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Preface

This preface introduces the Arm® CoreSight™ Architecture Specification. It contains the following sections:

• About this document on page x.

• Using this document on page xi.

• Conventions on page xiii.

• Additional reading on page xv.

• Feedback on page xvi.
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 About this document
About this document

This document describes the CoreSight architecture that all versions of the CoreSight compliant cores, components, 
platforms, and systems use.

Intended audience

This specification targets the following audiences:

• Hardware engineers integrating CoreSight components into a CoreSight system.

• Hardware engineers designing CoreSight components.

• Software engineers writing development tools that support CoreSight system functionality.

• Designers of debug hardware that is used to connect to a CoreSight system, for example JTAG emulators, 
SWD emulators, and Trace Port Analyzers.

• Advanced designers of development tools that support CoreSight functionality.

This specification does not document the behavior of individual components unless they form a fundamental part 
of the architecture.

Arm recommends that engineers who use this document have experience of the Arm architecture.
x Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
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Using this document

This document is organized into the following parts:

Part A, CoreSight Architecture

Part A contains an introduction to the CoreSight architecture. It contains the following chapter:

Chapter A1 About the CoreSight Architecture 

Read this chapter for an outline description of the components, memory maps, clock and reset 
requirements, system integration, and the test interface.

Part B, CoreSight Visible Component Architecture

Part B describes the CoreSight visible component architecture, which must be implemented by all CoreSight 
components that are visible to a debugger. It contains the following chapters:

Chapter B1 About the Visible Component Architecture 

Read this chapter for a description of the visible component architecture.

Chapter B2 CoreSight programmers’ model 

Read this chapter for a description of the CoreSight technology programmers’ model.

Chapter B3 Topology Detection 

Read this chapter for a description of the topology detection registers in CoreSight systems.

Part C, CoreSight Reusable Component Architecture

Part C describes the CoreSight reusable component architecture, which must be implemented by CoreSight 
components so that they can be used with other CoreSight components. It contains the following chapters:

Chapter C1 About the Reusable Component Architecture 

Read this chapter for a description of the reusable component architecture.

Chapter C2 AMBA APB and ATB Interfaces 

Read this chapter for a description of the AMBA® APB interface and the AMBA ATB interface.

Chapter C3 Event Interface 

Read this chapter for a description of the event interface.

Chapter C4 Channel interface 

Read this chapter for a description of the channel interface.

Chapter C5 Authentication Interface 

Read this chapter for a description of the authentication interface.

Chapter C6 Timestamp Interface 

Read this chapter for a description of the timestamp interface.

Chapter C7 Topology Detection at the Component Level 

Read this chapter for a description of topology detection at the component level.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xi
ID022122 Non-Confidential



Preface 
 Using this document
Part D, CoreSight System Architecture

Part D describes the CoreSight system architecture, which must be implemented by all CoreSight systems and 
provides information that is required by debuggers to enable them to use CoreSight systems. It contains the 
following chapters:

Chapter D1 About the System Architecture 

Read this chapter for a description of the CoreSight system architecture.

Chapter D2 System Considerations 

Read this chapter for a description of system design with the CoreSight system architecture.

Chapter D3 Physical Interface 

Read this chapter for a description of the physical interface for CoreSight connection to a debugger.

Chapter D4 Trace Formatter 

Read this chapter for a description of the CoreSight trace formatter.

Chapter D5 About ROM Tables 

Read this chapter for a general description of CoreSight ROM Tables.

Chapter D6 Topology Detection at the System Level 

Read this chapter for a description of topology detection at the system level.

Chapter D7 Compliance Requirements 

Read this chapter for a description of the criteria that systems must comply with to satisfy CoreSight 
requirements.

Part E, Appendixes

This specification contains the following appendixes:

Appendix E1 Power Requester 

Read this chapter for a description of the power requestor.

Appendix E2 Revisions 

Read this chapter for a description of the technical changes between released versions of this 
specification.

Appendix E3 Pseudocode Definition 

Read this chapter for a definition of the pseudocode conventions that are used in this specification.

 Glossary 

Read this chapter for definitions of some terms that are used in this specification. The glossary does 
not contain terms that are industry standard unless the Arm meaning differs from the accepted 
meaning.
xii Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
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Conventions

The following sections describe conventions that this document can use:

• Typographic conventions.

• Signals.

• Timing diagrams.

• Numbers on page xiv.

• Pseudocode descriptions on page xiv.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes internal cross-references and citations, or highlights an 
important note.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in 
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS 

Used for a few terms that have specific technical meanings, and are included in the  Glossary.

Colored text • Indicates a link, for example: http://infocenter.arm.com.

• A cross-reference, that includes the page number of referenced information that is not on the 
current page, for example Numbers on page xiv.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that 
defines the colored term, for example Embedded Trace Buffer (ETB) .

Signals

In general, this document does not define processor signals, but it does include some signal examples and 
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or 
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Timing diagrams

The figure, Key to timing diagram conventions on page xiv, explains the components that are used in timing 
diagrams. Variations, when they occur, have clear labels. Do not assume any timing information that is not explicit 
in the diagrams.

Shaded bus and signal areas are undefined so the bus or signal can assume any value within the shaded area at that 
time. The actual level is unimportant and does not affect normal operation.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xiii
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Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to 
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this 
way, its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal notation. Binary numbers are preceded by 0b, and hexadecimal numbers 
by 0x. In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This document uses a form of pseudocode to provide precise descriptions of the specified functionality. This 
pseudocode is written in a monospace font, and is described in Appendix E3 Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
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Additional reading

This section lists relevant publications from Arm and third parties.

See the Infocenter http://infocenter.arm.com, for access to Arm documentation.

Arm publications

This specification contains information that is specific to CoreSight. See the following documents for other relevant 
information:

• Arm® CoreSight™ SoC-400 Technical Reference Manual (ARM 100536).

• Arm® CoreSight™ Technology System Design Guide (ARM DGI 0012).

• Arm® Embedded Trace Macrocell Architecture Specification, ETM v1.0 to ETMv3.5

(ARM IHI 0014).

• Arm® ETM™ Architecture Specification, ETMv4 (ARM IHI 0064).

• Arm® Debug Interface Architecture Specification v6 (ARM IHI 0074).

• Arm® Debug Interface Architecture Specification v5 (ARM IHI 0031).

• Arm® Architecture Reference Manual ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• Arm® Architecture Reference Manual ARMv8, for A-profile architecture (ARM DDI 0487).

• Arm® Architecture Reference Manual Supplement, the Realm Management Extension (RME) for Armv9-A 
(ARM DDI 0615).

• Arm® Realm Management Extension (RME) System Architecture (ARM DEN 0129).

• Arm® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).

• Arm® AMBA® APB Protocol Specification (ARM IHI 0024).

• Arm® AMBA® ATB Protocol Specification (ARM IHI 0032).

Other publications

This section lists relevant documents that are published by third parties:

• IEEE, Standard Test Access Port and Boundary Scan Architecture, IEEE Std 1149.1-1990

• JEDEC, Standard Manufacturer’s Identification Code, JEP106
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xv
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Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this document, send an e-mail to  errata@arm.com. Give:

• The title.

• The number, ARM IHI 0029F.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of 
any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. 

Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find 
offensive terms in this document, please contact terms@arm.com.
xvi Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



Part A
CoreSight Architecture





Chapter A1 
About the CoreSight Architecture

This chapter introduces the CoreSight architecture. It contains the following sections:

• Purpose of the CoreSight architecture on page A1-20.

• Structure of the CoreSight architecture on page A1-21.

• CoreSight component types on page A1-23.

• CoreSight topology detection on page A1-25.
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ID022122 Non-Confidential



About the CoreSight Architecture 
A1.1 Purpose of the CoreSight architecture
A1.1 Purpose of the CoreSight architecture

The CoreSight architecture provides a system-wide solution for real-time debug and collecting trace information. It 
addresses the following:

• The requirement for multi-core debug and trace.

• The requirement to debug and trace system components beyond the core, for example buses.

• The requirement for sharing resources, such as pins and trace storage, between debug and trace components, 
to reduce silicon costs.

• The requirement for debug and trace components from multiple vendors to be able to work together.

• The requirement for minimizing pin count.

• The requirement for supporting increasing trace bandwidth from many sources.

• The requirement to accommodate the existing trace solutions, rather than expecting them to be rewritten to 
support a new trace architecture.

• The requirement for development tools to automatically identify and configure themselves for different 
systems.

• The requirement for controlling access to debug and trace functionality in the field.

• The fact that the clock and power to parts of the system can be varied or disabled independently while 
debugging the rest of the system.

• The fact that the time available to design debug and trace functionality is often limited and the number of 
options must be minimized where possible.

• The requirement for debug monitors and other on-chip debug software to have access to the same debug and 
trace functionality as an external debugger.

• The fact that systems are often built from a hierarchy of reusable platforms, where each level must hide its 
internal complexities, which prevents designers from changing the platform when using it in another system.

The CoreSight architecture satisfies the following requirements for debug and trace:

• To access debug functionality without software interaction.

• To connect to a running system without performing a reset.

• To perform certain operations, such as real-time tracing, non-invasively, with no effect on the behavior of the 
system.

• To access noninvasive functionality non-invasively.

• To minimize power consumption of debug logic when it is not in use.

• To capture trace over a large period.

The CoreSight architecture can be used to design CoreSight components, that can be combined with other CoreSight 
components and processors that comply with the CoreSight architecture to make up a CoreSight system.
A1-20 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
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A1.2 Structure of the CoreSight architecture
A1.2 Structure of the CoreSight architecture

The CoreSight architecture comprises:

• Visible component architecture.

• Reusable component architecture.

• System architecture.

A1.2.1   Visible component architecture

The CoreSight visible component architecture specifies what a component must implement to comply with the 
CoreSight architecture.

The visible component architecture is visible to the programming interface and to tools that access the device. All 
CoreSight components must comply with the visible component architecture. The visible component architecture 
specifies:

• The requirements that all CoreSight components must conform to the programmers’ model.

• The requirements that enable discovery of the component layout for topology detection.

For details of the visible component architecture, see Part B CoreSight Visible Component Architecture.

A1.2.2   Reusable component architecture

The CoreSight reusable component architecture specifies the rules that the implementation of the physical interface 
of a CoreSight component must follow to work correctly with other reusable CoreSight components. 

The reusable component architecture specifies:

• The AMBA APB interface for access to the registers in CoreSight components.

• The AMBA ATB interface for trace data transfer between CoreSight components.

• The channel interface for the communication of trigger events between CoreSight components.

• The authentication interface for control of access for debug.

• Topology detection infrastructure that specifies the signals that must be controlled at each interface.

It is possible to create a homogeneous component that performs various functions internally as separate components 
implementing the visible component architecture, provided one set of reusable component interfaces is available to 
enable integration into a larger CoreSight system.

Caution

Self-contained systems that implement only the visible, and not the reusable component architecture, are compatible 
with development tools, but have the following limitations: 

• Integrating them with other CoreSight components might be impossible.

• Detecting them during topology detection might fail.

For details about the reusable component architecture, see Part C CoreSight Reusable Component Architecture.

A1.2.3   System architecture

The following CoreSight architectural requirements ensure seamless integration of elements that comply with the 
CoreSight architecture:

• System-level requirements for:

— Clock and power domains visible to debuggers.

— Control of the authentication interface.

— Distinction between external and internal accesses through the AMBA APB interface memory map.

• The requirements for the physical interface to the debugger.

• The format that is used by the trace formatter. See CoreSight component types on page A1-23 and Chapter D4 
Trace Formatter.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-21
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A1.2 Structure of the CoreSight architecture
• The design of the ROM Table. See CoreSight component types on page A1-23 and Chapter D5 About ROM 
Tables.

• How to enable CoreSight topology detection.

• Compliance requirements for CoreSight systems.

For details about the system architecture, see Part D CoreSight System Architecture.
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A1.3 CoreSight component types
A1.3 CoreSight component types

The CoreSight architecture specifies a set of components for implementing specific SoC subsystems that support 
collection of debug and trace information. This section shows some example implementations of CoreSight 
components that are based on the CoreSight architecture.

Note

A CoreSight component is a component that implements the CoreSight visible component architecture.

The main elements are:

Control components 

CoreSight systems can include Embedded Cross Trigger (ECT) control components. The ECT 
includes:

• Cross Trigger Interface (CTI).

• Cross Trigger Matrix (CTM).

Trace sources 

CoreSight systems can include the following trace sources:

• Embedded Trace Macrocells (ETMs).

• AMBA Trace Macrocells.

• Program Flow Trace Macrocells (PTMs).

• System Trace Macrocells (STMs).

Trace links 

CoreSight systems can include the following trace links:

• Trace funnels.

• Replicators.

• ATB bridges.

Trace sinks 

CoreSight systems can include the following trace sinks:

• Trace Port Interface Units (TPIUs).

• Embedded Trace Buffers (ETBs).

• Trace Memory Controllers (TMCs).

Each trace sink can include a Trace Formatter.

Debug Ports (DPs) and Access Ports (APs) 

DPs and APs provide access to CoreSight components and other system features. DPs and APs are 
described by the Arm Debug Interface (ADI) Architecture Specification, see Arm® Debug Interface 
Architecture Specification ADIv5.0-5.2 and Arm® Debug Interface Architecture Specification 
ADIv6.0.

A DP provides a mechanism that is specific to a wire protocol, and enables access to various 
components, including APs. Some examples of common DPs are:

• A Serial Wire Debug Port (SW-DP).

• A JTAG Debug Port (JTAG-DP).

• A Serial Wire JTAG Debug Port (SWJ-DP).

An AP provides a mechanism to access buses or other protocols, in particular to access CoreSight 
components. Some examples of common APs are:

• An APB Access Port (APB-AP).

• An AHB Access Port (AHB-AP).

• An AXI Access Port (AXI-AP).
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-23
ID022122 Non-Confidential



About the CoreSight Architecture 
A1.3 CoreSight component types
• A JTAG Access Port (JTAG-AP).

For more information on specific components, see the appropriate Technical Reference Manual.
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A1.4 CoreSight topology detection

Depending on the requirements of the system, CoreSight components can be connected together in many different 
ways. Debuggers use a process that is called topology detection to detect the component connections. The 
infrastructure for topology detection is reflected at each of the following levels:

• A visible component architecture.

• A reusable component architecture.

• The system design.

CoreSight systems can have several interface types, as Transmitters or Receivers. Each CoreSight component 
specifies which interfaces are present. The debugger probes each interface to determine which other components 
are connected to it.

Each interface type defines which signals must be controllable by the Transmitter and Receiver interfaces, and how 
the debugger can determine the connectivity using these signals. These signals are referred to as topology detection 
signals. For the specification of the requirements for standard interfaces that are used by Arm CoreSight 
components, see Chapter C7 Topology Detection at the Component Level. Interface vendors must define the 
requirements for other interfaces, following the rules in Chapter D6 Topology Detection at the System Level.

A1.4.1   Basic topology detection infrastructure

This section describes the topology detection infrastructure in a bottom-up fashion, from the visible component 
level to the system level.

At the visible component architecture level, a CoreSight system provides topology detection registers. These 
registers are accessible through the programmers’ model and contain information about the components in the 
system and permit a debugger to identify the components. See Chapter B3 Topology Detection.

At the reusable component architecture level, the system defines interfaces that enable communication between the 
various components and enable debuggers access to the system. See Chapter C7 Topology Detection at the 
Component Level.

At the system level there is:

• A hierarchy of one or more ROM Tables that describe the address map for the CoreSight system. See 
Chapter D5 About ROM Tables.

• A description of physical connections for the debugger hardware. See Chapter D3 Physical Interface.

There are registers to control the wires where buses exist, and enough of the system must be controllable to establish 
the existence of the link. For example, for ATB interface signals, only ATVALID and ATREADY must be 
controlled.

A1.4.2   Mechanism for topology detection

Topology detection is only required when the debugger does not already have information about the system being 
debugged.

Before it performs topology detection, the debugger uses the following procedure to determine which components 
are present in the system:

• It connects to the physical interface. See Chapter D3 Physical Interface.

• It establishes communication with the system, for example through an interface that complies with the ADI 
architecture.

• It uses the ROM Table to determine which components are present.

The debugger continues with the following steps:

• For each component, it uses the component type to determine which interfaces are present and how to access 
signals on these interfaces.

• For each interface, it uses the interface type to determine which signals to access. Chapter C7 Topology 
Detection at the Component Level describes how to perform topology detection for each of the CoreSight 
interfaces.
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• It uses the algorithm that is described in Chapter D6 Topology Detection at the System Level to perform 
topology detection. Topology detection asserts and deasserts signals on each Transmitter interface in turn to 
check each Receiver interface and determine where interfaces are connected together.

• It resets the system and saves the description.
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Chapter B1 
About the Visible Component Architecture

The visible component architecture specifies aspects of components that are visible to the programming interface 
and to tools that access the device. 

The visible component architecture is described in the following chapters: 

• Chapter B2 CoreSight programmers’ model. The programmers’ model specifies various registers for the 
identification and control of the component.

• Chapter B3 Topology Detection. The topology detection registers provide the means for the process of 
topology detection in the CoreSight system.
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Chapter B2 
CoreSight programmers’ model

This chapter describes the CoreSight programmers’ model. It contains the following sections:

• About the programmers’ model on page B2-32.

• Component and Peripheral Identification Registers on page B2-38.

• Component-specific registers for Class 0x9 CoreSight components on page B2-44.

• Component-specific registers for Class 0xF CoreLink, PrimeCell, and system components on page B2-64.
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B2.1 About the programmers’ model

This section has the following goals:

• Define the standard set of registers that every CoreSight component must implement in addition to the control 
registers specific to that component.

• Explain how software can use integration registers for determining the topology of a CoreSight system.

It contains the following subsections:

• Basic structure of the programmers’ model.

• The Unique Component Identifier.

• Conventions for registers with less than 32 valid bits on page B2-34.

• Components that occupy more than 4KB of address space on page B2-34.

• Programmers’ Model Quick Reference on page B2-36.

B2.1.1   Basic structure of the programmers’ model

The basic register structure is outlined in Table B2-3 on page B2-36. The structure is based on the Peripheral ID 
Register structure for Arm CoreLink components, and comprises a set of word-aligned 32-bit registers that can be 
divided into the following categories:

• Component and Peripheral Identification Registers:

— A Component Identification Register, which extends the original CoreLink specification with a 
component class that indicates whether extra registers are present. For a description of the 
requirements for the Component Identification Register, see Component and Peripheral Identification 
Registers on page B2-38.

— A Peripheral Identification Register that uniquely identifies the component. For a description of the 
requirements for the Peripheral Identification Register, see PIDR0-PIDR7, Peripheral Identification 
Registers on page B2-40.

• Component-specific control registers. The set of required control registers depends on the component class. 
For a list of valid components classes, see the description of the CIDR1.CLASS field in CIDR0-CIDR3, 
Component Identification Registers on page B2-38.

This register structure must be supported by every component that implements a CoreSight compliant programmers’ 
model. 

B2.1.2   The Unique Component Identifier

To ensure that a debugger can identify a component, unique components must have a Unique Component Identifier. 
A Unique Component Identifier is a unique combination of values that are assigned to fields from the Component 
Identification Registers, the Peripheral Identification Registers, and, if implemented, several component-specific 
registers. 
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The fields that can contribute to the Unique Component Identifier are listed in Table B2-1. For details about the 
individual fields, see the field descriptions in the relevant register descriptions.

The following rules apply to the Unique Component Identifier:

• A common function is defined as a cluster of homogeneous processor components. An example of a common 
function is a set of debug control registers, a Performance Monitor Unit (PMU), a CTI, an ETM, and a ROM 
Table describing the layout of these components. 

The following rules apply to components that are part of a common function:

— Arm recommends that the values of PIDR0.PART_0 and PIDR1.PART_1 are different for components 
that are not part of the same common function.

— Although components that are part of the same common function can share the value of 
PIDR0.PIDR0.PART_0 and PIDR1.PART_1, each component must have its own Unique Component 
Identifier. 

— Because CIDR1.CLASS is part of the Unique Component Identifier, CoreSight version 3.0 permits 
ROM Tables that are part of a common function to share the part number as the other components of 
different classes that are part of the same the common function, and to use CIDR1.CLASS to 
distinguish between them.

• Multiple instances of the same component are not considered to be unique and usually have the same Unique 
Component Identifier.

• Where a component has multiple possible configurations and each configuration is a subset of one single 
configuration, it is not necessary for each configuration to have a separate Unique Component Identifier. For 
example, a trace macrocell that has a configurable number of comparators does not need a separate Unique 
Component Identifier for each configuration with a different number of comparators.

Table B2-1 Register fields that contribute to the Unique Component Identifier

Register Type Register Fields Size (bits)

Component Identification Register CIDR1 CLASS 4

Peripheral Identification Registers PIDR0 PART_0 8

PIDR1 DES_0 4

PART_1 4

PIDR2 REVISION 4

DES_1 3

PIDR3 REVAND 4

PIDR4 DES_2 4

Component-specific registers DEVARCHa

a. These registers only contribute to the Unique Component Identifier of components with a 
CIDR1.CLASS value of 0x9.

ARCHITECT 11

REVISION 4

ARCHID 16

DEVTYPEa SUB 4

MAJOR 4
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• If a component in a subsystem that is described by a ROM Table is changed, the revision number in its Unique 
Component Identifier must be changed, even if the revision number that is part of the Unique Component 
Identifier of the ROM Table is not changed. 

Note

• If multiple components share the value for the part number in PIDR0.PART_0 and PIDR1.PART_1, they are 
differentiated by the different values of the other fields in the Unique Component Identifier.

• Component designers who require more than 12 bits for the part number, for example when using a 16-bit 
part numbering scheme, can use the PIDR2.REVISION and PIDR3.REVAND fields to indicate the part 
number. Effectively, the PIDR0.PART_0, PIDR1.PART_1, PIDR2.REVISION, and PIDR3.REVAND fields 
provide a total of 20 bits that can be used to create part numbers and revisions of the component.

• CoreSight versions before version 3.0 permitted using the PIDR3.CMOD field to distinguish between 
different components. This permission is removed in CoreSight version 3.0.

B2.1.3   Conventions for registers with less than 32 valid bits

The CoreSight programmers’ model presents registers as a set of word-aligned registers, meaning every register 
occupies exactly one word (32-bits), regardless of its information content. The following convention is used in cases 
where a register has less than 32 bits of valid information:

• Valid information is stored in the least significant bits of the register.

• The most significant bits of the register are reserved, with access permissions that depend on the register.

• When accessed as a 32-bit register, all registers are accessed in little-endian format.

Note

Although a component can be designed to implement only the valid bits of a CoreSight register, software can always 
access the register as a 32-bit register.

B2.1.4   Components that occupy more than 4KB of address space

The memory layout that is shown in Table B2-3 on page B2-36 covers all components that are contained in a single 
4KB block of address space. If the registers that are defined for a component do not fit within 4KB, including the 
256 bytes reserved for CoreSight management registers, it is necessary to allocate extra address space. The 
following rules apply:

• Extra address space must be allocated in 4KB blocks, and the total number of blocks must be a power-of-2. 
The maximum number of blocks is 16,384 for an address space of 64MBytes.

• All 4KB blocks comprising a component must be allocated as a contiguous segment, without gaps. 

• The CoreSight programmers’ model must be implemented in one of the 4KB blocks making up the 
component. It is not necessary to implement the programmers’ model in the other 4KB blocks that are part 
of the same component.

Note

From CoreSight version 3.0 onwards, the CoreSight programmers’ model does not need to be implemented 
in the last 4KB block of each individual component. 

• Arm recommends that debug tools determine the size of the component from the part number in the 
Peripheral ID registers and other IMPLEMENTATION DEFINED registers in the component.

From v3.0 onwards, using the PIDR4.SIZE field to indicate the size of the component is deprecated:

— Arm recommends that PIDR4.SIZE is always 0x0. The PIDR4.SIZE field might not correctly indicate 
the size of the component.

— Arm recommends that debug tools ignore the value of PIDR4.SIZE.
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For more information about PIDR4, see PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

• The bus that is used to access the component must have enough address lines to span the entire allocated 
address space. See Table B2-2.

The following alternative methods for extending the address space available to a component are possible, but not 
recommended:

Implementing a second CoreSight component 

The address space can be extended by implementing an additional CoreSight component. However, 
it is not recommended as it requires a method for linking this component back to the original 
component through topology detection.

Implementing an extra linked address space 

The address space can be extended with the address space of a component with an area that is not 
used by any CoreSight components that were designed according to the programmers’ model. 
However, it is not recommended as it requires a method for determining the address of the extended 
address space in the programmers’ model of the component. This limits the system design options.

Table B2-2 summarizes the relationship between the address space size, the number of available registers, and the 
number of required address lines.

Table B2-2 Spanning multiple 4KB windows

Number of 
4KB blocks

Total memory 
window used

Component-specific 
registers available 
(words)

Expected 
PADDRDBG inputa

a. This table uses the AMBA APB protocol as an example protocol used to access a component, where the 
PADDRDBG bus is the address bus that is used to select the component registers. PADDRDBG[1:0] 
are not required on components because all transfers are 32-bit word-aligned. 

1 4KB, 1K words 960 PADDRDBG[11:2]

2 8KB 1984 PADDRDBG[12:2]

4 16KB, 4K words 4032 PADDRDBG[13:2]

8 32KB, 8K words 8128 PADDRDBG[14:2]

16 64KB 16320 PADDRDBG[15:2]

32 128KB 32704 PADDRDBG[16:2]

64 256KB, 64K words 65472, 63.94K PADDRDBG[17:2]

128 512KB 127.94K PADDRDBG[18:2]

256 1MB, 256K words 255.9K PADDRDBG[19:2]

512 2MB ~512K PADDRDBG[20:2]

1024 4MB ~1M PADDRDBG[21:2]

2048 8MB ~2M PADDRDBG[22:2]

4096 16MB ~4M PADDRDBG[23:2]

8192 32MB ~8M PADDRDBG[24:2]

16384 64MB, 16M words ~16M PADDRDBG[25:2]

Reserved - - -
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-35
ID022122 Non-Confidential



CoreSight programmers’ model 
B2.1 About the programmers’ model
B2.1.5   Programmers’ Model Quick Reference

Table B2-3 shows the address offsets for the CoreSight component registers, in order of their offset in the 4KB 
block.

The words at offsets 0xF00-0xFFC are the CoreSight management registers. These registers are common to all 
CoreSight components. This area is reserved for CoreSight registers, and device-specific control registers must not 
use it. The CoreSight management registers include:

• The Peripheral ID Registers, at offsets 0xFD0-0xFEC.

• The Component ID Registers, at offsets 0xFF0-0xFFC.

