
Arm® CoreSight™

Architecture Specification
v3.0
Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0029F (ID022122)

Arm CoreSight Architecture Specification
v3.0

Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document:

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Change history

Date Issue Confidentiality Change

29 September 2004 A Non-Confidential First release for v1.0.

24 March 2005 B Non-Confidential Second release for v1.0. Editorial changes and clarifications.

27 March 2012 C Confidential Limited beta release for v2.0.

26 September 2013 D Non-Confidential First release for v2.0.

27 February 2017 E Non-Confidential First release for v3.0.

25 February 2022 F Non-Confidential Second release for v3.0.
ii Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. iii
ID022122 Non-Confidential

iv Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Contents
Arm CoreSight Architecture Specification v3.0

Preface
About this document .. x
Using this document ... xi
Conventions .. xiii
Additional reading .. xv
Feedback .. xvi

Part A CoreSight Architecture

Chapter A1 About the CoreSight Architecture
A1.1 Purpose of the CoreSight architecture ... A1-20
A1.2 Structure of the CoreSight architecture .. A1-21
A1.3 CoreSight component types ... A1-23
A1.4 CoreSight topology detection ... A1-25

Part B CoreSight Visible Component Architecture

Chapter B1 About the Visible Component Architecture

Chapter B2 CoreSight programmers’ model
B2.1 About the programmers’ model .. B2-32
B2.2 Component and Peripheral Identification Registers ... B2-38
B2.3 Component-specific registers for Class 0x9 CoreSight components B2-44
B2.4 Component-specific registers for Class 0xF CoreLink, PrimeCell, and system

components ... B2-64
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. v
ID022122 Non-Confidential

Chapter B3 Topology Detection
B3.1 About topology detection ... B3-66
B3.2 Requirements for topology detection signals .. B3-67
B3.3 Combination with integration registers .. B3-68
B3.4 Interfaces that are not connected or implemented .. B3-69
B3.5 Variant interfaces .. B3-70
B3.6 Documentation requirements for topology detection registers B3-71

Part C CoreSight Reusable Component Architecture

Chapter C1 About the Reusable Component Architecture

Chapter C2 AMBA APB and ATB Interfaces
C2.1 AMBA APB interface ... C2-78
C2.2 AMBA ATB interface ... C2-80

Chapter C3 Event Interface

Chapter C4 Channel interface
C4.1 About the channel interface ... C4-84
C4.2 Channels ... C4-86
C4.3 Channel interface signals .. C4-87
C4.4 Channel connections ... C4-88
C4.5 Synchronous and asynchronous conversions ... C4-89

Chapter C5 Authentication Interface
C5.1 About the authentication interface ... C5-92
C5.2 Definitions of Secure, hypervisor, and invasive debug .. C5-93
C5.3 Authentication interface signals ... C5-94
C5.4 Authentication rules ... C5-95
C5.5 User mode debugging ... C5-100
C5.6 Control of the authentication interface ... C5-101
C5.7 Exemptions from implementing the authentication interface C5-102

Chapter C6 Timestamp Interface

Chapter C7 Topology Detection at the Component Level
C7.1 About topology detection at the component level .. C7-106
C7.2 Interface types for topology detection ... C7-107
C7.3 Interface requirements for topology detection ... C7-109
C7.4 Signals for topology detection ... C7-110

Part D CoreSight System Architecture

Chapter D1 About the System Architecture

Chapter D2 System Considerations
D2.1 Clock and power domains ... D2-116
D2.2 Control of authentication interfaces ... D2-117
D2.3 Memory system design ... D2-118

Chapter D3 Physical Interface
D3.1 Arm JTAG 20 ... D3-122
D3.2 CoreSight 10 and CoreSight 20 connectors .. D3-124
D3.3 Arm MICTOR ... D3-128
vi Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

D3.4 Target Connector Signal details ... D3-133

Chapter D4 Trace Formatter
D4.1 About trace formatters ... D4-138
D4.2 Frame descriptions .. D4-139
D4.3 Modes of operation .. D4-144
D4.4 Flush of trace data at the end of operation .. D4-145

Chapter D5 About ROM Tables
D5.1 ROM Tables Overview ... D5-148
D5.2 ROM Table Types .. D5-149
D5.3 Component and Peripheral ID Registers for ROM Tables D5-150

Chapter D6 Topology Detection at the System Level
D6.1 About topology detection at the system level ... D6-152
D6.2 Detection .. D6-153
D6.3 Components that are not recognized ... D6-154
D6.4 Detection algorithm .. D6-155

Chapter D7 Compliance Requirements
D7.1 About compliance classes ... D7-158
D7.2 CoreSight debug .. D7-159
D7.3 CoreSight trace .. D7-161
D7.4 Multiple DPs ... D7-164

Part E Appendixes

Appendix E1 Power Requester
E1.1 About the power requester ... E1-170
E1.2 Register descriptions ... E1-171
E1.3 Powering non-visible components ... E1-188

Appendix E2 Revisions

Appendix E3 Pseudocode Definition
E3.1 About the Arm pseudocode ... E3-192
E3.2 Pseudocode for instruction descriptions .. E3-193
E3.3 Data types .. E3-195
E3.4 Operators ... E3-200
E3.5 Statements and control structures ... E3-206
E3.6 Built-in functions ... E3-211
E3.7 Miscellaneous helper procedures and functions .. E3-214
E3.8 Arm pseudocode definition index ... E3-216

Glossary
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. vii
ID022122 Non-Confidential

viii Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Preface

This preface introduces the Arm® CoreSight™ Architecture Specification. It contains the following sections:

• About this document on page x.

• Using this document on page xi.

• Conventions on page xiii.

• Additional reading on page xv.

• Feedback on page xvi.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ix
ID022122 Non-Confidential

Preface
 About this document
About this document

This document describes the CoreSight architecture that all versions of the CoreSight compliant cores, components,
platforms, and systems use.

Intended audience

This specification targets the following audiences:

• Hardware engineers integrating CoreSight components into a CoreSight system.

• Hardware engineers designing CoreSight components.

• Software engineers writing development tools that support CoreSight system functionality.

• Designers of debug hardware that is used to connect to a CoreSight system, for example JTAG emulators,
SWD emulators, and Trace Port Analyzers.

• Advanced designers of development tools that support CoreSight functionality.

This specification does not document the behavior of individual components unless they form a fundamental part
of the architecture.

Arm recommends that engineers who use this document have experience of the Arm architecture.
x Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Preface
 Using this document
Using this document

This document is organized into the following parts:

Part A, CoreSight Architecture

Part A contains an introduction to the CoreSight architecture. It contains the following chapter:

Chapter A1 About the CoreSight Architecture

Read this chapter for an outline description of the components, memory maps, clock and reset
requirements, system integration, and the test interface.

