCTRL on page 64   |
| 0x0FA0 | CLAIMSET   | RW   | 0x0000003  | 32    | 6.3.2.18 Claim Tag Set Register, CLAIMSET on page 65            |
| 0x0FA4 | CLAIMCLR   | RW   | 0x0000000  | 32    | 6.3.2.19 Claim Tag Clear Register, CLAIMCLR on page 66          |
| 0x0FB8 | AUTHSTATUS | RO   | 0x000000   | 32    | 6.3.2.20 Authentication Status Register, AUTHSTATUS on page 67  |
| 0x0FBC | DEVARCH    | RO   | 0x47700A17 | 32    | 6.3.2.21 Device Architecture Register, DEVARCH on page 68       |
| 0x0FCC | DEVTYPE    | RO   | 0x0000000  | 32    | 6.3.2.22 Device Type Identifier Register, DEVTYPE on page 68    |
| 0x0FD0 | PIDR4      | RO   | 0x0000004  | 32    | 6.3.2.23 Peripheral Identification Register 4, PIDR4 on page 69 |
| 0x0FD4 | PIDR5      | RO   | 0x0000000  | 32    | 6.3.2.24 Peripheral Identification Register 5, PIDR5 on page 70 |
| 0x0FD8 | PIDR6      | RO   | 0x0000000  | 32    | 6.3.2.25 Peripheral Identification Register 6, PIDR6 on page 70 |
| 0x0FDC | PIDR7      | RO   | 0x00000000 | 32    | 6.3.2.26 Peripheral Identification Register 7, PIDR7 on page 71 |
| 0x0FE0 | PIDRO      | RO   | 0x000000E2 | 32    | 6.3.2.27 Peripheral Identification Register 0, PIDR0 on page 72 |
| 0x0FE4 | PIDR1      | RO   | 0x00000B9  | 32    | 6.3.2.28 Peripheral Identification Register 1, PIDR1 on page 72 |
| 0x0FE8 | PIDR2      | RO   | 0x000003B  | 32    | 6.3.2.29 Peripheral Identification Register 2, PIDR2 on page 73 |
| 0x0FEC | PIDR3      | RO   | 0x0000000  | 32    | 6.3.2.30 Peripheral Identification Register 3, PIDR3 on page 74 |
| 0x0FF0 | CIDRO      | RO   | 0x000000D  | 32    | 6.3.2.31 Component Identification Register 0, CIDR0 on page 74  |
| 0x0FF4 | CIDR1      | RO   | 0x00000090 | 32    | 6.3.2.32 Component Identification Register 1, CIDR1 on page 75  |
| 0x0FF8 | CIDR2      | RO   | 0x00000005 | 32    | 6.3.2.33 Component Identification Register 2, CIDR2 on page 76  |
| 0x0FFC | CIDR3      | RO   | 0x000000B1 | 32    | 6.3.2.34 Component Identification Register 3, CIDR3 on page 76  |
| 0x1000 | DARO       | RW   | 0x         | 32    | 6.3.2.1 Direct Access Register 0, DAR0 on page 52               |
| 0x1004 | DAR1       | RW   | 0x         | 32    | 6.3.2.2 Direct Access Register 1, DAR1 on page 53               |
| 0x1008 | DAR2       | RW   | 0x         | 32    | 6.3.2.3 Direct Access Register 2, DAR2 on page 54               |
|        |            |      |            |       |                                                                 |

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

| Offset | Name       | Туре | Reset      | Width | Description                                                     |
|--------|------------|------|------------|-------|-----------------------------------------------------------------|
| 0x13FC | DAR255     | RW   | 0x         | 32    | 6.3.2.4 Direct Access Register 255, DAR255 on page 54           |
| 0x1D00 | CSW        | RW   | 0x30-000-2 | 32    | 6.3.2.5 Control Status Word register, CSW on page 55            |
| 0x1D04 | TAR        | RW   | 0x         | 32    | 6.3.2.6 Transfer Address Register, TAR on page 57               |
| 0x1D0C | DRW        | RW   | 0x         | 32    | 6.3.2.7 Data Read/Write register, DRW on page 57                |
| 0x1D10 | BDO        | RW   | 0x         | 32    | 6.3.2.8 Banked Data register 0, BD0 on page 58                  |
| 0x1D14 | BD1        | RW   | 0x         | 32    | 6.3.2.9 Banked Data register 1, BD1 on page 59                  |
| 0x1D18 | BD2        | RW   | 0x         | 32    | 6.3.2.10 Banked Data register 2, BD2 on page 59                 |
| 0x1D1C | BD3        | RW   | 0x         | 32    | 6.3.2.11 Banked Data register 3, BD3 on page 60                 |
| 0x1D24 | TRR        | RW   | 0x0000000  | 32    | 6.3.2.12 Transfer Response Register, TRR on page 61             |
| 0x1DF4 | CFG        | RO   | 0x000101A0 | 32    | 6.3.2.13 Configuration register, CFG on page 61                 |
| 0x1DF8 | BASE       | RO   | 0x00-      | 32    | 6.3.2.14 Debug Base Address register, BASE on page 62           |
| 0x1DFC | IDR        | RO   | 0x34770006 | 32    | 6.3.2.15 Identification Register, IDR on page 63                |
| 0x1EFC | ITSTATUS   | RW   | 0x0000000  | 32    | 6.3.2.16 Integration Test Status register, ITSTATUS on page 64  |
| 0x1F00 | ITCTRL     | RW   | 0x0000000  | 32    | 6.3.2.17 Integration Mode Control Register, ITCTRL on page 64   |
| 0x1FA0 | CLAIMSET   | RW   | 0x0000003  | 32    | 6.3.2.18 Claim Tag Set Register, CLAIMSET on page 65            |
| 0x1FA4 | CLAIMCLR   | RW   | 0x0000000  | 32    | 6.3.2.19 Claim Tag Clear Register, CLAIMCLR on page 66          |
| 0x1FB8 | AUTHSTATUS | RO   | 0x000000   | 32    | 6.3.2.20 Authentication Status Register, AUTHSTATUS on page 67  |
| 0x1FBC | DEVARCH    | RO   | 0x47700A17 | 32    | 6.3.2.21 Device Architecture Register, DEVARCH on page 68       |
| 0x1FCC | DEVTYPE    | RO   | 0x0000000  | 32    | 6.3.2.22 Device Type Identifier Register, DEVTYPE on page 68    |
| 0x1FD0 | PIDR4      | RO   | 0x0000004  | 32    | 6.3.2.23 Peripheral Identification Register 4, PIDR4 on page 69 |
| 0x1FD4 | PIDR5      | RO   | 0x0000000  | 32    | 6.3.2.24 Peripheral Identification Register 5, PIDR5 on page 70 |
| 0x1FD8 | PIDR6      | RO   | 0x0000000  | 32    | 6.3.2.25 Peripheral Identification Register 6, PIDR6 on page 70 |
| 0x1FDC | PIDR7      | RO   | 0x0000000  | 32    | 6.3.2.26 Peripheral Identification Register 7, PIDR7 on page 71 |
| 0x1FE0 | PIDRO      | RO   | 0x00000E2  | 32    | 6.3.2.27 Peripheral Identification Register 0, PIDR0 on page 72 |
| 0x1FE4 | PIDR1      | RO   | 0х00000В9  | 32    | 6.3.2.28 Peripheral Identification Register 1, PIDR1 on page 72 |
| 0x1FE8 | PIDR2      | RO   | 0x000003B  | 32    | 6.3.2.29 Peripheral Identification Register 2, PIDR2 on page 73 |
| 0x1FEC | PIDR3      | RO   | 0x00000000 | 32    | 6.3.2.30 Peripheral Identification Register 3, PIDR3 on page 74 |
| 0x1FF0 | CIDRO      | RO   | 0x000000D  | 32    | 6.3.2.31 Component Identification Register 0, CIDR0 on page 74  |
| 0x1FF4 | CIDR1      | RO   | 0x0000090  | 32    | 6.3.2.32 Component Identification Register 1, CIDR1 on page 75  |
| 0x1FF8 | CIDR2      | RO   | 0x0000005  | 32    | 6.3.2.33 Component Identification Register 2, CIDR2 on page 76  |
| 0x1FFC | CIDR3      | RO   | 0x00000B1  | 32    | 6.3.2.34 Component Identification Register 3, CIDR3 on page 76  |

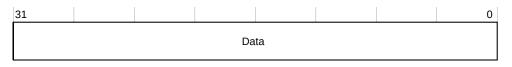
# 6.3.2 css600\_apbap register descriptions

This section describes the css600\_apbap registers.

6.3.1 css600\_apbap register summary on page 50 provides cross references to individual registers.

# 6.3.2.1 Direct Access Register 0, DAR0

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.


The DARO register characteristics are:

### Attributes

| Offset | 0x0000     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-17: DAR0 register bit assignments



The following table shows the bit assignments.

#### Table 6-19: DAR0 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                          |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFC00$ ) + $0x0$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

### 6.3.2.2 Direct Access Register 1, DAR1

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.

The DAR1 register characteristics are:

### Attributes

| Offset | 0x0004     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

### Figure 6-18: DAR1 register bit assignments



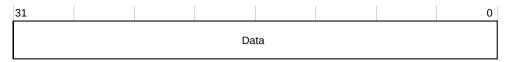
The following table shows the bit assignments.

### Table 6-20: DAR1 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                        |
|--------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFC00$ ) + $0 \times 4$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

### 6.3.2.3 Direct Access Register 2, DAR2

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.


The DAR2 register characteristics are:

### Attributes

| Offset | 0x0008     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-19: DAR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-21: DAR2 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                        |
|--------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFC00$ ) + $0 \times 8$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

# 6.3.2.4 Direct Access Register 255, DAR255

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.


The DAR255 register characteristics are:

### Attributes

| Offset | 0x03FC     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-20: DAR255 register bit assignments

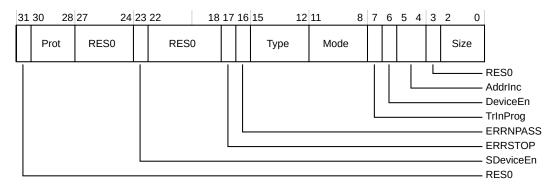


The following table shows the bit assignments.

#### Table 6-22: DAR255 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                            |
|--------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFC00$ ) + $0x3FC$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

### 6.3.2.5 Control Status Word register, CSW


The CSW register configures and controls accesses through the APB master interface to the connected memory system.

The CSW register characteristics are:

### Attributes

| Offset | 0x0D00     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x30-000-2 |
| Width  | 32         |

### Figure 6-21: CSW register bit assignments



The following table shows the bit assignments.

### Table 6-23: CSW register bit assignments

| Bits    | Reset<br>value | Name      | Function                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------|----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31]    | 0b0            | RESO      | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior.                                                                                                                                                                                                                                                                                                                                           |  |
| [30:28] | 0b011          | Prot      | Drives APB master interface <b>pprot_m[2:0]</b> which specifies the APB4 protection encoding. The reset value is $0 \times 3$ (Data, Non-secure, Privileged). Together with the Access Port Enable interface signals, CSW.Prot[1] determines whether a secure access is allowed on the master interface. Accesses are permitted as follows: access_permitted = (ap_en && ap_secure_en)    (ap_en && CSW.Prot[1]). |  |
| [27:24] | 0000d0         | RESO      | Reserved bit or field with SBZP behavior.                                                                                                                                                                                                                                                                                                                                                                         |  |
| [23]    | UNKNOWN        | SDeviceEn | Indicates the status of the <b>ap_en</b> and <b>ap_secure_en</b> ports. It is set when both <b>ap_en</b> and <b>ap_secure_en</b> are HIGH, and remains clear otherwise. If this bit is clear, Secure APB transfers are not permitted. Non-secure memory accesses and internal register accesses that do not initiate memory accesses are permitted regardless of the status of this bit.                          |  |
| [22:18] | 0000000        | RESO      | Reserved bit or field with SBZP behavior.                                                                                                                                                                                                                                                                                                                                                                         |  |
| [17]    | 0b0            | ERRSTOP   | Stop on error. Reset to 0.                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         |                |           | <ul> <li>Memory access errors do not prevent future memory accesses</li> <li>Memory access errors prevent future memory accesses</li> </ul>                                                                                                                                                                                                                                                                       |  |
| [16]    | 0b0            | ERRNPASS  | Errors are not passed upstream.                                                                                                                                                                                                                                                                                                                                                                                   |  |
|         |                |           | <ul> <li>Memory access errors are passed upstream</li> <li>Memory access errors are not passed upstream</li> </ul>                                                                                                                                                                                                                                                                                                |  |
| [15:12] | 000000         | Туре      | This field is reserved. Reads return 0x0 and writes are ignored.                                                                                                                                                                                                                                                                                                                                                  |  |
| [11:8]  | 000000         | Mode      | Specifies the mode of operation. Reset to 0x0. All other values are reserved.                                                                                                                                                                                                                                                                                                                                     |  |
|         |                |           | 0x0 Normal download or upload mode                                                                                                                                                                                                                                                                                                                                                                                |  |
| [7]     | 0b0            | TrInProg  | Transfer in progress. This field indicates whether a transfer is in progress on the APB master interface.                                                                                                                                                                                                                                                                                                         |  |
| [6]     | UNKNOWN        | DeviceEn  | Indicates the status of the <b>ap_en</b> port. The bit is set when <b>ap_en</b> is HIGH, and is clear otherwise. If this bit is clear, no APB transfers are carried out, that is, both Secure and Non-secure accesses are blocked.                                                                                                                                                                                |  |
| [5:4]   | 00d0           | AddrInc   | Auto address increment mode on RW data access. Only increments if the current transaction completes without an error response and the transaction is not aborted. Reset to 0b0.                                                                                                                                                                                                                                   |  |
|         |                |           | 0x0Auto increment OFF0x1Increment, single. Single transfer from corresponding byte lane0x2Reserved0x3Reserved                                                                                                                                                                                                                                                                                                     |  |
| [3]     | 0b0            | RESO      | Reserved bit or field with SBZP behavior                                                                                                                                                                                                                                                                                                                                                                          |  |

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

| Bits  | Reset<br>value | Name | Function                                                                                                                                 |
|-------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| [2:0] | 0b010          |      | Size of the data access to perform. The APB-AP supports only word accesses and this field is fixed at $0x2$ . The reset value is $0x2$ . |

### 6.3.2.6 Transfer Address Register, TAR

TAR holds the transfer address of the current transfer. TAR must be programmed before initiating any memory transfer through DRW, or Banked Data Registers, or Direct Access Registers.

The TAR register characteristics are:

Attributes

| Offset | 0x0D04     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-22: TAR register bit assignments

| 31 |  |      |     |  | 0 |
|----|--|------|-----|--|---|
|    |  | Addr | ess |  |   |
|    |  |      |     |  |   |

The following table shows the bit assignments.