Table B2-3 CoreSight component register address offsets

Offset Type Name Description

0xF00 RW ITCTRL Integration Mode Control Register

0xF04-0xF9C RES0 - Reserved

0xFA0 RW CLAIMSET Claim Tag Set Register Claim Tag Registers

0xFA4 RW CLAIMCLR Claim Tag Clear Register

0xFA8 RO DEVAFF0 Device Affinity Registers

0xFAC RO DEVAFF1

0xFB0 WO LAR Software Lock Access Register Software Lock 
Registers

0xFB4 RO LSR Software Lock Status Register

0xFB8 RO AUTHSTATUS Authentication Status Register

0xFBC RO DEVARCH Device Architecture Register

0xFC0 RO DEVID2 Device Configuration Register 2

0xFC4 RO DEVID1 Device Configuration Register 1

0xFC8 RO DEVID Device Configuration Register

0xFCC RO DEVTYPE Device Type Identifier Register

0xFD0 RO PIDR4 Component size (deprecated) and 
JEP106 identification

Peripheral 
Identification 
Registers

0xFD4 RO PIDR5

0xFD8 RO PIDR6

0xFDC RO PIDR7

0xFE0 RO PIDR0 Part number

0xFE4 RO PIDR1 JEP106 identification and Part number

0xFE8 RO PIDR2 Revision and JEP106 identification

0xFEC RO PIDR3 RevAnd and Customer modified

0xFF0 RO CIDR0 Preamble Component 
Identification 
Registers0xFF4 RO CIDR1 Component class and Preamble

0xFF8 RO CIDR2 Preamble

0xFFC RO CIDR3 Preamble
B2-36 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



CoreSight programmers’ model 
B2.1 About the programmers’ model
The remaining words can be used for component-specific registers. Arm recommends using the following 
conventions:

• Control registers start at address 0x000 and continue upwards.

• Any registers that are used purely for integration purposes start at address 0xEFC and continue downwards.

The register type of device-specific registers is IMPLEMENTATION DEFINED and can be RW, RO, or WO.

Table B2-4 defines the behavior on accesses to reserved registers and fields.

Locations that are marked as RES0 are reserved. Reads of write-only registers are considered accesses to Reserved 
registers. Writes to read-only registers are considered accesses to Reserved registers. The following tables show the 
specific meaning of each of the behaviors.

Table B2-5 shows the required behavior of a CoreSight component for registers that are defined as RW, RO, or WO.

Table B2-6 shows the required behavior of software when accessing a CoreSight component for registers that are 
defined as RW, RO, or WO.

Programming a reserved value into a register, or a field within a register, might result in CONSTRAINED 
UNPREDICTABLE behavior of the component. Usually, this involves mapping the behavior to one or more permitted 
behaviors.

Table B2-4 Behavior on accesses to reserved registers and fields

Access to Behavior

Reserved registers RES0

Unimplemented registers RAZ/WI

Reserved fields in registers RES0 or RES1

Unimplemented fields in registers RES0 or RES1

Unimplemented bits in implemented fields RAZ/WI

Table B2-5 CoreSight component behavior

Behavior
Component behavior on reads Component behavior on writes

RW RO WO RW RO WO

RES0 RAZ RAZ RAZ WI WI WI

RES1 RAO RAO RAO WI WI WI

RAZ/WI RAZ RAZ RAZ WI WI WI

Table B2-6 Software behavior

Behavior
Software behavior on reads Software behavior on writes

RW RO WO RW RO WO

RES0 Treat as UNKNOWN Treat as UNKNOWN Do not read Preserve Do not write Preserve

RES1 Treat as UNKNOWN Treat as UNKNOWN Do not read Preserve Do not write Preserve

RAZ/WI Expect zero Expect zero Do not read Are ignored Do not write Are ignored
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B2.2 Component and Peripheral Identification Registers

This section describes the following registers:

• CIDR0-CIDR3, Component Identification Registers.

• PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

B2.2.1   CIDR0-CIDR3, Component Identification Registers

The CIDR0-CIDR3 characteristics are:CIDR1CIDR2

Purpose 

Provide information that can be used to identify a CoreSight component. 

Usage constraints 

CIDR0-CIDR3 are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A set of four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

Bits[31:8] of CIDR3 

RES0.

PRMBL_3, CIDR3 bits[7:0] 

Preamble, segment 3. Must be 0xB1.

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
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Bits[31:8] of CIDR2 

RES0.

PRMBL_2, CIDR2 bits[7:0] 

Preamble, segment 2. Must be 0x05.

Bits[31:8] of CIDR1 

RES0.

CLASS, CIDR1 bits[7:4] 

The component class, which can be one of the values that are listed in Table B2-7.

PRMBL_1, CIDR1 bits[3:0] 

Preamble, segment 1. Must be 0x0.

Bits[31:8] of CIDR0 

RES0.

PRMBL_0, CIDR0 bits[7:0] 

Preamble, segment 0. Must be 0x0D.

Accessing CIDR

CIDR0-CIDR3 can be accessed at the following addresses:

Table B2-7 CLASS field encodings

Value Description

0x0 Generic verification component.

0x1 ROM Table. See ROM Table Types on page D5-149.

0x2-0x8 Reserved.

0x9 CoreSight component. See Component-specific registers for Class 0x9 
CoreSight components on page B2-44.

0xA Reserved.

0xB Peripheral Test Block.

0xC-0xD Reserved.

0xE Generic IP component.

0xF CoreLink, PrimeCell, or system component with no standardized register 
layout, for backwards compatibility. See Component-specific registers for 
Class 0xF CoreLink, PrimeCell, and system components on page B2-64.

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC
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B2.2.2   PIDR0-PIDR7, Peripheral Identification Registers

The PIDR0-PIDR7 characteristics are:PIDR1PIDR2PIDR3PIDR4PIDR5PIDR6

Purpose 

Provide information that can be used to identify a CoreSight component. Most of the fields making 
up PIDR0-PIDR7 are included in the Unique Component Identifier. The Unique Component 
Identifier can also include fields from the CIDR1, DEVARCH, and DEVTYPE registers. For 
details, see The Unique Component Identifier on page B2-32.

Usage constraints 

PIDR0-PIDR7 are accessible as follows:

Configurations 

Included in all implementations.

Attributes A set of eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

Default

RO

31 0

RES0

8 7

CMODREVAND

4 3

PIDR3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR1 0xFE4

31 0

RES0 PART_0

8 7

PIDR0 0xFE0

31 0

RES0PIDR7 0xFDC

31 0

RES0PIDR6 0xFD8
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PIDR3 bits[31:8] 

RES0. 

REVAND, PIDR3 bits[7:4] 

The REVAND field indicates minor errata fixes specific to this design, for example metal 
fixes after implementation. Usually this field is zero. If the field is required, Arm 
recommends that component designers ensure that it can be changed by a metal fix, for 
example by driving it from registers that reset to zero.

Together with PIDR2.REVISION, PIDR3.REVAND forms the revision number of the 
component. When a component is changed, one or more of the fields making up the revision 
number must be changed to ensure that debug tools can differentiate the different versions 
of the component.

CMOD, PIDR3 bits[3:0] 

Customer Modified. If the component is reusable IP, the CMOD field indicates whether the 
customer has modified the behavior of the component. CMOD can have one of the 
following values:

0x0 The component is not modified from the original design.

Any other value 

The component has been modified.

Arm recommends that the user or debugger reads the documentation for the 
component to determine the modifications that are made to the component.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are 
identical.

• If the CMOD fields of both components have the same non-zero value, it does not 
necessarily mean that they have been subjected to the same modifications.

• If the value of the CMOD field of either of the two components is non-zero, they 
might not be identical, even though they have the same Unique Component Identifier.

See also The Unique Component Identifier on page B2-32.

Note
CoreSight versions before version 3.0 permitted using the CMOD field to distinguish 
between different components. This permission is removed in CoreSight version 3.0.

PIDR2 bits[31:8] 

RES0. 

REVISION, PIDR2 bits[7:4] 

The REVISION field is an incremental value starting at 0x0 for the first design of a 
component. The value is increased by 1 for both major and minor revisions and is used as a 
look-up to establish the exact major and minor revision.

31 0

RES0PIDR5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR4 0xFD0
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Together with PIDR3.REVAND, PIDR2.REVISION forms the revision number of the 
component. When a component is changed, one or more of the fields making up the revision 
number must be changed to ensure that debug tools can differentiate the different versions 
of the component.

JEDEC, PIDR2 bits[3] 

 Must be 0b1 to indicate that a JEDEC-assigned value is used.

DES_1, PIDR2 bits[2:0] 

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and 
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

These codes indicate the designer of the component and not the implementer, except where 
the two are the same. To obtain a number, or to see the assignment of these codes, contact 
JEDEC  http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

For example, Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

• The continuation code is the number of times 0x7F appears before the final number. 
For example, for Arm Limited this code is 0x4.

• The identification code is bits[6:0] of the final number. For example, Arm Limited 
has the code 0x3B.

PIDR1 bits[31:8] 

RES0. 

DES_0, PIDR1 bits[7:4] 

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and 
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

For details about the JEP106 codes, see the description of the PIDR2.DES1 field.

PART_1, PIDR1 bits[3:0] 

Part number, which is selected by the designer of the component, and stored in PIDR0 and 
PIDR1 as follows:

PART_0, PIDR0 bits[7:0] Part number bits[7:0].

PART_1, PIDR1 bits[3:0] Part number bits[11:8].

PIDR0 bits[31:8] 

RES0. 

PART_0, PIDR0 bits[7:0] 

Part number, which is selected by the designer of the component, and stored in PIDR0 and 
PIDR1 as follows:

PART_0, PIDR0 bits[7:0] Part number bits[7:0].

PART_1, PIDR1 bits[3:0] Part number bits[11:8].
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PIDR7 bits[31:0] 

RES0. 

PIDR6 bits[31:0] 

RES0. 

PIDR5 bits[31:0] 

RES0. 

PIDR4 bits[31:8] 

RES0. 

SIZE, PIDR4 bits[7:4] 

The SIZE field indicates the memory size that is used by this component. It is expressed as 
the logarithm to the base 2 of the number of 4KB blocks the component occupies. The value 
0x0 indicates that either:

• The component uses a single 4KB block.

• The component uses an UNKNOWN number of 4KB blocks.

Using the SIZE field to indicate the size of the component is deprecated. The SIZE field 
might not correctly indicate the size of the component. Arm recommends that debug tools 
determine the size of the component from the Unique Component Identifier fields, and other 
IMPLEMENTATION DEFINED registers in the component.

DES_2, PIDR4 bits[3:0] 

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and 
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

For details about the JEP106 codes, see the description of the PIDR2.DES1 field.

Accessing the PIDR

PIDR0-PIDR7 can be accessed at the following addresses:

Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
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B2.3 Component-specific registers for Class 0x9 CoreSight components

Components that have the value 0x9 assigned to the CIDR1.CLASS field in the Component Identification Register 
are CoreSight components. For details, see CIDR0-CIDR3, Component Identification Registers on page B2-38.

CoreSight components must implement an extra set of registers, referred to as the CoreSight management registers, 
which are described in this section. Addresses 0xF00 to 0xFCC are reserved for use by CoreSight management 
registers.

When implementing a CoreSight component, ensure that the following requirements are met:

• Any reads from unimplemented or reserved registers in 0xF00 to 0xFFF must return zero, and writes must be 
ignored. For details about the required behavior of reserved locations, see Programmers’ Model Quick 
Reference on page B2-36.

• Two or more functionally different CoreSight components are permitted to share a part number, as long as 
they each have a different Unique Component Identifier. See The Unique Component Identifier on 
page B2-32.
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B2.3.1   AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose 

Reports the required security level and status of the authentication interface. Where functionality 
changes on a given security level, the change in status must be reported in this register. For details 
about the authentication interface, see Chapter C5 Authentication Interface.

Usage constraints 

Some components might not distinguish between Secure and Non-secure debug. For example, a 
trace component for a simple bus might connect to a Secure or a Non-secure bus, while its enable 
signals connect differently depending on which bus the component connects to. A failure to 
distinguish between Secure and Non-secure debug could result in:

• A component that indicates only Non-secure debug capabilities while performing only 
Secure debug functions.

• A component that indicates only Secure debug capabilities while performing only 
Non-secure debug functions.

Debuggers must be able to accommodate this possibility.

AUTHSTATUS is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28] 

RES0.

RTNID, bits [27:26] 

Root Non-invasive Debug. Indicates whether a separate enable control for Root state 
non-invasive debug features is implemented and enabled. The defined values of this field 
are:

0b00 Separate Root non-invasive debug enable not implemented or Root state 
non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
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RTID, bits [25:24] 

Root Invasive Debug. Indicates whether a separate enable control for Root state invasive 
debug is implemented and enabled. The defined values of this field are:

0b00 Separate Root invasive debug enable not implemented or Root state invasive 
debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

SUNID, bits [23:22] 

Secure Unprivileged non-invasive debug. Indicates whether a separate enable control for 
Secure state non-invasive debug features is implemented and enabled. The defined values 
of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

SUID, bits [21:20] 

Secure Unprivileged invasive debug. Indicates whether a separate enable control for Secure 
state invasive debug features is implemented and enabled. The defined values of this field 
are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

NSUNID, bits [19:18] 

Non-secure Unprivileged non-invasive debug. Indicates whether a separate enable control 
for Non-secure state non-invasive debug features is implemented and enabled. The defined 
values of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

NSUID, bits [17:16] 

Non-secure Unprivileged invasive debug. Indicates whether a separate enable control for 
Non-secure state invasive debug features is implemented and enabled. The defined values 
of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.
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RLNID, bits[15:14] 

Realm Non-invasive debug. Indicates whether a separate enable control for Realm state 
non-invasive debug features is implemented and enabled. The defined values of this field 
are:

0b00 Separate Realm non-invasive debug enable not implemented or Realm state 
non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

RLID, bits[13:12] 

Realm Invasive Debug. Indicates whether a separate enable control for Realm state invasive 
debug is implemented and enabled. The defined values of this field are:

0b00 Separate Realm invasive debug enable not implemented or Realm state invasive 
debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

HNID, bits[11:10] 

Hypervisor non-invasive debug. 

This field can have one of the following values:

0b00 Debug level not supported.

0b10 Supported and disabled. 

(HIDEN | HNIDEN) & (DBGEN | NIDEN) == FALSE.

0b11 Supported and enabled. 

(HIDEN | HNIDEN) & (DBGEN | NIDEN) == TRUE.

All other values are reserved.

HID, bits[9:8] 

Hypervisor invasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled. 

(HIDEN | DBGEN) == FALSE.

0b11 Supported and enabled. 

(HIDEN | DBGEN) == TRUE.

All other values are reserved.

SNID, bits[7:6] 

Secure noninvasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled. 

(SPIDEN | SPNIDEN) & (DBGEN | NIDEN) == FALSE.

0b11 Supported and enabled. 

(SPIDEN | SPNIDEN) & (DBGEN | NIDEN) == TRUE.

All other values are reserved.

SID, bits[5:4] 
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Secure invasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled. 

(SPIDEN | DBGEN) == FALSE.

0b11 Supported and enabled. 

(SPIDEN | DBGEN) == TRUE.

All other values are reserved.

NSNID, bits[3:2] 

Non-secure noninvasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled. 

(NIDEN | DBGEN) == FALSE.

0b11 Supported and enabled. 

(NIDEN | DBGEN) == TRUE.

All other values are reserved.

NSID, bits[1:0] 

Non-secure invasive debug. 

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled. 

DBGEN == FALSE.

0b11 Supported and enabled. 

DBGEN == TRUE.

All other values are reserved.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

B2.3.2   CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The characteristics of CLAIMSET and CLAIMCLR are:

Purpose 

Often there are several debug agents that must cooperate to control the resources that the CoreSight 
components make available. For example, an external debugger and a debug monitor running on the 
target might both require control of the breakpoint resources of a processor. It is important that a 
debug agent does not reprogram debug resources that another debug agent is using.

The Claim tag registers provide various bits that can be separately set and cleared to indicate 
whether functionality is in use by a debug agent. All debug agents must implement a common 
protocol to use these bits. 

Offset

0xFB8
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This specification does not define the claim tag protocol, but consider the following examples that 
illustrate how these bits can be used:

Protocol 1: Set common bit to claim 

In this scenario, debug functionality is only claimed on a few rare, well-defined points, 
for example when the target is powered up or when a debugger is connected.

Each bit in the claim tag corresponds to an area of debug functionality, which is shared 
between all debug agents. For example, 4 bits can control four areas of functionality. 
The following shows a pseudocode implementation of this protocol:
read claim tag bit
if (bit is set)

functionality is not available
else

set bit
use functionality

Protocol 2: Set private bit to claim 

In this scenario, debug functionality is also only claimed on a few rare, well-defined 
points, but it is necessary to be able to determine which other agent has claimed 
functionality.

Each bit in the claim tag corresponds to an area of debug functionality for a debug agent. 
For example, 4 bits can control two areas of functionality each for two debug agents. 
The following shows a pseudocode implementation of this protocol:
read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
use functionality

Protocol 3: Set private bit and check for race 

In this scenario, debug functionality is claimed regularly and it is possible for two debug 
agents to attempt to claim it at the same time. Each bit in the claim tag corresponds to 
an area of debug functionality for a debug agent, as in protocol 2. The following shows 
a pseudocode implementation of this protocol:
read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
read all claim tag bits for this functionality
if (any bits are set by other agents)

clear bit for this agent
wait a random amount of time
go back to start

else
use functionality

Usage constraints 

The value of CLAIMCLR must be zero at reset.

CLAIMSET and CLAIMCLR are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

 32-bit registers.

Default

RW
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-49
ID022122 Non-Confidential



CoreSight programmers’ model 
B2.3 Component-specific registers for Class 0x9 CoreSight components
Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR bits[31:nTags] 

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0] 

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits 
set in CLAIMSET.

Allowed values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags] 

RAZ/WI

SET, CLAIMSET bits[nTags-1:0] 

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim 
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

Accessing CLAIMCLR and CLAIMSET

CLAIMCLR and CLAIMSET can be accessed at the following address:

Offset

CLAIMCLR CLAIMSET

0xFA4 0xFA0

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
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B2.3.3   DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose 

Enables a debugger to determine whether two components have an affinity with each other.

For example, when a trace macrocell connects to a processor, the DEVAFF0 and DEVAFF1 in both 
components must contain identical values that are unique. Doing so enables the debugger to identify 
how the components relate to each other, without performing topology detection.

Usage constraints 

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A set of 32-bit registers that return an IMPLEMENTATION DEFINED value. A component might have 
affinity with a group of components, for example where a single component is shared between 
multiple PEs. The DEVAFF registers can be used to indicate the affinity with a group of 
components. See the Arm® Architecture Reference Manual, for A-profile for examples of how 
affinity with a group of PEs is indicated.

Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF1, bits[31:0], 
DEVAFF0, bits[31:0] 

IMPLEMENTATION DEFINED. If a component has no unique association with another 
component, these fields are RAZ.

Examples of the content that DEVAFF returns are the MPIDRs of Arm architecture 
processors and CTIs that connect to them:

• DEVAFF0 returns MPIDR, bits[31:0].

• DEVAFF1 returns MPIDR, bits[63:32].

Default

RO

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8
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Accessing DEVAFF0-DEVAFF1

DEVAFF0-DEVAFF1 can be accessed at the following address:

Offset

DEVAFF0 DEVAFF1

0xFA8 0xFAC
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B2.3.4   DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose 

Identifies the architect and architecture of a CoreSight component. The architect might differ from 
the designer of a component, for example when Arm defines the architecture but another company 
designs and implements the component.

Usage constraints 

DEVARCH is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21] 

Defines the architect of the component:

Bits[31:28] Indicates the JEP106 continuation code.

Bits[27:21] Indicates the JEP106 identification code.

See the Standard Manufacturers Identification Code for information about JEP106. For 
components where Arm is the architect, this 11-bit field returns 0x23B.

PRESENT, bit[20] 

Indicates the presence of this register:

0 = DEVARCH is not present. Bits[31:0] must be RAZ.

1 = DEVARCH is present.

REVISION, bits[19:16] 

Architecture revision. Returns the revision of the architecture that the ARCHID field 
specifies.

ARCHID, bits[15:0] 

Architecture ID. Returns a value that identifies the architecture of the component.

Default

RO

ARCHITECT

31 21 20 19 16 15 0

ARCHIDREVISION

PRESENT
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-53
ID022122 Non-Confidential



CoreSight programmers’ model 
B2.3 Component-specific registers for Class 0x9 CoreSight components
Table B2-8 lists the ARCHID values for some example components where Arm is the 
architect.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

Table B2-8 Example ARCHID values

ARCHID Description

0x0A00 RAS architecture

0x1A01 Instrumentation Trace Macrocell (ITM) architecture

0x1A02 DWT architecture

0x1A03 Flash Patch and Breakpoint unit (FPB) architecture

0x2A04 Processor debug architecture (ARMv8-M)

0x6A05 Processor debug architecture (ARMv8-R)

0x0A10 PC sample-based profiling

0x4A13 ETM architecture.

0x1A14 CTI architecture

0x6A15 Processor debug architecture (v8.0-A)

0x7A15 Processor debug architecture (v8.1-A)

0x8A15 Processor debug architecture (v8.2-A)

0x2A16 Processor Performance Monitor (PMU) architecture

0x0A17 Memory Access Port v2 architecture

0x0A27 JTAG Access Port v2 architecture

0x0A31 Basic trace router

0x0A34 Power requester

0x0A47 Unknown Access Port v2 architecture

0x0A50 HSSTP architecture

0x0A63 STM architecture

0x0A75 CoreSight ELA architecture

0x0AF7 CoreSight ROM architecture

Offset

0xFBC
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B2.3.5   DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose 

Indicates the capabilities of the component.

Usage constraints 

This register is IMPLEMENTATION DEFINED for each part number and designer. 

The entire 32-bit field can be used because the data width is determined by the component itself. 

Unused bits must be RES0. 

If the component is configurable, Arm recommends that this register reflects any changes to a 
standard configuration.

DEVID is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0] 

IMPLEMENTATION DEFINED.

Accessing DEVID

DEVID can be accessed at the following address:

Default

RO

Offset

0xFC8

31 0

IMPLEMENTATION DEFINED
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B2.3.6   DEVID1, Device Configuration Register 1

The DEVID1 characteristics are:

Purpose 

Indicates the capabilities of the component.

Usage constraints 

This register is IMPLEMENTATION DEFINED for each part number and designer. 

The entire 32-bit field can be used because the data width is determined by the component itself. 

Unused bits must be RES0. 

If the component is configurable, Arm recommends that this register reflects any changes to a 
standard configuration.

DEVID1 is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID1 bit assignments are:

Bits[31:0] 

IMPLEMENTATION DEFINED.

Accessing DEVID1

DEVID1 can be accessed at the following address:

Default

RO

Offset

0xFC4

31 0

IMPLEMENTATION DEFINED
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B2.3.7   DEVID2, Device Configuration Register 2

The DEVID2 characteristics are:

Purpose 

Indicates the capabilities of the component.

Usage constraints 

This register is IMPLEMENTATION DEFINED for each part number and designer. 

The entire 32-bit field can be used because the data width is determined by the component itself. 

Unused bits must be RES0. 

If the component is configurable, Arm recommends that this register reflects any changes to a 
standard configuration.

DEVID2 is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID2 bit assignments are:

Bits[31:0] 

IMPLEMENTATION DEFINED.

Accessing DEVID2

DEVID2 can be accessed at the following address:

B2.3.8   DEVTYPE, Device Type Identifier Register

The DEVTYPE characteristics are:

Purpose 

If the part number field is not recognized, a debugger can report the information that is provided by 
DEVTYPE about the component instead.

Default

RO

Offset

0xFC0

31 0

IMPLEMENTATION DEFINED
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Usage constraints 

DEVTYPE is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8] 

RES0.

SUB, bits[7:4] 

Sub type for the component device type, as described in Table B2-9.

MAJOR, bits[3:0] 

Major type for the component device type, as described in Table B2-9.

Default

RO

Table B2-9 Device type encoding

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description

0x0 Miscellaneous 0x0 Other, undefined.

0x1-0x3 Reserved.

0x4 Validation component.

0x5-0xF Reserved.

0x1 Trace Sink 0x0 Other.

0x1 Trace port, for example TPIU.

0x2 Buffer, for example ETB.

0x3 Basic trace router.

0x4-0xF Reserved.

31 7 4 3 0

RES0 SUB MAJOR

8
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0x2 Trace Link 0x0 Other.

0x1 Trace funnel, Router.

0x2 Filter.

0x3 FIFO, Large Buffer.

0x4-0xF Reserved.

0x3 Trace Source 0x0 Other.

0x1 Associated with a processor core.

0x2 Associated with a DSP.

0x3 Associated with a Data Engine or coprocessor.

0x4 Associated with a Bus, stimulus-derived from bus activity.

0x5 Reserved.

0x6 Associated with software, stimulus-derived from software 
activity.

0x7-0xF Reserved.

0x4 Debug Control 0x0 Other.

0x1 Trigger Matrix, for example ECT.

0x2 Debug Authentication Module. See Control of 
authentication interfaces on page D2-117

0x3 Power requestor.

0x4-0xF Reserved.

0x5 Debug Logic 0x0 Other.

0x1 Processor core.

0x2 DSP.

0x3 Data Engine or coprocessor.

0x4 Bus, stimulus-derived from bus activity.

0x5 Memory, tightly coupled device such as Built In Self-Test 
(BIST).

0x6-0xF Reserved.

Table B2-9 Device type encoding (continued)

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description
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Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

B2.3.9   ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose 

A component can use this register to dynamically switch between functional mode and 
integration mode. 

In integration mode, topology detection is enabled. For more information, see Chapter B3 
Topology Detection.

Usage constraints 

After switching to integration mode and performing integration tests or topology detection, 
reset the system to ensure correct behavior of CoreSight and other connected system 
components.

ITCTRL is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register.

0x6 Performance Monitor 0x0 Other.

0x1 Associated with a processor.

0x2 Associated with a DSP.

0x3 Associated with a Data Engine or coprocessor.

0x4 Associated with a bus, stimulus-derived from bus activity.

0x5 Associated with a Memory Management Unit that conforms 
to the Arm System MMU Architecture.

0x6-0xF Reserved.

0x7-0xF Reserved - -

Offset

0xFCC

Table B2-9 Device type encoding (continued)

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description

Default

RW
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Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1] 

RES0.

IME, bits[0] Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology 
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

B2.3.10   LSR and LAR, Software Lock Status Register and Software Lock Access Register

The characteristics of the Software lock registers are:

Purpose 

The Software lock mechanism prevents accidental access to the registers of CoreSight components. 
Software that is being debugged might accidentally write to memory used by CoreSight 
components. Accidental accesses might disable those components, making the software impossible 
to debug. The CoreSight programmers’ model includes a Lock Status Register, LSR, and a Lock 
Access Register, LAR, to control software access to CoreSight components to ensure that the 
likelihood of accidental access to CoreSight components is small.

