
Fast Models
Version 11.17

User Guide

Non-Confidential
Copyright © 2014–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
100965_1117_00_en

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Fast Models
User Guide

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

A 31 May 2014 Non-
Confidential

New document for Fast Models v9.0, from DUI0370R
for v8.3.

B 30 November
2014

Non-
Confidential

Update for v9.1.

C 28 February
2015

Non-
Confidential

Update for v9.2.

D 31 May 2015 Non-
Confidential

Update for v9.3.

E 31 August 2015 Non-
Confidential

Update for v9.4.

F 30 November
2015

Non-
Confidential

Update for v9.5.

G 29 February
2016

Non-
Confidential

Update for v9.6.

H 31 May 2016 Non-
Confidential

Update for v10.0.

I 31 August 2016 Non-
Confidential

Update for v10.1.

J 11 November
2016

Non-
Confidential

Update for v10.2.

K 17 February
2017

Non-
Confidential

Update for v10.3.

1100-
00

31 May 2017 Non-
Confidential

Update for v11.0. Document numbering scheme has
changed.

1101-
00

31 August 2017 Non-
Confidential

Update for v11.1.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Issue Date Confidentiality Change

1102-
00

17 November
2017

Non-
Confidential

Update for v11.2.

1103-
00

23 February
2018

Non-
Confidential

Update for v11.3.

1104-
00

22 June 2018 Non-
Confidential

Update for v11.4.

1104-
01

17 August 2018 Non-
Confidential

Update for v11.4.2.

1105-
00

23 November
2018

Non-
Confidential

Update for v11.5.

1106-
00

26 February
2019

Non-
Confidential

Update for v11.6.

1107-
00

17 May 2019 Non-
Confidential

Update for v11.7.

1108-
00

5 September
2019

Non-
Confidential

Update for v11.8.

1108-
01

3 October 2019 Non-
Confidential

Update for v11.8.1.

1109-
00

28 November
2019

Non-
Confidential

Update for v11.9.

1110-
00

12 March 2020 Non-
Confidential

Update for v11.10.

1111-
00

9 June 2020 Non-
Confidential

Update for v11.11.

1112-
00

22 September
2020

Non-
Confidential

Update for v11.12.

1113-
00

9 December
2020

Non-
Confidential

Update for v11.13.

1114-
00

17 March 2021 Non-
Confidential

Update for v11.14.

1115-
00

29 June 2021 Non-
Confidential

Update for v11.15.

1116-
00

6 October 2021 Non-
Confidential

Update for v11.16.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Issue Date Confidentiality Change

1117-
00

16 February
2022

Non-
Confidential

Update for v11.17.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 252

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

Contents

1 Introduction...14
1.1 Conventions... 14
1.2 Other information...15

2 Introduction to Fast Models... 16
2.1 What is Fast Models?..16
2.2 What does Fast Models consist of?.. 17
2.2.1 Fast Models tools..17
2.2.2 Fast Models portfolio...19
2.2.3 Other Fast Models products.. 20
2.3 Fast Models glossary... 21
2.4 Fast Models design.. 25
2.4.1 Fast Models design flow... 25
2.4.2 Project files... 27
2.4.3 Repository files.. 29
2.4.4 File processing order..30
2.4.5 Hierarchical systems...31

3 Installing Fast Models...34
3.1 Requirements for Fast Models.. 34
3.2 Installation.. 37
3.3 Uninstallation... 38
3.4 Dependencies for Red Hat Enterprise Linux... 38

4 Building Fast Models.. 40
4.1 System Generator (SimGen)...40
4.2 SimGen command-line options... 41
4.3 Select the build target...43
4.4 Building an EVS platform... 44
4.5 Steps for building an EVS platform..45
4.5.1 Export the Fast Model as an EVS library.. 45
4.5.2 Initialize and configure the simulation... 46
4.5.3 Required header files and libraries... 47

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

4.5.4 Building an EVS on Windows..48
4.6 Bridge between LISA+ and SystemC...49
4.7 Libraries required to run the platform...50
4.8 Building an SVP.. 50
4.9 Building an ISIM..50

5 System Canvas Tutorial..52
5.1 About this tutorial.. 52
5.2 Starting System Canvas...52
5.3 Creating a new project... 53
5.4 Add and configure components..56

5.4.1 Adding the Arm® processor...56
5.4.2 Naming components.. 57
5.4.3 Resizing components..57
5.4.4 Hiding ports..58
5.4.5 Moving ports..58
5.4.6 Adding components..59
5.4.7 Using port arrays...59
5.5 Connecting components...60
5.6 View project properties and settings...61
5.6.1 Viewing the project settings.. 61
5.6.2 Specifying the Active Project Configuration...62
5.6.3 Selecting the top component...63
5.7 Changing the address mapping...64
5.8 Building the system..65
5.9 Debugging with Model Debugger..67
5.10 Building a SystemC ISIM target..71

6 System Canvas Reference... 72
6.1 Launching System Canvas..72
6.2 System Canvas GUI... 72
6.2.1 Application window.. 73
6.2.2 Menu bar...74
6.2.3 Toolbar... 82
6.2.4 Workspace window.. 84
6.2.5 Component window...86
6.2.6 Output window... 88

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

6.3 System Canvas dialogs..88
6.3.1 Add Existing Files and Add New File dialogs (Component window)...89
6.3.2 Add Files dialog (Project menu)...90
6.3.3 Add Connection dialog..91
6.3.4 Component Instance Properties dialog..91
6.3.5 Component Model Properties dialog for the system... 93
6.3.6 Component Properties dialog for a library component..95
6.3.7 Connection Properties dialog...96
6.3.8 Edit Connection dialog.. 97
6.3.9 File/Path Properties dialog... 97
6.3.10 Find and Replace dialogs..100
6.3.11 Label Properties dialog... 100
6.3.12 New File dialog (File menu)...101
6.3.13 New project dialogs...102
6.3.14 Open File dialog... 103
6.3.15 Port Properties dialog... 104
6.3.16 Preferences dialog..105
6.3.17 Project Settings dialog.. 109
6.3.18 Protocol Properties dialog..121
6.3.19 Run dialog.. 121
6.3.20 Self Port dialog... 122

7 SystemC Export with Multiple Instantiation..124
7.1 About SystemC Export with Multiple Instantiation... 124
7.2 Auto-bridging.. 125
7.3 SystemC Export generated ports...126
7.3.1 Protocol definition.. 127
7.3.2 TLM 1.0 protocol for an exported SystemC component..127
7.3.3 TLM 2.0 bus protocol for an exported SystemC component.. 127
7.3.4 Properties for TLM 1.0 based protocols...128
7.3.5 Properties for TLM 2.0 based protocols...130
7.4 SystemC Export API.. 131
7.4.1 SystemC Export header file... 131
7.4.2 scx::scx_initialize..131
7.4.3 scx::scx_set_single_evs...132
7.4.4 scx::scx_load_application... 132

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

7.4.5 scx::scx_load_application_all... 133
7.4.6 scx::scx_load_data... 133
7.4.7 scx::scx_load_data_all... 134
7.4.8 scx::scx_set_parameter.. 134
7.4.9 scx::scx_get_parameter.. 135
7.4.10 scx::scx_get_parameter_list...136
7.4.11 scx::scx_get_parameter_infos...136
7.4.12 scx::scx_get_cadi_parameter_infos..136
7.4.13 scx::scx_set_cpi_file.. 137
7.4.14 scx::scx_cpulimit..137
7.4.15 scx::scx_timelimit.. 137
7.4.16 scx::scx_add_breakpoint..138
7.4.17 scx::scx_set_start_pc.. 138
7.4.18 scx::scx_dump..138
7.4.19 scx::scx_load_params_file..139
7.4.20 scx::scx_list_instances.. 139
7.4.21 scx::scx_list_registers..139
7.4.22 scx::scx_check_registers.. 140
7.4.23 scx::scx_restore_checkpoint... 140
7.4.24 scx::scx_save_checkpoint..140
7.4.25 scx::scx_list_memory..140
7.4.26 scx::scx_parse_and_configure.. 141
7.4.27 scx::scx_register_synchronous_thread... 143
7.4.28 scx::scx_get_error_count...144
7.4.29 scx::scx_get_exitcode_list..144
7.4.30 scx::scx_exitcode_entry... 145
7.4.31 scx::scx_start_cadi_server... 145
7.4.32 scx::scx_enable_cadi_log... 146
7.4.33 scx::scx_print_port_number..146
7.4.34 scx::scx_print_statistics..147
7.4.35 scx::scx_register_cadi_target.. 147
7.4.36 scx::scx_unregister_cadi_target..147
7.4.37 scx::scx_load_trace_plugin.. 148
7.4.38 scx::scx_load_plugin... 148
7.4.39 scx::scx_get_global_interface... 148
7.4.40 scx::scx_enable_iris_server..148

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

7.4.41 scx::scx_set_iris_server_port_range.. 149
7.4.42 scx::scx_get_iris_server_port.. 149
7.4.43 scx::scx_set_iris_server_port...149
7.4.44 scx::scx_enable_iris_log... 150
7.4.45 scx::scx_get_iris_connection_interface...150
7.4.46 scx::scx_evs_base..151
7.4.47 scx::load_application.. 151
7.4.48 scx::load_data.. 151
7.4.49 scx::set_parameter..152
7.4.50 scx::get_parameter... 153
7.4.51 scx::get_parameter_list.. 153
7.4.52 scx::scx_evs_base constructor...153
7.4.53 scx::scx_evs_base destructor... 154
7.4.54 scx::before_end_of_elaboration...154
7.4.55 scx::end_of_elaboration...154
7.4.56 scx::start_of_simulation... 154
7.4.57 scx::end_of_simulation...154
7.4.58 scx::scx_simcallback_if... 155
7.4.59 scx::notify_running... 155
7.4.60 scx::notify_stopped.. 155
7.4.61 scx::notify_debuggable.. 155
7.4.62 scx::notify_idle...156
7.4.63 scx::scx_simcallback_if destructor...156
7.4.64 scx::scx_simcontrol_if...156
7.4.65 scx::get_scheduler.. 157
7.4.66 scx::get_report_handler... 157
7.4.67 scx::run..157
7.4.68 scx::stop..158
7.4.69 scx::is_running... 158
7.4.70 scx::stop_acknowledge..158
7.4.71 scx::process_debuggable...158
7.4.72 scx::notify_pending_debug... 159
7.4.73 scx::process_idle..159
7.4.74 scx::shutdown..159
7.4.75 scx::add_callback...160
7.4.76 scx::remove_callback..160

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

7.4.77 scx::scx_simcontrol_if destructor.. 160
7.4.78 scx::scx_get_default_simcontrol...160
7.4.79 scx::scx_get_curr_simcontrol.. 161
7.4.80 scx::scx_report_handler_if...161
7.4.81 scx::scx_get_default_report_handler...162
7.4.82 scx::scx_get_curr_report_handler.. 162
7.4.83 scx::scx_sync..162
7.4.84 scx::scx_set_min_sync_latency...163
7.4.85 scx::scx_get_min_sync_latency.. 163
7.4.86 scx::scx_simlimit.. 163
7.4.87 scx::scx_create_default_scheduler_mapping...164
7.4.88 scx::scx_get_curr_scheduler_mapping..164
7.5 Scheduler API..164
7.5.1 Scheduler API - about...164
7.5.2 Scheduler API - use cases and implementation..165
7.5.3 sg::SchedulerInterfaceForComponents class..168
7.5.4 sg::SchedulerRunnable class...178
7.5.5 sg::SchedulerThread class... 182
7.5.6 sg::ThreadSignal class...183
7.5.7 sg::Timer class..184
7.5.8 sg::TimerCallback class.. 186
7.5.9 sg::FrequencySource class.. 186
7.5.10 sg::FrequencyObserver class... 186
7.5.11 sg::SchedulerObject class... 187
7.5.12 sg::scx_create_default_scheduler_mapping...187
7.5.13 sg::scx_get_curr_scheduler_mapping..187
7.6 SystemC Export limitations..187
7.6.1 SystemC Export limitation on reentrancy...188
7.6.2 SystemC Export limitation on calling wait()..188
7.6.3 SystemC Export limitation on code translation support for external memory..........................188
7.6.4 SystemC Export limitation on Fast Models versions for MI platforms....................................... 189

8 Graphics Acceleration in Fast Models... 190
8.1 Introduction to GGA... 190
8.2 GGA modes...191
8.2.1 Using a GPU register model without GGA.. 192

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

8.2.2 Using GGA with a GPU register model.. 193
8.2.3 Using GGA without a GPU register model.. 195
8.3 Prerequisites.. 196
8.4 GGA contents... 198
8.4.1 Shim directory... 199
8.4.2 Reconciler directory... 200
8.4.3 Examples directory...200
8.4.4 HAL directory.. 200
8.5 Configuration...201
8.6 Feedback.. 202
8.7 Enabling GGA..202

8.7.1 Install the Arm® Mali™ OpenGL ES Emulator..203
8.7.2 Install Mesa.. 204
8.7.3 Preparing your image...205
8.7.4 Prepare an Android image..205
8.7.5 Prepare a Linux image...207
8.7.6 Choose the GGA mode.. 207
8.7.7 Boot the model with the Android or Linux image..208
8.7.8 Test the Android setup... 209
8.8 Using GGA...210
8.8.1 Log execution of graphics APIs...210
8.8.2 Examine OpenGL ES execution in the graphics driver..211
8.8.3 Error messages from Error code check...212
8.8.4 Trace driver accesses to the GPU registers... 212

9 Timing Annotation.. 215
9.1 Enabling and disabling timing annotation...215
9.2 CPI files.. 216
9.3 CPI file syntax...217
9.4 BNF specification for CPI files..222
9.5 Instruction and data prefetching..224
9.5.1 Configuring instruction prefetching..224
9.5.2 Configuring data prefetching... 225
9.6 Configuring cache and TLB latency...226
9.7 Timing annotation tutorial... 227
9.7.1 Setting up the environment...227

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
Contents

9.7.2 Modeling Cycles Per Instruction (CPI)...230
9.7.3 Modeling branch prediction... 237

10 FastRAM..247
10.1 Introducing FastRAM, a bus optimization for Fast Models..247
10.2 How to enable FastRAM... 247
10.3 FastRAM configuration file syntax...248
10.4 FastRAM configuration file example... 249
10.5 FastRAM limitations.. 250

A SystemC Export generated ports... 251
A.1 About SystemC Export generated ports..251

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 252

https://developer.arm.com/glossary

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction

Convention Use
A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm® website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 252

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

2 Introduction to Fast Models
This chapter provides a general introduction to Fast Models.

2.1 What is Fast Models?
The Fast Models product comprises a library of Programmer's View (PV) models and tools that
enable partners to build, execute, and debug virtual platforms. Virtual platforms enable the
development and validation of software without the need for target silicon. The same virtual
platform can be used to represent the processor or processor subsystem in SoC validation.

Fast Models are delivered in two ways:

• As a portfolio of Arm® IP models and tools to let you generate a custom model of your exact
system.

• As standalone models of complete Arm® platforms that run out-of-the-box to let you test your
code on a generic system quickly.

The benefits of using Fast Models include:

Develop code without hardware
Fast Models provides early access to Arm® IP, well ahead of silicon being available. Virtual
platforms are suitable for OS bring-up and for driver, firmware, and application development.
They provide an early development platform for new Arm® technology and accelerate time-
to-market.

High performance
Fast Models uses Code Translation (CT) processor models, which translate Arm® instructions
into the instruction set of the host dynamically, and cache translated blocks of code. This and
other optimization techniques, for instance temporal decoupling and Direct Memory Interface
(DMI), produce fast simulation speeds for generated platforms, between 20-200 MIPS on a
typical workstation, enabling an OS to boot in tens of seconds.

Customize to model your exact system
Fast Models provides a portfolio of models that are flexible and can easily be customized
using parameters to test different configurations. Using the System Canvas tool you can
model your own IP and integrate it with existing model components.

You can also export components and subsystems from the Fast Models portfolio to SystemC
for use in a SystemC environment. Such an exported component is called an Exported
Virtual Subsystem (EVS). EVSs are compliant with SystemC TLM 2.0 specifications to provide
compatibility with Accellera SystemC and a range of commercial simulation solutions.

Run standalone or debug using development tools
Generated platform models are equipped with Component Architecture Debug Interface
(CADI). This allows them to be used standalone or with development tools such as Arm®

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Development Studio or Arm® Keil® MDK, as well as providing an API for third party tool
developers.

Test architecture compliance
Fast Models provides Architecture Envelope Models (AEMs) for Arm®v8‑A, Arm®v8‑R, and
Arm®v8‑M. These are specialist architectural models that are used by Arm and by Arm®

architecture licensees to validate that implementations are compliant with the architecture
definition.

Trace and debug interfaces
Fast Models provides the Model Trace Interface (MTI) and CADI for trace and debug. These
APIs enable you to write plug-ins to trace and debug software running on models. Fast
Models also provides some pre-built MTI plug-ins, for example Tarmac Trace, that you can
use to output trace information.

Build once, run anywhere
Since the same binary runs on the model, the target development hardware, and the final
product, you only need to build it using the Arm® toolchain.

Host platform compatibility
Fast Models can be used on both Linux and Microsoft Windows hosts.

Related information
System Canvas GUI on page 72
LISA+ Language for Fast Models Reference Guide
About Model Debugger

2.2 What does Fast Models consist of?
The Fast Models package contains the tools and model components that are needed to model
a system. The tools and the portfolio of models are installed under separate directories,
FastModelsTools_n.n and FastModelsPortfolio_n.n respectively, where n.n is the Fast Models
version number.

Arm also supplies a wide range of pre-built Fixed Virtual Platforms (FVPs), including some free of
charge FVPs, separately from the Fast Models package.

2.2.1 Fast Models tools

Fast Models tools enable you to create custom system models from the library of component
models supplied in the Fast Models portfolio.

System Canvas or sgcanvas
A GUI design tool for developing new model components written in LISA+. It can also be
used for building and launching system models. To launch System Canvas from the command
line, type sgcanvas. It displays the model as either LISA+ source code, or graphically, in a
block diagram editor:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 252

https://developer.arm.com/documentation/101092/0100
https://developer.arm.com/documentation/100968/1117/Introduction-to-Model-Debugger

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Figure 2-1: System Canvas

System Generator or simgen
A backend tool that handles system model generation. System Generator can either be
invoked from the System Canvas GUI, or by using the simgen command-line utility. System
models that are created using System Generator can be used with other Arm® development
tools, for example Arm® Development Studio or Model Debugger, or can be exported to
SystemC for integration with proprietary models.

Model Debugger
A symbolic debugger with a GUI that communicates with models using the CADI interface.
It enables you to launch a model or connect to a running model, and debug code running on
the model. The following screen capture shows the different views available in the GUI:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Figure 2-2: Model Debugger

Model Shell
A command-line tool for launching simulations that are implemented as CADI libraries. It can
also run a CADI debug server to enable CADI-enabled debuggers to connect to the model.

Models can alternatively be implemented as standalone executables called ISIMs, which do
not require Model Shell.

Arm deprecates Model Shell in Fast Models version 11.2 and later. We
recommend you use ISIMs instead.

2.2.2 Fast Models portfolio

Fast Models portfolio is a library of component models of Arm® IP.

It includes the following:

• A collection of models and protocols, provided as LISA+ components. You can use them to
create a system using the Fast Models tools. Ports and protocols are used for communication
between components. Some models are of Arm® IP, while others are not. Examples of Arm® IP
models include:

◦ Processors, including models of all Arm® Cortex® processors and architectural models,
called AEMs.

◦ Models of Arm® media IP such as GPUs, video processors, and display processors.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

◦ Peripherals, for instance Arm® CoreLink™ interconnect, interrupt controllers, and memory
management units.

Some models are abstract components that do not model specific Arm® IP, but are required by
the software modeling environment. For example:

◦ PVBus components to model bus communication between components.

◦ Emulated I/O components to allow communication between the simulation and the host,
such as a terminal, a visualization window, and an ethernet bridge.

• Platform model examples that show how to integrate the model components. They are supplied
as project files, so must first be built using System Generator. Examples are provided for both
standalone simulation and for SystemC export, and include:

◦ Systems based on Arm®v8‑A and Arm®v8‑R Base Platform.

◦ Systems based on Arm® Versatile™ Express development boards for Arm®v7‑A and
Arm®v7‑R processors.

◦ Systems based on MPS2 development boards for Arm®v6‑M, Arm®v7‑M, and Arm®v8‑M
processors.

• Accellera SystemC and TLM header files and libraries, which are required to build FVPs and the
platform model examples.

• Model Trace Interface (MTI) plug-ins. MTI is the interface used by Fast Models to emit trace
events during execution of a program, for example branches, exceptions, and cache hits and
misses. Fast Models provides some pre-built MTI plug-ins that you can load into a model to
capture trace data, without having to write your own plug-ins. For example:

◦ TarmacTrace can trace all processor activity or a subset of it, for instance only branch
instructions or memory accesses.

◦ GenericTrace allows you to trace any of the MTI trace sources that the models can
produce.

Some trace plug-ins are provided in source form as programming examples.

• Some ELF images that you can run on models for evaluation purposes.

• Networking setup scripts to bridge network traffic from the simulation to the host machine’s
network.

2.2.3 Other Fast Models products

The following Fast Models products are available separately from the main Fast Models package:

Fixed Virtual Platforms (FVPs)
FVPs are models of Arm® platforms, including processors, memory, and peripherals. They are
supplied as pre-built executables for Linux and Windows. Their composition is fixed, although
you can configure their behavior using parameters.

Arm provides different types of FVP, based on the following platforms:

• Arm®v8‑A Base Platform.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

• Arm®v8‑R BaseR Platform.

• Arm® Versatile™ Express development boards.

• Arm® MPS2 or Arm® MPS2+ platforms, for Cortex®‑M series processors.

FVPs are available for all Cortex®‑A, Cortex®‑R, and Cortex®‑M processors, and they support
the CADI, MTI, and Iris interfaces, so can be used for debugging and for trace output.

The most commonly used FVPs are supplied in a single package which is downloadable from
Arm Developer, see Fixed Virtual Platforms.

Arm provides validated Linux and Android deliverables for the Arm®v8‑A AEM Base Platform
FVP and for the Foundation Platform. These are available on the Arm Development Platforms
wiki on Arm Community. To get started with Linux on Arm®v8‑A FVPs, see FVPs on the Arm
Development Platforms wiki.

Foundation Platform
A simple FVP that includes an Arm®v8‑A AEM processor model, that is suitable for running
bare-metal applications and for booting Linux. It is available for Linux hosts only and can be
downloaded free of charge from Arm Ecosystem Models on Arm Developer. Registration and
login are required.

System Guidance platforms
These FVPs include documentation to guide SoC design and a reference software stack
that is validated on the FVP. They are also known as Reference Design FVPs. For more
information, see Reference Design on Arm Developer.

Third party IP
A package that contains third party add-ons for Fast Models. These include some additional
ELF images, including Dhrystone.

2.3 Fast Models glossary
This glossary defines some Arm-specific technical terms and acronyms that are used in the Fast
Models documentation.

AMBA-PV
A set of classes and interfaces that model AMBA® buses. They are implemented as an
extension to the TLM v2.0 standard.

See AMBA-PV extensions.

Architecture Envelope Model (AEM)
An architectural model that aims to expose software bugs by modeling the extremes of
behavior that the Arm® architecture allows. There are several AEMs available, including
AEMvA for both Arm®v8‑A and Arm®v9‑A.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 252

https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://community.arm.com/dev-platforms/
https://community.arm.com/dev-platforms/
https://community.arm.com/dev-platforms/w/docs/228/armv8-a-fvps
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/ip-products/system-ip/reference-design
https://developer.arm.com/documentation/100962/latest/introduction/amba-pv-extensions

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Auto-bridging
A Fast Models feature that SimGen uses to automatically convert between LISA+ protocols
and their SystemC equivalents. It helps to automate the generation of SystemC wrappers for
LISA+ subsystem models.

See 7.2 Auto-bridging on page 125.

Base Platform
An example platform that is provided as part of Fast Models which can boot Linux and
Android. Variations of this platform are available including different cores, and with additional
system IP. It is often used together with Linux images from Linaro.

See Base Platform.

Component Architecture Debug Interface (CADI)
A legacy C++ debug interface that enables run control and inspection of models. It has been
replaced by Iris.

See About the Component Architecture Debug Interface.

Code Translation (CT)
A technique that processor models use to enable fast execution of code. CT models translate
code dynamically and cache translated code sequences to achieve fast simulation speeds.

Cycle Models
Cycle-accurate software models of Arm® IP, for example processors or peripherals. They are
cycle-accurate and functionally accurate, so are usable for benchmarking. Cycle Models is a
separate product from Fast Models, but they can be used alongside each other, in particular
by using the Cycle Models Swap-and-Play feature.

Direct Memory Interface (DMI)
A TLM 2.0 interface that provides direct access to memory. It accelerates memory
transactions, which improves model performance.

Exported Virtual Subsystem (EVS)
A Fast Models component or subsystem that is exported as a SystemC module for use within
a SystemC environment.

See 7.1 About SystemC Export with Multiple Instantiation on page 124.

Fast Models
High performance software models of components of Arm® SoCs, for example processors
or peripherals. Components can have subcomponents to form a hierarchy, and can be
connected together to form a platform model. Fast Models are functionally accurate, but not
cycle-accurate.

Fixed Virtual Platform (FVP)
A pre-built platform model that enables applications and operating systems to be written
and debugged without the need for real hardware. FVPs are also referred to as Fixed Virtual
Prototypes. They were formerly known as RTSMs.

See About FVPs.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 252

https://developer.arm.com/documentation/100964/1117/Base-Platform
https://developer.arm.com/documentation/100963/latest/Introduction/About-the-Component-Architecture-Debug-Interface
https://developer.arm.com/documentation/100966/1117/Introduction-to-FVPs

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Foundation Model
See Foundation Platform.

Foundation Platform
A freely available, easy-to-use FVP for application developers that supports the Arm®v8‑A
and Arm®v9-A architectures. It can be downloaded from Arm Ecosystem Models on Arm
Developer, registration and login are required. It was formerly known as Foundation Model.

IMP DEF
Used in register descriptions in the Fast Models Reference Guide to indicate behavior that the
architecture does not define. Short for Implementation Defined.

Integrated Simulator (ISIM)
An executable model binary that can run standalone, without the need for Model Shell or
Model Debugger. SimGen generates ISIMs by statically linking the model with the SystemC
framework.

See 5.10 Building a SystemC ISIM target on page 70.

Iris
An interface for debugging and tracing model behavior. Iris is the replacement for CADI.

See Iris User Guide

Language for Instruction Set Architectures (LISA, LISA+)
LISA is a language that describes instruction set architectures. LISA+ is an extended form
of LISA that supports peripheral modeling. LISA+ is used for creating and connecting model
components. The Fast Models documentation does not always distinguish between the two
terms, and sometimes uses LISA to mean both.

See LISA+ Language for Fast Models Reference Guide.

Microcontroller Prototyping System (MPS2)
Arm® Versatile™ Express V2M-MPS2 and V2M-MPS2+ are motherboards that enable
software prototyping and development for Cortex®‑M processors. The MPS2 FVP models a
subset of the functionality of this hardware.

See MPS2 - about.

Model Debugger
A Fast Models debugger that enables you to execute, connect to, and debug any CADI-
compliant model. You can run Model Debugger using a GUI or from the command line.

See About Model Debugger.

Model Shell
A command-line utility for configuring and running CADI-compliant models. Arm deprecates
Model Shell from Fast Models version 11.2. Use ISIM executables instead.

See About Model Shell.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 252

https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
https://developer.arm.com/documentation/101196/0100
https://developer.arm.com/documentation/101092/0100
https://developer.arm.com/documentation/100964/1117/Microcontroller-Prototyping-System-2/MPS2---about
https://developer.arm.com/documentation/100968/1117/Introduction-to-Model-Debugger
https://developer.arm.com/documentation/100969/1117/Introduction-to-Model-Shell/About-Model-Shell

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Model Trace Interface (MTI)
A trace interface that is used by Fast Models to expose real-time information from the model.

See Model Trace Interface Reference Manual.

Platform Model
A model of a development platform, for example an FVP.

Programmers' View (PV) Model
A high performance, functionally accurate model of a hardware platform. It can be used for
booting an operating system and executing software, but not to provide hardware-accurate
timing information.

See Timing Annotation.

PVBus
An abstract, programmers view model of the communication between components. Bus
masters generate transactions over the PVBus and bus slaves fulfill them.

See PVBus components.

Quantum
A set of instructions that the processor issues at the same point in simulation time. The
processor then waits until other components in the system have executed the instructions
for the same time slice, before executing the next quantum.

Real-Time System Model (RTSM)
An obsolete term for Fixed Virtual Platform (FVP).

SimGen
An alternative name for System Generator.

Synchronous CADI (SCADI)
An interface that provides a subset of CADI functions to synchronously read and write
registers and memory. You can only call SCADI functions from the model thread itself, rather
than from a debugger thread. SCADI is typically used from within MTI or by peripheral
components to access the model state and to perform run control.

See About SCADI.

syncLevel
Each processor model has a syncLevel with four possible values. It determines when a
synchronous watchpoint or an external peripheral breakpoint can stop the model, and the
accuracy of the model state when it is stopped.

See syncLevel definitions.

System Canvas
An application that enables you to manage and build model systems using components. It has
a block diagram editor for adding and connecting model components and setting parameters.

See 6.2 System Canvas GUI on page 72.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 252

https://developer.arm.com/documentation/dui0819/latest
https://developer.arm.com/documentation/100964/1117/Fast-Models-components/Bus-components
https://developer.arm.com/documentation/100964/1117/Introduction-to-Fast-Models/SCADI/About-SCADI
https://developer.arm.com/documentation/100964/1117/Introduction-to-Fast-Models/Non-CADI-sync-watchpoints/syncLevel-definitions

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

SystemC Virtual Platform (SVP)
A Fast Models platform that consists of components and subsystems that are individually
exported to SystemC as a collection of multiple EVSs.

System Generator
A utility that generates a platform model by processing LISA files. You can run System
Generator from the command line by invoking simgen, or from the System Canvas GUI. It is
also referred to as SimGen.

See 4.1 System Generator (SimGen) on page 40.

System Model
An alternative term for Platform Model.

Tarmac trace
A format for tracing the execution on code on an Arm® core. For Fast Models, there is a
TarmacTrace plug-in that can consume and display tarmac trace.

See TarmacTrace.

Timing Annotation
A set of Fast Models features that allow timing configuration for various operations, for
instance instruction execution and branch prediction. It allows the model to be used for basic
benchmarking.

See 9 Timing Annotation on page 215.

Versatile™ Express (VE)
A family of Arm® hardware development boards. The term is abbreviated to VE when used
in model names. For example, FVP_VE_Cortex-A5x1 is a model of the Versatile™ Express
hardware platform, with a single Cortex®‑A5 processor.

Related information
Arm Glossary

2.4 Fast Models design
This section describes the design of Fast Models systems.

2.4.1 Fast Models design flow

The basic design flow for Fast Models is:

1. Create or buy standard component models.

2. Use System Canvas to connect components and set parameters in the LISA+ source code.

3. Generate a new model using System Generator either from the command line (SimGen) or from
within the System Canvas GUI.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/TarmacTrace
https://developer.arm.com/documentation/aeg0014/latest

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

4. Use the new model as input to a more complex system or distribute it as a standalone
simulation environment.

Figure 2-3: Fast Models design flow

Fast Models
Portfolio component

libraries

Component source

System
Generator
(SimGen)

C++

CADI-enabled
debuggerSystemC ISIM

(executable)

CT models

Model Shell
(command line)

Generate

Load

RPC

CADI library
(.so or .dll)

Generate

System Canvas

Project file (.sgproj)

LISA

EVS library
(.so or .dll)

Generate
and

export

SystemC
system

Link

Peripherals

Other

Load

The input to System Generator consists of:

C++ library objects
Typically these are models of processors or standard peripherals.

LISA+ source code
The source code files define custom peripheral components. They can be existing files in
the Fast Models portfolio or new LISA+ files that were created in System Canvas. The LISA
+ descriptions can be located in any directory. One LISA+ file can contain one or more
component descriptions.

Project file
System Generator requires a .sgproj project file to configure the build.

After the required components have been added and connected, System Generator uses gcc or the
Visual Studio C++ compiler to produce the output object as one of the following:

• One or more CADI libraries, which you can load into Model Shell or Model Debugger.

• An ISIM executable, for instance an FVP. You could run this standalone, or you could connect
a CADI-enabled debugger to it, such as Model Debugger or Arm® Development Studio
Debugger.

• An EVS, which can be used as a building block for a SystemC system. It is generated using the
Fast Models SystemC Export feature.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

To build ISIM executables or EVSs, a SystemC environment must be installed, and
the SYSTEMC_HOME environment variable must be set.

2.4.2 Project files

A single project file (.sgproj) describes to System Generator (SimGen) the build configuration to
use for each host platform and the files that are required to build the model.

The build configuration includes:

• The compiler version to use

• Whether to build release or debug binaries

• Linker and compiler flags

• SimGen flags

• Build target, for example EVS library or ISIM

It also specifies the location of the LISA source files for the project.

There is no requirement to provide a makefile and a set of configuration files for each new project.

Each project file references all files that System Canvas needs to build and run a simulation,
including LISA, C, and C++ sources, libraries, files to deploy to the simulation directory, and nested
repository files.

Repository files (.sgrepo) have the same format as project files.

You can add single files or a complete repository, such as the Fast Models Portfolio, to the project
file.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Figure 2-4: Example organization of project directories and files on Microsoft Windows

D:

\Program Files\ARM\FastModelsPortfolio_x.y
etc

sglib.sgrepo
LISA

ctmodel.sgrepo
components.sgrepo
PL011_Uart.lisa
SMSC_91C111.lisa

Work_directory
My_Projects

My_System.sgproj

Win64-Debug-VC2019

My_System.lisa
My_System.sgcanvas
My_custom_component.lisa
My_custom_component.sgcanvas

lib

Win64_VC2019
Debug

1

2

4

5

7

3

components.lib

3

The My_Projects directory contains the My_System.sgproj project file:

1. My_System.sgproj points to the standard Fast Models Portfolio repository file sglib.sgrepo.

2. The sglib.sgrepo repository file contains a list of repository locations such as
components.sgrepo.

3. components.sgrepo lists the locations of the LISA files for the components and the location and
type of libraries that are available for the components.

4. The project file lists My_System.lisa as the top-level LISA file for the system. The top-level LISA
file lists the components in the system and shows how they interconnect.

5. This project uses a custom component in addition to the standard Fast Models Portfolio
components. Custom components can exist anywhere in the directory structure. In this case,

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

only the My_System component uses the custom component, so the My_custom_component.lisa
file is in the same directory.

6. System Canvas generates the My_System.sgcanvas and My_custom_component.sgcanvas files to
save display changes in the Workspace window. These files describe the display settings for a
component such as:

• Component location and size.

• Label text, position and formatting.

• Text font and size.

• The moving of or hiding of ports.

• Grid spacing.

The build process does not use .sgcanvas files. System Canvas uses them for its Block Diagram
view.

7. My_System.sgproj defines Win64-Debug-VC2019 as the build directory for the selected platform.
Other build options in the project file include:

• The host platform, for instance "Win64".

• The compiler, for example "VC2019" and compiler options.

• Additional linker options.

• Additional options to be passed to SimGen.

• The type of target to build, for example an ISIM executable or a SystemC component.

Related information
Project Settings dialog on page 109
Project file contents on page 117

2.4.3 Repository files

Repository files group together references to commonly used files, eliminating the need to specify
the path and library for each component in a project.

Repository files contain:

• A list of components.

• The paths to the LISA sources for the components.

• A list of library objects for the components.

• Optionally, lists of paths to other repository files. This enables a hierarchical structure.

System Canvas adds the default model repositories to a project when creating it. Changing these
repository settings does not affect existing projects. The project_name.sgproj files contain the
paths to the repositories as hard code. To change the repositories for an existing project, open the
file and edit the paths.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Default repositories can also preset required configuration parameters for projects that rely on the
default model library. These parameters are:

• Additional Include Directories.

• Additional Compiler Settings.

• Additional Linker Settings.

2.4.4 File processing order

The processing order enables a custom implementation of a Fast Models component.

An example of a project file

/// project file
sgproject "MyProject.sgproj"
{
files
{
 path = "./MyTopComponent.lisa";
 path = "./MySubComponent1.lisa";
 path = "./repository.sgrepo";
 path = "./MySubComponent2.lisa";
}
}

An example of a repository file

/// subrepository file
sgproject "repository.sgrepo"
{
files
{
 path = "../LISA/ASubComponent1.lisa";
 path = "../LISA/ASubComponent2.lisa";
}
}

System Canvas processes the files in sequence, expanding sub-repositories as it encounters them:

1. ./MyTopComponent.lisa

2. ./MySubComponent1.lisa

3. ./repository.sgrepo

a. ../LISA/ASubComponent1.lisa

b. ../LISA/ASubComponent2.lisa

4. ./MySubComponent2.lisa

Changing the processing order allows customization. If MySubComponent1.lisa and ../LISA/
ASubComponent1.lisa both list a component with the same name, the application uses only the first
definition.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

The File List view of System Canvas shows the order of components in the project file. Use the
application controls to re-order the files and repositories:

• The Up and Down context menu entries in the File List view of the Component window. The
commands have keyboard shortcuts of Alt+Arrow Up and Alt+Arrow Down.

You can also drag-and-drop files inside a repository or between repositories.

• The Up and Down buttons on the Default Model Repository tab in the Properties dialog, for
repositories in new projects.

2.4.5 Hierarchical systems

The terms system and component are both used to describe the output from System Canvas. The
main difference is whether the output is intended as a standalone system or is to be used within a
larger system.

The block diagram shows the advantage of using a hierarchical system with a complex model.

Figure 2-5: Block diagram of top-level VE model

The main component in the system is a VE motherboard component. To open this item, select
it and select Open Component from the Object menu. It is a complex object with many
subcomponents.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

Figure 2-6: Contents of VE motherboard component

Hiding the complexity of the VE motherboard in a component simplifies the drawing and enables
the VE motherboard component to be shared between different FVP models.

For example, the ClockDivider component located at the top-left of Figure 2-6: Contents of VE
motherboard component on page 32 has a connection to an external port called masterclk.

Figure 2-7: Self port detail

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Introduction to Fast Models

By double-clicking a component, in this case a clock divider, you can open it to see the LISA code,
and the resulting Block Diagram window displays the external ports for that subcomponent.

Figure 2-8: Clock divider component external ports

The clock divider component contains only external ports, and it has no subcomponents. The
behavior for this component is determined by the LISA code.

A component communicates with components in the higher-level system through its self ports.
Self ports refer to ports in a system that are not part of a subcomponent, and are represented by a
hollow rectangle with triangles to indicate data flow, and a text label in the rectangle.

Self ports can be internal or external.

Internal ports
These ports communicate with subcomponents and are not visible if the component is used
in a higher-level system. Unlike hidden external ports, you cannot expose internal ports
outside the subcomponent. Right-click on a port and select Object Properties... to identify or
create internal ports. Set the port attributes to Internal for an internal self port.

External ports
These ports communicate with components in a higher-level system, and by default are
external.

If you use the Block Diagram editor to make a connection between an external port and a
subcomponent, the LISA code uses the keyword self to indicate the standalone port:

self.clk_in_master => clkdiv_ref25.clk_in;

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

3 Installing Fast Models
This chapter describes the system requirements for Fast Models and how to install and uninstall
Fast Models.

3.1 Requirements for Fast Models
This section describes the host hardware and software requirements for using Fast Models.

Platform
Memory

At least 2GB RAM, preferably 4GB.

Processor
2GHz Intel Core2Duo, or similar, that supports the MMX, SSE, SSE2, SSE3, and SSSE3
instruction sets.

Linux
Operating system

Red Hat Enterprise Linux 7 or 8 (for 64-bit architectures), Ubuntu 16.04, 18.04, or 20.04
Long Term Support (LTS).

Shell
A shell compatible with sh, such as bash or tcsh.

Compiler
GCC 7.3.0, GCC 9.3.0.

Table 3-1: Supported GCC versions on Linux

OS GCC versions supported

RHEL 7 GCC 7.3.0, GCC 9.3.0

RHEL 8 GCC 9.3.0

Ubuntu 16.04 LTS GCC 7.3.0

Ubuntu 18.04 LTS GCC 7.3.0

Ubuntu 20.04 LTS GCC 9.3.0

For full compatibility, it is highly recommended that all code that links against
the Fast Models is compiled with C++11 support enabled. There are no
known issues when linking non-C++11 code with the Fast Models. However,
the compiler does not guarantee that the ABI is the same for both types
of code. Compiling models with C++11 support disabled might cause data
corruption or other issues when using them.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

The following combinations of GCC and GNU binutils were used to build Fast Models
libraries:

Table 3-2: GCC and binutils versions

GCC version GNU binutils version

7.3.0 2.29

9.3.0 2.32

PDF Reader
Adobe does not support Adobe Reader on Linux. Arm recommends system provided
equivalents, such as Evince, instead.

License management utilities
The latest version of the FlexNet software that is available for download from License Server
Management Software.

• Set up a single armlmd license server. Spreading Fast Models license features
over servers can cause feature denials.

• To run armlmd and lmgrd, install these libraries:
Red Hat

lsb, lsb-linux
Ubuntu

lsb

Microsoft Windows
Operating system

Microsoft Windows 10 64-bit.

Compiler
Microsoft Visual Studio 2019 version 16.7.3 or later.

Table 3-3: Supported versions of Visual Studio and Windows SDK

Visual Studio version supported Windows SDK version required

Visual Studio 2019 Windows SDK version 10.0.16299.0 or later

The following Visual Studio components are required:

• Visual C++ ATL for x86 and x64

• Visual C++ MFC for x86 and x64

PDF Reader
Adobe Reader 8 or higher.

License management utilities
The latest version of the FlexNet software that is available for download from License Server
Management Software.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 252

https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads
https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads
https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads
https://developer.arm.com/tools-and-software/software-development-tools/license-management/downloads

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

• To build models using Visual Studio requires you to install the Visual Studio
redistributable package which contains the runtime libraries for Visual Studio.
Fast Models does not provide these libraries. Download the libraries for Visual
Studio free of charge from Microsoft, from https://www.microsoft.com/en-gb/
download/details.aspx?id=48145.

• On Windows, Fast Models libraries are built with one of the following MSVC
compiler options:

◦ /MD for release builds

◦ /MDd for debug builds

Any objects or libraries that link against the Fast Models libraries must also be
built with the same /MD or /MDd option.