#### Table 6-24: TAR register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Address of the current transfer. When a memory access is initiated by accessing the DRW register, the TAR value directly gives the 32-bit transfer address. When a memory access is initiated by accessing Banked Data registers, the TAR only provides the upper bits [31:4] and the remaining address bits [3:0] come from the offset of Banked Data register being accessed. When a memory access is initiated by accessing Direct Access Registers, the TAR provides the upper bits [31:10] and the remaining address bits [9:0] come from the offset of the DAR being accessed. |

### 6.3.2.7 Data Read/Write register, DRW

A write to the DRW register initiates a memory write transaction on the master. AP drives DRW write data on the data bus during the data phase of the current transfer. Reading the DRW register initiates a memory read transaction on the master. The resulting read data that is received from the memory system is returned on the slave interface.

The DRW register characteristics are:

### Attributes

| Offset | 0x0D0C     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-23: DRW register bit assignments



The following table shows the bit assignments.

#### Table 6-25: DRW register bit assignments

| Bits  | Reset<br>value | Name | Function                                                                                                                                                                                                           |
|-------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0] | UNKNOWN        |      | Current transfer data value. In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.3.2.8 Banked Data register 0, BD0

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.

The BDO register characteristics are:

### Attributes

| Offset | 0x0D10     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-24: BD0 register bit assignments

| 31 |  |    |    |  | 0 |
|----|--|----|----|--|---|
|    |  | Da | ta |  |   |
|    |  |    |    |  |   |

### Table 6-26: BD0 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                 |
|--------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & 0xFFFFFFF0) + 0x0). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.3.2.9 Banked Data register 1, BD1

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.

The BD1 register characteristics are:

### Attributes

| 0x0D14     |
|------------|
| Read-write |
| 0x         |
| 32         |
|            |

The following figure shows the bit assignments.

### Figure 6-25: BD1 register bit assignments

| 31 |  |      |  | <br>0 |
|----|--|------|--|-------|
|    |  | Data |  |       |
|    |  |      |  |       |

The following table shows the bit assignments.

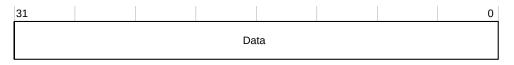
### Table 6-27: BD1 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                |
|--------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & 0xFFFFFF0) + 0x4). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.3.2.10 Banked Data register 2, BD2

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.

The BD2 register characteristics are:


### Attributes

| Offset | 0x0D18     |
|--------|------------|
| Туре   | Read-write |

| Reset | 0x |
|-------|----|
| Width | 32 |

The following figure shows the bit assignments.

### Figure 6-26: BD2 register bit assignments



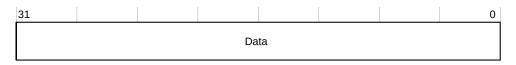
The following table shows the bit assignments.

#### Table 6-28: BD2 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                                    |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFF0$ ) + $0 \times 8$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.3.2.11 Banked Data register 3, BD3

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.


The BD3 register characteristics are:

#### Attributes

| Offset | 0x0D1C     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-27: BD3 register bit assignments



### Table 6-29: BD3 register bit assignments

|        | Reset<br>value | Name | Function                                                                                                                                                                                                                                      |  |
|--------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | value          |      |                                                                                                                                                                                                                                               |  |
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFF0$ ) + $0xC$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |  |

### 6.3.2.12 Transfer Response Register, TRR

The Transfer Response Register is used to capture an error response received during a transaction. It is also used to clear any logged responses.

The TRR register characteristics are:

### Attributes

| Offset | 0x0D24     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-28: TRR register bit assignments



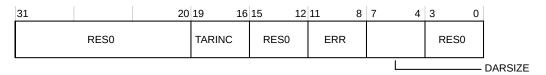
The following table shows the bit assignments.

#### Table 6-30: TRR register bit assignments

| Bits   | Reset value | Name   | Function                                                                                                                                                                       |
|--------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:1] | 0x0         | RAZ/WI | Read-As-Zero, Writes Ignored                                                                                                                                                   |
| [O]    | 0b0         | ERR    | Logged error.                                                                                                                                                                  |
|        |             |        | <ul> <li>On reads, no error response logged. Writing to this bit has no effect.</li> <li>On reads, error response logged. Writing to this bit clears this bit to 0.</li> </ul> |

### 6.3.2.13 Configuration register, CFG

This is the APBAP Configuration register.


The CFG register characteristics are:

### Attributes

| Offset | 0x0DF4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x000101A0 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-29: CFG register bit assignments

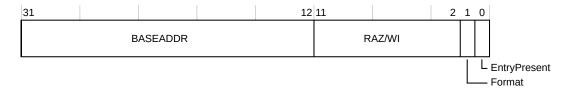


The following table shows the bit assignments.

### Table 6-31: CFG register bit assignments

| Bits    | Reset value                             | Name    | Function                                                                                                                                                                                                                               |  |
|---------|-----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:20] | 000000000000000000000000000000000000000 | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                                 |  |
| [19:16] | 0b0001                                  | TARINC  | TAR incrementer size. Returns 0x1 indicating a TAR incrementer size of 10-bits.                                                                                                                                                        |  |
| [15:12] | 00000                                   | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                                 |  |
| [11:8]  | 0b0001                                  | ERR     | Indicates the type of error handling that is implemented.                                                                                                                                                                              |  |
|         |                                         |         | <ul> <li>0x0 Error response handling 0. This means that CSW.ERRNPASS, CSW.ERRSTOP, and TRR are not implemented.</li> <li>0x1 Error response handling 1. This means that CSW.ERRNPASS, CSW.ERRSTOP, and TRR are implemented.</li> </ul> |  |
| [7:4]   | 0b1010                                  | DARSIZE | Size of DAR register space. Returns 0xA indicating that 1KB (256 registers, each 32-bit wide) of DAR is implemented.                                                                                                                   |  |
| [3:0]   | 00000                                   | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                                 |  |

# 6.3.2.14 Debug Base Address register, BASE


Provides an initial system address for the first component in the system. Typically, the system address is the address of a top-level

The BASE register characteristics are:

### Attributes

| Offset | 0x0DF8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00-     |
| Width  | 32        |

### Figure 6-30: BASE register bit assignments



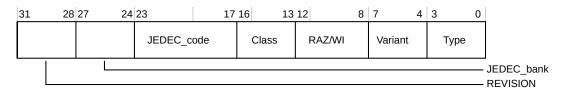
The following table shows the bit assignments.

Table 6-32: BASE register bit assignments

| Bits    | Reset value                             | Name         | Function                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------|-----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:12] | IMPLEMENTATION<br>DEFINED               | BASEADDR     | Base address of a ROM table. It points to the start of the debug register space or a ROM table address. Bits[11:0] of the address are 0x000 because the address is aligned to 4KB boundary. This field is valid only if BASE.EntryPresent bit is set to 1, in which case it returns the tie-off value of the input signal <b>baseaddr[31:12]</b> , otherwise, it reads as 0x0. |  |
| [11:2]  | 000000000000000000000000000000000000000 | RAZ/WI       | Read-As-Zero, Writes Ignored                                                                                                                                                                                                                                                                                                                                                   |  |
| [1]     | 0b1                                     | Format       | Base address register format. Returns the value 0b1 indicating the ADIv5 format, which is unchanged in ADIv6.                                                                                                                                                                                                                                                                  |  |
| [0]     | IMPLEMENTATION<br>DEFINED               | EntryPresent | This field indicates whether a debug component is present for this AP. It returns the tie-off value of the input signal <b>baseaddr_valid</b> .                                                                                                                                                                                                                                |  |
|         |                                         |              | <ul> <li>No debug entry present</li> <li>Debug entry present and BASE.BASEADDR indicate the start address of the debug register space or ROM table</li> </ul>                                                                                                                                                                                                                  |  |

# 6.3.2.15 Identification Register, IDR

The IDR provides a mechanism for the debugger to know various identity attributes of the AP.


The IDR register characteristics are:

#### Attributes

| Offset | 0x0DFC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x34770006 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-31: IDR register bit assignments



The following table shows the bit assignments.

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

### Table 6-33: IDR register bit assignments

| Bits    | Reset value | Name       | Function                                                                                                                                                                      |
|---------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | 0b0011      | REVISION   | Revision. An incremental value starting at 0x0 for the first design of a component. See the Component list in Chapter 1 for information on the RTL revision of the component. |
| [27:24] | 0b0100      | JEDEC_bank | The JEP106 continuation code. Returns 0x4, indicating Arm as the designer.                                                                                                    |
| [23:17] | 0b0111011   | JEDEC_code | The JEP106 identification code. Returns $0x3B$ , indicating Arm as the designer.                                                                                              |
| [16:13] | 0b1000      | Class      | Returns $0x8$ , indicating that this is a MEM-AP                                                                                                                              |
| [12:8]  | 0b00000     | RAZ/WI     | Read-As-Zero, Writes Ignored                                                                                                                                                  |
| [7:4]   | 0b0000      | Variant    | Returns 0x0, indicating no variation from base type specified by IDR.Type                                                                                                     |
| [3:0]   | 0b0110      | Туре       | Returns 0x6, indicating that this is an APB4 Access Port                                                                                                                      |

### 6.3.2.16 Integration Test Status register, ITSTATUS

Indicates the Integration Test DP Abort status.

The ITSTATUS register characteristics are:

### Attributes

| Offset | 0x0EFC     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-32: ITSTATUS register bit assignments



The following table shows the bit assignments.

### Table 6-34: ITSTATUS register bit assignments

| Bits   | Reset<br>value | Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:1] | 0x0            | RAZ/WI | Read-As-Zero, Writes Ignored                                                                                                                                                                                                                                                                                                                                                                                  |
| [0]    | 0d0            |        | When in Integration testing mode (ITCTRL.IME=0b1): Behaves as a sticky bit and latches to 1 on a rising edge of <b>dp_abort</b> . Cleared on a read from this register. If <b>dp_abort</b> rises in the same cycle as a read of the ITSTATUS register is received, the read takes priority and the register is cleared. When in normal functional operation mode (ITCTRL.IME=0b0): Read as 0, writes ignored. |

# 6.3.2.17 Integration Mode Control Register, ITCTRL

The Integration Mode Control register is used to enable topology detection.

The ITCTRL register characteristics are:

Attributes

| Offset | 0x0F00     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-33: ITCTRL register bit assignments



The following table shows the bit assignments.

### Table 6-35: ITCTRL register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                                      |
|--------|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| [31:1] | 0x0            | RAZ/<br>WI | Read-As-Zero, Writes Ignored                                                                                                                  |
| [0]    | 0b0            | IME        | Integration Mode Enable. When set, the component enters integration mode, enabling topology detection or integration testing to be performed. |

### 6.3.2.18 Claim Tag Set Register, CLAIMSET

This register forms one half of the claim tag value. On writes, this location enables individual bits to be set. On reads, it returns the number of bits that can be set.

The CLAIMSET register characteristics are:

Attributes

| Offset | 0x0FA0     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x0000003  |
| Width  | 32         |

### Figure 6-34: CLAIMSET register bit assignments

| 31 |  |   |        |  | 2 | 1  | 0 |
|----|--|---|--------|--|---|----|---|
|    |  | F | RAZ/WI |  |   | SE |   |

The following table shows the bit assignments.

#### Table 6-36: CLAIMSET register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                |
|--------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| [31:2] | 0x0            | RAZ/<br>WI | Read-As-Zero, Writes Ignored                                                                                            |
| [1:0]  | 0b11           | SET        | A bit-programmable register bank that sets the claim tag value. A read returns a logic 1 for all implemented locations. |

# 6.3.2.19 Claim Tag Clear Register, CLAIMCLR

This register forms one half of the claim tag value. On writes, this location enables individual bits to be cleared. On reads, it returns the current claim tag value.

The CLAIMCLR register characteristics are:

### Attributes

| Offset | 0x0FA4     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-35: CLAIMCLR register bit assignments

| 31 |  |        |  | 2 | 1 0 |
|----|--|--------|--|---|-----|
|    |  | RAZ/WI |  |   | CLR |

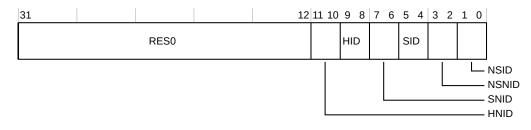
The following table shows the bit assignments.

#### Table 6-37: CLAIMCLR register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                                                                                                                |
|--------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:2] | 0x0            | RAZ/<br>WI | Read-As-Zero, Writes Ignored                                                                                                                                                                                            |
| [1:0]  | 0b00           |            | A bit-programmable register bank that clears the claim tag value. It is zero at reset. It is used by software agents to signal to each other ownership of the hardware. It has no direct effect on the hardware itself. |

### 6.3.2.20 Authentication Status Register, AUTHSTATUS

Reports the current status of the authentication control signals.


The AUTHSTATUS register characteristics are:

### Attributes

| Offset | 0x0FB8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

### Figure 6-36: AUTHSTATUS register bit assignments



The following table shows the bit assignments.

### Table 6-38: AUTHSTATUS register bit assignments

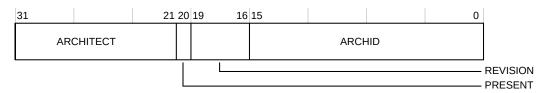
| Bits    | Reset value | Name | Function                                                                                                                                                                   |  |  |
|---------|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:12] | 0x0         | RESO | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                     |  |  |
| [11:10] | 0000        | HNID | Hypervisor non-invasive debug:                                                                                                                                             |  |  |
|         |             |      | 0x0Functionality not implemented or controlled elsewhere0x1Reserved0x2Functionality disabled0x3Functionality enabled                                                       |  |  |
| [9:8]   | 0000        | HID  | Hypervisor invasive debug:                                                                                                                                                 |  |  |
|         |             |      | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |  |  |
| [7:6]   | UNKNOWN     | SNID | Secure non-invasive debug:                                                                                                                                                 |  |  |
|         |             |      | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |  |  |
| [5:4]   | UNKNOWN     | SID  | Secure invasive debug:                                                                                                                                                     |  |  |
|         |             |      | 0x0Functionality not implemented or controlled elsewhere0x1Reserved0x2Functionality disabled0x3Functionality enabled                                                       |  |  |

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

| Bits  | Reset value | Name  | Function                                                                                                             |
|-------|-------------|-------|----------------------------------------------------------------------------------------------------------------------|
| [3:2] | UNKNOWN     | NSNID | Non-secure non-invasive debug:                                                                                       |
|       |             |       | 0x0Functionality not implemented or controlled elsewhere0x1Reserved0x2Functionality disabled0x3Functionality enabled |
| [1:0] | UNKNOWN     | NSID  | Non-secure invasive debug:                                                                                           |
|       |             |       | 0x0Functionality not implemented or controlled elsewhere0x1Reserved0x2Functionality disabled0x3Functionality enabled |

# 6.3.2.21 Device Architecture Register, DEVARCH

Identifies the architect and architecture of a CoreSight component. The architect might differ from the designer of a component, for example Arm defines the architecture but another company designs and implements the component.