Note

From CoreSight version 3.0 onwards, implementation of the Software lock mechanism that is 
controlled by LAR and LSR is deprecated.

To ensure that the software being debugged can never access an unlocked CoreSight component, a 
software monitor that accesses debug registers must unlock the component before accessing any 
registers, and lock the component again before exiting the monitor.

Arm recommends that external accesses from a debugger are not subject to the Software lock, and 
therefore that external reads of the LSR return zero. For information on how CoreSight components 
can distinguish between external and internal accesses, see Debug APB interface memory map on 
page D2-118.

A system can include several bus Requesters capable of accessing the same CoreSight component, 
for example in systems that include several processors. In this case, it is possible for software 
running on one processor, processor A, to accidentally access the component while it is being 
programmed by a debug monitor running on another processor, processor B. Because the 
component that is being accessed cannot distinguish between the two processors, processor A might 
disable the component and cause problems for processor B. The probability of this occurring is low, 
but must be considered if there are special circumstances that make this scenario more likely.

Offset

0xF00

RES0

31 01

IME
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Note

The claim tag cannot be used to manage accesses to the Software lock registers, because access to 
the claim tag is subject to the Software lock mechanism.

Usage constraints 

LSR and LAR are accessible as follows:

Configurations 

LSR is included in all implementations, and LSR.SLI indicates whether LAR is implemented.

Attributes 

32-bit registers.

Field Descriptions

The LSR and LAR bit assignments are:

LSR, bits[31:3] 

RES0.

nTT, LSR bits[2] 

This bit is always zero, which indicates that the component implements a 32-bit LAR.

SLK, LSR bits[1] 

This field is used to return the current software lock status.

Permitted values of SLK are:

0 Writing to the other registers in the component is permitted.

1 Writing to the other registers in the component is blocked.

Note

When present, the reset value of this bit is 1.

SLI, LSR bits[0] 

Default

LSR LAR

RO WO

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

31 0

KEYLAR 0xFB0
B2-62 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



CoreSight programmers’ model 
B2.3 Component-specific registers for Class 0x9 CoreSight components
This field indicates whether a Software lock mechanism is implemented.

Permitted values of SLI are:

0 Software lock mechanism is not implemented.

1 Software lock mechanism is implemented.

Note

Some components have two programmable views, one only visible from external tools and 
the other visible from software running on-chip. In this case:

• For accesses from external tools, the Software lock mechanism is not required and 
LSR.SLI and LSR.SLK both return a value of zero.

• For accesses from software running on-chip the Software lock is optional, and, when 
implemented, LSR.SLI has the value 0b1 and LSR.SLK returns the status of the 
Software lock.

KEY, LAR bits[31:0] 

Writing a value to this field controls write access to the other registers in the component.

Permitted values of KEY are:

Write 0xC5ACCE55 

Signals that LSR must permit writing to the other registers in the component.

Write any other value 

Signals that LSR must block writing to the other registers in the component.

Accessing LSR and LAR

LSR and LAR can be accessed at the following address:

Offset

LAR LSR

0xFB0 0xFB4
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B2.4 Component-specific registers for Class 0xF CoreLink, PrimeCell, and system 
components

Components that have the value 0xF assigned to the CIDR1.CLASS field in the Component Identification Register 
are CoreLink, PrimeCell, or system components. For details, see CIDR0-CIDR3, Component Identification 
Registers on page B2-38. 

CoreLink, PrimeCell, and system components are not related to the CoreSight system. 

No component-specific registers are specified for this component class.
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Chapter B3 
Topology Detection

This chapter describes the CoreSight topology detection registers. It contains the following sections:

• About topology detection on page B3-66.

• Requirements for topology detection signals on page B3-67.

• Combination with integration registers on page B3-68.

• Interfaces that are not connected or implemented on page B3-69.

• Variant interfaces on page B3-70.

• Documentation requirements for topology detection registers on page B3-71.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B3-65
ID022122 Non-Confidential



Topology Detection 
B3.1 About topology detection
B3.1 About topology detection

CoreSight system components can have various interface types. A component specifies which interfaces are present, 
and whether they act as Transmitter or Receiver. Each interface type defines a set of control signals that enable a 
debugger to determine which other components are connected to it. These signals are referred to as topology 
detection signals. During topology detection, a debugger probes each interface to determine which other 
components are connected to it.

For the specification of the requirements for the topology detection signals for standard interfaces that are used by 
Arm CoreSight components, see Chapter C7 Topology Detection at the Component Level. Interface vendors must 
define the requirements for other interfaces, following the rules in Chapter D6 Topology Detection at the System 
Level.
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B3.2 Requirements for topology detection signals

Topology detection signals must observe the following requirements:

• For each topology detection input, it must be possible to read the state of that input. 

• For each topology detection output, it must be possible to drive the state of that output without affecting other 
topology detection signals. 

Note

It is not necessary to implement topology detection registers on the programming interface for the component, 
because this connectivity is described by the ROM Table.

 Topology detection can be invasive. See Chapter D6 Topology Detection at the System Level.

B3.2.1   Recommended method

Arm recommends that topology detection registers are implemented as follows:

• Implement a topology detection mode that isolates the topology detection signals.

• For each topology detection output, provide a register that sets the value of that output in topology detection 
mode.

• For each topology detection input, provide a register that returns the value of that input in topology detection 
mode.
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B3.3 Combination with integration registers

In addition to the registers that are required for topology detection, many components implement integration 
registers that provide the same control over most inputs and outputs. This technique enables rapid integration testing 
when validating a SoC built from these components, because a test bench can assess the connectivity between two 
components without knowledge of their underlying functionality.

For components that implement integration registers, Arm recommends reusing these registers for topology 
detection. Use the ITCTRL register to select both integration mode and topology detection mode. See also ITCTRL, 
Integration Mode Control Register on page B2-60.
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B3.4 Interfaces that are not connected or implemented

Some components do not implement a fixed number of interfaces to allow for the possibility of interfaces not being 
connected. To the debugger, there is no difference between an interface that is not present and one that is not 
connected.

If the component requires that the interface is still usable when connected to a non-CoreSight component that is not 
capable of topology detection, the programmers’ model must indicate whether the interface is connected or not.

If the component can only be connected to other CoreSight components, the tools can assume that the interface does 
not exist if they fail to find any connected interfaces during topology detection. In this case, the programmers’ model 
does not need to indicate whether the interface is connected, but if it does, some time can be saved during topology 
detection.
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B3.5 Variant interfaces

Usually, the connections between interfaces do not change after detection. However, sometimes it is necessary for 
some components to share a component. For example, a component tracing the operation of a processor might 
switch to tracing the operation of a different processor. It is important that the conditions under which a switch can 
occur are understood.

The connections between interfaces can only change if all the following conditions apply:

• An interface is defined as being variant between multiple connections.

• The programmers’ model of the affected component controls the configuration by selecting between several 
alternative connections for that interface.

• The number of valid alternative connections that are indicated in the programmers’ model, which is used to 
reduce the autodetection time, is less than 32, and remains constant during switching.

If these conditions are too stringent for your application, a separate CoreSight component that multiplexes the 
connections is required. Topology detection can then be performed between this new component and the 
components it is connected to.

When a switch has occurred, topology detection must be repeated to determine the new connections. Because 
topology detection can be invasive, Arm recommends performing topology detections for all configurations that are 
likely to occur in advance.

B3.5.1   External multiplexing

Figure B3-1 shows an example of how variable connections can be implemented using an external multiplexer. This 
example shows:

• A register that indicates that there are n inputs to select from. This register can be read by a debugger to 
determine which values of the selection register are valid. The register is tied to the value n outside the 
component.

• A selection register that selects the input to use.

• A variant connection receiving the selected input.

Figure B3-1 External multiplexing of connections

n

Input 1
Input n ... Variant 

connection

Selection 
register

Number of 
valid 

alternatives

CoreSight component

D

D

Q

Q

D Q
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B3.6 Documentation requirements for topology detection registers

The component must have documentation that defines the interfaces present on that component. The definition of 
each interface must include:

• Its name, using the format that is listed in Chapter D6 Topology Detection at the System Level.

• If the interface supports variable connections:

— How many connections are valid.

— How to switch between connections.

• How to control the topology detection signals listed for that interface in Chapter D6 Topology Detection at 
the System Level.

B3.6.1   Interfaces where topology detection is not possible

If an interface can be connected to a non-CoreSight component, topology detection might not be possible. In this 
case, the documentation must define a method to determine from the programmers’ model how such as component 
is connected.
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Chapter C1 
About the Reusable Component Architecture

The CoreSight reusable component architecture specifies the rules that enable a component to be used with other 
components that use the CoreSight architecture, and defines the physical interfaces of the components so that they 
can be connected together easily.

Note

Unlike the visible component architecture, implementing the reusable component architecture is not mandatory. 
Omitting the reusable component architecture from a self-contained system does not compromise its compatibility 
with debuggers, but prevents it from being used with other CoreSight components.

If a component does not require the functionality that is provided by a particular interface, implementing the 
interface is optional. For example, a component with no programmable registers does not need to implement the 
AMBA APB interface.

It is possible to create a component that performs several functions internally, while presenting only one set of 
reusable component interfaces. Doing so allows implementing pre-built platforms with an integrated CoreSight 
infrastructure, enabling the platform to be integrated into a larger system as if it were a single CoreSight component.

The reusable component architecture is described in the following chapters: 

• Chapter C2 AMBA APB and ATB Interfaces.

• Chapter C3 Event Interface.

• Chapter C4 Channel interface.

• Chapter C5 Authentication Interface.

• Chapter C6 Timestamp Interface.

• Chapter C7 Topology Detection at the Component Level.
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Chapter C2 
AMBA APB and ATB Interfaces

This chapter describes the following AMBA interfaces:

• The AMBA APB interface on page C2-78, which is used to program CoreSight components.

• The AMBA ATB interface on page C2-80, which transfers trace data.
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C2.1 AMBA APB interface

The following sections describe the AMBA APB interface:

• About the AMBA APB interface.

• AMBA APB interface signals.

• AMBA APB interface width on page C2-79.

• Alternative views of the register file on page C2-79.

C2.1.1   About the AMBA APB interface

The AMBA APB interface is used to program CoreSight components.

The interface supports:

• Simple, non-pipelined operation.

• Implementation of 8-bit, 16-bit, or 32-bit Completers.

• Stalling by the Completer.

• Error responses from the Completer.

For more information, see the Arm® AMBA® APB Protocol Specification.

Some legacy debug components implement a JTAG TAP Controller to access their functionality.

The bus that connects all CoreSight components is referred to as the Debug APB interface.

C2.1.2   AMBA APB interface signals

Table C2-1 shows the signals that comprise the AMBA APB interface. 

Note

• The signal suffix DBG indicates that the Debug APB interface is used to access CoreSight components.

• The clamp value is the value that an output must be clamped to when the component is powered down or 
disabled. 

For more information, see the Arm® AMBA® APB Protocol Specification.

 

Table C2-1 Signals on the Debug APB interface

Name

Direction

Description
Requester Completer

Clamp 
value

PCLKDBG Input Input - The rising edge of PCLKDBG 
synchronizes all transfers on the AMBA 3 
APB interface.

PRESETDBGn Input Input - This signal resets the interface and is 
active-LOW.

PADDRDBG[31:2] Output Input 0 This bus indicates the address of the transfer. 
It is not necessary to implement unused 
bits.a

PSELDBG Output Input 0 This signal indicates that the Completer 
device is selected and a data transfer is 
required. There is a PSELDBG signal for 
each Completer.
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C2.1.3   AMBA APB interface width

The AMBA APB interface is 32-bits wide.

Chapter B2 CoreSight programmers’ model describes the model compatible with a 32-bit AMBA APB interface.

C2.1.4   Alternative views of the register file

There might be several ways to access the registers of a component. It can be useful, for example, to provide special 
instructions to make debug registers in a processor visible as registers in a linked coprocessor. Provided the debug 
functionality of the component is also accessible through the AMBA APB interface, alternative methods to access 
registers are permitted.

PENABLEDBG Output Input 0 This signal indicates the second and 
subsequent cycles of an AMBA APB 
interface transfer.

PWRITEDBG Output Input 0 When HIGH, PWRITEDBG indicates a 
write access. When LOW, it indicates a read 
access.

PWDATADBG[31:0] Output Input 0 PWDATADBG[31:0] is the write data bus. 
When PWRITEDBG is HIGH, it indicates 
that the write data bus is driven by the 
Requester during write cycles. The write 
data bus can be up to 32-bits wide.

PREADYDBG Input Output 1 This signal is used by the Completer to 
extend an AMBA APB interface transfer.

PRDATADBG[31:0] Input Output 0 PRDATADBG[31:0] is the read data bus. 
When PWRITEDBG is LOW, it indicates 
that the read data bus is driven by the 
selected Completer during read cycles. The 
read data bus can be up to 32-bits wide.

PSLVERRDBG Input Output 1 This signal is returned in the second cycle of 
the transfer, and indicates an error response. 
Only use this signal for indicating that a 
component is not available, for example 
because it is powered down.

a. The use of PADDRDBG[31] to split the memory map and indicate the difference between external and internal 
accesses is deprecated. For information on how components that require it can differentiate between external and 
internal access, see Debug APB interface memory map on page D2-118.

Table C2-1 Signals on the Debug APB interface (continued)

Name

Direction

Description
Requester Completer

Clamp 
value
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C2.2 AMBA ATB interface

The AMBA ATB interface carries trace data around a SoC.

Every CoreSight component or platform with trace capabilities has an AMBA ATB interface, and is either a 
Transmitter or Receiver on the AMBA ATB:

• A component or system that generates trace data is a Transmitter.

• A component or system that receives trace data is a Completer.

The AMBA ATB interface supports the following features:

• Stalling of data, using valid and ready responses.

• Byte-sized packets, together with control signals to indicate the number of bytes that are valid in a cycle.

• Originating component marker, giving each data packet an associated ID.

• Any trace protocol or data agnostic requirements for the format of the data.

• Check-pointing of data from all originating components.

For more information, see the Arm® AMBA® ATB Protocol Specification.
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Event Interface

A CoreSight system uses the event interface to transfer events between components. It is most commonly used for 
communicating cross-trigger events between debug components and a Cross Trigger Interface (CTI).

The event interface signals are:

EVENTCLK Clock. This signal is typically mapped onto an existing clock signal.

EVENTRESETn Reset. This signal is typically mapped onto an existing reset signal.

EVENT This signal indicates the event, and is typically mapped onto a signal of a different name that 
describes its purpose.

An event is indicated by a rising edge on EVENT. Therefore an event can be signaled at 
most once every two EVENTCLK cycles.

If the event has a duration, the falling edge on EVENT indicates its completion.

The interface defines no back-pressure mechanism, so events that are close together might merge. For example, if 
the event interface crosses an asynchronous boundary to a slower clock domain, events in close succession might 
merge into a single event.

The source of an event interface is known as an event interface transmitter. The destination of an event interface is 
known as an event interface receiver.
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Chapter C4 
Channel interface

This chapter describes the channel interface. It contains the following sections:

• About the channel interface on page C4-84.

• Channels on page C4-86.

• Channel interface signals on page C4-87.

• Channel connections on page C4-88.

• Synchronous and asynchronous conversions on page C4-89.
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C4.1 About the channel interface

The channel interface is a special type of event interface that enables CoreSight components to communicate events, 
as described in Chapter C3 Event Interface. The channel interface supports:

• A variable number of event channels.

• Bidirectional communication.

• Synchronous or asynchronous communication.

Some examples of useful events are:

• If two or more processors are required to stop at the same time, they must signal to each other when they have 
stopped.

• To perform advanced profiling functions, profiling events from many different sources in the system must be 
shared.

Figure C4-1 shows a channel interface that connects multiple CTIs, which are provided by CoreSight technology. 
The channel interface can be supported directly by a CoreSight component, if necessary.

Figure C4-1 Implementation of a CTI-based channel interface

Note

When using the CTI:

• Some systems require more event signals than are supported by a CTI.

• In a platform-oriented system, it is necessary to connect event signals together within the platform and export 
only a set of standard interfaces for extension at higher levels.

The channel interface is designed to enable components to communicate events with minimal overhead. However, 
if multiple events are presented to the channel interface in close succession, they might be interpreted as a single 
event. Figure C4-2 on page C4-85 illustrates this limitation for a situation where events that are generated in a fast 
clock domain, Clock A, are passed to a slower clock domain, Clock B. In Clock A, two separate events can be seen, 
but these events are too close together for Clock B, resulting in Clock B interpreting them as a single event.
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Figure C4-2 Event merging in the channel interface

This limitation makes the channel interface unsuitable for counting events that occur in rapid succession. An 
example of this type of operation is counting the number of instructions that are executed by a processor over time.

The channel interface is suitable for the following:

• Transmission of an event that happens only once, for example a trigger signal to an ETB or TPIU to end trace 
capture.

• Transmission of a low-speed signal level where precision is not important.

• Transmission of a signal subject to handshaking using another channel in the channel interface.

• Transmission of a signal subject to software handshaking, for example an interrupt request.

• Transmission of events to be counted that do not occur close together, for example the number of times a 
peripheral causes an interrupt.
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C4.2 Channels

The channel interface comprises two types of signals:

• Channel outputs, which transmit events that are generated by a component.

• Channel inputs, which listen for events that are generated by other components.

A component uses its channel outputs to transmit events to the channel inputs of all components in the system, 
except its own.

The interface supports an IMPLEMENTATION DEFINED number of channels. Arm recommends that at least four 
channels are implemented.

Components must treat all channels identically. It must be possible for the debugger to control which channels are 
used for which purposes.

If a system consists of subsystems with different numbers of channels, and there is a requirement to pass events 
between these subsystems, the following rules must be observed:

• A subset of the channels from the subsystem with the greater number of channels is connected to all the 
channels in the other subsystem.

• The set of channels that is connected is always a contiguous set, starting from channel 0.

For example, in a system where subsystem A has eight channels and subsystem B has four channels, channels 0-3 
from subsystem A are connected to channels 0-3 in subsystem B. Channels 4-7 are not connected to subsystem B.
C4-86 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



Channel interface 
C4.3 Channel interface signals
C4.3 Channel interface signals

Table C4-1 shows the set of signals that are required by an asynchronous channel interface. The clamp value is the 
value that an output must be clamped to when the component is powered down or disabled.

Figure C4-3 shows how the asynchronous interface uses a basic four-phase handshaking protocol. The same 
protocol is used by CHOUT and CHOUTACK.

Figure C4-3 Channel interface handshaking

Table C4-2 shows the set of signals that are required by a synchronous channel interface.

Table C4-1 Asynchronous channel interface signals

Name Direction
Clamp 
value

Description

CHIN[n-1:0] Input - Channel input

CHINACK[n-1:0] Output 1 Channel input acknowledge

CHOUT[n-1:0] Output 0 Channel output

CHOUTACK[n-1:0] Input - Channel output acknowledge

CHIN[m]

CHINACK[m]

Table C4-2 Synchronous channel interface signals

Name Direction
Clamp 
value

Description

CHCLK Input - Clock

CHIN[n-1:0] Input - Channel input

CHOUT[n-1:0] Output 0 Channel output
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C4.4 Channel connections

The channel interface is bidirectional. Take care to connect the correct signals together. Figure C4-4 shows how to 
connect two asynchronous channel interfaces together.

Figure C4-4 Asynchronous channel interface connection

Figure C4-5 shows how to connect two synchronous channel interfaces together.

Figure C4-5 Synchronous channel interface connection

A component can support:

• Only the input channels, which is appropriate for components that do not generate events, but have to react 
to events from other components.

• Only the output channels, which is appropriate for components that generate events, but do not have to react 
to events from other components.

• Both the input and output channels.

If a component does not support both sets of channels, the unsupported outputs must be clamped as shown in 
Table C4-1 on page C4-87 and Table C4-2 on page C4-87.

If a component supports both input and output channels, the component must not reflect events on an input channel 
to the corresponding output channel.

Component 1

CHOUT[n-1:0]
CHOUTACK[n-1:0]

CHIN[n-1:0]
CHINACK[n-1:0]

Component 2

CHOUT[n-1:0]
CHOUTACK[n-1:0]

CHIN[n-1:0]
CHINACK[n-1:0]

Component 1

CHCLK
CHIN[n-1:0]

CHOUT[n-1:0]

Component 2

CHOUT[n-1:0]
CHIN[n-1:0]

CHCLK
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C4.5 Synchronous and asynchronous conversions

Figure C4-6 shows a circuit that makes it possible to convert between synchronous and asynchronous versions of 
this interface.

Figure C4-6 Asynchronous to synchronous converter

Implementing a synchronous to asynchronous converter increases the likelihood of events being merged as 
described in About the channel interface on page C4-84 on page C4-84.

CHIN CHOUT

CHOUT
DQ

CHIN

CHOUTACK

CHCLK

Synchronizer

Synchronizer

CHINACK

Asynchronous 
interface

Synchronous 
interface
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Chapter C5 
Authentication Interface

This chapter defines the system requirements that control access to debug and trace peripherals, and how those 
requirements are met by devices that comply with the CoreSight architecture. It contains the following sections:

• About the authentication interface on page C5-92.

• Definitions of Secure, hypervisor, and invasive debug on page C5-93.

• Authentication interface signals on page C5-94.

• Authentication rules on page C5-95.

• User mode debugging on page C5-100.

• Control of the authentication interface on page C5-101.

• Exemptions from implementing the authentication interface on page C5-102.
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C5.1 About the authentication interface

Use the authentication interface for restricting access to debug and trace functionality in the following ways:

• To prevent unauthorized people from modifying the behavior of the system, for example to prevent a mobile 
phone from reporting a fake identification number to the network. This requires authenticated access to 
invasive debug functions such as traditional core debug, but permits non-invasive tracing and profiling 
functions.

• To prevent unauthorized people from reverse engineering a product or discovering secrets that are stored 
within it, for example to read encryption keys. This requires authenticated access to all debug and trace 
functions.

The authentication interface does not prevent accidental access of debug functionality by rogue code, making a 
system impossible to debug. This type of access is managed by the Software lock mechanism that is optional in all 
CoreSight components, see LSR and LAR, Software Lock Status Register and Software Lock Access Register on 
page B2-61.
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C5.2 Definitions of Secure, hypervisor, and invasive debug

This section defines Secure debug, invasive debug, and hypervisor debug.

C5.2.1   Definition of Secure debug

A Non-secure debug operation is any operation where instructions executing on-chip with Non-secure privileges 
have the same effect as external operations. Any other operation is a Secure debug operation.

Using this definition, debug operations that monitor the time that is taken by a Secure routine are Non-secure debug 
operations, because the time taken can be measured by combining off-chip timing information with Non-secure 
on-chip event generation information. Operations that affect the time that is taken by a Secure routine are considered 
Secure debug operations.

C5.2.2   Definition of hypervisor debug

The meaning of hypervisor debug is IMPLEMENTATION DEFINED. For processors based on Arm architectures, see the 
relevant Arm® Architecture Reference Manual.

C5.2.3   Definition of invasive debug

Any operation that changes the defined behavior of the system is invasive.

Examples include any changes to the contents of memory and insertion of instructions into a processor pipeline, but 
not necessarily the act of changing the number of cycles that are taken to perform an operation, unless the number 
of cycles is defined architecturally.

An implementation can treat an IMPLEMENTATION DEFINED set of effects that change the observable, but not the 
defined behavior of the system, as invasive. Examples include most effects that change the number of cycles that 
are taken to perform an operation.
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C5.3 Authentication interface signals

Table C5-1 shows the authentication interface signals that a component might support. If a component uses a 
non-invasive enable signal, it must import the invasive equivalent. For example, using SPNIDEN requires 
importing SPIDEN, and using HNIDEN requires importing HIDEN.

The source of an authentication interface is known as the authentication interface Transmitter. 

The destination of an authentication interface is known as an authentication interface Receiver.

Table C5-1 Authentication interface signals

Signal Description

AUTHCLK Clock (Not used for asynchronous authentication)a

a. Use of the asynchronous authentication interface is deprecated.

AUTHRESETn Reset (Not used for asynchronous authentication)a

DBGEN Invasive debug enable

NIDEN Non-invasive debug enable

SPNIDEN Secure non-invasive debug enable

SPIDEN Secure invasive debug enable

HIDEN Hypervisor invasive debug enable

HNIDEN Hypervisor non-invasive debug enable

RLPIDEN Realm invasive debug enable

RTPIDEN Root invasive debug enable
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Authentication interface implementations must observe the following rules:

1. Synchronous interfaces must sample all signals synchronously, on the rising edge of AUTHCLK. Typically, 
AUTHCLK is mapped onto another clock signal. It is IMPLEMENTATION DEFINED when a change of any of 
the authentication signals takes effect. For example, a processor core might ignore changes to the 
authentication signals while in Debug state. By extension, it is possible that a component only observes the 
signals on reset, but it is recommended that more frequent changes are permitted.

Asynchronous interfaces must sample all signals asynchronously. 

Arm recommends that processors implementing the authentication interface specify a sequence of 
instructions that, when executed, wait until changes to the authentication signals have taken effect before 
continuing.

2. If DBGEN is LOW, invasive debug is not permitted.

Invasive debug is any debug operation that might cause the behavior of the system to be modified. 
Non-invasive debug, such as trace, is unaffected.

3. If NIDEN is LOW and DBGEN is LOW, neither invasive nor non-invasive debug is permitted.

4. If NIDEN is LOW and DBGEN is HIGH, both invasive and non-invasive debug are permitted. Arm 
recommends that these signals are not driven in this way.

To ensure that a non-invasive component is correctly enabled, it must import both DBGEN and NIDEN, and 
internally OR the result.

5. If SPIDEN is LOW, Secure invasive debug is not permitted.

6. If SPNIDEN is LOW and SPIDEN is LOW, all Secure debug is not permitted.

7. If SPNIDEN is LOW and SPIDEN is HIGH both invasive and non-invasive Secure debug are permitted. 
Arm recommends that these signals are not driven in this way. To ensure that a non-invasive component is 
correctly enabled, it must import SPIDEN in addition to SPNIDEN, and internally OR the result.

Note

Rules 5 to 7 are the equivalent of rules 2 to 4, but used for Secure debug. They are useful for systems that separate 
Secure and Non-secure data, for example systems implementing Arm Security Extensions. Secure non-invasive 
debug is any debug operation that enables a debugger to read Secure data. Secure invasive debug is any debug 
operation that enables a debugger to change Secure data. If a debug component supports Secure non-invasive debug 
functions by implementing the signal SPNIDEN, it must also observe the Secure invasive signal, SPIDEN.