Part B, CoreSight Visible Component Architecture

Part B describes the CoreSight visible component architecture, which must be implemented by all CoreSight
components that are visible to a debugger. It contains the following chapters:

Chapter B1 About the Visible Component Architecture

Read this chapter for a description of the visible component architecture.

Chapter B2 CoreSight programmers’ model

Read this chapter for a description of the CoreSight technology programmers’ model.

Chapter B3 Topology Detection

Read this chapter for a description of the topology detection registers in CoreSight systems.

Part C, CoreSight Reusable Component Architecture

Part C describes the CoreSight reusable component architecture, which must be implemented by CoreSight
components so that they can be used with other CoreSight components. It contains the following chapters:

Chapter C1 About the Reusable Component Architecture

Read this chapter for a description of the reusable component architecture.

Chapter C2 AMBA APB and ATB Interfaces

Read this chapter for a description of the AMBA® APB interface and the AMBA ATB interface.

Chapter C3 Event Interface

Read this chapter for a description of the event interface.

Chapter C4 Channel interface

Read this chapter for a description of the channel interface.

Chapter C5 Authentication Interface

Read this chapter for a description of the authentication interface.

Chapter C6 Timestamp Interface

Read this chapter for a description of the timestamp interface.

Chapter C7 Topology Detection at the Component Level

Read this chapter for a description of topology detection at the component level.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xi
ID022122 Non-Confidential

Preface
 Using this document
Part D, CoreSight System Architecture

Part D describes the CoreSight system architecture, which must be implemented by all CoreSight systems and
provides information that is required by debuggers to enable them to use CoreSight systems. It contains the
following chapters:

Chapter D1 About the System Architecture

Read this chapter for a description of the CoreSight system architecture.

Chapter D2 System Considerations

Read this chapter for a description of system design with the CoreSight system architecture.

Chapter D3 Physical Interface

Read this chapter for a description of the physical interface for CoreSight connection to a debugger.

Chapter D4 Trace Formatter

Read this chapter for a description of the CoreSight trace formatter.

Chapter D5 About ROM Tables

Read this chapter for a general description of CoreSight ROM Tables.

Chapter D6 Topology Detection at the System Level

Read this chapter for a description of topology detection at the system level.

Chapter D7 Compliance Requirements

Read this chapter for a description of the criteria that systems must comply with to satisfy CoreSight
requirements.

Part E, Appendixes

This specification contains the following appendixes:

Appendix E1 Power Requester

Read this chapter for a description of the power requestor.

Appendix E2 Revisions

Read this chapter for a description of the technical changes between released versions of this
specification.

Appendix E3 Pseudocode Definition

Read this chapter for a definition of the pseudocode conventions that are used in this specification.

 Glossary

Read this chapter for definitions of some terms that are used in this specification. The glossary does
not contain terms that are industry standard unless the Arm meaning differs from the accepted
meaning.
xii Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Preface
 Conventions
Conventions

The following sections describe conventions that this document can use:

• Typographic conventions.

• Signals.

• Timing diagrams.

• Numbers on page xiv.

• Pseudocode descriptions on page xiv.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes internal cross-references and citations, or highlights an
important note.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text • Indicates a link, for example: http://infocenter.arm.com.

• A cross-reference, that includes the page number of referenced information that is not on the
current page, for example Numbers on page xiv.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Embedded Trace Buffer (ETB) .

Signals

In general, this document does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Timing diagrams

The figure, Key to timing diagram conventions on page xiv, explains the components that are used in timing
diagrams. Variations, when they occur, have clear labels. Do not assume any timing information that is not explicit
in the diagrams.

Shaded bus and signal areas are undefined so the bus or signal can assume any value within the shaded area at that
time. The actual level is unimportant and does not affect normal operation.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xiii
ID022122 Non-Confidential

Preface
 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this
way, its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal notation. Binary numbers are preceded by 0b, and hexadecimal numbers
by 0x. In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This document uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Appendix E3 Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See the Infocenter http://infocenter.arm.com, for access to Arm documentation.

Arm publications

This specification contains information that is specific to CoreSight. See the following documents for other relevant
information:

• Arm® CoreSight™ SoC-400 Technical Reference Manual (ARM 100536).

• Arm® CoreSight™ Technology System Design Guide (ARM DGI 0012).

• Arm® Embedded Trace Macrocell Architecture Specification, ETM v1.0 to ETMv3.5

(ARM IHI 0014).

• Arm® ETM™ Architecture Specification, ETMv4 (ARM IHI 0064).

• Arm® Debug Interface Architecture Specification v6 (ARM IHI 0074).

• Arm® Debug Interface Architecture Specification v5 (ARM IHI 0031).

• Arm® Architecture Reference Manual ARMv7-A and ARMv7-R edition (ARM DDI 0406).

• Arm® Architecture Reference Manual ARMv8, for A-profile architecture (ARM DDI 0487).

• Arm® Architecture Reference Manual Supplement, the Realm Management Extension (RME) for Armv9-A
(ARM DDI 0615).

• Arm® Realm Management Extension (RME) System Architecture (ARM DEN 0129).

• Arm® AMBA® AXI and ACE Protocol Specification (ARM IHI 0022).

• Arm® AMBA® APB Protocol Specification (ARM IHI 0024).

• Arm® AMBA® ATB Protocol Specification (ARM IHI 0032).

Other publications

This section lists relevant documents that are published by third parties:

• IEEE, Standard Test Access Port and Boundary Scan Architecture, IEEE Std 1149.1-1990

• JEDEC, Standard Manufacturer’s Identification Code, JEP106
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. xv
ID022122 Non-Confidential

Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this document, send an e-mail to errata@arm.com. Give:

• The title.

• The number, ARM IHI 0029F.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.

Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm.com.
xvi Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Part A
CoreSight Architecture

Chapter A1
About the CoreSight Architecture

This chapter introduces the CoreSight architecture. It contains the following sections:

• Purpose of the CoreSight architecture on page A1-20.

• Structure of the CoreSight architecture on page A1-21.

• CoreSight component types on page A1-23.

• CoreSight topology detection on page A1-25.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-19
ID022122 Non-Confidential

About the CoreSight Architecture
A1.1 Purpose of the CoreSight architecture
A1.1 Purpose of the CoreSight architecture

The CoreSight architecture provides a system-wide solution for real-time debug and collecting trace information. It
addresses the following:

• The requirement for multi-core debug and trace.

• The requirement to debug and trace system components beyond the core, for example buses.

• The requirement for sharing resources, such as pins and trace storage, between debug and trace components,
to reduce silicon costs.

• The requirement for debug and trace components from multiple vendors to be able to work together.

• The requirement for minimizing pin count.

• The requirement for supporting increasing trace bandwidth from many sources.

• The requirement to accommodate the existing trace solutions, rather than expecting them to be rewritten to
support a new trace architecture.

• The requirement for development tools to automatically identify and configure themselves for different
systems.

• The requirement for controlling access to debug and trace functionality in the field.