• Fast Models does not support Express or Community editions of Visual Studio.

• Set up a single armlmd license server. Spreading Fast Models license features
over servers can cause feature denials.

• If you use Microsoft Windows Remote Desktop (RDP) to access System Canvas
(or a simulation that it generated), your license type can restrict you:

◦ Floating licenses require a license server, and have no RDP restrictions. Arm
issues them on purchase.

◦ Node locked licenses apply to specific workstations. Existing node locked
licenses and evaluation licenses do not support running the product over
RDP connections. Contact Arm Support for more information.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 252

https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads
https://developer.arm.com/support

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

3.2 Installation
This section describes how to install the Fast Models package.

Procedure
1. Unpack the installation package, if necessary, and execute ./setup.sh on Linux or Setup.exe

on Windows.
To install the package without the need for user interaction, use the --i-accept-the-end-user-
license-agreement command-line option.

Using this option means you have read and accepted the terms and conditions
of the End User License Agreement for the product and version installed.

This option can be followed by either or both of these options:

--basepath <path>
Set the base directory for the installation.

--licpath <path>
Set the location of the license file.

If the installer finds an existing installation, it displays a dialog to enable re-installation or
uninstallation.

On Windows, the installer automatically defines the following environment variables:

MAXCORE_HOME
Points to the installation directory of the Fast Models Tools. It is set by installing the Fast
Models Tools package.

PVLIB_HOME
Points to the installation directory of the Fast Models Portfolio. It is set by installing the
Fast Models Portfolio package.

SYSTEMC_HOME
Points to the Accellera SystemC library installation directory. It is set by installing the
Accellera SystemC Library package. This package includes the SystemC and TLM header
files and libraries that you need to build an EVS, FVP, or SVP.

2. On Linux, source the appropriate script for your shell to set up these environment variables.
Ideally, include it for sourcing into the user environment on log-in:

bash/sh
. <install_directory>/FastModelTools_x.x/source_all.sh

csh
source <install_directory>/FastModelTools_x.x/source_all.csh

3. Optionally, download and install the Third-Party IP (TPIP) add-on package from Product
Download Hub. It contains third party add-ons for Fast Models, including ELF images that you

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 252

https://developer.arm.com/downloads
https://developer.arm.com/downloads

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

can run on the example platforms for evaluation purposes and the GDB Remote Connection
plug-in.

Results

On Microsoft Windows, the Fast Models examples are installed in %PVLIB_HOME
%\examples\. The installer makes a copy of them in %USERPROFILE%\ARM
\FastModelsPortfolio_%FM-VERSION%\examples\. This copy allows you to
save configuration changes to these examples without requiring Administrator
permissions.

3.3 Uninstallation
On Linux, uninstall Fast Models Tools and Fast Models Portfolio by deleting the installation
directories.

On Windows, uninstall Fast Models Tools and Fast Models Portfolio by selecting the Uninstall
option for each product from the Start > Settings > Apps > Apps & features list.

3.4 Dependencies for Red Hat Enterprise Linux
Some library objects or applications depend on other library files. Fast Models requires some
packages that are part of Red Hat Enterprise Linux, which you might need to install.

If you subscribed your Red Hat Enterprise Linux installation to the Red Hat Network, or if you are
using CentOS rather than Red Hat Enterprise Linux, you can install dependencies from the internet.
Otherwise, use your installation media.

Some packages might depend on other packages. If you install with the Add/Remove software GUI
tool or the yum command line tool, these dependencies resolve automatically. If you install packages
directly using the rpm command, you must resolve these dependencies manually.

To display the package containing a library file on your installation, enter:

rpm -qf library_file

For example, to list the package containing /lib/tls/libc.so.6, enter the following on the
command line:

rpm -qf /lib/tls/libc.so.6

The following output indicates that the library is in version 2.3.2-95.37 of the glibc package:

glibc-2.3.2-95.37

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Installing Fast Models

Table 3-4: Dependencies for Red Hat Enterprise Linux

Package Required for

glibc Fast Models tools and virtual platforms

glibc-devel Fast Models tools

libgcc Fast Models tools and virtual platforms

make Fast Models tools

libstdc++ Fast Models tools and virtual platforms

libstdc++-devel Fast Models tools

libXext Fast Models tools and virtual platforms

libX11 Fast Models tools and virtual platforms

libXau Fast Models tools and virtual platforms

libxcb Fast Models tools and virtual platforms

libSM Fast Models tools and virtual platforms

libICE Fast Models tools and virtual platforms

libuuid Fast Models tools and virtual platforms

libXcursor Fast Models tools and virtual platforms

libXfixes Fast Models tools and virtual platforms

libXrender Fast Models tools and virtual platforms

libXft Fast Models tools and virtual platforms

libXrandr Fast Models tools and virtual platforms

libXt Fast Models tools and virtual platforms

alsa-lib Fast Models virtual platforms

xterm Fast Models virtual platforms

telnet Fast Models virtual platforms

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4 Building Fast Models
This chapter explains the process for using Fast Models to build different types of platform models.

It assumes a Linux host and GCC 7.3, although Windows hosts and other versions of GCC are also
supported, see 3.1 Requirements for Fast Models on page 34 for details.

It refers to the following platform examples that are installed with Fast Models:

• EVS platforms and SVPs, located in $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/
and $PVLIB_HOME/examples/SystemCExport/SVP_Platforms/

• ISIMs, located in $PVLIB_HOME/examples/LISA/FVP_*/

4.1 System Generator (SimGen)
All types of platform model are built using a utility called System Generator, also referred to as
SimGen, with a Fast Models .sgproj project file.

You can use SimGen in the following ways:

• By building the project in System Canvas, which invokes SimGen.

• By invoking simgen on the command line.

SimGen requires you to have installed GCC or Visual Studio C++ compiler. On
Windows, if SimGen cannot find devenv.exe for Visual Studio, the build fails. You
can specify the path to devenv.exe in the System Canvas Preferences dialog or
using the --devenv-path command-line option.

To use SimGen to build a Fast Models project, a typical command line is:

simgen -p <projectfile>.sgproj --configuration <configuration_name> -b

where configuration_name identifies the host OS, the build mode (debug or release), and the
toolchain, for example, Linux64-Release-GCC-7.3 or Win64-Debug-VC2019.

To see all the available SimGen options, type simgen --help.

SimGen supports the following build targets, which you specify either in the .sgproj project file or
in the System Canvas Project Settings dialog:

EVS (Exported Virtual Subsystem) library
A LISA+ component or subsystem that SimGen exports as a SystemC module. You can then
integrate this module into a SystemC simulation.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

ISIM (Integrated SIMulator)
An executable platform model that SimGen creates by building an EVS library and statically
linking it with the SystemC framework.

Related information
System Canvas Tutorial on page 52
SimGen command-line options on page 41

4.2 SimGen command-line options
System Generator (SimGen) options, short forms, and descriptions.

Table 4-1: SimGen command-line options

Option Short form Description

--bridge-conf-
file FILENAME

- Set auto-bridging JSON configuration file FILENAME.

--build -b Build the targets.

--build-directory DIR - Set build directory DIR.

--clean -C Clean the targets.

--config FILENAME - Set SimGen configuration file FILENAME. By default, simgen.conf.

--configuration NAME - The name of the configuration, for example Linux64-Release-GCC-7.3.

--cpp-flags-start - Ignore all parameters between this and --cpp-flags-end, except -D and -I.

--cpp-flags-end - See --cpp-flags-start.

--cxx-flags-start - Ignore all parameters between this and --cxx-flags-end, except -D.

--cxx-flags-end - See --cxx-flags-start.

--debug -d Enable debug mode.

--define SYMBOL -D Define preprocessor SYMBOL. You can also use SYMBOL=DEF.

--devenv-path ARG - Path to Visual Studio development environment, devenv.

--disable-warning NUM - Disable warning number NUM.

This overrides the --warning-level LEVEL option.

--dumb-term - The terminal in which SimGen is running is dumb, so instead of fancy progress indicators,
use simpler ones.

--enable-warning NUM - Enable warning number NUM.

This overrides the --warning-level LEVEL option.

--gcc-path PATH - Under Linux, the GCC C++ compiler that builds the model. Passes the full path of the
chosen g++ executable to SimGen. Match this GCC version to the GCC version in the
model configuration. By default, SimGen uses the g++ in the search path.

--gen-sysgen-lib - Generate system library.

--help -h Print help message with a list of command-line options then exit.

--ignore-compiler-
version

- Do not stop on a compiler version mismatch. Try to build anyway.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

Option Short form Description

--include INC_PATH -I Add include path INC_PATH.

--indir_tpl DIR - Set directory DIR where SimGen finds its template data files.

--link-against LIBS - Final executable will be linked against debug or release libraries. LIBS can be debug or
release, does certain consistency checks.

--MSVC-debuginfo-
type ARG

- Set the debug info type for MSVC projects. ARG can be one of:

• none: No debug info.

• /Zi: Program Database.

• /Zd: Line numbers only.

--no-deploy - Prevent SimGen from copying deployed files from their original location to the location
of the model. For example, when this option is specified, SimGen does not copy
armctmodel.dll or libarmctmodel.so from the model library to the location of
the generated model.

This option is for advanced users who are building models in a batch system, or as part of
another tool where they are taking responsibility for making sure all the required libraries
are present.

--no-lineinfo -c Do not generate line number redirection in generated source and header files.

--num-build-cpus NUM - The number of processors used during the build.

--num-comps-file NUM - The number of components generated into one file.

--outdir_arch DIR - Set output directory DIR for file with variable filenames.

--outdir_fixed DIR - Set output directory DIR for file with constant filenames.

--override-config-
parameter PARAM=VALUE

-P Override the configuration parameter from the *.sgproj file.

--print-config - Print out configuration parameters in file .ConfigurationParameters.txt.

--print-preprocessor-
output

-E Print preprocessor output, then exit.

--print-resource-mapping - Print flat resource mapping when generating a simulator.

--project-file FILENAME -p Set SimGen project file FILENAME.

--replace-strings - Replace strings in files, then exit. Ignore binary files. Usage:

simgen --replace-strings FOO BAR [FOO2 BAR2]… -- FILES…

--replace-strings-bin - Replace strings in files, then exit. Do not ignore binary files. Usage:

simgen --replace-strings-bin FOO BAR [FOO2 BAR2]… -- FILES…

--top-component COMP - Top level component (system).

--user-MSVC-libs-start - Set additional libraries for MSVC projects. The list is terminated by --user-MSVC-
libs-end.

--user-MSVC-libs-end - See --user-MSVC-libs-start.

--user-sourcefiles-start - Add source files listed between this option and --user-sourcefiles-end to the
executable.

--user-sourcefiles-end - See --user-sourcefiles-start.

--verbose ARG -v Verbosity. ARG can be: on, sparse (default), off.

--version -V Print the version and exit.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

Option Short form Description

--warning-level LEVEL -w Warning level LEVEL.

--warnings-as-errors - Treat LISA parsing and compiler warnings as errors.

4.3 Select the build target
The first step in building an EVS library or an ISIM is to select the build target.

You can do this either:

• In the System Canvas Project Settings dialog, by selecting:

◦ SystemC component for an EVS library.

◦ SystemC integrated simulator for an ISIM.

Figure 4-1: System Canvas Project Settings

• If you are building using simgen on the command line, the build target is specified in the project
(.sgproj) file using one of the following statements. If no build target is specified, simgen
returns an error.

◦ TARGET_SYSTEMC = "1"; for an EVS library.

◦ TARGET_SYSTEMC_ISIM = "1"; for an ISIM.

You can find some example sgproj files under $PVLIB_HOME/examples/.

To build an ISIM or EVS, you must have installed SystemC 2.3.3 and set the
SYSTEMC_HOME environment variable to the location of the SystemC installation.
When you install Fast Models, you have the option of also installing Accellera
SystemC. On Windows, the installer automatically sets SYSTEMC_HOME. On Linux, you
need to run the appropriate setup script.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4.4 Building an EVS platform
An EVS platform is a SystemC simulation that includes an EVS library. Because you must provide an
sc_main() function and integrate the EVS library into the simulation, you cannot build this type of
platform entirely within System Canvas.

The following diagram shows the build process for an EVS platform. The shaded area represents
SimGen and its output. The rest of the diagram is the responsibility of the user:

Figure 4-2: Build process for an EVS platform

Fast Models
Portfolio

components

Component
source

System Generator
(SimGen)

C++

Project file
(.sgproj)

EVS library

Fast Models
and SystemC

libraries

Generated
header

#include

Peripherals

Other

Cores

LISA+

 SystemC
source

(sc_main())

GCC SystemC
executable

The steps to build an EVS platform are:

1. Export the Fast Model as an EVS library. You can either use System Canvas or invoke SimGen
directly to do this.

2. Define an sc_main() function that uses the SystemC Export API to initialize and configure the
EVS. The file that defines sc_main() must #include the header file that SimGen generates in
step 1, scx_evs_<top_level_component>.h.

The top-level component is specified in the sgproj file entry
TOP_LEVEL_COMPONENT.

3. Invoke the C++ compiler, specifying the required Fast Models and SystemC header files and
libraries.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

The EVS platform examples, located in $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/ use
a Makefile to perform steps 1 and 3.

Related information
SystemC Export API on page 131

4.5 Steps for building an EVS platform
This section describes in more detail each step to build the EVS platform. It uses the Cortex-
A65x1 EVS_Dhrystone platform as an example. This example platform is located in $PVLIB_HOME/
examples/SystemCExport/EVS_Platforms/EVS_Dhrystone/Build_Cortex-A65x1/.

4.5.1 Export the Fast Model as an EVS library

To build an EVS library, invoke SimGen from the command line.

For example:

$MAXCORE_HOME/bin/simgen -p EVS_Dhrystone_Cortex-A65x1.sgproj --configuration Linux64-Release-
GCC-7.3 -b

Where:

• MAXCORE_HOME is set by the Linux setup script or Windows installer to the installation directory
of the Fast Models tools.

• The -p option specifies the project (.sgproj) file. To select EVS as the build target, the project
file must contain the following statement:
TARGET_SYSTEMC = "1";

A build target must be specified because there is no default.

• The --configuration option selects the build configuration. This is also used as the name of
the build directory and in some output filenames.

• -b performs the build.

This command generates:

• The EVS library, for example ./Linux64-Release-GCC-7.3/libscx-Dhrystone-Linux64-
Release-GCC-7.3.a

• The EVS header file, for example ./Linux64-Release-GCC-7.3/gen/scx_evs_Dhrystone.h

• The EVS shared object, for example ./Linux64-Release-GCC-7.3/libDhrystone-Linux64-
Release-GCC-7.3.so which is required when launching the platform. See 4.7 Libraries required
to run the platform on page 49.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4.5.2 Initialize and configure the simulation

For an example source file that demonstrates these steps, see $PVLIB_HOME/examples/
SystemCExport/EVS_Platforms/EVS_Dhrystone/Source/main.cpp.

Procedure
1. Include the EVS header file that was generated by SimGen:

#include <scx_evs_Dhrystone.h>

2. In sc_main(), initialize the simulation, giving it a name:
scx::scx_initialize("Dhrystone");

3. Instantiate the generated SystemC component:
scx_evs_Dhrystone dhrystone("Dhrystone");

4. Configure the simulation using command-line arguments set by the user, for example to load an
application or to set parameters:
scx::scx_parse_and_configure(argc, argv, help_quantum);

See 7.4.26 scx::scx_parse_and_configure on page 140 for the supported arguments.

EVS_Dhrystone loads the application using this function, but you could use
scx::scx_load_application() instead.

5. Optionally, set parameters for Fast Models components within the simulation:
scx::scx_set_parameter("*.Core.cpu0.semihosting-enable", true);

where semihosting-enable is the parameter and *.Core.cpu0 is the instance name (* means all
EVSs in the platform).

The Dhrystone example uses semihosting to read user input (the number of
runs through the benchmark) and to print statistics to the console at the end of
the simulation.

6. Bind the ports of the generated SystemC component to the ports of the other components in
the SystemC simulation. This step is described in 4.6 Bridge between LISA+ and SystemC on
page 49.

7. Start the simulation:
sc_core::sc_start();

Related information
SystemC Export API on page 131
Bridge between LISA+ and SystemC on page 49

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4.5.3 Required header files and libraries

Some Fast Models and SystemC header files and libraries are required when building an EVS
platform.

$PVLIB_HOME/include/fmruntime/

Standard Fast Models utility code.

$PVLIB_HOME/include/fmruntime/eslapi/

CADI-related header files.

$PVLIB_HOME/Iris/include/

Iris debug and trace header files.

$SYSTEMC_HOME/include/

SystemC header files.

$MAXCORE_HOME/AMBA-PV/include/

AMBA-PV header files. Only required if AMBA-PV protocols are used.

./$CONFIG/gen/

Contains the generated EVS header file, scx_evs_<top_level_component>.h, which defines
the SystemC wrapper class.

The following static libraries are required by all EVS platforms:

./Linux64-Release-GCC-7.3/libscx-<top_level_component>-Linux64-Release-GCC-7.3.a

Generated EVS platform library.

./Linux64-Release-GCC-7.3/libscx.a

Generated library containing the default implementations of the SystemC report handler,
simulation controller, and scheduler.

$PVLIB_HOME/lib/Linux64_GCC-7.3/libcomponents.a

Fast Models components library.

$PVLIB_HOME/lib/Linux64_GCC-7.3/libpvbus.a

PVBus components library.

$PVLIB_HOME/lib/Linux64_GCC-7.3/libarmctmodel.a

Core and cluster models library.

$PVLIB_HOME/lib/Linux64_GCC-7.3/libfmruntime.a

Standard Fast Models utility code.

$PVLIB_HOME/Iris/Linux64_GCC-7.3/libIrisSupport.a

Iris support library.

$SYSTEMC_HOME/lib/Linux64_GCC-7.3/libsystemc.a

SystemC library.

Related information
IrisSupportLib Reference Guide

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 252

https://developer.arm.com/documentation/101319/latest

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4.5.4 Building an EVS on Windows

When building an EVS on Windows, there are a few extra considerations to be aware of.

• On Windows, SimGen generates a solution containing several project files. For example, the
following command outputs Dhrystone.sln, where Dhrystone is the name of the top-level
component, and three project files, which must be built in the order in which they are listed
below:

"%MAXCORE_HOME%"\bin\simgen -p EVS_Dhrystone_Cortex-A65x1.sgproj --configuration Win64-Release-
VC2019 … -b

When invoking SimGen on Windows, the --devenv-path option might be
required to specify the path to devenv.

1. scx.vcxproj. This project builds the static library scx.lib containing default
implementations of the SystemC report handler, simulation controller, and scheduler.

2. scx_Dhrystone_Win64-Release-VC2019.vcxproj, where Win64-Release-VC2019 is the
chosen configuration. This project builds the static EVS library scx-Dhrystone-Win64-
Release-VC2019.lib.

3. Dhrystone_sc_sg_wrapper_Win64-Release-VC2019.vcxproj. This project builds the dynamic
library Dhrystone-Win64-Release-VC2019.dll, which is required when you launch the
platform.

4. For an ISIM, an extra project is created, called scx_isim_<top-
component>_<config>.vcxproj. This file is the SystemC project that creates the executable,
isim_system_<config>.exe.

• On Windows, any SystemC code that instantiates an exported Fast Model must include
$PVLIB_HOME\include\fmruntime\sg\IncludeMeFirst.h before any other include files. If not,
the compiler throws an error when compiling the SystemC code.

This file, which is used to check the underlying Windows API version, is automatically included
in EVSs generated by SimGen, but SystemC models that use Fast Models libraries can be built
without using SimGen.

• On Windows, Fast Models libraries are built with one of the following MSVC compiler options:

◦ /MD for release builds.

◦ /MDd for debug builds.

Any objects or libraries that link against the Fast Models libraries must also be built with the
same /MD or /MDd option.

• The following additional libraries are needed when building the executable: user32.lib,
ws2_32.lib, imagehlp.lib, advapi32.lib, shlwapi.lib, Iphlpapi.lib, and zlib.lib.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

• On Windows, use the /vmg compiler option to correctly compile source code for use with
SystemC.

4.6 Bridge between LISA+ and SystemC
The EVS_Dhrystone examples consist of an Arm core and some simple peripherals that are written
in LISA+, some memory that is defined in SystemC, and a bridge between the exported LISA+
subsystem and the SystemC code.

The following block diagram from System Canvas shows the Fast Models LISA+ components
that are defined in the top-level Dhrystone component and the connections between them. The
amba_pv_m port at the right-hand side will be used to connect the Dhrystone component to the
memory, which is defined in SystemC:

Figure 4-3: System Canvas block diagram for EVS_Dhrystone

The PVBus2AMBAPV component is a bridge that converts signals from the PVBus protocol to the
AMBA-PV protocol. After exporting the Dhrystone component as an EVS, the amba_pv_m port can be
connected to a SystemC component, in this example, to the slave port of the memory model, in
main.cpp, as follows:

amba_pv::amba_pv_memory<64> memory("Memory", 0x34000100);
scx_evs_Dhrystone dhrystone("Dhrystone");
…
dhrystone.amba_pv_m(memory.amba_pv_s);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

4.7 Libraries required to run the platform
When you run the executable platform model, some of the following libraries must be present in
the same directory.

You can copy all except the first one from $PVLIB_HOME/lib/Linux64_GCC-7.3/:

lib<top_level_component>-Linux64-Release-GCC-7.3.so

Required for an EVS. This shared library is created by SimGen in the build directory.

libMAXCOREInitSimulationEngine.3.so

Required for initializing the platform.

libarmctmodel.so

Required if your platform contains any core or cluster models.

libSDL2-2.0.so.0.4.0

Required if your platform uses the PL041 AACI component or any visualization components.

arm_singleton_registry.so

Singleton registry library that enables multiple simultaneous simulations on the same
host platform. It should be located either in the same directory as the executable, or the
FASTSIM_SINGLETON_REGISTRY environment variable should be set to the full path of the
library. If the library is not found, a warning is reported. In this case, a single simulation will
still run, but multiple simultaneous simulations might lead to a crash.

4.8 Building an SVP
An SVP (SystemC Virtual Platform) is a platform model that consists of LISA+ components
or subsystems that are individually exported to SystemC as multiple EVSs, using the Multiple
Instantiation (MI) feature.

The build process for an SVP is the same as for an EVS platform, except you must build and link
multiple EVS libraries.

SVPs can provide more flexibility than EVS platforms because components in an SVP can be
replaced without the need to modify any LISA+ code.

For more information, see the SVP examples under $PVLIB_HOME/examples/SystemCExport/
SVP_Platforms/.

4.9 Building an ISIM
Building an ISIM is more straightforward than an EVS and can be done either entirely within System
Canvas or by calling SimGen from the command line.

The following diagram shows the process. The shaded area represents the work that SimGen does
for you:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Building Fast Models

Figure 4-4: Build process for an ISIM

Fast Models
Portfolio

components

Component
source

C++

Project file
(.sgproj)

EVS library

Fast Models
and SystemC

libraries

Generated
header

#include

Peripherals

Other

Cores

LISA+

 Generated
sc_main()

GCC
ISIM

executable
(isim_system)

System Canvas or System
Generator (SimGen)

SimGen takes as input the LISA+ or C++ source code for the platform and its components, and a
.sgproj project file that contains the statement TARGET_SYSTEMC_ISIM = "1";.

It generates:

• An EVS library

• A header file, ./Linux64-Release-GCC-7.3/gen/scx_evs_<top_level_component>.h, which
defines the SystemC wrapper class

• A SystemC source file, ./Linux64-Release-GCC-7.3/gen/scx_main_system.cpp which defines
a default sc_main() function. This function is the entry point for the simulation. It initializes the
simulation, constructs the SystemC wrapper, parses the command-line options, and starts the
simulation.

SimGen then links the EVS library with the required Fast Models and SystemC libraries, and outputs
the ISIM executable called isim_system.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5 System Canvas Tutorial
This chapter describes using System Canvas to build a system model.

5.1 About this tutorial
This tutorial describes how to perform some basic operations in System Canvas to build a
standalone system model that can run an application image.

It demonstrates how to:

• Create a System Canvas project.

• Add, connect, and modify components in the project. You can use the Block Diagram view in
System Canvas to do this. You do not need to edit LISA source code directly.

• Build the project.

• Debug an application on the model using Model Debugger.

5.2 Starting System Canvas
This section describes how to start the application.

About this task
To start System Canvas:

• On Linux, enter sgcanvas in a terminal window and press Return.

• On Microsoft Windows, open the System Canvas application from the Start menu.

The application contains the following subwindows:

• A blank diagram window on the left-hand side of the application window.

• A component window at the right-hand side.

• An output window across the bottom.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Figure 5-1: System Canvas at startup

Related information
Preferences - Applications group on page 105
System Canvas Reference on page 72

5.3 Creating a new project
This section describes how to create a new project. The project will be used to create a new
system model.

Before you begin
Make sure you have write permission for the directory in which you will create the project.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Procedure
1. Select New Project from the File menu. Alternatively, click the New button on the toolbar.

The New Project dialog appears.

Figure 5-2: New Project dialog

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

2. Navigate to the directory to use for your project. Enter MyProject in the filename box and click
the Select button.
A dialog appears for you to enter the name and location of the LISA+ file that represents your
new system.

Figure 5-3: Select Top Component LISA File dialog

3. Enter MyTopComponent.lisa in the filename box and click the Select button.
The component name for the top component is, by default, set to the name of the LISA+ file.

The Workspace area contains a blank block diagram with scroll bars. The Component window,
to the right of the Workspace area, lists the components in the default repositories.

Results
These steps create a project file, MyProject.sgproj and a LISA+ source file, MyTopComponent.lisa.
The project file contains:

• System components.

• Connections between system components.

• References to the component repositories.

• Settings for model generation and compilation.

Do not edit the project file. System Canvas modifies it if you change project settings.

The block diagram view of your system is a graphical representation of the LISA+ source. To display
the contents of MyTopComponent.lisa, click the Source tab. This file is automatically updated if you
add or rename components in the block diagram.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

You can view the LISA+ source for many of the supplied components. To do so, double-click on
a component in the Block Diagram. Alternatively, right click on a component in the Components
window and select Open Component.

5.4 Add and configure components
This section describes how to add and configure the components required for the example system.

5.4.1 Adding the Arm® processor

This section describes how to add an Arm® processor component to the system model.

Procedure
1. Click the Block Diagram tab in the Workspace window, unless the block diagram window is

already visible.
A blank window with grid points appears.

2. Select the Components tab in the Components window to display the Fast Models Repository
components.

3. Move the mouse pointer over the ARMCortexA8CT processor component in the Component
window and press and hold the left mouse button.

4. Drag the component to the middle of the Workspace window.

If you move the component within the Workspace window, the component
automatically snaps to the grid points.

5. Release the left mouse button when the component is in the required location.
The system receives the component.

Figure 5-4: ARMCortexA8CT processor component in the Block Diagram window

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

6. Save the file by selecting File > Save File or using Ctrl+S.
The asterisk (*) at the end of the system name, in the title bar, shows unsaved changes.

Results
These steps create a System Canvas file, MyTopComponent.sgcanvas, in the same location as the
project and LISA+ files. It contains the block diagram layout information for your system. Do not
edit this file.

5.4.2 Naming components

This section describes how to change the name of a component, for example the processor.

About this task

Component names cannot have spaces in them, and must be valid C identifiers.

Procedure
1. Select the component and click the Properties button on the toolbar to display the Component

Instance Properties dialog.
You can also display the dialog by either:

• Right-clicking on the component and select Object Properties from the context menu.

• Selecting the component and then selecting Object Properties from the Object menu.
2. Click the General tab on the Component Instance Properties dialog.
3. Enter Arm in the Instance name field.
4. Click OK to accept the change. The instance name of the component, that is the name

displayed in the processor component title, is now Arm.

5.4.3 Resizing components

This section describes how to resize components.

Procedure
1. Select the processor component and move the mouse pointer over one of the green resize

control boxes on the edges of the component.
2. Hold the left mouse button down and drag the pointer to resize the component.
3. Release the mouse button to end the resize operation.

To vertically resize the component title bar to avoid truncating text, click the component and
drag the lower handle of the shaded title bar.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.4.4 Hiding ports

This section describes how to hide ports, for instance because they are not connected to anything.

About this task
If there are only a few ports to hide, use the port context menu. Right click on the port and select
Hide Port. To hide multiple ports:

Procedure
1. Select the component and then select Object Properties from the Object menu.
2. Click the Ports tab on the dialog.
3. Click Select All to select all of the ports.
4. Click Hide selected ports.
5. Select the boxes next to clk_in and pvbus_m.
6. Click OK to accept the change, so that all ports except clk_in and pvbus_m are hidden in the

Block Diagram view.

Results
Figure 5-5: Processor component after changes

Related information
Using port arrays on page 59

5.4.5 Moving ports

This section describes how to move ports, for example to improve readability.

Procedure
1. Place the mouse pointer over the port. The mouse pointer changes shape to a hand with a

pointing finger. This is the move-port mouse pointer.
2. Press and hold the left mouse button down over the port, and drag the port to the new

location.
This can be anywhere along the inner border of the component that is not on top of an existing
port. If you select an invalid position, the port returns to its original location.

3. When the port is in position, release the mouse button.
Arrange any other ports as needed. The clk_in port must be on the left side.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.4.6 Adding components

This section describes how to add components to a project.

Procedure
1. Drag and drop the following components onto the Block Diagram window:

• ClockDivider.
• MasterClock.
• PL340_DMC.
• PVBusDecoder.
• RAMDevice.

The PL340_DMC component is included to demonstrate some features of System Canvas and is
not part of the final example system.

2. Select the new components individually and use the General tab of the Component Instance
Properties dialog to rename them to:
• Divider.
• Clock.
• PL340.
• BusDecoder.
• Memory.

5.4.7 Using port arrays

This section describes how to expand, collapse, and hide port arrays.

Procedure
1. Right click on one of the axi_if_in ports in the PL340 component to open a context menu.

Select Collapse Port to reduce the port array to a single visible item in the component.
2. Select the PL340 component and then select Object Properties from the Object menu.
3. Select the Ports tab in the Component Instance Properties dialog.

The axi_if_in port is a port array as indicated by the + beside the port name. Click the + to
expand the port tree view.

4. Deselect the checkboxes beside axi_if_in[2] and axi_if_in[3] to hide the chosen array
ports so that expanding the port array still does not display them. Click OK to close the dialog.
You can also hide a port by using the port context menu and selecting Hide Port.

5. To expand the axi_if_in port in the PL340 component, you can:
• Right click on the port and select Expand Port from the port context menu.
• a. Display the Component Instance Properties dialog.

b. Select the Ports tab.

c. Click the + next to the port array to expand the port tree view.

d. Select the Show as Expanded radio button.

Only the axi_if_in[0] and axi_if_in[1] ports are shown.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

6. To redisplay the axi_if_in[2] and axi_if_in[3] ports, you can:
• Use the port context menu and select Show All Ports.
• Reverse the deselection step, selecting the checkboxes next to the hidden ports, in the

Component Instance Properties dialog.

Ports with more than eight items are shown collapsed by default.

Next steps
The rest of this tutorial does not require the PL340 component, so you can delete it.

Figure 5-6: Example system with added components

5.5 Connecting components
This section describes how to connect components.

Procedure
1. Select connection mode, by doing either of the following:

• Click the Connect button.
• Select Connect Ports Mode from the Edit menu.

2. Move the mouse pointer around in the Block Diagram window:
Option Description
Not over an object The pointer changes to the invalid pointer, a circle with a

diagonal line through it.
Over an object The pointer changes to the start connection pointer and

the closest valid port is highlighted.

3. Move the cursor so that it is over the Clock component and close to the clk_out port.
4. Highlight the clk_out port, then press and hold the left mouse button down.
5. Move the cursor over the clk_in port of the Divider component.
6. Release the mouse button to connect the two ports.

The application remains in connect mode after the connection is made.
7. Make the remaining connections.

Figure 5-7: Connected components

Connections between the addressable bus ports have bold lines.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.6 View project properties and settings
Before building the model, verify the toolchain configuration and top component using the Project
Settings dialog.

5.6.1 Viewing the project settings

Use the Project Settings dialog to view and edit the project configuration. Although no changes are
required for this tutorial, this section demonstrates the steps to use if changes were necessary.

Procedure
Open the Project Settings dialog to inspect the project settings for the system, by doing either
of the following:

• Click the Settings button.
• Select Project Settings from the Project menu.

The Project Settings dialog appears:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Figure 5-8: Project settings for the example

The Category View, List View, and Tree View tabs present different views of the project
parameters.

5.6.2 Specifying the Active Project Configuration

Use the Select Active Project Configuration drop-down menu on the main toolbar to display the
configuration options that control how the target model is generated.

About this task
You can choose to build:

• Models with debug support.

• Release models that are optimized for speed.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Display and edit the full list of project settings by selecting Project Settings from the Project
menu. Inspect and modify a configuration for your operating system by selecting it from the
Configuration drop-down list and clicking the different list elements to view the settings.

• The configuration options available, including compilers and platforms, depend
on the operating system.

• Projects that were created with earlier versions of System Generator might
not have the compiler version specified in the Project Settings dialog, but are
updateable.

5.6.3 Selecting the top component

The top component defines the root component of the system. Any component can be set as the
top component. This flexibility enables building models from subsystems.

About this task
In the Project Settings dialog, click the Select From List... button. The Select Top Component dialog
opens and lists all the components in the system.

If the value in the Type column is System, the component has subcomponents.

Figure 5-9: Select Top Component dialog showing available components

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.7 Changing the address mapping
Addressable bus mappings, connections that have bold lines, have editable address maps.

About this task
Follow this procedure to change the address mapping.

Procedure
1. Double-click the pvbus_m_range port of the BusDecoder component to open the Port

Properties dialog.

Figure 5-10: Viewing the address mapping from the Port Properties dialog

2. Open the Edit Connection dialog by doing either of the following:
• Select the Memory.pvbus Slave Port line, and click Edit Connection....
• Double click on the entry.

Figure 5-11: Edit Connection dialog

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

3. Select the Enable address mapping checkbox to activate the address text fields.
The address mapping for the master port is shown on the left side of the Edit Connection
dialog. Start, End, and Size are all editable. If one value changes, the other values are
automatically updated if necessary. The equivalent LISA statement is displayed at the bottom of
the Edit Connection dialog.

4. Enter a Start address of 0x00000000 and an End address of 0x10FFFFFF in the active left-
hand side of the Edit Connection dialog. The Size of 0x11000000 is automatically calculated.
This step maps the master port to the selected address range. If mapping the master port to a
different address range on the slave port is required, select Enable slave port address range.
Checking it makes the parameters for the slave port editable. The default values are the same
as for the master port when the slave address range is enabled. Disabling the slave address
range is equivalent to specifying the address range 0...size-1, and not the master address
range. In this case, a slave port address range is not required, so deselect the Enable slave port
address range checkbox.

Figure 5-12: Edit address map for master port

5. Click OK to close the Edit Address Mapping dialog for the Memory.pvbus slave port.
6. Click OK to close the Port Properties dialog.

5.8 Building the system
This section describes how to build the model as an .so or .dll library.

Procedure
Click the Build icon on the System Canvas toolbar to build the model.

System Canvas might perform a system check, depending on your preference setting. If warnings
or errors occur, a window might open. Click Proceed to start the build.

The progress of the build is displayed in the log window.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Figure 5-13: Build process output

Depending on the speed of your computer and the type of build selected, this process might take
several minutes.

You can reduce compilation time by setting the SimGen options --num-comps-file and --num-
build-cpus in the Project Settings dialog.

Related information
Building a SystemC ISIM target on page 70

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.9 Debugging with Model Debugger
This section describes how to use Model Debugger to debug the model.

Procedure
1. Click the Debug button on the System Canvas toolbar to open the Debug Simulation dialog:

Figure 5-14: Debug Simulation dialog

2. Select the CADI library radio button to attach Model Debugger to your CADI target.
The radio buttons that are available depend on the target settings.

3. Specify the location of the application that you want to run in the Application field.
This example uses dhrystone.axf, which is part of the Third-Party IP add-on package for the
Fast Models Portfolio.

4. Click OK to start Model Debugger.
An instance of Model Debugger starts. The debugger loads the model library from the
build directory of the active configuration. Model Debugger displays the Configure Model

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

Parameters dialog containing the instantiation parameters for the top-level components in the
model:

Figure 5-15: Configure Model Parameters dialog

To display parameter sets:

• Select a Parameter category in the left-hand side of the dialog.

• Click a + next to a component name in the right-hand side.

For different views of the system parameters, select the List View or Tree View tabs.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5. Click OK to close the dialog.

Figure 5-16: Select Targets dialog

The Select Targets dialog displays the components to use in Model Debugger. The Arm®

processor component is the default.
6. Click OK to close the dialog.
7. Click Run to start the simulation.

The Application Input window appears:

Figure 5-17: Model Debugger Application Input window

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

8. Enter the required number of runs through the benchmark in the Application input field and
click OK.
After a short pause, the benchmark results are shown in the StdIO window.

Figure 5-18: Model Debugger StdIO window

Related information
Model Debugger for Fast Models User Guide

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 252

https://developer.arm.com/documentation/100968/1117

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Tutorial

5.10 Building a SystemC ISIM target
To build the platform as a standalone executable SystemC Integrated SIMulator (ISIM), tick the
SystemC integrated simulator checkbox in the Targets category in the Project Settings dialog.

About this task
Figure 5-19: Building a SystemC integrated simulator target

This option is selected by default for new projects.

System Canvas generates a SystemC ISIM target by statically linking the model with the SystemC
framework.

The output executable is called isim_system, and is generated in the build directory.

Related information
Building Fast Models on page 40

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6 System Canvas Reference
This chapter describes the windows, menus, dialogs, and controls in System Canvas.

6.1 Launching System Canvas
Start System Canvas from the Microsoft Windows Start menu or from the command line on all
supported platforms.

Procedure
To start System Canvas from the command line, type sgcanvas.

The sgcanvas command has the following options:

Table 6-1: System Canvas command line options

Short form Long form Description

-h --help Print help text and exit.

-v --version Print version and exit.

6.2 System Canvas GUI
This section describes System Canvas, the GUI to the Fast Models tools, which shows the
components in a system, component ports, external ports (if the system itself is a component), and
connections between ports.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.2.1 Application window

The main window of System Canvas contains several windows and various graphical elements.

Figure 6-1: Layout of System Canvas

Main menu
The available options with their corresponding keyboard shortcuts.

Toolbar
Buttons for frequently-used features.

Workspace
Tabs to select the views:

Block Diagram
The components, ports, and connections.

Source
The LISA code of the component.

You can edit every part of the system using these views.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Component list
All of the components and their protocols and libraries in the current project.

Output window
Displays status messages that are output from the build process.

Status bar
Displays information about menu items, commands, buttons, and component information.

The block diagram editor creates graphical representations of systems. It provides a rapid way to
create and configure components or systems consisting of multiple components.

You can add new components to a single project or to a component repository for use in multiple
projects. The Language for Instruction Set Architectures+ (LISA+) describes the components.

6.2.2 Menu bar

The main bar provides access to System Canvas functions and commands.

6.2.2.1 File menu

The File menu lists file and project operations.

New Project
Create a new model project.

Load Project
Open an existing project.

Close Project
Close a project. If there are pending changes, the Save changes dialog appears.

Save Project
Save the changes made to a project.

Save Project As
Save a project to a new location and name.

New File
Create a new file. The New File dialog appears. Select the type from the File type drop-down
list.

Open File
This displays the Open File dialog. Filter the types to display by selecting the type from the
File type drop-down list. Non-LISA files open as text in the source editor.

Close File
Close a LISA file. A dialog prompts to save any changes.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Save File
Save the changes made to the current LISA file.

Save File As
Save a LISA file to a new location and name.

Save All
Save the changes made to the project and the LISA files.

Print
Print the contents of the Block Diagram window.

Preferences
Modify the user preferences.

Recently Opened Files
Display the 16 most recently opened LISA files. Click on a list entry to open the file.

To remove a file from the list, move the mouse cursor over the filename and press the Delete
key or right click and select Remove from list from the context menu.

Recently Opened Projects
Display the 16 most recently opened projects. Click on a list entry to open the project.

To remove a project from the list, move the mouse cursor over the project name and press
the Delete key or right click and select Remove from list from the context menu.

Exit
Close System Canvas. A dialog prompts to save any changes. Disable it by selecting Do not
show this message again. Re-enable it in the preferences.

Related information
New project dialogs on page 102
Preferences - Suppressed messages group on page 109

6.2.2.2 Edit menu

The Edit menu lists content operations.

Undo
Undo up to 42 of the latest changes to a file in the Source view or to the layout in the Block
Diagram view. These actions are undoable:

• Add an object such as a component, label, or connection.

• Paste or duplicate.

• Cut or delete.

• Edit object properties.

• Move.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

• Resize.

Undo and Redo operations can affect Block Diagram view zoom and scroll
actions.

Undo and Redo typically work normally. For example:

1. Change the system in the Block Diagram view by adding a RAMDevice
component with name RAM.

2. Switch to Source view. The text RAM : RAMDevice(); is present in the
composition section.

3. Change the code by removing the line RAM : RAMDevice();.

4. Change the code by adding, for example, the line PVS : PVBusSlave();.

5. Click on the Block Diagram tab. The change to the source code is
reflected by the RAM component being replaced by the PVS component.

6. Select Undo from the Edit menu. The Block Diagram view shows that RAM
is present but PVS is not.

7. Select Redo from the Edit menu. The Block Diagram view shows that PVS
is present but RAM is not.

Redo
Redo the last undone change. This cancels the result of selecting Undo. Selecting Redo
multiple times cancels multiple Undo actions.

Cut
Cut the marked element into the copy buffer.

Copy
Copy the marked element into the copy buffer.

Paste
Paste the content of the copy buffer at the current cursor position.

Duplicate
Duplicate the marked content.

Delete
Delete the marked element.

Select All
Select all elements.

Edit Mode
Change the Workspace to Edit mode. The cursor can select components.

Connect Ports Mode
Select Connection mode. The cursor can connect components.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Pan Mode
Select Movement mode. The cursor can move the entire system in the Workspace window.

6.2.2.3 Search menu

The Search menu lists find, replace and go to functions.

Find
Search for a string in the active window (with a thick black frame).

Find Next
Repeat the last search.

Find Previous
Repeat the last search, backwards in the document.

Replace
In the Source view, search for and replace strings in a text document.

Go To Line
In the Source view, specify a line number in the currently open LISA file to go to.

Use the search icons at the top right of the application window to search for text.
Entering text in the search box starts an incremental search in the active window.

Related information
Find and Replace dialogs on page 100

6.2.2.4 View menu

The View menu lists the Workspace window display options.