The DEVARCH register characteristics are:

### Attributes

| 0x0FBC     |
|------------|
| Read-only  |
| 0x47700A17 |
| 32         |
|            |

The following figure shows the bit assignments.

### Figure 6-37: DEVARCH register bit assignments



The following table shows the bit assignments.

### Table 6-39: DEVARCH register bit assignments

| Bits    | Reset value   | Name      | Function                                                                                         |
|---------|---------------|-----------|--------------------------------------------------------------------------------------------------|
| [31:21] | 0b01000111011 | ARCHITECT | Returns $0x23B$ , denoting Arm as architect of the component                                     |
| [20]    | 0b1           | PRESENT   | Returns 1, indicating that the DEVARCH register is present                                       |
| [19:16] | 0b0000        | REVISION  | Architecture revision. Returns the revision of the architecture that the ARCHID field specifies. |
| [15:0]  | 0xA17         | ARCHID    | Architecture ID. Returns 0x0A17, identifying APv2 MEM-AP architecture v0.                        |

# 6.3.2.22 Device Type Identifier Register, DEVTYPE

A debugger can use this register to get information about a component that has an unrecognized Part number.

The DEVTYPE register characteristics are:

### Attributes

| Offset | 0x0FCC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-38: DEVTYPE register bit assignments

| 31 |  |      |  | 8 | 7   | 43   | 0  |
|----|--|------|--|---|-----|------|----|
|    |  | RES0 |  |   | SUB | MAJO | DR |

The following table shows the bit assignments.

### Table 6-40: DEVTYPE register bit assignments

| Bits   | Reset value | Name  | unction                                                                |  |  |
|--------|-------------|-------|------------------------------------------------------------------------|--|--|
| [31:8] | 0x0         | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |  |  |
| [7:4]  | 000000      | SUB   | nor classification. Returns 0x0, Other/undefined.                      |  |  |
| [3:0]  | 0b0000      | MAJOR | Major classification. Returns 0x0, Miscellaneous.                      |  |  |

### 6.3.2.23 Peripheral Identification Register 4, PIDR4

The PIDR4 register is part of the set of peripheral identification registers.

The PIDR4 register characteristics are:

### Attributes

| Offset | 0x0FD0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x0000004 |
| Width  | 32        |

### Figure 6-39: PIDR4 register bit assignments

| 31 |  |      |  | 8 | 7 4  | 3 0   |
|----|--|------|--|---|------|-------|
|    |  | RES0 |  |   | SIZE | DES_2 |

The following table shows the bit assignments.

#### Table 6-41: PIDR4 register bit assignments

| Bits   | Reset<br>value | Name  | Function                                                                                                                                                                                                                 |
|--------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                   |
| [7:4]  | 0000d0         | SIZE  | Indicates the memory size that is used by this component. Returns 0 indicating that the component uses an <b>UNKNOWN</b> number of 4KB blocks. Using the SIZE field to indicate the size of the component is deprecated. |
| [3:0]  | 0b0100         | DES_2 | JEP106 continuation code. Together, with PIDR2.DES_1 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same.                                            |

### 6.3.2.24 Peripheral Identification Register 5, PIDR5

The PIDR5 register is part of the set of peripheral identification registers.

The PIDR5 register characteristics are:

### Attributes

| Offset | 0x0FD4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-40: PIDR5 register bit assignments

| 31 |    |     | 8 | 7   | 0  |
|----|----|-----|---|-----|----|
|    | RE | ES0 |   | PID | R5 |

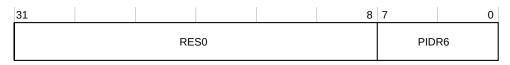
The following table shows the bit assignments.

#### Table 6-42: PIDR5 register bit assignments

| Bits   | Reset value    | Name  | Inction                                                                |  |  |  |
|--------|----------------|-------|------------------------------------------------------------------------|--|--|--|
| [31:8] | 0x0            | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |  |  |  |
| [7:0]  | 00000000000000 | PIDR5 | Reserved                                                               |  |  |  |

# 6.3.2.25 Peripheral Identification Register 6, PIDR6

The PIDR6 register is part of the set of peripheral identification registers.


The PIDR6 register characteristics are:

Attributes

| Offset | 0x0FD8     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-41: PIDR6 register bit assignments



The following table shows the bit assignments.

#### Table 6-43: PIDR6 register bit assignments

| Bits   | Reset value     | Name  | Function                                                               |
|--------|-----------------|-------|------------------------------------------------------------------------|
| [31:8] | 0x0             | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 060000000000000 | PIDR6 | Reserved                                                               |

### 6.3.2.26 Peripheral Identification Register 7, PIDR7

The PIDR7 register is part of the set of peripheral identification registers.

The PIDR7 register characteristics are:

#### Attributes

| Offset | 0x0FDC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-42: PIDR7 register bit assignments

| 31 |     |    | 8 | 7   | 0  |
|----|-----|----|---|-----|----|
|    | RES | 60 |   | PID | R7 |

The following table shows the bit assignments.

Copyright © 2016, 2019–2020, 2022 Arm Limited (or its affiliates). All rights reserved. Non-Confidential

### Table 6-44: PIDR7 register bit assignments

| Bits   | Reset value      | Name  | Function                                                               |
|--------|------------------|-------|------------------------------------------------------------------------|
| [31:8] | 0x0              | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0600000000000000 | PIDR7 | Reserved                                                               |

### 6.3.2.27 Peripheral Identification Register 0, PIDRO

The PIDRO register is part of the set of peripheral identification registers.

The PIDRO register characteristics are:

### Attributes

| Offset | 0x0FE0     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x000000E2 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-43: PIDR0 register bit assignments

| 31 |    |    | 8 | 7   |     | 0 |
|----|----|----|---|-----|-----|---|
|    | RE | S0 |   | PAR | Г_0 |   |

The following table shows the bit assignments.

#### Table 6-45: PIDR0 register bit assignments

| Bits   | Reset value | Name | Function                                                                                                                                           |
|--------|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                             |
| [7:0]  | 0b11100010  | _    | Part number, bits[7:0]. Taken together with PIDR1.PART_1 it indicates the component. The Part Number is selected by the designer of the component. |

### 6.3.2.28 Peripheral Identification Register 1, PIDR1

The PIDR1 register is part of the set of peripheral identification registers.

The PIDR1 register characteristics are:

### Attributes

| Offset | 0x0FE4    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00000B9 |
| Width  | 32        |

### Figure 6-44: PIDR1 register bit assignments

| 31 |  |      |  | 8 | 7 4   | 3 0    |
|----|--|------|--|---|-------|--------|
|    |  | RES0 |  |   | DES_0 | PART_1 |

The following table shows the bit assignments.

#### Table 6-46: PIDR1 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                   |
|--------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                     |
| [7:4]  | 0b1011         |      | JEP106 identification code, bits[3:0]. Together, with PIDR4.DES_2 and PIDR2.DES_1, they indicate the designer of the component and not the implementer, except where the two are the same. |
| [3:0]  | 0b1001         |      | Part number, bits[11:8]. Taken together with PIDRO.PART_O it indicates the component. The Part Number is selected by the designer of the component.                                        |

## 6.3.2.29 Peripheral Identification Register 2, PIDR2

The PIDR2 register is part of the set of peripheral identification registers.


The PIDR2 register characteristics are:

### Attributes

| Offset | 0x0FE8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000003B |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-45: PIDR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-47: PIDR2 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                     |
|--------|----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                       |
| [7:4]  | 0b0011         |      | Revision. It is an incremental value starting at $0 \times 0$ for the first design of a component. See the Component list in Chapter 1 for information on the RTL revision of the component. |

| Bits  | Reset<br>value | Name  | Function                                                                                                                                                                                   |
|-------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [3]   | 0b1            | JEDEC | 1 - Always set. Indicates that a JEDEC assigned value is used.                                                                                                                             |
| [2:0] | 0b011          | DES_1 | JEP106 identification code, bits[6:4]. Together, with PIDR4.DES_2 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same. |

## 6.3.2.30 Peripheral Identification Register 3, PIDR3

The PIDR3 register is part of the set of peripheral identification registers.

The PIDR3 register characteristics are:

Attributes

| Offset | 0x0FEC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-46: PIDR3 register bit assignments

| 31 |     |    | 8 | 7 4    | 3 0  |
|----|-----|----|---|--------|------|
|    | RES | 50 |   | REVAND | CMOD |

The following table shows the bit assignments.

#### Table 6-48: PIDR3 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                           |
|--------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                             |
| [7:4]  | 0b0000         |      | This field indicates minor errata fixes specific to this design, for example metal fixes after implementation. In most cases this field is $0 \times 0$ .                          |
| [3:0]  | 0b0000         |      | Customer Modified. Where the component is reusable IP, this value indicates if the customer has modified the behavior of the component. In most cases this field is $0 \times 0$ . |

## 6.3.2.31 Component Identification Register 0, CIDR0

The CIDRO register is part of the set of component identification registers.

The CIDRO register characteristics are:

### Attributes

| Offset | 0x0FF0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000D |

### Width 32

The following figure shows the bit assignments.

### Figure 6-47: CIDR0 register bit assignments



The following table shows the bit assignments.

#### Table 6-49: CIDR0 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b00001101  | PRMBL_0 | Preamble. Returns 0x0D.                                                |

## 6.3.2.32 Component Identification Register 1, CIDR1

The CIDR1 register is part of the set of component identification registers.

The CIDR1 register characteristics are:

### Attributes

| Offset | 0x0FF4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000090 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-48: CIDR1 register bit assignments



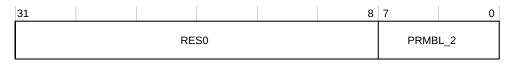
The following table shows the bit assignments.

#### Table 6-50: CIDR1 register bit assignments

| Bits   | Reset value | Name    | Function                                                                   |
|--------|-------------|---------|----------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior     |
| [7:4]  | 0b1001      | CLASS   | Component class. Returns $0x9$ , indicating this is a CoreSight component. |
| [3:0]  | 0000d0      | PRMBL_1 | Preamble. Returns 0x0.                                                     |

## 6.3.2.33 Component Identification Register 2, CIDR2

The CIDR2 register is part of the set of component identification registers.


The CIDR2 register characteristics are:

#### Attributes

| Offset | 0x0FF8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x0000005 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-49: CIDR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-51: CIDR2 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b00000101  | PRMBL_2 | Preamble. Returns 0x05.                                                |

## 6.3.2.34 Component Identification Register 3, CIDR3

The CIDR3 register is part of the set of component identification registers.

The CIDR3 register characteristics are:

#### Attributes

| Offset | OxOFFC    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00000B1 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-50: CIDR3 register bit assignments



The following table shows the bit assignments.

#### Table 6-52: CIDR3 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b10110001  | PRMBL_3 | Preamble. Returns 0xB1.                                                |

# 6.4 css600\_ahbap introduction

This section describes the programmers model of the css600\_ahbap.

## 6.4.1 Register summary

The following table shows the registers in offset order from the base memory address.

A reset value containing one or more '-' means that this register contains **UNKNOWN** or **IMPLEMENTATION-DEFINED** values. See the relevant register description for more information.

Locations that are not listed in the table are Reserved.



The 8KB memory map contains two views of the registers, one starting at  $0 \times 00000000$ , and the other at  $0 \times 00001000$ .

Only 4KB can be accessed as there is no twin AP.

In the case of RW registers, the two views provide independent physical registers. Writing to a RW register in one view does not affect the contents of the same register in the other view. For all read-only registers, the two views provide read access to the same physical register. In this case, reading from either view results in the same data being read.

#### Table 6-53: css600\_ahbap - APB4\_Slave\_0 register summary

| Offset | Name   | Туре | Reset      | Width | Description                                           |  |
|--------|--------|------|------------|-------|-------------------------------------------------------|--|
| 0x0000 | DARO   | RW   | 0x         | 32    | 6.4.2.1 Direct Access Register 0, DAR0 on page 79     |  |
| 0x0004 | DAR1   | RW   | 0x         | 32    | 6.4.2.2 Direct Access Register 1, DAR1 on page 80     |  |
| 0x0008 | DAR2   | RW   | 0x         | 32    | 6.4.2.3 Direct Access Register 2, DAR2 on page 80     |  |
|        |        |      |            |       |                                                       |  |
| 0x03FC | DAR255 | RW   | 0x         | 32    | 6.4.2.4 Direct Access Register 255, DAR255 on page 81 |  |
| 0x0D00 | CSW    | RW   | 0x43-000-2 | 32    | 6.4.2.5 Control Status Word register, CSW on page 82  |  |
| 0x0D04 | TAR    | RW   | 0x         | 32    | 6.4.2.6 Transfer Address Register, TAR on page 84     |  |
| 0x0D0C | DRW    | RW   | 0x         | 32    | 6.4.2.7 Data Read/Write register, DRW on page 85      |  |