• The fact that the clock and power to parts of the system can be varied or disabled independently while
debugging the rest of the system.

• The fact that the time available to design debug and trace functionality is often limited and the number of
options must be minimized where possible.

• The requirement for debug monitors and other on-chip debug software to have access to the same debug and
trace functionality as an external debugger.

• The fact that systems are often built from a hierarchy of reusable platforms, where each level must hide its
internal complexities, which prevents designers from changing the platform when using it in another system.

The CoreSight architecture satisfies the following requirements for debug and trace:

• To access debug functionality without software interaction.

• To connect to a running system without performing a reset.

• To perform certain operations, such as real-time tracing, non-invasively, with no effect on the behavior of the
system.

• To access noninvasive functionality non-invasively.

• To minimize power consumption of debug logic when it is not in use.

• To capture trace over a large period.

The CoreSight architecture can be used to design CoreSight components, that can be combined with other CoreSight
components and processors that comply with the CoreSight architecture to make up a CoreSight system.
A1-20 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

About the CoreSight Architecture
A1.2 Structure of the CoreSight architecture
A1.2 Structure of the CoreSight architecture

The CoreSight architecture comprises:

• Visible component architecture.

• Reusable component architecture.

• System architecture.

A1.2.1 Visible component architecture

The CoreSight visible component architecture specifies what a component must implement to comply with the
CoreSight architecture.

The visible component architecture is visible to the programming interface and to tools that access the device. All
CoreSight components must comply with the visible component architecture. The visible component architecture
specifies:

• The requirements that all CoreSight components must conform to the programmers’ model.

• The requirements that enable discovery of the component layout for topology detection.

For details of the visible component architecture, see Part B CoreSight Visible Component Architecture.

A1.2.2 Reusable component architecture

The CoreSight reusable component architecture specifies the rules that the implementation of the physical interface
of a CoreSight component must follow to work correctly with other reusable CoreSight components.

The reusable component architecture specifies:

• The AMBA APB interface for access to the registers in CoreSight components.

• The AMBA ATB interface for trace data transfer between CoreSight components.

• The channel interface for the communication of trigger events between CoreSight components.

• The authentication interface for control of access for debug.

• Topology detection infrastructure that specifies the signals that must be controlled at each interface.

It is possible to create a homogeneous component that performs various functions internally as separate components
implementing the visible component architecture, provided one set of reusable component interfaces is available to
enable integration into a larger CoreSight system.

Caution

Self-contained systems that implement only the visible, and not the reusable component architecture, are compatible
with development tools, but have the following limitations:

• Integrating them with other CoreSight components might be impossible.

• Detecting them during topology detection might fail.

For details about the reusable component architecture, see Part C CoreSight Reusable Component Architecture.

A1.2.3 System architecture

The following CoreSight architectural requirements ensure seamless integration of elements that comply with the
CoreSight architecture:

• System-level requirements for:

— Clock and power domains visible to debuggers.

— Control of the authentication interface.

— Distinction between external and internal accesses through the AMBA APB interface memory map.

• The requirements for the physical interface to the debugger.

• The format that is used by the trace formatter. See CoreSight component types on page A1-23 and Chapter D4
Trace Formatter.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-21
ID022122 Non-Confidential

About the CoreSight Architecture
A1.2 Structure of the CoreSight architecture
• The design of the ROM Table. See CoreSight component types on page A1-23 and Chapter D5 About ROM
Tables.

• How to enable CoreSight topology detection.

• Compliance requirements for CoreSight systems.

For details about the system architecture, see Part D CoreSight System Architecture.
A1-22 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

About the CoreSight Architecture
A1.3 CoreSight component types
A1.3 CoreSight component types

The CoreSight architecture specifies a set of components for implementing specific SoC subsystems that support
collection of debug and trace information. This section shows some example implementations of CoreSight
components that are based on the CoreSight architecture.

Note

A CoreSight component is a component that implements the CoreSight visible component architecture.

The main elements are:

Control components

CoreSight systems can include Embedded Cross Trigger (ECT) control components. The ECT
includes:

• Cross Trigger Interface (CTI).

• Cross Trigger Matrix (CTM).

Trace sources

CoreSight systems can include the following trace sources:

• Embedded Trace Macrocells (ETMs).

• AMBA Trace Macrocells.

• Program Flow Trace Macrocells (PTMs).

• System Trace Macrocells (STMs).

Trace links

CoreSight systems can include the following trace links:

• Trace funnels.

• Replicators.

• ATB bridges.

Trace sinks

CoreSight systems can include the following trace sinks:

• Trace Port Interface Units (TPIUs).

• Embedded Trace Buffers (ETBs).

• Trace Memory Controllers (TMCs).

Each trace sink can include a Trace Formatter.

Debug Ports (DPs) and Access Ports (APs)

DPs and APs provide access to CoreSight components and other system features. DPs and APs are
described by the Arm Debug Interface (ADI) Architecture Specification, see Arm® Debug Interface
Architecture Specification ADIv5.0-5.2 and Arm® Debug Interface Architecture Specification
ADIv6.0.

A DP provides a mechanism that is specific to a wire protocol, and enables access to various
components, including APs. Some examples of common DPs are:

• A Serial Wire Debug Port (SW-DP).

• A JTAG Debug Port (JTAG-DP).

• A Serial Wire JTAG Debug Port (SWJ-DP).

An AP provides a mechanism to access buses or other protocols, in particular to access CoreSight
components. Some examples of common APs are:

• An APB Access Port (APB-AP).

• An AHB Access Port (AHB-AP).

• An AXI Access Port (AXI-AP).
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-23
ID022122 Non-Confidential

About the CoreSight Architecture
A1.3 CoreSight component types
• A JTAG Access Port (JTAG-AP).

For more information on specific components, see the appropriate Technical Reference Manual.
A1-24 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

About the CoreSight Architecture
A1.4 CoreSight topology detection
A1.4 CoreSight topology detection

Depending on the requirements of the system, CoreSight components can be connected together in many different
ways. Debuggers use a process that is called topology detection to detect the component connections. The
infrastructure for topology detection is reflected at each of the following levels:

• A visible component architecture.

• A reusable component architecture.

• The system design.

CoreSight systems can have several interface types, as Transmitters or Receivers. Each CoreSight component
specifies which interfaces are present. The debugger probes each interface to determine which other components
are connected to it.

Each interface type defines which signals must be controllable by the Transmitter and Receiver interfaces, and how
the debugger can determine the connectivity using these signals. These signals are referred to as topology detection
signals. For the specification of the requirements for standard interfaces that are used by Arm CoreSight
components, see Chapter C7 Topology Detection at the Component Level. Interface vendors must define the
requirements for other interfaces, following the rules in Chapter D6 Topology Detection at the System Level.

A1.4.1 Basic topology detection infrastructure

This section describes the topology detection infrastructure in a bottom-up fashion, from the visible component
level to the system level.