Show Grid
Using the grid simplifies component alignment.

Zoom In
Show more detail.

Zoom Out
Show more of the system.

Zoom 100%
Change the magnification to the default.

Zoom Fit
Fit the entire system into the canvas area.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Zoom Fit Selection
Fit the selected portion into the canvas area.

6.2.2.5 Object menu

The Object menu lists system and system component operations.

Open Component
Open the source for the selected component.

Add Component
Display all of the components available for adding to the block diagram.

Add Label
The mouse cursor becomes a default label. To add the label, move it to the required location
in the Block Diagram window and click the left mouse button. The Label Properties dialog
appears.

Add Port
Display the External Port dialog. Specify the type of port to add.

Mirror Self Port
Switch the direction that the external port image points in. It does not reverse the signal
direction, so a master port remains a master port. If an unconnected port is not selected, this
option is disabled.

Expand Port
For a port array, display all of the individual port elements. Expanded is the default for port
arrays with eight or fewer ports. Collapsed is the default for port arrays with more than eight
elements.

Ports with many elements might expand so that elements appear on top of
one another. Either: click and drag them apart, or collapse the port, increase
the component size, then expand the port again.

Collapse Port
For a port array, hide the individual port elements and only display the top-level port name.

Hide Port
Disable the selected port and make it invisible.

Hide All Unconnected Ports
Hide all ports that are not connected to a component.

Show/Hide Ports of Protocol Types...
Hide all ports that use a specified protocol. The Show/Hide Connection Types dialog appears.
Select the protocols to filter.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Show All Ports
Show all ports. Some might overlap if there is not enough space.

Autoroute Connection
Redraw the selected connection.

Autoroute All Connections
Redraw all of the connections.

Documentation
Open the documentation for the selected component.

Object Properties
Display the Component Instance Properties dialog to view and edit the properties for the
selected component.

6.2.2.6 Project menu

The Project menu lists build, check, configure, run, and set options.

Check System
Check for errors or missing information. This feature does not check everything, but does
give useful feedback.

Generate System
Generate the C++ source code, but do not compile it. After generation, click Build System
and Debug to run the model.

Build System
Generate and compile the generated C++ source code, producing a library or a runnable
model.

Stop Build
Cancel the active build process.

Clean
Delete all generated files.

Launch Model Debugger
Execute the simulation under the control of Model Debugger.

Run
Run...

Open the Run dialog to specify the run command.

Run in Model Shell
Execute the simulation under the control of Model Shell with command-line options
taken from project settings and user preferences.

Run ISIM system
Execute the simulation as an ISIM executable with Model Shell command-line options
taken from project settings and user preferences.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Clear History
Clear all recent run command entries.

Recent Command Entries (up to 10)
Call recent command entries.

Kill Running Command
Stop the running synchronous command.

Launch Host Debugger
Microsoft Windows

Launch Microsoft Visual Studio. Build the system there, and start a debug session.

You can take the command-line arguments for ISIM systems or Model
Shell from Microsoft Visual Studio by selecting Project > Properties >
Configuration Properties > debugging .

Linux
Launch the executable or script set in the application preferences. The target must be
an ISIM executable. Arm recommends this method for debugging at source-level.

Add Files
Add files to the system.

Add Current File
Add the currently open file to the system.

Refresh Component List
Update the Component List window to show all available components.

Setup Default Repository
Display the Default Model Repository section of the Preferences window, and select the
default repositories for the next new project.

This does not affect the currently open project.

Set Top Level Component
Displays the Select Top Component dialog that lists all available components in the system.

The top component defines the root component of the system. It can be any component.
This enables building of models from subsystems.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

If the value in the Type column is System, the component has subcomponents.

Active Configuration
Select the system build configuration from the project file list.

Project Settings
Display the Project Settings dialog.

Related information
Preferences - Applications group on page 105

6.2.2.7 Help menu

The Help menu lists documentation, software and system information links.

Fast Model Tools User Guide
Display the Fast Models User Guide.

Model Shell Reference Guide
Display the Model Shell for Fast Models Reference Guide.

LISA+ Language Reference Guide
Display the LISA+ Language for Fast Models Reference Guide.

AMBA-PV User Guide
Display the AMBA-PV Extensions to TLM 2.0 User Guide.

CADI User Guide
Display the Component Architecture Debug Interface v2.0 User Guide.

Release Notes
Display this document.

Documents in $PVLIB_HOME/Docs
List the PDF files in the directory $PVLIB_HOME/Docs.

End User License Agreement (EULA)
Display the license agreement.

About
Display the version and license information.

System Information
Display information about the tools and loaded models.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.2.3 Toolbar

The toolbar sets out frequently used menu functions.

New
Create a new project or LISA file.

Open
Open an existing project or file.

Save
Save current changes to the file.

All
Save project and all open files.

Undo
Undo the last change in the Source or Block Diagram view.

Redo
Undo the last undo.

Properties
Display the Properties dialog for the selected object:

Nothing
The Component Model Properties dialog, with the properties for the top-level
component.

Component
The Component Instance Properties dialog.

Connection
The Connection Properties dialog.

Port
The Port Properties dialog.

Self port
The Self Port Properties dialog.

Label
The Label Properties dialog.

The Properties button only displays properties for items in the block diagram.

Settings
Display the project settings.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Select Active Project Configuration
Select the build target for the project.

Refresh
Refresh the component and protocol lists.

Check
Perform a basic model error and consistency check.

Build
Generate a virtual system model using the project settings.

Stop
Stop the current generation process.

Clean
Delete all generated files.

Debug
Start Model Debugger to debug the generated simulator.

Run
Execute the most recent run command. The down arrow next to the button opens the Run
dialog.

Kill
Stop Model Shell and end the simulation.

Edit
Edit mode: the cursor selects and moves components.

Connect
Connection mode: the cursor connects components.

Pan
Movement mode: the cursor moves the entire system in the Workspace window.

Zoom
Use the In, Out, 100%, and Fit buttons to change the system view zoom factor in the
Workspace window.

Related information
Viewing the project settings on page 61
Edit menu on page 75
Component Instance Properties dialog on page 91
Component Model Properties dialog for the system on page 93
Connection Properties dialog on page 96
Label Properties dialog on page 100
New File dialog (File menu) on page 101
Open File dialog on page 103
Port Properties dialog on page 103
Self Port dialog on page 122

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.2.4 Workspace window

This section describes the Workspace window, which displays editable representations of the
system.

Related information
Open File dialog on page 103
Preferences dialog on page 104

6.2.4.1 Source view

The Source view displays the LISA source code of components. It can also display other text files.

The source text editor features:

• Similar operation to common Microsoft Windows text editors.

• Standard copy and paste operations on selected text, including with an external text editor.

• Undo/redo operations. Text changes can be undone by using Ctrl-Z or Edit > Undo. Repeat text
changes with Ctrl-Y or Edit > Redo.

• Syntax highlighting for LISA, C++, HTML, Makefiles, project (*.sgproj) and repository
(*.sgrepo) files.

• Auto-indenting and brace matching. Indenting uses four spaces not single tab characters.

• Auto-completion for LISA source. If you type a delimiter such as “.” or “:”, a list box with
appropriate components, ports, or behaviors appears. Icons indicate master and slave ports.

• Call hint functionality. If you type a delimiter such as “(“, a tooltip appears with either a
component constructor or behavior prototype, depending on the context. Enable call hints by
enabling tooltips in the Appearance pane of the Preferences dialog.

Every time System Canvas parses a LISA file, it updates lexical information for auto-
completion and call hint functionality. This occurs, for example, when switching
between the views.

6.2.4.2 Source view context menu

The Source view context menu lists text operations.

Undo
Undo the last change.

Redo
Undo the last undo.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Cut
Cut the selected text.

Copy
Copy the selected text.

Paste
Paste text from the global clipboard.

Delete
Delete the selected text.

Select All
Selects all of the text in the window.

6.2.4.3 Block Diagram view

The Block Diagram view displays a graphical representation of components. It enables the addition
of components, connections, ports and labels to the system.

This view supports copy and paste operations on selected components, connections, labels, and
self ports:

• Use the cursor to draw a bounding rectangle around the box.

• Press and hold shift while clicking on the components to copy.

Copied components will have different names. To copy connections, select both ends of the
connection.

Changes made in one view immediately affect the other view.

Open files have a named workspace tab at the top of the Workspace window. An asterisk after the
name indicates unsaved changes. A question mark means that the file is not part of the project.

Click the right mouse button in the workspace to open the context menu for the view.

Displaying the block diagram fails if:

• The file is not a LISA file.

• The syntax of the LISA file is incorrect.

• The LISA file contains more than one component.

• The LISA file contains a protocol.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.2.4.4 Block Diagram view context menu

The Block Diagram view context menu lists object operations.

Open Component
Open a new workspace tab for the selected component.

Delete
Delete the object under the mouse pointer.

Add Port...
Add a port to the component.

Mirror Self Port
Mirror the port image.

Expand Port
For a port array, display all of the individual port elements.

Collapse Port
For a port array, hide the individual port elements.

Hide Port
Disable the selected port and make it invisible.

Hide All Unconnected Ports
Hide all ports that are not connected to a component.

Show/Hide Ports of Protocol Types...
Hide all ports that use a specified protocol.

Show All Ports
Show all ports of the component.

Autoroute connection
Redraw the selected connection.

Documentation
Open the documentation for the selected component.

Object Properties
Open the object properties dialog.

6.2.5 Component window

This section describes the Component window, which lists the available components and their
protocols and libraries.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.2.5.1 Component window views

The Component window has view tabs.

Components
The components, and their version numbers, types, and file locations. Drag and drop to place
in the block diagram. Double click to open in the workspace.

Protocols
The protocols of these components, and their file locations. Double click to open in the
workspace.

Files
The project files, in a fully expanded file tree with the project file as the root. Double click to
open in the workspace. The project file can contain LISA files and component repositories. A
repository can itself contain a repository.

The order of file processing is from the top to the bottom. To move objects:

• Select and use Up and Down in the context menu, or use Alt + Arrow Up
or Alt + Arrow Down.

• Drag and drop.

6.2.5.2 Component window context menu

The Component window context menu lists file operations and a documentation link.

Open
Open the associated file.

Add...
Add a repository, component or protocol file, or a library.

Add New...
Add a new file.

Add Directory...
Add an include path to be used by the compiler (Files tab only). To simplify navigation, the
add dialog also shows the filename.

Remove
Remove an item.

Up
Move a file up the file list (Files tab only).

Down
Move a file down the file list (Files tab only).

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Reload
Reload a component or protocol.

Refresh Component List
Refresh the entire component list.

Documentation
Open the documentation for the component.

Properties
Show the properties of the item.

6.2.6 Output window

The Output window displays the build or script command output.

The left side of the window has controls:

First
Go to the first message.

Previous
Go to the previous message.

Stop
Do not scroll automatically.

Next
Go to the next message.

Last
Go to the last message.

The right side of the window has controls:

Scroll bar
Move up and down in the output.

Stick
Force the window to show the latest output, at the bottom.

6.3 System Canvas dialogs
This section describes the dialog boxes of System Canvas.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.1 Add Existing Files and Add New File dialogs (Component window)

This section describes these dialogs that add components, protocols, libraries, repositories, or
source code to a project.

Related information
Add Files dialog (Project menu) on page 90
New File dialog (File menu) on page 101

6.3.1.1 Displaying the Add Existing Files and Add New File dialogs (Component
window)

This section describes how to display dialogs that add components, protocols, libraries, repositories,
or source code to a project.

Procedure
Display a dialog by right-clicking in the Component window and selecting from the context
menu:

• Add.
• Add New.

6.3.1.2 Using the Add Existing Files and Add New File dialogs (Component
window)

This section describes how to add a file using the Component window context menu.

Procedure
1. Select the Components, Protocols, or Files tab in the Component window.

To add a file at the top level of the file list, select the top entry. To add a file to an existing
repository in the file list, select the repository.

2. Right-click in the Component window and select Add or Add New from the context menu.
Option Description
Add In the Add Existing Files dialog, go to the file and select it.
Add New In the Add New File dialog, go to the directory to contain

the file and enter the name.

Save time with the Recently selected files drop-down list. To remove a file, mouse over it and
press Delete, or right-click and select Remove from list from the context menu.

3. Click Open to add the file and close the dialog.

Next steps
Library files, those with .lib or .a extensions, need build actions and a platform.

Related information
File/Path Properties dialog on page 97

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.1.3 Using environment variables in filepaths

Environment variables in filepaths enable switching to new repository versions without modifying
the project.

About this task
For example, using $(PVLIB_HOME)/etc/sglib.sgrepo as the reference to the components of the
Fast Models Portfolio enables migration to future versions of the library by modifying environment
variable PVLIB_HOME.

On Microsoft Windows, Unix syntax is valid for environment variables and paths, for
example $PVLIB_HOME/etc/my.sgrepo.

Edit a filepath through the File Properties dialog:

Procedure
1. Select the file and click select Properties from the context menu.
2. Edit the File entry to modify the filepath.

Related information
File/Path Properties dialog on page 97

6.3.1.4 Assigning platforms and compilers for libraries

This section describes how to set the operating system that a library is for, and the compiler that
built it.

Procedure
Use the File Properties dialog to specify the operating system and compilers by checking the
appropriate boxes in the Supported platforms pane.

Microsoft Visual Studio distinguishes between debug and release versions.

Related information
File/Path Properties dialog on page 97
Project Settings dialog on page 109

6.3.2 Add Files dialog (Project menu)

Add files to a project with this dialog.

Select Add File from the Project menu to add a new file to the project.

The behavior of this dialog is identical to that of the Add Existing Files dialog.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

To create a new file from code in the Source view, select Add Current File from the Projects menu
to add the file to the project. No dialog appears.

Save time with the Recently selected files drop-down list. To remove a file, mouse
over it and press Delete, or right-click and select Remove from list from the context
menu.

Related information
Add Existing Files and Add New File dialogs (Component window) on page 88
File/Path Properties dialog on page 97

6.3.3 Add Connection dialog

This dialog adds a connection to a component port.

To open the dialog:

1. Select a component port.

2. Display the Port Properties dialog by selecting Object Properties from the context menu or
from the Object menu.

3. Click the Add Connection button.

The enabled fields for the dialog depend on whether a slave or master was displayed in the Port
Properties dialog.

This dialog also appears if you use the cursor in connect mode to connect two ports
in the block diagram and one or more of the ports is a port array.

Related information
Edit Connection dialog on page 97

6.3.4 Component Instance Properties dialog

This dialog displays the properties of a component.

To open the dialog, select a component in the block diagram, and click on the Properties button in
the toolbar or select Object Properties from the Object menu.

General
The component name, instance name, filename and path, and repository.

The Instance name field is editable.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

To view the properties of the top-level component, double-click in an area of
the workspace that does not contain a component.

Properties
All properties for the component. If the properties are not editable, the tab says Properties
(read only).

If the property is a Boolean variable, a checkbox appears next to it.

Parameters
All editable parameters for this component. Enter a new value in the Value edit box.

The following controls are present:

Parameter name
The parameters for this component.

Value
Select a parameter and then click the text box in the Value column to set the default
value for the parameter.

Integer parameters in decimal format can contain binary multiplication suffixes. These
left-shift the bits in parameter value by the corresponding power of two.

Table 6-2: Suffixes for parameter values

Suffix Name Multiplier

K Kilo 210

M Mega 220

G Giga 230

T Tera 240

P Peta 250

Ports
All the ports in the component.

For port arrays, display all of the individual ports or only the port array name by selecting
Show as Expanded or Collapsed.

The properties of individual ports are editable:

1. Select a port from the list.

2. Click Edit and change the properties of the port.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

3. Click OK to save the changes.

If you click OK, the changes apply immediately.

Enable/disable individual ports with the checkboxes:

• Click Show selected ports to display the checked ports.

• Click Hide selected ports to hide the checked ports.

Hiding the top level of a port array hides all of the individual ports but
they retain their check mark setting.

Methods
All the behaviors (component functions) that the component implements.

Related information
Component Model Properties dialog for the system on page 93
Component Properties dialog for a library component on page 95
Label Properties dialog on page 100
Port Properties dialog on page 103
Protocol Properties dialog on page 121
Self Port dialog on page 122

6.3.5 Component Model Properties dialog for the system

This dialog displays the properties for the system.

To open the dialog, select a blank area in the block diagram, right-click and select Object Properties
from the context menu to display the properties for the system or select Object Properties from
the Object menu.

General
The system name, filename and path, and repository.

The Component name field is editable.

Properties
If the property is a Boolean variable, a checkbox appears next to it.

Changes in these dialogs alter the LISA code in the model.

Double-click in the Value column to change the property.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Table 6-3: Component properties

Property ID Default Description

Component name component_name "" A string containing the name
for the component.

Component category component_type "" A string describing the type
of component. This can be
"Processor", "Bus",
"Memory", "System", or
any free-form category text.

Component description description "" A textual component
description.

Component documentation documentation_file "" A filepath or an HTTP link to
documentation. Supported
file formats are PDF, TXT, and
HTML.

Executes software executes_software 0 The component executes
software and can load
application files. 1 for
processor-like components, 0
for other components.

Hidden hidden 0 1 for components hidden
from the Component
window. Otherwise, hidden
components behave exactly as
normal components, and they
do appear in the Workspace
window.

Has CADI interface has_cadi 1 1 for components with a
CADI interface, permitting
connection to the target with
a CADI-compliant debugger. 0
for components with no CADI
interface.

Icon pixmap file icon_file "" The XPM file that contains the
system icon.

License feature license_feature "" The license feature string
required to run this system
model.

Load file extension loadfile_extension "" The application filename
extension for this target.
Example: ".elf" or ".hex".

Small icon pixmap file small_icon_file "" The XPM file that contains the
12x12 pixel system icon.

Component version version "1.0" The version of the
component.

Parameters
Parameter name

The parameters for this component.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Value
Select a parameter and then click the text box in the Value column to set the default
value. Integer parameters in decimal format can contain binary multiplication suffixes.
These left-shift the bits in parameter value by the corresponding power of two.

Table 6-4: Suffixes for parameter values

Suffix Name Multiplier

K Kilo 210

M Mega 220

G Giga 230

T Tera 240

P Peta 250

Parameter ID in LISA code
The LISA ID for the component parameters.

Add
Click to add a new parameter.

Edit
Select a parameter and then click to change the name.

Delete
Select a parameter and then click to delete it.

Ports
All external ports.

If a port contains an array of ports, the Size column displays the number of ports in the array.

Enable/disable individual ports with the checkboxes:

• Click Show selected ports to display the checked ports.

• Click Hide selected ports to hide the checked ports.

Methods
The available LISA prototypes. The list is for reference only. It is not editable.

6.3.6 Component Properties dialog for a library component

This dialog displays the properties of a library component.

To open the dialog, select a component from the Components list, and right-click and select
Properties from the context menu or select Object Properties from the Object menu.

General
Component name

The name of the component.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Type
The component category, for example Core or Peripheral.

Version
The revision number for the component.

File
The file that defines the component.

Repository
The repository that contains the component.

Description
Information about the component.

Properties (read only)
All the usable properties of the component.

A valid license_feature string allows this component to work in a model.

Parameters (read only)
All the parameters for the component.

Ports (read only)
All the ports in the component.

No port arrays are expandable here.

Methods
The LISA prototypes of the methods, that is, behaviors, of the component. The list is for
reference only. It is not editable.

6.3.7 Connection Properties dialog

This dialog displays port connection properties.

To open the dialog, double click on a connection between components in the workspace.

Name
The name of the port.

Type
The type of port and the protocol.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

To change the address mapping, click Master Port Properties or Slave Port Properties.

Related information
Port Properties dialog on page 103

6.3.8 Edit Connection dialog

This dialog controls port connection properties.

To open the dialog and change the connected port or the address mapping, select a connection
from the Port Properties dialog and click Edit Connection....
Component

For a slave port, the source component is editable. For a master port, the destination
component is editable.

Port
For a slave port, the master port is editable. For a master port, the slave port is editable.

Array index
For port arrays, an index value for the element to use.

Enable address mapping
Set the port address range with the Start and End boxes.

Start
The start address for the port.

End
The end address for the port.

Size
The size of the address region. Given the Start and End values, System Canvas calculates this
value.

OK/Cancel
Click OK to modify the connection. Click Cancel to close the dialog without changing the
connection.

LISA statement
The code equivalent to the address range.

6.3.9 File/Path Properties dialog

This dialog displays properties for the file and controls build and compile options.

• On Microsoft Windows, the / and \ directory separators both appear as /. This
simplification does not affect operation.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

• Avoid using Japanese or Korean characters in filepaths. They can cause failure to
find libraries.

Select a component from the Component window Files tab, right click on it to open the context
menu, then click Properties to display the dialog.

General
File or path

The name of the file.

The File Properties dialog is modeless. You can select a different file
without closing the dialog. A warning message prompts to save any
changes.

Absolute path
The full path to the file.

Repository
The repository file that contains this component entry.

Type
A brief description of the component type.

Info
The status of the file. For example, file does not exist.

Supported platforms
Select the platforms that the component supports:

• Linux64.

• Win64 (Release runtime library).

• Win64D (Debug runtime library).

Compiler
Select the compiler for this component from the drop-down list:

• No preference.

• Specific Microsoft Visual C++ compiler.

• gcc version found in $PATH at compile time.

• Specific gcc version.

Build actions
Default actions depending on file extension

.lisa

A LISA source file that SimGen parses.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

.c .cpp .cxx

A C or C++ source file that the compiler compiles.

.a .o

A Linux object file that SimGen links to.

.lib .obj

A Microsoft Windows object file that SimGen links to.

.sgproj

A project file that SimGen parses.

.sgrepo

A component repository file that SimGen parses.

directory_path/

An include directory for the search path that the compiler uses. The trailing slash
identifies it as an include path. For example, to add the directory that contains
the *.sgproj file, specify ./ (dot slash), not only the dot.

All other files
Copy a deploy file to the build directory.

Simulation Generator (SimGen) is one of the Fast Models tools.

Ignore
Exclude the selected file from build and deploy. This feature can be useful for examples,
notes, or temporarily disabled files.

Customize actions
Ignore the file extension. Specify the actions with the check boxes:

LISA - input file passed to Simulator Generator as LISA
System Canvas passes the file to SimGen as a LISA file. Do not use this option for
non-LISA files.

Compile - compile as C/C++ source code
To compile a file as C/C++ code during the build process, add it to this list of
files.

Link - input file for linker
Link the file with the object code during the build process.

Deploy - copy to build directory
Copy the file into the build directory. This option can, for example, add dynamic
link libraries for running the generated system model.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Include path - add the file’s path to additional include directories
Add the path of the parent directory that holds the file to the list of include
directories for the compiler.

Library path - add the file’s path to additional library directories
Add the path of the parent directory that holds the file to the list of library
directories for the compiler.

Related information
Project parameter IDs on page 115

6.3.10 Find and Replace dialogs

This dialog enables searching for and replacement of text in an editor window.

The Find dialog and the Find and Replace dialog are essentially the same dialog in two modes, find
only, and find and replace. Switch modes by clicking the Find mode or Find and replace mode
buttons. By default, matches are case sensitive but matches can appear as part of longer words.
Change the default behavior by setting or clearing the relevant checkboxes in the dialog.

Open the Find dialog by clicking Search > Find... in the main menu. Type the text to find in the
box and click the Find Next or Find Previous buttons to search upwards or downwards from the
current cursor position. You can re-use previous search terms by clicking on the drop-down arrow
on the right of the text entry box.

Open the Find and Replace dialog by clicking Search > Replace in the main menu. Replace the
current match with new text by clicking the Replace button, or all matches by clicking the Replace
All button. You can re-use previous find or replacement terms by clicking on the drop-down arrow
on the right of the text entry boxes.

Find and Replace mode is only available if the current active window is a source editor. In that
mode, additional replace controls appear. The dialog is modeless, so you can change views without
closing it.

6.3.11 Label Properties dialog

This dialog controls the text and display properties for a label.

Double-click on a label to display the dialog. Select Add Label from the Object menu to add a label
to the component.

Label
Specify the text to display on the label.

Font
The text font. Click Select Font... to change it.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Select Text Color...
Click to select a color for the text.

Select Background Color...
Click to select the background color for the label.

Check Transparent Background
Check to make objects behind the label visible, and to ignore the background color setting.

Horizontal
Set the horizontal justification for the label text.

Vertical
Set the vertical justification for the label text.

Rotation
Set the orientation for the label.

Frame Thickness
Set the thickness of the label border.

Shadow Thickness
Set the thickness of the label drop shadow.

Display on Top
Check to display the label on top of any components below it.

Use these settings as default
Check to use the current settings as the default settings for any new labels.

6.3.12 New File dialog (File menu)

This dialog creates new projects and LISA source files.

To display the dialog, select New File from the File menu or click the New button.

Look in
Specify the directory for the new file.

File name
Enter the name for the new file.

File type
• If a project is not open, this box displays .sgproj by default to create a project.

• If a project is open, this box displays .lisa by default to create a LISA source file.

Add to
Active for non-.sgproj files. Check to enable the adding of the created file to the open
project.

Select
Click to accept the name and path.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

If the new file is of type .sgproj, System Canvas prompts for the top level LISA file.

Save time with the Recently selected files drop-down list. To remove a file, mouse
over it and press Delete, or right-click and select Remove from list from the context
menu.

Related information
Select Top Component LISA File dialog on page 103

6.3.13 New project dialogs

This section describes the dialogs that create new projects.

6.3.13.1 New Project dialog

This dialog creates new projects.

To display the dialog, select New Project from the File menu.

Look in
Specify the directory for the new project file.

File name
Enter the name for the new project.

If you select an existing file, the new project replaces the existing project.

File type
The default type for Fast Models projects is .sgproj.

Select
Click to accept the name and path.

For existing projects, System Canvas queries the replacement of the existing project with a
new project of the same name.

After you click Select, the Select Top Component LISA File dialog appears.

The project file includes the path to the model repositories from the Default Model
Repositories pane of the Preferences dialog.

Related information
Preferences - Default Model Repository group on page 108

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.13.2 Select Top Component LISA File dialog

This dialog controls the name of the top-level LISA file for a project.

After clicking Select in the New Project dialog, this dialog appears. By default, the filename for the
top-level LISA file is the same as the project name. You can, however, specify a different name in
this dialog.

6.3.14 Open File dialog

This dialog opens project files, LISA source files, and text documents.

To display the dialog:

• Select Open File from the File menu.

• Select a file in the Component window and select Open from the context menu.

Look in
Specify the directory.

File name
Enter the name of the file.

File type
Select the type of file.

Open
Click to open the file.

Open project file as text in source editor
Active for non-.lisa and for .sgproj files. Check to enable the opening of the file as plain
text in the Source window.

• Use this option, for example, for a .sgproj file to manually edit the list of
repositories. Such changes take effect after you close and reopen the file.

• If you select a .sgproj file without checking this box, the project loads.

Save time with the Recently selected files drop-down list. To remove a file, mouse
over it and press Delete, or right-click and select Remove from list from the context
menu.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.15 Port Properties dialog

This dialog controls port properties.

To display the Port Properties dialog, select a port or a connection.

• Select a component port in the Block Diagram view and:

◦ Double-click on the port.

◦ Click the Properties button.

◦ Select Object Properties from the Object menu.

◦ Right-click and select Object Properties from the context menu.

• Select a connection in the Block Diagram view and double-click to display the Connection
Properties dialog. To display the Port Properties dialog:

◦ Click the Master Port Properties button to display the properties for the master port.

◦ Click the Slave Port Properties button to display the properties for the slave port.

Name
The name of the port.

Type
The type of port and the protocol.

Array size
For port arrays, the number of elements.

Show connections for port array index
For port arrays, enter an index value in the integer box to display only that element.

For individual ports of port arrays, this box displays the index for the selected port.

Port connections
• Sort the connections: click on the column headings.

• Change the connected port or address mapping: select a connection and click Edit
Connection.

• Add a connection: select a connection and click Add Connection.

• Delete a connection: select it and click Remove.

• Change the priority of a single connection: select it and click Increase Priority or
Decrease Priority.

Related information
Connection Properties dialog on page 96

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.16 Preferences dialog

This section describes the Preferences dialog (File > Preferences), which configures the working
environment of System Canvas.

6.3.16.1 Preferences - Appearance group

This group sets the appearance of System Canvas.

Show Tool Tips
Display all tool tips.

Display tool bar text labels
Display the status bar labels.

Word wrap in source windows
Wrap long lines to display them within the source window.

Show splash screen on startup
Show the splash screen on startup.

Reload recent layout on startup
Reload the layout settings from the last modified project.

Recent files and directories
Set the number of directories and files shown in System Canvas file dialogs and menus, up to
32 directories and 16 files.

6.3.16.2 Preferences - Applications group

This group sets the application paths.

• On Microsoft Windows, environment variables appear as $MAXxxxx_HOME. You
can use this format instead of %MAXxxxx_HOME%.

• The different path specifications enable the use of different versions of Model
Debugger and provide more flexibility for installing Model Debugger separately
from System Canvas.

Simulator Generator Executable
SimGen

Set the path to the simgen.exe file.

Command arguments
Set additional command-line options.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Model Debugger Executable
Model Debugger

Set the path to the Model Debugger executable.

Command arguments
Set additional command-line options.

Model Shell Executable
Model Shell

Set the path to the Model Shell executable.

Command arguments
Set additional command-line options.

Run Model Shell asynchronously with output to console in separate window
Check to enable starting a separate Model Shell instance with its own output window.

To start the simulation, select the Run in Model Shell entry on the Projects
menu.

Path to Microsoft Visual Studio application ‘devenv.com’
Select the path to the Microsoft Visual Studio devenv.com file. This application is the
development environment and builds the model.

Reset to Defaults
Click to reset the application paths.

Apply
Click to save the changes.

Run Model Shell asynchronously
On Linux, check to use the command line:

xterm -e <Model Shell Executable> optional_command_arguments_list -m model.so

Host Debugger Command Line
On Linux, set the command-line options. The default text is:

xterm -e gdb --args %ISIM%

where %ISIM% is a placeholder for the isim_system executable file.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

On Linux, select the GCC compiler to build the model by using the SimGen
command-line option --gcc-path.

Related information
SimGen command-line options on page 41
Model Debugger for Fast Models User Guide
Model Shell for Fast Models Reference Guide
Project Settings dialog on page 109

6.3.16.3 Preferences - External Tools group

This group sets the tools that display the documentation.

use operating system file associations
Check to inactivate the external tool edit fields and buttons. Clear to activate them.

This checkbox is not available on Linux.

6.3.16.4 Preferences - Fonts group

This group sets the application fonts.

Application
The application font.

Base fixed font
The Source view font.

Block Diagram Component Name
The component title block font.

Fonts depend on $DISPLAY variable
Check to use the font set in the $DISPLAY variable.

Reset to base size
Reset all font sizes to the selected value.

Reset to defaults
Click to reset the fonts to the factory settings.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 252

https://developer.arm.com/documentation/100968/1117
https://developer.arm.com/documentation/100969/1117

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

If non-Latin characters are used in LISA code, the base fixed font must support
them. The default font might not support non-Latin characters.

6.3.16.5 Preferences - Default Model Repository group

This group sets the default model repositories for new projects.

Figure 6-2: Preferences dialog, Setup Default Model Repository

To incorporate components into a system, System Canvas requires information about them, such
as their ports, protocols, and library dependencies. For convenience, model repositories, such as
sglib.sgrepo, group multiple components together and specify the location of the LISA files and
the libraries that are needed to build them.

Default repositories are added by default to new projects. To add a repository to an existing
project, use the Component window context menu.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

To enable the immediate use of models in new projects, System Canvas has a
default entry $(PVLIB_HOME)/etc/sglib.sgrepo. This entry is not deletable, but
clearing the checkbox deactivates it.

Add
Click Add to open a file selection dialog and add a new .sgrepo repository file to the list.

Select a directory to add all of the repositories in that directory to the list of repositories.

Edit Path
Select a repository and click Edit to edit the path to it.

The path to the default repository $(PVLIB_HOME)/etc/sglib.sgrepo is not editable.

Remove
Select a repository and click Remove to exclude the selected repository from new projects.
This does not affect the repository itself.

The default repository $(PVLIB_HOME)/etc/sglib.sgrepo is not deletable.

File checkboxes
Check to automatically include the repository in new projects. Clear to prevent automatic
inclusion, but to keep the path to the repository available.

Up/Down
Use the Up and Down buttons to change the order of repositories. File processing follows
the repository order.

Related information
Repository files on page 29

6.3.16.6 Preferences - Suppressed messages group

This group lists the suppressed messages and controls their re-enabling.

Enable selected messages
Click to enable selected suppressed messages.

6.3.17 Project Settings dialog

This section describes the dialog (Project > Project Settings , or Settings toolbar button) that sets
the project settings and customizes the generation process.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

6.3.17.1 Project top-level settings

This part of the dialog sets the project build options.

Top level component
• Enter a name into the Top Level Component edit box.

• Click Use Current to set the component in the workspace as the top component.

• Click Select From List to open a dialog and select any component in the system.

Configuration
• Select an entry from the drop-down list to use an existing configuration.

• Click Add New to create a new configuration. A dialog prompts for the name and a
description. Use Copy values from to select a configuration to copy the settings values
from. This can be an existing configuration or a default set of configuration settings.

• Click Delete to delete the selected configuration from the list.

The values default to those of the active configuration.

Selecting a configuration in this dialog does not set the configuration in the Select Active
Project Configuration drop-down box on the main window. System Canvas stores the
configuration set in this dialog in the project file, to use if you specify it for a build. You can
use this control to specify all of the configurations for a project, to simplify switching active
configurations.

If you build systems on Microsoft Windows workstations, other Microsoft Windows
workstations need the matching support libraries to run the systems:

Debug builds
Microsoft Visual Studio.

Release builds
Microsoft Visual Studio redistributable package.

6.3.17.2 Parameter category panel

This section describes the Parameter category panel, which lists parameters for the selected build,
under different views.

6.3.17.2.1 Parameters - Category View

This view lists categories and the parameters for the selected category.

Top-level configuration details
Select the top-most category item to configure the project settings.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Table 6-5: Configuration parameters in the Category View

Control name Parameter

Configuration name CONFIG_NAME

Platform/Linkage PLATFORM

Compiler COMPILER

Configuration description CONFIG_DESCRIPTION

Build directory BUILD_DIR

Targets
Select the Targets item to configure the build target parameters.

Table 6-6: Target parameters in the Category View

Control name Parameter

SystemC component TARGET_SYSTEMC

SystemC component with auto-bridging TARGET_SYSTEMC_AUTO

SystemC integrated simulator TARGET_SYSTEMC_ISIM

SystemC integrated CADI library TARGET_SYSTEMC_MAXVIEW

Debugging
Select the Debugging item in the panel to configure the debug parameters.

Table 6-7: Debugging parameters in the Category View

Control name Parameter

Enable model debugging ENABLE_DEBUG_SUPPORT

Source reference GENERATE_LINEINFO

Verbosity VERBOSITY

Model Debugger MODEL_DEBUGGER_COMMAND_LINE

Model Shell and ISIM MODEL_SHELL_COMMAND_LINE

SystemC executable SYSTEMC_EXE

SystemC arguments SYSTEMC_COMMAND_LINE

Sim Generator
Select the Sim Generator item in the panel to configure the Simulation Generator
parameters.

Table 6-8: Simulation Generator parameters in the Category View

Control name Parameter

Simgen options SIMGEN_COMMAND_LINE

Warnings as errors SIMGEN_WARNINGS_AS_ERRORS

Using namespace std ENABLE_NAMESPACE_STD

Make options MAKE_OPTIONS

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Compiler
Select the Compiler item in the panel to configure the compiler parameters.

Table 6-9: Compiler parameters in the Category View

Control name Parameter

Pre-Compile Actions PRE_COMPILE_EVENT

Include Directories INCLUDE_DIRS

Preprocessor Defines PREPROCESSOR_DEFINES

Compiler Settings ADDITIONAL_COMPILER_SETTINGS

SCX Library Settings ADDITIONAL_SCX_LIB_SETTINGS

Enable pre-compiling ENBALE_PRECOMPILE_HEADER

Linker
Select the Linker item in the panel to configure the linker parameters.

Table 6-10: Linker parameters in the Category View tab

Control name Parameter

Pre-Link Actions PRE_LINK_EVENT

Linker Settings ADDITIONAL_LINKER_SETTINGS

Post-Build Actions POST_BUILD_EVENT

Post-Clean Actions POST_CLEAN_EVENT

Disable suppression of symbols DISABLE_SYMBOL_SUPRESSION

6.3.17.2.2 Parameters - List View

This view lists the parameters and their values. Reorder them by clicking on a column heading.

6.3.17.2.3 Parameters - Tree View

This view displays parameters in a tree structure, with expandable categories.

6.3.17.2.4 Parameters - setting the release options

This section describes how to set the build options for a project configuration using the Project
Settings dialog.

Procedure
1. Click the Category View tab.
2. Select the Windows-Release entry and choose the operating system/link options from the

Platform/Linkage drop-down menu.
Option Description
Linux64 64-bit model for Linux.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Option Description
Win64 64-bit model using the release run-time library for

Microsoft Windows.
Win64D 64-bit model using the debug run-time library for

Microsoft Windows.

3. Select the compiler from the Compiler drop-down menu.
4. Enter a path into the Build directory field to select the directory to perform the builds in.

This directory contains the source code and the build library for the system model. If the path is
not absolute, System Canvas treats it as being relative to the directory that contains the project
file.

5. Enter text into the Configuration description box that describes the configuration.

6.3.17.2.5 Parameters - overloading the main() function in the target

This section describes how to replace the default main() of an ISIM with a user-supplied main().

About this task

If you use the option USER_DEFINED_ISIM_MAIN and a user-supplied main(), you
cannot build a CADI shared library from the project.

If a CADI shared library is required:

• Add a new configuration for isim_system that defines USER_DEFINED_MAIN.

• Add an #ifdef USER_DEFINED_MAIN test block around the main() in the user source file.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Procedure
1. Define the USER_DEFINED_ISIM_MAIN preprocessor option for the compiler in the Project

Settings dialog.

Figure 6-3: Specifying user-defined main() option

2. Supply a C++ file or a library with a user-defined main() function.
A fragment of the standard IsimMain.cpp file:

#ifdef USER_DEFINED_ISIM_MAIN // opposite logic to standard IsimMain.cpp
#include "SimGenTplMacros.h"
// function that performs command line parsing
// CADI system initialization and run
extern int LoadInitAndRunCADIModel(int argc, char *argv[],
 const char* topComponent,
 const char* pvLibVersion);
int main(int argc, char *argv[])
{
 return LoadInitAndRunCADIModel(argc, argv, SIMGEN_TOP_COMPONENT,
 PVLIB_VERSION_STRING);
}

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

#endif // #ifdef USER_DEFINED_ISIM_MAIN

You might define the USER_DEFINED_ISIM_MAIN preprocessor option, for example, so that
you can implement processing of your own command-line options but must, after filtering
out all user-defined switches, pass the remaining options to the Model Shell entry function
LoadInitAndRunCADIModel().

3. Add the new source file containing the custom main() to the project.

Related information
Add Existing Files and Add New File dialogs (Component window) on page 88

6.3.17.3 Project parameter IDs

The parameters that configure a project, with IDs, names, defaults, and descriptions.

Table 6-11: Full list of parameters shown in List View

Parameter ID Parameter
name

Default Description

ADDITIONAL_COMPILER_SETTINGS Compiler
settings

"" Compiler settings. If your C++ source code uses C++11 syntax,
specify -std=c++11 in this parameter. For Microsoft Windows,
consult the Visual Studio documentation.

ADDITIONAL_LINKER_SETTINGS Linker settings "" Linker settings. For Microsoft Windows, consult the Visual Studio
documentation.

BUILD_DIR Build directory "" Build directory. If this path is not absolute, it is relative to the
position of the project file.

For Microsoft Windows, .\Windows-Debug or .\Windows-
Release.

COMPILER Compiler - VC2019

Microsoft Visual Studio 2019.

gcc

The first gcc version in the Linux search path.

gcc-7.3

GCC 7.3.

gcc-9.3

GCC 9.3.

CONFIG_DESCRIPTION Configuration
description

"" Description of the configuration, CONFIG_NAME.

CONFIG_NAME Configuration
name

"" Name of the configuration.

ENABLE_DEBUG_SUPPORT Enable model
debugging

0 Use implementation defined debug support.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Parameter ID Parameter
name

Default Description

ENABLE_NAMESPACE_STD Enable
namespace
std

1 Use namespace std:

1 (true)
Generate using namespace std and place in the code.

0 (false)
Specify the namespace. This setting might reduce
compilation time.

ENABLE_PRECOMPILE_HEADER Enable
precompiling

0 Precompile headers if true/1.

GENERATE_LINEINFO Source
reference

"LISA
 Code
 (incl
 headers)"

Control line redirection in the generated model source code:

"LISA Code"

Source code.

"LISA Code (incl. headers)"

Source and header.

"Generated Code"

No line redirection at all.

INCLUDE_DIRS Include
directories

"" Include directories. Separate multiple entries with semicolons.

MODEL_DEBUGGER_COMMAND_LINE Model
Debugger

"" Options to pass on the command line.

MODEL_SHELL_COMMAND_LINE Model Shell "" Options to pass on the command line.

PLATFORM Platform/
linkage

- "Linux64"

64-bit Linux.

"Win64"

64-bit Microsoft Windows release.

"Win64D"

64-bit Microsoft Windows debug.

POST_BUILD_EVENT Postbuild
actions

"" Commands to execute after building the model. Separate multiple
entries with semicolons.

PRE_COMPILE_EVENT Precompile
actions

"" Commands to execute before starting compilation. Applies
to Microsoft Windows only. Separate multiple entries with
semicolons.

PREPROCESSOR_DEFINES Preprocessor
defines

"" Preprocessor defines. Separate multiple entries with semicolons.

PRE_LINK_EVENT Prelink actions "" Commands to execute before starting linking. Applies to Microsoft
Windows only. Separate multiple entries with semicolons.

SIMGEN_COMMAND_LINE SimGen
options

"" Options to pass on the command line.

SIMGEN_WARNINGS_AS_ERRORS Warnings as
errors

"0" If 1 (true), treat LISA parsing and compiler warnings as errors.

SYSTEMC_COMMAND_LINE SystemC
arguments

"" Command-line arguments for SystemC executable.