| Offset | Name       | Туре | Reset      | Width | Description                                                      |  |
|--------|------------|------|------------|-------|------------------------------------------------------------------|--|
| 0x0D10 | BDO        | RW   | 0x         | 32    | 6.4.2.8 Banked Data register 0, BD0 on page 85                   |  |
| 0x0D14 | BD1        | RW   | 0x         | 32    | 6.4.2.9 Banked Data register 1, BD1 on page 86                   |  |
| 0x0D18 | BD2        | RW   | 0x         | 32    | 6.4.2.10 Banked Data register 2, BD2 on page 87                  |  |
| 0x0D1C | BD3        | RW   | 0x         | 32    | 6.4.2.11 Banked Data register 3, BD3 on page 87                  |  |
| 0x0D24 | TRR        | RW   | 0x0000000  | 32    | 6.4.2.12 Transfer Response Register, TRR on page 88              |  |
| 0x0DF4 | CFG        | RO   | 0x000101A0 | 32    | 6.4.2.13 Configuration register, CFG on page 89                  |  |
| 0x0DF8 | BASE       | RO   | 0x00-      | 32    | 6.4.2.14 Debug Base Address register, BASE on page 89            |  |
| 0x0DFC | IDR        | RO   | 0x44770008 | 32    | 6.4.2.15 Identification Register, IDR on page 90                 |  |
| 0x0EFC | ITSTATUS   | RW   | 0x0000000  | 32    | 6.4.2.16 Integration Test Status register, ITSTATUS on page 91   |  |
| 0x0F00 | ITCTRL     | RW   | 0x0000000  | 32    | 6.4.2.17 Integration Mode Control Register, ITCTRL on page 92    |  |
| 0x0FA0 | CLAIMSET   | RW   | 0x0000003  | 32    | 6.4.2.18 Claim Tag Set Register, CLAIMSET on page 92             |  |
| 0x0FA4 | CLAIMCLR   | RW   | 0x0000000  | 32    | 6.4.2.19 Claim Tag Clear Register, CLAIMCLR on page 93           |  |
| 0x0FB8 | AUTHSTATUS | RO   | 0x000000   | 32    | 6.4.2.20 Authentication Status Register, AUTHSTATUS on page 94   |  |
| 0x0FBC | DEVARCH    | RO   | 0x47700A17 | 32    | 6.4.2.21 Device Architecture Register, DEVARCH on page 95        |  |
| 0x0FCC | DEVTYPE    | RO   | 0x0000000  | 32    | 6.4.2.22 Device Type Identifier Register, DEVTYPE on page 96     |  |
| 0x0FD0 | PIDR4      | RO   | 0x0000004  | 32    | 6.4.2.23 Peripheral Identification Register 4, PIDR4 on page 97  |  |
| 0x0FD4 | PIDR5      | RO   | 0x0000000  | 32    | 6.4.2.24 Peripheral Identification Register 5, PIDR5 on page 97  |  |
| 0x0FD8 | PIDR6      | RO   | 0x00000000 | 32    | 6.4.2.25 Peripheral Identification Register 6, PIDR6 on page 98  |  |
| 0x0FDC | PIDR7      | RO   | 0x00000000 | 32    | 6.4.2.26 Peripheral Identification Register 7, PIDR7 on page 98  |  |
| 0x0FE0 | PIDRO      | RO   | 0x00000E3  | 32    | 6.4.2.27 Peripheral Identification Register 0, PIDR0 on page 99  |  |
| 0x0FE4 | PIDR1      | RO   | 0x00000B9  | 32    | 6.4.2.28 Peripheral Identification Register 1, PIDR1 on page 100 |  |
| 0x0FE8 | PIDR2      | RO   | 0x000004B  | 32    | 6.4.2.29 Peripheral Identification Register 2, PIDR2 on page 100 |  |
| 0x0FEC | PIDR3      | RO   | 0x00000000 | 32    | 6.4.2.30 Peripheral Identification Register 3, PIDR3 on page 101 |  |
| 0x0FF0 | CIDRO      | RO   | 0x000000D  | 32    | 6.4.2.31 Component Identification Register 0, CIDRO on page 102  |  |
| 0x0FF4 | CIDR1      | RO   | 0x0000090  | 32    | 6.4.2.32 Component Identification Register 1, CIDR1 on page 102  |  |
| 0x0FF8 | CIDR2      | RO   | 0x0000005  | 32    | 6.4.2.33 Component Identification Register 2, CIDR2 on page 103  |  |
| 0x0FFC | CIDR3      | RO   | 0x00000B1  | 32    | 6.4.2.34 Component Identification Register 3, CIDR3 on page 104  |  |
| 0x1000 | DARO       | RW   | 0x         | 32    | 6.4.2.1 Direct Access Register 0, DAR0 on page 79                |  |
| 0x1004 | DAR1       | RW   | 0x         | 32    | 6.4.2.2 Direct Access Register 1, DAR1 on page 80                |  |
| 0x1008 | DAR2       | RW   | 0x         | 32    | 6.4.2.3 Direct Access Register 2, DAR2 on page 80                |  |
|        |            |      |            |       |                                                                  |  |
| 0x13FC | DAR255     | RW   | 0x         | 32    | 6.4.2.4 Direct Access Register 255, DAR255 on page 81            |  |
| 0x1D00 | CSW        | RW   | 0x43-000-2 | 32    | 6.4.2.5 Control Status Word register, CSW on page 82             |  |
| 0x1D04 | TAR        | RW   | 0x         | 32    | 6.4.2.6 Transfer Address Register, TAR on page 84                |  |
| 0x1D0C | DRW        | RW   | 0x         | 32    | 6.4.2.7 Data Read/Write register, DRW on page 85                 |  |
| 0x1D10 | BDO        | RW   | 0x         | 32    | 6.4.2.8 Banked Data register 0, BD0 on page 85                   |  |
| 0x1D14 | BD1        | RW   | 0x         | 32    | 6.4.2.9 Banked Data register 1, BD1 on page 86                   |  |
| 0x1D18 | BD2        | RW   | 0x         | 32    | 6.4.2.10 Banked Data register 2, BD2 on page 87                  |  |
| 0x1D1C | BD3        | RW   | 0x         | 32    | 6.4.2.11 Banked Data register 3, BD3 on page 87                  |  |
| 0x1D24 | TRR        | RW   | 0x00000000 | 32    | 6.4.2.12 Transfer Response Register, TRR on page 88              |  |

| Offset | Name       | Туре | Reset      | Width | Description                                                      |
|--------|------------|------|------------|-------|------------------------------------------------------------------|
| 0x1DF4 | CFG        | RO   | 0x000101A0 | 32    | 6.4.2.13 Configuration register, CFG on page 89                  |
| 0x1DF8 | BASE       | RO   | 0x00-      | 32    | 6.4.2.14 Debug Base Address register, BASE on page 89            |
| 0x1DFC | IDR        | RO   | 0x44770008 | 32    | 6.4.2.15 Identification Register, IDR on page 90                 |
| 0x1EFC | ITSTATUS   | RW   | 0x0000000  | 32    | 6.4.2.16 Integration Test Status register, ITSTATUS on page 91   |
| 0x1F00 | ITCTRL     | RW   | 0x00000000 | 32    | 6.4.2.17 Integration Mode Control Register, ITCTRL on page 92    |
| 0x1FA0 | CLAIMSET   | RW   | 0x0000003  | 32    | 6.4.2.18 Claim Tag Set Register, CLAIMSET on page 92             |
| 0x1FA4 | CLAIMCLR   | RW   | 0x00000000 | 32    | 6.4.2.19 Claim Tag Clear Register, CLAIMCLR on page 93           |
| 0x1FB8 | AUTHSTATUS | RO   | 0x000000   | 32    | 6.4.2.20 Authentication Status Register, AUTHSTATUS on page 94   |
| 0x1FBC | DEVARCH    | RO   | 0x47700A17 | 32    | 6.4.2.21 Device Architecture Register, DEVARCH on page 95        |
| 0x1FCC | DEVTYPE    | RO   | 0x00000000 | 32    | 6.4.2.22 Device Type Identifier Register, DEVTYPE on page 96     |
| 0x1FD0 | PIDR4      | RO   | 0x0000004  | 32    | 6.4.2.23 Peripheral Identification Register 4, PIDR4 on page 97  |
| 0x1FD4 | PIDR5      | RO   | 0x00000000 | 32    | 6.4.2.24 Peripheral Identification Register 5, PIDR5 on page 97  |
| 0x1FD8 | PIDR6      | RO   | 0x00000000 | 32    | 6.4.2.25 Peripheral Identification Register 6, PIDR6 on page 98  |
| 0x1FDC | PIDR7      | RO   | 0x00000000 | 32    | 6.4.2.26 Peripheral Identification Register 7, PIDR7 on page 98  |
| 0x1FE0 | PIDRO      | RO   | 0x00000E3  | 32    | 6.4.2.27 Peripheral Identification Register 0, PIDR0 on page 99  |
| 0x1FE4 | PIDR1      | RO   | 0х00000в9  | 32    | 6.4.2.28 Peripheral Identification Register 1, PIDR1 on page 100 |
| 0x1FE8 | PIDR2      | RO   | 0x000004B  | 32    | 6.4.2.29 Peripheral Identification Register 2, PIDR2 on page 100 |
| 0x1FEC | PIDR3      | RO   | 0x00000000 | 32    | 6.4.2.30 Peripheral Identification Register 3, PIDR3 on page 101 |
| 0x1FF0 | CIDRO      | RO   | 0x000000D  | 32    | 6.4.2.31 Component Identification Register 0, CIDR0 on page 102  |
| 0x1FF4 | CIDR1      | RO   | 0x0000090  | 32    | 6.4.2.32 Component Identification Register 1, CIDR1 on page 102  |
| 0x1FF8 | CIDR2      | RO   | 0x0000005  | 32    | 6.4.2.33 Component Identification Register 2, CIDR2 on page 103  |
| 0x1FFC | CIDR3      | RO   | 0x00000B1  | 32    | 6.4.2.34 Component Identification Register 3, CIDR3 on page 104  |

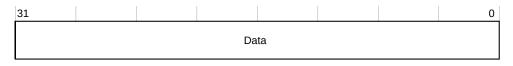
## 6.4.2 Register descriptions

This section describes the css600\_ahbap registers.

6.4.1 css600\_ahbap - APB4\_Slave\_0 register summary on page 77 provides cross references to individual registers.

## 6.4.2.1 Direct Access Register 0, DAR0

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.


The DARO register characteristics are:

#### Attributes

| Offset | 0x0000     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-51: DAR0 register bit assignments



The following table shows the bit assignments.

#### Table 6-54: DAR0 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                          |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFC00$ ) + $0x0$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

## 6.4.2.2 Direct Access Register 1, DAR1

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.

The DAR1 register characteristics are:

#### Attributes

| Offset | 0x0004     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-52: DAR1 register bit assignments

| 31 |  |      |  | 0 |
|----|--|------|--|---|
|    |  | Data |  |   |
|    |  | Dulu |  |   |

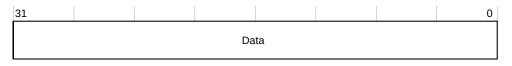
The following table shows the bit assignments.

#### Table 6-55: DAR1 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                          |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFC00$ ) + $0x4$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

## 6.4.2.3 Direct Access Register 2, DAR2

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.


The DAR2 register characteristics are:

### Attributes

| Offset | 0x0008     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-53: DAR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-56: DAR2 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                          |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFC00$ ) + $0x8$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

## 6.4.2.4 Direct Access Register 255, DAR255

The Direct Access Registers provide a mechanism for directly mapping locations in the target memory system that is connected to the APB master interface.

The DAR255 register characteristics are:

### Attributes

| Offset | 0x03FC     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

### Figure 6-54: DAR255 register bit assignments



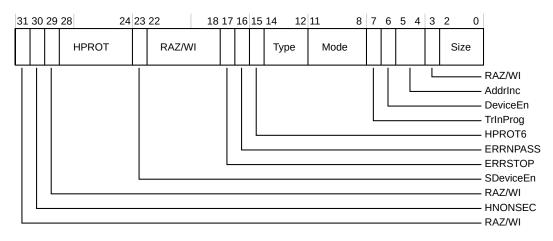
The following table shows the bit assignments.

#### Table 6-57: DAR255 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                          |
|--------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFC00$ ) + $0 \times 3FC$ .) In read mode, the register contains the data value that was read from memory, and in write mode the register contains the data value to write to memory. |

## 6.4.2.5 Control Status Word register, CSW

The CSW register configures and controls accesses through the AHB master interface to the connected memory system.


The CSW register characteristics are:

#### Attributes

| Offset | 0x0D00     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x43-000-2 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-55: CSW register bit assignments



#### Table 6-58: CSW register bit assignments

| Bits    | Reset<br>value | Name      | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | 0b0            | RAZ/WI    | RAZ/WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [30]    | 0b1            | HNONSEC   | Drives <b>hnonsec_m</b> output pin. Together with the Access Port Enable interface signals, HNONSEC determines whether a secure access is allowed on the master interface. Accesses are permitted as follows: access_permitted = (ap_en && ap_secure_en)    (ap_en && HNONSEC).                                                                                                                                                                                                                                   |
| [29]    | 0b0            | RAZ/WI    | RAZ/WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [28:24] | 0600011        | HPROT     | This field, in combination with CSW.HPROT6, sets the protection control value to be output on <b>hprot_m[6:0]</b> . CSW.HPROT6 controls <b>hprot_m[6]</b> . CSW.HPROT controls <b>hprot_m[4:0]</b> . <b>hprot_m[5]</b> is always driven LOW. This field is reset to 0x3. The reset values of the two fields correspond to a protection value of: Non-Shareable, (Non-Allocate), Non-Lookup, Non-Modifiable, Non-Bufferable, Privileged, Data. css600_ahbap supports the following legal <b>hprot_m</b> encodings: |
|         |                |           | CSW.HPROT6=0b0, CSW.HPROT[4:2]=0b000: Device-nE                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                |           | CSW.HPROT6=0b0, CSW.HPROT[4:2]=0b001: Device-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                |           | CSW.HPROT6=0b0, CSW.HPROT[4:2]=0b010: Normal Non-cacheable, Non-shareable                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                |           | CSW.HPROT6=0b0, CSW.HPROT[4:2]=0b110: Write-through, Non-shareable                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                |           | CSW.HPROT6=0b0, CSW.HPROT[4:2]=0b111: Write-back, Non-shareable                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                |           | CSW.HPROT6=0b1, CSW.HPROT[4:2]=0b010: Normal Non-cacheable, Shareable                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                |           | CSW.HPROT6=0b1, CSW.HPROT[4:2]=0b110: Write-through, Shareable                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                |           | CSW.HPROT6=0b1, CSW.HPROT[4:2]=0b111: Write-back, Shareable                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [23]    | UNKNOWN        | SDeviceEn | Indicates the status of the <b>ap_en</b> and <b>ap_secure_en</b> ports. It is set when both <b>ap_en</b> and <b>ap_secure_en</b> are HIGH, and remains clear otherwise. If this bit is clear, Secure AHB transfers are not permitted. Non-secure memory accesses and internal register accesses that do not initiate memory accesses are permitted regardless of the status of this bit.                                                                                                                          |
| [22:18] | 0b00000        | RAZ/WI    | RAZ/WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [17]    | 0b0            | ERRSTOP   | Stop on error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                |           | <ul> <li>Memory access errors do not prevent future memory accesses.</li> <li>Memory access errors prevent future memory accesses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
| [16]    | 0b0            | ERRNPASS  | Errors are not passed upstream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                |           | 0 Memory access errors are passed upstream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [4][1]  | 01.0           |           | 1   Memory access errors are not passed upstream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [15]    | 0d0            | HPROT6    | This field drives <b>hprot_s[6]</b> . Reset to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                |           | In combination with CSW.HPROT, controls the protection value to be output on $hprot_m[6:0]$ . This field is reset to $0 \times 0$ .                                                                                                                                                                                                                                                                                                                                                                               |
| [14:12] | 0b000          | Туре      | This field is reserved. Reads return 0x0 and writes are ignored.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [11:8]  | 000000         | Mode      | Specifies the mode of operation. All other values are reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                |           | <b>0x0</b> Normal download or upload mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [7]     | 060            | TrInProg  | Transfer in progress. This field indicates whether a transfer is in progress on the AHB master interface. If the master interface is busy, CSW.TrInProg is set in both logical APs.                                                                                                                                                                                                                                                                                                                               |

| Bits  | Reset<br>value | Name     | Function                                             |                                                                                                                                                                                                             |
|-------|----------------|----------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [6]   | UNKNOWN        | DeviceEn |                                                      | he status of the <b>ap_en</b> port. The bit is set when <b>ap_en</b> is HIGH, and is clear otherwise. If this , no AHB transfers are carried out, that is, both secure and non-secure accesses are blocked. |
| [5:4] | 0000           | AddrInc  |                                                      | ess increment mode on RW data access. Only increments if the current transaction completes of error response and the transaction is not aborted.                                                            |
|       |                |          | 0x0<br>0x1<br>0x2<br>0x3                             | Auto increment OFF<br>Increment, single. Single transfer from corresponding byte lane.<br>Reserved<br>Reserved                                                                                              |
| [3]   | 0b0            | RAZ/WI   | RAZ/WI                                               |                                                                                                                                                                                                             |
| [2:0] | 0b010          | Size     | Size of the                                          | e data access to perform:                                                                                                                                                                                   |
|       |                |          | 0x0<br>0x1<br>0x2<br>0x3<br>0x4<br>0x5<br>0x6<br>0x7 | 8 bits<br>16 bits<br>32 bits<br>Reserved<br>Reserved<br>Reserved<br>Reserved<br>Reserved<br>Reserved                                                                                                        |

## 6.4.2.6 Transfer Address Register, TAR

TAR holds the transfer address of the current transfer. TAR must be programmed before initiating any memory transfer through DRW, or Banked Data Registers, or Direct Access Registers.