At the visible component architecture level, a CoreSight system provides topology detection registers. These
registers are accessible through the programmers’ model and contain information about the components in the
system and permit a debugger to identify the components. See Chapter B3 Topology Detection.

At the reusable component architecture level, the system defines interfaces that enable communication between the
various components and enable debuggers access to the system. See Chapter C7 Topology Detection at the
Component Level.

At the system level there is:

• A hierarchy of one or more ROM Tables that describe the address map for the CoreSight system. See
Chapter D5 About ROM Tables.

• A description of physical connections for the debugger hardware. See Chapter D3 Physical Interface.

There are registers to control the wires where buses exist, and enough of the system must be controllable to establish
the existence of the link. For example, for ATB interface signals, only ATVALID and ATREADY must be
controlled.

A1.4.2 Mechanism for topology detection

Topology detection is only required when the debugger does not already have information about the system being
debugged.

Before it performs topology detection, the debugger uses the following procedure to determine which components
are present in the system:

• It connects to the physical interface. See Chapter D3 Physical Interface.

• It establishes communication with the system, for example through an interface that complies with the ADI
architecture.

• It uses the ROM Table to determine which components are present.

The debugger continues with the following steps:

• For each component, it uses the component type to determine which interfaces are present and how to access
signals on these interfaces.

• For each interface, it uses the interface type to determine which signals to access. Chapter C7 Topology
Detection at the Component Level describes how to perform topology detection for each of the CoreSight
interfaces.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. A1-25
ID022122 Non-Confidential

About the CoreSight Architecture
A1.4 CoreSight topology detection
• It uses the algorithm that is described in Chapter D6 Topology Detection at the System Level to perform
topology detection. Topology detection asserts and deasserts signals on each Transmitter interface in turn to
check each Receiver interface and determine where interfaces are connected together.

• It resets the system and saves the description.
A1-26 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Part B
CoreSight Visible Component Architecture

Chapter B1
About the Visible Component Architecture

The visible component architecture specifies aspects of components that are visible to the programming interface
and to tools that access the device.

The visible component architecture is described in the following chapters:

• Chapter B2 CoreSight programmers’ model. The programmers’ model specifies various registers for the
identification and control of the component.

• Chapter B3 Topology Detection. The topology detection registers provide the means for the process of
topology detection in the CoreSight system.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B1-29
ID022122 Non-Confidential

B1 About the Visible Component Architecture

B1-30 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter B2
CoreSight programmers’ model

This chapter describes the CoreSight programmers’ model. It contains the following sections:

• About the programmers’ model on page B2-32.

• Component and Peripheral Identification Registers on page B2-38.

• Component-specific registers for Class 0x9 CoreSight components on page B2-44.

• Component-specific registers for Class 0xF CoreLink, PrimeCell, and system components on page B2-64.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-31
ID022122 Non-Confidential

CoreSight programmers’ model
B2.1 About the programmers’ model
B2.1 About the programmers’ model

This section has the following goals:

• Define the standard set of registers that every CoreSight component must implement in addition to the control
registers specific to that component.

• Explain how software can use integration registers for determining the topology of a CoreSight system.

It contains the following subsections:

• Basic structure of the programmers’ model.

• The Unique Component Identifier.

• Conventions for registers with less than 32 valid bits on page B2-34.

• Components that occupy more than 4KB of address space on page B2-34.

• Programmers’ Model Quick Reference on page B2-36.

B2.1.1 Basic structure of the programmers’ model

The basic register structure is outlined in Table B2-3 on page B2-36. The structure is based on the Peripheral ID
Register structure for Arm CoreLink components, and comprises a set of word-aligned 32-bit registers that can be
divided into the following categories:

• Component and Peripheral Identification Registers:

— A Component Identification Register, which extends the original CoreLink specification with a
component class that indicates whether extra registers are present. For a description of the
requirements for the Component Identification Register, see Component and Peripheral Identification
Registers on page B2-38.

— A Peripheral Identification Register that uniquely identifies the component. For a description of the
requirements for the Peripheral Identification Register, see PIDR0-PIDR7, Peripheral Identification
Registers on page B2-40.

• Component-specific control registers. The set of required control registers depends on the component class.
For a list of valid components classes, see the description of the CIDR1.CLASS field in CIDR0-CIDR3,
Component Identification Registers on page B2-38.

This register structure must be supported by every component that implements a CoreSight compliant programmers’
model.

B2.1.2 The Unique Component Identifier

To ensure that a debugger can identify a component, unique components must have a Unique Component Identifier.
A Unique Component Identifier is a unique combination of values that are assigned to fields from the Component
Identification Registers, the Peripheral Identification Registers, and, if implemented, several component-specific
registers.
B2-32 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.1 About the programmers’ model
The fields that can contribute to the Unique Component Identifier are listed in Table B2-1. For details about the
individual fields, see the field descriptions in the relevant register descriptions.

The following rules apply to the Unique Component Identifier:

• A common function is defined as a cluster of homogeneous processor components. An example of a common
function is a set of debug control registers, a Performance Monitor Unit (PMU), a CTI, an ETM, and a ROM
Table describing the layout of these components.

The following rules apply to components that are part of a common function:

— Arm recommends that the values of PIDR0.PART_0 and PIDR1.PART_1 are different for components
that are not part of the same common function.

— Although components that are part of the same common function can share the value of
PIDR0.PIDR0.PART_0 and PIDR1.PART_1, each component must have its own Unique Component
Identifier.

— Because CIDR1.CLASS is part of the Unique Component Identifier, CoreSight version 3.0 permits
ROM Tables that are part of a common function to share the part number as the other components of
different classes that are part of the same the common function, and to use CIDR1.CLASS to
distinguish between them.

• Multiple instances of the same component are not considered to be unique and usually have the same Unique
Component Identifier.

• Where a component has multiple possible configurations and each configuration is a subset of one single
configuration, it is not necessary for each configuration to have a separate Unique Component Identifier. For
example, a trace macrocell that has a configurable number of comparators does not need a separate Unique
Component Identifier for each configuration with a different number of comparators.

Table B2-1 Register fields that contribute to the Unique Component Identifier

Register Type Register Fields Size (bits)

Component Identification Register CIDR1 CLASS 4

Peripheral Identification Registers PIDR0 PART_0 8

PIDR1 DES_0 4

PART_1 4

PIDR2 REVISION 4

DES_1 3

PIDR3 REVAND 4

PIDR4 DES_2 4

Component-specific registers DEVARCHa

a. These registers only contribute to the Unique Component Identifier of components with a
CIDR1.CLASS value of 0x9.

ARCHITECT 11

REVISION 4

ARCHID 16

DEVTYPEa SUB 4

MAJOR 4
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-33
ID022122 Non-Confidential

CoreSight programmers’ model
B2.1 About the programmers’ model
• If a component in a subsystem that is described by a ROM Table is changed, the revision number in its Unique
Component Identifier must be changed, even if the revision number that is part of the Unique Component
Identifier of the ROM Table is not changed.