1. If SPIDEN is HIGH and DBGEN is LOW, invasive debug is not permitted. Arm recommends that these 
signals are not driven in this way. To ensure that a component that supports Secure invasive debug is correctly 
controlled, Arm recommends importing both DBGEN and SPIDEN, and using the result of an internal AND 
operation with the imported signals as operands for authentication.

2. If SPNIDEN is HIGH and NIDEN is LOW, debugging is not permitted. Arm recommends that these signals 
are not driven in this way. To ensure that a component that supports Secure non-invasive debug is correctly 
controlled, it must import NIDEN in addition to SPNIDEN, and internally AND the result.

3. If HIDEN is LOW, hypervisor invasive debug is not permitted. 

4. If HNIDEN is LOW and HIDEN is LOW, all hypervisor debug is not permitted.

5. If HNIDEN is LOW and HIDEN is HIGH both invasive and non-invasive hypervisor debug are permitted. 
Arm recommends that these signals are not driven in this way. To ensure that a non-invasive component is 
correctly enabled, it must import HIDEN in addition to HNIDEN, and internally OR the result.

6. If a component supports HNIDEN, it must also support HIDEN and NIDEN.

7. If a component supports HIDEN, it must also support DBGEN.
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8. If HIDEN is HIGH and DBGEN is LOW, invasive debug is not permitted. Arm does not recommend that 
these signals are driven in this way. To ensure that a component that supports hypervisor invasive debug is 
correctly controlled, Arm recommends importing both DBGEN and HIDEN, and using the result of an 
internal AND operation with the imported signals as operands for authentication. 

9. If HNIDEN is HIGH and NIDEN is LOW, debugging is not permitted. Arm does not recommend that these 
signals are driven in this way. To ensure that a component that supports Secure non-invasive debug is 
correctly controlled, it must import NIDEN in addition to HNIDEN, and internally AND the result.

10. If the value of any of the authentication signals changes, it is IMPLEMENTATION DEFINED when it takes effect.

Pipeline effects mean that it is not possible for these signals to be precise. Arm recommends not to use them 
to enable and disable debugging around specific regions of code without a full understanding of the pipeline 
behavior of the system.

11. The authentication interface is extended to include two additional signals to define invasive debug for Root 
and Realm:

• RLPIDEN.

• RTPIDEN.

Note

Equivalent signals that define when Root and Realm non-invasive debug are permitted are not defined.

Root non-invasive debug is only enabled when Root invasive debug is enabled.

Realm non-invasive debug is only enabled when Realm invasive debug is enabled.

See Root and Realm signals on page C5-99.

The authentication rules can be summarized as follows:

• SPIDEN, DBGEN, SPNIDEN, and NIDEN enable Secure invasive debug, Non-secure invasive debug, 
Secure non-invasive debug, and Non-secure non-invasive debug, respectively.

• Because invasive functionality requires non-invasive functionality to function correctly, if invasive debug is 
enabled, non-invasive debug must also be enabled.

• Secure functionality must be disabled if the corresponding Non-secure functionality is disabled.

The following signal combinations are not permitted and behave as if RLPIDEN == 0:

• DBGEN == 0 & RLPIDEN == 1

The following signal combinations are not permitted and behave as if RTPIDEN == 0:

• DBGEN == 0 & RTPIDEN == 1

• RTPIDEN == 1 & RLPIDEN == 0

Table C5-2, Table C5-3 on page C5-97, Table C5-4 on page C5-97, and Table C5-5 on page C5-97 show the 
equations that define whether a particular level of debug functionality is permitted for a debug component that 
supports the authentication interface:

Table C5-2 Component without Secure debug capabilities

Debug functionality Equation

Invasive debug DBGEN

Non-invasive debug DBGEN | NIDEN
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The SPIDEN and SPNIDEN signals have no dependencies on the HIDEN and HNIDEN signals, and conversely.

Table C5-6 shows the restrictions for SPIDEN and SPNIDEN and their effects. Numbers in brackets indicate the 
rules that apply in each case, S indicates Secure, and NS indicates Non-secure.

Table C5-3 Component with Secure debug capabilities

Debug functionality Equation

Non-secure invasive debug DBGEN

Non-secure non-invasive debug DBGEN | NIDEN

Secure invasive debug DBGEN & SPIDEN

Secure non-invasive debug (SPIDEN | SPNIDEN) & (DBGEN | NIDEN)

Table C5-4 Component with hypervisor debug capabilities

Debug functionality Equation

Hypervisor invasive debug HIDEN & DBGEN

Hypervisor non-invasive debug (HIDEN | HNIDEN) & (DBGEN | NIDEN)

Table C5-5 Component with Root and Realm debug capabilities

Debug functionality Equation

Root Invasive debug DBGEN & RLPIDEN & SPIDEN &RTPIDEN

Realm Invasive debug DBGEN & RLPIDEN

Table C5-6 Authentication signal restrictions for SPIDEN and SPNIDEN

SPIDEN DBGEN SPNIDEN NIDEN
Valid signal 
combination

Invasive debug 
permitted

Non-invasive 
debug permitted

S NS S NS

0 0 0 0 Yes No (2,5) No (2) No (3,6) No (3)

0 0 0 1 Yes No (2,5) No (2) No (6) Yes

0 0 1 0 Noa (2) No (2,5) No (2) No (3,6) No (3)

0 0 1 1 Yes No (2,5) No (2) Yes Yes

0 1 0 0 No (4) No (5) Yes (4) No (6) Yes (4)

0 1 0 1 Yes No (5) Yes No (6) Yes

0 1 1 0 No (4) No (5) Yes (4) Yes (4) Yes (4)

0 1 1 1 Yes No (5) Yes Yes Yes

1 0 0 0 No (7) No (2) No (2) No (3) No (3)

1 0 0 1 No (7) No (2) No (2) Yes (7) Yes

1 0 1 0 Noa (1,2) No (2) No (2) No (3) No (3)

1 0 1 1 Noa (1) No (2) No (2) Yes Yes
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Table C5-7 shows the restrictions for HIDEN and HNIDEN and their effects. Numbers in brackets indicate the 
rules that apply in each case, H indicates hypervisor, and NH indicates non-hypervisor.

1 1 0 0 No (4,7) Yes (7) Yes (4) Yes (4,7) Yes (4)

1 1 0 1 No (7) Yes (7) Yes Yes (7) Yes

1 1 1 0 No (4) Yes (4) Yes (4) Yes (4) Yes (4)

1 1 1 1 Yes Yes Yes Yes Yes

a. These signal combinations were permitted in previous versions of the CoreSight architecture but are deprecated from 
v2.0 onwards.

Table C5-7 Authentication signal restrictions for HIDEN and HNIDEN

HIDEN DBGEN HNIDEN NIDEN
Valid signal 
combination

Invasive debug 
permitted

Non-invasive 
debug permitted

H NH H NH

0 0 0 0 Yes No (2, 3) No (2) No (3) No (3)

0 0 0 1 Yes No (2, 3) No (2) No (3) Yes

0 0 1 0 No (9) No (2, 3) No (2) No (3) No (3)

0 0 1 1 Yes No (2, 3) No (2) Yes Yes

0 1 0 0 No (4) No (3) Yes (4) No (4) Yes (4)

0 1 0 1 Yes No (3) Yes No (4) Yes

0 1 1 0 No (4) No (3) Yes (4) Yes (4) Yes (4)

0 1 1 1 Yes No (3) Yes Yes Yes

1 0 0 0 No (7) No (2) No (2) No (3) No (3)

1 0 0 1 No (7) No (2) No (2) Yes (5) Yes

1 0 1 0 No (8, 9) No (2) No (2) No (3) No (3)

1 0 1 1 No (8) No (2) No (2) Yes Yes

1 1 0 0 No (4, 5) Yes (5) Yes (4) Yes (4, 5) Yes (4)

1 1 0 1 No (5) Yes (5) Yes Yes (5) Yes

1 1 1 0 No (4) Yes (4) Yes (4) Yes (4) Yes (4)

1 1 1 1 Yes Yes Yes Yes Yes

Table C5-6 Authentication signal restrictions for SPIDEN and SPNIDEN (continued)

SPIDEN DBGEN SPNIDEN NIDEN
Valid signal 
combination

Invasive debug 
permitted

Non-invasive 
debug permitted

S NS S NS
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C5.4.1   Root and Realm signals

Arm® Realm Management Extension (RME) System Architecture and Arm® Architecture Reference Manual 
Supplement. The Realm Management Extension (RME) require that changes to the authentication status of the 
system only occur at specific times around a reset.

RTPIDEN effects are not permitted to change except when the system is in RME system reset.

To ensure an entire system observes the same value of RTPIDEN at all times, Arm recommends that the system 
samples RTPIDEN on leaving RME system reset and keeps this sampled signal stable while the system is not in 
RME system reset. The sampled signal is distributed to all components which consume RTPIDEN.

A component which consumes RTPIDEN might choose to only sample RTPIDEN when leaving reset. However, 
this is not mandatory.

RLPIDEN effects are not permitted to change after RMSD firmware is loaded. 

To ensure an entire system observes the same value of RLPIDEN at all times, Arm recommends that the system 
samples RLPIDEN on leaving RME system reset and keeps this sampled signal stable while the system is not in 
RME system reset. However, an exception to this is MSD firmware explicitly permitting RLPIDEN to change. If 
MSD firmware permits RLPIDEN to change, a new RLPIDEN value is sampled under control of MSD firmware. 
The sampled signal is distributed to all components which consume RLPIDEN.

A component that consumes RLPIDEN might choose to only sample RLPIDEN when leaving reset. This is not 
mandatory. Such a component will be unable to observe changes in RLPIDEN after the component has left reset.

A system must ensure that the sequencing of resets is appropriate to ensure that the sampled RTPIDEN and 
RLPIDEN are further sampled by the components appropriately.

LEGACY_TZ_EN

A component might operate in a system that can be configured to operate with or without RME. Arm recommends 
the component has an input signal, LEGACY_TZ_EN, when a component needs to be aware of the Root or Realm 
debug authentication status. LEGACY_TZ_EN defines whether the component is operating with RME enabled or 
disabled.

When LEGACY_TZ_EN is 1, RTPIDEN and RLPIDEN are ignored and the component behaves as if Root and 
Realm debug are disabled.

Note

A component is permitted to indicate support for RME when LEGACY_TZ_EN is 1. However, the component 
behaves as if RME is disabled, and Root debug and Realm debug are disabled.

LEGACY_TZ_EN is not permitted to change value after RME system reset has been deasserted. Arm recommends 
that LEGACY_TZ_EN is only sampled as the component leaves reset.

Note

LEGACY_TZ_EN is not part of the authentication interface.
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C5.5 User mode debugging

Individual components can offer greater control over the permitted level of debugging. For example, some 
processors implementing Arm Security Extensions can grant permission to debug-specific Secure processes by 
permitting debugging of Secure User mode without permitting debugging of Secure privileged modes. This level of 
control is extended to the ETM. For more information, see the Arm® Embedded Trace Macrocell Architecture 
Specification.

Figure C5-1 shows how the signals of the CoreSight authentication interface interact with the two registers that are 
controlled by the Secure Operating System (OS), SUIDEN and SUNIDEN:

• If DBGEN is asserted, NIDEN is ignored and assumed asserted.

• If SPIDEN is asserted, SPNIDEN is ignored and assumed asserted.

• In all other cases, the permissions that are represented by all the boxes bounding each level of debug 
functionality must be granted before that level of debug functionality is enabled.

Figure C5-1 Interaction between CoreSight and Arm Security Extensions

NIDENDBGEN

SUNIDEN aSUIDEN a

SPNIDEN

Invasive Non-secure User core

Invasive Non-secure system

Invasive Secure User core

Invasive Non-secure privileged core

Non-invasive Non-secure User core

Non-invasive Non-secure system

Non-invasive Secure User core

Non-invasive Non-secure privileged core

Pin control
a Indicates control by the Secure operating system  

Implication, for example 
DBGEN implies NIDEN

SPIDEN

Invasive Secure privileged core
Invasive Secure system

Non-invasive Secure privileged core
Non-invasive Secure system
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C5.6 Control of the authentication interface

The authentication interface is controlled at the system level. For more information, see Control of authentication 
interfaces on page D2-117.
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C5.7 Exemptions from implementing the authentication interface

It is not necessary to implement the authentication interface to control debug functions that are only 
software-accessible. For these functions, it is sufficient to use standard mechanisms to control software access to 
privileged and Secure resources.
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Timestamp Interface

A CoreSight system uses the wide timestamp interface to distribute a time value to debug components. Typically 
this time value is included in a trace stream to permit correlation of events in multiple trace streams. 

Table C6-1 shows the signals that are defined for the timestamp interface.

If a system with multiple components implements the timestamp interface, the same timestamp is used by all 
components. If systems use different clocks or different timestamp distribution mechanisms, there might be skew 
between the timestamp values that are observed by the components.

Some components might not implement a full 64-bit timestamp. These components use an IMPLEMENTATION 
DEFINED subset of the 64-bit timestamp value. Arm recommends using the subset that provides the largest set of 
unique observable timestamp values. This subset might depend on the clock speed of the component.

Arm recommends that new designs share the same source of time for both PEs and CoreSight components.

Table C6-1 Timestamp interface signals

Name Description

TSCLK Interface clock

TSRESETn Interface reset

TSVALUEB[63:0] Timestamp value, encoded as a natural binary number.

A value of 0 indicates that the timestamp is UNKNOWN, which 
occurs when the timestamp value source is disabled or when 
the timestamp value is reset.
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Timestamp Interface 
 

Note

Previous versions of this specification recommended that the timestamp resolution is at least 10% of the fastest 
processor in the system. This recommendation has been removed. However, Arm recommends that the timestamp 
resolution is reasonably high to allow for fine-grained correlation of traces.

The source of a timestamp is known as a timestamp Transmitter. The destination of a timestamp is known as a 
timestamp Receiver.
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Topology Detection at the Component Level

This chapter describes how to detect components that are connected to the AMBA ATB interface and where they 
are logically located in any corresponding hierarchical connection. It contains the following sections:

• About topology detection at the component level on page C7-106.

• Interface types for topology detection on page C7-107.

• Interface requirements for topology detection on page C7-109.

• Signals for topology detection on page C7-110.
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C7.1 About topology detection at the component level
C7.1 About topology detection at the component level

This chapter describes how to perform topology detection on each interface type. Chapter B3 Topology Detection 
describes the topology detection requirements of CoreSight components. Chapter D6 Topology Detection at the 
System Level describes how debuggers can use this information to detect the topology of a target system.
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C7.2 Interface types for topology detection

A component has several interfaces that contain one or more signals. Each interface is defined in terms of the 
following parameters:

• A name, for example channel interface.

• A direction:

— Transmitter, always connected to one or more Receivers of the same type.

— Receiver, always connected to one or more Transmitters of the same type.

— Bidirectional, always connected to one or more identical bidirectional interfaces.

— Probe, read-only interface to trace the activity of a bus without affecting the behavior of that bus.

The following conditions apply to the interfaces used for topology detection:

• The list of interfaces must be defined for each block for the purposes of topology detection. 

• Not all signals that are used in the implementation must be exposed in an interface, provided the signals that 
are not exposed are irrelevant for topology detection. 

• Signals that are exposed in the interface must be strictly defined.

C7.2.1   Interfaces on standard components

Table C7-1 shows the interfaces present on common CoreSight components. For specific interface details, see the 
appropriate Technical Reference Manual.

Table C7-1 Interfaces on some example components

Programmable 
component

Interfaces

CoreSight ETMa

CoreSight PTMb

• AMBA ATB interface, Transmitter.

• One or more events, Transmitter. EXTOUT[n-1:0].

• One or more events, Receiver. EXTIN[n-1:0].

• Event, Transmitter. TRIGOUT.

• Variant: CoreETM, Receiver.

The number of core interfaces can be read from the programmers’ model of the ETM or PTM.

The state of DBGACK can be driven directly in all Arm cores, including those cores that are not CoreSight 
compliant.

CoreSight ETB • AMBA ATB interface, Receiver:

• Event, Transmitter. ACQCOMP.

• Event, Transmitter. FULL.

• Event, Receiver. TRIGIN.

• Event, Receiver. FLUSHIN.

TPIU • AMBA ATB interface, Receiver:

• Event, Receiver. TRIGIN.

• Event, Receiver. FLUSHIN.

Debug Ports and 
Access Ports

No topology detection interfaces.
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HTM • AMBA ATB interface, Transmitter:

• 2x event, Transmitter. HTMEXTOUT[1:0].

• 2x event, Transmitter. HTMEXTIN[1:0].

• Event, Transmitter. HTMTRIGGER.

• Variant: AHB, probe.

The number of AHB interfaces can be read from the programmers’ model of the HTM.

The method to perform topology detection of this interface is not defined.

CoreSight Funnel • One or more AMBA ATB interfaces, slave.

• AMBA ATB interface, Transmitter.

CTI • One or more events, Receiver. TRIGIN[7:0].

• One or more events, Transmitter. TRIGOUT[7:0].

• Channel, bidirectional.

VIC (PL190/192) 32x event, Transmitter: VICINTSOURCE[n].

a. An ETM that implements the ETMv3 or ETMv4 architecture.

b. A PTM that implements the PFTv1 architecture.

Table C7-1 Interfaces on some example components (continued)

Programmable 
component

Interfaces
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C7.3 Interface requirements for topology detection

For all controllable signals, each interface type specifies:

• The signals on the Transmitter interface that must be controllable or observable.

• The signals on the Receiver interface that must be controllable or observable.

• The transitions on the interface that must be performed to trigger the following actions:

— To initialize topology detection.

— To assert the Transmitter interface.

— To check whether the Receiver interface is asserted.

— To deassert the Transmitter interface.

— To check whether the Receiver interface is deasserted.

If the interface is bidirectional, each interface to be tested must in turn be treated as a Transmitter while the other 
interfaces of that type are treated as Receiver. See Chapter D6 Topology Detection at the System Level.

For signals that must be controllable, it must be possible to independently control the value of outputs, and read the 
value of inputs. See Chapter B3 Topology Detection.

Usually each Transmitter interface specifies one output, and the Receiver interface specifies the corresponding 
input. When choosing a signal, observe the conditions that are described in the following section:

• Intermediate non-programmable components.

• Multi-way connections.

C7.3.1   Intermediate non-programmable components

Sufficient control signals must be available to enable the interface to be driven to an active state so that it passes 
through any intermediate non-programmable components. For example, in AMBA ATB interfaces, ATVALID 
must be controllable, because if it is LOW, an intermediate bridge does not pass any control signals through it.

C7.3.2   Multi-way connections

In a multi-way connection:

• Asserting and deasserting a Transmitter signal might cause an effect to be seen on multiple Receivers.

• Asserting and deasserting a Receiver signal might cause an effect to be seen on multiple Transmitters.

Sufficient signals must be controllable to cause the arbitration logic to route between the Transmitter and Receiver.
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C7.4 Signals for topology detection

Table C7-2 shows the controllable signals for each interface type that is listed in Table C7-1 on page C7-107.

Table C7-3 lists the signals that an interface must implement to support topology detection between Transmitters 
and Receivers of key interface types. Use the table with the algorithm given in Detection algorithm on page D6-155. 
For the full specification of a signal, see the relevant interface specification.

Table C7-2 Controllable signals for each interface type

Interface Transmitter wires Receiver wires

AMBA ATB interface ATVALID ATVALID, ATREADY

CoreETM DBGACKa

a. Using DBGACK for topology detection is restricted by the fact that in some Arm processors it 
cannot be controlled, or it can only be controlled from a JTAG debugger. To perform topology 
detection on a processor that has this restriction, use a different IMPLEMENTATION DEFINED 
controllable signal, or the Device Affinity registers, DEVAFF0-DEVAFF1, which indicate the 
association of a processor with the ETM.

DBGACKa

Eventb

b. The event interface is defined for miscellaneous point-to-point connections that carry a one-bit 
signal. An event interface might implement an acknowledge signal, that, if implemented, must be 
controllable. To implement the event interface, substitute EVENT and EVENTACK for the 
equivalent signals in the appropriate interface.

EVENT EVENT, EVENTACK, if present

Channel, bidirectional CHOUT[0] CHIN[0], CHINACK[0], if asynchronous

Table C7-3 Topology detection sequences

Signal AMBA ATB Core ETM Event interface Channel interface

Transmitter preamble ATVALID ← 0 DBGACK ← 0 EVENT ← 0 CHOUT[0] ← 0

Receiver preamble ATREADY ← 0 None EVENTACK ← 0, if present CHINACK[0] ← 0, if present

Transmitter assert ATVALID ← 1 DBGACK ← 1 EVENT ← 1 CHOUT[0] ← 1

Receiver check 
asserted

ATVALID  == 1 DBGACK  == 1 EVENT == 1 CHIN[0] == 1

Receiver post-assert ATREADY ← 1 None EVENTACK ← 1, if present CHINACK[0] ← 1, if present

Transmitter deassert ATVALID ← 0 DBGACK ← 0 EVENT ← 0 CHOUT[0] ← 0

Receiver check 
deasserted

ATVALID  == 0 DBGACK == 0 EVENT == 0 CHIN[0] == 0

Receiver post-deassert ATREADY ← 0 None EVENTACK ← 0, if present CHINACK[0] ← 0, if present
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Chapter D1 
About the System Architecture

The system architecture specifies:

• Rules that must be followed by all systems that implement CoreSight components.

• Additional information that is required by debuggers to use a CoreSight system.

The system architecture is described in the following chapters:

• Chapter D2 System Considerations.

• Chapter D3 Physical Interface.

• Chapter D4 Trace Formatter.

• Chapter D5 About ROM Tables.

• Chapter D6 Topology Detection at the System Level.

• Chapter D7 Compliance Requirements.
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Chapter D2 
System Considerations

This chapter describes system aspects that must be considered when integrating CoreSight components into a 
system. It has the following sections:

• Clock and power domains on page D2-116 describes the requirements for the clock and power domain 
structure that is exposed to debuggers.

• Control of authentication interfaces on page D2-117 describes the requirements for the signals in the 
authentication interface.

• Memory system design on page D2-118 describes how to expose CoreSight registers to system software.
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D2.1 Clock and power domains

CoreSight can be used in systems with many clock and power domains. CoreSight systems themselves, however, 
always define the following clock and power domains:

System domain This domain comprises most non-debug functionality. The clock frequencies in this domain 
can be asynchronous to the other domains and can vary over time in response to varying 
performance requirements. The clocks can be stopped, and the power can be removed, 
leading to the loss of all state information.

Debug domain This domain comprises most debug functionality. When debug functionality is not required, 
the power can be removed or the clocks can be stopped to reduce power consumption.

Always-on domain This domain comprises the power controller and the interface to the debugger. The power 
is never removed, even when the device is dormant, which enables the debugger to connect 
to the device even when it is powered down.

When deviating from the default clock and power domains, observe the following rules:

• When implementing extra clock and power domains by subdividing one of the default clock and power 
domains, make sure that the clock and power domains respond appropriately to requests made using the 
debug interface. For example, an implementation can have two system clock domains, as long as both 
domains are permanently accessible whenever a System Power Up request is made.

• When implementing fewer clock and power domains by combining two or more of the default clock and 
power domains, make sure that all requests made using the debug interface are operational. For example, 
when combining the system and debug power domains, the combined domain must always be powered up 
whenever a System Power Up request or a Debug Power Up request is made.

The debugger can use the debug interface to make the following requests to the system:

• Power up everything in the system domain. When this request is made, all logic in the system domain must 
be kept permanently powered up, and be continuously accessible to the debugger.

• Power up everything in the debug domain. When this request is made, all logic in the debug domain must be 
kept permanently powered up, and be continuously accessible to the debugger.

• Reset everything in the debug domain. When this request is made, all logic in the debug domain must be reset 
to its initial state.

The debugger interface is managed by an implementation of the ADI. For more information, see the appropriate 
CoreSight Technical Reference Manual. 
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D2.2 Control of authentication interfaces

A CoreSight system prevents unauthorized debugging by disabling debug functionality, rather than by preventing 
access to the debug registers. This mechanism is controlled by the authentication interface. For more information 
about the authentication interface, see Chapter C5 Authentication Interface.

Each signal can be driven in one of the following ways:

• Tied LOW. This method is most appropriate for production systems where the specified debug functionality 
is not required, and prevents in-the-field debugging. There is usually an alternative development chip with 
the same functionality enabled.

• Tied HIGH. This method is most appropriate for prototype or development systems where authentication is 
not required.

• Connected to a fuse that is blown in production parts to disable debug functionality, which prevents 
in-the-field debugging.

• Driven by a custom authentication module, that unlocks debug functionality after a successful authentication 
sequence. This method provides the most flexibility. In systems where high security is required, Arm 
recommends using a challenge-response mechanism that is based on an on-chip random number generator or 
a hardware key unique to that device.

When secure debugging is enabled, secure operations are visible to the outside world, and sometimes to software 
running in the Non-secure world.

Arm recommends that devices are split into development and production devices:

• Development devices can have secure debugging enabled by authorized developers. All secure data must be 
replaced by test data suitable for development purposes, where losses are minimal if the test data is disclosed.

• Production devices can never have secure debugging enabled. These devices are loaded with the real secure 
data.
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D2.3 Memory system design

This section describes how to expose CoreSight registers to system software.

D2.3.1   Debug APB interface memory map

Components and the interconnect are not required to differentiate between external and internal accesses unless one 
of the following applies:

• The component implements the Software lock mechanism that is described in the programmers’ model, see 
LSR and LAR, Software Lock Status Register and Software Lock Access Register on page B2-61. 

Note

From v3.0 onwards, implementation of the Software lock is deprecated. If a component implements the 
Software lock, but is accessed using an interconnect that does not support indicating the difference between 
external and internal accesses, Arm strongly recommends that the component is configured as follows:

— LSR is RAZ to indicate that the Software lock mechanism is not implemented. See also LSR and LAR, 
Software Lock Status Register and Software Lock Access Register on page B2-61.

— PADDRDBG[31] is tied to HIGH to force all accesses to be interpreted as external accesses. See also 
AMBA APB interface signals on page C2-78.

• The component implements an OS lock mechanism, for example an ETM.

For the limited set of components that must differentiate between external and internal accesses, Arm recommends 
that two views of the component are provided in the memory system, one for internal accesses, and one for external 
accesses:

• The two views can be located anywhere in the Debug APB interface address space.

• Arm strongly recommends that a ROM Table provides a pointer only to the external view.

• Arm recommends that one of the address bits is used to differentiate the views. 

An example of this configuration is shown in Figure D2-1, where a 4KB component of a PE at address 
0xB00000000 uses two adjacent views at addresses 0x00002000 and 0x00003000 in the APB memory map. 
Accesses to addresses between 0x00002000 and 0x00002FFF, for which address bit[12] has a value of 0b0, are 
external accesses, and accesses to addresses between 0x00003000 and 0x00003FFF, for which address bit[12] 
has a value of 0b1, are internal accesses.