The TAR register characteristics are:

#### Attributes

| Offset | 0x0D04     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-56: TAR register bit assignments



#### Table 6-59: TAR register bit assignments

| Bits   | Reset<br>value | Name    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        | Address | Address of the current transfer. When a memory access is initiated by accessing the DRW register, the TAR value directly gives the 32-bit transfer address. When a memory access is initiated by accessing Banked Data registers, the TAR only provides the upper bits [31:4] and the remaining address bits [3:0] come from the offset of Banked Data register being accessed. When a memory access is initiated by accessing Direct Access Registers, the TAR provides the upper bits [31:10] and the remaining address bits [9:0] come from the offset of the DAR being accessed. |

## 6.4.2.7 Data Read/Write register, DRW

A write to the DRW register initiates a memory write transaction on the master. AP drives DRW write data on the data bus during the data phase of the current transfer. Reading the DRW register initiates a memory read transaction on the master. The resulting read data that is received from the memory system is returned on the slave interface.

The DRW register characteristics are:

#### Attributes

| 0x0D0C     |
|------------|
| Read-write |
| 0x         |
| 32         |
|            |

The following figure shows the bit assignments.

#### Figure 6-57: DRW register bit assignments



The following table shows the bit assignments.

#### Table 6-60: DRW register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                           |
|--------|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Current transfer data value. In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

## 6.4.2.8 Banked Data register 0, BD0

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.


The BDO register characteristics are:

### Attributes

| 0x0D10     |
|------------|
| Read-write |
| 0x         |
| 32         |
|            |

The following figure shows the bit assignments.

#### Figure 6-58: BD0 register bit assignments



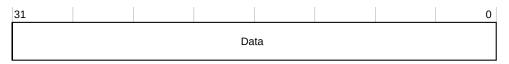
The following table shows the bit assignments.

#### Table 6-61: BD0 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                                    |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFF0$ ) + $0 \times 0$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

## 6.4.2.9 Banked Data register 1, BD1

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.


The BD1 register characteristics are:

#### Attributes

| Offset | 0x0D14     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x         |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-59: BD1 register bit assignments



#### Table 6-62: BD1 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                      |
|--------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | value          |      |                                                                                                                                                                                                                                               |
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFF0$ ) + $0x4$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.4.2.10 Banked Data register 2, BD2

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.

The BD2 register characteristics are:

#### Attributes

| 0x0D18     |  |  |
|------------|--|--|
| Read-write |  |  |
| 0x         |  |  |
| 32         |  |  |
|            |  |  |

The following figure shows the bit assignments.

#### Figure 6-60: BD2 register bit assignments

| 31 |  |      |  | <br>0 |
|----|--|------|--|-------|
|    |  | Data |  |       |
|    |  |      |  |       |

The following table shows the bit assignments.

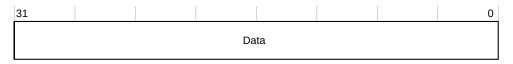
#### Table 6-63: BD2 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                      |
|--------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0xFFFFFF0$ ) + $0x8$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

### 6.4.2.11 Banked Data register 3, BD3

The Banked Data registers provide a mechanism for directly mapping APB slave accesses to memory transfers without having to rewrite the TAR within a 16-byte boundary.

The BD3 register characteristics are:


#### Attributes

| Offset | 0x0D1C     |
|--------|------------|
| Туре   | Read-write |

| Reset | 0x |
|-------|----|
| Width | 32 |

The following figure shows the bit assignments.

### Figure 6-61: BD3 register bit assignments



The following table shows the bit assignments.

#### Table 6-64: BD3 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                                                                                                    |
|--------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | UNKNOWN        |      | Maps to memory address ((TAR & $0 \times FFFFFF0$ ) + $0 \times C$ ). In read mode, the register contains the data value that was read from the current transfer, and in write mode the register contains the data value to write for the current transfer. |

## 6.4.2.12 Transfer Response Register, TRR

The Transfer Response Register is used to capture an error response received during a transaction. It is also used to clear any logged responses.

The TRR register characteristics are:

#### Attributes

| Offset | 0x0D24     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-62: TRR register bit assignments



The following table shows the bit assignments.

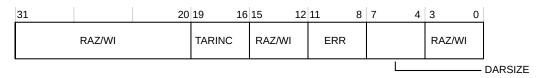
#### Table 6-65: TRR register bit assignments

| Bits   | Reset value | Name   | Function |
|--------|-------------|--------|----------|
| [31:1] | 0x0         | RAZ/WI | RAZ/WI   |

| Bits | Reset value | Name | Function      |                                                                                                                                                                  |
|------|-------------|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [O]  | 0b0         | ERR  | Logged error: |                                                                                                                                                                  |
|      |             |      | 0<br>1        | On reads, no error<br>response logged. Writing<br>to this bit has no effect.<br>On reads, error response<br>logged. Writing to this bit<br>clears this bit to 0. |

## 6.4.2.13 Configuration register, CFG

This is the AHBAP Configuration register.


The CFG register characteristics are:

#### Attributes

| Offset | 0x0DF4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x000101A0 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-63: CFG register bit assignments



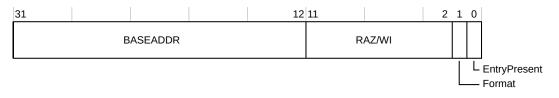
The following table shows the bit assignments.

#### Table 6-66: CFG register bit assignments

| Bits    | Reset value                             | Name    | Function                                                                                                                                                                                                     |
|---------|-----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:20] | 000000000000000000000000000000000000000 | RAZWI   | RAZWI                                                                                                                                                                                                        |
| [19:16] | 0b0001                                  | TARINC  | TAR incrementer size. Returns 0x1 indicating a TAR incrementer size of 10 bits                                                                                                                               |
| [15:12] | 000000                                  | RAZWI   | RAZWI                                                                                                                                                                                                        |
| [11:8]  | 0b0001                                  | ERR     | Error functionality implemented. Returns $0 \times 1$ indicating that Error Response Handling version 1 is implemented. See the Arm Debug Interface Architecture Specification ADIv6.0 for more information. |
| [7:4]   | 0b1010                                  | DARSIZE | Size of DAR register space. Returns 0xA indicating that 1KB (256 registers, each 32-bit wide) of DAR is implemented.                                                                                         |
| [3:0]   | 00000                                   | RAZWI   | RAZWI                                                                                                                                                                                                        |

## 6.4.2.14 Debug Base Address register, BASE

Provides an initial system address for the first component in the system. Typically, the system address is the address of a top-level


The BASE register characteristics are:

### Attributes

| Offset | 0x0DF8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00-     |
| Width  | 32        |

The following figure shows the bit assignments.

### Figure 6-64: BASE register bit assignments



The following table shows the bit assignments.

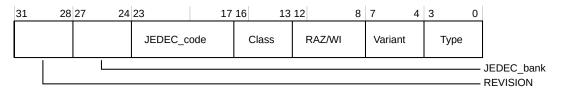
#### Table 6-67: BASE register bit assignments

| Bits    | Reset value               | Name         | Function                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------|---------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:12] | IMPLEMENTATION<br>DEFINED | BASEADDR     | Base address of a ROM table. It points to the start of the debug register space or a ROM table address. Bits[11:0] of the address are $0 \times 000$ because the address is aligned to 4KB boundary. This field is valid only if BASE.EntryPresent bit is set to 1, in which case it returns the tie-off value of the input signal <b>baseaddr[31:12]</b> , otherwise, it reads as $0 \times 0$ . |  |
| [11:2]  | 06000000000000000         | RAZ/WI       | RAZ/WI                                                                                                                                                                                                                                                                                                                                                                                            |  |
| [1]     | 0b1                       | Format       | Base address register format. Returns the value Obl indicating the ADIv5 format, which is unchanged in ADIv6.                                                                                                                                                                                                                                                                                     |  |
| [0]     | IMPLEMENTATION<br>DEFINED | EntryPresent | This field indicates whether a debug component is present for this AP. It returns the tie-off value of the input signal <b>baseaddr_valid</b> .                                                                                                                                                                                                                                                   |  |
|         |                           |              | <ul> <li>No debug entry present</li> <li>Debug entry present and BASE.BASEADDR indicate the start address of the debug register space or ROM table</li> </ul>                                                                                                                                                                                                                                     |  |

## 6.4.2.15 Identification Register, IDR

The IDR provides a mechanism for the debugger to know various identity attributes of the AP.

The IDR register characteristics are:


#### Attributes

| Offset | 0x0DFC    |
|--------|-----------|
| Туре   | Read-only |

| Reset | 0x44770008 |
|-------|------------|
| Width | 32         |

The following figure shows the bit assignments.

### Figure 6-65: IDR register bit assignments



The following table shows the bit assignments.

#### Table 6-68: IDR register bit assignments

| Bits    | Reset value | Name       | Function                                                                                                                                                                      |
|---------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | 0b0100      | REVISION   | Revision. An incremental value starting at 0x0 for the first design of a component. See the Component list in Chapter 1 for information on the RTL revision of the component. |
| [27:24] | 0b0100      | JEDEC_bank | The JEP106 continuation code. Returns 0x4, indicating Arm as the designer.                                                                                                    |
| [23:17] | 0b0111011   | JEDEC_code | The JEP106 identification code. Returns 0x3B, indicating Arm as the designer.                                                                                                 |
| [16:13] | 0b1000      | Class      | Returns 0x8, indicating that this is a Memory Access Port                                                                                                                     |
| [12:8]  | 0b00000     | RAZ/WI     | RAZ/WI                                                                                                                                                                        |
| [7:4]   | 0b0000      | Variant    | Returns $0 \ge 0$ , indicating no variation from base type specified by IDR.Type                                                                                              |
| [3:0]   | 0b1000      | Туре       | Returns $0x8$ , indicating that this is an AHB5 Access Port with full HPROT control                                                                                           |

## 6.4.2.16 Integration Test Status register, ITSTATUS

Indicates the Integration Test DP Abort status.

The ITSTATUS register characteristics are:

#### Attributes

| Offset | 0x0EFC     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-66: ITSTATUS register bit assignments



The following table shows the bit assignments.

#### Table 6-69: ITSTATUS register bit assignments

| Bits   | Reset<br>value | Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:1] | 0x0            | RAZ/WI | RAZ/WI                                                                                                                                                                                                                                                                                                                                                                                                        |
| [0]    | 0d0            |        | When in Integration testing mode (ITCTRL.IME=0b1): Behaves as a sticky bit and latches to 1 on a rising edge of <b>dp_abort</b> . Cleared on a read from this register. If <b>dp_abort</b> rises in the same cycle as a read of the ITSTATUS register is received, the read takes priority and the register is cleared. When in normal functional operation mode (ITCTRL.IME=0b0): Read as 0, writes ignored. |

## 6.4.2.17 Integration Mode Control Register, ITCTRL

The Integration Mode Control register is used to enable topology detection.

The ITCTRL register characteristics are:

#### Attributes

| Offset | 0x0F00     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-67: ITCTRL register bit assignments



The following table shows the bit assignments.

#### Table 6-70: ITCTRL register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                                      |
|--------|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| [31:1] | 0x0            | RAZ/<br>WI | RAZ/WI                                                                                                                                        |
| [0]    | 0b0            |            | Integration Mode Enable. When set, the component enters integration mode, enabling topology detection or integration testing to be performed. |

## 6.4.2.18 Claim Tag Set Register, CLAIMSET

This register forms one half of the claim tag value. On writes, this location enables individual bits to be set. On reads, it returns the number of bits that can be set.

The CLAIMSET register characteristics are:

#### Attributes

| Offset | 0x0FA0     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x0000003  |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-68: CLAIMSET register bit assignments



The following table shows the bit assignments.

#### Table 6-71: CLAIMSET register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                |
|--------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| [31:2] | 0x0            | RAZ/<br>WI | RAZ/WI                                                                                                                  |
| [1:0]  | 0b11           | SET        | A bit-programmable register bank that sets the claim tag value. A read returns a logic 1 for all implemented locations. |

## 6.4.2.19 Claim Tag Clear Register, CLAIMCLR

This register forms one half of the claim tag value. On writes, this location enables individual bits to be cleared. On reads, it returns the current claim tag value.

The CLAIMCLR register characteristics are:

#### Attributes

| Offset | 0x0FA4     |
|--------|------------|
| Туре   | Read-write |
| Reset  | 0x00000000 |
| Width  | 32         |

### Figure 6-69: CLAIMCLR register bit assignments



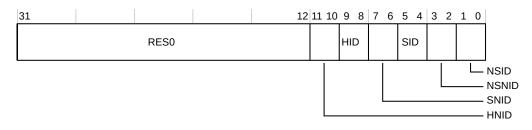
The following table shows the bit assignments.

#### Table 6-72: CLAIMCLR register bit assignments

| Bits   | Reset<br>value | Name       | Function                                                                                                                                                                                                                |
|--------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:2] | 0x0            | RAZ/<br>WI | RAZ/WI                                                                                                                                                                                                                  |
| [1:0]  | 0600           |            | A bit-programmable register bank that clears the claim tag value. It is zero at reset. It is used by software agents to signal to each other ownership of the hardware. It has no direct effect on the hardware itself. |

## 6.4.2.20 Authentication Status Register, AUTHSTATUS

Reports the current status of the authentication control signals.