Note

• If multiple components share the value for the part number in PIDR0.PART_0 and PIDR1.PART_1, they are
differentiated by the different values of the other fields in the Unique Component Identifier.

• Component designers who require more than 12 bits for the part number, for example when using a 16-bit
part numbering scheme, can use the PIDR2.REVISION and PIDR3.REVAND fields to indicate the part
number. Effectively, the PIDR0.PART_0, PIDR1.PART_1, PIDR2.REVISION, and PIDR3.REVAND fields
provide a total of 20 bits that can be used to create part numbers and revisions of the component.

• CoreSight versions before version 3.0 permitted using the PIDR3.CMOD field to distinguish between
different components. This permission is removed in CoreSight version 3.0.

B2.1.3 Conventions for registers with less than 32 valid bits

The CoreSight programmers’ model presents registers as a set of word-aligned registers, meaning every register
occupies exactly one word (32-bits), regardless of its information content. The following convention is used in cases
where a register has less than 32 bits of valid information:

• Valid information is stored in the least significant bits of the register.

• The most significant bits of the register are reserved, with access permissions that depend on the register.

• When accessed as a 32-bit register, all registers are accessed in little-endian format.

Note

Although a component can be designed to implement only the valid bits of a CoreSight register, software can always
access the register as a 32-bit register.

B2.1.4 Components that occupy more than 4KB of address space

The memory layout that is shown in Table B2-3 on page B2-36 covers all components that are contained in a single
4KB block of address space. If the registers that are defined for a component do not fit within 4KB, including the
256 bytes reserved for CoreSight management registers, it is necessary to allocate extra address space. The
following rules apply:

• Extra address space must be allocated in 4KB blocks, and the total number of blocks must be a power-of-2.
The maximum number of blocks is 16,384 for an address space of 64MBytes.

• All 4KB blocks comprising a component must be allocated as a contiguous segment, without gaps.

• The CoreSight programmers’ model must be implemented in one of the 4KB blocks making up the
component. It is not necessary to implement the programmers’ model in the other 4KB blocks that are part
of the same component.

Note

From CoreSight version 3.0 onwards, the CoreSight programmers’ model does not need to be implemented
in the last 4KB block of each individual component.

• Arm recommends that debug tools determine the size of the component from the part number in the
Peripheral ID registers and other IMPLEMENTATION DEFINED registers in the component.

From v3.0 onwards, using the PIDR4.SIZE field to indicate the size of the component is deprecated:

— Arm recommends that PIDR4.SIZE is always 0x0. The PIDR4.SIZE field might not correctly indicate
the size of the component.

— Arm recommends that debug tools ignore the value of PIDR4.SIZE.
B2-34 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.1 About the programmers’ model
For more information about PIDR4, see PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

• The bus that is used to access the component must have enough address lines to span the entire allocated
address space. See Table B2-2.

The following alternative methods for extending the address space available to a component are possible, but not
recommended:

Implementing a second CoreSight component

The address space can be extended by implementing an additional CoreSight component. However,
it is not recommended as it requires a method for linking this component back to the original
component through topology detection.

Implementing an extra linked address space

The address space can be extended with the address space of a component with an area that is not
used by any CoreSight components that were designed according to the programmers’ model.
However, it is not recommended as it requires a method for determining the address of the extended
address space in the programmers’ model of the component. This limits the system design options.

Table B2-2 summarizes the relationship between the address space size, the number of available registers, and the
number of required address lines.

Table B2-2 Spanning multiple 4KB windows

Number of
4KB blocks

Total memory
window used

Component-specific
registers available
(words)

Expected
PADDRDBG inputa

a. This table uses the AMBA APB protocol as an example protocol used to access a component, where the
PADDRDBG bus is the address bus that is used to select the component registers. PADDRDBG[1:0]
are not required on components because all transfers are 32-bit word-aligned.

1 4KB, 1K words 960 PADDRDBG[11:2]

2 8KB 1984 PADDRDBG[12:2]

4 16KB, 4K words 4032 PADDRDBG[13:2]

8 32KB, 8K words 8128 PADDRDBG[14:2]

16 64KB 16320 PADDRDBG[15:2]

32 128KB 32704 PADDRDBG[16:2]

64 256KB, 64K words 65472, 63.94K PADDRDBG[17:2]

128 512KB 127.94K PADDRDBG[18:2]

256 1MB, 256K words 255.9K PADDRDBG[19:2]

512 2MB ~512K PADDRDBG[20:2]

1024 4MB ~1M PADDRDBG[21:2]

2048 8MB ~2M PADDRDBG[22:2]

4096 16MB ~4M PADDRDBG[23:2]

8192 32MB ~8M PADDRDBG[24:2]

16384 64MB, 16M words ~16M PADDRDBG[25:2]

Reserved - - -
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-35
ID022122 Non-Confidential

CoreSight programmers’ model
B2.1 About the programmers’ model
B2.1.5 Programmers’ Model Quick Reference

Table B2-3 shows the address offsets for the CoreSight component registers, in order of their offset in the 4KB
block.

The words at offsets 0xF00-0xFFC are the CoreSight management registers. These registers are common to all
CoreSight components. This area is reserved for CoreSight registers, and device-specific control registers must not
use it. The CoreSight management registers include:

• The Peripheral ID Registers, at offsets 0xFD0-0xFEC.

• The Component ID Registers, at offsets 0xFF0-0xFFC.

Table B2-3 CoreSight component register address offsets

Offset Type Name Description

0xF00 RW ITCTRL Integration Mode Control Register

0xF04-0xF9C RES0 - Reserved

0xFA0 RW CLAIMSET Claim Tag Set Register Claim Tag Registers

0xFA4 RW CLAIMCLR Claim Tag Clear Register

0xFA8 RO DEVAFF0 Device Affinity Registers

0xFAC RO DEVAFF1

0xFB0 WO LAR Software Lock Access Register Software Lock
Registers

0xFB4 RO LSR Software Lock Status Register

0xFB8 RO AUTHSTATUS Authentication Status Register

0xFBC RO DEVARCH Device Architecture Register

0xFC0 RO DEVID2 Device Configuration Register 2

0xFC4 RO DEVID1 Device Configuration Register 1

0xFC8 RO DEVID Device Configuration Register

0xFCC RO DEVTYPE Device Type Identifier Register

0xFD0 RO PIDR4 Component size (deprecated) and
JEP106 identification

Peripheral
Identification
Registers

0xFD4 RO PIDR5

0xFD8 RO PIDR6

0xFDC RO PIDR7

0xFE0 RO PIDR0 Part number

0xFE4 RO PIDR1 JEP106 identification and Part number

0xFE8 RO PIDR2 Revision and JEP106 identification

0xFEC RO PIDR3 RevAnd and Customer modified

0xFF0 RO CIDR0 Preamble Component
Identification
Registers0xFF4 RO CIDR1 Component class and Preamble

0xFF8 RO CIDR2 Preamble

0xFFC RO CIDR3 Preamble
B2-36 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.1 About the programmers’ model
The remaining words can be used for component-specific registers. Arm recommends using the following
conventions:

• Control registers start at address 0x000 and continue upwards.