SYSTEMC_EXE SystemC
executable

"" Name of final SystemC executable. Call the file with ‘Run SystemC
executable’.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Parameter ID Parameter
name

Default Description

TARGET_SYSTEMC SystemC
component

0 If 1 (true), build an EVS library.

TARGET_SYSTEMC_AUTO SystemC
component
with auto-
bridging

0 If 1 (true), build an EVS library with auto-bridging.

TARGET_SYSTEMC_ISIM SystemC
integrated
simulator

0 If 1 (true), build a SystemC ISIM executable.
Note:
You cannot select both TARGET_SYSTEMC_MAXVIEW and
TARGET_SYSTEMC_ISIM.

TARGET_SYSTEMC_MAXVIEW SystemC
integrated
CADI library

0 If 1 (true), build a CADI system dynamic library with the SystemC
scheduler for running from Model Debugger or Model Shell.
Note:
You cannot select both TARGET_SYSTEMC_MAXVIEW and
TARGET_SYSTEMC_ISIM.

VERBOSITY Verbosity "Off" Verbosity level: "Sparse", "On", or "Off".

Related information
Auto-bridging on page 125

6.3.17.4 Project file contents

Project (.sgproj) files describe the build settings and the files required to build a platform.

File and directory names can be either absolute or relative to the project file location. You can use
environment variables in filenames.

Platform

"Linux64"

64-bit Linux.

"Win64"

64-bit Microsoft Windows release.

"Win64D"

64-bit Microsoft Windows debug.

Compiler

"VC2019"

Microsoft Visual Studio 2019.

"gcc"

The first gcc version in the Linux search path.

"gcc-7.3"

GCC 7.3.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

"gcc-9.3"

GCC 9.3.

For Linux, the compiler version only affects the files that the project file and
repositories identify. It does not select the gcc found in the search path. To
enable System Generator to automatically select the libraries that match the
current gcc compiler, use the compiler option gcc.

Action

"lisa"

Process the file as a LISA file. This action is not applicable to directories.

"compile"

Process the file as a C++ file. If acting on a directory, the compiler compiles all *.c,
*.cpp, and *.cxx files in the directory.

"ignore"

Exclude the file or directory from the build and deploy process, such as a disabled file
or project notes.

"link"

Link the file with existing files. If acting on a directory on Microsoft Windows, System
Generator adds all *.lib and *.obj files in the directory to the linker input. On Linux, it
adds all *.a and *.o files.

"deploy"

Produce a deployable file. If acting on a directory, System Generator copies the entire
directory and its subdirectories to the destination. This action is the only action that
acts recursively on subdirectories.

"incpath"

Include the directory in the list of include search paths that the -I option for the
compiler specifies. This action is the default action for directories.

"libpath"

Include the directory in the list of library search paths that the -L option for the
compiler specifies. This action is the default action for directories.

The build options for the file or directory entries are not case sensitive.

For example, the my_file.lib file can specify host, compiler, and action as:

path = my_file.lib, platform="WIN64|Win64D", compiler="VC2019", action="link|
deploy";

Do not OR the compiler options together. Instead, omit them to permit more than one compiler:

path = ../src/my_windows_code.cpp, platform = "win64";

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

File entries in the project file can have a compiler filter in addition to the platform and action filters:

path = ../lib/release_2019/my_lib.lib, platform = "win64", compiler="VC2019";
path = ../lib/my_lib.lib, platform = "win64", compiler="VC2019";
path = ../src/my_windows_code.cpp, platform = "win64"; // Not specifying the
 compiler allows
 // more than one.

Related information
File processing order on page 30
File/Path Properties dialog on page 97

6.3.17.4.1 Directories in path statements

Differentiate directories from files with a trailing / character.

Project files can contain directories in the path statement. Platform and compiler filters might apply.

If you apply directory actions to a file, System Generator applies them to the directory that
contains the file. It forms the directory path by removing the filename from the full path. This path
specification:

path = MyFile.lisa, actions="lisa|incpath|libpath";

makes System Generator treat MyFile.lisa as the LISA source and add the parent directory of
MyFile.lisa to the include and library search paths.

6.3.17.4.2 Example project file

An example project file with different configuration sections for building an EVS library.

Example project file with Windows and Linux configurations
sgproject "exampleSystem.sgproj"
{
 TOP_LEVEL_COMPONENT = "exampleSystem";
 ACTIVE_CONFIG_LINUX = "Linux64-Release-GCC-7.3";
 ACTIVE_CONFIG_WINDOWS = "Win64-Release-VC2019";
 config "Linux64-Debug-GCC-7.3"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -ggdb3 -Wall -std=c++11 -Wno-deprecated -
Wno-unused-function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Debug-GCC-7.3";
 COMPILER = "gcc-7.3";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 7.3 with debug
 information";
 CONFIG_NAME = "Linux64-Debug-GCC-7.3";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Linux64";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 TARGET_SYSTEMC = "1";
 }
 config "Linux64-Release-GCC-7.3"
 {

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -O3 -Wall -std=c++11 -Wno-deprecated -Wno-
unused-function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Release-GCC-7.3";
 COMPILER = "gcc-7.3";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 7.3, optimized for
 speed";
 CONFIG_NAME = "Linux64-Release-GCC-7.3";
 PLATFORM = "Linux64";
 PREPROCESSOR_DEFINES = "NDEBUG";
 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 TARGET_SYSTEMC = "1";
 }
 config "Linux64-Debug-GCC-9.3"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -ggdb3 -Wall -std=c++11 -Wno-deprecated -
Wno-unused-function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Debug-GCC-9.3";
 COMPILER = "gcc-9.3";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 9.3 with debug
 information";
 CONFIG_NAME = "Linux64-Debug-GCC-9.3";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Linux64";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 TARGET_SYSTEMC = "1";
 }
 config "Linux64-Release-GCC-9.3"
 {
 ADDITIONAL_COMPILER_SETTINGS = "-march=core2 -O3 -Wall -std=c++11 -Wno-deprecated -Wno-
unused-function";
 ADDITIONAL_LINKER_SETTINGS = "-Wl,--no-undefined";
 BUILD_DIR = "./Linux64-Release-GCC-9.3";
 COMPILER = "gcc-9.3";
 CONFIG_DESCRIPTION = "Default x86_64 Linux configuration for GCC 9.3, optimized for
 speed";
 CONFIG_NAME = "Linux64-Release-GCC-9.3";
 PLATFORM = "Linux64";
 PREPROCESSOR_DEFINES = "NDEBUG";
 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 TARGET_SYSTEMC = "1";
 }
 config "Win64-Debug-VC2019"
 {
 ADDITIONAL_COMPILER_SETTINGS = "/Od /RTCsu /Zi";
 ADDITIONAL_LINKER_SETTINGS = "/DEBUG";
 BUILD_DIR = "./Win64-Debug-VC2019";
 COMPILER = "VC2019";
 CONFIG_DESCRIPTION = "Default x86_64 Windows configuration for Visual Studio 2019 with
 debug information";
 CONFIG_NAME = "Win64-Debug-VC2019";
 ENABLE_DEBUG_SUPPORT = "1";
 PLATFORM = "Win64D";
 SIMGEN_COMMAND_LINE = "--num-comps-file 10";
 TARGET_SYSTEMC = "1";
 }
 config "Win64-Release-VC2019"
 {
 ADDITIONAL_COMPILER_SETTINGS = "/O2";
 BUILD_DIR = "./Win64-Release-VC2019";
 COMPILER = "VC2019";
 CONFIG_DESCRIPTION = "Default x86_64 Windows configuration for Visual Studio 2019,
 optimized for speed";
 CONFIG_NAME = "Win64-Release-VC2019";
 PLATFORM = "Win64";
 PREPROCESSOR_DEFINES = "NDEBUG";
 SIMGEN_COMMAND_LINE = "--num-comps-file 50";
 TARGET_SYSTEMC = "1";
 }
 files

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

 {
 path = "$(PVLIB_HOME)/etc/sglib.sgrepo";
 path = "../LISA/exampleSystem.lisa";
 path = "../LISA/exampleComponent.lisa";
 }
}

6.3.18 Protocol Properties dialog

This dialog displays the properties of protocols.

Select a protocol from the Protocols list, right-click on it and select Properties to display the
properties.

Protocol name
The name of the protocol.

File
The file that defines the protocol.

Repository
The repository that contains the reference to the file path.

Description
A description dating from the addition of the file to the project.

Methods
A panel that displays the LISA prototypes of methods, or behaviors, available for the protocol.
The values are for reference only. They are not editable.

Properties
A panel that displays the properties for protocol. The values are for reference only. They are
not editable.

6.3.19 Run dialog

This dialog specifies the actions that execute to run a selected target.

There are actions for different targets, and additional options.

To display the dialog, click Run from the Project menu.

Select command to run
Select the executable to run.

Full command line
Adjust the command line that System Canvas generates, for example, add parameters or
change the location of the application to load onto the executable.

Effective command line
Shows the complete command line with expanded macros and environment variables, ready
for execution.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Model Debugger
Run the model in Model Debugger. The initial command line options come from project
settings and user preferences.

Model Shell
Run the model with Model Shell. The initial command line options come from project settings
and user preferences.

ISIM system
Run the model as an ISIM system. The initial command line options come from project
settings and user preferences.

Custom
Specify the command line in Full command line.

Recent
Select a recent command.

Insert Placeholder Macro
Insert a macro or environment variable from drop-down list at the current cursor position in
Full command line. System Generator expands them to build the complete command line.

%CADI%

The full absolute path of the CADI dynamic library.

%ISIM%

The full absolute path of the ISIM executable.

%BUILD_DIR%

The relative path to the build directory (relative to project path).

%DEPLOY_DIR%

The relative path to the deploy directory (identical to %BUILD_DIR%).

%PROJECT_DIR%

The full absolute path to the directory of the project.

Launch in background
Run an application asynchronously in a separate console window. Use this if the application
requests user input or if the output is long.

Clear History
Remove all the recent entries from command history. This also removes corresponding items
from the System Canvas main menu.

6.3.20 Self Port dialog

Use this dialog to add a port to the top-level component.

To display the dialog, without having anything selected in the Block Diagram view, click Add Ports,
or click Add Port from the Object menu.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

System Canvas Reference

Instance name
The name of the port.

Array size
The number of ports, for a port array. Leave the box empty, or enter 1, for normal ports.

Protocol
The name of the protocol for the port. To display a list of protocols, click Select....

Type
Master port or Slave Port.

Attributes
• Addressable for bus ports.

• Internal for ports between subcomponents. The port is not visible if the component is
added to a system.

Create LISA method templates according to selected protocol
Select an option from the drop-down list to create implementation templates for methods, or
behaviors, for the selected protocol:

• Do not create method templates.

• Create only required methods. This is the default.

• Create all methods, including optional behaviors.

This creates only methods corresponding to the selected port type, that is, for either master
or slave.

Editing the existing port might create new methods, but does not delete existing methods.

Mirror port image
Reverse the direction of the port image.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7 SystemC Export with Multiple
Instantiation

This chapter describes the Fast Models SystemC Export feature with Multiple Instantiation (MI)
support.

7.1 About SystemC Export with Multiple Instantiation
SystemC Export wraps the components of a SystemC-based virtual platform into an Exported
Virtual Subsystem (EVS). Multiple Instantiation (MI) enables the generation and integration of multiple
EVS instances into a single SystemC simulation.

SystemC Export with MI enables the generation of EVSs as first-class SystemC components:

• Capable of running any number of instances, alongside other EVSs.

• Providing one SC_THREAD per core component (that is, one SC_THREAD per core component in a
cluster Code Translation (CT) model).

MI enables the generation and integration of multiple EVS instances into a virtual platform with
SystemC as the single simulation domain. A single EVS can appear in multiple virtual platforms.
Equally, multiple EVSs can combine to create a single platform. A platform that consists of multiple
EVSs is called an SVP (SystemC Virtual Platform).

SystemC components (including Fast Models ones) can exchange data via the Direct Memory
Interface (DMI) or normal (blocking) Transaction Level Modeling (TLM) transactions.

Fast Models supports SystemC 2.3.3, including integrated TLM 2.0.5. In this version, the TLM and
SystemC headers are in the same place, and some filenames are different.

Before using SimGen to build a SystemC simulation, the environment variable SYSTEMC_HOME must
be set to the directory containing the Accellera SystemC library installation.

When running a SystemC simulation, the following environment variables might be useful:

SCX_EVS_VERBOSE

Set to 1 to enable tracing of the default scheduler mapping implementation.

FM_SCX_VERBOSITY_LEVEL

Set to one of the following values to set the verbosity level for debug messages from the
SystemC simulation:
0 None
100 Low
200 Medium
300 High
400 Full

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

500 Debug

When loading an image on an EVS, you might see the following warning:

Warning: Base.cluster0.cpu0: Uncaught exception, thread terminated
In file: gen/scx_scheduler_mapping.cpp:523
In process: Base.thread_p_5 @ 0 s

This warning means that the image is attempting to run from DRAM, but this is
access-controlled by the TZC_400 component. To disable security checking by the
TZC_400, specify -C Base.bp.secure_memory=false when running the EVS.

Related information
Fast Models Reference Guide
Accellera Systems Initiative (ASI)
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006
Accellera, TLM 2.0 Language Reference Manual, July 2009

7.2 Auto-bridging
Auto-bridging is a Fast Models feature that SimGen uses to automatically convert between LISA+
protocols and their SystemC equivalents. It helps to automate the generation of SystemC wrappers
for LISA+ subsystem models.

A bridge is a LISA component that converts transactions from one protocol to another. A wide
variety of bridges are available to convert between various LISA+ protocols and their SystemC
equivalents. For example, PVBus2AMBAPV converts from PVBus to AMBA-PV protocols.

When auto-bridging is enabled, you do not need to manually add bridges to your LISA+ file.
Auto-bridging causes SimGen to apply the protocol-to-bridge mappings that are defined in a
configuration file to the LISA+ components and generate a single EVS component.

Enable auto-bridging by selecting both the TARGET_SYSTEMC and TARGET_SYSTEMC_AUTO build targets
in the .sgproj file. Or, in System Canvas Project Settings, select both targets SystemC component
and SystemC component with auto-bridging.

Use the --bridge-conf-file SimGen command-line option to select your own auto-bridging
configuration file. Alternatively, edit the file $PVLIB_HOME/etc/bridges_conf.json, which SimGen
uses if you do not specify this option. The syntax is:

 "<protocol_name>" : {
 "master" : {
 "name" : "<bridge_name>"
 },
 "slave" : {
 "name" : "<bridge_name>"
 },
 "peer" : {

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 252

https://developer.arm.com/documentation/100964/1117
http://www.accellera.org/
http://standards.ieee.org/findstds/standard/1666-2005.html
http://www.accellera.org/downloads/standards/systemc/

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

 "name" : "<bridge_name>"
 }
 },

• SimGen ignores any bridges whose name is empty in the configuration file.

• Auto-bridging is not applied to any ports that are marked as internal in the LISA
+ file.

• SimGen reports an error if auto-bridging is enabled and a top-level port in a LISA
+ component uses a protocol that is not listed in the configuration file.

• SimGen reports an error if auto-bridging is enabled and it cannot find the
configuration file.

• You do not need to specify bridges for the following LISA+ protocols.
When ports that use these protocols are exported to SystemC, SimGen can
automatically generate the TLM sockets for them, without the need for bridging:

◦ AudioControl

◦ ClockRateControl

◦ ClockSignal

◦ CounterInterface

◦ GICv3Comms

◦ InstructionCount

◦ KeyboardStatus

◦ LCD

◦ MouseStatus

◦ PChannel

◦ SystemCoherencyInterface

◦ VECBProtocol

◦ VirtualEthernet

To access the generated TLM sockets from SystemC, you must #include the
appropriate header files from under $PVLIB_HOME/examples/SystemCExport/
Common/Protocols/.

7.3 SystemC Export generated ports
This section describes the generated ports and the associated port protocols.

Related information
About SystemC Export generated ports on page 251

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.3.1 Protocol definition

The ports of the top level Fast Models component, used to create SystemC ports, have protocols.

The behaviors in a Fast Models protocol definition must match exactly the functions in the
SystemC port class. System Canvas does not check this for consistency, but the C++ compiler can
find inconsistencies when compiling the generated SystemC component.

The set of functions and behaviors, their arguments, and their return value must be the same. The
order of the functions and behaviors does not matter.

All behaviors in the Fast Models protocol must be slave behaviors. There is no corresponding
concept of master behaviors.

The protocol definition also contains a properties section that contains the properties that describe
the SystemC C++ classes that implement the corresponding ports on the SystemC side.

Related information
LISA+ Language for Fast Models Reference Guide

7.3.2 TLM 1.0 protocol for an exported SystemC component

Here is an example of a TLM 1.0 signal protocol.

protocol MySignalProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_port_class_name = "my_signal_base<bool>";
 sc_slave_base_class_name = "my_slave_base<bool>";
 sc_slave_export_class_name = "my_slave_export<bool>";
 }
 slave behavior set_state(const bool & state);
}

7.3.3 TLM 2.0 bus protocol for an exported SystemC component

Here is an example of a TLM 2.0 bus protocol.

protocol MyProtocol
{
 includes
 {
 #include <mySystemCClasses.h>
 }
 properties
 {
 sc_master_base_class_name = "my_master_base";
 sc_master_socket_class_name = "my_master_socket<64>";

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 252

https://developer.arm.com/documentation/101092/0100

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

 sc_slave_base_class_name = "my_slave_base<64>";
 sc_slave_socket_class_name = "my_slave_socket<64>";
 }
 slave behavior read(uint32_t addr, uint32_t &data);
 slave behavior write(uint32_t addr, uint32_t data);
 master behavior invalidate_dmi(uint32_t addr);
}

This protocol enables declaring ports that have read() and write() functions. This protocol can
declare master and slave ports.

7.3.4 Properties for TLM 1.0 based protocols

TLM 1.0 based protocols map to their SystemC counterparts using properties in the LISA protocol
definition. The protocol description must set these properties.

sc_master_port_class_name
The sc_master_port_class_name property is the class name of the SystemC class that the generated
SystemC component instantiates for master ports on the SystemC side. This class must implement
the functions defined in the corresponding protocol, for example:

void my_master_port<bool>::set_state(bool state)

sc_slave_base_class_name
The sc_slave_base_class_name property is the class name of the SystemC class that the generated
SystemC component specializes for slave ports on the SystemC side. This class must declare the
functions defined in the corresponding protocol, for example:

void my_slave_base<bool>::set_state(const bool &state)

The SystemC component must define it to forward the protocol functions from the SystemC
component to the Fast Models top level component corresponding port. It must also provide a
constructor taking the argument:

const std::string &name

sc_slave_export_class_name
The sc_slave_export_class_name property is the class name of the SystemC class that the
generated SystemC component instantiates for slave ports (exports) on the SystemC side. The
component binds to the derived sc_slave_base_class_name SystemC class, and forwards calls from
the SystemC side to the bound class.

AMBAPV Signal protocol in Fast Models
protocol AMBAPVSignal {

 includes {
 #include <amba_pv.h>
 }

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

 properties {
 description = "AMBA-PV signal protocol";
 sc_master_port_class_name = "amba_pv::signal_master_port<bool>";
 sc_slave_base_class_name = "amba_pv::signal_slave_port<bool>";
 sc_slave_export_class_name = "amba_pv::signal_slave_export<bool>";
 }
...

sc_slave_export_class_name and sc_master_port_class_name describe the type of the port
instances in the SystemC domain.

sc_slave_base_class_name denotes the base class from which the SystemC component publicly
derives.

AMBAPV Signal protocol in SystemC component class
The SystemC module ports must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::signal_slave_base<bool> {

 /* Module ports */
 amba_pv::signal_master_port<bool> signal_out;
 amba_pv::signal_slave_export<bool> signal_in;
 ...

The SystemC port names must also match the Fast Models port names. For example, signal_out
is the instance name for the master port in the Fast Models AMBAPVBus component and the
SystemC port.

Figure 7-1: SGSignal component in System Canvas

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.3.5 Properties for TLM 2.0 based protocols

The TLM 2.0 protocol provides forward and backward paths for master and slave sockets. Protocols
that use TLM 2.0 must specify properties in the protocol declaration.

sc_master_socket_class_name
This is the class name of the SystemC class that the generated SystemC component
instantiates for master sockets on the SystemC side. The component binds to the derived
sc_master_base_class_name SystemC class and forwards calls from:

• The bound class to SystemC (forward path).

• The SystemC side to the bound class (backward path).

sc_master_base_class_name
This is the class name of the SystemC class that the generated SystemC component specializes for
master sockets on the SystemC side. This class must declare the master behavior functions defined
in the corresponding protocol, for example:

my_master_base::invalidate_dmi(uint32_t addr)

The SystemC component must define it to forward the protocol functions from the SystemC
component (backward path) to the System Generator top level component corresponding socket. It
must also provide a constructor taking the argument:

const std::string &

sc_slave_socket_class_name
This is the class name of the SystemC class that the generated SystemC component
instantiates for slave sockets on the SystemC side. The component binds to the derived
sc_slave_base_class_name SystemC class and forwards calls from:

• The bound class to SystemC (backward path).

• The SystemC side to the bound class (forward path).

sc_slave_base_class_name
This is the class name of the SystemC class that the generated SystemC component specializes for
slave sockets on the SystemC side. It must also provide a constructor taking the argument:

const std::string &

AMBAPV protocol in System Generator
protocol AMBAPVSignal {
 includes {
 #include <amba_pv.h>
 }

 properties {
 description = "AMBA-PV protocol";

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

 sc_master_base_class_name = "amba_pv::amba_pv_master_base";
 sc_master_socket_class_name = "amba_pv::amba_pv_master_socket<64>";
 sc_slave_base_class_name = "amba_pv::amba_pv_slave_base<64>";
 sc_slave_socket_class_name = "amba_pv::amba_pv_slave_socket<64>";
 }

AMBAPV protocol in SystemC component class
The SystemC module sockets must use the corresponding names in the SystemC code.

class pv_dma: public sc_module,
 public amba_pv::amba_pv_slave_base<64>,
 public amba_pv::amba_pv_master_base {

/* Module ports */
 amba_pv::amba_pv_slave_socket<64> amba_pv_s;
 amba_pv::amba_pv_master_socket<64> amba_pv_m;
 ...
}

7.4 SystemC Export API
This section describes the SystemC eXport (SCX) API provided by Fast Models Exported Virtual
Subsystems (EVSs). Each description of a class or function includes the C++ declaration and the use
constraints.

7.4.1 SystemC Export header file

To use the SystemC Export feature, an application must include the C++ header file scx.h at
appropriate positions in the source code as required by the scope and linkage rules of C++.

The header file $PVLIB_HOME/include/fmruntime/scx/scx.h adds the namespace scx to the
declarative region that includes it. This inclusion declares all definitions related to the SystemC
Export feature of Fast Models within that region.

#include "scx.h"

7.4.2 scx::scx_initialize

This function initializes the simulation.

Initialize the simulation before constructing any exported subsystem.

void scx_initialize(const std::string &id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

id

an identifier for this simulation.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

ctrl

a pointer to the simulation controller implementation. It defaults to the one provided with
Arm® models.

Arm recommends specifying a unique identifier across all simulations running on the
same host.

7.4.3 scx::scx_set_single_evs

Sets the simulation engine to accept a single EVS only.

void scx_set_single_evs();

The EVS name will be stripped from CADI parameters.

Call this function immediately after calling scx_initialize().

7.4.4 scx::scx_load_application

This function loads an application in the memory of an instance.

void scx_load_application(const std::string &instance,
 const std::string &application);

instance

the name of the instance to load into. The parameter instance must start with an EVS
instance name, or with "*" to load the application into the instance on all EVSs in the
platform. To load the same application on all cores of an SMP processor, specify "*" for the
core instead of its index, in parameter instance.

application

the application to load.

The loading of the application happens at start_of_simulation() call-back, at the
earliest.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.5 scx::scx_load_application_all

This function loads an application in the memory of instances that execute software, across all
EVSs in the platform.

void scx_load_application_all(const std::string &application);

application

the application to load.

The loading of the application happens at start_of_simulation() call-back, at the
earliest.

7.4.6 scx::scx_load_data

This function loads binary data in the memory of an instance at a memory address.

void scx_load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

instance

the name of the instance to load into. The parameter instance must start with an EVS
instance name, or with "*" to load data into the instance on all EVSs in the platform. On an
SMP processor, if instance specifies "*" for the core instead of its index, the binary data
loads only on the first processor.

data

the filename of the binary data to load.

address

the memory address at which to load the data. The parameter address might start with a
memory space specifier.

The loading of the binary data happens at start_of_simulation() call-back, at the
earliest.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.7 scx::scx_load_data_all

This function loads binary data in the memory of instances that execute software, across all EVSs in
the platform, at a memory address. On SMP processors, the data loads only on the first core.

void scx_load_data_all(const std::string &data,
 const std::string &address);

data

the filename of the binary data to load.

address

the memory address at which to load the data. The parameter address might start with a
memory space specifier.

The loading of the binary data happens at start_of_simulation() call-back, at the
earliest.

7.4.8 scx::scx_set_parameter

This function sets the value of a parameter in components present in EVSs or in plug-ins.

• bool scx_set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool scx_set_parameter(const std::string &name, T value);

name

the name of the parameter to change. The parameter name must start with an EVS instance
name for setting a parameter on this EVS, or with "*" for setting a parameter on all EVSs in
the platform, or with a plug-in prefix (defaults to "TRACE") for setting a plug-in parameter.

value

the value of the parameter.

This function returns true when the parameter exists, false otherwise.

• Changes made to parameters within System Canvas take precedence over
changes made with scx_set_parameter().

• You can set parameters during the construction phase, and before the
elaboration phase. Calls to scx_set_parameter() after the construction phase
are ignored.

• You can change run-time parameters after the construction phase with the
debug interface.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

• Specify plug-ins before calling the platform parameter functions, so that the
plug-ins load and their parameters are available. Any plug-in that is specified
after the first call to any platform parameter function is ignored.

7.4.9 scx::scx_get_parameter

This function retrieves the value of a parameter from components present in EVSs or from plug-ins.

• bool scx_get_parameter(const std::string &name, std::string &value);

• template<class T>
bool scx_get_parameter(const std::string &name, T &value);

• bool scx_get_parameter(const std::string &name, int &value);

• bool scx_get_parameter(const std::string &name, unsigned int &value);

• bool scx_get_parameter(const std::string &name, long &value);

• bool scx_get_parameter(const std::string &name, unsigned long &value);

• bool scx_get_parameter(const std::string &name, long long &value);

• bool scx_get_parameter(const std::string &name, unsigned long long &value);

• std::string scx_get_parameter(const std::string &name);

name

the name of the parameter to retrieve. The parameter name must start with an EVS instance
name for retrieving an EVS parameter or with a plug-in prefix (defaults to "TRACE") for
retrieving a plug-in parameter.

value

a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

Specify plug-ins before calling the platform parameter functions, so that the plug-ins
load and their parameters are available. Any plug-in that is specified after the first
call to any platform parameter function is ignored.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.10 scx::scx_get_parameter_list

This function retrieves a list of all parameters in all components present in all EVSs and from all
plug-ins.

std::map<std::string, std::string> scx_get_parameter_list();

The parameter names start with an EVS instance name for EVS parameters or with a plug-in prefix
(defaults to "TRACE") for plug-in parameters.

• Specify plug-ins before calling the platform parameter functions, so that the
plug-ins load and their parameters are available. Any plug-in that is specified
after the first call to any platform parameter function is ignored.

• If scx_set_parameter() is called after the simulation elaboration
phase, the new value is not set in the model, although it is returned by
scx_get_parameter_list().

7.4.11 scx::scx_get_parameter_infos

Retrieve a list of descriptions for all parameters within the simulation.

std::map<std::string, std::string> scx_get_parameter_infos();

The list includes parameters for all components present in all EVSs and for all plug-ins.

The names of EVS parameters start with an EVS instance name and the names of plug-in
parameters start with a plug-in prefix, which defaults to TRACE.

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise plug-ins are not loaded and their parameters are not available. Any plug-
in specified after the first call to any platform parameter function is ignored.

7.4.12 scx::scx_get_cadi_parameter_infos

Retrieve a vector of CADIParameterInfo_t objects for all the parameters in the simulation.

std::vector<eslapi::CADIParameterInfo_t> scx_get_cadi_parameter_infos();

Use this function to get CADI parameter objects with all the relevant fields present for all EVSs,
external SystemC modules, and loaded plug-ins.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise plug-ins are not loaded and their parameters are not available. Any plug-
in specified after the first call to any platform parameter function is ignored.

7.4.13 scx::scx_set_cpi_file

Sets the Cycles Per Instruction (CPI) file for CPI class functionality.

void scx_set_cpi_file(const std::string & cpi_file_path);

cpi_file_path

the path to the CPI file.

Use this function to activate the CPI class functionality.

This function must be called before any call to a platform parameter function.

7.4.14 scx::scx_cpulimit

Sets the maximum number of CPU (User + System) seconds to run, excluding startup and
shutdown.

void scx_cpulimit(double t);

t

the number of seconds to run. Defaults to unlimited.

7.4.15 scx::scx_timelimit

Sets the maximum number of seconds to run, excluding startup and shutdown.

void scx_timelimit(double t);

t

the number of seconds to run. Defaults to unlimited.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.16 scx::scx_add_breakpoint

Set a breakpoint at a specific address.

void scx_add_breakpoint(std::string instance, uint64_t addr,
bool perthread, uint32_t threadid);

instance

Name of the core target instance.

addr

Address at which to set the breakpoint.

perthread

If true, the breakpoint only hits if threadid matches the current thread.

threadid

Thread ID for the breakpoint. Only used if perthread is true.

7.4.17 scx::scx_set_start_pc

Set the initial value of the PC register for a specific instance.

void scx_set_start_pc(std::string instance, uint64_t addr);

instance

Name of the core target instance.

addr

Start PC address.

7.4.18 scx::scx_dump

Set the details of a memory dump to be written to a file.

void scx_dump(std::string instance, std::string filename, std::string memSpace,
 uint64_t addr, uint64_t size);

instance

Name of the target instance to dump memory from.

filename

The path to the file to dump memory to.

memSpace

The name or ID of the memory space.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

addr

Start address from which to dump.

size

Number of bytes of memory to dump.

7.4.19 scx::scx_load_params_file

Load parameter values from a configuration file.

void scx_load_params_file(const std::string& filename);

filename

The name of the configuration file to load.

Plug-ins must be specified before calling any of the platform parameter functions,
otherwise these plug-ins will not be loaded and their parameters will not be
available.

7.4.20 scx::scx_list_instances

List all instances in the simulation.

void scx_list_instances(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

7.4.21 scx::scx_list_registers

List all simulation registers.

void scx_list_registers(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.22 scx::scx_check_registers

List all simulation registers and perform extra consistency checks on the CADI register API.

void scx_check_registers(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

7.4.23 scx::scx_restore_checkpoint

Restore a checkpoint.

void scx_restore_checkpoint(const std::string& restoreCheckpointDirPath);

restoreCheckpointDirPath

Directory from which the checkpoint files will be restored.

7.4.24 scx::scx_save_checkpoint

Save a checkpoint.

void scx_save_checkpoint(const std::string& saveCheckpointDirPath);

saveCheckpointDirPath

Directory in which the checkpoint files will be stored.

7.4.25 scx::scx_list_memory

List all simulation memory.

void scx_list_memory(const std::string& filename = std::string());

filename

The path to the file to hold the output. The default is an empty string, which sends output to
std::cout.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.26 scx::scx_parse_and_configure

This function parses command-line options and configures the simulation accordingly.

void scx_parse_and_configure(int argc,
 char *argv[],
 const char *trailer = NULL,
 bool sig_handler = true);

argc

the number of command-line options listed with argv[].

argv

command-line options.

trailer

a string that follows the option list when printing the help message (--help option).

sig_handler

whether to enable signal handler function. true to enable (default), false to disable.

The application must pass the values of the options from function sc_main() as arguments to this
function.

-a, --application
application to load, format: -a [INST=]FILE. For SMP cores: -a INST*=FILE.

-A, --iris-allow-remote
allow remote connections from another machine to the Iris server. Defaults to not allowed.

-b, --break
set a breakpoint, format: -b [INST=]ADDRESS. This option can be specified multiple times.

-C, --parameter
set a parameter, format: -C INST.PARAM=VALUE. This option can be specified multiple times.

--check-regs

the same as --list-regs but does more consistency checks on the CADI register API.

--cpi-file

use FILE to set Cycles Per Instruction (CPI) classes, format: --cpi-file FILE

--cpulimit

maximum number of CPU (User + System) seconds to run, excluding startup and shutdown,
format: --cpulimit NUM. Defaults to unlimited.

--cyclelimit

number of cycles to run, ignored if the debug server has started, format: --cyclelimit NUM.
Defaults to unlimited.

-D, --allow-debug-plugin
allow a plug-in to debug the simulation.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

--data

raw data to load, format: --data [INST=]FILE@[MEMSPACE:]ADDRESS

--dump

dump a section of memory into FILE, format: --dump
 [INST=]FILE@[MEMSPACE:]ADDRESS,SIZE. This option can be specified multiple times.

--dump-params

dump the list of model parameters into a JSON file and exit.

-f, --config-file
load model parameters from configuration file FILE, format: --config-file FILE

-h, --help
print help message and exit.

-i, --iris-log
Iris log level. This option can be specified multiple times, for example: -ii for log level 2.

-I, --iris-server
start an Iris server, allowing debuggers to connect to targets in the simulation.

--iris-port

set a specific port to use for the Iris server, format: --iris-port PORT

--iris-port-range

set the range of ports to scan when starting an Iris server. The first available port found is
used, format: --iris-port-range MIN:MAX

-K, --keep-console
keep the console window open after completion. This option applies to Microsoft Windows
only.

-l, --list-params
print the list of model parameters to standard output and exit.

-L, --cadi-log
log all CADI calls to XML log files.

--list-instances

print list of target instances to standard output.

--list-memory

print model memory information to standard output.

--list-regs

print model register information to standard output.

-o, --output
redirect parameters, memory and instance lists to output file FILE, format: --output FILE

-p, --print-port-number
print the TCP port number the CADI server is listening to.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

-P, --prefix
prefix semihosting output with the name of the instance.

--plugin

plug-in to load, format: --plugin [NAME=]FILE

-q, --quiet
suppress informational output.

-r, --restore
restore a checkpoint from DIR on simulation startup, format: --restore DIR

-R, --run
run the simulation immediately after the CADI server starts.

-s, --save
save a checkpoint to DIR on simulation exit, format: --save DIR

-S, --cadi-server
start a CADI server, allowing debuggers to connect to targets in the simulation.

--simlimit

maximum number of seconds to simulate, ignored if the debug server has started, format: --
simlimit NUM. Defaults to unlimited.

--start

set initial PC to application start address, format: --start [INST=]ADDRESS

--stat

print run statistics on simulation exit.

-T, --timelimit
maximum number of seconds to run, excluding startup and shutdown, ignored if the debug
server has started, format: --timelimit NUM. Defaults to unlimited.

--trace-plugin

deprecated, use --plugin instead.

This function treats all other command-line arguments as applications to load.

This function calls std::exit(EXIT_SUCCESS) to exit, for options --list-params and --help. It calls
std::exit(EXIT_FAILURE) if there was an error in the parameter specification, or an invalid option
was specified, or if the application or plug-in was not found.

7.4.27 scx::scx_register_synchronous_thread

This function registers a new thread in the simulation engine which is implicitly synchronized with
the simulation thread.

void scx_register_synchronous_thread(std::thread::id thread_id);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

thread_id

ID of the newly registered thread.

The caller must make sure that the simulation thread and the newly registered thread do not run
concurrently.

Calling this function for a thread X completely disables the thread synchronization for thread X, that
is, marshaling of function calls from the calling thread onto the simulation thread, for example Iris
calls.

This function is useful for debugger threads which are blocking the simulation thread and which still
want to issue Iris calls while the simulation thread is blocked.

7.4.28 scx::scx_get_error_count

This function returns the number of errors recorded by the simulation engine.

The count includes internal errors recorded by the simulation engine, some of which
are not reported as errors by scx_report_handler.

size_t scx_get_error_count();

7.4.29 scx::scx_get_exitcode_list

This function returns the list of exit codes that were logged by the simulation engine.

The returned list is a std::vector that contains the logged exit codes in order. Each entry in the list
is a struct of type 7.4.30 scx::scx_exitcode_entry on page 144. The last entry is the most recent.

• If no exit code was logged, the returned list is empty.

• This function only produces valid output after sc_start() has returned. It must
not be called beforehand.

const scx_exitcode_list_t & scx_get_exitcode_list();

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.30 scx::scx_exitcode_entry

Represents an entry in the exit code list.

The exit code list is returned by 7.4.29 scx::scx_get_exitcode_list on page 144.

struct scx_exitcode_entry
{
 scx_exitcode_entry(int exitcode_, std::string component_name_, std::string
 kind_, std::string reason_)
 : exitcode(exitcode_)
 , component_name(component_name_)
 , kind(kind_)
 , reason(reason_)
 {}

 int exitcode;
 std::string component_name;
 std::string kind;
 std::string reason;
};

exitcode
The exit code that was logged.

component_name
The name of the component that generated the exit code. This name is auto-generated by
the simulation engine at the time of logging.

kind
The type of component that generated the exit code.

reason
Optional field that provides a human-readable string explaining why the exit code was
logged. If this field is empty, then no reason was given and this field can be ignored.

7.4.31 scx::scx_start_cadi_server

This function specifies whether to start a CADI server.

void scx_start_cadi_server(bool start = true, bool run = true, bool debug = false);

start

true to start a CADI server, false otherwise.

run

true to run the simulation immediately after the CADI server has been started, false
otherwise.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

debug

true to enable debugging through a plug-in, false otherwise.

Starting a CADI server enables the attachment of a debugger to debug targets in the simulation.

When debug is set to true, the CADI server does not start, but a plug-in can implement an
alternative debugging mechanism in place of it.

When start is set to true, it overrides debug.

• A CADI server cannot start after simulation starts.

• You do not need to call this function if you have called
scx_parse_and_configure() and parsed at most one of -S or -D into sc_main().

7.4.32 scx::scx_enable_cadi_log

This function specifies whether to log all CADI calls to XML files.

void scx_enable_cadi_log(bool log = true);

log

true to log CADI calls, false otherwise.

You cannot enable logging once simulation starts.

7.4.33 scx::scx_print_port_number

This function specifies whether to enable printing of the TCP port number that the CADI server is
listening to.

void scx_print_port_number(bool print = true);

print

true to enable printing of the TCP port number, false otherwise.

You cannot enable printing of the TCP port number once simulation starts.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.34 scx::scx_print_statistics

This function specifies whether to enable printing of simulation statistics at the end of the
simulation.

void scx_print_statistics(bool print = true);

print

true to enable printing of simulation statistics, false otherwise.

• You cannot enable printing of statistics once simulation starts.

• The statistics include LISA reset() behavior run time and application load time.
A long simulation run compensates for this.

7.4.35 scx::scx_register_cadi_target

Register a CADI target info and interface into the simulation.

void scx_register_cadi_target(eslapi::CADITargetInfo_t * info, eslapi::CAInterface *
 caif = NULL);

info

Points to an eslapi::CADITargetInfo_t structure describing this CADI target.

caif

Points to an eslapi::CAInterface of this CADI target.

Use this function to register a target into the simulation. The target is then accessible through a
CADI debugger attached to the simulation.

Registering a target must be perfomed before the end of elaboration.

7.4.36 scx::scx_unregister_cadi_target

Unregister a specific CADI target from the simulation.

void scx_unregister_cadi_target(const std::string &);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

name

Instance name of this CADI target.

Use this function to unregister a target from the simulation. After calling this function, the target
will not be accessible through a CADI debugger.

7.4.37 scx::scx_load_trace_plugin

Arm deprecates this function. Use scx_load_plugin() instead.

7.4.38 scx::scx_load_plugin

This function specifies a plug-in to load.

void scx_load_plugin(const std::string &file);

file

the file of the plug-in to load.

The plug-in loads at end_of_elaboration(), at the latest, or as soon as a platform parameter
function is called.

Specify plug-ins before calling the platform parameter functions, so that the plug-ins
load and their parameters are available. Any plug-in that is specified after the first
call to any platform parameter function is ignored.

7.4.39 scx::scx_get_global_interface

This function accesses the global interface.

eslapi::CAInterface *scx_get_global_interface();

The global interface allows access to all of the registered interfaces in the simulation.

7.4.40 scx::scx_enable_iris_server

Starts or stops the Iris server.

void scx_enable_iris_server(bool enable = true);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

enable

true to start an Iris server (default), false to stop it.

Starting the Iris server puts the simulation into a wait state, until a client connects to
the server.

7.4.41 scx::scx_set_iris_server_port_range

Set the range of ports to scan. The Iris server uses the first available port found in the range.

void scx_set_iris_server_port_range(uint16_t port_min, uint16_t port_max);

port_min

the port number at the start of the range.

port_max

the port number at the end of the range.

This function only takes effect if you call it before starting the Iris server.

Related information
scx::scx_enable_iris_server on page 148

7.4.42 scx::scx_get_iris_server_port

Return the Iris TCP port number that is assigned when the Iris server starts, or zero if the Iris server
has not yet started.

uint16_t scx_get_iris_server_port();

7.4.43 scx::scx_set_iris_server_port

Set a specific port for the Iris server to listen on.

inline void scx_set_iris_server_port(uint16_t port)

port

The port number for the Iris server to listen on.
Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 149 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

This function only takes effect if you call it before starting the Iris server.

Related information
scx::scx_enable_iris_server on page 148

7.4.44 scx::scx_enable_iris_log

This function sets the Iris message log level.

void scx_enable_iris_log(unsigned level = 0);

level

the log level. The possible values are:

0
Logging is disabled. This is the default value.

1
Log messages use a compact, single-line format.

2
Log messages use a single-line, pseudo-JSON format.

3
Log messages use a more readable multi-line, pseudo-JSON format.

4
As 3 but also prints the U64JSON hex value of the message.

An alternative way to set the Iris log level is to use the
IRIS_GLOBAL_INSTANCE_LOG_MESSAGES environment variable.

7.4.45 scx::scx_get_iris_connection_interface

Return the IrisConnectionInterface for the simulation. This can be used to create and register
IrisInstances.

iris::IrisConnectionInterface *scx_get_iris_connection_interface();

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.46 scx::scx_evs_base

This class is the base class for EVSs. EVSs are the principal subsystems of the Fast Models SystemC
Export feature.

class scx_evs_base {
 public:
 void load_application(const std::string &, const std::string &);
 void load_data(const std::string &, const std::string &, const std::string &);
 bool set_parameter(const std::string &, const std::string &);
 template<class T>
 bool set_parameter(const std::string &, T);
 bool get_parameter(const std::string &, std::string &) const;
 template<class T>
 bool get_parameter(const std::string &, T &) const;
 std::string get_parameter(const std::string &) const;
 std::map<std::string, std::string> get_parameter_list() const;
 protected:
 scx_evs_base(const std::string &, sg::ComponentFactory *);
 virtual ~scx_evs_base();
 void before_end_of_elaboration();
 void end_of_elaboration();
 void start_of_simulation();
 void end_of_simulation();
};

7.4.47 scx::load_application

This function loads an application in the memory of an instance.

void load_application(const std::string &instance, const std::string &application);

instance

the name of the instance to load into.

application

the application to load.