Figure D2-1 Example of an AMBA APB interface memory map for a component with external and internal views

Note

From v3.0 onwards, the use of PADDRDBG[31] to split the memory map into two 2GB segments to indicate the 
difference between external and internal accesses is deprecated. An older implementation having its external and 
internal views 2GB apart can be regarded as a special case of a version 3.0 implementation: one that uses address 
bit[31] to differentiate between external and internal accesses.

If a component requires more than one view, and those views are not related to the external and internal views 
described in this section, the arrangement of those views in the memory system is IMPLEMENTATION DEFINED.
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D2.3 Memory system design
Examples of implementations of a system with three components are shown in Figure D2-2 and Figure D2-3 on 
page D2-120: 

• In the example that is shown in Figure D2-2, one of the components, Component C, requires differentiation 
between external and internal accesses. The component provides two adjacent views allowing external 
accesses at addresses for which bit[12] equals 0b0, and internal accesses at addresses for which bit[12] equals 
0b1.

• In the example that is shown in Figure D2-3 on page D2-120, all three components require differentiation 
between external and internal accesses. As in the example that is shown in Figure D2-2, address bit[12] is 
used to differentiate between external and internal accesses, leading to a configuration where the external 
views are interleaved with the internal views.

Figure D2-2 Example that includes one component with external and internal views
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Figure D2-3 Example that includes three components with external and internal views

D2.3.2   Access to the Debug APB interface

When designing a CoreSight system, ensure that the registers of CoreSight components are visible to privileged 
software.

Note

Do not prevent Non-secure software from accessing the registers of CoreSight components, even if those 
components can debug secure software. Doing so seriously restricts debugging of Non-secure software.

For system bus transaction Requesters that support privileged and unprivileged modes, Arm recommends the 
following:

• If the Requester does not have an MMU or MPU, the system prevents access to the CoreSight components 
by unprivileged software.

• If the Requester does have an MMU or MPU, the MMU or MPU is used to prevent access to the CoreSight 
components by unprivileged software.

• CoreSight components are marked as Device memory.
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Chapter D3 
Physical Interface

This chapter describes the external pin interface, timing, and connector type that is required for the trace port on a 
target system. It contains the following sections:

• Arm JTAG 20 on page D3-122.

• CoreSight 10 and CoreSight 20 connectors on page D3-124.

• Arm MICTOR on page D3-128.

• Target Connector Signal details on page D3-133.
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D3.1 Arm JTAG 20

The Arm JTAG 20 connector is a 20-way 2.54mm pitch connector. It supports the following interfaces:

• JTAG interface, which is based on IEEE 1149.1-1990 and includes the Arm RTCK signal.

• Serial wire debug (SWD) interface.

• Serial Wire Output (SWO) interface.

Figure D3-1 shows the Arm JTAG 20 connector pinout.

Figure D3-1 Arm JTAG 20 connector pinout

Table D3-1 shows the Arm JTAG 20 pinout as used on the target board.

2
4
6
8
10
12

16
18
20

14

1
3
5
7
9

11

15
17
19

13

Table D3-1 Arm JTAG 20 interface pinout table

Pin Signal name

1 VTREF

2 NC

3 nTRST

4 GND

5 TDI

6 GND

7 TMS/SWDIO

8 GND

9 TCK/SWCLK

10 GND

11 RTCK

12 GND

13 TDO/SWO

14 GND

15 nSRST

16 GND

17 DBGRQ/TRIGIN
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See Target Connector Signal details on page D3-133 for a description of the signals in Table D3-1 on page D3-122.

18 GND

19 DBGACK /TRIGOUT

20 GND

Table D3-1 Arm JTAG 20 interface pinout table (continued)

Pin Signal name
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D3.2 CoreSight 10 and CoreSight 20 connectors

The CoreSight 10 and CoreSight 20 connectors are used for debug targets requiring JTAG, SWD, SWO, and 
low-bandwidth trace connectivity.

This section describes 10-way and 20-way connectors that are mounted on debug target boards. These connectors 
are specified as 0.050 inch pitch two-row pin headers, Samtec FTSH or equivalent. For more information, see the 
Samtec website,  www.samtec.com.

The connectors are grouped into compatible sets according to the functions they support. Some targets support 
communication by both SWD and JTAG using the SWJ-DP block to switch between protocols.

Note

Some of the tables in this section have a column that is named MICTOR, which lists the equivalent pin numbers on 
a CoreSight-compatible Matched Impedance Connector (MICTOR) connector for the named CoreSight pin. A 
target can feature both CoreSight and MICTOR connectors, where the signals are connected in parallel as suggested 
by the pinout tables. This configuration enables the target to be debugged using either physical connector.

The connector pin layouts are described in:

• Combined CoreSight 10 and CoreSight 20 pin names.

• CoreSight 10 pinouts on page D3-125.

• CoreSight 20 pinouts including trace on page D3-126.

D3.2.1   Combined CoreSight 10 and CoreSight 20 pin names

Table D3-2 summarizes the combined pin names for the CoreSight 10 and CoreSight 20 connectors.

See Target Connector Signal details on page D3-133 for a description of the signals in Table D3-2.

The following sections describe the use of pins 6, 8, 11, and 13:

• EXTa and EXTb pins on page D3-125.

• GND/TgtPwr+Cap pins on page D3-125.

Table D3-2 Summary of pin names

Pin Combined pin name Pin Combined pin name

1 VTref 11 Gnd/TgtPwr+Cap

2 TMS/SWDIO 12 TraceClk/RTCK

3 GND 13 Gnd/TgtPwr+Cap

4 TCK/SWCLK 14 TraceD0/SWO

5 GND 15 GND

6 TDO/SWO/EXTa/TraceCtl 16 TraceD1/nTRST

7 Key 17 GND

8 TDI/EXTb 18 TraceD2/TrigIn

9 GNDDetect 19 GND

10 nSRST 20 TraceD3/TrigOut
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EXTa and EXTb pins

Some pins on the connector have functions that are only used for certain connection layouts. Where a pin is not 
required for a particular debug communication protocol, it can be reused for a user-defined target function. These 
pins are labeled EXTa and EXTb in the tables in this chapter. Select any alternate functions carefully, and consider 
the effects of connecting debug equipment that is capable of communicating using multiple protocols.

GND/TgtPwr+Cap pins

There are two usage options for these pins:

Target boards 

Standard target boards can connect these two pins directly to signal ground, GND.

Some special target boards, for example, boards that are used for evaluation or demonstration 
purposes, can use these pins to supply power to the target board. In this case, the target board must 
include capacitors between each of the pins and signal ground. The capacitors must be situated 
extremely close to the connector so that they maintain an effective AC ground, that is, high 
frequency signal return path. Typical values for the capacitors are 10nF.

Debug equipment 

Debug communication equipment that is designed to work with special valuation or demonstration 
target boards provides an operating current, typically up to 100mA, at a target-specific supply 
voltage, for example, 3.3V, 5V, or 9V. Arm recommends that the debug equipment includes some 
protection when it is connected to standard target boards that have connected these pins directly to 
GND, for example, a current limiting circuit. This debug equipment must include capacitors 
between each of these power pins and signal ground. The capacitors must be situated extremely 
close to the connector so that they maintain an effective AC ground, ensuring a high frequency 
signal return path. Typical values for the capacitors are 10nF.

Standard debug communication equipment can connect these pins directly to GND. It is also 
possible for these pins to have only a high frequency signal return path to ground, using 10nF 
capacitors. This option is also compatible in the unlikely case where a target board has a connection 
between the debug connector TgtPwr pins, but is powered from another source.

D3.2.2   CoreSight 10 pinouts

There are two pinouts for a 10-pin connector: 

• Pinout that supports communication using SWD.

• Pinout for JTAG.

The pinouts are arranged to facilitate dynamic switching between the protocols.

Note

SWD is the preferred protocol for debugging because it provides more data bandwidth over fewer pins, which 
increases the bandwidth that is available to application functions. JTAG can be used where the target is 
communicating with a tool chain that does not support SWD, or with test tools performing board-level boundary 
scan testing, where it might be acceptable to sacrifice the functional pins multiplexed with JTAG.
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Table D3-3 shows the CoreSight 10 for targets using SWD or JTAG for debug communication, and includes an 
optional SWO signal for conveying application and instrumentation trace.

The SWD layout is typically used in a CoreSight system that uses an SWJ-DP operating in SWD mode.

The JTAG layout is typically used in a CoreSight system that includes a JTAG-DP, or a system with an SWJ-DP 
operating in JTAG mode, possibly because it is cascaded with other JTAG TAPs.

Note

A target board can use this connector for performing board-level boundary scans but then switch its SWJ-DP into 
SWD mode for debugging according to the layout shown in Table D3-3. This method frees up pins 6 and 8 for either 
application functions or SWO.

It is not necessary to choose the switching mode at the time of chip or board development. The connector can be 
switched and the target board can be operated in either SWD or JTAG mode.

D3.2.3   CoreSight 20 pinouts including trace

20-way connectors include support for a narrow trace port of up to four data bits, operating at moderate speeds of 
up to 100MSamples/sec.

Table D3-4 on page D3-127 shows the CoreSight 20 for targets using SWD or JTAG for debug communication, and 
includes an optional SWO signal for conveying application or instrumentation trace. Alternatively, a target trace 
port operating in CoreSight normal or bypass modes might convey the TraceCtl signal on pin 6.

Table D3-3 CoreSight 10 for SWD or JTAG systems

Pin name for SWD
Pin number

Pin name for JTAG
Pin number

10-way MICTOR 10-way MICTOR

VTref 1 12 VTref 1 12

SWDIO 2 17 TMS 2 17

GND 3 - GND 3 -

SWCLK 4 15 TCK 4 15

GND 5 - GND 5 -

SWO 6 11 TDO 6 11

Key 7 - Key 7 -

NC/EXTb 8 19 TDI 8 19

GNDDetect 9 - GNDDetect 9 -

nSRST 10 9 nSRST 10 9
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Both pin 6 and pin 8 in the SWD layout are shown with alternative extra signals, EXTa and EXTb, which provides 
flexibility to communicate other signals on these pins. For example, future target systems and trace equipment might 
convey two more trace data signals on these pins.

The SWD layout is typically used in a CoreSight system that uses an SWJ-DP operating in SWD mode.

The JTAG layout is typically used in a CoreSight system that includes a JTAG-DP, or a system with an SWJ-DP 
operating JTAG mode, possibly because it is cascaded with other JTAG TAPs. This layout is the recommended 
debug connection for a processor that is built with support for instruction trace, for example, a processor that 
includes an ETM.

Note

A target board can use this layout for performing board-level boundary scans but then switch its SWJ-DP into SWD 
mode for debugging according to the layout shown in Table D3-4. This method frees up pins 6 and 8 for either 
application functions or SWO.

It is not necessary to choose the switching mode at the time of chip or board development. The connector can be 
switched and the target board can be operated in either SWD or JTAG mode.

Table D3-4 CoreSight 20 for future SWD or JTAG systems

Pin name for SWD
Pin number

Pin name for JTAG
Pin number

20-way MICTOR 20-way MICTOR

VTref 1 12 VTref 1 12

SWDIO 2 17 TMS 2 17

GND 3 - GND 3 -

SWCLK 4 15 TCK 4 15

GND 5 - GND 5 -

SWO/EXTa/TraceCtl 6 11 TDO 6 11

Key 7 - Key 7 -

NC/EXTb 8 (19) TDI 8 19

GNDDetect 9 - GNDDetect 9 -

nSRST 10 9 nSRST 10 9

Gnd/TgtPwr+Cap 11 - Gnd/TgtPwr+Cap 11 -

TraceClk 12 6 TraceClk 12 6

Gnd/TgtPwr+Cap 13 - Gnd/TgtPwr+Cap 13 -

TraceD0 14 38 TraceD0 14 38

GND 15 - GND 15 -

TraceD1 16 28 TraceD1 16 28

GND 17 - GND 17 -

TraceD2 18 26 TraceD2 18 26

GND 19 - GND 19 -

TraceD3 20 24 TraceD3 20 24
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D3.3 Arm MICTOR

The following sections describe:

• Target system connector.

• Target connector description.

• Decoding requirements for Trace Capture Devices on page D3-131.

• Electrical characteristics on page D3-132.

D3.3.1   Target system connector

The specified target system connector is the AMP MICTOR. This connector supports:

• JTAG interface, which is based on IEEE 1149.1-1990 and includes the Arm RTCK signal.

• Trace port interface, with up to 16 data pins.

• Serial Wire Debug (SWD) interface.

• Serial Wire Output (SWO) interface.

• Optional power supply pin.

• Reference voltage pin to enable support of a range of target voltages.

• Optional system reset request pin.

• Optional extra trigger pins for communicating with the target.

For tracing with large port widths that have more than 16 data pins, two connectors are required. See Single target 
connector pinout on page D3-129 and Dual target connector pinout on page D3-130.

The AMP MICTOR connector is a high-density matched-impedance connector. This connector has several 
important attributes:

• Direct connection to a logic analyzer probe using a high-density adapter cable with termination, for example 
HPE5346A from Agilent.

• Matching impedance characteristics, enabling the connector to be used at high speeds.

• Many ground fingers to ensure good signal integrity.

• Inclusion of one or both of the JTAG and SWD runtime control signals, enabling a single debug connection 
to the target.

Table D3-5 lists the AMP part numbers for the four possible connectors.

D3.3.2   Target connector description

This section contains details of the physical layout of the connector and recommended board orientation as follows:

• Single target connector pinout on page D3-129.

• Dual target connector pinout on page D3-130.

Table D3-5 Connector part numbers

AMP part number Description

2-767004-2 Vertical, surface mount, board to board or cable connectors

767054-1

767061-1

767044-1 Right angle, straddle mount, board to board or cable connector
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Single target connector pinout

Figure D3-2 shows how the connector and PCB can be oriented on the target system, as seen from above the PCB. 
The trace connector is mounted near the edge of the board to minimize the intrusiveness of the TPA when the 
interconnect is a direct PCB to PCB link.

Figure D3-2 Recommended orientation for a single connector

Table D3-6 shows the connections on a single MICTOR connector, and indicates the differences with the 
connections specified in the Arm® Embedded Trace Macrocell Architecture Specification. If a signal is not 
implemented on the target system, it must be replaced with a logic 0 connection.

12

Pin 1 chamfer

3738

Edge of printed circuit board

Target system

Table D3-6 Single target connector pinout

Pin Signal Pin Signal

38 TRACEDATA[0] 37 TRACEDATA[8]

36 TRACECTL 35 TRACEDATA[9]

34 Logic 1 33 TRACEDATA[10]

32 Logic 0 31 TRACEDATA[11]

30 Logic 0 29 TRACEDATA[12]

28 TRACEDATA[1] 27 TRACEDATA[13]

26 TRACEDATA[2] 25 TRACEDATA[14]

24 TRACEDATA[3] 23 TRACEDATA[15]

22 TRACEDATA[4] 21 nTRST

20 TRACEDATA[5] 19 TDI

18 TRACEDATA[6] 17 TMS /SWDIO

16 TRACEDATA[7] 15 TCK/SWCLK

14 VSupply 13 RTCK

12 VTRef 11 TDO/SWO

10 No connection, was EXTTRIG 9 nSRST

8 TRIGOUT/DBGACK 7 TRIGIN/DBGRQ
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Dual target connector pinout

Figure D3-3 shows the arrangement for two connectors. Arm recommends that they are placed in line, with pins 1 
separated by 1.35inches.

Figure D3-3 Recommended orientation for two connectors

Table D3-7 shows the connections for the secondary MICTOR connector. For the primary connector, see 
Table D3-6 on page D3-129. If a signal is not implemented on the target system, it must be replaced with a logic 0 
connection.

6 TRACECLK 5 GND

4 No connection 3 No connection

2 No connection 1 No connection

Table D3-6 Single target connector pinout (continued)

Pin Signal Pin Signal

12

Pin 1 chamfer

3738

Edge of printed circuit board

Target system

12

Pin 1 chamfer

3738

1.35 inch

Table D3-7 Dual target connector pinout

Pin Signal Pin Signal

38 TRACEDATA[16] 37 TRACEDATA[24]

36 Logic 0 35 TRACEDATA[25]

34 Logic 1 33 TRACEDATA[26]

32 Logic 0 31 TRACEDATA[27]
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D3.3.3   Decoding requirements for Trace Capture Devices

Table D3-8 shows the conditions that must be decoded by Trace Capture Devices (TCDs), for example a TPA or a 
logic analyzer.

Normal trace data

When trace data is indicated, only the full field of TRACEDATA[n:0] has to be stored. TRACECTL can be 
discarded to permit more efficient packing of data within the TCD.

Trigger packet

Although CoreSight does not use the encoding for a trigger packet, it must be implemented to maintain cross 
compatibility with ETMv3.x trace ports. TRACEDATA signals must be stored because there is further information 
that is emitted on this cycle, but the TRACECTL signal can be discarded. For more information, see the Arm® 
Embedded Trace Macrocell Architecture Specification.

30 Logic 0 29 TRACEDATA[28]

28 TRACEDATA[17] 27 TRACEDATA[29]

26 TRACEDATA[18] 25 TRACEDATA[30]

24 TRACEDATA[19] 23 TRACEDATA[31]

22 TRACEDATA[20] 21 No connection

20 TRACEDATA[21] 19 No connection

18 TRACEDATA[22] 17 No connection

16 TRACEDATA[23] 15 No connection

14 No connection 13 No connection

12 VTRef 11 No connection

10 No connection 9 No connection

8 No connection 7 No connection

6 TRACECLK 5 GND

4 No connection 3 No connection

2 No connection 1 No connection

Table D3-7 Dual target connector pinout (continued)

Pin Signal Pin Signal

Table D3-8 Trace Capture Device decoding

TRACECTL TRACEDATA[0] TRACEDATA[1] Trigger Capture Description

0 x x No Yes Normal trace data

1 0 0 Yes Yes Trigger packet

1 0 1 Yes No Trigger

1 1 x No No Trace disable
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Trigger

A trigger is used as a marker to enable the TCD to stop capture after a predetermined number of cycles. No data is 
output on this cycle, and TRACEDATA[n:0] and TRACECTL must not be captured.

Trace disable

This signal indicates that the current cycle must not be captured because it contains no useful information.

D3.3.4   Electrical characteristics

Debug equipment must be able to deal with a wide range of signal voltage levels. Typical ASIC operating voltages 
can range from 1V to 5V, although 1.8V to 3.3V is common.

It is important to keep the track length differences as small as possible to minimize skew between signals. Crosstalk 
on the trace port must be kept to a minimum because it can cause erroneous trace results. To minimize the chance 
of unpredictable responses, avoid stubs on the trace lines, especially at high frequencies. If stubs are necessary, make 
them as small as possible.

The trace port clock line, TRACECLK must be series-terminated as close as possible to the pins of the driving 
ASIC.

The maximum capacitance that is presented by the trace connector, cabling, and interfacing logic must be less than 
15pF.

There are no inherent restrictions on operating frequency, other than ASIC pad technology and TPA limitations. It 
is mandatory, however, to observe the following guidelines for maximizing the speed at which trace capture is 
possible.

Figure D3-4 shows the timing for TRACECLK.

Figure D3-4 TRACECLK specification

Arm recommends that trace ports provide a TRACECLK that is as symmetrical as possible, because both edges 
are used to capture trace. Figure D3-5 shows the setup and hold requirements for the trace data pins, 
TRACEDATA[n:0] and TRACECTL, in relation to TRACECLK.

Figure D3-5 Trace data specification

Arm recommends observing the following principles:

• Make sure that the setup time Ts and the hold time Th are as large as possible, and make sure that both are 
positive, which is required by some TPAs.

• Allow the TPAs to delay each trace data signal individually by up to a whole clock period, to compensate for 
trace ports where Ts and Th are not balanced or vary between data signals.

TRACECLK
Tr

Twh Twl

Tf

Tcyc

TRACECLK

Ts
Th

Trace data
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D3.4 Target Connector Signal details

The signals on the target connector pins are:

• VTRef output.

• TRACECLK output.

• TRACECTL output.

• TRACEDATA[n:0] output.

• Logic one input on page D3-134.

• Logic 0 input on page D3-134.

• TRIGIN/DBGRQ input on page D3-134.

• TRIGOUT/DBGACK output on page D3-134.

• nSRST input on page D3-134.

• nTRST input on page D3-134.

• TDI input on page D3-134.

• TMS input on page D3-134.

• SWDIO input/output on page D3-134.

• TCK/SWCLK input on page D3-134.

• RTCK output on page D3-134.

• TDO output on page D3-135.

• SWO output on page D3-135.

• VSupply output on page D3-135.

• GND on page D3-135.

• No connection on page D3-135.

D3.4.1   VTRef output

The VTRef signal is intended to supply a logic-level reference voltage to enable debug equipment to adapt to the 
signaling levels of the target board.

Note

VTRef does not supply operating current to the debug equipment.

Target boards must supply a voltage of 1-5V ±10%, implying a minimum of 0.9V, and a maximum of 5.5V. The DC 
output impedance of the target board must be low enough to ensure that the output voltage does not change by more 
than 1% when supplying a nominal signal current of 0.4mA. Debug equipment that connects to this signal must use 
it as a signal rather than a power supply pin and not load it more heavily than a signal pin. The recommended 
maximum source or sink current is 0.4mA.

D3.4.2   TRACECLK output

The trace port must be sampled on both edges of the TRACECLK clock signal. There is no requirement for 
TRACECLK to be linked to a core clock.

D3.4.3   TRACECTL output

This signal, together with TRACEDATA[1:0], indicates whether trace information can be stored this cycle. It is not 
necessary to store TRACECTL.

D3.4.4   TRACEDATA[n:0] output

This signal can be any size and represents the data that is generated from the trace system. To decompress the data, 
an understanding of the data stream is required, because the data can be wrapped up within the Formatter protocol 
or consist of direct data from a single trace source. See also Chapter D4 Trace Formatter.
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D3.4.5   Logic one input

This signal pin is at a voltage level that represents logic 1, typically a resistor pull-up to VTRef.

D3.4.6   Logic 0 input

This signal pin is at a voltage level that represents logic 0, typically a resistor pull-down to GND.

D3.4.7   TRIGIN/DBGRQ input

This signal is used to change the behavior of on-chip logic, for example by connecting it to a CTI. Arm recommends 
that this pin is pulled to a defined state, LOW, to avoid unintentional requests to any connected on-chip logic.

D3.4.8   TRIGOUT/DBGACK output

This signal can be connected to on-chip trigger generation logic such as a CTI to enable events to be propagated to 
external devices.

D3.4.9   nSRST input

This signal is an open-collector output from the run control unit to the target system reset, or an input to the run 
control unit so that a reset initiated on the target can be reported to the debugger.

On the target, pull up this pin to HIGH to avoid unintentional resets when there is no connection.

For more details on the use of nSRST, see the Arm® Debug Interface Architecture Specification.

D3.4.10   nTRST input

The nTRST signal is an open-collector input from the run control unit to the Reset signal on the target JTAG port. 
On the target, pull up this pin to HIGH to avoid unintentional resets when there is no connection.

D3.4.11   TDI input

TDI is the Test Data In signal from the run control unit to the target JTAG port. Arm recommends that this pin is 
set to a defined state.

D3.4.12   TMS input

TMS is the Test Mode Select signal from the run control unit to the target JTAG port. On the target, this pin must 
be pulled up to HIGH to ensure that when there is no connection, the effect of any spurious TCKs is benign. For 
connectors that share JTAG and SWD signals, this pin is shared with the SWDIO signal.

D3.4.13   SWDIO input/output

The Serial Wire Data I/O pin sends and receives serial data to and from the target during debugging. For connectors 
that share JTAG and SWD signals, this pin is shared with the TMS signal.

D3.4.14   TCK/SWCLK input

TCK/SWCLK is the Test Clock signal from the run control unit to the target JTAG or SWD port. Arm recommends 
that this pin is pulled to a defined state.

D3.4.15   RTCK output

RTCK is the Return Test Clock signal from the target JTAG port to the run control unit. Some targets, such as 
Arm7TDMI-S™, must synchronize the JTAG port to internal clocks. To facilitate meeting this requirement, a 
returned, and re-timed, TCK can be used to dynamically control the TCK rate.
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D3.4.16   TDO output

TDO is the Test Data Out from the target JTAG port to the run control unit. This signal must be set to its inactive 
drive state, tristate, when the JTAG state machine is not in the Shift-IR or Shift-DR states. For connectors that share 
JTAG and SWD signals, this pin is shared with the SWO signal.

D3.4.17   SWO output

The Serial Wire Output pin can be used to provide trace data. For connectors that share JTAG and SWD signals, 
this pin is shared with the TDO signal.

D3.4.18   VSupply output

The VSupply pin enables the target board to supply operating current to debug equipment so that an external power 
supply is not required. 

• This pin might not be used by all debug equipment.

• The VDD power rail typically drives the pin on the target board.

• Target board documentation indicates the VSupply pin voltage and the current available. Target boards must 
supply a voltage that is nominally between 2V and 5V with a tolerance of ±10%, amounting to a minimum 
of 1.8V and a maximum of 5.5V. A target board that drives this pin must provide a minimum supply current 
of 250mA, where 400mA is recommended. 

• To enable establishing the need for an external power supply to power the debug equipment, debug 
equipment must indicate the required supply voltage range and the current power consumption over that 
range. 

• Target boards might have a limited amount of current available for external debug equipment, so a backup 
mechanism to power the debug equipment must be provided in case VSupply is not connected or insufficient.

For some hardware, this pin is unused.

D3.4.19   GND

This pin must be connected to 0V on the target board to provide a signal return and logic reference.

D3.4.20   No connection

No connection must be made to this pin.
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Chapter D4 
Trace Formatter

This chapter describes trace formatter requirements for devices that comply with the CoreSight architecture. It 
contains the following sections:

• About trace formatters on page D4-138.

• Frame descriptions on page D4-139.

• Modes of operation on page D4-144.

• Flush of trace data at the end of operation on page D4-145.
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D4.1 About trace formatters

Formatters are methods for wrapping Trace Source IDs into the output Trace Data stream. This chapter specifies the 
format that is used by Trace Sinks to embed AMBA ATB interface source IDs into a single trace stream. For more 
information about the AMBA ATB protocol, see AMBA ATB interface on page C2-80. 

The formatter protocol has the following features:

• It permits trace from several sources to be merged into a single stream and later separated.

• It does not place any requirements or constraints on the data that is emitted from trace sources.

• It is suitable for high-speed real-time decoding.

• It can be transmitted and stored as a bitstream without the need for separate alignment information.

• It can be decoded even if the start of the trace is lost.