• Any registers that are used purely for integration purposes start at address 0xEFC and continue downwards.

The register type of device-specific registers is IMPLEMENTATION DEFINED and can be RW, RO, or WO.

Table B2-4 defines the behavior on accesses to reserved registers and fields.

Locations that are marked as RES0 are reserved. Reads of write-only registers are considered accesses to Reserved
registers. Writes to read-only registers are considered accesses to Reserved registers. The following tables show the
specific meaning of each of the behaviors.

Table B2-5 shows the required behavior of a CoreSight component for registers that are defined as RW, RO, or WO.

Table B2-6 shows the required behavior of software when accessing a CoreSight component for registers that are
defined as RW, RO, or WO.

Programming a reserved value into a register, or a field within a register, might result in CONSTRAINED
UNPREDICTABLE behavior of the component. Usually, this involves mapping the behavior to one or more permitted
behaviors.

Table B2-4 Behavior on accesses to reserved registers and fields

Access to Behavior

Reserved registers RES0

Unimplemented registers RAZ/WI

Reserved fields in registers RES0 or RES1

Unimplemented fields in registers RES0 or RES1

Unimplemented bits in implemented fields RAZ/WI

Table B2-5 CoreSight component behavior

Behavior
Component behavior on reads Component behavior on writes

RW RO WO RW RO WO

RES0 RAZ RAZ RAZ WI WI WI

RES1 RAO RAO RAO WI WI WI

RAZ/WI RAZ RAZ RAZ WI WI WI

Table B2-6 Software behavior

Behavior
Software behavior on reads Software behavior on writes

RW RO WO RW RO WO

RES0 Treat as UNKNOWN Treat as UNKNOWN Do not read Preserve Do not write Preserve

RES1 Treat as UNKNOWN Treat as UNKNOWN Do not read Preserve Do not write Preserve

RAZ/WI Expect zero Expect zero Do not read Are ignored Do not write Are ignored
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-37
ID022122 Non-Confidential

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
B2.2 Component and Peripheral Identification Registers

This section describes the following registers:

• CIDR0-CIDR3, Component Identification Registers.

• PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

B2.2.1 CIDR0-CIDR3, Component Identification Registers

The CIDR0-CIDR3 characteristics are:CIDR1CIDR2

Purpose

Provide information that can be used to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of four 32-bit management registers.

Field Descriptions

The CIDR0-CIDR3 bit assignments are:

Bits[31:8] of CIDR3

RES0.

PRMBL_3, CIDR3 bits[7:0]

Preamble, segment 3. Must be 0xB1.

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
B2-38 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
Bits[31:8] of CIDR2

RES0.

PRMBL_2, CIDR2 bits[7:0]

Preamble, segment 2. Must be 0x05.

Bits[31:8] of CIDR1

RES0.

CLASS, CIDR1 bits[7:4]

The component class, which can be one of the values that are listed in Table B2-7.

PRMBL_1, CIDR1 bits[3:0]

Preamble, segment 1. Must be 0x0.

Bits[31:8] of CIDR0

RES0.

PRMBL_0, CIDR0 bits[7:0]

Preamble, segment 0. Must be 0x0D.

Accessing CIDR

CIDR0-CIDR3 can be accessed at the following addresses:

Table B2-7 CLASS field encodings

Value Description

0x0 Generic verification component.

0x1 ROM Table. See ROM Table Types on page D5-149.

0x2-0x8 Reserved.

0x9 CoreSight component. See Component-specific registers for Class 0x9
CoreSight components on page B2-44.

0xA Reserved.

0xB Peripheral Test Block.

0xC-0xD Reserved.

0xE Generic IP component.

0xF CoreLink, PrimeCell, or system component with no standardized register
layout, for backwards compatibility. See Component-specific registers for
Class 0xF CoreLink, PrimeCell, and system components on page B2-64.

Offset

CIDR0 CIDR1 CIDR2 CIDR3

0xFF0 0xFF4 0xFF8 0xFFC
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-39
ID022122 Non-Confidential

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
B2.2.2 PIDR0-PIDR7, Peripheral Identification Registers

The PIDR0-PIDR7 characteristics are:PIDR1PIDR2PIDR3PIDR4PIDR5PIDR6

Purpose

Provide information that can be used to identify a CoreSight component. Most of the fields making
up PIDR0-PIDR7 are included in the Unique Component Identifier. The Unique Component
Identifier can also include fields from the CIDR1, DEVARCH, and DEVTYPE registers. For
details, see The Unique Component Identifier on page B2-32.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Configurations

Included in all implementations.

Attributes A set of eight 32-bit management registers.

Field Descriptions

The PIDR0-PIDR7 bit assignments are:

Default

RO

31 0

RES0

8 7

CMODREVAND

4 3

PIDR3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR1 0xFE4

31 0

RES0 PART_0

8 7

PIDR0 0xFE0

31 0

RES0PIDR7 0xFDC

31 0

RES0PIDR6 0xFD8
B2-40 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

The REVAND field indicates minor errata fixes specific to this design, for example metal
fixes after implementation. Usually this field is zero. If the field is required, Arm
recommends that component designers ensure that it can be changed by a metal fix, for
example by driving it from registers that reset to zero.

Together with PIDR2.REVISION, PIDR3.REVAND forms the revision number of the
component. When a component is changed, one or more of the fields making up the revision
number must be changed to ensure that debug tools can differentiate the different versions
of the component.

CMOD, PIDR3 bits[3:0]

Customer Modified. If the component is reusable IP, the CMOD field indicates whether the
customer has modified the behavior of the component. CMOD can have one of the
following values:

0x0 The component is not modified from the original design.

Any other value

The component has been modified.

Arm recommends that the user or debugger reads the documentation for the
component to determine the modifications that are made to the component.

For any two components with the same Unique Component Identifier:

• If the value of the CMOD fields of both components equals zero, the components are
identical.

• If the CMOD fields of both components have the same non-zero value, it does not
necessarily mean that they have been subjected to the same modifications.

• If the value of the CMOD field of either of the two components is non-zero, they
might not be identical, even though they have the same Unique Component Identifier.

See also The Unique Component Identifier on page B2-32.

Note
CoreSight versions before version 3.0 permitted using the CMOD field to distinguish
between different components. This permission is removed in CoreSight version 3.0.

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

The REVISION field is an incremental value starting at 0x0 for the first design of a
component. The value is increased by 1 for both major and minor revisions and is used as a
look-up to establish the exact major and minor revision.