The application loads at start_of_simulation(), at the earliest.

7.4.48 scx::load_data

This function loads raw data in the memory of an instance at a memory address.

void load_data(const std::string &instance,
 const std::string &data,
 const std::string &address);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

instance

the name of the instance to load into.

data

the file name of the raw data to load.

address

the memory address at which to load the raw data. The parameter address might start with a
memory space specifier.

The raw data loads at start_of_simulation(), at the earliest.

7.4.49 scx::set_parameter

This function sets the value of a parameter from components present in the EVS.

• bool set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool set_parameter(const std::string &name, T value);

name

the name of the parameter to change.

value

the value of the parameter.

This function returns true when the parameter exists, false otherwise.

• Changes made to parameters within System Canvas take precedence over
changes made with set_parameter().

• You can set parameters during the construction phase, and before the
elaboration phase. Calls to set_parameter() after the construction phase are
ignored.

• You can change run-time parameters after the construction phase with the
debug interface.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.50 scx::get_parameter

This function retrieves the value of a parameter from components present in the EVS.

• bool get_parameter(const std::string &name, std::string &value) const;

• template<class T>
bool get_parameter(const std::string &name, T &value) const;

• std::string get_parameter(const std::string &name);

name

the name of the parameter to retrieve.

value

a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

7.4.51 scx::get_parameter_list

This function retrieves a list of all parameters in all components present in the EVS.

std::map<std::string, std::string> get_parameter_list();

7.4.52 scx::scx_evs_base constructor

This function constructs an EVS.

scx_evs_base(const std::string &, sg::ComponentFactory *);

name

the name of the EVS instance.

factory

the sg::ComponentFactory to use to instantiate the corresponding LISA subsystem. The
factory initializes within the generated derived class.

EVS instance names must be unique across the virtual platform. The EVS instance name initializes
using the value passed as an argument to the constructor of the generated derived class.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.53 scx::scx_evs_base destructor

This function destroys an EVS including the corresponding subsystem, and frees the associated
resources.

~scx_evs_base();

7.4.54 scx::before_end_of_elaboration

This function calls the instantiate(), configure(), init(), interconnect(), and
populateCADIMap() LISA behaviors of the corresponding exported subsystem.

void before_end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

7.4.55 scx::end_of_elaboration

This function initializes the simulation framework.

void end_of_elaboration();

The generated derived class calls this function, after the SystemC simulation call-backs.

7.4.56 scx::start_of_simulation

This function calls the reset() LISA behaviors of the corresponding exported subsystem. It then
loads applications.

void start_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

7.4.57 scx::end_of_simulation

This function shuts down the simulation framework.

void end_of_simulation();

The generated derived class calls this function, after the SystemC simulation call-backs.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.58 scx::scx_simcallback_if

This interface is the base class for simulation control call-backs.

class scx_simcallback_if {
 public:
 virtual void notify_running() = 0;
 virtual void notify_stopped() = 0;
 virtual void notify_debuggable() = 0;
 virtual void notify_idle() = 0;
 protected:
 virtual ~scx_simcallback_if() {
 }
};

The simulation framework implements this interface. The simulation controller uses the interface to
notify the simulation framework of changes in the simulation state.

7.4.59 scx::notify_running

This function notifies the simulation framework that the simulation is running.

void notify_running();

The simulation controller calls this function to notify the simulation framework that the simulation
is running. The simulation framework then notifies debuggers of the fact.

7.4.60 scx::notify_stopped

This function notifies the simulation framework that the simulation has stopped.

void notify_stopped();

The simulation controller calls this function to notify the simulation framework that the simulation
has stopped. The simulation framework then notifies debuggers of the fact.

7.4.61 scx::notify_debuggable

This function notifies the simulation framework that the simulation is debuggable.

void notify_debuggable()

The simulation controller periodically calls this function to notify that the simulation is debuggable.
This typically occurs while the simulation is stopped, to allow clients to process debug activity, for
instance memory or breakpoint operations.

This version of the function does nothing.
Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 155 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.62 scx::notify_idle

This function notifies the simulation framework that the simulation is idle.

void notify_idle();

The simulation controller periodically calls this function to notify the simulation framework that the
simulation is idle, typically while the simulation is stopped, to allow clients to process background
activity, for example, GUI events processing or redrawing.

7.4.63 scx::scx_simcallback_if destructor

Destructor.

~scx_simcallback_if();

This version of the function does not allow destruction of instances through the interface.

7.4.64 scx::scx_simcontrol_if

This is the simulation control interface.

class scx_simcontrol_if {
 public:
 virtual eslapi::CAInterface *get_scheduler() = 0;
 virtual scx_report_handler_if *get_report_handler() = 0;
 virtual void run() = 0;
 virtual void stop() = 0;
 virtual bool is_running() = 0;
 virtual void stop_acknowledge(sg::SchedulerRunnable *runnable) = 0;
 virtual void process_debuggable();
 virtual void notify_pending_debug();
 virtual void process_idle() = 0;
 virtual void shutdown() = 0;
 virtual void add_callback(scx_simcallback_if *callback_obj) = 0;
 virtual void remove_callback(scx_simcallback_if *callback_obj) = 0;
 protected:
 virtual ~scx_simcontrol_if();
};

The simulation controller, which interacts with the simulation framework, must implement this
interface. The simulation framework uses this interface to access current implementations of the
scheduler and report handler, as well as to request changes to the state of the simulation.

Unless otherwise stated, requests from this interface are asynchronous and can return immediately,
whether the corresponding operation has completed or not. When the operation is complete,
the corresponding notification must go to the simulation framework, which in turn notifies all
connected debuggers to allow them to update their states.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Unless otherwise stated, an implementation of this interface must be thread-safe, that is it must
not make assumptions about threads that issue requests.

The default implementation of the simulation controller provided with Fast Models is at:
$MAXCORE_HOME/lib/template/tpl_scx_simcontroller.{h,cpp}.

7.4.65 scx::get_scheduler

This function returns a pointer to the implementation of the simulation scheduler.

eslapi::CAInterface *get_scheduler();

The simulation framework calls the get_scheduler() function to retrieve the scheduler
implementation for the simulation at construction time.

Implementations of this function need not be thread-safe.

7.4.66 scx::get_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *get_report_handler();

scx_initialize() calls the get_report_handler() function to retrieve the report handler
implementation for the simulation at construction time.

Implementations of this function need not be thread-safe.

7.4.67 scx::run

This function requests to run the simulation.

void run();

The simulation framework calls run() upon receipt of a CADI run request from a debugger.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.68 scx::stop

This function requests to stop the simulation as soon as possible, that is at the next wait().

void stop();

The simulation framework calls stop() upon receipt of a CADI stop request from a debugger, a
component, or a breakpoint hit.

7.4.69 scx::is_running

This function returns whether the simulation is running.

bool is_running();

The return value is true when the simulation is running, false when it is paused or stopped.

The simulation framework calls is_running() upon receipt of a CADI run state request from a
debugger.

7.4.70 scx::stop_acknowledge

This function blocks the simulation while the simulation is stopped.

void stop_acknowledge(sg::SchedulerRunnable *runnable);

runnable

a pointer to the scheduler thread calling stop_acknowledge().

The scheduler thread calls this function to effectively stop the simulation, as a side effect of calling
stop() to request that the simulation stop.

An implementation of this function must call clearStopRequest() on runnable (when not NULL).

7.4.71 scx::process_debuggable

This function processes debug activity while the simulation is at a debuggable point.

void process_debuggable()

This function is called by the scheduler thread whenever the simulation is at a debuggable point, to
enable debug activity to be processed.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

An implementation of this function might simply call scx_simcallback_if::notify_debuggable()
on all registered clients.

This version of the function does nothing.

7.4.72 scx::notify_pending_debug

Notifies the simulation controller that debug requests are pending and need processing as soon as
possible while the simulation is stopped.

virtual void notify_pending_debug()

An implementation of this behavior might simply call scx_simcontrol::process_debuggable() on
all registered clients, while the simulation is stopped in scx_simcontrol::stop_acknowledge().

7.4.73 scx::process_idle

This function processes idle activity while the simulation is stopped.

void process_idle();

The scheduler thread calls this function whenever idle to enable the processing of idle activity.

An implementation of this function might simply call scx_simcallback_if::notify_idle() on all
registered clients.

7.4.74 scx::shutdown

This function requests to stop the simulation.

void shutdown();

The simulation framework calls shutdown() to notify itself that it wants the simulation to stop.
Once the simulation has shut down it cannot run again.

There are no call-backs associated with shutdown().

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.75 scx::add_callback

This function registers call-backs with the simulation controller.

void add_callback(scx_simcallback_if *callback_obj);

callback_obj

a pointer to the object whose member functions serve as call-backs.

Clients call this function to register with the simulation controller a call-back object that handles
notifications from the simulation.

7.4.76 scx::remove_callback

This function removes call-backs from the simulation controller.

void remove_callback(scx_simcallback_if *callback_obj);

callback_obj

a pointer to the object to remove.

Clients call this function to unregister a call-back object from the simulation controller.

7.4.77 scx::scx_simcontrol_if destructor

Destructor.

~scx_simcontrol_if();

This version of the function does not allow destruction of instances through the interface.

7.4.78 scx::scx_get_default_simcontrol

This function returns a pointer to the default implementation of the simulation controller provided
with Fast Models.

scx_simcontrol_if *scx_get_default_simcontrol();

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.79 scx::scx_get_curr_simcontrol

Return a pointer to the current simulation controller implementation.

extern scx_simcontrol_if * scx_get_curr_simcontrol();

7.4.80 scx::scx_report_handler_if

This interface is the report handler interface.

class scx_report_handler_if {
 public:
 virtual void set_verbosity_level(int verbosity) = 0;
 virtual int get_verbosity_level() const = 0;
 virtual void report_info(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_info_verb(int verbosity,
 const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_warning(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_error(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 virtual void report_fatal(const char *id,
 const char *file,
 int line,
 const char *fmt, ...) = 0;
 protected:
 virtual ~scx_report_handler_if() {
 }
};

This interface provides run-time reporting facilities, similar to the ones provided by SystemC. It has
the additional ability to specify a format string in the same way as the std::vprintf() function,
and associated variable arguments, for the report message.

The Fast Models simulation framework for SystemC Export uses this interface to report various
messages at run-time.

The default implementation of the report handler provided with Fast Models is in: $MAXCORE_HOME/
lib/template/tpl_scx_report.cpp.

Related information
IEEE Std 1666-2005, SystemC Language Reference Manual, 31 March 2006

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 252

http://standards.ieee.org/findstds/standard/1666-2005.html

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.81 scx::scx_get_default_report_handler

This function returns a pointer to the default implementation of the report handler provided with
Fast Models.

scx_report_handler_if *scx_get_default_report_handler();

7.4.82 scx::scx_get_curr_report_handler

This function returns a pointer to the current implementation of the report handler.

scx_report_handler_if *scx_get_curr_report_handler();

7.4.83 scx::scx_sync

This function adds a future synchronization point.

void scx_sync(double sync_time);

sync_time

the time of the future synchronization point relative to the current simulated time, in
seconds.

SystemC components call this function to hint to the scheduler when a system synchronization
point will occur.

The scheduler uses this information to determine the quantum sizes of threads.

Threads that have run their quantum are unaffected; all other threads (including the current thread)
run to the sync_time synchronization point.

Calling scx_sync() again adds another synchronization point.

Synchronization points automatically vanish when the simulation time passes.

Arm deprecates this function. Use IEEE 1666 SystemC 2011
sc_core::sc_prim_channel::async_request_update() instead.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.84 scx::scx_set_min_sync_latency

This function sets the minimum synchronization latency for this scheduler.

void scx_set_min_sync_latency(double t);
void scx_set_min_sync_latency(sg::ticks_t t);

t

the minimum synchronization latency. Measured in seconds.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed
between two synchronization points for synchronization to be efficient.

A small latency increases accuracy but decreases simulation speed.

A large latency decreases accuracy but increases simulation speed.

The scheduler uses this information to compute the next synchronization point as returned by
sg::SchedulerInterfaceForComponents::getNextSyncPoint().

Related information
scx::scx_get_min_sync_latency on page 163

7.4.85 scx::scx_get_min_sync_latency

This function returns the minimum synchronization latency, measured in seconds, for this
scheduler.

double scx_get_min_sync_latency();
sg::ticks_t scx_get_min_sync_latency(sg::Tag<sg::ticks_t> *);

Related information
scx::scx_set_min_sync_latency on page 162

7.4.86 scx::scx_simlimit

This function sets the maximum number of seconds to simulate.

void scx_simlimit(double t);

t

the number of seconds to simulate. Defaults to unlimited.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.4.87 scx::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler
mapping that is provided with Fast Models.

sg::SchedulerInterfaceForComponents *
 scx_create_default_scheduler_mapping(scx_simcontrol_if * simcontrol);

simcontrol

pointer to an existing simulation controller. When this is NULL, this function returns NULL.

7.4.88 scx::scx_get_curr_scheduler_mapping

This function returns a pointer to the current implementation of the scheduler mapping interface.

sg::SchedulerInterfaceForComponents * scx_get_curr_scheduler_mapping();

7.5 Scheduler API
This section describes the Fast Models Scheduler API. To explain the API, this section also
describes the intended use, some simple use cases, and the relationship of this API to other APIs.

7.5.1 Scheduler API - about

This API makes modeling components and systems accessible in different environments, with or
without a built-in scheduler. Examples are a SystemC environment or a standalone simulator.

The Fast Models Scheduler API is a C++ interface consisting of a set of abstract base
classes. The header file that defines these classes is $PVLIB_HOME/include/fmruntime/sg/
SGSchedulerInterfaceForComponents.h. This header file depends on other header files under
$PVLIB_HOME/include.

All Scheduler API constructs are in the namespace sg.

The interface decouples the modeling components from the scheduler implementation. The
parts of the Scheduler API that the modeling components use are for the scheduler or scheduler
adapter to implement. The parts that the scheduler or scheduler adapter use are for the modeling
components to implement.

class SchedulerInterfaceForComponents

The scheduler (or an adapter to the scheduler) must implement an instance of this interface
class for Fast Models components to work. Fast Models components use this interface to talk
to the scheduler, for example, to create threads and timers. This class is the main part of the
interface.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

class SchedulerThread

An abstract Fast Models thread class, which createThread() creates instances of. For
example, CT core models use this class. The scheduler implements it. Threads have co-
routine semantics.

class SchedulerRunnable

The counterpart of the SchedulerThread class. The modeling components, which contain the
thread functionality, implement it.

class ThreadSignal

A class of event that threads can wait on. It has wait() and notify() but no timing functions.
The scheduler implements it.

class Timer

An abstract interface for one-shot or continuous timed events, which createTimer() creates
instances of. The scheduler implements it.

class TimerCallback

The counterpart of the Timer class. The modeling components, which contain the
functionality for the timer callback, implement it. Arm deprecates this class.

class SchedulerCallback

A callback function class. The modeling components, which use addCallback()
(asynchronous callbacks), implement it.

class FrequencySource

An abstract interface class that provides a frequency in Hz. The modeling components
implement it. The scheduler uses it to determine the time intervals for timed events. Arm
deprecates this class.

class FrequencyObserver

An abstract interface class for observing a FrequencySource and changes to the frequency
value. The scheduler implements it for objects that have access to a FrequencySource (Timer
and SchedulerThread). Arm deprecates this class.

class SchedulerObject

The base class for all scheduler interface objects, which provides getName().

7.5.2 Scheduler API - use cases and implementation

This section describes uses of the Scheduler API.

7.5.2.1 Accessing the SchedulerInterfaceForComponents from within a modeling
component

This section describes ways of accessing the global interfaces.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.2.1.1 LISA component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with getGlobalInterface().

includes
{
 #include "sg/SGSchedulerInterfaceForComponents.h"
 #include "sg/SGComponentRegistry.h"
}

behavior init
{
 sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (getGlobalInterface(), "scheduler");
}

7.5.2.1.2 C++ component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with simulationContext->getGlobalInterface(). C++
components have an sg::SimulationContext pointer passed into their constructor.

#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (simulationContext->getGlobalInterface(), "scheduler");

7.5.2.1.3 SystemC component for accessing the SchedulerInterfaceForComponents

A way to access the global interfaces with scx::scx_get_global_interface().

#include "sg/SGSchedulerInterfaceForComponents.h"
#include "sg/SGComponentRegistry.h"

sg::SchedulerInterfaceForComponents *scheduler =
 sg::obtainComponentInterfacePointer<sg::SchedulerInterfaceForComponents>
 (scx::scx_get_global_interface(), "scheduler");

7.5.2.2 Using the default scheduler mapping in the SystemC export use case

Call the global function scx_initialize() to initialize the simulation infrastructure.

scx_initialize(const std::string & id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

If you do not specify the ctrl parameter, the default implementations of the simulation controller
and of the scheduler mapping onto SystemC apply.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

The namespace for interfaces, classes, and functions in this SystemC export case is
scx, except for those of the Scheduler API.

7.5.2.3 Providing a custom mapping of the scheduler functionality onto SystemC

This section describes how to map the SchedulerInterfaceForComponents onto SystemC
scheduling primitives by passing a custom system controller, scx::scx_simcontrol_if, as the
second parameter, ctrl, into scx_initialize(). The system controller must return the custom
scheduler mapping in get_scheduler().

7.5.2.3.1 Minimalistic example of a custom mapping of the scheduler functionality onto
SystemC

This section describes how to register a custom scheduler mapping, using the default scheduler
mapping for simplicity. A realistic scheduler mapper would reimplement all functionality.

It consists of:

• A custom scheduler mapping implementation, my_scheduler_mapping.

◦ Forwards all calls to the default scheduler mapping.

◦ The wait() function prints a verbose message in addition, to make the effect visible.

• A custom simulation controller implementation, my_simulation_controller.

◦ Forwards all calls to the default scx::scx_simcontrol_if implementation.

◦ Implements only get_scheduler()differently and returns an instance of
my_scheduler_mapping.

• Creating an instance of my_simulation_controller, my_sim_controller.

• Passing a pointer to my_sim_controller to scx_initialize() as the second parameter, ctrl.

This example adds a verbose message to sg::SchedulerInterfaceForComponents::wait() calls.

7.5.2.3.2 Intended mapping of the Scheduler API onto SystemC/TLM

How Scheduler API functionality might map onto SystemC functionality.

sg::SchedulerInterfaceForComponents::wait(time)

Call sc_core::wait(time) and handle all pending asynchronous events that are scheduled
with sg::SchedulerInterfaceForComponents::addCallback() before waiting.

sg::SchedulerInterfaceForComponents::wait(sg::ThreadSignal)

Call sc_core::wait(sc_event) on the sc_event in sg::ThreadSignal
and handle all pending asynchronous events that are scheduled with
sg::SchedulerInterfaceForComponents::addCallback() before waiting.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime()

Return the current SystemC scheduler time in seconds as in
sc_core::sc_time_stamp().to_seconds().

sg::SchedulerInterfaceForComponents::addCallback(), removeCallback()
SystemC has no way to trigger simulation events from alien (non-SystemC) host threads in a
thread-safe way: buffer and handle these asynchronous events in all regularly re-occurring
scheduler events. Handling regular simulation wait() and timerCallback()calls is sufficient.

sg::SchedulerInterfaceForComponents::stopRequest(), stopAcknowledge()
Pause and resume the SystemC scheduler. This function is out of scope of SystemC/TLM
functionality, but in practice every debuggable SystemC implementation has ways to pause
and resume the scheduler. Do not confuse these functions with sc_core::sc_stop(), which
exits the SystemC simulation loop. They work with the sg::SchedulerRunnable instances and
the scx::scx_simcontrol_if interface.

sg::SchedulerInterfaceForComponents::createThread(), createThreadSignal(), createTimer()
Map these functions onto SystemC threads created with sc_spawn() and sc_events. You can
create and destroy sg::SchedulerThread, sg::ThreadSignal, and sg::Timer objects during
elaboration, and delete them at runtime, unlike their SystemC counterparts. This process
requires careful mapping. For example, consider what happens when you remove a waited-
for sc_event.

sg::ThreadSignal

Map onto sc_event, which is notifiable and waitable.

sg::SchedulerThread

Map onto a SystemC thread that was spawned with sc_core::sc_spawn(). The thread
function can call sg::SchedulerThread::threadProc().

sg::QuantumKeeper

Map onto the tlm_quantumkeeper utility class because the semantics of these classes are
similar. Arm deprecates this class.

sg::Timer

Map onto a SystemC thread that, after the timer is set(), issues calls to the call-backs in the
intervals (according to the set() interval).

7.5.3 sg::SchedulerInterfaceForComponents class

This section describes the main scheduler interface class.

7.5.3.1 About sg::SchedulerInterfaceForComponents

The modeling components use this interface class, which gives access to all other parts of the
Scheduler API, directly or indirectly. The scheduler must implement this class.

// Main scheduler interface class
class sg::SchedulerInterfaceForComponents
{

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

public:
 static eslapi::if_name_t IFNAME() { return
 "sg.SchedulerInterfaceForComponents"; }
 static eslapi::if_rev_t IFREVISION() { return 1; }
 virtual eslapi::CAInterface * ObtainInterface(eslapi::if_name_t,
 eslapi::if_rev_t, eslapi::if_rev_t *) = 0;
 virtual sg::Timer * createTimer(const char *, sg::TimerCallback *) = 0;
 virtual sg::SchedulerThread * createThread(const char *, sg::SchedulerRunnable
 *) = 0;
 virtual sg::SchedulerThread * currentThread();
 virtual sg::ThreadSignal * createThreadSignal(const char *) = 0;
 virtual void wait(sg::ticks_t);
 virtual void wait(sg::ThreadSignal *) = 0;
 virtual void setGlobalQuantum(sg::ticks_t);
 virtual sg::ticks_t getGlobalQuantum(sg::Tag<sg::ticks_t> *);
 virtual double getGlobalQuantum();
 virtual void setMinSyncLatency(sg::ticks_t);
 virtual sg::ticks_t getMinSyncLatency(sg::Tag<sg::ticks_t> *);
 virtual double getMinSyncLatency();
 virtual void addSynchronisationPoint(sg::ticks_t);
 virtual sg::ticks_t getNextSyncPoint(sg::Tag<sg::ticks_t> *);
 virtual double getNextSyncPoint();
 virtual void getNextSyncRange(sg::ticks_t &, sg::ticks_t &);
 virtual void getNextSyncRange(double&, double&);
 virtual void addCallback(sg::SchedulerCallback *) = 0;
 virtual void removeCallback(sg::SchedulerCallback *) = 0;
 virtual sg::ticks_t getCurrentSimulatedTime(sg::Tag<sg::ticks_t> *);
 virtual double getCurrentSimulatedTime();
 virtual double getSimulatedTimeResolution();
 virtual void setSimulatedTimeResolution(double resolution);
 virtual void stopRequest() = 0;
 virtual void stopAcknowledge(sg::SchedulerRunnable *) = 0;
 };

Pass a null pointer to the extra Tag<> argument in getGlobalQuantum(),
getMinSyncLatency(), getNextSyncPoint(), and getCurrentSimulatedTime().

Arm deprecates these API functions:

virtual void wait(sg::ticks_t, sg::FrequencySource *)
virtual void setGlobalQuantum(sg::ticks_t, sg::FrequencySource *)
virtual void setMinSyncLatency(sg::ticks_t, sg::FrequencySource *)
virtual void addSynchronisationPoint(sg::ticks_t, sg::FrequencySource *)

Arm deprecates classes sg::FrequencySource and sg::FrequencyObserver. Modeling components
must not use these classes to directly communicate with the Scheduler API. Use the sg::Time class
instead.

Modeling components use this interface to create threads, asynchronous and timed events, system
synchronization points, and to request a simulation stop. Examples of components that access this
interface are:

• CT core models.

• Timer peripherals.

• Peripheral components with timing or that indicate system synchronization points.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

• Peripheral components that can stop the simulation for certain conditions (external
breakpoints).

• GUI components.

Passive components that do not interact with the scheduler (and that do not need explicit
scheduling) usually do not access this interface.

Related information
Accessing the SchedulerInterfaceForComponents from within a modeling component on page
165
Providing a custom mapping of the scheduler functionality onto SystemC on page 167

7.5.3.2 eslapi::CAInterface and eslapi::ObtainInterface

The CAInterface base class and the ObtainInterface() function make the interface discoverable
at runtime through a runtime mechanism. All interfaces in Fast Models that must be discoverable at
runtime derive from CAInterface.

The functions IFNAME(), IFREVISION(), and ObtainInterface() belong to the base class
eslapi::CAInterface. IFNAME() and IFREVISION() return static information (name and revision)
about the interface (not the interface implementation). An implementation of the interface cannot
re-implement these functions. To access this interface, code must pass these two values to the
ObtainInterface() function to acquire the SchedulerInterfaceForComponents.

Use ObtainInterface() to access the interfaces that the scheduler provides. As a
minimum requirement, the implementation of ObtainInterface() must provide the
SchedulerInterfaceForComponents interface itself and also the eslapi::CAInterface interface.
The easiest way to provide these interfaces to use the class eslapi::CAInterfaceRegistry and
register these two interfaces and forward all ObtainInterface() calls to this registry. See the
default implementation of the Scheduler API over SystemC for an example.

CAInterface and ObtainInterface() are not part of the scheduler functionality but
rather of the simulation infrastructure. The information here is what is necessary
to understand and implement ObtainInterface(). For more details on the
eslapi::CAInterface class, see the header file $PVLIB_HOME/include/fmruntime/
eslapi/CAInterface.h.

7.5.3.3 sg::SchedulerInterfaceForComponents::addCallback

This method schedules a callback in the simulation thread. AsyncSignal uses it.

virtual void addCallback(SchedulerCallback *callback)=0;

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

callback

Callback object to call. If callback is NULL, the call has no effect.

Any host thread can call this method. It is thread safe. It is always the simulation thread
(host thread which runs the simulation) that calls the callback function (callback-
>schedulerCallback()). The scheduler calls the callback function when it can respond to the
addCallback() function.

Multiple callbacks might be pending. The scheduler can call them in any order. Do not call
addCallback() or removeCallback() from a callback function.

Callbacks automatically vanish once called. Removing them deliberately is not necessary unless
they become invalid, for example on the destruction of the object implementing the callback
function.

Related information
sg::SchedulerInterfaceForComponents::removeCallback on page 174

7.5.3.4 sg::SchedulerInterfaceForComponents::addSynchronisationPoint

This method adds synchronization points.

virtual void addSynchronisationPoint(ticks_t ticks);

ticks

Simulated time for synchronization relative to the current simulated time, in ticks relative to
simulated time resolution.

Modeling components can call this function to hint to the scheduler when a potentially useful
system synchronization point will occur. The scheduler uses this information to determine the
quantum sizes of threads.

Calling this function again adds another synchronization point.

Synchronization points automatically vanish when reached.

7.5.3.5 sg::SchedulerInterfaceForComponents::createThread

CT core models and modeling components call this method to create threads. This method returns
an object implementing SchedulerThread. (Not NULL except when runnable is NULL.)

virtual SchedulerThread *createThread(const char *name, SchedulerRunnable
 *runnable)=0;

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

name

Instance name of the thread. Ideally, the hierarchical name of the component that owns the
thread is included in the name. If name is NULL, it receives the name '(anonymous thread)'. The
function makes a copy of name.

runnable

Object that implements the SchedulerRunnable interface. This object is the one that contains
the actual thread functionality. The returned thread uses this interface to communicate with
the thread implementation in the modeling component. If runnable is NULL, the call returns
NULL, which has no effect.

Having created the thread, start it with a call to SchedulerThread::start().

Destroying the returned object with the SchedulerThread destructor might not kill the thread.

Related information
sg::SchedulerInterfaceForComponents::currentThread on page 172
sg::SchedulerRunnable - about on page 178
sg::SchedulerThread - about on page 182
sg::SchedulerThread::destructor on page 182
sg::SchedulerThread::start on page 183

7.5.3.6 sg::SchedulerInterfaceForComponents::createThreadSignal

CT core models use this method to create thread signals. A thread signal is a nonschedulable event
that threads wait for. Giving the signal schedules all waiting threads to run.

virtual ThreadSignal* createThreadSignal(const char* name)=0;

name

Instance name of the thread. Ideally, the hierarchical name of the component that owns
the thread is included in the name. If name is NULL, it receives the name '(anonymous thread
 signal)'. The function makes a copy of name.

Destroying the returned object while threads are waiting for it leaves the threads unscheduled.

7.5.3.7 sg::SchedulerInterfaceForComponents::createTimer

Modeling components call this method to create objects of class Timer. They use timers to trigger
events in the future (one-shot or repeating events).

virtual Timer* createTimer(const char* name, TimerCallback* callback)=0;

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.3.8 sg::SchedulerInterfaceForComponents::currentThread

This method returns the currently running scheduler thread, which createThread() created, or null
if not in any threadProc() call.

virtual SchedulerThread* currentThread();

Related information
sg::SchedulerInterfaceForComponents::createThread on page 171

7.5.3.9 sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime

This method returns the simulated time in ticks relative to simulated
time resolution, since the creation of the scheduler. ClockDivider and
MasterClock(ClockSignalProtocol::currentTicks()) use it.

virtual ticks_t getCurrentSimulatedTime(Tag<ticks_t>*);

This clock accurately reflects the time on the last timer callback invocation or the last return from
SchedulerThread::wait(), whichever was last. The return values monotonically increase over (real
or simulated) time.

7.5.3.10 sg::SchedulerInterfaceForComponents::getGlobalQuantum

This method returns the global quantum in ticks relative to simulated time resolution.

virtual ticks_t getGlobalQuantum(Tag<ticks_t>*);

Related information
sg::SchedulerInterfaceForComponents::setGlobalQuantum on page 174

7.5.3.11 sg::SchedulerInterfaceForComponents::getMinSyncLatency

This method returns the minimum synchronization latency in ticks relative to simulated time
resolution.

virtual ticks_t getMinSyncLatency(Tag<ticks_t>*);

Related information
sg::SchedulerInterfaceForComponents::setMinSyncLatency on page 175

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.3.12 sg::SchedulerInterfaceForComponents::getNextSyncPoint

This method returns the next synchronization point relative to the current simulated time. The next
synchronization point is expressed in ticks relative to simulated time resolution.

virtual ticks_t getNextSyncPoint(Tag<ticks_t>*);

Modeling components can call this function for a hint about when a potentially useful system
synchronization point will occur. Core threads use this information to determine when to
synchronize.

7.5.3.13 sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution

This method returns the simulated time resolution in seconds.

virtual double getSimulatedTimeResolution();

7.5.3.14 sg::SchedulerInterfaceForComponents::removeCallback

This method removes all callbacks that are scheduled using addCallback() for this callback object.
AsyncSignal uses it.

virtual void removeCallback(SchedulerCallback *callback)=0;

callback

The callback object to remove. If callback is NULL, an unknown callback object, or a called
callback, then the call has no effect.

Any host thread can call this method. It is thread safe.

The scheduler will not call the specified callback after this function returns. It can, however, call it
while execution control is inside this function.

Callbacks automatically vanish after being called. Removing them deliberately is not necessary
unless they become invalid, for example on the destruction of the object implementing the callback
function.

Related information
sg::SchedulerInterfaceForComponents::addCallback on page 170

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.3.15 sg::SchedulerInterfaceForComponents::setGlobalQuantum

This method sets the global quantum.

virtual void setGlobalQuantum(ticks_t ticks);

ticks

Global quantum value, relative to simulated time resolution. The global quantum is the
maximum time that a thread can run ahead of simulation time.

All threads must synchronize on timing points that are multiples of the global quantum.

Related information
sg::SchedulerInterfaceForComponents::getGlobalQuantum on page 173

7.5.3.16 sg::SchedulerInterfaceForComponents::setMinSyncLatency

This method sets the minimum synchronization latency.

virtual void setMinSyncLatency(ticks_t ticks);

ticks

Minimum synchronization latency value, relative to simulated time resolution.

The minimum synchronization latency helps to ensure that sufficient simulated time has passed
between two synchronization points for synchronization to be efficient. A small latency increases
accuracy but decreases simulation speed. A large latency decreases accuracy but increases
simulation speed.

The scheduler uses this information to set the minimum synchronization latency of threads with
sg::SchedulerRunnable::setThreadProperty(), and to compute the next synchronization point as
returned by getNextSyncPoint().

Related information
sg::SchedulerInterfaceForComponents::getMinSyncLatency on page 173

7.5.3.17 sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution

This method sets the simulated time resolution in seconds.

virtual void setSimulatedTimeResolution(double resolution);

resolution

Simulated time resolution in seconds.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Setting simulated time resolution after the start of the simulation or after setting timers is not
possible.

7.5.3.18 sg::SchedulerInterfaceForComponents::stopAcknowledge

This function blocks the simulation thread until being told to resume.

virtual void stopAcknowledge(SchedulerRunnable *runnable)=0;

runnable

Pointer to the runnable instance that called this function, or NULL when not called from a
runnable instance. If not NULL this function calls runnable->clearStopRequest() once it is
safe to do so (with respect to non-simulation host threads).

CT core models call this function from within the simulation thread in response to a call to
stopRequest() or spontaneously (for example, breakpoint hit, debugger stop). The call must always
be from the simulation thread. The scheduler must block inside this function. The function must
return when the simulation is to resume.

The scheduler usually implements a thread-safe mechanism in this function that allows blocking
and resuming of the simulation thread from another host thread (usually the debugger thread).

Calling this function from a nonsimulation host thread is wrong by design and is forbidden.

This function must clear the stop request that led to calling this function by calling runnable-
>clearStopRequest().

This function must have no effects other than blocking the simulation thread.

7.5.3.19 sg::SchedulerInterfaceForComponents::stopRequest

This function requests the simulation of the whole system to stop (pause).

virtual void stopRequest()=0;

You can call this function from any host thread, whether the simulation is running or not. The
function returns immediately, possibly before the simulation stops. This function will not block
the caller until the simulation stops. The simulation stops as soon as possible, depending on the
syncLevel of the threads in the system. The simulation calls the function stopAcknowledge(),
which blocks the simulation thread to pause the simulation. This function must not call
stopAcknowledge() directly. It must only set up the simulation to stop at the next sync point,
defined by the syncLevels in the system. Reset this state with stopAcknowledge(), which calls
SchedulerRunnable::clearStopRequest().

Debuggers and modeling components such as CT cores and peripherals use this function to stop
the simulation from within the simulation thread (for example for external breakpoints) and also

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

asynchronously from the debugger thread. Calling this function again (from any host thread) before
stopAcknowledge() has reset the stop request, using SchedulerRunnable::clearStopRequest() is
harmless. The simulation only stops once.

The simulation can stop (that is, call stopAcknowledge()) spontaneously without
a previous stopRequest(). This stop happens for example when a modeling
component hits a breakpoint. A stopRequest() is sufficient, but not necessary, to
stop the simulation.

The scheduler implementation of this function is to forward this stopRequest() to the running
runnable object, but only for stopRequest() calls from the simulation thread. When the
runnable object accepts the stopRequest() (SchedulerRunnable::stopRequest() returns
true), the scheduler need do nothing more because the runnable object will respond
with a stopAcknowledge() call. If the runnable object did not accept the stopRequest()
(SchedulerRunnable::stopRequest() returns false) or if this function call is outside of the
context of a runnable object (for example, from a call-back function) or from a non-simulation
host thread, then the scheduler is responsible for handling the stopRequest() itself by calling
stopAcknowledge() as soon as possible.

The stop handling mechanism should not change the scheduling order or model behavior (non-
intrusive debugging).

Related information
sg::SchedulerRunnable::stopRequest on page 181

7.5.3.20 sg::SchedulerInterfaceForComponents::wait(ThreadSignal)

This method waits on a thread signal.

virtual void wait(ThreadSignal* threadSignal)=0;

threadSignal

Thread signal object to wait for. A call with threadSignal of NULL is valid, but has no effect.

wait() blocks the current thread until it receives ThreadSignal::notify(). This function returns
when the calling thread can continue to run.

Only call this method from within a SchedulerRunnable::threadProc() context. Calling this
method from outside of a threadProc() context is valid, but has no effect.

7.5.3.21 sg::SchedulerInterfaceForComponents::wait(ticks_t)

This method blocks the running thread and runs other threads for a specified time.

virtual void wait(ticks_t ticks);

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

ticks

Time to wait for, in timebase units. ticks can be 0.

Only call this method from within a SchedulerRunnable::threadProc() context. Calls from outside
of a threadProc() context are valid, but have no effect.

This method blocks a thread for a time while the other threads run. It returns when the calling
thread is to continue, at the co-routine switching point. Typically, a thread calls wait(ticks) in its
loop when it completes ticks ticks of work. ticks is a “quantum”.

7.5.4 sg::SchedulerRunnable class

This section describes the SchedulerRunnable class.

7.5.4.1 sg::SchedulerRunnable - about

This class is a thread interface on the runnable side. The modeling components create and
implement SchedulerRunnable objects and pass a pointer to a SchedulerRunnable interface to
SchedulerInterfaceForComponents::createThread(). The scheduler uses this interface to run the
thread.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 171

7.5.4.2 sg::SchedulerRunnable::breakQuantum

This function breaks the quantum. Arm deprecates this function.

7.5.4.3 sg::SchedulerRunnable::clearStopRequest

This function clears stop request flags.

void clearStopRequest();

Only SchedulerInterfaceForComponents::stopAcknowledge() calls this function, so calls are
always from the simulation thread.

Related information
sg::SchedulerRunnable::stopRequest on page 181

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.4.4 sg::SchedulerRunnable::getName

This function returns the name of the instance that owns the object.

const char *getName() const;

By convention, this is the name that createThread() received. SchedulerRunnable inherits this
function from sg::SchedulerObject.

7.5.4.5 sg::SchedulerRunnable::setThreadProperty,
sg::SchedulerRunnable::getThreadProperty

These functions set and get thread properties.

bool setThreadProperty(ThreadProperty property, uint64_t value);
bool getThreadProperty(ThreadProperty property, uint64_t &valueOut);

Scheduler-configures-runnable properties
TP_BREAK_QUANTUM

Arm deprecates this property.
SchedulerInterfaceForComponents::getNextSyncPoint() gives the next quantum size.

TP_DEFAULT_QUANTUM_SIZE

Arm deprecates this property. Use SchedulerInterfaceForComponents::set/
getGlobalQuantum().

TP_COMPILER_LATENCY

set

Compiler latency, the maximum interval in which generated straight-line code
checks for signals and the end of the quantum.

get

Compiler latency.

default

1024 instructions.

TP_MIN_SYNC_LATENCY

set

Synchronization latency, the minimum interval in which generated straight-line
code inserts synchronization points.

get

Synchronization latency.

default

64 instructions.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

TP_MIN_SYNC_LEVEL

set

syncLevel to at least N (0-3).

get

Minimum syncLevel.

default

min_sync_level CADI parameter and the syncLevel* registers also determine
the syncLevel. If nothing else is set, the default is 0 (SL_OFF).

TP_LOCAL_TIME

set

Local time of temporally decoupled thread.

get

Current local time.

TP_LOCAL_QUANTUM

set

Local quantum of temporally decoupled thread.

get

Current local quantum.

The temporally decoupled thread usually retrieves the local quantum by
calling SchedulerInterfaceForComponents::getNextSyncPoint().

Runnable-configures-scheduler properties
TP_STACK_SIZE

set

Return false and ignore the value. Not for a scheduler to call.

get

Intended stack size for the thread in bytes. If this field returns false or a low
value, this field uses the default stack size that the scheduler determines. Not
all schedulers use this field. If a scheduler supports setting the stack size, it
requests this field from SchedulerInterfaceForComponents::createThread() or
SchedulerThread::start(). Is to return a constant value.

default

2MB.

Schedulers need not use all fields, and runnable objects need not provide all fields. If a runnable
object does not support a property or value, it must return false.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Related information
sg::SchedulerRunnable::breakQuantum on page 178

7.5.4.6 sg::SchedulerRunnable::stopRequest

This function requests the simulation of the whole system to stop (pause) as soon as possible by
setting a request flag. This might be to inspect a runnable, for example to pause at an instruction
boundary to inspect a processor component with a debugger.

bool stopRequest();

You can call this function from any host thread, whether the simulation is running
or not. The function returns immediately, before the simulation stops. This function
will not block the caller until the simulation stops. The simulation stops as soon as
possible, depending on the syncLevel of the runnable.The simulation calls the function
SchedulerInterfaceForComponents::stopAcknowledge(), which blocks the simulation thread to
pause the simulation. The function must not call stopAcknowledge() directly but only set up a state
such that the simulation stops at the next sync point, defined by the syncLevel of this runnable.
Reset this state with stopAcknowledge(), which calls clearStopRequest().

Modeling components use this function to stop the simulation from within the simulation thread
(for example for external breakpoints) and also asynchronously from from the debugger thread.
Calling this function again (from any host thread) before stopAcknowledge() has reset the stop
request using clearStopRequest() is harmless. The simulation only stops once.

Returns true when the runnable accepts the stop request and will stop later. Returns false when
the runnable does not accept the stop request. In this case, the scheduler must stop the simulation
when the runnable returns control to the scheduler (for example, by use of wait()).

Related information
sg::SchedulerRunnable::clearStopRequest on page 178

7.5.4.7 sg::SchedulerRunnable::threadProc

This is the main thread function, the thread entry point.

void threadProc();

When threadProc() returns, the thread no longer runs and this SchedulerThread instance will not
call threadProc() again. The thread usually does not return from this function while the thread is
running.

threadProc() is to call SchedulerInterfaceForComponents::wait(0, ...) after completing
initialization. threadProc() is to call SchedulerInterfaceForComponents::wait(t>=0, ...) after
completing t ticks worth of work.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Do not create/destroy any other threads or scheduler objects within the context of this function.

7.5.5 sg::SchedulerThread class

This section describes the SchedulerThread class.

7.5.5.1 sg::SchedulerThread - about

This class is a thread interface on the thread instance/scheduler side. The
SchedulerInterfaceForComponents::createThread() function creates the SchedulerThread
objects. Modeling components use this interface to talk to the scheduler

Related information
sg::SchedulerInterfaceForComponents::createThread on page 171

7.5.5.2 sg::SchedulerThread::destructor

This method destroys SchedulerThread objects.