• It indicates the position of the trigger signal around which trace capture is centered to the TPA, eliminating 
the need for a separate pin.

• It indicates when the trace port is inactive to the TPA, eliminating the need for a separate flow control pin.

If the embedded trigger and flow control information is not required by the TPA, and only a single trace source is 
used, it is possible to disable the formatting to achieve better data throughput.
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D4.2 Frame descriptions

The formatter protocol outputs data in 16-byte frames. Each frame consists of:

• 7 bytes of data.

• 8 mixed-use bytes, each of which contains:

— One bit to indicate the use of the remaining seven bits.

— Seven bits that can be data or a change of trace source ID.

• One byte of auxiliary bits, where each bit corresponds to one of the 8 mixed-use bytes:

— If the corresponding byte was data, this bit indicates the remaining bit of that data.

— If the corresponding byte was an ID change, this bit indicates when that ID change takes effect.

Figure D4-1 shows how these bytes are arranged in a formatter frame.

Figure D4-1 Formatter frame structure

Each time the ID changes, at least 1 byte of data must be output for that ID. Table D4-1 shows the meaning of each 
bit in a formatter frame. It is output least significant bit first, starting with bit 0.

31 24 23 17 15 8 7 1 0

ID or Data (J)

ID or Data (B)Data

ID or Data (C)DataID or Data (D)Data

ID or Data (E)DataID or Data (G)Data

ID or Data (H)Data

ID or Data (A)Data FF

FF

FF

J FFABCDEGH

16

Bytes 3-0

Bytes 7-4

Bytes 11-8

Bytes 15-12

Table D4-1 Meaning of bits in a formatter frame

Byte 
number

Bits Description

0 0 ID or Data control for bits[7:1], marked F in Figure D4-1.

7:1 Depends on bit 0:

0 = Data[7:1].

1 = New ID.

1 7:0 Data[7:0].

2 7:0 ID or Data, see byte 0.

3 7:0 Data[7:0].

4 7:0 ID or Data, see byte 0.

5 7:0 Data[7:0].

6 7:0 ID or Data, see byte 0.

7 7:0 Data[7:0].

8 7:0 ID or Data, see byte 0.

9 7:0 Data[7:0].
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-139
ID022122 Non-Confidential



Trace Formatter 
D4.2 Frame descriptions
D4.2.1   Frame example

Two trace sources with IDs of 0x03 and 0x15 generate trace data and are interleaved on the trace bus, presenting one 
word of data at a time.

The following stream of bytes is output by the formatter:

0x07, 0xAA, 0xA6, 0xA7, 0x2B, 0xA8, 0x54, 0x52, 0x52, 0x54, 0x07, 0xCA, 0xC6, 0xC7, 0xC8, 0x1C.

Figure D4-2 on page D4-141 shows the corresponding frame.

10 7:0 ID or Data, see byte 0.

11 7:0 Data[7:0].

12 7:0 ID or Data, see byte 0.

13 7:0 Data[7:0].

14 7:0 ID or Data, see byte 0.

15 0 Auxiliary bit for byte 0, see bit in Figure D4-1 on page D4-139 marked A.

The meaning of this bit depends on whether byte 0 contains data or a new ID:

Data = Data[0].

New ID:

0 = Byte 1 corresponds to the new ID.

1 = Byte 1 corresponds to the old ID. 

The new ID takes effect from the next data byte after byte 1.

1 Auxiliary bit for byte 2, marked B in Figure D4-1 on page D4-139. See bit 0.

If byte 2 contains a new ID, this bit indicates whether the new ID takes effect from byte 3 
or the following data byte.

2 Auxiliary bit for byte 4, marked C in Figure D4-1 on page D4-139. See bit 0.

3 Auxiliary bit for byte 6, marked D in Figure D4-1 on page D4-139. See bit 0.

4 Auxiliary bit for byte 8, marked E in Figure D4-1 on page D4-139. See bit 0.

5 Auxiliary bit for byte 10, marked G in Figure D4-1 on page D4-139. See bit 0.

6 Auxiliary bit for byte 12, marked H in Figure D4-1 on page D4-139. See bit 0.

7 Auxiliary bit for byte 14, marked J in Figure D4-1 on page D4-139. See bit 0.

If byte 14 is a new ID, this bit is reserved. It must be zero, and must be ignored when 
decompressing the frame. The new ID takes effect from the first data byte of the next 
frame.

Table D4-1 Meaning of bits in a formatter frame (continued)

Byte 
number

Bits Description
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Figure D4-2 Example formatter frame

Table D4-2 shows how this frame is decoded.

31 24 23 17 16 15 8 7 1 0

Data 0x64

Data 0x53Data 0xA7

ID 0x15Data 0xA8Data 0x2AData 0x52

Data 0x29Data 0x54ID 0x03Data 0xCA

Data 0x63Data 0xC7

ID 0x03Data 0xAA 10

10

01

0 000011100

Bytes 3-0

Bytes 7-4

Bytes 11-8

Bytes 15-12

Table D4-2 Decoding the example formatter frame

Byte Observation Interpretation Data ID

0 Bit[0] is set. This byte represents the new ID 0x03. Bit[0] of byte 15 is clear, so 
the new ID takes effect immediately.

- 0x03

1 Data byte for the trace with the new ID 0x03. 0xAA 0x03

2 Bit[0] is clear This byte is a data byte for the trace with the current ID 0x03. 
Bit[0] of the data is taken from bit[1] of byte 15.

0xA6 0x03

3 Data byte. 0xA7 0x03

4 Bit[0] is set This byte represents the new ID 0x15. Bit[2] of byte 15 is set, so 
the next data byte continues to use the current ID 0x03.

- 0x03

5 Data byte for the trace with the current ID 0x03. 0xA8 0x03

6 Bit[0] is clear. This byte is a data byte for the trace with the new ID 0x15. Bit[0] 
of the data is taken from bit[3] of byte 15.

0x55 0x15

7 Data byte. 0x52 0x15

8 Bit[0] is clear. This byte is a data byte. Bit[0] of the data is taken from bit[4] of 
byte 15.

0x53 0x15

9 Data byte. 0x54 0x15

10 Bit[0] is set. This byte represents the new ID 0x03. Bit[5] of byte 15 is clear, so 
the new ID takes effect immediately.

- 0x03

11 Data byte for the trace with the new ID 0x03. 0xCA 0x03

12 Bit[0] is clear. This byte is a data byte for the trace with the current ID 0x03. 
Bit[0] of the data is taken from bit[6] of byte 15.

0xC6 0x03

13 Data byte. 0xC7 0x03

14 Bit[0] is clear. This byte is a data byte. Bit[0] of the data is taken from bit[7] of 
byte 15.

0xC8 0x03

15 Auxiliary bits. - -
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D4.2.2   Frame synchronization packet

The frame synchronization packet enables a TPA or trace decompressor to find the start of a frame. It is output 
periodically between frames. It is output least significant bit first, starting with bit[0]. In continuous mode, the TPA 
might discard all frame synchronization packets after the start of a frame is found. See Modes of operation on 
page D4-144 for more information about continuous mode.

Figure D4-3 shows a frame synchronization packet.

Figure D4-3 Full frame synchronization packet

This sequence cannot occur at any other time, if ID 0x7F has not been used. See Special trace source IDs for more 
information on reserved source IDs.

Note

Frame synchronization packets and frame data are always multiples of 32-bits, but do not always start on a 32-bit 
boundary. Because halfword synchronization packets can occur within frames and between frames, they can also 
start on 16-bit boundaries. See also Halfword synchronization packet.

D4.2.3   Halfword synchronization packet

Halfword synchronization packets enable a TPA to detect when the trace port is idle and there is no trace to be 
captured. They observe the following rules:

• They are output between frames or within a frame.

• If they appear within a frame, they are always aligned to a 16-bit boundary. 

• They are output least significant bit first, starting with bit[0].

• They are only generated in continuous mode. If a TPA detects a halfword synchronization packet, it must 
discard it, because it does not form part of a formatter frame. See Modes of operation on page D4-144 for 
more information about continuous mode.

Figure D4-4 shows a halfword synchronization packet.

Figure D4-4 Halfword synchronization packet

Note

Frame synchronization packets and frame data are always multiples of 32-bits, but do not always start on a 32-bit 
boundary. Because halfword synchronization packets can occur within frames and between frames, they can also 
start on 16-bit boundaries.

D4.2.4   Special trace source IDs

The following IDs are for special purposes and must not be used under normal operation:

0x00 This ID indicates a NULL trace source. Any data following this ID change must be ignored by the 
debugger, which is required if there is insufficient trace data available to complete a formatter frame.

0x70-0x7A Reserved.

10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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0x7B This ID indicates a flush response. Trace that is output with the flush response ID signifies that all 
trace that was generated previous to a flush request has been output.

Each byte of trace that is output with ID 0x7B constitutes a separate flush response, whereby the 
value of the byte can be one of the following:

0x00 All active trace sources have indicated a flush response.

0x01-0x6F The trace source ID with this value has indicated a flush response.

0x70-0xFF Reserved.

Note

The use of trace source ID 0x7B is also permitted on ATB, with the same payload semantics.

0x7C Reserved.

0x7D This ID indicates a trigger within the trace stream and is accompanied by one byte of data for each 
trigger. The value of each data byte indicates the ID of the trigger. A data byte with a value of zero 
indicates that the trigger ID is UNKNOWN.

Note

The use of trace source ID 0x7D is also permitted on ATB, with the same payload semantics.

0x7E Reserved.

0x7F This ID must never be used because it conflicts with the synchronization packet encodings.

D4.2.5   Data overheads

The formatter protocol adds an overhead of 6% to the bandwidth requirement of a trace port. It also requires one 
byte of extra trace every time the source ID changes. Arm recommends that components that arbitrate between trace 
sources switch between different source IDs as infrequently as possible.

Under certain conditions, the formatter can be bypassed to eliminate this overhead. For more information, see 
Bypass on page D4-144.

D4.2.6   Repeating the trace source ID

If a large amount of consecutive trace is generated by a single source ID, the ID must be repeated periodically. This 
mechanism ensures that the debugger can determine the source of the trace even when the beginning of the trace 
has been lost.

Arm recommends repeating the source ID approximately every ten frames.

D4.2.7   Indication of alignment points

In most trace protocols, it is necessary to periodically indicate the beginning of a packet. This process is called 
alignment synchronization. Most protocols achieve alignment synchronization by periodically outputting a packet 
similar to the Frame Synchronization Packet.

When using a protocol that is unable to output such a packet, use the formatter protocol to indicate the position of 
synchronization points by using two source IDs. The trace source starts outputting trace using the first ID, then 
switches to the second ID at the first alignment point. It switches back to the first ID at the next alignment point, 
and continues switching at each subsequent alignment point.

A trace source that uses ID switching in this manner cannot use bypass mode. See Bypass on page D4-144.
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D4.3 Modes of operation

The formatter can operate in one of three modes. Not all modes are supported by all components that implement a 
formatter. For example, an ETB does not need to support continuous mode.

D4.3.1   Bypass

In this mode, the trace is output without modification. No formatting information is inserted into the trace stream. 
When using bypass mode, observe the following rules:

• Only one trace source ID is in use.

• If the trace is to be output over a trace port, the TRACECTL pin must be implemented, and the TPA must 
support this pin. This configuration enables the TPA to determine the position of the trigger and detect when 
no trace is available for capture. See Decoding requirements for Trace Capture Devices on page D3-131.

• The debugger does not need to report the position of the trigger as seen by the trace sink. In bypass mode, the 
trigger ID 0x7D is not generated.

To ensure that all trace is output from a trace sink when stopping trace, extra data might be added to the end of the 
trace stream. See Bypass mode on page D4-145.

D4.3.2   Normal

The formatter is enabled, and the TRACECTL pin is used to determine the position of the trigger and detect when 
no trace is available for capture. Halfword synchronization packets are not generated. The TPA does not have to 
decode any part of the trace stream.

This mode is the easiest to support by TPAs designed for ETMs.

D4.3.3   Continuous

The formatter is enabled, but the TRACECTL pin is not used. The TPA must decode part of the formatter protocol 
to determine the position of the trigger and detect when no trace is available for capture.
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D4.4 Flush of trace data at the end of operation

To support AMBA ATB protocol flushes, the formatter must ensure that all trace is output, because the trace that 
remains after a flush might be insufficient to complete a frame or use all the pins in the trace port. This section 
describes how the remaining trace must be formatted.

Note

When tracing is resumed, some leftover trace that is generated by the flush sequence might be output before any 
new trace is output. Look for the first synchronization packet in the protocol before starting to decompress the trace.

Trace that is output with the flush response ID 0x7B signifies that all trace that was generated previous to a flush 
request has been output. See also Special trace source IDs on page D4-142.

D4.4.1   Bypass mode

When running in bypass mode, if the formatter cannot guarantee that all trace has been output, it must output an 
extra sequence at the end of the trace. This mechanism ensures that all trace stored in the formatter is output, even 
if, for example, there is insufficient trace to use all the pins of a trace port.

The sequence consists of a single bit that is set, followed by a series of zeros. This sequence does not represent real 
trace data and must always be removed before decompression when the trace sink has been requested to stop trace 
output.

The following two examples show sequences that can be observed on a 32-bit trace port. Figure D4-5 shows an 
example of how the last AMBA ATB protocol transaction left three bytes within the formatter.

Figure D4-5 End of session example 1

Figure D4-6 shows an example of how the trace finishes on a 32-bit trace port boundary.

Figure D4-6 End of session example 2

D4.4.2   Normal and continuous mode

When running in normal or continuous mode, the formatter must complete the frame currently being output, using 
the null ID encoding, ID 0x00. Any data that is associated with this ID can be ignored. More frames of data 
corresponding to the null ID can be generated to ensure that all trace has been output.
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Chapter D5 
About ROM Tables

The chapter describes ROM Tables. It includes the following sections:

• ROM Tables Overview on page D5-148.

• ROM Table Types on page D5-149.

• Component and Peripheral ID Registers for ROM Tables on page D5-150.
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D5.1 ROM Tables Overview

ROM Tables hold information about debug components.

• Systems with a single debug component do not require a ROM Table. However, a designer might choose to 
implement such a system to include a ROM Table.

• Systems with more than one debug component must include at least one ROM Table.

A ROM Table connects to a bus controlled by a Memory Access Port (MEM-AP). In other words, the ROM Table 
is part of the address space of the memory system that is connected to a MEM-AP. More than one ROM Table can 
be connected to a single bus.

A ROM Table always occupies 4KB of memory.
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D5.2 ROM Table Types

The following types of ROM Tables in Arm® Debug Interface Architecture Specification (ADIv6.0) are permitted to 
be used with components that comply with CoreSight version 3.0:

Class 0x1 ROM Tables 

In a Class 0x1 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x1, which identifies the component as a Class 
0x1 ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• A Class 0x1 ROM Table is a read-only device.

For a detailed description of the Class 0x1 ROM Table entries and registers, see Arm® Debug 
Interface Architecture Specification (ADIv6.0) .

Class 0x9 ROM Tables 

In a Class 0x9 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x9, which identifies the component as a 
CoreSight Component.

• The DEVTYPE and DEVID registers contain information about the ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• Class 0x9 ROM Table entries are 32 or 64 bits wide.

For a detailed description of the Class 0x9 ROM Table entries and registers, see Arm® Debug 
Interface Architecture Specification (ADIv6.0) .

Note

Class 0x9 ROM Tables can be used alongside Class 0x1 ROM Tables, and both Class 0x9 and Class 0x1 ROM 
Tables might be present in systems that comply with CoreSight v3.
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D5.3 Component and Peripheral ID Registers for ROM Tables

Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the 
ROM Table. PIDR0-PIDR7, Peripheral Identification Registers on page B2-40 in Chapter B2 CoreSight 
programmers’ model describes these registers. This section only describes particular features of the registers when 
they relate to a ROM Table.

D5.3.1   Identifying the debug SoC, system, or subsystem

The Unique Component Identifier in a ROM table uniquely identifies the SoC, platform, or subsystem described by 
the ROM table. For example:

• A cluster of components grouped together with a ROM table hierarchy pointing to all the components is 
uniquely identified by the outermost ROM Table in the cluster.

• A subsystem of all components connected to a single MEM-AP is uniquely identified by the outermost ROM 
Table in the subsystem. This ROM Table is usually the first component pointed to by the MEM-AP.

• An SoC, consisting of multiple MEM-APs implementing the ADIv5, is uniquely identified by the collective 
Unique Component Identifiers from all of the outermost ROM Tables pointed to by each of the Memory 
Access Ports.

• An SoC, consisting of multiple MEM-APs implementing the ADIv6, is uniquely identified by the Unique 
Component Identifiers from the outermost ROM Table providing pointers to by each of the MEM-APs. This 
ROM Table is usually the first component pointed to by the DP.

An SoC, system, or subsystem might be configurable when being built. For example, a cluster of processors might 
permit the number of processors to be configurable. The ROM Table, which describes such a collection of 
components, might have the same Unique Component Identifier for all configurations of the system. However, this 
is only permitted when components are either included or excluded, and is not permitted to be the same when the 
location of any component in the address map changes or components significantly change in function. In effect, a 
ROM Table Unique Component Identifier uniquely identifies a superset configuration of the collection of 
components. ROM Tables with the same Unique Component Identifier might only describe a subset of this superset.
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Chapter D6 
Topology Detection at the System Level

This chapter describes topology detection at the system level. It contains the following sections:

• About topology detection at the system level on page D6-152.

• Detection on page D6-153.

• Components that are not recognized on page D6-154.

• Detection algorithm on page D6-155.
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D6.1 About topology detection at the system level

Chapter B3 Topology Detection describes the topology detection requirements of CoreSight components. 
Chapter C7 Topology Detection at the Component Level describes how to perform topology detection on each 
interface type. This chapter describes how debuggers can use this information to detect the topology of a target 
system.
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D6.2 Detection

When connecting to a CoreSight system, a debugger performs the following steps:

1. It finds the DP.

2. It ensures that the system is powered up, and that its clocks are running. The DP provides facilities to assist 
with this assessment.

3. It looks for a ROM Table with the location of all components.

4. It compares the Peripheral ID of the ROM Table against a list of saved system descriptions. For information 
on this ID, see PIDR0-PIDR7 in Arm® Debug Interface v6 Specification.

5. If a description of the system with this ID is saved, it uses that description. If not, the debugger continues 
with the following steps:

a. It identifies each component.

b. It looks up information that is known about that component to determine what interfaces are supported 
and how to control them for topology detection.

c. It performs topology detection. See Detection algorithm on page D6-155.

d. It saves the description for later use.

D6.2.1   Saved descriptions

Because topology detection can be invasive, it is important that the description of the system is saved when 
discovered, so that the debugger can be connected non-invasively in the future. The debugger must have the 
possibility to force topology detection to be redone, in case two different targets are accidentally assigned the same 
ROM Table ID.

Note

Software running on the system must be able to determine the topology of the CoreSight system, and keep 
functioning when topology detection registers are enabled.
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D6.3 Components that are not recognized

When an unrecognized component is encountered, the JEDEC code and CoreSight component class of the 
component is used to indicate which type of component has been encountered and who to ask for further 
information. Alternatively, DEVARCH, if present, can be used to determine the generic architecture of a 
component. The component must be otherwise ignored.
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D6.4 Detection algorithm

Arm recommends that a debugger connecting to a system executes the following algorithm, to determine the 
topology of the system:

for each component, c
execute (component preamble) for c

for each interface type, t
for each transmitter interface and bidirectional interface of type t, m

execute (transmitter preamble) for interface m
for each receiver interface and bidirectional interface of type t, s

execute (receiver preamble) for interface s
for each transmitter interface and bidirectional interface of type t, m

execute (transmitter assert) for interface m
for each receiver interface and bidirectional interface of type t, s

if (receiver check asserted) for interface s
record connection between m and s

for each slave interface and bidirectional interface of type t, s
execute receiver post-assert for interface s

execute (transmitter deassert) for interface m
for each receiver interface and bidirectional interface of type t, s

if not (receiver check deasserted) for interface s
raise error

for each receiver interface and bidirectional interface of type t, s
execute (receiver post-deassert) for interface s

for each component, c
execute (component postamble) for c

Signals for topology detection on page C7-110 describes preambles, and assert and deassert sequences for common 
interfaces. If a component does not specify a preamble or postamble, they are as follows:

Component preamble 

Set ITCTRL.IME to 0b1.

Component postamble 

Clear ITCTRL.IME to 0b0.

Note

After a device has been in integration mode, it might behave differently than before. After performing integration 
or topology detection, reset the system to ensure correct behavior of CoreSight and other connected system 
components that are affected by the integration or topology detection.
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Chapter D7 
Compliance Requirements

This chapter describes the requirements for CoreSight compliance. It contains the following sections:

• About compliance classes on page D7-158.

• CoreSight debug on page D7-159.

• CoreSight trace on page D7-161.

• Multiple DPs on page D7-164.
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D7.1 About compliance classes

This chapter defines the requirements that a system must meet to claim CoreSight compliance. It refers to specific 
revisions of components available from Arm.

These requirements are aimed at interoperability between debuggers, and only cover behavior that is visible to such 
tools. The following behavior is specified:

• Minimum functionality. This functionality must be available in all compliant systems.

• Optional functionality. Arm recommends that debuggers aiming to support compliant systems support this 
functionality.

Note

Systems can implement extra functionality, provided it does not affect the use of the minimum functionality. 
Debuggers might not be able to support this extra functionality.

Two levels of compliance are defined:

• CoreSight debug, which is the basic level of compliance. A processor supporting CoreSight debug does not 
need to comply with the CoreSight visible component architecture, although doing so makes it easier to build 
a CoreSight system.

• CoreSight trace, which includes all the requirements for CoreSight debug, and adds trace functionality.

The level of compliance is claimed for each individual processor in the system. For example, a system incorporating 
three processors might claim CoreSight trace for the first processor, CoreSight debug for the second, and no 
CoreSight compliance for the third.
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D7.2 CoreSight debug

This section defines the CoreSight debug compliance class.

Note

A CoreSight component is a component that implements the CoreSight visible component architecture.

D7.2.1   Minimum debug functionality

Systems claiming CoreSight debug compliance must conform to the following rules:

• Each CoreSight system must contain exactly one DP, and implement a JTAG-DP or a SW-DP component. 
The JTAG or Serial Wire interface of the component must be accessible to debug tools. For more information 
about implementing multiple systems containing DPs, see Multiple DPs on page D7-164.

• All CoreSight components must comply with all the following requirements:

— They must be accessible through a MEM-AP.

— They must be discoverable through a valid ROM Table, that must itself conform to the requirements 
for CoreSight components.

• All processors claiming CoreSight debug compliance must observe at least one of the following 
requirements:

— They must conform to the CoreSight visible component architecture, while conforming to the 
requirements for CoreSight components.

— They must be accessible using a JTAG TAP Controller that is connected in series with the JTAG TAP 
Controller of the JTAG-DP, connected to the TDI side of the JTAG-DP as Figure D7-8 on 
page D7-164 shows.

— They must be accessible using a JTAG TAP Controller that is connected in a chain of TAP Controllers 
that are controlled by the JTAG-AP.

• All debug functionality must be visible and detectable, with its clocks running, when Debug Power Up is 
requested in the JTAG-DP programmers’ model, except where it is hidden due to security restrictions.

• All debug functionality must be operational when System Power Up is requested in the JTAG-DP 
programmers’ model, except where it is hidden due to security restrictions.

• All debug functionality must be reset to its initial state when Debug Reset is requested in the JTAG-DP 
programmers’ model.

• For each CoreSight component and JTAG controlled processor, all inputs and outputs that are defined as type 
event are connected to a CTI component, unless there is only one component in the system with event inputs 
or outputs, in which case no CTI is required. For Arm JTAG controlled processors, the required connections 
are documented in the CoreSight Technology System Design Guide.

• All channel interfaces of CoreSight components, for example interfaces that are present on CTIs, are 
connected together, so that the channels are shared between all components. CoreSight technology from Arm 
provides a CTM for connecting three or more channel interfaces together where required.

• Unless stated otherwise in this specification, extra logic between components that is visible to the tools is not 
permitted. See also Variant interfaces on page B3-70.

• Arm recommends all system designs to be CoreSight compliant, but recognizes that this recommendation 
might not always be achievable. If a system requires certain operations to be performed before it complies 
with the CoreSight compliance criteria, clearly state what these operations are, and clearly state that it is not 
CoreSight compliant until they have been performed.

D7.2.2   Optional debug functionality

CoreSight debug systems can also implement visibility of system components through a MEM-AP.
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Single-core debug

Figure D7-1 shows the simplest CoreSight debug configuration for a single-core system. In this configuration, no 
trace capabilities are provided. The processor is accessed via a JTAG-AP, to ensure that it can be powered down 
without affecting other components on the master JTAG TAP chain.

Figure D7-1 Single core with JTAG debug access

Multi-core debug

Figure D7-2 shows a multi-core CoreSight debug system:

• One of the processors is a fully compliant CoreSight component.

• Cross triggering is supported between processors.

• Both processors provide access to program the CTI and processor with interfaces that comply with the 
CoreSight architecture.

An alternative method to provide memory access that is not shown in the figure is to use AHB-AP.

Figure D7-2 Multi-core system
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D7.3 CoreSight trace

This section defines the CoreSight trace compliance class.

D7.3.1   Minimum trace functionality

Systems claiming CoreSight trace compliance must comply with the minimum requirements for CoreSight debug, 
plus the following:

• All Arm-compatible processors claiming CoreSight trace compliance must implement an Arm CoreSight 
ETM.

• Processors that are not Arm-compatible must implement a trace solution that complies with the following 
requirements: 

— It must implement the CoreSight visible component architecture.

— It must provide the processor with at least instruction trace as a CoreSight trace source.

• The system must implement one or more trace sinks:

— If a TPIU is implemented, its output is connected to a compliant connector as defined in Chapter D3 
Physical Interface.

• All CoreSight trace sources must drain into one or more of the trace sinks:

— Where two or more trace sources drain into the same trace sink, they are connected through one or 
more CoreSight trace funnels.

— The trace cannot travel through multiple paths to reach the same endpoint. See the example in 
Figure D7-3.

Figure D7-3 Non-compliant Replicator and CoreSight trace funnel connection

A particular example that must be avoided is feedback. See example in Figure D7-4.

Figure D7-4 Non-compliant feedback loop

D7.3.2   Optional trace functionality

CoreSight debug systems can also implement CoreSight debug optional functionality and tracing of AHB buses 
using the Arm AHB Trace Macrocell (HTM).