31 0

RES0PIDR5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR4 0xFD0
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-41
ID022122 Non-Confidential

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
Together with PIDR3.REVAND, PIDR2.REVISION forms the revision number of the
component. When a component is changed, one or more of the fields making up the revision
number must be changed to ensure that debug tools can differentiate the different versions
of the component.

JEDEC, PIDR2 bits[3]

 Must be 0b1 to indicate that a JEDEC-assigned value is used.

DES_1, PIDR2 bits[2:0]

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

These codes indicate the designer of the component and not the implementer, except where
the two are the same. To obtain a number, or to see the assignment of these codes, contact
JEDEC http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.

For example, Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

• The continuation code is the number of times 0x7F appears before the final number.
For example, for Arm Limited this code is 0x4.

• The identification code is bits[6:0] of the final number. For example, Arm Limited
has the code 0x3B.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

For details about the JEP106 codes, see the description of the PIDR2.DES1 field.

PART_1, PIDR1 bits[3:0]

Part number, which is selected by the designer of the component, and stored in PIDR0 and
PIDR1 as follows:

PART_0, PIDR0 bits[7:0] Part number bits[7:0].

PART_1, PIDR1 bits[3:0] Part number bits[11:8].

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

Part number, which is selected by the designer of the component, and stored in PIDR0 and
PIDR1 as follows:

PART_0, PIDR0 bits[7:0] Part number bits[7:0].

PART_1, PIDR1 bits[3:0] Part number bits[11:8].
B2-42 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.2 Component and Peripheral Identification Registers
PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

The SIZE field indicates the memory size that is used by this component. It is expressed as
the logarithm to the base 2 of the number of 4KB blocks the component occupies. The value
0x0 indicates that either:

• The component uses a single 4KB block.

• The component uses an UNKNOWN number of 4KB blocks.

Using the SIZE field to indicate the size of the component is deprecated. The SIZE field
might not correctly indicate the size of the component. Arm recommends that debug tools
determine the size of the component from the Unique Component Identifier fields, and other
IMPLEMENTATION DEFINED registers in the component.

DES_2, PIDR4 bits[3:0]

JEP106 identification and continuation codes, which are stored in PIDR1, PIDR2, and
PIDR4 as follows:

DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0].

DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4].

DES_2, PIDR4 bits[3:0] JEP106 continuation code.

For details about the JEP106 codes, see the description of the PIDR2.DES1 field.

Accessing the PIDR

PIDR0-PIDR7 can be accessed at the following addresses:

Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-43
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3 Component-specific registers for Class 0x9 CoreSight components

Components that have the value 0x9 assigned to the CIDR1.CLASS field in the Component Identification Register
are CoreSight components. For details, see CIDR0-CIDR3, Component Identification Registers on page B2-38.

CoreSight components must implement an extra set of registers, referred to as the CoreSight management registers,
which are described in this section. Addresses 0xF00 to 0xFCC are reserved for use by CoreSight management
registers.

When implementing a CoreSight component, ensure that the following requirements are met:

• Any reads from unimplemented or reserved registers in 0xF00 to 0xFFF must return zero, and writes must be
ignored. For details about the required behavior of reserved locations, see Programmers’ Model Quick
Reference on page B2-36.

• Two or more functionally different CoreSight components are permitted to share a part number, as long as
they each have a different Unique Component Identifier. See The Unique Component Identifier on
page B2-32.
B2-44 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.1 AUTHSTATUS, Authentication Status Register

The AUTHSTATUS characteristics are:

Purpose

Reports the required security level and status of the authentication interface. Where functionality
changes on a given security level, the change in status must be reported in this register. For details
about the authentication interface, see Chapter C5 Authentication Interface.

Usage constraints

Some components might not distinguish between Secure and Non-secure debug. For example, a
trace component for a simple bus might connect to a Secure or a Non-secure bus, while its enable
signals connect differently depending on which bus the component connects to. A failure to
distinguish between Secure and Non-secure debug could result in:

• A component that indicates only Non-secure debug capabilities while performing only
Secure debug functions.

• A component that indicates only Secure debug capabilities while performing only
Non-secure debug functions.

Debuggers must be able to accommodate this possibility.

AUTHSTATUS is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0.

RTNID, bits [27:26]

Root Non-invasive Debug. Indicates whether a separate enable control for Root state
non-invasive debug features is implemented and enabled. The defined values of this field
are:

0b00 Separate Root non-invasive debug enable not implemented or Root state
non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

Default

RO

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-45
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
RTID, bits [25:24]

Root Invasive Debug. Indicates whether a separate enable control for Root state invasive
debug is implemented and enabled. The defined values of this field are:

0b00 Separate Root invasive debug enable not implemented or Root state invasive
debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

SUNID, bits [23:22]

Secure Unprivileged non-invasive debug. Indicates whether a separate enable control for
Secure state non-invasive debug features is implemented and enabled. The defined values
of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

SUID, bits [21:20]

Secure Unprivileged invasive debug. Indicates whether a separate enable control for Secure
state invasive debug features is implemented and enabled. The defined values of this field
are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

NSUNID, bits [19:18]

Non-secure Unprivileged non-invasive debug. Indicates whether a separate enable control
for Non-secure state non-invasive debug features is implemented and enabled. The defined
values of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.

NSUID, bits [17:16]

Non-secure Unprivileged invasive debug. Indicates whether a separate enable control for
Non-secure state invasive debug features is implemented and enabled. The defined values
of this field are:

0b00 Debug level is not supported.

0b01 Reserved.

0b10 Supported and disabled.

0b11 Supported and enabled.

All other values are reserved.
B2-46 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
RLNID, bits[15:14]

Realm Non-invasive debug. Indicates whether a separate enable control for Realm state
non-invasive debug features is implemented and enabled. The defined values of this field
are:

0b00 Separate Realm non-invasive debug enable not implemented or Realm state
non-invasive debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

RLID, bits[13:12]

Realm Invasive Debug. Indicates whether a separate enable control for Realm state invasive
debug is implemented and enabled. The defined values of this field are:

0b00 Separate Realm invasive debug enable not implemented or Realm state invasive
debug features not implemented.

0b10 Implemented and disabled.

0b11 Implemented and enabled.

All other values are reserved.

HNID, bits[11:10]

Hypervisor non-invasive debug.

This field can have one of the following values:

0b00 Debug level not supported.

0b10 Supported and disabled.

(HIDEN | HNIDEN) & (DBGEN | NIDEN) == FALSE.

0b11 Supported and enabled.

(HIDEN | HNIDEN) & (DBGEN | NIDEN) == TRUE.

All other values are reserved.

HID, bits[9:8]

Hypervisor invasive debug.

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled.

(HIDEN | DBGEN) == FALSE.

0b11 Supported and enabled.

(HIDEN | DBGEN) == TRUE.