~SchedulerThread();

This destructor kills threads if the underlying scheduler implementation supports it. Killing threads
without their cooperation is unclean because it might leak resources. To end a thread cleanly, signal
the thread to return from its threadProc() function, for example by using an exception that is
caught in threadProc(). Destroying this object before calling start() must not start the thread.
Destroying this object after calling start() might kill the thread immediately or leave it running
until it returns from its threadProc().

SchedulerThread inherits this method from sg::SchedulerObject.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 171

7.5.5.3 sg::SchedulerThread::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThread() received.

SchedulerThread inherits this method from sg::SchedulerObject.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.5.4 sg::SchedulerThread::setFrequency

This method sets the frequency source to be the parent clock for the thread. Arm deprecates this
function.

7.5.5.5 sg::SchedulerThread::start

This method starts the thread.

void start();

This method calls the threadProc() function immediately, which must call wait(0, ...) after
initialization in order for start() to return. start() only runs the threadProc() of the associated
thread and no other threads. Calling start() on a running thread has no effect. Calling start() on
a terminated thread (threadProc() returned) has no effect.

The modeling component counterpart of the sg::SchedulerThread class is
sg::SchedulerRunnable. Runnable objects must call sg::QuantumKeeper::sync()
regularly to pass execution control on to other threads.

Related information
sg::SchedulerInterfaceForComponents::createThread on page 171

7.5.6 sg::ThreadSignal class

This section describes the ThreadSignal class. It represents a nonschedulable event on which
threads can wait. When the event is signaled, all waiting threads can run.

7.5.6.1 sg::ThreadSignal::destructor

This method destroys ThreadSignal objects, thread signals.

~ThreadSignal();

Destroying these objects while threads are waiting for them leaves the threads unscheduled.

7.5.6.2 sg::ThreadSignal::notify

This method notifies the system of the event, waking up any waiting threads.

void notify();

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

SchedulerRunnable::threadProc() can call this method, but calls can come from outside of
threadProc(). Calling this method when no thread is waiting for the signal is valid, but has no
effect.

7.5.6.3 sg::ThreadSignal::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createThreadSignal() received.

ThreadSignal inherits this method from sg::SchedulerObject.

7.5.7 sg::Timer class

This section describes the Timer interface class. The
SchedulerInterfaceForComponents::createTimer() method creates Timer objects.

7.5.7.1 sg::Timer::cancel

This method unsets the timer so that it does not fire.

void cancel();

If the timer is not set, this method has no effect.

7.5.7.2 sg::Timer::destructor

This method destroys Timer objects.

~Timer();

The timer must not call TimerCallback::timerCallback() after the destruction of this object.

7.5.7.3 sg::Timer::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

This is the name that createTimer() received.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

Timer inherits this method from sg::SchedulerObject.

7.5.7.4 sg::Timer::isSet

This method returns true if the timer is set and queued for call-back, otherwise false.

bool isSet();

This method has no side effects.

7.5.7.5 sg::Timer::remaining

This method requests the remaining number of ticks relative to simulated time resolution until a
timer makes a signal.

ticks_t remaining();

This method returns 0 if there are no ticks remaining or if the timer is not set.

This method has no side effects.

7.5.7.6 sg::Timer::set

This method sets a timer to make a signal.

bool set(ticks_t ticks);

ticks

the number of ticks after which the timer is to make a signal.

The signal that this method makes is a call to the user call-back function. If the return value t is 0,
the timer does not repeat, otherwise it repeats after t ticks. The latest set() overrides the previous
one.

This method returns false if ticks is too big to schedule the timer.

7.5.7.7 sg::Timer::setFrequency

This method sets the frequency source clock for the timer. Arm deprecates
this function. Simulated time is relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.8 sg::TimerCallback class

This section describes the TimerCallback base class. This interface does not allow object
destruction.

7.5.8.1 sg::TimerCallback::getName

This method returns the name of the instance that owns the object.

const char *getName() const;

Conventionally, this is the name that createTimer() received.

TimerCallback inherits this method from sg::SchedulerObject.

7.5.8.2 sg::TimerCallback::timerCallback

The createTimer() method receives a timerCallback instance. This timerCallback() method
is called whenever the timer expires. This method returns a value t. If t is 0, the timer does not
repeat, otherwise it is to call timerCallback() again after t ticks.

ticks_t timerCallback();

7.5.9 sg::FrequencySource class

FrequencySource objects provide clock frequencies, and notify frequency
observers of frequency changes. This interface does not allow object destruction.
Arm deprecates this class. Simulated time is relative to global time resolution.
See SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

7.5.10 sg::FrequencyObserver class

FrequencySource instances notify FrequencyObserver instances of FrequencySource
instance changes. This interface does not allow object destruction. Arm
deprecates this class. Simulated time is relative to global time resolution. See
SchedulerInterfaceForComponents::getSimulatedTimeResolution() and
SchedulerInterfaceForComponents::setSimulatedTimeResolution().

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.5.11 sg::SchedulerObject class

This section describes the SchedulerObject class. It is the base class for scheduler objects and
interfaces. This interface does not allow object destruction.

7.5.11.1 sg::SchedulerObject::getName

This method returns the name of the instance that implements the object or interface. The
intended use is debugging.

const char *getName() const;

Although Arm does not guarantee this name to be unique or hierarchical, Arm recommends
including or using the hierarchical component name. The caller must not free/delete the returned
string. This object owns the string. The pointer is valid as long as the object implementing this
interface exists. If the caller cannot track the lifetime of this object and wants to remember the
name, it must copy it.

7.5.12 sg::scx_create_default_scheduler_mapping

This function returns a pointer to a new instance of the default implementation of the scheduler
mapping provided with Fast Models.

sg::SchedulerInterfaceForComponents
 *scx_create_default_scheduler_mapping(scx_simcontrol_if *simcontrol);

simcontrol

a pointer to an existing simulation controller. If this is NULL, this function returns NULL.

7.5.13 sg::scx_get_curr_scheduler_mapping

This function returns a pointer to the scheduler mapping interface.

sg::SchedulerInterfaceForComponents *scx_get_curr_scheduler_mapping();

7.6 SystemC Export limitations
This section describes the limitations of the current release of SystemC Export.

The Exported Virtual Subsystems (EVSs) are deliberately not time or cycle accurate, although they
are accurate on a functional level.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.6.1 SystemC Export limitation on reentrancy

Processor models, and the CCI400, MMU_400, and MMU_500 component models support
reentrancy.

Reentrancy occurs when a component in an EVS issues a blocking transaction to a SystemC
peripheral that in turn generates another blocking transaction back into the same component.
This generation might come directly or indirectly from a call to wait() or by another SystemC
peripheral.

Virtual platforms including EVSs that comprise a processor model do support such reentrancy.

For models that do not support reentrancy, the virtual platform might show unpredictable behavior
because of racing within the EVS component.

7.6.2 SystemC Export limitation on calling wait()

Arm only supports calling wait() on bus transactions.

When a SystemC peripheral must really issue a wait() in reaction to a signal that is changing,
buffer the signal in the bridge between the EVS and SystemC. On the next activation of the bridge,
set the signal with the thread context of the EVS.

The EVS runs in a temporally decoupled mode using a time quantum. Transaction
Level Modeling (TLM) 2.0 targets using the Loosely-Timed coding style do not call
wait().

7.6.3 SystemC Export limitation on code translation support for external
memory

EVS core components use code translation for speed. Not enabling Direct Memory Interface (DMI)
reduces performance.

The core components in EVSs use code translation for high simulation speed. Therefore they fetch
data from external memory to translate it into host machine code. Changing the memory contents
outside of the scope of the core makes the data inconsistent.

Enable DMI accesses to instruction memory to avoid dramatic performance reductions. Otherwise,
EVSs:

• Model all accesses.

• Perform multiple spurious transactions.

• Translate code per instruction not per block of instructions.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export with Multiple Instantiation

7.6.4 SystemC Export limitation on Fast Models versions for MI platforms

SystemC Export with Multiple Instantiation (MI) supports virtual platforms with multiple EVSs made
with the same version of Fast Models. Integrating EVSs from different versions of Fast Models
might result in unpredictable behavior.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8 Graphics Acceleration in Fast Models
Generic Graphics Acceleration (GGA) is a Fast Models framework for using host resources to
perform graphics rendering on behalf of a GPU model. This chapter gives an introduction to GGA,
describes how to enable it on a target platform model, and describes the main use cases.

8.1 Introduction to GGA
Fast Models provides various models of Mali™ GPUs, including Mali™‑G51, Mali™-G72, and Mali™-
G76.

You can run one of the OpenGL ES or Vulkan demo applications that are provided at Software
Development Kits on a Fast Models platform that contains one of these Mali™ GPU models,
a compatible Mali™ driver, and an Android or Linux distribution, but no pixels are rendered to
the screen. This is because the GPU models are register models, which means they avoid the
costly performance overhead of directly modeling the shader cores which perform the rendering
operations in real hardware.

However, there are many use cases for Fast Models for which you might want to compare and
validate actual rendering output from a simulated GPU. For example:

• Debugging a graphical application on a target platform.

• Validating graphical applications for target hardware in a continuous integration environment.

• Debugging or validating graphics driver integration.

• Booting Android OS version 8.0 or later on a target platform. These versions require hardware
acceleration for graphics.

To enable these use cases, Fast Models provides a framework called Generic Graphics Acceleration
(GGA) for using host resources to perform the rendering that is requested of the GPU model.

GGA enables Fast Models to:

1. Intercept graphics APIs within the model system

2. Mirror the graphics APIs on the host

3. Pass the results that are rendered by the host resources back into the modeled system

The GGA framework can also be configured to replace the Mali™ driver, by acting as a generic
implementation of a graphics driver.

Related information
Media components

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 252

https://developer.arm.com/solutions/graphics-and-gaming/resources/sdks
https://developer.arm.com/solutions/graphics-and-gaming/resources/sdks
https://developer.arm.com/documentation/100964/1117/Fast-Models-components/Media-components

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.2 GGA modes
GGA can be used with or without a GPU Register Model (GRM).

• If you use GGA with a GRM, this is referred to as GGA+GRM mode.

• If you use GGA without a GRM, this is referred to as GGA-only mode. In this mode, GGA acts
as a generic graphics driver.

You can use also use a GRM without GGA, although in this mode, no pixels are displayed.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.2.1 Using a GPU register model without GGA

The following figure shows a simplified view of a graphics and display driver stack running inside a
Fast Model, without using GGA.

Figure 8-1: Simplified view of a graphics stack without GGA

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

Mali GPU
model

1

3 24

Modeled hardware

Software running on the
model

Display

Mali driver
stack

Display driver
stack

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

In this figure, blue arrows represent the data path of API calls, or data traveling to
the GPU and orange arrows represent uninitialized data moving to the display.

The workflow shown in this figure is:

1. An application makes OpenGL ES or Vulkan API calls to a Mali™ driver.

2. The Mali™ driver stack issues rendering jobs to a GPU.

3. In hardware, the GPU would return the pixels, rendered through the shader cores, to the Mali™
driver. The model GPU returns uninitialized data.

4. The Mali™ driver, working together with the display driver stack, writes uninitialized data back
to the display, when prompted by the application.

8.2.2 Using GGA with a GPU register model

The GGA framework consists of the following components:

Shim library
A user space library within the model that intercepts graphics API calls before they reach the
driver.

Reconciler
A host library that receives the intercepted calls and forwards them to the graphics driver on
the host.

Mali™ emulator
A freely available Arm product that translates the OpenGL ES calls for the Mali™ driver into
OpenGL calls for the host driver.

Sidechannel
A Fast Models plug-in that enables communication between the Shim library and the
Reconciler.

The following figure shows a Fast Models platform that contains a GPU register model, a graphics
and display driver stack, and uses the GGA framework:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

Figure 8-2: Using GGA with a GPU register model

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

1

Display
driver stack

Display

Modeled hardware

Software running on
the model

Shim library Reconciler

Mali emulator

Host GPU

4

2

6

2

Host hardware

Si
de

ch
an

ne
l

Mali GPU model

Mali driver stack 5

3

In this figure, blue arrows represent the data path of API calls, or data traveling to
the GPU and orange arrows represent rendered pixels moving to the display.

The workflow shown in this figure is:

1. A graphical application calls the Shim library’s implementation of the required OpenGL ES or
Vulkan function.

2. The Shim library calls the Mali™ driver within the model, and also sends the call to the
Reconciler on the host.

3. The Reconciler makes the OpenGL ES call on the Mali™ emulator.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

4. The Mali™ emulator converts the OpenGL ES call to OpenGL and makes the OpenGL call on
the host driver.

For Vulkan applications, the Mali™ emulator is not required. The Reconciler calls
the host GPU directly because no translation is needed.

5. The rendered pixels are returned from the host GPU to the Reconciler, which inserts the pixels
into the GPU model’s memory.

6. When requested, the Mali™ driver passes the rendered pixels through the display stack.

8.2.3 Using GGA without a GPU register model

Some use cases for GGA do not require a GPU register model or simulation of the execution of
Mali™ driver code.

For example:

• To bring up Android v8.0 or a later distribution on a platform model. These versions require
hardware acceleration.

• To simulate a system that is under development. You might not have access to the final Mali™
driver configuration and only need a basic OpenGL ES or Vulkan implementation to perform
initial validation of applications.

These use cases only require a generic implementation of OpenGL ES or Vulkan, to satisfy target
software dependencies. By omitting the GPU and driver, you can reduce the amount of simulated
software in the model, and improve model performance.

You can configure the Shim library to pass graphics API calls directly to the Reconciler, bypassing
the Mali™ driver and GPU model. The Reconciler then passes the rendering results directly to the
display driver stack of the model, as shown here:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

Figure 8-3: Using GGA without a GPU register model

Host environment (Linux or Windows)

Fast Model

OpenGL ES or
Vulkan application

1

Display
driver stack

Display

Modeled hardware

Software running on
the model

Shim library Reconciler

Mali emulator

Host GPU

4

2

Host hardware
Si

de
ch

an
ne

l

3

5

• In this figure, blue arrows represent the data path of API calls, or data traveling
to the GPU and orange arrows represent rendered pixels moving to the display.

• For a description of the GGA framework components shown in this figure, see
8.2.2 Using GGA with a GPU register model on page 193

8.3 Prerequisites
GGA is available for both Windows and Linux hosts.

Host requirements:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

• On a Windows host, GGA requires the Arm® Mali™ OpenGL ES Emulator version 3.0.5 or later.
See 8.7.1 Install the Arm Mali OpenGL ES Emulator on page 203 for instructions.

The emulator is not required for Vulkan applications.

• On a Linux host, we recommend that you use the Mesa 20.3.4 or later OpenGL ES driver
instead of the Mali™ Emulator. Using Mesa on Linux is necessary to run Android S or above. A
reference Mesa build can be found in the Fast Models Third Party IP package. See 8.7.2 Install
Mesa on page 204 for instructions.

• Nvidia host graphics implementations are supported, provided the driver implements OpenGL
4.3 or greater. GGA has been validated on NVIDIA GTX 1050 graphics cards, with driver
versions 390.77 or later.

Target requirements:

• GGA supports the following APIs in both GGA-only and GGA+GRM modes:

◦ EGL 1.4

◦ OpenGL ES 2.0, 3.0, 3.1

◦ Vulkan 1.0 (Android targets only)

• Target OS support is dependent on several factors, including the GPU model type and the
operating system of the host machine.

Table 8-1: Target OS support for GGA

Target simulated OS Supported GPU models Host OS

Linux (Fbdev) All including GGA-only1 Linux, Windows

Linux (Wayland) All including GGA-only.1 Linux only

Android 8 All including GGA-only.1 Linux, Windows

Android 9 All including GGA-only.1 Linux, Windows

Android 10 All GPUs. Not supported in GGA-only mode.1 Linux, Windows

Android 11 Mali™-G710 and later. Linux only

Android 12 (S) Mali™-G710 and later. Linux only

1 GGA-only mode is a generic implementation that does not integrate with the Mali™ driver stack, so it does not
require a Mali™ driver or a GPU model in the target platform. To simplify the table, it is listed with the GPU models.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

• For details about the available GPU models, see Media components in the Fast Models Reference
Guide. The Mali™ driver must have the following characteristics:

◦ For Bifrost series GPUs, the driver version must be greater than r11p0. Additionally, the
Mali™ driver must be built from the Mali™ Driver Development Kit with the Mali Descriptor
Tag option enabled. You can enable this option in the following ways:

▪ For scons-based builds, by adding mali_descriptor_tag=1 to the build arguments.

▪ For Blueprint-based builds, by setting DESCRIPTOR_TAG=y in the Blueprint build options.

◦ For Valhal series GPUs, the driver version must be greater than r32p0.

Related information
Requirements for Fast Models on page 34

8.4 GGA contents
The components that you need to run Fast Models with host-accelerated graphics are installed in
the $PVLIB_HOME/GGA/ directory.

The contents of the GGA directory are shown here:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 252

https://developer.arm.com/documentation/100964/1117/Fast-Models-components/Media-components

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

Figure 8-4: Locations of GGA components

$PVLIB_HOME/GGA/
shim/

<target_OS>/
rel/

libGLES.so

reconciler/
<host_OS>/

<compiler>/
rel/

checkerrcode.ini
libReconciler.so or Reconciler.dll
settings.ini

examples/
<target_OS>/

Cube.apk
HAL

readme.txt

jni/
<gralloc-config>

Android.mk
Application.mk
src/

shim_hal.cc
nw_hal.h

The following topics describe each of the subdirectories within the GGA directory.

8.4.1 Shim directory

The shim directory contains different versions of the Shim library, which intercepts graphics APIs
for rendering on the host.

Each Shim library version is compiled for a specific target environment, for example:

android-armv7sfl
For 32-bit Android targets with software-emulated floating point

android-armv8l_64
For 64-bit Android targets

linux-armv7hf
For Linux distributions with 32-bit hardware-enabled floating point

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

linux-armv8l_64
For Linux distributions with 64-bit Arm binaries

• Shim libraries are not interchangeable between environments.

• The Shim library is named in the package as libGLES.so. Despite the name, the
Android variants of the Shim library support Vulkan.

8.4.2 Reconciler directory

The reconciler directory contains the host library component of the GGA framework, which
accepts incoming graphics APIs from the Shim library, and executes them on the host.

This directory also includes two example configuration files:

• settings.ini

• checkerrcode.ini

These files are used to set runtime configuration options, such as the GGA mode (GGA-only or
GGA+GRM), and the verbosity level of log output.

Related information
Configuration on page 200

8.4.3 Examples directory

The examples directory contains a simple OpenGL ES spinning cube example. You can use it to
verify the GGA framework installation on a model running Android.

Related information
Test the Android setup on page 208

8.4.4 HAL directory

The HAL directory contains example source files for building a libnwhal.so library.

On Android targets, libnwhal.so is required by the Shim library to translate from a particular
version of the Android Gralloc module, available at Open Source Mali GPUs Android Gralloc
Module on Arm Developer.

Related information
Generate libnwhal.so on page 205

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 252

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/android-gralloc-module
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/android-gralloc-module

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.5 Configuration
Use the configuration file settings.ini to choose between GGA+GRM mode or GGA-only mode,
and to select which information is logged by GGA.

You must copy settings.ini from the following directory into the directory containing the model:

• On Linux, $PVLIB_HOME/GGA/reconciler/linux-x86_64/gcc-x.x.x/rel/, where x.x.x is the
GCC version number.

• On Windows, %PVLIB_HOME%\GGA\reconciler\win_32-x86_64\cl-19.xx.xxxxx\rel\, where
19.xx.xxxxx is the MSVC compiler version number.

The configuration options are:

callOnTargetAPI
Specifies the mode in which GGA operates. The possible values are:
0 GGA-only mode. In other words, GGA acts as a generic OpenGL ES or Vulkan

implementation.
2 GGA+GRM mode. In other words, GGA integrates with a Mali™ driver stack

and Mali™ model in the target system.

LogLevel
Specifies the level of information to be logged to standard output by GGA. The possible
values are:

0 or LOG_LEVEL_OFF
Disable logging.

1 or LOG_LEVEL_FATAL
Log the fatal issues from GGA. This is the default value.

2 or LOG_LEVEL_ERROR
Log the errors generated by GGA.

3 or LOG_LEVEL_WARN
Log the warnings generated by GGA.

6565 or LOG_LEVEL_INFO
Log the OpenGL ES API execution sequences.

6566 or LOG_LEVEL_DEBUG
Log the names of executed APIs and parameters.

6567 or LOG_LEVEL_TRACE
Log more detailed information generated by GGA.

Each log level is a superset of all lower levels. For example, output for log level
6567 includes the output for all other levels.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

checkErrorCode
Enables or disables the Error code check function. This function examines the execution of
OpenGL ES APIs in the target graphics driver. This option is only valid if callOnTargetAPI is
set to 2. The possible values are:
0 Disable Error code check.
1 Enable Error code check.

enableErrorCheckWhiteList
Specifies whether the Error code check function should check errors from specific OpenGL
ES APIs or from all of them. This option is only valid if callOnTargetAPI is set to 2 and
checkErrorCode is set to 1. The possible values are:
0 Examine all APIs
1 Examine specific APIs

For more details about the Error code check function, see 8.8.2 Examine OpenGL ES
execution in the graphics driver on page 211.

8.6 Feedback
To report issues or bugs in GGA, contact Arm Technical Support.

See https://developer.arm.com/support. Provide the following information for diagnostic purposes:

• The version of Fast Models

• The Fast Models virtual platform

• The host OS

• The OS of the target system, including the version number

• The graphics card that is used on the host

• Driver information for the graphics card

• A brief description of the application, including the language that it is written in

• A description of the issue, with the expected output and the output you observed

• If possible, the application that is failing, or a cutdown application that reproduces the issue

• Debug logs

8.7 Enabling GGA
This section describes how to enable GGA in your system. Follow these instructions for both GGA-
only and GGA+GRM modes.

In summary, the goal of the GGA setup process is to:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 252

https://developer.arm.com/support

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

• Ensure that client applications find the GGA implementation of libGLES.so before the Mali
DDK implementation, if present

• Ensure that the GGA implementation can call the Mali DDK implementation after it has
recorded the details of the API calls

• These instructions assume that you have a file system image of your target
operating system.

• Before enabling GGA, ensure you can correctly boot the operating system on
the Fast Models target:
Android

You can bring up Android using the Mali™ graphics driver together with
the GPU models. See the Mali™ DDK documentation on how to install the
driver in Android 8.

In this configuration, no graphics are visible. Follow the
steps in this section to enable graphics rendering using
GGA.

Linux
Linux can be brought up to command-line boot without the need of a
graphics stack.

8.7.1 Install the Arm® Mali™ OpenGL ES Emulator

On Windows hosts, install the Mali™ OpenGL ES Emulator to translate OpenGL ES calls for the
Mali™ driver into OpenGL calls for the host driver.

Procedure
1. Download the installation package for Windows from OpenGL ES Emulator.
2. Install and configure the emulator. For instructions, see the Mali™ OpenGL ES Emulator User

Guide, contained in the installation package.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 252

http://malideveloper.arm.com/resources/tools/opengl-es-emulator/

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

3. Verify the installation by running the mali-cube application. For details, see the user guide.
If the installation is successful, you will see a spinning cube:

Figure 8-5: Mali™ Cube application

8.7.2 Install Mesa

Install Mesa3D on your Linux host to allow OpenGL calls in the model to be executed as OpenGL
calls on the host. Mesa is only supported on Linux and is preferred to using the Arm® Mali™
OpenGL ES Emulator.

Procedure
1. Download and install the Fast Models Third-Party IP (TPIP) package from Product Download

Hub.
2. To use the Mesa driver:

a) Prepend the following directory to the LD_LIBRARY_PATH environment variable:
<Install location>/FastModelsPortfolio_%(THIS-VERSION)/GGA/Mesa/
Linux64_GCC-7.3/lib

b) Set the following environment variable:
LIBGL_DRIVERS_PATH=<Install location>/FastModelsPortfolio_%(THIS-VERSION)/GGA/
Mesa/Linux64_GCC-7.3/lib/dri

3. To verify that Mesa was correctly installed, boot a GGA-enabled model. For instructions, see
8.7.7 Boot the model with the Android or Linux image on page 208. During initialization, the
reconciler logs information about the identified OpenGL instance.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 252

https://developer.arm.com/downloads
https://developer.arm.com/downloads

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.7.3 Preparing your image

Before enabling GGA in your target Android or Linux system, you must prepare your target file
system image. For both Android and Linux, perform this step on the host machine.

Mount your Android or Linux file system on your host machine and make the necessary changes
before booting the model. We recommend that you back up your file system before making any
changes.

There are several ways to mount and modify your file system:

• On a Linux host, you can use the mount command as a root user

• On a Windows host, either:

◦ Use one of the freely available utilities that are available for editing filesystem images

◦ Edit the filesystem within a Linux virtual machine

8.7.4 Prepare an Android image

For Android, modify both the system and the vendor partitions.

• For details about Android partitions, see Partitions and Images in the official
AOSP documentation.

• For information about the reasons behind the steps involved in the installation,
see Implementing OpenGL ES and EGL in the official AOSP documentation.

Because the mounting points for system and vendor partitions can differ depending on your
filesystem configuration and the Android version that you are running, the file paths provided in
these instructions are relative to the mount point of the partition.

8.7.4.1 Mount and modify your system partition

The term <system_mount_point> in these instructions refers to the directory in which your system
partition is mounted on the host, for example /mnt/system/.

Procedure
Append the following line to the end of the file <system_mount_point>/build.prop:

ro.hardware.egl=gga

This line specifies the string to be used by Android when identifying the OpenGL ES
implementation. In this case, it will match the shim library.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 252

https://source.android.com/devices/bootloader/partitions-images
https://source.android.com/devices/graphics/implement-opengl-es

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.7.4.2 Generate libnwhal.so

When running the shim on Android, an extra library is needed to understand the metadata that
describes the windows created by Android. This library is referred to as the Native Window
Hardware Abstraction Layer, or libnwhal.so.

Within Android, the Gralloc module is responsible for allocating and managing memory for the
composition engine for graphics use. Vendors implementing the Android graphics stack write their
own Gralloc module, often including their own metadata format that describes properties of the
window. For Mali™ GPUs, the Android Gralloc is provided on developer.arm.com, and is matched
with a particular version of the Mali™ DDK.

The purpose of libnwhal.so is to translate the version-specific metadata details for the shim,
keeping the shim library independent of the Gralloc module used.

If you are using GGA-only mode, you can use the stock HALs that are shipped by Arm in:

• $PVLIB_HOME/GGA/shim/android-armv8l_64/rel/stock/libnwhal.so

• $PVLIB_HOME/GGA/shim/android-armv7sfl/rel/stock/libnwhal.so

These libraries work with the default Gralloc that is shipped in Android AOSP.

If you are using GGA+GRM mode, and integrating with the Mali™ driver, you must build your own
libnwhal.so, built against the Mali™ DDK and AOSP source that you are using in your project.
A libnwhal.so for your configuration can be autogenerated by following the instructions at
$PVLIB_HOME/GGA/HAL/bfst-custom/jni/README.

8.7.4.3 Mount and modify your vendor partition

The term <vendor_mount_point> in these instructions refers to the directory in which your vendor
partition is mounted on the host.

Procedure
1. Install the shim and HAL libraries to the 32-bit and 64-bit library locations:

cp $PVLIB_HOME/GGA/shim/android-armv7sfl/rel/libGLES.so <vendor_mount_point>/lib/egl/
libGLES_gga.so
cp $PVLIB_HOME/GGA/shim/android-armv8l_64/rel/libGLES.so <vendor_mount_point>/lib64/egl/
libGLES_gga.so

If you are using GGA-only mode:

cp $PVLIB_HOME/GGA/shim/android-armv7sfl/rel/stock/libnwhal.so <vendor_mount_point>/lib/
cp $PVLIB_HOME/GGA/shim/android-armv8l_64/rel/stock/libnwhal.so <vendor_mount_point>/lib64/

If you are using GGA+GRM mode, after building the custom HAL libraries, copy the built 32-bit
and 64-bit libraries to the same locations specified for the stock HALs.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

2. If you are using Vulkan:

• Remove the files vulkan.<ro.board.platform>.so from the image. They are located in:

◦ <vendor_mount_point>/lib/hw/

◦ <vendor_mount_point>/lib64/hw/

• Create two symbolic links that point to the Shim libraries:
cd <vendor_mount_point>/lib/hw/
ln -s ../egl/libGLES_gga.so vulkan.gga.so
cd <vendor_mount_point>/lib64/hw/
ln -s ../egl/libGLES_gga.so vulkan.gga.so

3. To test that GGA is enabled, copy the test application $PVLIB_HOME/GGA/examples/linux-
armv8l_64/Cube.apk to your file system. You can install this application on the target after the
model has booted. Note the directory where Cube.apk is copied to, because it will be needed
after the model has booted.

8.7.5 Prepare a Linux image

Follow these steps to prepare a Linux file system image to use GGA.

Procedure
1. After mounting your Linux file system image, copy the Shim library $PVLIB_HOME/GGA/shim/

linux-armv8l_64/rel/libGLES.so to /home/<user>/libGLES.so.
2. To enable GGA on your Linux target, ensure that all dynamic libraries for graphics APIs that

are needed by a target application are symbolic links that point to the Shim library in /home/
<user>/libGLES.so. Example commands:
ln -s libGLES.so libEGL.so
ln -s libGLES.so libEGL.so.1
ln -s libGLES.so libEGL.so.1.4.0
ln -s libGLES.so libGLESv1_CM.so
ln -s libGLES.so libGLESv1_CM.so.1
ln -s libGLES.so libGLESv1_CM.so.1.1.0
ln -s libGLES.so libGLESv2.so
ln -s libGLES.so libGLESv2.so.2
ln -s libGLES.so libGLESv2.so.2.1.0
ln -s libGLES.so libGLESv3.so
ln -s libGLES.so libGLESv3.so.3
ln -s libGLES.so libGLESv3.so.3.1.0

3. Before running a graphical application on the Linux target, add the directory that contains the
Shim and the symlinks to the front of your LD_LIBRARY_PATH environment variable.

8.7.6 Choose the GGA mode

Use the settings.ini file to select the GGA mode.

Procedure
1. The settings.ini file can be found in $PVLIB_HOME/GGA/reconciler/<OS>/<gcc-version>/

rel/. Copy it to the directory from which you will boot the model.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

2. Before booting the model, select between GGA-only mode and GGA+GRM mode:

• For GGA-only mode, set callOnTargetAPI to 0

• For GGA+GRM mode, set callOnTargetAPI to 2

8.7.7 Boot the model with the Android or Linux image

Boot the target model, specifying some extra options to enable GGA.

Procedure
1. On a Windows host, before booting the model, add the Mali™ emulator to your host path.
2. In your boot command, specify the Reconciler as the interceptor, and load the Sidechannel as a

plug-in:

• To load the Sidechannel plug-in, add this option to the boot command:

--plugin $PVLIB_HOME/plugins/<compiler_version>/Sidechannel.so

• To load the interceptor, add this parameter to the boot command:

-C DEBUG.Sidechannel.interceptor=$PVLIB_HOME/GGA/reconciler/<OS>/<gcc-version>/
libReconciler.so

Results
One or two Fast Models CLCD displays appear on the screen, depending on the platform, along
with one or two xterm consoles. The xterm console can be used to interact with the target OS.

If SELinux is enabled on your Android target, you might observe in your xterm
window that the system is stuck in a loop, repeatedly trying to restart several
applications, including zygote, audioserver, and mediaserver. You can resolve this
issue by switching to permissive mode to allow access to the Shim, in either of the
following ways:

• Add the line androidboot.selinux=permissive to U-boot

• Press ENTER in the xterm window to check whether you have a command
prompt. When you have a prompt, enter the following commands:

su root
setenforce 0

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.7.8 Test the Android setup

To test that GGA is enabled in your system, we provide an example graphical application, Cube.apk,
that shows a spinning cube in a Fast Models window.

Procedure
1. Install the example application in your target operating system, by running the following

command in your xterm window:
pm install <Cube_install_dir>/Cube.apk

Cube_install_dir is the directory into which you previously copied the application.
2. Run the spinning cube application with the following command:

am start -n com.arm.malideveloper.openglessdk.cube64/.Cube

Results
You should see a spinning cube in the CLCD window:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

Figure 8-6: Spinning cube rendered using GGA

8.8 Using GGA
This section describes some useful features of GGA to help you view and debug the execution of
graphics APIs in the model.

8.8.1 Log execution of graphics APIs

To log the execution of target graphics APIs, set the log level in the GGA configuration file, then
reboot the target.

In settings.ini, set LogLevel to either of the following values:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

• 6565: Represents LOG_LEVEL_INFO to show information about the important stages in executing
APIs.

• 6566: Represents LOG_LEVEL_DEBUG to show the names and parameters of each API that is
called.

For more details about settings.ini, see 8.5 Configuration on page 200.

If you find issues, try to reproduce them using a different platform model. Report
bugs in GGA to the support team as described in 8.6 Feedback on page 202.

8.8.2 Examine OpenGL ES execution in the graphics driver

Use the Error code check function in GGA to report OpenGL ES APIs for which the host driver and
the target driver return different error codes. Enable it using the settings.ini configuration file.

Procedure
1. The Error code check function works in GGA+GRM mode only, so callOnTargetAPI must be

set to 2.
2. Assign a value to LogLevel other than 0 or 1. For the allowed values, see 8.5 Configuration on

page 200.
3. Set checkErrorCode to 1 to enable Error code check.
4. To examine all OpenGL ES APIs, set enableErrorCheckWhiteList to 0.
5. To only examine specific APIs:

a) Set enableErrorCheckWhiteList to 1.
b) Set the APIs listed in checkerrcode.ini that you are interested in to 1.

checkerrcode.ini is located in the same directory as settings.ini.

6. Reboot the target to show the API execution in the driver.

Results
If abnormal APIs are detected, the host shows errors like this:

ERROR [RECONCILER] gles20_glCopyTexSubImage2D Inconsistent error code detected. host=0x0501,
 target=0x0502

For more details about this and other error messages, see 8.8.3 Error messages from Error code
check on page 211.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

8.8.3 Error messages from Error code check

The error messages show OpenGL ES APIs for which the host driver and the target driver return
different error codes.

Errors can be generated by the target graphics driver, GGA, or the Mali™ OpenGL ES Emulator:

• Errors from the target graphics driver:

ERROR [RECONCILER] gles20_glCopyTexSubImage2D Inconsistent error code detected. host=0x0501,
 target=0x0502

Here:

◦ gles20_glCopyTexSubImage2D is the problematic API.

◦ 0x0501 and 0x0502 are the error codes retrieved from the host driver and the target driver
respectively. These error codes are defined in the OpenGL ES header file.

• Errors from GGA:

FATAL [RECONCILER] glProgramParameteri() Could not find program object descriptor for target-
side program id [0]

Here, glProgramParameteri() is the problematic API. Report GGA bugs directly to Arm
Technical Support. For more details, see 8.6 Feedback on page 202.

• Errors from the Mali™ OpenGL ES Emulator:

FATAL-Exception thrown in GLES32Api::glUniformMatrix4fv -> Underlying OpenGL error in
 GL33Backend.
See Fatal error logs for full details. This is probably a programming error, please report it.

Report Mali™ emulator errors directly to Arm Technical Support.

8.8.4 Trace driver accesses to the GPU registers

Use the Trace and dump function provided by GGA to trace accesses by the graphics driver to the
registers of the GPU register model.

Before you begin
• The Trace and dump function works in GGA+GRM mode only, so you must have integrated the

graphics driver with the GPU register model in your target.

• Use the ListTraceSources plug-in to list the available trace sources and the GenericTrace
plug-in to specify which events should be traced. They are located in $PVLIB_HOME/plugins/
<OS_compiler>/.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

Procedure
1. On the host, run the platform model with the ListTraceSources plug-in to list the trace sources

that the model provides:
${PATH_Model} --plugin $PVLIB_HOME/plugins/Linux64_GCC-7.3/ListTraceSources.so

The terminal shows:

• The GPU model, for example:

Component (292) providing trace: Kits3_Subsys.css.gpu

• Trace sources provided by the GPU model, for example:
INFO_ReadRegister

Access time, addresses, data, and names of the registers that were read.
INFO_Reset

GPU reset data.
INFO_WriteRegister

Access time, addresses, and names of the registers that were updated, and the data
before and after the update.

INFO_IrqGpuControl
ID, name, and state of the IRQ signal from the GPU. The state can be Y for Set, or N
for Clear.

INFO_IrqJobControl
ID, name, and state of the IRQ signal from the Job Manager on the GPU. The state
can be Y for Set, or N for Clear.

INFO_IrqMmuControl
ID, name, and state of the IRQ signal from the MMU on the GPU. The state can be Y
for Set, or N for Clear.

WARN_ReadToWriteOnlyRegister
Warning messages and addresses for the write-only registers that have been read by
the graphics driver.

WARN_WriteToReadOnlyRegister
Warning messages and addresses for the read-only registers that have been written
by the graphics driver.

WARN_AccessToUnimplementedRegister
Warning messages and addresses for the invalid registers that have been accessed by
the graphics driver.

2. Boot the Android target with the following additional options to trace all events from the GPU
model:

--plugin $PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=Kits3_Subsys.css.gpu.* \
-C TRACE.GenericTrace.enabled=1 \
-C TRACE.GenericTrace.verbose=1 \
-C TRACE.GenericTrace.print-timestamp=1 \

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Graphics Acceleration in Fast Models

-C TRACE.GenericTrace.trace-file=dp-trace-generic.log

In these options:

• Kits3_Subsys.css.gpu is the GPU model obtained from Step 1.

◦ To trace all the GPU-supported trace sources, add the suffix '*' to this GPU. For
instance, Kits3_Subsys.css.gpu.*.

◦ To output one GPU trace source only, add it as a suffix to the GPU. For instance,
Kits3_Subsys.css.gpu.INFO_ReadRegister.

◦ To output multiple trace sources, use a comma-separated list.
For instance, Kits3_Subsys.css.gpu.INFO_ReadRegister,
 Kits3_Subsys.css.gpu.INFO_WriteRegister

• The trace-file option specifies the log file in which to save the trace output. If the trace-
file option is not used, the trace results are shown on the host terminal.

For more details, see GenericTrace in Fast Models Reference Guide.

Results
The host terminal or the log file shows details about the driver-accessed registers, such as the
register addresses, data, and the access time. For example:

HOST_TIME=1557460.545195s INFO_ReadRegister: REG_OFFSET=0x0000000000000000 VALUE=0x60000000
 REG_NAME="GPU_ID"
HOST_TIME=1557460.545266s INFO_ReadRegister: REG_OFFSET=0x0000000000000004 VALUE=0x07130206
 REG_NAME="L2_FEATURES"
HOST_TIME=1557460.545279s INFO_ReadRegister: REG_OFFSET=0x0000000000000008 VALUE=0x00000000
 REG_NAME="SUSPEND_SIZE"
HOST_TIME=1557460.545291s INFO_ReadRegister: REG_OFFSET=0x000000000000000c VALUE=0x00000809
 REG_NAME="TILER_FEATURES"
HOST_TIME=1557460.545303s INFO_ReadRegister: REG_OFFSET=0x0000000000000010 VALUE=0x00000001
 REG_NAME="MEM_FEATURES"
HOST_TIME=1557460.545316s INFO_ReadRegister: REG_OFFSET=0x0000000000000014 VALUE=0x00002830
 REG_NAME="MMU_FEATURES"
HOST_TIME=1557460.545325s INFO_ReadRegister: REG_OFFSET=0x0000000000000018 VALUE=0x000000ff
 REG_NAME="AS_PRESENT"
HOST_TIME=1557460.545334s INFO_ReadRegister: REG_OFFSET=0x000000000000001c VALUE=0x00000007
 REG_NAME="JS_PRESENT"
HOST_TIME=1557460.545345s INFO_ReadRegister: REG_OFFSET=0x00000000000000c0 VALUE=0x0000020e
 REG_NAME="JS0_FEATURES"
HOST_TIME=1557460.545362s INFO_ReadRegister: REG_OFFSET=0x00000000000000c4 VALUE=0x000001fe
 REG_NAME="JS1_FEATURES"
HOST_TIME=1557460.545364s INFO_ReadRegister: REG_OFFSET=0x00000000000000c8 VALUE=0x0000007e
 REG_NAME="JS2_FEATURES"
HOST_TIME=1515565849.690948s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001870
 VALUE=0x00000000 UPDATED_VALUE=0x00000000 REG_NAME="JOB_SLOT0_JS_FLUSH_ID_NEXT"
HOST_TIME=1515565849.691304s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001860
 VALUE=0x00000000 UPDATED_VALUE=0x00000001 REG_NAME="JOB_SLOT0_JS_COMMAND_NEXT"
HOST_TIME=1515565849.691322s gpu.INFO_IrqJobControl: IRQ_ID=0x01 IRQ_NAME="JOB Control"
 IRQ_STATE=Y
HOST_TIME=1515565849.691561s gpu.INFO_ReadRegister: REG_OFFSET=0x000000000000100c
 VALUE=0x00000001 REG_NAME="JOB_IRQ_STATUS"
HOST_TIME=1515565849.691643s gpu.INFO_WriteRegister: REG_OFFSET=0x0000000000001004
 VALUE=0x00000000 UPDATED_VALUE=0x00000001 REG_NAME="JOB_IRQ_CLEAR"
HOST_TIME=1515565849.691647s gpu.INFO_IrqJobControl: IRQ_ID=0x01 IRQ_NAME="JOB Control"
 IRQ_STATE=N

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/GenericTrace

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

9 Timing Annotation
This chapter describes timing annotation, which enables you to perform high-level performance
estimation on Fast Models.

Fast Models are Programmers View (PV) models that are targeted at software development. They
sacrifice timing accuracy to achieve fast simulation execution speeds. By default, each instruction
takes a single simulator clock cycle, with no delays for memory accesses.

Timing annotation enables you to perform more accurate performance estimation on SystemC-
based models with minimal simulation performance impact. You can use it to show performance
trends and to identify test cases for further analysis on approximately timed or cycle-accurate
models.

You can configure the following aspects of timing annotation:

• The time that processors take to execute instructions. This can be modeled in either of the
following ways:

◦ As an average Cycles Per Instruction (CPI) value, using the cpi_mul and cpi_div model
parameters.

◦ By assigning CPI values to different instruction classes, using CPI files.

• Branch predictor type and misprediction latency. For details, see BranchPrediction in the Fast
Models Reference Guide

• Instruction and data prefetching.