Basic single-core trace

Figure D7-5 on page D7-162 shows an example system with single-core trace using the CoreSight infrastructure. 
The ETM, which complies with the CoreSight architecture, outputs directly to a TPIU for direct output of core trace 
off-chip. The tracing of only a single trace source enables the TPIU to be configured in bypass mode because source 
IDs do not need to be embedded in the trace data.
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Figure D7-5 Single-core trace with formatting bypass

Advanced single-core trace

Figure D7-6 shows an example system with full trace capabilities in a single-core system. The ETM provides Arm 
processor tracing, and the HTM provides bus tracing. The CoreSight trace funnel combines trace from both sources 
into a single trace stream, that is then replicated to provide on-chip storage using the CoreSight ETB and output 
off-chip using the TPIU. Components can be configured via the Debug-APB and cross triggered using the CTIs, 
through the CTM.

Figure D7-6 Full CoreSight trace with single core

Multi-core trace

Figure D7-7 on page D7-163 shows a system with an Arm processor and a DSP. A third smaller subsystem is added 
to support merging of multiple CoreSight AMBA ATB interfaces into a single trace stream.

Arm 
Cortex 

processor
ETM TPIU

Cross trigger interface

Debug APB

APB 
bridge

Bypass, no formatting

SWJ-
DP

APB- 
AP

Arm 
Cortex

processor TPIU

Cross trigger 
interface

Debug APB

APB 
bridgeMEM-

AP

F

AXI/AHB Cross trigger matrix  Memory

Cross trigger interface

Funnel
ETB

Cross trigger 
interface

HTMAPB- 
AP

ETM

FSystem Trace 
Macrocell 

(STM)

Formatting 
turned on

SWJ-
DP
D7-162 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



Compliance Requirements 
D7.3 CoreSight trace
Figure D7-7 Full system trace with Arm processor and CoreSight compliant DSP
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D7.4 Multiple DPs

In the context of this specification, a system is defined as one of the following:

• All components that are accessible through a single DP, a MEM-AP, or a JTAG-AP.

• All components before a JTAG-DP in a serial JTAG TAP chain.

The following rules apply to the arrangement of multiple DPs:

• Connections between JTAG TAP Controllers cannot be interleaved between systems. For example, if there 
are two systems sharing a JTAG TAP chain, each with a JTAG-DP and two JTAG processors connected in 
series with the JTAG-DP, the connections that are shown in Figure D7-8 are permitted, while the connections 
shown in Figure D7-9 are not permitted.

In Figure D7-8:

— System 1 is defined as the two processors before the first JTAG-DP in the TAP chain.

— System 2 is defined as the two processors before the second JTAG-DP in the TAP chain.

Figure D7-8 JTAG connections across systems

Figure D7-9 Non-compliant interleaved JTAG connections across systems

• Extra JTAG TAP Controllers can be implemented in series with JTAG TAP Controllers of the CoreSight 
systems. For example, in Figure D7-10, processor A is not part of either CoreSight system 1 or 2. The 
debugger considers processor A to be part of system 2, because the JTAG-DP closest to the TDO side of 
processor A is in system 2. If the debugger does not recognize processor A, then it is ignored, otherwise the 
debugger attempts topology detection on system 2 with processor A, and fails to find any connections 
between processor A and system 2.

Figure D7-10 Systems with extra JTAG TAP Controllers

• A JTAG-DP must not be accessed through the JTAG-AP of another system, as shown in Figure D7-11.
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Figure D7-11 Non-compliant JTAG-DP connection
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Appendix E1 
Power Requester

This appendix describes the power requestor which Arm recommends that some CoreSight components implement. 
It contains the following sections:

• About the power requester on page E1-170.

• Register descriptions on page E1-171.

• Powering non-visible components on page E1-188.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-169
ID022122 Non-Confidential



Power Requester 
E1.1 About the power requester
E1.1 About the power requester

The power requester belongs to the component Class 0x9, CoreSight component.

The power requester can control the application or removal of power for up to 32 power domains.
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E1.2 Register descriptions

Table E1-1 shows the power requester registers, in order of their address offset in the 4KB block where the 
programmers’ model resides. The remainder of the chapter describes how to implement the registers, in alphabetical 
order.

E1.2.1   AUTHSTATUS, Authentication Status Register

For a full description of this register, see AUTHSTATUS, Authentication Status Register on page B2-45.

The AUTHSTATUS characteristics are:

Purpose 

Reports the required security level and status of the authentication interface. Where functionality 
changes on a given security level, this change in status must be reported in this register.

Usage constraints 

None.

Table E1-1 Power requestor register summary

Offset Type Name Description

0x000 RW CDBGPWRUPREQ Debug Power Request Register

0x004 RO CDBGPWRUPACK Debug Power Request Acknowledge Register

0x008-0xEFC RES0 - Reserved

0xF00 RW ITCTRL Integration Mode Control Register

0xF04-0xF9C RES0 - Reserved

0xFA0 RW CLAIMSET Claim Tag Set Register

0xFA4 RW CLAIMCLR Claim Tag Clear Register

0xFA8-0xFAC RES0 - Reserved

0xFB0 WO LAR Software Lock Access Register

0xFB4 RO LSR Software Lock Status Register

0xFB8 RO AUTHSTATUS Authentication Status Register

0xFBC RO DEVARCH Device Architecture Register

0xFC0-0xFC4 RES0 - Reserved

0xFC8 RO DEVID Device configuration Register

0xFCC RO DEVTYPE Device Type identifier Register

0xFD0-0xFDC RO PIDR4-PIDR7 Peripheral Identification Registers

0xFE0-0xFEC RO PIDR0-PIDR3

0xFF0-0xFFC RO CIDR0-CIDR3 Component Identification Registers

Default

RO
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Configurations 

Included in all implementations.

Attributes 

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28] 

RES0. See AUTHSTATUS, Authentication Status Register on page B2-45.

RTNID, bits [27:26] 

Root non-invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

RTID, bits [25:24] 

Root invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

SUNID, bits[23:22] 

Secure Unprivileged non-invasive debug. See AUTHSTATUS, Authentication Status 
Register on page B2-45.

SUID, bits[21:20] 

Secure Unprivileged invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

NSUNID, bits[19:18] 

Non-secure Unprivileged non-invasive debug. See AUTHSTATUS, Authentication Status 
Register on page B2-45.

NSUID, bits[17:16] 

Non-secure Unprivileged invasive debug. See AUTHSTATUS, Authentication Status 
Register on page B2-45.

RLNID, bits[15:14] 

Realm non-invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

RLID, bits[13:12] 

Realm invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

HNID, bits[11:10] 

Hypervisor non-invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

HID, bits[9:8] 

Hypervisor invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

SNID, bits[7:6] 

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
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Secure non-invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

SID, bits[5:4] 

Secure invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

NSNID, bits[3:2] 

Non-secure non-invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

NSID, bits[1:0] 

Non-secure invasive debug. See AUTHSTATUS, Authentication Status Register on 
page B2-45.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

E1.2.2   CDBGPWRUPACK, Debug Power Request Acknowledge Register

The CDBGPWRUPACK characteristics are:

Purpose 

Returns the status of the power requests that CDBGPWRUPREQ issues.

Usage constraints 

The register can monitor the power requests for up to 32 power domains. 

CDBGPWRUPACK is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register.

Field Descriptions

The CDBGPWRUPACK bit assignments are:

Bits[31:DEVID.NUMREQ] 

RES0

ACK, bits[DEVID.NUMREQ-1:0] 

Component Offset

GPR 0xFB8

Default

RO

31 0

RES0

DEVID.NUMREQ DEVID.NUMREQ-1

ACK
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The size of this field is IMPLEMENTATION DEFINED, and equals the value of DEVID.NUMREQ.

Permitted values of bit[n] are:

0 Power domain n is not powered.

1 Power domain n is powered.

Accessing CDBGPWRUPACK

CDBGPWRUPACK can be accessed at the following address:

E1.2.3   CDBGPWRUPREQ, Debug Power Request Register

The CDBGPWRUPREQ characteristics are:

Purpose 

Controls whether a power request is active for a power domain.

Usage constraints 

CDBGPWRUPREQ can issue power requests for up to 32 power domains.

CDBGPWRUPREQ is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit register.

Field Descriptions

The CDBGPWRUPREQ bit assignments are:

Bits[31:DEVID.NUMREQ] 

RES0. 

REQ, bits[DEVID.NUMREQ-1:0] 

The size of this field is IMPLEMENTATION DEFINED, and equals the value of DEVID.NUMREQ.

Permitted values of bit[n] are:

0 Power request for power domain n is not active.

1 Power request for power domain n is active.

Component Offset

GPR 0x004

Default

RW

31 0

RES0

DEVID.NUMREQ DEVID.NUMREQ-1

REQ
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Accessing CDBGPWRUPREQ

CDBGPWRUPREQ can be accessed at the following address:

E1.2.4   CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for GPR components that implement the CIDR0-CIDR3. For a full 
description of the CIDR, see Component and Peripheral Identification Registers on page B2-38.

The CIDR characteristics are:

Purpose 

Provide information to identify a CoreSight component. 

Usage constraints 

CIDR0-CIDR3 are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

Four 32-bit management registers.

Field Descriptions

The CIDR0 bit assignments are:

CIDR3 bits[31:8] 

RES0.

Component Offset

GPR 0x000

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
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PRMBL_3, CIDR3 bits[7:0] 

0xB1.

CIDR2 bits[31:8] 

RES0.

PRMBL_2, CIDR2 bits[7:0] 

0x05.

CIDR1 bits[31:8] 

RES0.

CLASS, CIDR1 bits[7:4] 

0x9 CoreSight component.

PRMBL_1, CIDR1 bits[3:0] 

0x0.

CIDR0 bits[31:8] 

RES0.

PRMBL_0, CIDR0 bits[7:0] 

0x0D.

Accessing the CIDR

CIDR0-CIDR3 can be accessed at the following address:

E1.2.5   CLAIMCLR, Claim Tag Clear Register

For a full description of this register, and how to deploy it in a claim tag protocol, see CLAIMSET and CLAIMCLR, 
Claim Tag Set Register and Claim Tag Clear Register on page B2-48.

The CLAIMCLR characteristics are:

Purpose 

Clears claim tags and returns the current claim tag values. 

Usage constraints 

Must be used with CLAIMSET.

To indicate the width of the area that represents valid claim tags, a component must use 
CLAIMSET. 

If CLAIMCLR and CLAIMSET are implemented, all debug agents that use them must 
implement a common claim tag protocol.

The value of CLAIMCLR must be zero at reset.

Component
Offset

CIDR0 CIDR1 CIDR2 CIDR3

GPR 0xFF0 0xFF4 0xFF8 0xFFC
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CLAIMCLR is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The CLAIMCLR bit assignments are:

Bits[31:nTags] 

RAZ/WI.

CLR, bits[nTags-1:0] 

The size n of this field is IMPLEMENTATION DEFINED, and equals the number of bits set in 
CLAIMSET.

Permitted values of bit[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The debug functionality that is tagged by bit[n] is available.

Read 1 The debug functionality that is tagged by bit[n] is claimed.

Accessing CLAIMCLR

CLAIMCLR can be accessed at the following address:

E1.2.6   CLAIMSET, Claim Tag Set Register

For a full description of this register, and how to deploy it in a claim tag protocol, see CLAIMSET and CLAIMCLR, 
Claim Tag Set Register and Claim Tag Clear Register on page B2-48.

The CLAIMSET characteristics are:

Purpose 

Sets claim tags and returns the valid claim tags. 

Usage constraints 

Must be used with CLAIMSET.

The bits indicating valid claim tags must be consecutive. 

Default

RW

Component Offset

GPR 0xFA4

31 0

CLRRAZ/WI

nTags-1nTags
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If CLAIMCLR and CLAIMSET are implemented, all debug agents that use them must 
implement a common claim tag protocol.

CLAIMSET is accessible as follows:

Configurations Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The CLAIMSET bit assignments are:

Bits[31:nTags] 

RAZ/WI.

SET, bits[nTags-1:0] 

The size n of this field is IMPLEMENTATION DEFINED.

Permitted values of bit[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is implemented.

Read 1 The claim tag that is represented by bit[n] is not implemented.

Accessing CLAIMSET

CLAIMSET can be accessed at the following address:

E1.2.7   DEVARCH, Device Architecture Register 

This section describes the bit assignments for GPR components that implement DEVARCH. For a full description 
of DEVARCH, see DEVARCH, Device Architecture Register on page B2-53.

The DEVARCH characteristics are:

Purpose 

Identifies the architect and architecture of a CoreSight component. The architect might 
differ from the designer of a component, for example when Arm defines the architecture but 
another company designs and implements the component. 

Usage constraints 

Default

RW

Component Offset

GPR 0xFA0

31 0

SETRAZ/WI

nTags-1nTags
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DEVARCH is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21] 

0x23B The architect is Arm.

PRESENT, bit[20] 

1 DEVARCH is present.

REVISION, bits[19:16] 

0x0

ARCHID, bits[15:0] 

0xA34 Power Requestor.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

E1.2.8   DEVID, Device configuration Register 

This section describes the bit assignments for GPR components that implement DEVID. For a full description of 
DEVID, see DEVID, Device Configuration Register on page B2-55.

The DEVID characteristics are:

Purpose 

Indicates how many power domains the power requestor supports.

Usage constraints 

Default

RO

Component Offset

GPR 0xFBC

ARCHITECT

31 21 20 19 16 15 0

ARCHIDREVISION

PRESENT
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DEVID is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:6] 

RES0

NUMREQ, bits[5:0] 

IMPLEMENTATION DEFINED. Number of power domains to be managed by 
CDBGPWRUPREQ and CDBGPWRUPACK.

Accessing DEVID

DEVID can be accessed at the following address:

E1.2.9   DEVTYPE, Device Type Register 

This section describes the bit assignments for GPR components that implement DEVTYPE. For a full description 
of DEVTYPE, see DEVTYPE, Device Type Identifier Register on page B2-57.

The DEVTYPE characteristics are:

Purpose 

If the part number field is not recognized, a debugger can report the information that is 
provided by DEVTYPE about the component instead.

Usage constraints 

DEVTYPE is accessible as follows:

Configurations 

Default

RO

Component Offset

GPR 0xFC8

RES0

31 056

NUMREQ

Default

RO
E1-180 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



Power Requester 
E1.2 Register descriptions
Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8] 

RES0. Ensures that the bits that are not associated with the component type have a 
well-defined value.

SUB, bits[7:4] 

0x3 Power Requester.

MAJOR, bits[3:0] 

0x4 Debug Control.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

E1.2.10   ITCTRL, Integration Mode Control Register

This section describes the bit assignments for GPR components that implement ITCTRL. For a full description of 
ITCTRL, see ITCTRL, Integration Mode Control Register on page B2-60.

The ITCTRL characteristics are:

Purpose 

A component can use this register to dynamically switch between functional mode and 
integration mode. 

In integration mode, topology detection is enabled. For more information, see Chapter B3 
Topology Detection.

Usage constraints 

After switching to integration mode and performing integration tests or topology detection, 
reset the system to ensure correct behavior of CoreSight and other connected system 
components.

ITCTRL is accessible as follows:

Configurations 

Component Offset

GPR 0xFCC

31 7 4 3 0

RES0 SUB MAJOR

8

Default

RW
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Included in all implementations.

Attributes 

A 32-bit management register.

Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1] 

RES0. 

IME, bits[0] 

Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology 
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL Register

ITCTRL can be accessed at the following address:

E1.2.11   LAR, Lock Access Register

For a full description of this register, and how to deploy it in a Software lock mechanism, see LSR and LAR, Software 
Lock Status Register and Software Lock Access Register on page B2-61.

The LAR characteristics are:

Purpose 

Components can use this register to enable write access to device registers. 

Usage constraints 

LAR is accessible as follows:

Configurations 

LSR.SLI indicates whether a Software lock mechanism is implemented. If a Software lock 
mechanism is implemented, LAR is implemented, and must be used with LSR.

Attributes 

A 32-bit management register.

Component Offset

GPR 0xF00

RES0

31 01

IME

Default

WO
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Field Descriptions

The LAR bit assignments are:

KEY, bits[31:0] 

Writing a value to this field controls write access to the control registers.

Permitted values of KEY are:

Write 0xC5ACCE55 

Signals that LSR must permit writing to the control registers.

Write any other value 

Signals that LSR must block writing to the control registers.

Accessing LAR

LAR can be accessed at the following address:

E1.2.12   LSR, Lock Status Register

For a full description of this register, and how to deploy it in a Software lock mechanism, see LSR and LAR, Software 
Lock Status Register and Software Lock Access Register on page B2-61.

The LSR characteristics are:

Purpose 

Defines the parameters for a Software lock mechanism that can be implemented to control 
write access to device registers. 

Usage constraints 

LSR is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit management register.

Component Offset

GPR 0xFB0

31 0

KEYLAR 0xFB0

Default

RO
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Field Descriptions

The LSR bit assignments are:

Bits[31:3] 

RES0. 

nTT, bits[2] 

0 LAR is a 32-bit register.

SLK, bits[1] 

This field is used to return the current software lock status.

Permitted values of SLK are:

0 Writing to the control registers must be permitted.

1 Writing to the control registers must be blocked.

SLI, bits[0] 

This field indicates whether a Software lock mechanism is implemented.

Permitted values of SLI are:

0 Software lock mechanism is not implemented.

1 Software lock mechanism is implemented.

Accessing LSR

LSR can be accessed at the following address:

E1.2.13   PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for GPR components that implement PIDR0-PIDR7. For a full 
description of the PIDR, see PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

The PIDR characteristics are:PIDR3PIDR4

Purpose 

Provide information to identify a CoreSight component. 

Usage constraints 

PIDR0-PIDR7 are accessible as follows:

Component Offset

GPR 0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

Default

IMPLEMENTATION DEFINED
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Configurations 

Included in all implementations.

Attributes 

Eight 32-bit management registers.

Field Descriptions

The PIDR bit assignments are:

PIDR3 bits[31:8] 

RES0. 

REVAND, PIDR3 bits[7:4] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

CMOD, PIDR3 bits[3:0] 

31 0

RES0

8 7

CMODREVAND

4 3

PIDR3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR1 0xFE4

31 0

RES0 PART_0

8 7

PIDR0 0xFE0

31 0

RES0PIDR7 0xFDC

31 0

RES0PIDR6 0xFD8

31 0

RES0PIDR5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR4 0xFD0
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See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

PIDR2 bits[31:8] 

RES0. 

REVISION, PIDR2 bits[7:4] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

JEDEC, PIDR2 bits[3] 

0b1.

DES_1, PIDR2 bits[2:0] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

PIDR1 bits[31:8] 

RES0. 

DES_0, PIDR1 bits[7:4] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

PART_1, PIDR1 bits[3:0] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

PIDR0 bits[31:8] 

RES0. 

PART_0, PIDR0 bits[7:0] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.

PIDR7 bits[31:0] 

RES0. 

PIDR6 bits[31:0] 

RES0. 

PIDR5 bits[31:0] 

RES0. 

PIDR4 bits[31:8] 

RES0. 

SIZE, PIDR4 bits[7:4] 

0x0 The GPR uses a single 4KB memory block.

DES_2, PIDR4 bits[3:0] 

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on 
page B2-40.
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Accessing the PIDR

PIDR0-PIDR7 can be accessed at the following address:

Component
Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

GPR 0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
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E1.3 Powering non-visible components

Some components do not have a visible programmers’ model, for example a Cross Trigger Matrix (CTM), which 
is used in cross-triggering components in a CoreSight system. When requesting power for a visible component, 
power must be supplied to any associated non-visible components as well.

For example, if two Cross Trigger Interfaces (CTIs) are connected through a CTM, a response to a power request 
for the CTIs must also power the CTM.
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Appendix E2 
Revisions

This appendix describes the main technical changes between released versions of this specification.

Table E2-1 Differences between v1.0 and v2.0

Change Location

Renamed register fields for consistency across Arm documentation. Entire document.

Clarified that all registers are accessed in little-endian format. About the programmers’ model on page B2-32.

Added new registers to Class 0x9 CoreSight component. DEVID1, Device Configuration Register 1 on page B2-56.

DEVID2, Device Configuration Register 2 on page B2-57.

DEVARCH, Device Architecture Register on page B2-53.

DEVAFF0-DEVAFF1, Device Affinity Registers on 
page B2-51.

Added new interfaces. Chapter C3 Event Interface.

Chapter C6 Timestamp Interface.

Updated channel interface. Chapter C4 Channel interface.

Updated the definition of the authentication interface to deprecate some 
previously permitted encodings.

Chapter C5 Authentication Interface.

Updated the connector information. Chapter D3 Physical Interface.

Updated the permitted trace ID values to include 0x7D. Special trace source IDs on page D4-142.

Added the power requester and ROM Table values. Appendix E1 Power Requester.

ROM Tables Overview on page D5-148.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E2-189
ID022122 Non-Confidential



Revisions 
 

Table E2-2 Differences between v2.0 and v3.0

Change Location

The use of LAR and LSR to implement the Software lock mechanism 
is deprecated.

LSR and LAR, Software Lock Status Register and Software 
Lock Access Register on page B2-61.

The use of PADDRDBG[31] to split the memory map and indicate the 
difference between external and internal accesses is deprecated.

Debug APB interface memory map on page D2-118

Use of the PIDR4.SIZE field is deprecated. Components that occupy more than 4KB of address space 
on page B2-34 and PIDR0-PIDR7, Peripheral 
Identification Registers on page B2-40.

The AUTHSTATUS description is extended to include optional fields 
that can be used to indicate hypervisor debug visibility.

AUTHSTATUS, Authentication Status Register on 
page B2-45.

The Authentication Interface is extended to support signals that control 
debug for a hypervisor.

Chapter C5 Authentication Interface.

The rules for assigning a Unique Component Identifier and a revision 
number to a component have been updated.

Chapter B2 Component and Peripheral Identification 
registers.

Trace Formatter ID 0x7B, which was reserved in earlier versions, is 
allocated to indicate a flush response.

Special trace source IDs on page D4-142.

Introduced Class 0x9 ROM Tables, and adopted the designation Class 
0x1 ROM Tables for the existing format.

Chapter D5 About ROM Tables.

See Arm® Debug Interface Architecture Specification 
(ADIv6.0).

Support for Realm Management Extension is added Component-specific registers for Class 0x9 CoreSight 
components on page B2-44.

Chapter C5 Authentication Interface.

Support in AUTHSTATUS for indicating Unprivileged debug AUTHSTATUS, Authentication Status Register on 
page B2-45.
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Appendix E3 
Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper 
procedures and functions that are used by pseudocode. It contains the following sections:

• About the Arm pseudocode on page E3-192.

• Pseudocode for instruction descriptions on page E3-193.

• Data types on page E3-195.

• Operators on page E3-200.

• Statements and control structures on page E3-206.

• Built-in functions on page E3-211.

• Miscellaneous helper procedures and functions on page E3-214.

• Arm pseudocode definition index on page E3-216.

Note

This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm 
pseudocode. This appendix is not complete. Changes are planned for future releases. 
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E3.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description 
of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions on page E3-193 
gives general information about this instruction pseudocode, including its limitations. 

The following sections describe the Arm pseudocode in detail:

• Data types on page E3-195.

• Operators on page E3-200.

• Statements and control structures on page E3-206.

Built-in functions on page E3-211 and Miscellaneous helper procedures and functions on page E3-214 describe 
some built-in functions and pseudocode helper functions that are used by the pseudocode functions that are 
described elsewhere in this manual. Arm pseudocode definition index on page E3-216 contains the indexes to the 
pseudocode.

E3.1.1   General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that 
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to 
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. 

For more information, see Special statements on page E3-210.
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E3.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does, 
subject to the limitations described in General limitations of Arm pseudocode on page E3-192 and Limitations of 
the instruction pseudocode on page E3-194. 

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the 
instruction. Instruction encoding diagrams and instruction pseudocode gives more information about the 
pseudocode provided for each instruction.

E3.2.1   Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific 
pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the 
instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being described. 
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its 
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding 
corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction 
is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions 
on page K1-11158.

• A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32 
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the 
instruction, and one of the following is true:

• The encoding diagram is not for an A32/T32 instruction.

• The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

• The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of 
the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In 
that case, abandon this execution model and consult the relevant instruction set chapter instead to find out 
how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED, 
though there are some other possibilities. For example, unallocated hint instructions are documented as being 
reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform 
that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP. 
If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common 
pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in 
parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit 
or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and 
initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.

In a few cases, the encoding diagram contains more than one bit or field with same name. In these cases, the 
values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode 
contains a special case using the Consistent() function to specify what happens if they are not identical. 
Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same 
value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must 
contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode 
and their corresponding encoding diagrams.
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There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider. 
This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED 
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the 
instruction. If any of them do not match, abandon this execution model and treat the instruction as 
CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions on page K1-11158.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding 
diagram. That pseudocode starts with all variables set to the values they were left with by the 
encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the 
EncodingSpecificOperations() call performs steps 3 and 4.

E3.2.2   Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the 
fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory 
accesses. For a description of the ordering requirements on memory accesses, see Ordering constraints on 
page E2-6790.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its 
condition code check:

— UNDEFINED instruction.

— Hyp trap.

— Monitor trap.

— Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if 
ConditionPassed() then … structure, either directly or in the EncodingSpecificOperations() function call, and 
so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:

— Conditional execution of undefined instructions on page G1-8582.

— EL2 configurable controls on page G1-8626.

— EL3 configurable controls on page G1-8646.

— Configurable instruction controls on page D1-4555.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction 
generates more than one floating-point exception and one or more of those floating-point exceptions is 
trapped. Combinations of floating-point exceptions on page E1-6767 describes the exact rules.

Note
There is no limitation in the case where all the floating-point exceptions are untrapped, because the 
pseudocode specifies the same behavior as the cross-referenced section.

• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result 
of the execution of a pseudocode function such as Abort(), or implicitly, for example if an interrupt is taken 
during execution of an LDM instruction. If this happens, the pseudocode does not describe the extent to which 
the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in 
Handling exceptions that are taken to an Exception level using AArch32 on page G1-8545.
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E3.3 Data types

This section describes:

• General data type rules.

• Bitstrings.

• Integers on page E3-196.

• Reals on page E3-196.

• Booleans on page E3-196.

• Enumerations on page E3-197.

• Structures on page E3-197.

• Tuples on page E3-198.

• Arrays on page E3-199.

E3.3.1   General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following 
types:

• Bitstring.

• Integer.

• Boolean.

• Real.

• Enumeration.

• Tuple.

• Struct.

• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The 
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the 
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type. 
The following example declares explicitly that a variable named count is an integer. 

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E3.3.2   Bitstrings

This section describes the bitstring data type. 

Syntax
bits(N) The type name of a bitstring of length N.

bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted 
length of a bitstring is 0.
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Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by 
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be 
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring 
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order 
matches the order in which bitstrings derived from encoding diagrams are printed. 