The AUTHSTATUS register characteristics are:

#### Attributes

| Offset | 0x0FB8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-70: AUTHSTATUS register bit assignments



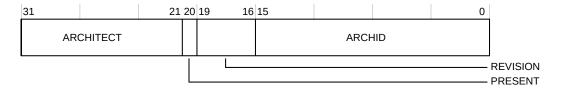
The following table shows the bit assignments.

#### Table 6-73: AUTHSTATUS register bit assignments

| Bits    | Reset value | Name | Function                                  |
|---------|-------------|------|-------------------------------------------|
| [31:12] | 0x0         | RESO | Reserved bit or field with SBZP behavior. |

| Bits    | Reset value | Name  | Function                                                                                                                                                                   |
|---------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [11:10] | 0b00        | HNID  | Hypervisor non-invasive debug:                                                                                                                                             |
|         |             |       | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |
| [9:8]   | 0b00        | HID   | Hypervisor invasive debug:                                                                                                                                                 |
|         |             |       | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |
| [7:6]   | UNKNOWN     | SNID  | Secure non-invasive debug:                                                                                                                                                 |
|         |             |       | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |
| [5:4]   | UNKNOWN     | SID   | Secure invasive debug:                                                                                                                                                     |
|         |             |       | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |
| [3:2]   | UNKNOWN     | NSNID | Non-secure non-invasive debug:                                                                                                                                             |
|         |             |       | <ul> <li>0x0 Functionality not implemented or controlled elsewhere</li> <li>0x1 Reserved</li> <li>0x2 Functionality disabled</li> <li>0x3 Functionality enabled</li> </ul> |
| [1:0]   | UNKNOWN     | NSID  | Non-secure invasive debug:                                                                                                                                                 |
|         |             |       | 0x0Functionality not implemented or controlled elsewhere0x1Reserved0x2Functionality disabled0x3Functionality enabled                                                       |

## 6.4.2.21 Device Architecture Register, DEVARCH


Identifies the architect and architecture of a CoreSight component. The architect might differ from the designer of a component, for example Arm defines the architecture but another company designs and implements the component.

The DEVARCH register characteristics are:

### Attributes

| Offset | 0x0FBC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x47700A17 |
| Width  | 32         |

### Figure 6-71: DEVARCH register bit assignments



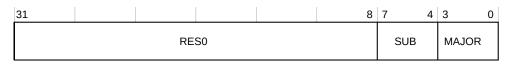
The following table shows the bit assignments.

#### Table 6-74: DEVARCH register bit assignments

| Bits    | Reset value   | Name      | Function                                                                                         |
|---------|---------------|-----------|--------------------------------------------------------------------------------------------------|
| [31:21] | 0b01000111011 | ARCHITECT | Returns $0x23B$ , denoting Arm as architect of the component                                     |
| [20]    | 0b1           | PRESENT   | Returns 1, indicating that the DEVARCH register is present                                       |
| [19:16] | 0b0000        | REVISION  | Architecture revision. Returns the revision of the architecture that the ARCHID field specifies. |
| [15:0]  | 0xA17         | ARCHID    | Architecture ID. Returns $0 \times 0 A17$ , identifying APv2 MEM-AP architecture v0.             |

## 6.4.2.22 Device Type Identifier Register, DEVTYPE

A debugger can use this register to get information about a component that has an unrecognized Part number.


The DEVTYPE register characteristics are:

#### Attributes

| Offset | 0x0FCC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-72: DEVTYPE register bit assignments



The following table shows the bit assignments.

#### Table 6-75: DEVTYPE register bit assignments

| Bits   | Reset value | Name  | Function                                            |
|--------|-------------|-------|-----------------------------------------------------|
| [31:8] | 0x0         | RESO  | Reserved bit or field with SBZP behavior            |
| [7:4]  | 060000      | SUB   | Minor classification. Returns 0x0, Other/undefined. |
| [3:0]  | 060000      | MAJOR | Major classification. Returns 0x0, Miscellaneous.   |

## 6.4.2.23 Peripheral Identification Register 4, PIDR4

The PIDR4 register is part of the set of peripheral identification registers.

The PIDR4 register characteristics are:

#### Attributes

| Offset | 0x0FD0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x0000004 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-73: PIDR4 register bit assignments



The following table shows the bit assignments.

#### Table 6-76: PIDR4 register bit assignments

| Bits   | Reset<br>value | Name  | Function                                                                                                                                                                                                               |  |
|--------|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:8] | 0x0            | RESO  | Reserved bit or field with SBZP behavior                                                                                                                                                                               |  |
| [7:4]  | 0000d0         | SIZE  | ndicates the memory size that is used by this component. Returns 0 indicating that the component uses an <b>NKNOWN</b> number of 4KB blocks. Using the SIZE field to indicate the size of the component is deprecated. |  |
| [3:0]  | 0b0100         | DES_2 | JEP106 continuation code. Together, with PIDR2.DES_1 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same.                                          |  |

## 6.4.2.24 Peripheral Identification Register 5, PIDR5

The PIDR5 register is part of the set of peripheral identification registers.

The PIDR5 register characteristics are:

#### Attributes

| Offset | 0x0FD4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

### Figure 6-74: PIDR5 register bit assignments

| 31 |  |      |  | 8 7 |       | 0 |
|----|--|------|--|-----|-------|---|
|    |  | RES0 |  |     | PIDR5 |   |
|    |  |      |  |     |       |   |

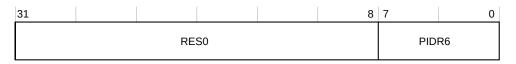
The following table shows the bit assignments.

#### Table 6-77: PIDR5 register bit assignments

| Bits   | Reset value Name |  | Function                                 |  |  |  |
|--------|------------------|--|------------------------------------------|--|--|--|
| [31:8] | 0x0 RESO         |  | Reserved bit or field with SBZP behavior |  |  |  |
| [7:0]  | 0b0000000 PIDR5  |  | Reserved                                 |  |  |  |

### 6.4.2.25 Peripheral Identification Register 6, PIDR6

The PIDR6 register is part of the set of peripheral identification registers.


The PIDR6 register characteristics are:

#### Attributes

| 0x0FD8     |
|------------|
| Read-only  |
| 0x00000000 |
| 32         |
|            |

The following figure shows the bit assignments.

#### Figure 6-75: PIDR6 register bit assignments



The following table shows the bit assignments.

#### Table 6-78: PIDR6 register bit assignments

| Bits   | Reset value | Name  | Function                                 |
|--------|-------------|-------|------------------------------------------|
| [31:8] | 0x0         | RESO  | Reserved bit or field with SBZP behavior |
| [7:0]  | 060000000   | PIDR6 | Reserved                                 |

## 6.4.2.26 Peripheral Identification Register 7, PIDR7

The PIDR7 register is part of the set of peripheral identification registers.

The PIDR7 register characteristics are:

### Attributes

| Offset | 0x0FDC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

### Figure 6-76: PIDR7 register bit assignments



The following table shows the bit assignments.

#### Table 6-79: PIDR7 register bit assignments

| Bits   | Reset value                             | Name  | Function                                 |  |  |  |  |
|--------|-----------------------------------------|-------|------------------------------------------|--|--|--|--|
| [31:8] | 0x0                                     | RESO  | Reserved bit or field with SBZP behavior |  |  |  |  |
| [7:0]  | 060000000000000000000000000000000000000 | PIDR7 | Reserved                                 |  |  |  |  |

## 6.4.2.27 Peripheral Identification Register 0, PIDR0

The PIDRO register is part of the set of peripheral identification registers.


The PIDRO register characteristics are:

#### Attributes

| Offset | 0x0FE0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00000E3 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-77: PIDR0 register bit assignments



The following table shows the bit assignments.

#### Table 6-80: PIDR0 register bit assignments

| Bits   | Reset value | Name | Function                                 |
|--------|-------------|------|------------------------------------------|
| [31:8] | 0x0         | RESO | Reserved bit or field with SBZP behavior |

| Bits  | Reset value | Name | Function                                                                                                                                           |
|-------|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | 0b11100011  |      | Part number, bits[7:0]. Taken together with PIDR1.PART_1 it indicates the component. The Part Number is selected by the designer of the component. |

## 6.4.2.28 Peripheral Identification Register 1, PIDR1

The PIDR1 register is part of the set of peripheral identification registers.

The PIDR1 register characteristics are:

### Attributes

| Offset | 0x0FE4    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00000B9 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-78: PIDR1 register bit assignments

| 31 |   |      |  | 8 | 7  | 4   | 3      | 0 |
|----|---|------|--|---|----|-----|--------|---|
|    | F | RES0 |  |   | DE | S_0 | PART_: | 1 |

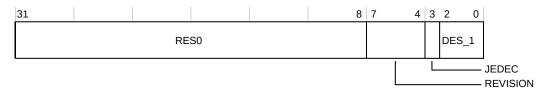
The following table shows the bit assignments.

#### Table 6-81: PIDR1 register bit assignments

| Bits   | Reset<br>value | Name   | Function                                                                                                                                                                                   |
|--------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO   | Reserved bit or field with SBZP behavior                                                                                                                                                   |
| [7:4]  | 0b1011         | DES_0  | JEP106 identification code, bits[3:0]. Together, with PIDR4.DES_2 and PIDR2.DES_1, they indicate the designer of the component and not the implementer, except where the two are the same. |
| [3:0]  | 0b1001         | PART_1 | Part number, bits[11:8]. Taken together with PIDRO.PART_O it indicates the component. The Part Number is selected by the designer of the component.                                        |

## 6.4.2.29 Peripheral Identification Register 2, PIDR2

The PIDR2 register is part of the set of peripheral identification registers.


The PIDR2 register characteristics are:

### Attributes

| Offset | 0x0FE8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000004B |
| Width  | 32        |

The following figure shows the bit assignments.

### Figure 6-79: PIDR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-82: PIDR2 register bit assignments

| Bits   | Reset<br>value | Name     | Function                                                                                                                                                                                   |
|--------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO     | Reserved bit or field with SBZP behavior                                                                                                                                                   |
| [7:4]  | 0b0100         | REVISION | Revision. It is an incremental value starting at 0x0 for the first design of a component. See the Component list in Chapter 1 for information on the RTL revision of the component.        |
| [3]    | 0b1            | JEDEC    | 1 - Always set. Indicates that a JEDEC assigned value is used.                                                                                                                             |
| [2:0]  | 0b011          | DES_1    | JEP106 identification code, bits[6:4]. Together, with PIDR4.DES_2 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same. |

## 6.4.2.30 Peripheral Identification Register 3, PIDR3

The PIDR3 register is part of the set of peripheral identification registers.

The PIDR3 register characteristics are:

#### Attributes

| Offset | 0x0FEC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-80: PIDR3 register bit assignments

| 31 |   |      |  | 8 | 7 4    | 3 |      | 0 |
|----|---|------|--|---|--------|---|------|---|
|    | F | RES0 |  |   | REVAND | c | CMOD |   |

#### Table 6-83: PIDR3 register bit assignments

| Bits   | Reset<br>value | Name | Function                                                                                                                                                                           |
|--------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO | Reserved bit or field with SBZP behavior                                                                                                                                           |
| [7:4]  | 0000d0         |      | This field indicates minor errata fixes specific to this design, for example metal fixes after implementation. In most cases this field is $0 \times 0$ .                          |
| [3:0]  | 0000d0         |      | Customer Modified. Where the component is reusable IP, this value indicates if the customer has modified the behavior of the component. In most cases this field is $0 \times 0$ . |

## 6.4.2.31 Component Identification Register 0, CIDR0

The CIDRO register is part of the set of component identification registers.

The CIDRO register characteristics are:

#### Attributes

| Offset | 0x0FF0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000D |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-81: CIDR0 register bit assignments

| 31 |     |    | 8 | 7    | 0    |
|----|-----|----|---|------|------|
|    | RES | 60 |   | PRMB | SL_0 |

The following table shows the bit assignments.

#### Table 6-84: CIDR0 register bit assignments

| Bits   | Reset value | Name    | Function                                 |
|--------|-------------|---------|------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with SBZP behavior |
| [7:0]  | 0b00001101  | PRMBL_0 | Preamble. Returns 0x0D.                  |

## 6.4.2.32 Component Identification Register 1, CIDR1

The CIDR1 register is part of the set of component identification registers.

The CIDR1 register characteristics are:

### Attributes

| Offset | 0x0FF4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000090 |

### Width 32

The following figure shows the bit assignments.

### Figure 6-82: CIDR1 register bit assignments



The following table shows the bit assignments.

#### Table 6-85: CIDR1 register bit assignments

| Bits   | Reset value | Name    | Function                                                                |
|--------|-------------|---------|-------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with SBZP behavior                                |
| [7:4]  | 0b1001      | CLASS   | Component class. Returns 0x9, indicating this is a CoreSight component. |
| [3:0]  | 0000d0      | PRMBL_1 | Preamble. Returns 0x0.                                                  |

### 6.4.2.33 Component Identification Register 2, CIDR2

The CIDR2 register is part of the set of component identification registers.

The CIDR2 register characteristics are:

#### Attributes

| Offset | 0x0FF8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x0000005 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-83: CIDR2 register bit assignments

| 31 |  |      |  | 8 7 |       |    | 0 |
|----|--|------|--|-----|-------|----|---|
|    |  | RES0 |  |     | PRMBL | _2 |   |

The following table shows the bit assignments.

#### Table 6-86: CIDR2 register bit assignments

| Bits   | Reset value | Name    | Function                                 |
|--------|-------------|---------|------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with SBZP behavior |
| [7:0]  | 0b00000101  | PRMBL_2 | Preamble. Returns 0x05.                  |

## 6.4.2.34 Component Identification Register 3, CIDR3

The CIDR3 register is part of the set of component identification registers.

The CIDR3 register characteristics are:

#### Attributes

| Offset | OxOFFC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x000000B1 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-84: CIDR3 register bit assignments



The following table shows the bit assignments.

#### Table 6-87: CIDR3 register bit assignments

| Bits   | Reset value | Name    | Function                                 |
|--------|-------------|---------|------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with SBZP behavior |
| [7:0]  | 0b10110001  | PRMBL_3 | Preamble. Returns 0xB1.                  |

# 6.5 css600\_apbrom introduction

This section describes the programmers model of the css600\_apbrom.

## 6.5.1 css600\_apbrom register summary

The following table shows the registers in offset order from the base memory address.



A reset value containing one or more '-' means that this register contains **UNKNOWN** or **IMPLEMENTATION-DEFINED** values. See the relevant register description for more information.