• Cache and TLB latency.

• Latency caused by pipeline stalls. For details, see PipelineModel in the Fast Models Reference
Guide.

Timing annotation is supported on all SystemC-based platforms. However, it is
disabled by default on ISIMs. To enable timing annotation for an ISIM, set the
environment variable FASTSIM_DISABLE_TA to 0.

9.1 Enabling and disabling timing annotation
Use the environment variable FASTSIM_DISABLE_TA to enable or disable timing annotation latency.

By default, timing annotation is disabled for ISIMs. To enable it, set FASTSIM_DISABLE_TA to 0. If it is
disabled and you load a timing annotation plug-in, or use a timing annotation feature, for example
CPI or cache latency modeling, none of the timing annotation latencies that are computed are
injected into the model. In other words, the simulated CPU time is the same for all instructions, that
is one cycle per instruction.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/BranchPrediction
https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/PipelineModel

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Disabling timing annotation does not prevent timing annotation plug-ins from working. For
example, the PipelineModel plug-in continues to process instructions and generate statistics, and
the BranchPrediction plug-in continues to predict branches and generate statistics. However, the
Fast Models simulation engine ignores any pipeline stall latencies or branch misprediction penalties
that they calculate.

To print timing statistics on simulation exit, run the simulation with the --stat
parameter.

9.2 CPI files
Cycles Per Instruction (CPI) files define classes of instructions and assign CPI values to them. CPI
files give a more accurate estimate of the number of cycles required to run a program on the
model.

Arm does not provide CPI files, only some pre-defined CPI instruction classes which can help you
to create your own CPI files. To create a CPI file for a specific CPU:

1. Create a set of mappings between the instruction encodings for the instruction set and a set
of instruction classes or groups of classes. Arm provides pre-defined instruction classes and
groups for the A32, T32, and A64 instruction sets in $PVLIB_HOME/etc/CPIPredefines/. You
can include these pre-defined instruction classes in your CPI files, or you can define your own
classes.

2. Create a file to map these instruction classes to CPI values. This is the CPI file. Calculate
the CPI values to use based on observations from a cycle accurate model, or see the Arm®

Software Optimization Guides, which are available on Arm Developer.

• An alternative to using CPI files is to use the cpi_mul and cpi_div parameters
on a core in the model. These parameters are integers that represent a CPI
multiplication or division factor for all instructions. They can also be used
together to represent non-integer values. For example, use cpi_mul = 5, cpi_div
= 4 for a CPI of 1.25.

• To calculate values for cpi_mul and cpi_div, experiment with running a
workload on a cycle accurate simulation to choose values that give the most
accurate results.

• If a CPI file is present, it overrides the cpi_mul and cpi_div parameters.

• If you do not set these parameters and do not specify a CPI file, a CPI value of
1.0 is used for all instructions.

A CPI file can support multiple instruction sets, including A64, A32, and T32. It can also support
multiple processor types, including pre-defined and user-defined types.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 252

https://developer.arm.com/documentation/

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Specify a CPI file when launching a platform model by using the --cpi-file command-line
parameter, for example:

./EVS_Base_Cortex-A73x1 … --cpi-file /CPI_file.txt --stat

The --stat parameter displays timing statistics on simulation exit.

Alternatively, specify a CPI file in your SystemC code by calling the function 7.4.13
scx::scx_set_cpi_file on page 137.

CPIValidator is a command-line tool provided in $MAXCORE_HOME/bin/ to help you create valid CPI
files. Use the --help switch to list the available options. For example, the following command
parses and builds the evaluation tree for CPI_file.txt, and prints it in plain text to a file called
CPIEvaluationTree.txt:

$MAXCORE_HOME/bin/CPIValidator --input-file ./CPI_file.txt --output-file ./CPIEvaluationTree.txt

Related information
CPI file syntax on page 217
BNF specification for CPI files on page 222

9.3 CPI file syntax
CPI files are plain text files that contain a series of statements, one per line. Lines that begin with a
character are ignored.

In the following syntax definitions, square brackets [] enclose optional attributes. An ellipsis …
indicates attributes that can be repeated.

The valid statements in a CPI file are:

DefineCpi

Defines the CPI value to use for an instruction class or group. The syntax is:

DefineCpi class_or_group ISet=iset [CpuType=cputype] Cpi=cpi

where:

class_or_group

The name of an instruction class or group. This name can contain wildcards.

A decoded instruction is matched against all DefineCpi statements in the order they
appear in the CPI file from top to bottom. The first instruction class match is used and
all following statements are ignored.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

ISet=iset

Specifies which instruction set this CPI value refers to. This parameter is one of A32,
A64, Thumb, or T2EE, or use the * character to specify all instruction sets.

CpuType=cputype

Specifies which Arm® processor type this CPI value refers to. This parameter can be a
user-defined type, or one of the following pre-defined types:

• ARM_Cortex-A12

• ARM_Cortex-A17

• ARM_Cortex-A15

• ARM_Cortex-A7

• ARM_Cortex-A5MP

• ARM_Cortex-M4

• ARM_Cortex-M7

• ARM_Cortex-A57

• ARM_Cortex-A72

• ARM_Cortex-A53

• ARM_Cortex-R7

• ARM_Cortex-R5

• ARM_Cortex-A9MP

• ARM_Cortex-A9UP

• ARM_Cortex-A8

• ARM_Cortex-R4

• ARM_Cortex-M3

• ARM_Cortex-M0+

• ARM_Cortex-M0

Use the * character to specify any processor type. Specifying no CpuType is equivalent
to specifying CpuType=*.

Cpi=cpi

The CPI value to assign to this instruction class or group.

For example:

DefineCpi Load_instructions ISet=A64 CpuType=ARM_Cortex-A53 Cpi=2.15

DefineClass

Defines an instruction class. The syntax is:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

DefineClass class Mask=mask Value=value [ProhibitedMask=pmask

 ProhibitedValue=pvalue …] ISet=iset [CpuType=cputype]

where:

class

The name of the instruction class to define. It must be unique in the CPI file. It can be
used in a subsequent DefineCpi statement.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute. This parameter identifies which bits in the encoding are relevant for
comparing with Value.

For example, the value 0000xxxx1xxx100x is represented as Mask=0xF08E
 Value=0x0088.

Value=value

The binary value to compare with the instruction encodings. A match indicates
that the instruction belongs to this class, unless the encoding also matches the
ProhibitedValue.

ProhibitedMask=pmask

A bitmask to apply to an instruction encoding before comparing the result with the
ProhibitedValue attribute. It identifies which bits in the encoding are relevant for
comparing with ProhibitedValue.

ProhibitedValue=pvalue

The binary value to compare with the instruction encodings. A match indicates that the
instruction does not belong to this class.

ISet=iset

Specifies which instruction set this class refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this class refers to. See DefineCpi for the
possible values.

A DefineClass statement must include a single Mask and Value attribute
pair, but can include any number of ProhibitedMask and ProhibitedValue
attribute pairs.

For example:

DefineClass Media_instructions Mask=0x0E000010 Value=0x06000010
 ProhibitedMask=0xF0000000 ProhibitedValue=0xF0000000 ISet=A32

DefineGroup

Defines a group of instruction classes. The syntax is:

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

DefineGroup group Classes=class[,class,…] ISet=iset [CpuType=cputype]

 [Mix=mix[,mix,…]]

where:

group

The name of the group to define. It must be unique in the CPI file. It can be used in a
subsequent DefineCpi statement.

Classes=class[,class,…]

A comma-separated list of instruction classes that belong to this group.

ISet=iset

Specifies which instruction set this group refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this group refers to. See DefineCpi for the
possible values.

Mix=mix[,mix,…]

A comma-separated list of mixin names that cause additional instruction groups and
classes to be automatically defined.

For example:

DefineGroup Divide_instructions Classes=SDIV,UDIV CpuType=ARM_Cortex-A73
 ISet=A32

DefineMixIn

Defines a single mask/value pair and suffix that can optionally be used in DefineGroup
statements to automatically define new instruction groups and classes. Applying a mixin to
a group causes a new instruction group or class to be defined for every instruction group or
class that is included in the group, and also for the group itself. The names of these newly-
defined groups and classes is the original group or class name followed by an underscore
character, then the mixin suffix.

The syntax is:

DefineMixIn mix Mask=mask Value=value Suffix=suffix

where:

mix

The name of the mixin to define. It must be unique in the CPI file. It can be used in
subsequent DefineGroup statements.

Mask=mask

A bitmask to apply to an instruction encoding before comparing the result with the
Value attribute.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Value=value

The binary value to compare with the instruction encodings. A match indicates that the
instruction belongs to this group or class.

Suffix=suffix

After applying a mixin to a group, this suffix is appended to the names of the
automatically-defined groups and classes.

In the following example, the DefineGroup statement defines my_group, but also automatically
defines my_group_AL and my_class_AL:

DefineMixIn my_mixin Mask=0xF0000000 Value=0xE0000000 Suffix=AL
…
DefineClass my_class Mask=0x0FF00000 Value=0x03000000 ISet=A32
DefineGroup my_group Classes=my_class ISet=A32 Mix=my_mixin

DefineCpuType

Defines a processor type. The syntax is:

DefineCpuType cputype ISets=iset[,iset,…]

where:

cputype

The name of the processor type to define. It must be unique in the CPI file. It can be
used in subsequent DefineCpi, DefineClass, DefineGroup, and MapCpu statements.

ISets=iset[,iset,…]

A comma-separated list of instruction sets that this processor type supports. See
DefineCpi for the possible values.

For example:

DefineCpuType ARM_Cortex-A73 ISets=*

MapCpu

Maps a CPU instance by name to a CPU type. The syntax is:

MapCpu cpuinstance ToCpuType=cputype

where:

cpuinstance

The name of the CPU instance to map to a processor type. It can contain wildcards.

ToCpuType=cputype

The processor type to map the CPU instance onto. See the list of CpuTypes in
DefineCpi for the possible values.

For example:

MapCpu FVP_Base_AEMvA_AEMvA.cluster0.cpu0 ToCpuType ARM_Cortex-A73

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Defaults

Defines the default CPI value to be used for instructions that do not match any class or
group. This statement is optional and can occur more than once in the CPI file. The syntax is:

Defaults ISet=iset [CpuType=cputype] Cpi=cpi

where:

ISet=iset

Specifies which instruction set this value refers to. See DefineCpi for the possible
values.

CpuType=cputype

Specifies which Arm® processor type this value refers to. See DefineCpi for the
possible values.

Cpi=cpi

The default CPI value for the specified instruction set and processor type.

For example:

Defaults ISet=* CpuType=* Cpi=0.82

Include

Includes a supplementary CPI file at this point in the file. This is equivalent to the #include
preprocessor directive in C. The evaluation of the FilePath attribute is to first treat it as an
absolute path, then as a relative path, and finally as relative to the PVLIB_HOME environment
variable. The syntax is:

Include FilePath=path

For example:

Include FilePath=etc/CPIPredefines/ARMv8A_A32_Mnemonics.txt

9.4 BNF specification for CPI files
CPI files have the following BNF specification:

 <CPIFile> ::= <Statements>
 <Statements> ::= <Statement> <Statements>
 | <Statement>
 <Statement> ::= <Comment>
 | <DefineCpiStatement>
 | <DefaultsStatement>
 | <DefineCpuTypeStatement>
 | <MapCpuStatement>
 | <DefineClassStatement>
 | <DefineGroupStatement>
 | <IncludeStatement>
 | <DefineMixInStatement>

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

 <DefineCpiStatement ::= "DefineCpi" <InstructionClassOrGroup>
 <DefineCpiAttributes> <EOL>
 <DefaultsStatement> ::= "Defaults" <DefineCpiAttributes> <EOL>
 <DefineCpuTypeStatement ::= "DefineCpuType" <UserCpuType>
 <DefineCpuTypeAttributes> <EOL>
 <MapCpuStatement ::= "MapCpu" <CpuInstance> <MapCpuAttributes> <EOL>
 <DefineClassStatement ::= "DefineClass" <InstructionClass>
 <DefineClassAttributes> <EOL>
 <DefineGroupStatement ::= "DefineGroup" <InstructionGroup>
 <DefineGroupAttributes> <EOL>
 <IncludeStatement> ::= "Include" <IncludeAttributes> <EOL>
 <DefineMixInStatement> ::= "DefineMixIn" <MixInType> <DefineMixInAttributes>
 <EOL>
 <DefineCpiAttributes> ::= <DefineCpiAttribute> <DefineCpiAttributes>
 | <DefineCpiAttribute>
 <DefineCpiAttribute> ::= <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <CpiAttribute> { Mandatory }
 <ISetAttribute> ::= "ISet" "=" <ISetOrStar>
 <ISetOrStar> ::= <ISet> | "*"
 <ISet> ::= "A32" | "A64" | "Thumb" | "T2EE"
 <CpuTypeAttribute> ::= "CpuType" "=" <CpuType>
 <CpuType> ::= "ARM_Cortex-A12" | "ARM_Cortex-A17"
 | "ARM_Cortex-A15" | "ARM_Cortex-A7"
 | "ARM_Cortex-A5MP" | "ARM_Cortex-M4"
 | "ARM_Cortex-M7" | "ARM_Cortex-A57"
 | "ARM_Cortex-A72" | "ARM_Cortex-A53"
 | "ARM_Cortex-R7" | "ARM_CortexR5"
 | "ARM_Cortex-A9MP" | "ARM_Cortex-A9UP"
 | "ARM_Cortex-A8" | "ARM_Cortex-R4"
 | "ARM_Cortex-M3" | "ARM_Cortex-M0+"
 | "ARM_Cortex-M0" | <UserCpuType> | "*"
 <CpiAttribute> ::= "Cpi" "=" <Cpi>
 <DefineCpuTypeAttributes> ::= <ISetsAttribute>
 <ISetsAttribute> ::= "ISets" "=" <ISetsOrStar>
 <ISetsOrStar> ::= <ISets> | "*"
 <ISets> ::= <ISet> "," <ISets> | <ISet>
 <MapCpuAttributes> ::= <ToCpuTypeAttribute>
 <ToCpuTypeAttribute> ::= "ToCpuType" "=" <CpuType>
 <DefineClassAttributes> ::= <DefineClassAttribute> <DefineClassAttributes>
 | <DefineClassAttribute>
 <DefineClassAttribute> ::= <MaskAttribute> { Mandatory }
 | <ValueAttribute> { Mandatory }
 | <ProhibitedPairsAttribute> { Optional }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 <MaskAttribute> ::= "Mask" "=" <Mask>
 <ValueAttribute> ::= "Value" "=" <Value>
<ProhibitedPairsAttribute> ::= <ProhibitedPairAttribute> <ProhibitedPairsAttribute>
 | <ProhibitedPairAttribute>
 <ProhibitedPairAttribute> ::= <ProhibitedMaskAttribute> <ProhibitedValueAttribute>
 <ProhibitedMaskAttribute> ::= "ProhibitedMask" "=" <Mask>
<ProhibitedValueAttribute> ::= "ProhibitedValue" "=" <Value>
 <DefineGroupAttributes> ::= <DefineGroupAttribute> <DefineGroupAttributes>
 | <DefineGroupAttribute>
 <DefineGroupAttribute> ::= <ClassesAttribute> { Mandatory }
 | <ISetAttribute> { Mandatory }
 | <CpuTypeAttribute> { Optional }
 | <MixAttribute> { Optional }
 <ClassesAttribute> ::= "Classes" "=" <InstructionClassOrGroups>
 <MixAttribute> ::= "Mix" "=" <MixInTypes>
<InstructionClassOrGroups> ::= <InstructionClassOrGroup> ","
 <InstructionClassOrGroups>
 <instructionClasses> ::= <InstructionClass>
 <InstructionClassOrGroup> ::= <InstructionClass>
 | <InstructionGroup>
 <MixInTypes> ::= <MixInType> "," <MixInTypes>
 <MixInType> ::= <Symbol>
 <IncludeAttributes> ::= <FilePathAttribute>
 <FilePathAttribute> ::= "FilePath" "=" <FilePath>
 <DefineMixInAttributes> ::= <DefineMixInAttribute> <DefineClassAttributes>

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

 <DefineMixInAttribute> ::= <MaskAttribute>
 | <ValueAttribute>
 | <SuffixAttribute>
 <SuffixAttribute> ::= "Suffix" "=" <String>
 <FilePath> ::= <String>
 <InstructionClass> ::= <Symbol>
 <InstructionGroup> ::= <Symbol>
 <UserCpuType> ::= <Symbol>
 <CpuInstance> ::= <QuotedString> { Supports use of wild cards }
 <Cpi> ::= <Double>
 <Mask> ::= <UnsignedInteger>
 <Value> ::= <UnsignedInteger>

9.5 Instruction and data prefetching
Arm® Cortex®‑A series processors implement prefetching instructions and data into caches to
improve the cache hit rate and improve performance. Fast Models supports prefetching instructions
and data independently, by using model parameters.

9.5.1 Configuring instruction prefetching

Configure instruction cache prefetching by using the following cluster-level parameters.

icache-prefetch_enabled

true to enable simulation of instruction cache prefetching, false otherwise. Defaults to
false.
The execution of a branch instruction causes the model to prefetch instructions from the
memory region starting at the branch target address into a number of sequential cache lines.
If true, the following extra parameters are available:

icache-prefetch_level

Specifies the zero-indexed cache level into which instructions are prefetched. Defaults to 0,
which means L1.

icache-nprefetch

Specifies the number of additional, sequential instruction cache lines to prefetch. Defaults to
1.

These parameters only have an effect when cache state modeling is enabled,
which is controlled by the model parameter icache-state_modelled or
cache_state_modelled.

Example
The following command line enables instruction cache prefetching and prints WAYPOINT trace events
to the console. A WAYPOINT is a point at which instruction execution by the processor might change
the program flow.

./FVP_Base_AEMvA …

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

-C cache_state_modelled=1 \
-C cluster0.icache-prefetch_enabled=1 \
--plugin $PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=WAYPOINT

Related information
Loading a plug-in

9.5.2 Configuring data prefetching

The purpose of data prefetch modeling is to make the contents of the data cache more closely
resemble those on a system with a hardware prefetcher. A default data prefetcher is supplied,
which is relatively configurable. It is not intended to match any specific processor.

To run the model with data prefetch modeling enabled, using the default data prefetcher with
default parameters, use the following parameters:

-C cache_state_modelled=true --plugin "<<internal><DataPrefetch>>" -C cluster0.dcache-
prefetch_enabled=1

When the model exits, it reports how many prefetches were issued and how many cache hits
on recently-prefetched data were detected. The performance impact is about 10% compared to
running with cache state modeling enabled.

By default, a data prefetch plug-in attaches to all processors and clusters in a system, and maintains
independent internal state for each processor. To change this, for example if you want a different
number of tracked streams on big and LITTLE cores, load the plug-in twice and pass a different
.cluster parameter to each instance, for example:

--plugin "DP_BIG=<<internal><DataPrefetch>>" --plugin "DP_LITTLE=<<internal><DataPrefetch>>" \
 -C DataPrefetch.DP_BIG.cluster=0 -C DataPrefetch.DP_LITTLE.cluster=1 \
 -C DataPrefetch.DP_BIG.lfb_entries=16 -C DataPrefetch.DP_LITTLE.lfb_entries=4

The names DP_BIG and DP_LITTLE are examples. They can be any names you choose.

The example prefetcher is a basic stride-detecting prefetcher, but relatively configurable using the
following parameters:

Table 9-1: Parameters for the example prefetcher

Parameter Description

history_length Length of history to maintain.

history_threshold Number of misses to allow in history before issuing a prefetch.

lfb_entries Number of access streams to track.

mbs_expire Number of non-hitting loads to allow before the prefetcher stops tracking a potential access stream.

pf_count Number of prefetch streams available.

pf_tracker_count Number of prefetches tracked.

pf_initial_number Initial number of prefetches to issue for a new stream.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/Loading-a-plug-in

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Parameter Description

prefetch_all_levels Prefetch to all cache levels rather than just the lowest level.

An access stream is created whenever a load is made to an address that is not within three cache
lines of a previously observed load. This might overwrite a previously created access stream. When
a consistent stride has been observed, that is, when addresses N, N+delta, N+2*delta are seen, a
prefetch stream is allocated with stride delta and a lifetime of pf_initial_number.

Prefetches are issued in a round-robin fashion from active prefetch streams (the lifetime goes down
by one each time a prefetch is issued) whenever there have been fewer than history_threshold
cache misses among the last history_length loads. The rationale is that if lots of cache hits are
occurring, there should be available bandwidth on the memory interface to be used by prefetching.

Issued prefetches are tracked in a circular list of size pf_tracker_count, and if the prefetcher sees
a load to an address in this circular list, it increments the lifetime of the prefetch stream that issued
the successful prefetch.

Prefetches are to physical addresses, and as a result, a prefetch stream expires when
it reaches the end of a 4KB region.

9.6 Configuring cache and TLB latency
You can configure latency for different cache operations for Cortex®‑A processor models by setting
model parameters.

The following parameters are available:

• Read access latency for L1 D-cache, L1 I-cache, or L2 cache. For example dcache-
read_access_latency.

• Separate latencies for read hits and misses in L1 D-cache, L1 I-cache, or L2 cache. For example
dcache-hit_latency and dcache-miss_latency. The total latency for a read access is the sum
of the read access latency and the hit or miss latency.

• Write access latency for L1 D-cache or L2 cache. For example dcache-write_access_latency.

• Latency for cache maintenance operations for L1 D-cache, L1 I-cache, or L2 cache. For
example dcache-maintenance_latency.

• Latency for snoop accesses that perform a data transfer for L1 D-cache or L2 cache. For
example dcache-snoop_data_transfer_latency.

• Latency for snoop accesses that are issued by L2 cache. For example l2cache-
snoop_issue_latency.

• TLB and page table walk latencies. For example tlb_latency.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

• These parameters only take effect when cache state modeling is enabled. This is
controlled using parameters, for example dcache-state_modelled and icache-
state_modelled.

• All of these latency values are measured in clock ticks.

• For reads and writes, latency can be specified per access, for example dcache-
read_access_latency, or per byte, for example dcache-read_latency. If both
parameters are set, the per-access value takes precedence over the per-byte
value.

9.7 Timing annotation tutorial
This tutorial shows how to use the Cycles Per Instruction (CPI) specification and branch prediction
modeling features with a Fast Models example platform model, and how to measure their impact
on code execution time. The commands shown are for Linux, although the process is the same on
Windows.

9.7.1 Setting up the environment

This tutorial runs some example applications on the EVS_Base_Cortex-A73x1 example virtual
platform to show different timing annotation features.

9.7.1.1 Prerequisites

To use timing annotation, you require the following:

• A SystemC virtual platform.

• An application that enables caches.

• A way of calculating the execution of time of individual instructions.

• A way of determining the total execution time of the simulation.

• A way of calculating the average Cycles Per Instruction (CPI) value for the simulation.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

9.7.1.2 Building the EVS_Base_Cortex-A73x1 example

The EVS_Base_Cortex-A73x1 example includes a single EVS that is connected to SystemC
components that model a timer, and an application memory component that supports individual
configuration of read and write latencies.

About this task
The platform is not provided pre-built in the Fast Models Portfolio installation, so you must first
build it, for example:

cd $PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/
make rel_gcc64_64

9.7.1.3 Calculating the execution time of an instruction

The INST MTI trace source displays every instruction that is executed while running a program.
When timing annotation is enabled, it also displays the current simulation time after an instruction
has completed executing.

The number of ticks an instruction takes to execute is the difference between the times of two
consecutive instructions. The default is one tick (on the core) for each instruction. With the
default clock speed of 100MHz, this gives a default execution time for an instruction of 10000
picoseconds. Any changes to latency due to branch mispredictions, memory accesses, or CPI
specifications can be observed by comparison with this value.

This tutorial uses the INST trace source to measure the time it takes to execute an instruction. To
generate trace, it uses the GenericTrace plug-in. This plug-in allows you to output any number of
MTI trace sources to a text file.

Use the following extra parameters when launching the model to collect the INST trace source:

--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=/path/to/trace/file.txt

If timing annotation is enabled, the trace that is produced for the first two instructions might look
like this:

INST: PC=0x0000000080000000 OPCODE=0x58001241 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000000 NSDESC=0x00 PADDR2=0x0000000080000000 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000001 LOCAL_TIME=0x0000000000001388
CURRENT_TIME=0x0000000000001388 CORE_NUM=0x00 DISASS="LDR x1,{pc}+0x248 ;
0x80000248"

INST: PC=0x0000000080000004 OPCODE=0xd518c001 SIZE=0x04 MODE=EL3h ISET=AArch64
PADDR=0x0000000080000004 NSDESC=0x00 PADDR2=0x0000000080000004 NSDESC2=0x00 NS=0x00
ITSTATE=0x00 INST_COUNT=0x0000000000000002 LOCAL_TIME=0x0000000000003a98
CURRENT_TIME=0x0000000000003a98 CORE_NUM=0x00 DISASS="MSR VBAR_EL1,x1"

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

The CURRENT_TIME value for the first instruction is 0x1388, or 5000ps. This value shows that
the instruction took 0.5 ticks to execute. Timing annotation has halved the execution time of this
instruction.

The difference between the CURRENT_TIME values of the two instructions is 0x2710, or 10000
picoseconds. This value shows that the second instruction took one tick to execute.

Related information
GenericTrace
Enabling and disabling timing annotation on page 215
MTI trace sources on page 239

9.7.1.4 Displaying the total execution time of the simulation

You can use MTI trace to calculate the execution time of individual instructions, but to determine
the overall simulation time, use the command-line option --stat instead.

This option causes the model to print performance statistics to the terminal on exiting. The
statistics include Simulated time, which is the total simulation time in seconds. For example:

--- Base statistics: --
Simulated time : 0.001206s
User time : 0.276000s
System time : 0.136000s
Wall time : 0.700834s
Performance index : 0.00
Base.cluster0.cpu0 : 0.42 MIPS (172289 Inst)

The MIPS value is based on the host system time, not the simulated time.

This tutorial uses the --stat option to compare the model's performance in different timing
annotation configurations.

9.7.1.5 Calculating the average CPI value

Calculate the average CPI value for the simulation by using the instruction count and the simulated
time value, as displayed by the --stat option.

Use the following formula:

average_cpi = simulated_time_in_picoseconds / (10000 * instruction_count)

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/GenericTrace

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

This example calculates an average CPI value of 0.69999:

average_cpi = (0.001206 * 10^12) / (10000 * 172289) = 0.69999

9.7.2 Modeling Cycles Per Instruction (CPI)

This section demonstrates how to precisely model the simulated time per instruction by using the
CPI timing annotation feature.

9.7.2.1 CPI parameters

You can specify a single CPI value for all instructions that execute within a cluster. This value is
referred to as a fixed CPI value. Alternatively, use a custom CPI file to define individual CPI values
for specific instructions. Use a fixed CPI value instead of a CPI file when precise per-instruction
modeling is not required.

When running a simulation with either of these options, you can calculate the average CPI value
using the formula that is shown in 9.7.1.5 Calculating the average CPI value on page 229.

You can combine the CPI specification with other timing annotation features.
Therefore, the average CPI value that you observe can be different from the fixed
CPI value that you specify.

9.7.2.2 Specifying a fixed CPI value

Specify a fixed CPI value by using the per-cluster model parameters cpi_mul and cpi_div.

These parameters are integers that represent a CPI multiplication or division factor that is applied
to all instructions during execution within that cluster. They can be used together to represent
non-integer values. For example, use cpi_mul = 5, cpi_div = 4 for a CPI of 1.25. If you do not set
these parameters and do not specify a CPI file, a CPI value of 1.0 is used for all instructions. The
fixed CPI value is used in a way that core_clock_period * fixed_cpi_value is rounded to the nearest
picosecond.

Related information
Running the example with a fixed CPI value on page 236

9.7.2.3 Example CPI file

CPI files can be large because they have to cover multiple encodings for many of the instructions
that are included. Various predefined encodings are provided under $PVLIB_HOME/etc/

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

CPIPredefines/ that can help you to create CPI files. This tutorial does not use predefined
encodings.

The following example defines CPI values for the instructions ADRP, ADR, ADD, CMP, ORR, LDP, STR,
branches, exception generating instructions, and system instructions. It defines a default CPI value
of 0.75 for all other instructions. It applies to the A64 instruction set, and does not restrict the
values to a specific core.

These CPI values are for demonstration purposes only. They are arbitrary and are
not representative of any Arm® processor.

Instruction classes

PC-relative addressing
DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
Arithmetic
DefineClass ADD_ext_reg Mask=0x7FE00000 Value=0x0B200000 ISet=A64
DefineClass ADD_sft_reg Mask=0x7F200000 Value=0x0B000000 ISet=A64
DefineClass ADD_imm Mask=0x7F000000 Value=0x11000000 ISet=A64
DefineClass CMP_ext_reg Mask=0x7FE0001F Value=0x6B20001F ISet=A64
DefineClass CMP_sft_reg Mask=0x7F20001F Value=0x6B00001F ISet=A64
DefineClass CMP_imm Mask=0x7F00001F Value=0x7100001F ISet=A64
Logical
DefineClass ORR_sft_reg Mask=0x7F200000 Value=0x2A000000 ISet=A64
DefineClass ORR_imm Mask=0x7F800000 Value=0x32000000 ISet=A64
Branches, exception generating and system instructions
DefineClass B_gen_except_sys Mask=0x1C000000 Value=0x14000000 ISet=A64
Load register pair
DefineClass LDP_post_idx Mask=0x7FC00000 Value=0x28C00000 ISet=A64
DefineClass LDP_pre_idx Mask=0x7FC00000 Value=0x29C00000 ISet=A64
DefineClass LDP_sgn_off Mask=0x7FC00000 Value=0x29400000 ISet=A64
Store register
DefineClass STR_reg Mask=0xBFE00C00 Value=0xB8200000 ISet=A64
DefineClass STR_imm_post_idx Mask=0xBFE00C00 Value=0xB8000400 ISet=A64
DefineClass STR_imm_pre_idx Mask=0xBFE00C00 Value=0xB8000C00 ISet=A64
DefineClass STR_imm_usg_off Mask=0xBFC00000 Value=0xB9000000 ISet=A64

Instruction groups

DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineGroup ADD_instr Classes=ADD_ext_reg,ADD_sft_reg,ADD_imm ISet=A64
DefineGroup CMP_instr Classes=CMP_ext_reg,CMP_sft_reg,CMP_imm ISet=A64
DefineGroup ORR_instr Classes=ORR_sft_reg,ORR_imm ISet=A64
DefineGroup B_gen_except_sys_instr Classes=B_gen_except_sys ISet=A64
DefineGroup LDP_instr Classes=LDP_post_idx,LDP_pre_idx,LDP_sgn_off ISet=A64
DefineGroup STR_instr
 Classes=STR_reg,STR_imm_post_idx,STR_imm_pre_idx,STR_imm_usg_off ISet=A64

CPI values

DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25
DefineCpi ADD_instr ISet=A64 Cpi=0.50
DefineCpi CMP_instr ISet=A64 Cpi=0.75
DefineCpi ORR_instr ISet=A64 Cpi=0.50
DefineCpi B_gen_except_sys_instr ISet=A64 Cpi=1.00
DefineCpi LDP_instr ISet=A64 Cpi=2.00
DefineCpi STR_instr ISet=A64 Cpi=1.00

Defaults

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Defaults ISet=* Cpi=0.75

Related information
CPI file syntax on page 217

9.7.2.4 Defining CPI values in a CPI file

To define CPI values in a CPI file, use the following procedure for each instruction or set of
instructions:

Procedure
1. Create an instruction class for each encoding of an instruction or set of instructions by using

the DefineClass keyword.
2. Group instruction classes by using the DefineGroup keyword.
3. Set a CPI value for each instruction class or group of classes by using the DefineCpi keyword.

Results
The encodings for each instruction in the A64 instruction set are provided by the Arm®v8‑A
Architecture Reference Manual, chapter 4. It also describes groups of instructions that share
encodings. You can use these encodings to define the Mask and Value fields in the CPI file.

The Mask field must cover all bits that are fixed in the encoding of an instruction. The Value
field must specify the value of these bits. For example, chapter 4 of the Arm®v8‑A Architecture
Reference Manual defines a set of instructions called PC-rel. addressing. In the example CPI file, the
following statements specify a common CPI value for these instructions:

DefineClass ADRP Mask=0x9F000000 Value=0x90000000 ISet=A64
DefineClass ADR Mask=0x9F000000 Value=0x10000000 ISet=A64
DefineGroup PC_rel_addr_instr Classes=ADRP,ADR ISet=A64
DefineCpi PC_rel_addr_instr ISet=A64 Cpi=0.25

For both instruction classes, the Mask value has bit[31] set to 0b1 and bits [28:24] set to 0b11111.
As shown in the reference manual, a value of 0b10000 for bits [28:24] identifies the instruction as
being ADR or ADRP. Therefore, both Value fields set bits [28:24] to 0b10000. Bit[31] distinguishes
between ADR and ADRP, so bit[31] in the Value field for ADR is set to 0b0 and to 0b1 for ADRP.

This specification allows the model to specify a CPI value of 0.25 for the PC_rel_addr_instr group
of instructions. A similar process has been followed to determine the Mask and Value fields for the
other instructions in the CPI file example.

Related information
CPI file syntax on page 217
Armv8-A Architecture Reference Manual

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 252

https://developer.arm.com/documentation/ddi0487/fc/

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

9.7.2.5 Validating a CPI file

To validate CPI files, use the CPIValidator tool. You can find this tool in a Fast Models Tools
installation under $MAXCORE_HOME/bin/. The tool can detect missing or incompatible instruction
groups and classes, but cannot validate the encodings themselves.

For example, if you remove the DefineClass statement for the B_gen_except_sys instruction class,
and validate the example CPI file by using the following command:

CPIValidator --input-file /path/to/custom_cpi.txt --output-file cpi_evaluation.txt

the tool produces the following output:

ERROR: Instruction Class 'B_gen_except_sys' has no definition, when Instruction Set
 is 'A64' and the CPU Type is 'Default ARM Core'.
ERROR: Processing error in file /path/to/custom_cpi.txt

Using the tool with the complete CPI file produces the following output:

Core Performance Profile: Default ARM Core
--
Instruction Set: A32 Default Cpi:0.75
Instruction Set: A64 Default Cpi:0.75
 (0x1c000000|0x14000000) Cpi:1 Name:B_gen_except_sys
 (0x7f000000|0x11000000) Cpi:0.5 Name:ADD_imm
 (0x7f00001f|0x7100001f) Cpi:0.75 Name:CMP_imm
 (0x7f200000|0x0b000000) Cpi:0.5 Name:ADD_sft_reg
 (0x7f200000|0x2a000000) Cpi:0.5 Name:ORR_sft_reg
 (0x7f20001f|0x6b00001f) Cpi:0.75 Name:CMP_sft_reg
 (0x7f800000|0x32000000) Cpi:0.5 Name:ORR_imm
 (0x7fc00000|0x28c00000) Cpi:2 Name:LDP_post_idx
 (0x7fc00000|0x29400000) Cpi:2 Name:LDP_sgn_off
 (0x7fc00000|0x29c00000) Cpi:2 Name:LDP_pre_idx
 (0x7fe00000|0x0b200000) Cpi:0.5 Name:ADD_ext_reg
 (0x7fe0001f|0x6b20001f) Cpi:0.75 Name:CMP_ext_reg
 (0x9f000000|0x10000000) Cpi:0.25 Name:ADR
 (0x9f000000|0x90000000) Cpi:0.25 Name:ADRP
 (0xbfc00000|0xb9000000) Cpi:1 Name:STR_imm_usg_off
 (0xbfe00c00|0xb8000400) Cpi:1 Name:STR_imm_post_idx
 (0xbfe00c00|0xb8000c00) Cpi:1 Name:STR_imm_pre_idx
 (0xbfe00c00|0xb8200000) Cpi:1 Name:STR_reg
Instruction Set: Thumb Default Cpi:0.75
Instruction Set: T2EE Default Cpi:0.75

9.7.2.6 CPI class example program

This example program is designed to show the effect of the CPI values specified in the example CPI
file.

The example consists of two source files, main.c and asm_func.s.

main.c contains the following code:

#include <stdio.h>
#include <string.h>

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

extern void asm_cpi(volatile int *value0, volatile int *value2);

volatile int values[2] = {1, 2};

int main(void) {
 asm_cpi(&values[0], &values[1]);
 return 0;
}

asm_func.s defines an embedded assembly language function asm_cpi() which uses instructions
with defined CPI values:

 .section asm_func, "ax"
 .global asm_cpi
 .type asm_cpi, "function"
asm_cpi:
 ldp w1, w2, [x0]
 cmp w1, w2
 b.gt skip
 orr w1, w1, w2
 str w1, [x0]
skip:
 ret

This sequence of instructions checks if the second value in a two-element array pointed to by the
address in x0 is greater than the first value. If so, it performs a bitwise OR operation using the two
values, storing the result as the new first value. The rest of this section examines this sequence by
running this code on a platform model with the following CPI configurations:

• Using the default CPI value.

• Using the custom CPI file that was described earlier in the tutorial.

• Using a fixed CPI value.

The name of the executable used in these examples is ta_cpi.axf and the platform is
EVS_Base_Cortex-A73x1.x.

9.7.2.7 Running the example with the default CPI value

If you do not specify any CPI parameters, a default CPI value of 1.00 is used. This value establishes
a baseline to compare with the other CPI configurations.

To use the default CPI value of 1.00, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-
A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

In the trace file that the GenericTrace plug-in produces, find the instruction at address
0x800005a4. The trace for this instruction and the one before it is as follows:

INST: PC=0x00000000800005a0 OPCODE=0x910003fd SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a0 NSDESC=0x01 PADDR2=0x00000000800005a0 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bc LOCAL_TIME=0x0000000000007530
CURRENT_TIME=0x000000001c091fc0 CORE_NUM=0x00 DISASS="MOV x29,sp"

INST: PC=0x00000000800005a4 OPCODE=0x90000020 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x00000000800005a4 NSDESC=0x01 PADDR2=0x00000000800005a4 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000000b7bd LOCAL_TIME=0x0000000000009c40
CURRENT_TIME=0x000000001c0946d0 CORE_NUM=0x00 DISASS="ADRP x0,{pc}+0x4000 ; 0x800045a4"

Using the CURRENT_TIME values, it can be observed that the instruction took 10000ps or 1 tick to
complete, which shows the default CPI value of 1.00 is being used. You can verify that all other
instructions are also using the default CPI value by examining the trace.

9.7.2.8 Running the example with a custom CPI file

To use the custom CPI file, launch the model using the following command:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-
A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_cpi.axf \
--cpi-file $PVLIB_HOME/images/source/ta_cpi/custom_cpi.txt \
--stat

Using the trace output that the GenericTrace plug-in produces for the 10 instructions starting at
address 0x800005a4, and the --stat output, the following information can be obtained for the
embedded assembly code sequence in the example program:

Table 9-2: CPI values for embedded assembly instructions

Address Instruction Simulated time (ps) CPI value observed

0x800005a4 ADRP x0,{pc}+0x4000 2500 0.25

0x800005a8 ADD x0,x0,#0x9f0 5000 0.50

0x800005ac ADD x1,x0,#4 5000 0.50

0x800005b0 BL {pc}+0x4294 10000 1.00

0x80004844 LDP w1,w2,[x0,#0] 20000 2.00

0x80004848 CMP w1,w2 7500 0.75

0x8000484c B.GT {pc}+0xc 10000 1.00

0x80004850 ORR w1,w1,w2 5000 0.50

0x80004854 STR w1,[x0,#0] 10000 1.00

0x80004858 RET 10000 1.00

This table shows that the CPI values that are defined in the example CPI file have been applied to
the appropriate instructions.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

The following information can be obtained for the simulation as a whole:

Table 9-3: Statistics for the whole simulation

Total number of instructions Overall simulated time in seconds Average CPI value

47701 0.000362 0.75889

The average CPI value being close to the default CPI value specified in the CPI file
does not signify anything by itself. To draw any conclusions from it, further analysis
on the distribution of instructions would be required.

9.7.2.9 Running the example with a fixed CPI value

The average CPI value that was observed when running the example program with the custom CPI
file is approximately 0.75889. Fractionally, the exact value is 36200/47701.

This fraction can be applied to the simulation by using the cpi_mul and cpi_div model parameters
as follows:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-
A73x1.x \
-C Base.bp.secure_memory=0 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST \
-C TRACE.GenericTrace.trace-file=trace.txt \
-C Base.cluster0.cpi_mul=36200 \
-C Base.cluster0.cpi_div=47701 \
-a $PVLIB_HOME/images/ta_cpi.axf \
--stat

For each instruction, a simulated time of 7589ps or 0.7589 ticks can be observed using the
GenericTrace plugin. The --stat output is as follows and shows the same simulated time value as
that obtained using the custom CPI file:

--- Base statistics: --
Simulated time : 0.000362s
User time : 0.171601s
System time : 0.015601s
Wall time : 0.196000s
Performance index : 0.00
Base.cluster0.cpu0 : 0.25 MIPS (47701 Inst)

In this case, because the same application was run with the custom CPI file and with the average
CPI value, an approximation of the average CPI value shows the same overall simulated time.
However, the average CPI value for one application is not necessarily an accurate approximation of
the average CPI value for a different application.

For example, running the branch prediction example application, described in the next section,
clearly shows this difference. Specifying a branch misprediction latency increases the overall
simulated time, and therefore gives a different average CPI value to the fixed CPI value that was

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

specified. Using the custom CPI file produces a more accurate average CPI value for the branch
prediction example.

Table 9-4: CPI values for simulation with branch prediction latency

Branch prediction example CPI configuration Overall simulated time in seconds Average CPI value

Using the average CPI value that was observed in the CPI class example program. 0.001726 1.00754

Using the custom CPI file. 0.001945 1.13538

Related information
Branch prediction example program on page 241

9.7.3 Modeling branch prediction

This section demonstrates various techniques for measuring the effectiveness of different branch
prediction algorithms.

9.7.3.1 Branch predictor types and parameters

The BranchPrediction plug-in allows you to select the branch prediction algorithm to use, the type
of statistics to collect, and the misprediction latency.

The plug-in parameters that are used in this tutorial are as follows:

Table 9-5: BranchPrediction plug-in parameters

Plug-in
parameter

Purpose in this example Values that are used in this example

predictor-
type

Comparing the impact of different branch prediction algorithms. • FixedDirectionPredictor

• BiModalPredictor

• GSharePredictor

• CortexA53Predictor

mispredict-
latency

Simulating the additional latency due to a pipeline flush that is
caused by a branch misprediction.