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is, 
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the 
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and 
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are 
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E3.3.3   Integers

This section describes the data type for integer numbers. 

Syntax

integer The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical 
integers rather than what computer languages and architectures commonly call integers. Computer integers are 
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret 
those bitstrings as integers.

Integer  literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style 
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer  literals are treated as positive unless they have 
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it 
must be written as -0x80000000.

E3.3.4   Reals

This section describes the data type for real numbers. 

Syntax

real The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer 
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the 
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal, 
but 0.0 is a real constant literal.

E3.3.5   Booleans

This section describes the Boolean data type. 

Syntax

boolean The type name for the Boolean data type.
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TRUE The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE 
or FALSE.

E3.3.6   Enumerations

This section describes the enumeration data type. 

Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three}; 

A definition of a new enumeration called Example, which can take on the values Example_One, 
Example_Two, Example_Three. 

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by 
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration 
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its 
possible values.

E3.3.7   Structures

This section describes the structure data type. 

Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount) 

An example definition for a new structure called ShiftSpec that contains an bitstring member called 
shift and a integer member named amount. Structure definitions must not be terminated with a 
semicolon.

ShiftSpec abc; 

A declaration of a variable named abc of type ShiftSpec. 

abc.shift 

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data 
types. This can include compound data types. The data items of a structure are called its members and are named. 
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In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of 
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc, 
the members of this structure are referred to as abc.shift and abc.amount. 

Every definition of a structure creates a different type, even if the number and type of their members are identical. 
For example: 

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in 
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E3.3.8   Tuples

This section describes the tuple data type. 

Examples

(bits(32) shifter_result, bit shifter_carry_out) 

An example of the tuple syntax. 

(shift_t, shift_n) = ('00', 0); 

An example of assigning values to a tuple. 

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of 
different types and a tuple must contain at least one data item. 

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section, 
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation. 
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of 
ordered data types between parentheses. This means that the example tuple at the start of this section is of type 
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of 
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).

• shift_n to be of type integer.

• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
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E3.3.9   Arrays

This section describes the array data type. 

Syntax

array The type name for the array data type. 

array data_type array_name[A..B]; 

Declaration of an array of type data_type, which might be compound data type. It is named 
array_name and is indexed with an integer range from A to B. 

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types. 
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the 
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30. 

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at 
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.

• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that 
enumeration type. An array declared with an integer range type as the index must be accessed using integer values 
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error. 

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are 
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package 
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register 
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD 
element processing. See Function and procedure calls on page E3-206.
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E3.4 Operators

This section describes:

• Relational operators.

• Boolean operators.

• Bitstring operators on page E3-201.

• Arithmetic operators on page E3-201.

• The assignment operator on page E3-202.

• Precedence rules on page E3-204.

• Conditional expressions on page E3-204.

• Operator polymorphism on page E3-204.

E3.4.1   Relational operators 

The following operations yield results of type boolean. 

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y 
and for non-equality by using the expression x != y. In both cases, the result is of type boolean. 

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an enumeration 
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for 
equality with an integer to allow a d==15 test. 

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any bit 
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the 
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask. 

Note

This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than, 
and greater than or equal comparisons between them, producing Boolean results. 

Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be 
a list of expressions separated by commas. 

E3.4.2   Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is 
FALSE, the result is determined to be FALSE without evaluating y.

Note

This is known as short circuit evaluation. 

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result 
is determined to be TRUE without evaluating y.
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Note

If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing 
x and y together. The operator EOR only accepts bitstring arguments. 

E3.4.3   Bitstring operators

The following operations can be applied only to bitstrings. 

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained 
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by 
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to  create a new bitstring from 
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring 
being  sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the 
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in 
<integer_list> must be:

• >= 0.

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo 
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement 
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with 
both end values included. For example, instr<31:28>  represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in 
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram 
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for 
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A 
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to 
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

E3.4.4   Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from 
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no 
issues arise about overflow or similar errors.
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Unary plus and minus 

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both 
of type integer, and real otherwise. 

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to 
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2. 

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant 
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned 
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0> 
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of 
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y. 

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type 
integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).

• x >> n = RoundDown(x * 2^(-n)).

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer, then x^n is of type integer.

• If x is of type real, then x^n is of type real.

E3.4.5   The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An 
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax. 
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General expression syntax

An expression is one of the following:

• A literal.

• A variable, optionally preceded by a data type name to declare its type.

• The word UNKNOWN preceded by a data type name to declare its type.

• The result of applying a language-defined operator to other expressions.

• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or 
underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring 
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as 
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the 
architecture does not specify what value it is and software must not rely on such values. The value produced must 
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that 
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural 
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on 
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the 
circumstances under which it does so. For example, those circumstances might require that one or more of 
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function 
specifies the circumstances under which it can generate an assignable expression.

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be 
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or 
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them 
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
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• For a function, the definition of the function determines the data type.

E3.4.6   Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their 
results, but see Boolean operators on page E3-200.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide 
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need 
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example, 
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

E3.4.7   Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression 
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E3.4.8   Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each 
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on 
various combinations of integers, reals and bitstrings.

Table E3-1 on page E3-204 summarizes the operand types valid for each unary operator and the result type. 
Table E3-2 on page E3-204 summarizes the operand types valid for each binary operator and the result type. 

Table E3-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean

Table E3-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real
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<, >

<= , >=

integer integer
boolean

real real

+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real

Table E3-2 Result and operand types permitted for binary operators (continued)

Operator First operand type Second operand type Result type
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E3.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

• Statements and Indentation.

• Function and procedure calls.

• Conditional control structures on page E3-208.

• Loop control structures on page E3-209.

• Special statements on page E3-210.

• Comments on page E3-210.

E3.5.1   Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated 
with a semicolon. 

Indentation normally indicates the structure in compound statements. The statements contained in structures such 
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure 
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation 
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of 
indent. 

E3.5.2   Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
E3-206 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122



Pseudocode Definition 
E3.5 Statements and control structures
Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument 
definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but 
different behaviors in AArch32 and AArch64 states. 

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist 
because reading from and writing to an array element require different functions. They are frequently used in 
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For 
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the 
same name, but the value prototype and return type can be different. 

Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

Return statements

A procedure return has the form: 

return;

A function return has the form:
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return <expression>;

where <expression> is of the type declared in the function prototype line.

E3.5.3    Conditional control structures

This section describes how conditional control structures are used in the pseudocode. 

if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and 
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple 
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement 2>, and <statement A> must be terminated by semicolons. This, and the 
fact that the else part is optional, distinguish its use as a control structure from its use as a ternary operator. 

case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
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<statement A>;
<statement B>;
…
<statement Z>;

In this structure, <literal values1> and <literal values2> consist of  literal values of the same type as <expression>, 
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and 
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known 
as bitmasks. For details, see Equality and non-equality on page E3-200.

E3.5.4   Loop control structures

This section describes the three loop control structures used in the pseudocode. 

repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE. 
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside 
the loop body. 

while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the 
expression is false. 

for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1> 
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This 
repeats until <assignable expression> is more than or equal to <integer_expr2>. 

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is 
less than or equal than <integer_expr2>. 
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E3.5.5   Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that the Undefined 
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a 
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The 
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION 
DEFINED. An optional <text> field can give more information.

E3.5.6   Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon. 
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E3.6 Built-in functions

This section describes:

• Bitstring manipulation functions.

• Arithmetic functions on page E3-212.

E3.6.1   Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.

• Zeros(n) = Replicate('0', n).

• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x)  is an integer result equal to the number of bits of x that are ones.
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Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones

• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros, 
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros, 
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign 
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient 
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient 
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that 
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

E3.6.2   Arithmetic functions

This section defines built-in arithmetic functions. 

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x. 
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Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces: 

— RoundDown(x) if x > 0.0.

— 0 if x == 0.0.

— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring 
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y) 
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its 
argument with its n low-order bits forced to zero.

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and 
y must both be of type integer or of type real. The function returns a value of the same type as its operands. 
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E3.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together 
with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of 
these helper procedures and functions.

Note

Chapter J1 Armv8 Pseudocode also has an entry for each of these functions, but currently these entries do not say 
anything about the effect of the function. When this information is added in Chapter J1, this section will be removed 
from the manual.

E3.7.1   EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

E3.7.2   Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

E3.7.3   Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address);

E3.7.4   Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

E3.7.5   Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address);

E3.7.6   Hint_Yield()

This procedure performs a Yield hint.

Hint_Yield();

E3.7.7   IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used 
only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
    assert type != Fault_None;

boolean IsExternalAbort(FaultRecord fault);
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E3.7.8   IsAsyncAbort()

This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It 
is used only in exception entry pseudocode.

boolean IsAsyncAbort(Fault type)
    assert type != Fault_None;

boolean IsAsyncAbort(FaultRecord fault);

E3.7.9   LSInstructionSyndrome()

This function returns the extended syndrome information for a fault reported in the HSR.

bits(11) LSInstructionSyndrome();

E3.7.10   ProcessorID()

This function returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();

E3.7.11   RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset 
values, and FALSE otherwise.

boolean RemapRegsHaveResetValues();

E3.7.12   ResetControlRegisters()

This function resets the System registers and memory-mapped control registers that have architecturally defined 
reset values to those values. For more information about the affected registers, see:

• Reset behavior on page D1-4564.

• PE state on reset into AArch32 state on page G1-8602.

AArch64.ResetControlRegisters(boolean ResetIsCold)
AArch32.ResetControlRegisters(boolean ResetIsCold)

E3.7.13   ThisInstr()

This function returns the bitstring encoding of the currently executing instruction.

bits(32) ThisInstr();

Note

Currently, this function is used only on 32-bit instruction encodings.

E3.7.14   ThisInstrLength()

This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

integer ThisInstrLength();
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E3.8 Arm pseudocode definition index

This section contains the following tables:

• Table E3-3 on page E3-216 which contains the pseudocode data types.

• Table E3-4 on page E3-216 which contains the pseudocode operators. 

• Table E3-5 on page E3-217 which contains the pseudocode keywords and control structures.

• Table E3-6 on page E3-218 which contains the statements with special behaviors. 

Table E3-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type 

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table E3-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings

Used in the left-hand side of an assignment or a tuple to discard 
the result

+ Unary plus on integers or reals

Addition of integers, reals, and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings

/ Division of reals
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&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2 

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

case … of … Control structure for the

if … then … else … Condition expression selecting between two values

Table E3-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the 
upper limit

for … = … downto … Loop control structure, counting down from the initial value to 
the lower limit

if … then … else … Conditional control structure

otherwise Introduces default case in case … of … control structure

Table E3-4 Index of pseudocode operators (continued)

Operator Meaning
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repeat … until … Loop control structure that runs at least once until the 
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition 
is satisfied

Table E3-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table E3-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
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This glossary describes some of the technical terms that are used in Arm documentation.

AHB An AMBA bus protocol supporting pipelined operation, with the address and data phases 
occurring during different clock periods, meaning that the address phase of a transfer can occur 
during the data phase of the previous transfer. AHB provides a subset of the functionality of the 
AMBA AXI protocol.

See also AMBA and AHB-Lite.

AHB Access Port (AHB-AP)
An optional component that provides an AHB interface to a SoC.

CoreSight supports access to a system bus infrastructure using the AHB Access Port (AHB-AP). 
The AHB-AP provides an AHB Requester port for direct access to system memory. Other bus 
protocols can use AHB bridges to map transactions. For example, you can use AHB to AXI 
bridges to provide AHB access to an AXI bus matrix.

See also Debug Access Port (DAP).

AHB Trace Macrocell (HTM)
A trace source that makes bus information visible. This information cannot be inferred from the 
processor using just a trace macrocell. HTM trace can provide:

• An understanding of multi-layer bus utilization.

• Software debug. For example, visibility of access to memory areas and data accesses.

• Bus event detection for trace trigger or filters, and for bus profiling.

See also AHB.
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AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all the basic functions that 
are required by most AMBA AHB Completer and Requester designs, particularly when used 
with a multi-layer AMBA interconnect.

Aligned A data item that is stored at an address that is exactly divisible by the number of bytes that 
defines its data size. Aligned doublewords, words, and halfwords have addresses that are 
divisible by eight, four, and two respectively. An aligned access is one where the address of the 
access is aligned to the size of each element of the access.

AMBA The AMBA family of protocol specifications is the Arm open standard for on-chip buses. 
AMBA provides solutions for the interconnection and management of the functional blocks that 
make up a System-on-Chip (SoC). Applications include the development of embedded systems 
with one or more processors or signal processors and multiple peripherals.

APB An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt 
controllers, UARTs, and I/O ports. It connects to the main system bus through a 
system-to-peripheral bus bridge that helps reduce system power consumption.

APB Access Port (APB-AP)
An optional component that provides an APB interface to a SoC, usually to its main functional 
buses.

APB-AP See APB Access Port (APB-AP).

ATB An AMBA bus protocol for trace data. A trace device can use an ATB to share CoreSight 
capture resources.

ATB bridge A synchronous ATB bridge provides a register slice that meets timing requirements by adding 
a pipeline stage. It provides a unidirectional link between two synchronous ATB domains.

An asynchronous ATB bridge provides a unidirectional link between two ATB domains with 
asynchronous clocks, and connects components in different clock domains.

See also ATB.

AXI An AMBA bus protocol that supports:

• Separate phases for address or control and data.

• Unaligned data transfers using byte strobes.

• Burst-based transactions with only start address issued.

• Separate read and write data channels.

• Issuing multiple outstanding addresses.

• Out-of-order transaction completion.

• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

See also AXI coherency extensions (ACE).

AXI coherency extensions (ACE)
The AXI coherency extensions (ACE) provide extra channels and signaling to an AXI interface 
to support system level cache coherency.

Cold reset A cold reset has the same effect as starting the processor by turning on the power, and clears 
main memory and many internal settings. Some program failures can lock up the core and 
require a cold reset to restart the system.

See also Warm reset.

Core reset See Warm reset.
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CoreSight Arm on-chip debug and trace components, that provide the infrastructure for monitoring, 
tracing, and debugging a complete system on chip.

See also CoreSight ECT and CoreSight ETM.

CoreSight ECT See Embedded Cross Trigger (ECT).

CoreSight ETB See Embedded Trace Buffer (ETB).

CoreSight ETM See Embedded Trace Macrocell (ETM).

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTI provides the interface 
between a processor or ETM and the CTM.

Cross Trigger Matrix (CTM)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTM combines the trigger 
requests generated by CTIs and broadcasts them to all CTIs as channel triggers.

CTI See Cross Trigger Interface (CTI).

CTM See Cross Trigger Matrix (CTM).

DAP See Debug Access Port (DAP).

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)
A collection of Debug Ports and Access Ports that are compliant with the Arm Debug Interface 
(ADI), and provide access to system buses on a debug target.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP). The 
interface has four or five signals.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, 
together with custom hardware that supports software debugging.

DNM See Do-Not-Modify (DNM).

Do-Not-Modify (DNM) A value that must not be altered by software. DNM fields read as UNKNOWN values, and must 
only be written with the value read from the same field on the same core.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned A data item having a memory address that is divisible by eight.

ECT See Embedded Cross Trigger (ECT).

Embedded Cross Trigger (ECT)
A modular system that supports the interaction and synchronization of multiple triggering 
events with an SoC. It comprises:

• Cross Trigger Interface (CTI).

• Cross Trigger Matrix (CTM).

Embedded Trace Buffer (ETB)
A Logic block that extends the information capture functionality of a trace macrocell.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor, outputs trace information on a trace 
port. The ETM provides processor driven trace through a trace port compliant to the ATB 
protocol. An ETM always supports instruction trace, and might support data trace.

ETB See Embedded Trace Buffer (ETB).
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ETM See Embedded Trace Macrocell (ETM).

Event In an Arm trace macrocell:

Simple An observable condition that a trace macrocell can use to control aspects of a 
trace.

Complex A boolean combination of simple events that a trace macrocell can use to control 
aspects of a trace.

Formatter In an ETB or TPIU, an internal input block that embeds the trace source ID in the data to create 
a single trace stream.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm 
debugger, a computer providing debugging services to a target being debugged.

HTM See AHB Trace Macrocell (HTM).

IEEE 1149.1 The IEEE Standard that defines TAP. Commonly referred to as JTAG.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture 
specification available from the IEEE Standards Association http://standards.ieee.org.

IGN An abbreviation for Ignore, when describing the behavior of a register or memory access.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but must be defined and documented by 
individual implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

IMPLEMENTATION SPECIFIC
In the context of Arm trace macrocells, behavior that is not architecturally defined, and might 
not be documented by an individual implementation. Used when there are several 
implementation options available and the option that is chosen does not affect software 
compatibility.

When IMPLEMENTATION SPECIFIC is used with this meaning in body text, it is always in SMALL 
CAPITALS.

See also IMPLEMENTATION DEFINED.

In-Circuit Emulator A device that provides access to the signals of a circuit while that circuit is operating, and lets 
you moderate those signals.

Instruction Synchronization Barrier (ISB)
An operation to ensure that any instruction that comes after the ISB operation is fetched only 
after the ISB has completed.

Instrumentation trace A component for debugging real-time systems through a simple memory-mapped trace 
interface. It provides printf style debugging.

Intelligent Energy Manager
An energy manager solution consisting of both software and hardware components that function 
together to prolong battery life in an Arm processor-based device.

ISB See Instruction Synchronization Barrier (ISB).
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Joint Test Action Group (JTAG)
An IEEE group that is focused on silicon chip testing methods. Many debug and programming 
tools use a Joint Test Action Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture 
specification available from the IEEE Standards Association http://standards.ieee.org.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)
An optional component that provides debugger access to on-chip scan chains.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See Debug Access Port (DAP).

nSRST Abbreviation of System Reset. The signal that causes the target system other than the TAP 
Controller to be reset.

See also nTRST and Joint Test Action Group (JTAG).

nTRST Abbreviation of TAP Reset. The electronic signal that causes the target system TAP Controller 
to be reset.

See also nSRST and Joint Test Action Group (JTAG).

Power-on reset See Cold reset.

Program Flow Trace (PFT)
The Program Flow Trace (PFT) architecture assumes that any trace decompressor has a copy of 
the program being traced, and generally outputs only enough trace for the decompressor to 
reconstruct the program flow. However, its trace output also enables a decompressor to 
reconstruct the program flow when it does not have a copy of parts of the program, for example 
because the program uses self-modifying code.

A Program Flow Trace Macrocell (PTM) implements the Program Flow Trace architecture.

RAO See Read-As-One (RAO).

RAO/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field. 
Software can rely on the field reading as all 1s, and on writes being ignored. This description 
can apply to a single bit that reads as 1, or to a field that reads as all 1s.

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. 
Software can rely on the field reading as all 0s, and on writes being ignored. This description 
can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ)

Read-As-One (RAO) Hardware must implement the field as reading as all 1s. Software can rely on the field reading 
as all 1s. This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ) Hardware must implement the field as reading as all 0s. Software can rely on the field reading 
as all 0s. This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

RealView ICE An Arm JTAG interface unit for debugging embedded processor cores that uses a DBGTAP or 
Serial Wire interface.
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Replicator In an Arm trace macrocell, a replicator enables two-trace sinks to be wired together and to 
operate independently on the same incoming trace stream. The input trace stream is output onto 
two independent ATB ports.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in 
register descriptions, and for fields in architecturally defined data structures that are held in 
memory, for example in translation table descriptors.

Note

RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Therefore, the definition of RES0 for register fields is:

If a bit is RES0 in all contexts 

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

The bit might be described as RES0, WI, to distinguish it from a bit that 
behaves as described in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value that is successfully written to 
the bit.

Note
As indicated in this list, this value might be written by an indirect 
write to the register.

If the bit has not been successfully written since reset, then the read 
of the bit returns the reset value if there is one, or otherwise returns 
an UNKNOWN value.

• A direct write to the bit must update a storage location that is 
associated with the bit.

• The value of the bit must have no effect on the operation of the core, 
other than determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation 
defined on a field-by-field basis.

If a bit is RES0 only in some contexts 

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value that was last successfully written to 
the bit, regardless of the use of the register when the bit was written.
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Note
As indicated in this list, this value might be written by an indirect write to 
the register.

If the bit has not been successfully written since reset, then the read of the 
bit returns the reset value if there is one, or otherwise returns an unknown 
value.

• A direct write to the bit must update a storage location that is associated 
with the bit.

• While the use of the register is such that the bit is described as RES0, the 
value of the bit must have no effect on the operation of the core, other than 
determining the value read back from that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only or write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit 
as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or 
as 0, or to a field that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in 
register descriptions, and for fields in architecturally defined data structures that are held in 
memory, for example in translation table descriptors.

Note

RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Therefore, the definition of RES1 for register fields is:

If a bit is RES1 in all contexts 

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

The bit might be described as RES1, WI, to distinguish it from a bit that 
behaves as described in 2.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-225
ID022122 Non-Confidential



Glossary 
2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value that is successfully written to 
the bit.

Note
As indicated in this list, this value might be written by an indirect 
write to the register.

If the bit has not been successfully written since reset, then the read 
of the bit returns the reset value if there is one, or otherwise returns 
an UNKNOWN value.

• A direct write to the bit must update a storage location that is 
associated with the bit.

• The value of the bit must have no effect on the operation of the core, 
other than determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation 
defined on a field-by-field basis.

If a bit is RES1 only in some contexts 

When the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, 
regardless of the use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to 
the register.

If the bit has not been successfully written since reset, then the read of the 
bit returns the reset value if there is one, or otherwise returns an unknown 
value.

• A direct write to the bit must update a storage location that is associated 
with the bit.

• While the use of the register is such that the bit is described as RES1, the 
value of the bit must have no effect on the operation of the core, other than 
determining the value read back from that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only or write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit 
as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or 
as 0, or to a field that should be written as its preserved value or as all 1s.
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In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation, reserved:

Reserved 

• Instruction and 32-bit system control register encodings are UNPREDICTABLE.

• Reserved 64-bit system control register encodings are UNDEFINED.

• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Serial wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger. 

The SWDP consists of two terminals that provide synchronous access to debug interfaces. The 
terminals are SWDIO and SWCLK.

Serial Wire Debug Port (SWDP)
The interface for serial wire debug.

Serial Wire JTAG Debug Port (SWJ - DP)
The SWJ - DP is a combined JTAG-DP and SWDP that you can use to connect either a Serial 
Wire Debug (SWD) or JTAG probe to a target.

Should-Be-One (SBO) Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must 
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be 
written as all 1s.

Should-Be-One-or-Preserved (SBOP)
The Armv7 Large Physical Address Extension modified the definition of SBOP to apply to 
register fields that are SBOP in some but not all contexts. From the introduction of Armv8 such 
register fields are described as RES1, see RES1. The definition of SBOP given here applies only 
to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, 
it should preserve the value of the field by writing the value that it previously read from the field. 
Otherwise, it should write the field as all 1s.

If software writes a value to the field that is not a value that was previously read for the field 
and is not all 1s, it must expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or 
to a field that should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ) Hardware must ignore writes to the field.
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Software should write the field as all 0s. If software writes a value that is not all 0s, it must 
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be 
written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
The Armv7 Large Physical Address Extension modified the definition of SBZP to apply to 
register fields that are SBZP in some but not all contexts. From the introduction of Armv8 such 
register fields are described as RES0, see RES0. The definition of SBZP given here applies only 
to fields that are SBZP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, 
it must preserve the value of the field by writing the value that it previously read from the field. 
Otherwise, it must write the field as all 0s.

If software writes a value to the field that is not a value that was previously read for the field 
and is not all 0s, it must expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or 
to a field that should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial wire debug (SWD).

SWDP See Serial Wire Debug Port (SWDP).

SWJ - DP See Serial Wire JTAG Debug Port (SWJ - DP)

TAP Controller Logic on a device that enables access to some or all of that device for test purposes. The circuit 
functionality is defined in IEEE 1149.1.

See also Joint Test Action Group (JTAG).

TCD See Trace Capture Device (TCD).

TCK The clock for the TAP data lines TMS, TDI, and TDO.

See also Test Data Input (TDI), Test Data Output (TDO).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and 
control interface to a JTAG boundary-scan architecture. The mandatory terminals are TDI, 
TDO, TMS, and TCK. In the JTAG standard, the nTRST signal is optional, but this signal is 
mandatory in Arm processors because it is used to reset the debug logic.

See also Joint Test Action Group (JTAG), TAP Controller, TCK, Test Data Input (TDI), Test 
Data Output (TDO), TMS.

Test Data Input (TDI) Test Data Input (TDI) is the input to a TAP Controller from the data source (upstream). Usually, 
this input connects the RealView ICE run control unit to the first TAP controller.

See also Joint Test Action Group (JTAG), RealView ICE, and TAP Controller.

Test Data Output (TDO)
Test Data Output (TDO) is the electronic signal output from a TAP Controller to the downstream 
data sink. Usually, this output connects the last TAP controller to the RealView ICE run control 
unit.

See also Joint Test Action Group (JTAG), RealView ICE, TAP Controller.
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TMS Test Mode Select.

TPA See Trace Port Analyzer (TPA).

TPIU See Trace Port Interface Unit (TPIU).

Trace Capture Device (TCD)
A generic term to describe Trace Port Analyzers, logic analyzers, and on-chip trace buffers.

Trace funnel In an Arm trace macrocell, a device that combines multiple trace sources onto a single bus.

See also AHB Trace Macrocell (HTM), CoreSight.

Trace hardware A term for a device that contains an Arm trace macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This device can be a 
low-cost product that is designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream that is 
captured by a TPA.

Trigger In the context of tracing, a trigger is an event that instructs the debugger to stop collecting trace 
and display the trace information around the trigger position, without halting the core. The exact 
information that is displayed depends on the position of the trigger within the buffer.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the 
elements of the access.

See also Aligned.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on 
the field reading as zero.

See also UNKNOWN.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, 
instruction to instruction, and implementation to implementation. An UNKNOWN value must not 
return information that cannot be accessed at the current or a lower level of privilege using 
instructions that are not unpredictable or constrained unpredictable and do not return UNKNOWN 
values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE For an Arm processor, UNPREDICTABLE means that the behavior cannot be relied upon. 
UNPREDICTABLE behavior must not perform any function that cannot be performed at the current 
or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An 
instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of UNPREDICTABLE 
instructions at a lower level of privilege can be trapped to the hypervisor, if at least one 
instruction that is not unpredictable can be trapped to the hypervisor if executed at that lower 
level of privilege.
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Glossary 
For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot 
be relied on. Such conditions have not been validated. When applied to the programming of an 
event resource, only the output of that event resource is UNPREDICTABLE. UNPREDICTABLE 
behavior can affect the behavior of the entire system, because the trace macrocell can cause the 
core to enter debug state, and external outputs can be used for other purposes.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging features 
of a processor.

See also Cold reset.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
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