Locations that are not listed in the table are Reserved.

| Offset | Name       | Туре | Reset      | Width | Description                                                      |
|--------|------------|------|------------|-------|------------------------------------------------------------------|
| 0x0000 | ROMEntry0  | RO   | 0x         | 32    | 6.5.2.1 ROM Entries register 0, ROMEntry0 on page 105            |
| 0x0FB8 | AUTHSTATUS | RO   | 0x000000   | 32    | 6.5.2.5 Authentication Status Register, AUTHSTATUS on page 109   |
| 0x0FBC | DEVARCH    | RO   | 0x47700AF7 | 32    | 6.5.2.6 Device Architecture Register, DEVARCH on page 110        |
| 0x0FC8 | DEVID      | RO   | 0x000000-0 | 32    | 6.5.2.7 Device Configuration Register, DEVID on page 111         |
| 0x0FD0 | PIDR4      | RO   | 0x000000-  | 32    | 6.5.2.8 Peripheral Identification Register 4, PIDR4 on page 112  |
| 0x0FD4 | PIDR5      | RO   | 0x0000000  | 32    | 6.5.2.9 Peripheral Identification Register 5, PIDR5 on page 113  |
| 0x0FD8 | PIDR6      | RO   | 0x00000000 | 32    | 6.5.2.10 Peripheral Identification Register 6, PIDR6 on page 113 |
| 0x0FDC | PIDR7      | RO   | 0x0000000  | 32    | 6.5.2.11 Peripheral Identification Register 7, PIDR7 on page 114 |
| 0x0FE0 | PIDRO      | RO   | 0x000000   | 32    | 6.5.2.12 Peripheral Identification Register 0, PIDR0 on page 114 |
| 0x0FE4 | PIDR1      | RO   | 0x000000   | 32    | 6.5.2.13 Peripheral Identification Register 1, PIDR1 on page 115 |
| 0x0FE8 | PIDR2      | RO   | 0x000000   | 32    | 6.5.2.14 Peripheral Identification Register 2, PIDR2 on page 116 |
| 0x0FEC | PIDR3      | RO   | 0x0000000  | 32    | 6.5.2.15 Peripheral Identification Register 3, PIDR3 on page 116 |
| 0x0FF0 | CIDRO      | RO   | 0x000000D  | 32    | 6.5.2.16 Component Identification Register 0, CIDR0 on page 117  |
| 0x0FF4 | CIDR1      | RO   | 0x0000090  | 32    | 6.5.2.17 Component Identification Register 1, CIDR1 on page 118  |
| 0x0FF8 | CIDR2      | RO   | 0x0000005  | 32    | 6.5.2.18 Component Identification Register 2, CIDR2 on page 118  |
| 0x0FFC | CIDR3      | RO   | 0x00000B1  | 32    | 6.5.2.19 Component Identification Register 3, CIDR3 on page 119  |

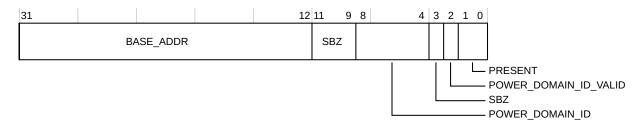
#### Table 6-88: css600\_apbrom - APB4\_Slave\_0 register summary

## 6.5.2 css600 apbrom register descriptions

This section describes the css600\_apbrom registers.

6.5.1 css600\_apbrom register summary on page 104 provides cross references to individual registers.

## 6.5.2.1 ROM Entries register 0, ROMEntry0


Each register contains a descripter of a CoreSight component in the system. All ROM table entries conform to the same format.

The ROMEntryO register characteristics are:

### Attributes

| Offset | 0x0000    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x        |
| Width  | 32        |

### Figure 6-85: ROMEntry0 register bit assignments

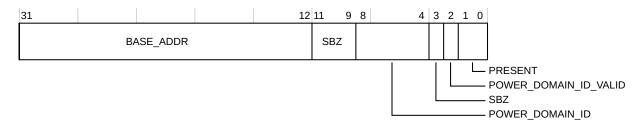


The following table shows the bit assignments.

#### Table 6-89: ROMEntry0 register bit assignments

| Bits    | Reset value               | Name                  | Function                                                                                                                                                                                                                                     |
|---------|---------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:12] | IMPLEMENTATION<br>DEFINED | BASE_ADDR             | Base address of component                                                                                                                                                                                                                    |
| [11:9]  | 0b000                     | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |
| [8:4]   | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID       | Indicates the power domain ID of the component. Only valid if bit 2 is set.<br>If bit 2 is clear then this field has a value of 0. Possible values are 0 to 31,<br>representing the 32 DBGPWRUPREQ/ACK interface pins of the component.      |
| [3]     | 0b0                       | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |
| [2]     | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID_VALID | Indicates whether there is a power domain ID specified in the ROM table entry:0POWER_DOMAIN_ID field of this register is not valid1POWER_DOMAIN_ID field of this register is valid                                                           |
| [1:0]   | IMPLEMENTATION<br>DEFINED | PRESENT               | Indicates whether the ROM table entry is present: <b>0x0</b> ROM table entry not present. This is the last entry. <b>0x1</b> Reserved <b>0x2</b> ROM table entry not present. This is not the last entry. <b>0x3</b> ROM table entry present |

## 6.5.2.2 ROM Entries register 1, ROMEntry1


Each register contains a descripter of a CoreSight component in the system. All ROM table entries conform to the same format.

The ROMEntry1 register characteristics are:

### Attributes

| Offset | 0x0004    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x        |
| Width  | 32        |

### Figure 6-86: ROMEntry1 register bit assignments

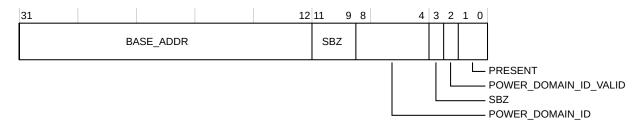


The following table shows the bit assignments.

#### Table 6-90: ROMEntry1 register bit assignments

| Bits    | Reset value               | Name                  | Function                                                                                                                                                                                                                                     |
|---------|---------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:12] | IMPLEMENTATION<br>DEFINED | BASE_ADDR             | Base address of component                                                                                                                                                                                                                    |
| [11:9]  | 0b000                     | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |
| [8:4]   | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID       | Indicates the power domain ID of the component. Only valid if bit 2 is set.<br>If bit 2 is clear then this field has a value of 0. Possible values are 0 to 31,<br>representing the 32 DBGPWRUPREQ/ACK interface pins of the component.      |
| [3]     | 0b0                       | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |
| [2]     | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID_VALID | Indicates whether there is a power domain ID specified in the ROM table entry:0POWER_DOMAIN_ID field of this register is not valid1POWER_DOMAIN_ID field of this register is valid                                                           |
| [1:0]   | IMPLEMENTATION<br>DEFINED | PRESENT               | Indicates whether the ROM table entry is present: <b>0x0</b> ROM table entry not present. This is the last entry. <b>0x1</b> Reserved <b>0x2</b> ROM table entry not present. This is not the last entry. <b>0x3</b> ROM table entry present |

## 6.5.2.3 ROM Entries register 2, ROMEntry2


Each register contains a descripter of a CoreSight component in the system. All ROM table entries conform to the same format.

The ROMEntry2 register characteristics are:

### Attributes

| Offset | 0x0008    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x        |
| Width  | 32        |

### Figure 6-87: ROMEntry2 register bit assignments

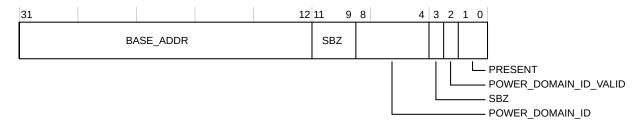


The following table shows the bit assignments.

#### Table 6-91: ROMEntry2 register bit assignments

| Bits    | Reset value               | Name                  | Function                                                                                                                                                                                                                                    |
|---------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:12] | IMPLEMENTATION<br>DEFINED | BASE_ADDR             | Base address of component                                                                                                                                                                                                                   |
| [11:9]  | 0b000                     | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                   |
| [8:4]   | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID       | Indicates the power domain ID of the component. Only valid if bit 2 is set.<br>If bit 2 is clear then this field has a value of 0. Possible values are 0 to 31,<br>representing the 32 DBGPWRUPREQ/ACK interface pins of the component.     |
| [3]     | 0b0                       | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                   |
| [2]     | IMPLEMENTATION<br>DEFINED | POWER_DOMAIN_ID_VALID | Indicates whether there is a power domain ID specified in the ROM table entry:0POWER_DOMAIN_ID field of this register is not valid1POWER_DOMAIN_ID field of this register is valid                                                          |
| [1:0]   | IMPLEMENTATION<br>DEFINED | PRESENT               | Indicates whether the ROM table entry is present <b>0x0</b> ROM table entry not present. This is the last entry. <b>0x1</b> Reserved <b>0x2</b> ROM table entry not present. This is not the last entry. <b>0x3</b> ROM table entry present |

## 6.5.2.4 ROM Entries register 511, ROMEntry511


Each register contains a descripter of a CoreSight component in the system. All ROM table entries conform to the same format.

The ROMEntry511 register characteristics are:

### Attributes

| Offset | 0x07FC    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x        |
| Width  | 32        |

#### Figure 6-88: ROMEntry511 register bit assignments



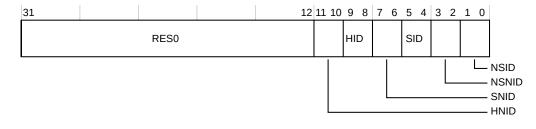
The following table shows the bit assignments.

#### Table 6-92: ROMEntry511 register bit assignments

| Bits    | Reset value                       | Name                  | Function                                                                                                                                                                                                                                     |  |  |
|---------|-----------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:12] | IMPLEMENTATION<br>DEFINED         | BASE_ADDR             | Base address of component                                                                                                                                                                                                                    |  |  |
| [11:9]  | 0b000                             | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |  |  |
| [8:4]   | IMPLEMENTATION<br>DEFINED         | POWER_DOMAIN_ID       | Indicates the power domain ID of the component. Only valid if bit 2 is set.<br>If bit 2 is clear then this field has a value of 0. Possible values are 0 to 31,<br>representing the 32 DBGPWRUPREQ/ACK interface pins of the component.      |  |  |
| [3]     | 0b0                               | SBZ                   | Software should write the field as all Os                                                                                                                                                                                                    |  |  |
| [2]     | IMPLEMENTATION<br>DEFINED         | POWER_DOMAIN_ID_VALID | Indicates whether there is a power domain ID specified in the ROM table entry:0POWER_DOMAIN_ID field of this register is not valid1POWER_DOMAIN_ID field of this register is valid                                                           |  |  |
| [1:0]   | IMPLEMENTATION PRESENT<br>DEFINED |                       | Indicates whether the ROM table entry is present: <b>0x0</b> ROM table entry not present. This is the last entry. <b>0x1</b> Reserved <b>0x2</b> ROM table entry not present. This is not the last entry. <b>0x3</b> ROM table entry present |  |  |

## 6.5.2.5 Authentication Status Register, AUTHSTATUS

Reports the current status of the authentication control signals.


The AUTHSTATUS register characteristics are:

#### Attributes

| Offset | 0x0FB8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-89: AUTHSTATUS register bit assignments



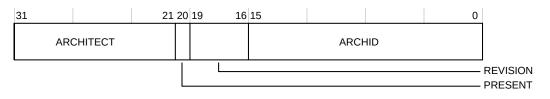
The following table shows the bit assignments.

Table 6-93: AUTHSTATUS register bit assignments

| Bits    | Reset value | Name  | Function                                                                                                                                                                               |
|---------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:12] | 0x0         | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                 |
| [11:10] | 0000        | HNID  | Hypervisor non-invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved                                                                    |
|         |             |       | 0x2Functionality disabled0x3Functionality enabled                                                                                                                                      |
| [9:8]   | 0600        | HID   | Hypervisor invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved <b>0x2</b> Functionality disabled <b>0x3</b> Functionality enabled     |
| [7:6]   | UNKNOWN     | SNID  | Secure non-invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved <b>0x2</b> Functionality disabled <b>0x3</b> Functionality enabled     |
| [5:4]   | UNKNOWN     | SID   | Secure invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved <b>0x2</b> Functionality disabled <b>0x3</b> Functionality enabled         |
| [3:2]   | UNKNOWN     | NSNID | Non-secure non-invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved <b>0x2</b> Functionality disabled <b>0x3</b> Functionality enabled |
| [1:0]   | UNKNOWN     | NSID  | Non-secure invasive debug: <b>0x0</b> Functionality not implemented or controlled elsewhere <b>0x1</b> Reserved <b>0x2</b> Functionality disabled <b>0x3</b> Functionality enabled     |

## 6.5.2.6 Device Architecture Register, DEVARCH

Identifies the architect and architecture of a CoreSight component. The architect might differ from the designer of a component, for example Arm defines the architecture but another company designs and implements the component.


The DEVARCH register characteristics are:

#### Attributes

| Offset | 0x0FBC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x47700AF7 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-90: DEVARCH register bit assignments



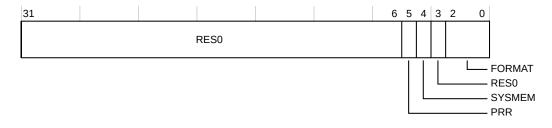
The following table shows the bit assignments.

#### Table 6-94: DEVARCH register bit assignments

| Bits    | Reset value   | Name      | Function                                                                                         |
|---------|---------------|-----------|--------------------------------------------------------------------------------------------------|
| [31:21] | 0b01000111011 | ARCHITECT | Returns $0x23B$ , denoting Arm as architect of the component                                     |
| [20]    | 0b1           | PRESENT   | Returns 1, indicating that the DEVARCH register is present                                       |
| [19:16] | 0b0000        | REVISION  | Architecture revision. Returns the revision of the architecture that the ARCHID field specifies. |
| [15:0]  | 0xAF7         | ARCHID    | Architecture ID. Returns 0x0AF7, identifying ROM Table Architecture v0.                          |

## 6.5.2.7 Device Configuration Register, DEVID

This register is IMPLEMENTATION DEFINED for each Part Number and Designer. The register indicates the capabilities of the component.


The DEVID register characteristics are:

#### Attributes

| Offset | 0x0FC8     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x000000-0 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-91: DEVID register bit assignments



The following table shows the bit assignments.

#### Table 6-95: DEVID register bit assignments

| Bits   | Reset value    | Name   | Function                                                                                                                                         |  |  |
|--------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:6] | 0x0            | RESO   | eserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                            |  |  |
| [5]    | 0d0            | PRR    | Indicates that power request functionality is included. Set by the GPR_PRESENT parameter:                                                        |  |  |
|        |                |        | 0GPR is not included (css600_apbrom)1GPR is included (css600_apbrom_gpr)                                                                         |  |  |
| [4]    | IMPLEMENTATION | SYSMEM | Indicates whether system memory is present on the bus. Set by the SYSMEM parameter:                                                              |  |  |
|        | DEFINED        |        | <ul><li>0 System memory is not present and the bus is a dedicated debug bus</li><li>1 Indicates that there is system memory on the bus</li></ul> |  |  |
| [3]    | 0b0            | RESO   | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                           |  |  |
| [2:0]  | 0b000          | FORMAT | Indicates that this is a 32-bit ROM Table                                                                                                        |  |  |

## 6.5.2.8 Peripheral Identification Register 4, PIDR4

The PIDR4 register is part of the set of peripheral identification registers.