11. This value is the minimum pipeline flush
length for a Cortex®‑A73 processor.

bpstat-
pathfilename

Providing statistics about the branch prediction behavior, to
determine per-branch and overall predictor accuracy.

stats.txt

The different predictor types that are used in this example behave as follows:

FixedDirectionPredictor

Always predicts branches as TAKEN.

BiModalPredictor

Uses a 2-bit state machine to classify branches as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Tracks up to
512 individual branch instructions by address.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

GSharePredictor

Uses the history of the eight most recently executed branch instructions to classify a set
of branch instructions, based on the instruction address, as one of STRONGLY_NOT_TAKEN,
WEAKLY_NOT_TAKEN, WEAKLY_TAKEN, or STRONGLY_TAKEN, and predicts accordingly. Unlike the
BiModalPredictor, it is not limited to a specific number of branch instruction addresses, but
it is less precise than BiModalPredictor.

CortexA53Predictor

Implements the Cortex®‑A53 branch prediction algorithm.

To help you understand the algorithms in more detail, the source code for these branch predictors,
except CortexA53Predictor, is provided under $PVLIB_HOME/plugins/source/BranchPrediction/.

Related information
BranchPrediction

9.7.3.2 Generating branch misprediction statistics

There are two ways to trace branch mispredictions when running an application:

• Use the statistics that are produced by the BranchPrediction plug-in to get an overall picture,
without context about the execution order.

• Load the BranchPrediction plug-in and use the MTI trace sources INST, BRANCH_MISPREDICT,
and WAYPOINT to see branch misprediction details for individual instructions in execution order.

9.7.3.2.1 BranchPrediction plug-in statistics

The statistics feature of the BranchPrediction plug-in provides overall and per-branch statistics,
which are saved to a file when the model exits. You can specify the filename and location using the
bpstat-pathfilename parameter.

The overall branch prediction statistics are described in the following table:

Table 9-6: Overall statistics

Statistic Description Example

Processor Core Name of the core to which the branch prediction plug-in was connected. ARM_Cortex-A73

Cluster instance The cluster number in the processor. 0

Core instance The core number in the cluster. 0

Mispredict Latency The branch misprediction latency as specified using the mispredict-
latency parameter.

11

Image executed The name of the application file that was executed. ta_brpred.axf

PredictorType The branch prediction algorithm as specified using the predictor-type
parameter.

FixedDirectionPredictor

Total branch calls The total number of times all branch instructions were executed. 37434

Total
 Mispredictions

The total number of mispredictions for all executed branch instructions. 5106

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 252

https://developer.arm.com/documentation/100964/1117/Plug-ins-for-Fast-Models/BranchPrediction

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Statistic Description Example

Average prediction
 accuracy

The fraction of all branch instructions that were correctly predicted. 0.8636

Conditional
 Branches

The total number of unique conditional branch instructions. This figure
does not include the instructions CBZ and CBNZ.

123

Total unique branch
 instructions

The total number of unique conditional and unconditional branch
instructions.

300

The following table shows the BranchPrediction plug-in statistics for each unique branch
instruction. They can be used to analyze how a given branch prediction algorithm behaves with a
particular type of branch instruction. The branch prediction example program uses this information
to determine how effectively the different branch prediction algorithms predict different types of
branches.

Table 9-7: Per-branch statistics

Statistic Description Example

PC Addr The address of the branch instruction. 0x8000062c

Calls The total number of times the branch was called. 2100

Mispredict The total number of times the branch was mispredicted. 260

Accuracy The fraction of calls to the branch instruction that were correctly predicted. 0.87619

Related information
Branch prediction example program on page 241
Branch predictor types and parameters on page 237

9.7.3.2.2 MTI trace sources

INST, BRANCH_MISPREDICT, and WAYPOINT are trace sources that can be used in combination to get
useful information about branch mispredictions.

Whenever the BranchPrediction plug-in makes a branch misprediction, the BRANCH_MISPREDICT
trace source prints the address of the branch instruction that was mispredicted. This address can
be compared with the address from the corresponding INST trace event to determine the exact
branch instruction involved. The number of BRANCH_MISPREDICT entries for a given branch address
at the end of the simulation matches the Mispredict count for that address that is shown in the
BranchPrediction plug-in statistics file.

The WAYPOINT trace source prints an event whenever an effective branch operation takes place.
This event includes the address of the branch instruction, the target address of the branch,
whether the branch is conditional, and whether it was taken. This trace source requires instruction
prefetching to be enabled. Combined with a BRANCH_MISPREDICT trace event, it can be used to
determine whether a branch was mispredicted as TAKEN or NOT_TAKEN.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

To collect trace from these sources, run the model with the GenericTrace and BranchPrediction
plug-ins. For example:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-
A73x1.x \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

Related information
Calculating the execution time of an instruction on page 228

9.7.3.2.3 Example trace for a branch misprediction

The following example trace is for a branch misprediction with a misprediction latency of 11 ticks:

INST: PC=0x0000000080000628 OPCODE=0x7100655f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000628 NSDESC=0x01 PADDR2=0x0000000080000628 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080b LOCAL_TIME=0x000000000003f7a0
CURRENT_TIME=0x000000002eab53a0 CORE_NUM=0x00 DISASS="CMP w10,#0x19"

INST: PC=0x000000008000062c OPCODE=0x54000168 SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x000000008000062c NSDESC=0x01 PADDR2=0x000000008000062c NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080c LOCAL_TIME=0x0000000000041eb0
CURRENT_TIME=0x000000002eab7ab0 CORE_NUM=0x00 DISASS="B.HI {pc}+0x2c ;
 0x80000658"

WAYPOINT: PC=0x000000008000062c ISET=AArch64 TARGET=0x0000000080000658
TARGET_ISET=AArch64 TAKEN=N IS_COND=Y CORE_NUM=0x00

BRANCH_MISPREDICT: PC=0x000000008000062c

INST: PC=0x0000000080000630 OPCODE=0x7100151f SIZE=0x04 MODE=EL1h ISET=AArch64
PADDR=0x0000000080000630 NSDESC=0x01 PADDR2=0x0000000080000630 NSDESC2=0x01 NS=0x01
ITSTATE=0x00 INST_COUNT=0x000000000001080d LOCAL_TIME=0x000000000005f370
CURRENT_TIME=0x000000002ead4f70 CORE_NUM=0x00 DISASS="CMP w8,#5"

The following information can be gathered from this trace:

• The branch instruction at address 0x8000062c was mispredicted, as shown by the
BRANCH_MISPREDICT trace event.

• The branch was conditional, and was incorrectly predicted as TAKEN, as shown by the TAKEN=N
field in the WAYPOINT trace event. The PC field value from this source must correspond to the PC
field value from the BRANCH_MISPREDICT source.

• As a result of the misprediction, the instruction following the branch instruction took 120,000
picoseconds, or 12 ticks to complete. The misprediction latency was defined as 11 ticks, so

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

the instruction would have taken only 1 tick to complete if the branch had been predicted
correctly. The execution time is the difference between:

◦ The CURRENT_TIME value for the INST trace before the BRANCH_MISPREDICT trace.

◦ The CURRENT_TIME value for the INST trace after the BRANCH_MISPREDICT trace.

The branch instruction itself took 10,000 picoseconds, or one tick to complete. This is
important, as it shows that the misprediction latency is added to the instruction after the
mispredicted branch instruction, not to the branch instruction itself. The execution time is the
difference between the CURRENT_TIME values for the INST traces corresponding to the branch
instruction and the instruction before.

The rest of this tutorial uses these techniques to compare the different branch prediction
algorithms.

9.7.3.3 Branch prediction example program

This example is designed to use various types of branch operations that can take place during the
execution of a program.

These operations are:

• A branch to skip a loop after a fixed number of iterations has completed.

• A branch to skip a code sequence, depending on the value of a variable.

• A branch to skip a code sequence, which can only be executed a limited number of times
consecutively, if a previous branch was taken.

• A branch for a condition that is always true if the conditions for two previous branches were
true.

• A branch for a condition that is always true if the conditions for two previous branches were
false.

The code operation is trivial. It looks for acronyms within the following constant string, and loops
over this operation a set number of times:

Timing annotation can be used with an SVP, Split Virtual Platform, or an EVS,
 Exported Virtual Subsystem.

The following code shows the branch operations of interest:

#define MAX_LENGTH 5
#define LOOP_COUNT 20
…
// A: loop not entered 1/LOOP_COUNT times
for(j = 0; j < LOOP_COUNT; j++) {
 printf("Starting iteration #%d\n", j);
 blockCount = 0;
 c = 0;
 resetOnly(&acronymLength, acronym);
 // B: loop not entered 1/length times
 for(i = 0; i < length; i++) {
 c = string[i];

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

 // C: condition true
 // (number_of_block_letters)/(total_characters_in_string) times
 if (c >= 'A' && c <= 'Z') {
 blockCount++;
 // D: condition true up to MAX_LENGTH times consecutively
 if (acronymLength < MAX_LENGTH) {
 acronym[acronymLength] = c;
 }
 // E: condition true up to MAX_LENGTH+1 times consecutively
 if (acronymLength <= MAX_LENGTH) {
 acronymLength++;
 }
 }
 else {
 // F: condition true if E was true then C was false
 if (acronymLength > 1 && acronymLength <= MAX_LENGTH) {
 printAndReset(&acronymLength, acronym);
 }
 // G: condition true if E was false then C was false
 else if (acronymLength != 0) {
 resetOnly(&acronymLength, acronym);
 }
 }
 }
}

The branch instructions that are assembled for the conditions A to G in this code snippet can be
examined using branch prediction statistics and trace sources.

The conditions are described in the following table. The branch behavior column describes the
relationship between the condition and the associated branch instruction.

Table 9-8: Branch behavior for each condition

Condition Description Compiled
instruction

Branch behavior

A Outer loop for processing string
LOOP_COUNT times. Loop not
entered 1/LOOP_COUNT times.

B.NE
 0x800005f4
at address
0x80000698.

Backwards branch. Taken to start of loop if more iterations
remain.

B Inner loop for iterating through
characters in the string.

B.NE
 0x80000618
at address
0x8000068c.

Backwards branch. Taken to start of loop if more iterations
remain.

C Condition true if the character being
processed is upper case.

B.HI
 0x80000658
at address
0x8000062c.

Forwards branch. Taken if the condition is false. Skips code that
handles upper case characters.

D Condition true up to MAX_LENGTH
times consecutively.

B.GE
 0x80000644
at address
0x80000634.

Forwards branch. Taken if the condition is false. Skips code that
appends a letter to an acronym.

E Condition true up to MAX_LENGTH+1
times consecutively.

B.GT
 0x80000684
at address
0x80000648.

Forwards branch. Taken if the condition is false. Skips code that
increments the acronym length.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 242 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Condition Description Compiled
instruction

Branch behavior

F Condition true if E was true, after
which C was false.

B.HI
 0x80000674
at address
0x80000660.

Forwards branch. Never taken if the condition was true, that is,
branch E was not taken and then branch C was taken. Skips the
code to print a completed acronym.

G Condition true if E was false, after
which C was false.

CBZ
 w8,0x80000684
at address
0x80000674.

Forwards branch. Never taken if the condition was true, that is,
branch E was taken then branch C was taken. Skips the code to
clear the saved acronym.

9.7.3.4 Running the simulation

To generate trace and statistics for comparing the performance of the different branch predictors,
run the simulation with the BranchPrediction plug-in parameters shown here.

For example, to use the FixedDirectionPredictor, launch the model using the following command,
where ta_brpred.axf is the name of the executable and EVS_Base_Cortex-A73x1.x is the platform:

$PVLIB_HOME/examples/SystemCExport/EVS_Platforms/EVS_Base/Build_Cortex-A73x1/EVS_Base_Cortex-
A73x1.x \
-C Base.bp.secure_memory=0 \
-C Base.cache_state_modelled=1 \
-C Base.cluster0.icache-prefetch_enabled=1 \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/BranchPrediction.so \
-C BranchPrediction.BranchPrediction.predictor-type=FixedDirectionPredictor \
-C BranchPrediction.BranchPrediction.mispredict-latency=11 \
-C BranchPrediction.BranchPrediction.bpstat-pathfilename=stats.txt \
--plugin=$PVLIB_HOME/plugins/Linux64_GCC-7.3/GenericTrace.so \
-C TRACE.GenericTrace.trace-sources=INST,BRANCH_MISPREDICT,WAYPOINT \
-C TRACE.GenericTrace.trace-file=trace.txt \
-a $PVLIB_HOME/images/ta_brpred.axf \
--stat

The program prints the following output to the terminal:

Looking for acronyms of maximum length 5 in the string:
Timing annotation can be used with an SVP, Split Virtual Platform, or an EVS,
 Exported Virtual Subsystem.

Starting iteration #0
SVP
EVS
…
Starting iteration #19
SVP
EVS

Info: /OSCI/SystemC: Simulation stopped by user.

--- Base statistics: --
Simulated time : 0.002275s
User time : 0.343203s
System time : 0.202801s
Wall time : 0.642064s
Performance index : 0.00
Base.cluster0.cpu0 : 0.31 MIPS (171308 Inst)

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 243 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

You can now analyze the end of simulation statistics, the branch prediction statistics file stats.txt,
and the MTI trace file trace.txt, that are generated for each branch predictor type.

Related information
Branch predictor types and parameters on page 237

9.7.3.5 Comparison of branch predictor types

Statistics about the accuracy of the different branch predictors for the various types of branch
instructions can now be compared.

These statistics are shown in the following table:

Table 9-9: Comparison of branch predictor accuracy

Branch instruction

Branch predictor Statistic A B C D E F G

Calls 20 2100 2100 260 260 1840 1800

TAKEN 19 2080 1840 0 0 1800 1800

All

NOT_TAKEN 1 20 260 260 260 40 0

Mispredictions 1 20 260 260 260 40 0

Mispredicted as TAKEN 1 20 280 260 260 40 0

Mispredicted as NOT_TAKEN 0 0 0 0 0 0 0

FixedDirectionPredictor

Accuracy (%) 95* 99* 88* 0 0 98* 100*

Mispredictions 1 20 341 1 1 40 0

Mispredicted as TAKEN 1 20 220 1 1 40 0

Mispredicted as NOT_TAKEN 0 0 121 0 0 0 0

BiModalPredictor

Accuracy (%) 95* 99* 84 100* 100* 98* 100*

Mispredictions 1 20 279 241 241 40 0

Mispredicted as TAKEN 1 20 260 241 241 40 0

Mispredicted as NOT_TAKEN 0 0 19 0 0 0 0

GSharePredictor

Accuracy (%) 95* 99* 87 7 7 98* 100*

Mispredictions 1 23 324 2 1 49 0

Mispredicted as TAKEN 1 20 221 2 1 40 0

Mispredicted as NOT_TAKEN 0 3 103 0 0 9 0

CortexA53Predictor

Accuracy (%) 95* 99* 85 99 100* 97 100*

The accuracy figures have been rounded to the nearest percentage. For each branch instruction
type, A to G, the entry for the best accuracy is shown with an asterisk. As expected, different
branch prediction algorithms are better suited to different types of branch instructions.

With the FixedDirectionPredictor, all branches are predicted as TAKEN, so the accuracy is equal to
the percentage of calls to that branch that were TAKEN.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 244 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

With the BiModalPredictor and GSharePredictor algorithms, only the random branch C was
mispredicted both as TAKEN and NOT_TAKEN. With the other systematic branches, the misprediction
was always in one direction. The result is different for the more complex algorithm of the
CortexA53Predictor, which has mispredictions in both directions for systematic branches as well.

The BiModalPredictor is able to store the history of individual branches, and is therefore most
accurate with predicting branches with a deterministic ratio between the number of times they are
TAKEN and NOT_TAKEN. This accuracy can be seen with branches A, B, D, and E. With a more random
branch, such as C, which depends entirely on the contents of a user-defined string, relying on the
history of the branch proves ineffective.

Interestingly, the GSharePredictor appears to be highly inaccurate at predicting branches D and
E. These branches are NOT_TAKEN a fixed number of times consecutively. However, since there are
calls to many other branches between consecutive calls to these branches, the GSharePredictor’s
global history is not able to use the specific outcome of these branches to update their prediction
values effectively.

Overall, the BiModalPredictor and the CortexA53Predictor have predicted these branch
instructions most accurately, as shown in the following table:

Table 9-10: Overall branch predictor accuracy

Predictor type Overall accuracy (%)

FixedDirectionPredictor 86

BiModalPredictor 98

GSharePredictor 86

CortexA53Predictor 98

9.7.3.6 Impact of branch misprediction on simulation time

You can directly observe the impact of mispredictions on the overall simulation time, as shown in
the --stat output after the model exits.

The simulated execution times with the different branch predictors are shown in the following
table.

The execution times also include the impact of branch mispredictions that occur in
other parts of the code, as well as in the startup and shutdown sequences.

Table 9-11: Overall simulation time for each predictor type

Predictor type Simulation time with mispredict-latency=11 Simulation time with mispredict-latency=0

FixedDirectionPredictor 0.002275s 0.001713s

BiModalPredictor 0.001805s 0.001713s

GSharePredictor 0.002289s 0.001713s

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 245 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

Timing Annotation

Predictor type Simulation time with mispredict-latency=11 Simulation time with mispredict-latency=0

CortexA53Predictor 0.001806s 0.001713s

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 246 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
FastRAM

10 FastRAM
FastRAM is a bus optimization for Fast Models that can bring significant speed improvements to
platform models.

10.1 Introducing FastRAM, a bus optimization for Fast
Models

FastRAM is a fast interface to simulated RAM which allows platform models to avoid using bus
models for most transactions.

FastRAM uses a cache of DMI pointers, each of which points to 64MB. This memory is tightly
coupled to the Fast Models bus masters and models of IP that are bus masters. When FastRAM is
enabled, accesses by Fast Models bus masters to platform RAM components do not use the PVBus
or TLM bus models. Accesses to other platform components and areas of RAM for which FastRAM
has not been enabled work as normal.

FastRAM can give significant speed improvements to large and complex platform models which can
spend a lot of time in the bus models. It can particularly benefit SystemC platforms that use TLM,
and multi-threaded platforms.

Most, but not all, platform models can safely use FastRAM. For conditions that can prevent its use,
see 10.5 FastRAM limitations on page 250.

The behavior of platform models is functionally equivalent whether FastRAM is enabled or
disabled. However, modeling bus transactions in a platform can lead to scheduling changes, so the
overall flow of execution by components in a platform might not be identical.

10.2 How to enable FastRAM
Enable FastRAM by launching the platform model with the command-line parameter --fast-ram
 <config_file>.

You must provide a configuration file in the current working directory of the simulation. This is an
ASCII file that specifies:

• Whether the FastRAM implementation allocates the RAM itself or uses memory allocated by
the platform RAM model.

• One or more physical address ranges to enable for FastRAM.

• Details of any address aliasing for the enabled ranges.

• Which bus masters to enable to use FastRAM.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 247 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
FastRAM

10.3 FastRAM configuration file syntax
Each line in the configuration file starts with a single character option followed by the required
arguments, separated with whitespace.

The following options are available:

T
Enable FastRAM trace on stdout from this point in the file.

Q
Disable FastRAM trace on stdout from this point in the file.

The position of the T and Q options in the file is significant:

• To enable FastRAM trace during the entire initialization and runtime, start the
file with T and do not use Q.

• To enable FastRAM trace during runtime but not initialization, end the file with T
and do not use Q.

• To enable FastRAM trace during the initialization only, start the file with T and
end the file with Q.

• To enable FastRAM trace during specific parts of the initialization, use one or
more pairs of T and Q within the file.

A | D
The mode for obtaining the DMI pointers, either:
A Allocate FastRAM memory in the masters.
D Use platform DMI for FastRAM memory.

S
Optimize FastRAM for single-threaded simulations.

M <string> | ALL
Identify the bus masters to use FastRAM. You can select either masters whose id contains
<string> or all masters. This option can be specified multiple times. For example, to enable
FastRAM use by all masters with A57 or R52 in their id, specify:

M A57
M R52

If the argument to M is not ALL and trace is enabled, then the ids of all masters
are shown on the console with a message stating whether the master is
enabled for FastRAM or not. To find the list of masters, use M foo then use
the list to select the masters required.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 248 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
FastRAM

+ <base> <size>
Add the physical address range <base> to <base>+<size>.

- <base> <size>
Remove the physical address range <base> to <base>+<size>.

= <base-a> <base-b> <size>
Alias a physical address range.

<text>
Comment.

All addresses and sizes must be 64MB-aligned (0x4000000) hexadecimal.

10.4 FastRAM configuration file example
This example FastRAM configuration file is written for a Base Platform FVP.

It does the following:

• Uses the T option at the start of the file to enable FastRAM trace output from the start of the
FastRAM initialization.

• Enables FastRAM for the address range 0x08_00000000-0xff_ffffffff.

• Defines 0x00_80000000-0x00_ffffffff as an alias for the range
0x08_00000000-0x08_7fffffff.

• Uses the Q option at the end of the file to disable FastRAM trace output at the end of the
FastRAM initialization.

FastRAM config file for FVP Base
T
A
M ALL
+ 800000000 F800000000
= 80000000 800000000 80000000
Q

If FastRAM has been successfully enabled, it prints the following output:

FastRAM: CONSTRUCTED
FastRAM: Address space size = 40 bits
FastRAM: Slab size = 64 Mb
FastRAM: Page size = 4 kb
FastRAM: Singleton size = 147 kb
FastRAM: Number of monitors = 16
FastRAM: Allocate RAM
FastRAM: Enable ALL masters
FastRAM: Add range 0x08_00000000...ff_ffffffff
FastRAM: Add range 0x00_80000000...00_ffffffff

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 249 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00
FastRAM

FastRAM: Alias range 0x00_80000000...00_ffffffff <=> 0x08_00000000...08_7fffffff

10.5 FastRAM limitations
FastRAM can be used with most, but not all, platform models.

It can be used in a platform in which all of the following conditions are true:

• The platform contains one or more very frequently accessed RAM components that are a
whole multiple of 64MB in size.

• These RAM components are always mapped to the same static physical range as seen by the
bus masters that frequently access the RAM.

• The physical ranges used to access the RAM components by the bus masters can include
aliased regions.

• The RAM components and the buses to them always give back DMI and for a given physical
address always give back exactly the same DMI pointer and never invalidate DMI.

• Either all the bus masters in the platform use FastRAM for the configured physical ranges
or you can identify the subset of masters that can use it by name. See 10.3 FastRAM
configuration file syntax on page 247 for how to find the list of bus masters.

• All the bus masters that use FastRAM use the same physical address map to access the RAM
components.

• If the RAM components internally allocate memory that is a whole multiple of 64MB, then
FastRAM can be used with RAM instances that are accessed by:

◦ Bus masters that are enabled to use FastRAM.

◦ Bus masters that are not, or cannot, be enabled to use FastRAM.

• If the RAM components internally allocate memory that is not a whole multiple of 64MB, for
example the RAMDevice LISA component, then FastRAM can only be used with RAM instances
that are accessed by masters that are enabled to use FastRAM.

It cannot be used in a platform if any of the following conditions are true:

• Cache state modeling is enabled.

• The physical address map used by the bus masters to access the RAM is dynamic and can
change at run time.

• The set of bus masters that will use FastRAM cannot be identified. See 10.3 FastRAM
configuration file syntax on page 247 for how to find the list of bus masters.

• There is System IP between the bus masters and the RAM that needs to provide functionality
other than a global monitor. However, a CCI or CCN with cache state modeling disabled is
allowed.

• The platform RAM is mapped to an address greater than or equal to 0x100_0000_0000.

• The expected functionality of the platform depends on being able to invalidate DMI. FastRAM
ignores DMI invalidations other than what is required internally to support exclusives and
RevokeReadOnWrite behavior.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 250 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export generated ports

Appendix A SystemC Export generated
ports

This appendix describes Fast Models SystemC Export generated ports.

A.1 About SystemC Export generated ports
The generated SystemC component must have SystemC ports to communicate with the SystemC
world. The SystemC Export feature automatically generates these ports from the Fast Models ports
of the top-level component.

Although it is possible to export your own protocols, Arm strongly recommends
using the AMBA-PV protocols provided and bridge from these in SystemC, if
needed.

The SystemC export feature automatically generates port wrappers that bind the SystemC domain
to the Fast Models virtual platform.

Figure A-1: Port wrappers connect Fast Models and SystemC components

Top-level system

MEM (SystemC
slave)

DMA (SystemC
master)

SystemC environmentSystem Generator virtual platform

MEM

CPU

Port
wrapper

Port
wrapperExternal

slave port

External
master port

Each master port in the Fast Models top level component results in a master port on the SystemC
side. Each slave port in the Fast Models top level component results in a slave port (export) on the
SystemC side.

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 251 of 252

Fast Models User Guide Document ID: 100965_1117_00_en
Issue: 00

SystemC Export generated ports

For Fast Models to instantiate and use the ports, it requires protocol definitions that:

• Correspond to the equivalent SystemC port classes.

• Refer to the name of these SystemC port classes.

This effectively describes the mapping from Fast Models port types (protocols) to SystemC port
types (port classes).

Related information
Fast Models Reference Guide

Copyright © 2014–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 252 of 252

https://developer.arm.com/documentation/100964/1117

	Fast Models User Guide
	Contents
	1 Introduction
	1.1 Conventions
	1.2 Other information

	2 Introduction to Fast Models
	2.1 What is Fast Models?
	2.2 What does Fast Models consist of?
	2.2.1 Fast Models tools
	2.2.2 Fast Models portfolio
	2.2.3 Other Fast Models products

	2.3 Fast Models glossary
	2.4 Fast Models design
	2.4.1 Fast Models design flow
	2.4.2 Project files
	2.4.3 Repository files
	2.4.4 File processing order
	2.4.5 Hierarchical systems

	3 Installing Fast Models
	3.1 Requirements for Fast Models
	3.2 Installation
	3.3 Uninstallation
	3.4 Dependencies for Red Hat Enterprise Linux

	4 Building Fast Models
	4.1 System Generator (SimGen)
	4.2 SimGen command-line options
	4.3 Select the build target
	4.4 Building an EVS platform
	4.5 Steps for building an EVS platform
	4.5.1 Export the Fast Model as an EVS library
	4.5.2 Initialize and configure the simulation
	4.5.3 Required header files and libraries
	4.5.4 Building an EVS on Windows

	4.6 Bridge between LISA+ and SystemC
	4.7 Libraries required to run the platform
	4.8 Building an SVP
	4.9 Building an ISIM

	5 System Canvas Tutorial
	5.1 About this tutorial
	5.2 Starting System Canvas
	5.3 Creating a new project
	5.4 Add and configure components
	5.4.1 Adding the Arm® processor
	5.4.2 Naming components
	5.4.3 Resizing components
	5.4.4 Hiding ports
	5.4.5 Moving ports
	5.4.6 Adding components
	5.4.7 Using port arrays

	5.5 Connecting components
	5.6 View project properties and settings
	5.6.1 Viewing the project settings
	5.6.2 Specifying the Active Project Configuration
	5.6.3 Selecting the top component

	5.7 Changing the address mapping
	5.8 Building the system
	5.9 Debugging with Model Debugger
	5.10 Building a SystemC ISIM target

	6 System Canvas Reference
	6.1 Launching System Canvas
	6.2 System Canvas GUI
	6.2.1 Application window
	6.2.2 Menu bar
	6.2.2.1 File menu
	6.2.2.2 Edit menu
	6.2.2.3 Search menu
	6.2.2.4 View menu
	6.2.2.5 Object menu
	6.2.2.6 Project menu
	6.2.2.7 Help menu

	6.2.3 Toolbar
	6.2.4 Workspace window
	6.2.4.1 Source view
	6.2.4.2 Source view context menu
	6.2.4.3 Block Diagram view
	6.2.4.4 Block Diagram view context menu

	6.2.5 Component window
	6.2.5.1 Component window views
	6.2.5.2 Component window context menu

	6.2.6 Output window

	6.3 System Canvas dialogs
	6.3.1 Add Existing Files and Add New File dialogs (Component window)
	6.3.1.1 Displaying the Add Existing Files and Add New File dialogs (Component window)
	6.3.1.2 Using the Add Existing Files and Add New File dialogs (Component window)
	6.3.1.3 Using environment variables in filepaths
	6.3.1.4 Assigning platforms and compilers for libraries

	6.3.2 Add Files dialog (Project menu)
	6.3.3 Add Connection dialog
	6.3.4 Component Instance Properties dialog
	6.3.5 Component Model Properties dialog for the system
	6.3.6 Component Properties dialog for a library component
	6.3.7 Connection Properties dialog
	6.3.8 Edit Connection dialog
	6.3.9 File/Path Properties dialog
	6.3.10 Find and Replace dialogs
	6.3.11 Label Properties dialog
	6.3.12 New File dialog (File menu)
	6.3.13 New project dialogs
	6.3.13.1 New Project dialog
	6.3.13.2 Select Top Component LISA File dialog

	6.3.14 Open File dialog
	6.3.15 Port Properties dialog
	6.3.16 Preferences dialog
	6.3.16.1 Preferences - Appearance group
	6.3.16.2 Preferences - Applications group
	6.3.16.3 Preferences - External Tools group
	6.3.16.4 Preferences - Fonts group
	6.3.16.5 Preferences - Default Model Repository group
	6.3.16.6 Preferences - Suppressed messages group

	6.3.17 Project Settings dialog
	6.3.17.1 Project top-level settings
	6.3.17.2 Parameter category panel
	6.3.17.2.1 Parameters - Category View
	6.3.17.2.2 Parameters - List View
	6.3.17.2.3 Parameters - Tree View
	6.3.17.2.4 Parameters - setting the release options
	6.3.17.2.5 Parameters - overloading the main() function in the target

	6.3.17.3 Project parameter IDs
	6.3.17.4 Project file contents
	6.3.17.4.1 Directories in path statements
	6.3.17.4.2 Example project file

	6.3.18 Protocol Properties dialog
	6.3.19 Run dialog
	6.3.20 Self Port dialog

	7 SystemC Export with Multiple Instantiation
	7.1 About SystemC Export with Multiple Instantiation
	7.2 Auto-bridging
	7.3 SystemC Export generated ports
	7.3.1 Protocol definition
	7.3.2 TLM 1.0 protocol for an exported SystemC component
	7.3.3 TLM 2.0 bus protocol for an exported SystemC component
	7.3.4 Properties for TLM 1.0 based protocols
	7.3.5 Properties for TLM 2.0 based protocols

	7.4 SystemC Export API
	7.4.1 SystemC Export header file
	7.4.2 scx::scx_initialize
	7.4.3 scx::scx_set_single_evs
	7.4.4 scx::scx_load_application
	7.4.5 scx::scx_load_application_all
	7.4.6 scx::scx_load_data
	7.4.7 scx::scx_load_data_all
	7.4.8 scx::scx_set_parameter
	7.4.9 scx::scx_get_parameter
	7.4.10 scx::scx_get_parameter_list
	7.4.11 scx::scx_get_parameter_infos
	7.4.12 scx::scx_get_cadi_parameter_infos
	7.4.13 scx::scx_set_cpi_file
	7.4.14 scx::scx_cpulimit
	7.4.15 scx::scx_timelimit
	7.4.16 scx::scx_add_breakpoint
	7.4.17 scx::scx_set_start_pc
	7.4.18 scx::scx_dump
	7.4.19 scx::scx_load_params_file
	7.4.20 scx::scx_list_instances
	7.4.21 scx::scx_list_registers
	7.4.22 scx::scx_check_registers
	7.4.23 scx::scx_restore_checkpoint
	7.4.24 scx::scx_save_checkpoint
	7.4.25 scx::scx_list_memory
	7.4.26 scx::scx_parse_and_configure
	7.4.27 scx::scx_register_synchronous_thread
	7.4.28 scx::scx_get_error_count
	7.4.29 scx::scx_get_exitcode_list
	7.4.30 scx::scx_exitcode_entry
	7.4.31 scx::scx_start_cadi_server
	7.4.32 scx::scx_enable_cadi_log
	7.4.33 scx::scx_print_port_number
	7.4.34 scx::scx_print_statistics
	7.4.35 scx::scx_register_cadi_target
	7.4.36 scx::scx_unregister_cadi_target
	7.4.37 scx::scx_load_trace_plugin
	7.4.38 scx::scx_load_plugin
	7.4.39 scx::scx_get_global_interface
	7.4.40 scx::scx_enable_iris_server
	7.4.41 scx::scx_set_iris_server_port_range
	7.4.42 scx::scx_get_iris_server_port
	7.4.43 scx::scx_set_iris_server_port
	7.4.44 scx::scx_enable_iris_log
	7.4.45 scx::scx_get_iris_connection_interface
	7.4.46 scx::scx_evs_base
	7.4.47 scx::load_application
	7.4.48 scx::load_data
	7.4.49 scx::set_parameter
	7.4.50 scx::get_parameter
	7.4.51 scx::get_parameter_list
	7.4.52 scx::scx_evs_base constructor
	7.4.53 scx::scx_evs_base destructor
	7.4.54 scx::before_end_of_elaboration
	7.4.55 scx::end_of_elaboration
	7.4.56 scx::start_of_simulation
	7.4.57 scx::end_of_simulation
	7.4.58 scx::scx_simcallback_if
	7.4.59 scx::notify_running
	7.4.60 scx::notify_stopped
	7.4.61 scx::notify_debuggable
	7.4.62 scx::notify_idle
	7.4.63 scx::scx_simcallback_if destructor
	7.4.64 scx::scx_simcontrol_if
	7.4.65 scx::get_scheduler
	7.4.66 scx::get_report_handler
	7.4.67 scx::run
	7.4.68 scx::stop
	7.4.69 scx::is_running
	7.4.70 scx::stop_acknowledge
	7.4.71 scx::process_debuggable
	7.4.72 scx::notify_pending_debug
	7.4.73 scx::process_idle
	7.4.74 scx::shutdown
	7.4.75 scx::add_callback
	7.4.76 scx::remove_callback
	7.4.77 scx::scx_simcontrol_if destructor
	7.4.78 scx::scx_get_default_simcontrol
	7.4.79 scx::scx_get_curr_simcontrol
	7.4.80 scx::scx_report_handler_if
	7.4.81 scx::scx_get_default_report_handler
	7.4.82 scx::scx_get_curr_report_handler
	7.4.83 scx::scx_sync
	7.4.84 scx::scx_set_min_sync_latency
	7.4.85 scx::scx_get_min_sync_latency
	7.4.86 scx::scx_simlimit
	7.4.87 scx::scx_create_default_scheduler_mapping
	7.4.88 scx::scx_get_curr_scheduler_mapping

	7.5 Scheduler API
	7.5.1 Scheduler API - about
	7.5.2 Scheduler API - use cases and implementation
	7.5.2.1 Accessing the SchedulerInterfaceForComponents from within a modeling component
	7.5.2.1.1 LISA component for accessing the SchedulerInterfaceForComponents
	7.5.2.1.2 C++ component for accessing the SchedulerInterfaceForComponents
	7.5.2.1.3 SystemC component for accessing the SchedulerInterfaceForComponents

	7.5.2.2 Using the default scheduler mapping in the SystemC export use case
	7.5.2.3 Providing a custom mapping of the scheduler functionality onto SystemC
	7.5.2.3.1 Minimalistic example of a custom mapping of the scheduler functionality onto SystemC
	7.5.2.3.2 Intended mapping of the Scheduler API onto SystemC/TLM

	7.5.3 sg::SchedulerInterfaceForComponents class
	7.5.3.1 About sg::SchedulerInterfaceForComponents
	7.5.3.2 eslapi::CAInterface and eslapi::ObtainInterface
	7.5.3.3 sg::SchedulerInterfaceForComponents::addCallback
	7.5.3.4 sg::SchedulerInterfaceForComponents::addSynchronisationPoint
	7.5.3.5 sg::SchedulerInterfaceForComponents::createThread
	7.5.3.6 sg::SchedulerInterfaceForComponents::createThreadSignal
	7.5.3.7 sg::SchedulerInterfaceForComponents::createTimer
	7.5.3.8 sg::SchedulerInterfaceForComponents::currentThread
	7.5.3.9 sg::SchedulerInterfaceForComponents::getCurrentSimulatedTime
	7.5.3.10 sg::SchedulerInterfaceForComponents::getGlobalQuantum
	7.5.3.11 sg::SchedulerInterfaceForComponents::getMinSyncLatency
	7.5.3.12 sg::SchedulerInterfaceForComponents::getNextSyncPoint
	7.5.3.13 sg::SchedulerInterfaceForComponents::getSimulatedTimeResolution
	7.5.3.14 sg::SchedulerInterfaceForComponents::removeCallback
	7.5.3.15 sg::SchedulerInterfaceForComponents::setGlobalQuantum
	7.5.3.16 sg::SchedulerInterfaceForComponents::setMinSyncLatency
	7.5.3.17 sg::SchedulerInterfaceForComponents::setSimulatedTimeResolution
	7.5.3.18 sg::SchedulerInterfaceForComponents::stopAcknowledge
	7.5.3.19 sg::SchedulerInterfaceForComponents::stopRequest
	7.5.3.20 sg::SchedulerInterfaceForComponents::wait(ThreadSignal)
	7.5.3.21 sg::SchedulerInterfaceForComponents::wait(ticks_t)

	7.5.4 sg::SchedulerRunnable class
	7.5.4.1 sg::SchedulerRunnable - about
	7.5.4.2 sg::SchedulerRunnable::breakQuantum
	7.5.4.3 sg::SchedulerRunnable::clearStopRequest
	7.5.4.4 sg::SchedulerRunnable::getName
	7.5.4.5 sg::SchedulerRunnable::setThreadProperty, sg::SchedulerRunnable::getThreadProperty
	7.5.4.6 sg::SchedulerRunnable::stopRequest
	7.5.4.7 sg::SchedulerRunnable::threadProc

	7.5.5 sg::SchedulerThread class
	7.5.5.1 sg::SchedulerThread - about
	7.5.5.2 sg::SchedulerThread::destructor
	7.5.5.3 sg::SchedulerThread::getName
	7.5.5.4 sg::SchedulerThread::setFrequency
	7.5.5.5 sg::SchedulerThread::start

	7.5.6 sg::ThreadSignal class
	7.5.6.1 sg::ThreadSignal::destructor
	7.5.6.2 sg::ThreadSignal::notify
	7.5.6.3 sg::ThreadSignal::getName

	7.5.7 sg::Timer class
	7.5.7.1 sg::Timer::cancel
	7.5.7.2 sg::Timer::destructor
	7.5.7.3 sg::Timer::getName
	7.5.7.4 sg::Timer::isSet
	7.5.7.5 sg::Timer::remaining
	7.5.7.6 sg::Timer::set
	7.5.7.7 sg::Timer::setFrequency

	7.5.8 sg::TimerCallback class
	7.5.8.1 sg::TimerCallback::getName
	7.5.8.2 sg::TimerCallback::timerCallback

	7.5.9 sg::FrequencySource class
	7.5.10 sg::FrequencyObserver class
	7.5.11 sg::SchedulerObject class
	7.5.11.1 sg::SchedulerObject::getName

	7.5.12 sg::scx_create_default_scheduler_mapping
	7.5.13 sg::scx_get_curr_scheduler_mapping

	7.6 SystemC Export limitations
	7.6.1 SystemC Export limitation on reentrancy
	7.6.2 SystemC Export limitation on calling wait()
	7.6.3 SystemC Export limitation on code translation support for external memory
	7.6.4 SystemC Export limitation on Fast Models versions for MI platforms

	8 Graphics Acceleration in Fast Models
	8.1 Introduction to GGA
	8.2 GGA modes
	8.2.1 Using a GPU register model without GGA
	8.2.2 Using GGA with a GPU register model
	8.2.3 Using GGA without a GPU register model

	8.3 Prerequisites
	8.4 GGA contents
	8.4.1 Shim directory
	8.4.2 Reconciler directory
	8.4.3 Examples directory
	8.4.4 HAL directory

	8.5 Configuration
	8.6 Feedback
	8.7 Enabling GGA
	8.7.1 Install the Arm® Mali™ OpenGL ES Emulator
	8.7.2 Install Mesa
	8.7.3 Preparing your image
	8.7.4 Prepare an Android image
	8.7.4.1 Mount and modify your system partition
	8.7.4.2 Generate libnwhal.so
	8.7.4.3 Mount and modify your vendor partition

	8.7.5 Prepare a Linux image
	8.7.6 Choose the GGA mode
	8.7.7 Boot the model with the Android or Linux image
	8.7.8 Test the Android setup

	8.8 Using GGA
	8.8.1 Log execution of graphics APIs
	8.8.2 Examine OpenGL ES execution in the graphics driver
	8.8.3 Error messages from Error code check
	8.8.4 Trace driver accesses to the GPU registers

	9 Timing Annotation
	9.1 Enabling and disabling timing annotation
	9.2 CPI files
	9.3 CPI file syntax
	9.4 BNF specification for CPI files
	9.5 Instruction and data prefetching
	9.5.1 Configuring instruction prefetching
	9.5.2 Configuring data prefetching

	9.6 Configuring cache and TLB latency
	9.7 Timing annotation tutorial
	9.7.1 Setting up the environment
	9.7.1.1 Prerequisites
	9.7.1.2 Building the EVS_Base_Cortex-A73x1 example
	9.7.1.3 Calculating the execution time of an instruction
	9.7.1.4 Displaying the total execution time of the simulation
	9.7.1.5 Calculating the average CPI value

	9.7.2 Modeling Cycles Per Instruction (CPI)
	9.7.2.1 CPI parameters
	9.7.2.2 Specifying a fixed CPI value
	9.7.2.3 Example CPI file
	9.7.2.4 Defining CPI values in a CPI file
	9.7.2.5 Validating a CPI file
	9.7.2.6 CPI class example program
	9.7.2.7 Running the example with the default CPI value
	9.7.2.8 Running the example with a custom CPI file
	9.7.2.9 Running the example with a fixed CPI value

	9.7.3 Modeling branch prediction
	9.7.3.1 Branch predictor types and parameters
	9.7.3.2 Generating branch misprediction statistics
	9.7.3.2.1 BranchPrediction plug-in statistics
	9.7.3.2.2 MTI trace sources
	9.7.3.2.3 Example trace for a branch misprediction

	9.7.3.3 Branch prediction example program
	9.7.3.4 Running the simulation
	9.7.3.5 Comparison of branch predictor types
	9.7.3.6 Impact of branch misprediction on simulation time

	10 FastRAM
	10.1 Introducing FastRAM, a bus optimization for Fast Models
	10.2 How to enable FastRAM
	10.3 FastRAM configuration file syntax
	10.4 FastRAM configuration file example
	10.5 FastRAM limitations

	A SystemC Export generated ports
	A.1 About SystemC Export generated ports