The PIDR4 register characteristics are:

#### Attributes

| _ |
|---|
|   |
|   |

The following figure shows the bit assignments.

#### Figure 6-92: PIDR4 register bit assignments

| 31 |    |    | 8 | 7    | 4 | 3     | 0 |
|----|----|----|---|------|---|-------|---|
|    | RE | S0 |   | SIZE |   | DES_2 |   |

The following table shows the bit assignments.

#### Table 6-96: PIDR4 register bit assignments

| Bits   | Reset value               | Name  | Function                                                                                                                                                                                                                 |
|--------|---------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0                       | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                   |
| [7:4]  | 00000                     | SIZE  | Indicates the memory size that is used by this component. Returns 0 indicating that the component uses an <b>UNKNOWN</b> number of 4KB blocks. Using the SIZE field to indicate the size of the component is deprecated. |
| [3:0]  | IMPLEMENTATION<br>DEFINED | DES_2 | JEP106 continuation code. Together, with PIDR2.DES_1 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same.                                            |

## 6.5.2.9 Peripheral Identification Register 5, PIDR5

The PIDR5 register is part of the set of peripheral identification registers.

The PIDR5 register characteristics are:

#### Attributes

| Offset | 0x0FD4     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-93: PIDR5 register bit assignments



The following table shows the bit assignments.

#### Table 6-97: PIDR5 register bit assignments

| Bits   | Reset value    | Name  | Function                                                               |
|--------|----------------|-------|------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 00000000000000 | PIDR5 | Reserved                                                               |

## 6.5.2.10 Peripheral Identification Register 6, PIDR6

The PIDR6 register is part of the set of peripheral identification registers.

The PIDR6 register characteristics are:

#### Attributes

| Offset | 0x0FD8     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |

#### Width 32

The following figure shows the bit assignments.

#### Figure 6-94: PIDR6 register bit assignments

| 31 |      |  | 8 | 7   | 0  |
|----|------|--|---|-----|----|
|    | RES0 |  |   | PID | R6 |

The following table shows the bit assignments.

#### Table 6-98: PIDR6 register bit assignments

| Bits   | Reset value    | Name  | Function                                                               |
|--------|----------------|-------|------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 00000000000000 | PIDR6 | Reserved                                                               |

## 6.5.2.11 Peripheral Identification Register 7, PIDR7

The PIDR7 register is part of the set of peripheral identification registers.

The PIDR7 register characteristics are:

#### Attributes

| Offset | 0x0FDC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-95: PIDR7 register bit assignments

| 31 |  |      |  | 8 | 7   | 0  |
|----|--|------|--|---|-----|----|
|    |  | RES0 |  |   | PID | R7 |

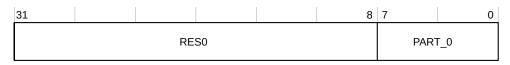
The following table shows the bit assignments.

#### Table 6-99: PIDR7 register bit assignments

| Bits   | Reset value                             | Name  | Function                                                               |
|--------|-----------------------------------------|-------|------------------------------------------------------------------------|
| [31:8] | 0x0                                     | RESO  | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 060000000000000000000000000000000000000 | PIDR7 | Reserved                                                               |

## 6.5.2.12 Peripheral Identification Register 0, PIDRO

The PIDRO register is part of the set of peripheral identification registers.


The PIDRO register characteristics are:

#### Attributes

| Offset | 0x0FE0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-96: PIDR0 register bit assignments



The following table shows the bit assignments.

#### Table 6-100: PIDR0 register bit assignments

| Bits   | Reset value            | Name   | Function                                                                        |
|--------|------------------------|--------|---------------------------------------------------------------------------------|
| [31:8] | 0x0                    | RESO   | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior          |
| [7:0]  | IMPLEMENTATION DEFINED | PART_0 | Part number, bits[7:0]. Set by the configuration inputs <b>part_number[7:0]</b> |

## 6.5.2.13 Peripheral Identification Register 1, PIDR1

The PIDR1 register is part of the set of peripheral identification registers.

The PIDR1 register characteristics are:

#### Attributes

| Offset | 0x0FE4    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-97: PIDR1 register bit assignments

| 31 |    |    | 8 | 7 4   | 3 0    |
|----|----|----|---|-------|--------|
|    | RE | S0 |   | DES_0 | PART_1 |

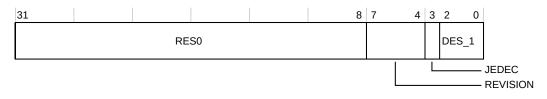
The following table shows the bit assignments.

#### Table 6-101: PIDR1 register bit assignments

| Bits   | Reset value               | Name   | Function                                                                                                                                                                                                                                           |
|--------|---------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0                       | RESO   | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                                             |
| [7:4]  | IMPLEMENTATION<br>DEFINED |        | JEP106 identification code, bits[3:0]. Set by the configuration inputs <b>jep106_id[3:0]</b> . Together, with PIDR4.DES_2 and PIDR2.DES_1, they indicate the designer of the component and not the implementer, except where the two are the same. |
| [3:0]  | IMPLEMENTATION<br>DEFINED | PART_1 | Part number, bits[11:8]. Set by the configuration inputs <b>part_number[11:8]</b> .                                                                                                                                                                |

## 6.5.2.14 Peripheral Identification Register 2, PIDR2

The PIDR2 register is part of the set of peripheral identification registers.


The PIDR2 register characteristics are:

#### Attributes

| Offset | 0x0FE8    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000  |
| Width  | 32        |

The following figure shows the bit assignments.

### Figure 6-98: PIDR2 register bit assignments



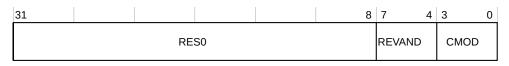
The following table shows the bit assignments.

#### Table 6-102: PIDR2 register bit assignments

| Bits                                       | Reset value | Name     | Function                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:8]                                     | 0x0         | RESO     | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                                                                                             |  |  |
| [7:4] <b>IMPLEMENTATION</b> REVISION Revis |             | REVISION | vision. Set by the configuration inputs <b>revision[3:0]</b> .                                                                                                                                                                                     |  |  |
| [3]                                        | 0b1         | JEDEC    | 1 - Always set. Indicates that a JEDEC assigned value is used.                                                                                                                                                                                     |  |  |
| [2:0]                                      |             |          | JEP106 identification code, bits[6:4]. Set by the configuration inputs <b>jep106_id[6:4]</b> . Together, with PIDR4.DES_2 and PIDR1.DES_0, they indicate the designer of the component and not the implementer, except where the two are the same. |  |  |

## 6.5.2.15 Peripheral Identification Register 3, PIDR3

The PIDR3 register is part of the set of peripheral identification registers.


The PIDR3 register characteristics are:

Attributes

| Offset | 0x0FEC     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000000 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-99: PIDR3 register bit assignments



The following table shows the bit assignments.

#### Table 6-103: PIDR3 register bit assignments

| Bits   | Reset<br>value | Name   | Function                                                                                                                                                                           |
|--------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | 0x0            | RESO   | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior                                                                                                             |
| [7:4]  | 0000d0         | REVAND | This field indicates minor errata fixes specific to this design, for example metal fixes after implementation. In most cases this field is $0 \times 0$ .                          |
| [3:0]  | 0b0000         | CMOD   | Customer Modified. Where the component is reusable IP, this value indicates if the customer has modified the behavior of the component. In most cases this field is $0 \times 0$ . |

## 6.5.2.16 Component Identification Register 0, CIDR0

The CIDRO register is part of the set of component identification registers.

The CIDRO register characteristics are:

#### Attributes

| Offset | 0x0FF0    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x000000D |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-100: CIDR0 register bit assignments

| 31 |      |  | 8 7 |         | 0 |
|----|------|--|-----|---------|---|
|    | RES0 |  |     | PRMBL_0 |   |

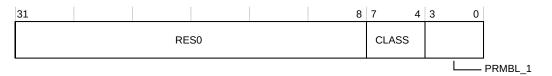
The following table shows the bit assignments.

#### Table 6-104: CIDR0 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b00001101  | PRMBL_0 | Preamble. Returns 0x0D.                                                |

## 6.5.2.17 Component Identification Register 1, CIDR1

The CIDR1 register is part of the set of component identification registers.


The CIDR1 register characteristics are:

#### Attributes

| Offset | 0x0FF4    |  |  |
|--------|-----------|--|--|
| Туре   | Read-only |  |  |
| Reset  | 0x0000090 |  |  |
| Width  | 32        |  |  |

The following figure shows the bit assignments.

#### Figure 6-101: CIDR1 register bit assignments



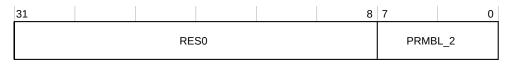
The following table shows the bit assignments.

#### Table 6-105: CIDR1 register bit assignments

| Bits   | Reset value | Name    | Function                                                                   |
|--------|-------------|---------|----------------------------------------------------------------------------|
| [31:8] | 0x0         | RESO    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior     |
| [7:4]  | 0b1001      | CLASS   | Component class. Returns $0x9$ , indicating this is a CoreSight component. |
| [3:0]  | 060000      | PRMBL_1 | Preamble. Returns 0x0.                                                     |

## 6.5.2.18 Component Identification Register 2, CIDR2

The CIDR2 register is part of the set of component identification registers.


The CIDR2 register characteristics are:

Attributes

| Offset | 0x0FF8     |
|--------|------------|
| Туре   | Read-only  |
| Reset  | 0x00000005 |
| Width  | 32         |

The following figure shows the bit assignments.

#### Figure 6-102: CIDR2 register bit assignments



The following table shows the bit assignments.

#### Table 6-106: CIDR2 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RES0    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b00000101  | PRMBL_2 | Preamble. Returns 0x05.                                                |

## 6.5.2.19 Component Identification Register 3, CIDR3

The CIDR3 register is part of the set of component identification registers.

The CIDR3 register characteristics are:

#### Attributes

| Offset | OxOFFC    |
|--------|-----------|
| Туре   | Read-only |
| Reset  | 0x00000B1 |
| Width  | 32        |

The following figure shows the bit assignments.

#### Figure 6-103: CIDR3 register bit assignments

| 31 |      |  | 8 | 7    |     | 0 |
|----|------|--|---|------|-----|---|
|    | RES0 |  |   | PRMB | L_3 |   |

The following table shows the bit assignments.

#### Table 6-107: CIDR3 register bit assignments

| Bits   | Reset value | Name    | Function                                                               |
|--------|-------------|---------|------------------------------------------------------------------------|
| [31:8] | 0x0         | RES0    | Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior |
| [7:0]  | 0b10110001  | PRMBL_3 | Preamble. Returns 0xB1.                                                |

# Appendix A Revisions

This appendix describes the technical changes between released issues of this book.

## A.1 Revisions

Each table shows the technical differences between successive issues of the document.

#### Table A-1: Issue 0000-00

| Change        | Location |
|---------------|----------|
| First release | -        |

#### Table A-2: Differences between issue 0100-00 and issue 0000-00

| Change                                          | Location                                                                                        |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| DAP for Arm Cortex-M processor added            | Introductory information in:                                                                    |  |
|                                                 | 3.2 DAP-Lite2 for Arm Cortex-M processors on page 17                                            |  |
|                                                 | 5.2 DAP-Lite2 for Arm Cortex-M processors on page 32                                            |  |
| Both DAPs built from SoC-600 components         | 4 SoC-600 components functional description on page 20                                          |  |
|                                                 | 6 SoC-600 components programmers model on page 35                                               |  |
| Support for CoreSight Architecture v3.0         | See Arm <sup>®</sup> CoreSight <sup>™</sup> Architecture Specification v3.0                     |  |
| Support for Arm Debug Interface v6.0            | See Arm <sup>®</sup> Debug Interface Architecture Specification ADIv6.0                         |  |
| JTAG DP supports configurable IR length         | See Arm <sup>®</sup> CoreSight <sup>™</sup> DAP-Lite2 Configuration and Integration Manual r1p0 |  |
| SW DP Serial Wire Multi Drop support added      | See Arm <sup>®</sup> CoreSight <sup>™</sup> DAP-Lite2 Configuration and Integration Manual r1p0 |  |
| Q-Channel support for low power implementations | See Arm <sup>®</sup> CoreSight <sup>™</sup> DAP-Lite2 Configuration and Integration Manual r1p0 |  |
| Programmers model details expanded              | 5 DAP-Lite2 programmers model on page 30                                                        |  |

#### Table A-3: Differences between issue 0100-00 and issue 0101-00

| Change | Location                                                                                                                                                      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 2.6 Product revisions on page 15, 6.2.1 css600_dp register summary on page 36, and 6.2.2.3 css600_dp Debug Port<br>Identification Register, DPIDR on page 39. |

#### Table A-4: Differences between issue 0101-00 and issue 0200-00

| Change       | Location                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------|
| Updated AHB- | 2.6 Product revisions on page 15, 6.4.2.5 Control Status Word register, CSW on page 82, 6.4.2.15 Identification |
| AP component | Register, IDR on page 90, and 6.4.2.29 Peripheral Identification Register 2, PIDR2 on page 100.                 |

#### Table A-5: Differences between issue 0200-00 and issue 0201-00

| Change                                                           | Location                |
|------------------------------------------------------------------|-------------------------|
| Updated publishing style, including section numbering, and edits | Throughout the document |

| Change                                                        | Location                                                           |
|---------------------------------------------------------------|--------------------------------------------------------------------|
| Updated APB-AP and AHB-AP components, IDR and PIDR2 registers | 2.5 Component list on page 14                                      |
|                                                               | • 6.3.1 css600_apbap register summary on page 50                   |
|                                                               | • 6.3.2.15 Identification Register, IDR on page 63                 |
|                                                               | • 6.3.2.29 Peripheral Identification Register 2, PIDR2 on page 73  |
|                                                               | • 6.4.1 css600_ahbap - APB4_Slave_0 register summary on page 77    |
|                                                               | • 6.4.2.15 Identification Register, IDR on page 90                 |
|                                                               | • 6.4.2.29 Peripheral Identification Register 2, PIDR2 on page 100 |
| Updated APB CSW.prot register field                           | 6.3.2.5 Control Status Word register, CSW on page 55               |
| Updated AHB CSW.HNONSEC register field                        | #unique_174                                                        |