All other values are reserved.

SNID, bits[7:6]

Secure noninvasive debug.

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled.

(SPIDEN | SPNIDEN) & (DBGEN | NIDEN) == FALSE.

0b11 Supported and enabled.

(SPIDEN | SPNIDEN) & (DBGEN | NIDEN) == TRUE.

All other values are reserved.

SID, bits[5:4]
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-47
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Secure invasive debug.

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled.

(SPIDEN | DBGEN) == FALSE.

0b11 Supported and enabled.

(SPIDEN | DBGEN) == TRUE.

All other values are reserved.

NSNID, bits[3:2]

Non-secure noninvasive debug.

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled.

(NIDEN | DBGEN) == FALSE.

0b11 Supported and enabled.

(NIDEN | DBGEN) == TRUE.

All other values are reserved.

NSID, bits[1:0]

Non-secure invasive debug.

This field can have one of the following values:

0b00 Debug level is not supported.

0b10 Supported and disabled.

DBGEN == FALSE.

0b11 Supported and enabled.

DBGEN == TRUE.

All other values are reserved.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

B2.3.2 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register

The characteristics of CLAIMSET and CLAIMCLR are:

Purpose

Often there are several debug agents that must cooperate to control the resources that the CoreSight
components make available. For example, an external debugger and a debug monitor running on the
target might both require control of the breakpoint resources of a processor. It is important that a
debug agent does not reprogram debug resources that another debug agent is using.

The Claim tag registers provide various bits that can be separately set and cleared to indicate
whether functionality is in use by a debug agent. All debug agents must implement a common
protocol to use these bits.

Offset

0xFB8
B2-48 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
This specification does not define the claim tag protocol, but consider the following examples that
illustrate how these bits can be used:

Protocol 1: Set common bit to claim

In this scenario, debug functionality is only claimed on a few rare, well-defined points,
for example when the target is powered up or when a debugger is connected.

Each bit in the claim tag corresponds to an area of debug functionality, which is shared
between all debug agents. For example, 4 bits can control four areas of functionality.
The following shows a pseudocode implementation of this protocol:
read claim tag bit
if (bit is set)

functionality is not available
else

set bit
use functionality

Protocol 2: Set private bit to claim

In this scenario, debug functionality is also only claimed on a few rare, well-defined
points, but it is necessary to be able to determine which other agent has claimed
functionality.

Each bit in the claim tag corresponds to an area of debug functionality for a debug agent.
For example, 4 bits can control two areas of functionality each for two debug agents.
The following shows a pseudocode implementation of this protocol:
read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
use functionality

Protocol 3: Set private bit and check for race

In this scenario, debug functionality is claimed regularly and it is possible for two debug
agents to attempt to claim it at the same time. Each bit in the claim tag corresponds to
an area of debug functionality for a debug agent, as in protocol 2. The following shows
a pseudocode implementation of this protocol:
read all claim tag bits for this functionality
if (any bits are set)

functionality is not available
else

set bit for this agent
read all claim tag bits for this functionality
if (any bits are set by other agents)

clear bit for this agent
wait a random amount of time
go back to start

else
use functionality

Usage constraints

The value of CLAIMCLR must be zero at reset.

CLAIMSET and CLAIMCLR are accessible as follows:

Configurations

Included in all implementations.

Attributes

 32-bit registers.

Default

RW
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-49
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Field Descriptions

The CLAIMSET and CLAIMCLR bit assignments are:

CLAIMCLR bits[31:nTags]

RAZ/WI

CLR, CLAIMCLR bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of bits
set in CLAIMSET.

Allowed values of CLR[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The claim tag bit is not set.

Read 1 The claim tag bit is set.

CLAIMSET bits[31:nTags]

RAZ/WI

SET, CLAIMSET bits[nTags-1:0]

The size of this field, nTags, is IMPLEMENTATION DEFINED, and equals the number of claim
bits that are implemented.

Permitted values of SET[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is not implemented.

Read 1 The claim tag that is represented by bit[n] is implemented.

Accessing CLAIMCLR and CLAIMSET

CLAIMCLR and CLAIMSET can be accessed at the following address:

Offset

CLAIMCLR CLAIMSET

0xFA4 0xFA0

31 0

CLRRAZ/WI

nTags-1nTags

CLAIMCLR 0xFA4

31 0

SETRAZ/WI

nTags-1nTags

CLAIMSET 0xFA0
B2-50 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.3 DEVAFF0-DEVAFF1, Device Affinity Registers

The DEVAFF0-DEVAFF1 characteristics are:

Purpose

Enables a debugger to determine whether two components have an affinity with each other.

For example, when a trace macrocell connects to a processor, the DEVAFF0 and DEVAFF1 in both
components must contain identical values that are unique. Doing so enables the debugger to identify
how the components relate to each other, without performing topology detection.

Usage constraints

DEVAFF0-DEVAFF1 are accessible as follows:

Configurations

Included in all implementations.

Attributes

A set of 32-bit registers that return an IMPLEMENTATION DEFINED value. A component might have
affinity with a group of components, for example where a single component is shared between
multiple PEs. The DEVAFF registers can be used to indicate the affinity with a group of
components. See the Arm® Architecture Reference Manual, for A-profile for examples of how
affinity with a group of PEs is indicated.

Field Descriptions

The DEVAFF0-DEVAFF1 bit assignments are:

DEVAFF1, bits[31:0],
DEVAFF0, bits[31:0]

IMPLEMENTATION DEFINED. If a component has no unique association with another
component, these fields are RAZ.

Examples of the content that DEVAFF returns are the MPIDRs of Arm architecture
processors and CTIs that connect to them:

• DEVAFF0 returns MPIDR, bits[31:0].

• DEVAFF1 returns MPIDR, bits[63:32].

Default

RO

31 0

IMPLEMENTATION DEFINEDDEVAFF1 0xFAC

31 0

IMPLEMENTATION DEFINEDDEVAFF0 0xFA8
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-51
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Accessing DEVAFF0-DEVAFF1

DEVAFF0-DEVAFF1 can be accessed at the following address:

Offset

DEVAFF0 DEVAFF1

0xFA8 0xFAC
B2-52 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.4 DEVARCH, Device Architecture Register

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component. The architect might differ from
the designer of a component, for example when Arm defines the architecture but another company
designs and implements the component.

Usage constraints

DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

Defines the architect of the component:

Bits[31:28] Indicates the JEP106 continuation code.

Bits[27:21] Indicates the JEP106 identification code.

See the Standard Manufacturers Identification Code for information about JEP106. For
components where Arm is the architect, this 11-bit field returns 0x23B.

PRESENT, bit[20]

Indicates the presence of this register:

0 = DEVARCH is not present. Bits[31:0] must be RAZ.

1 = DEVARCH is present.

REVISION, bits[19:16]

Architecture revision. Returns the revision of the architecture that the ARCHID field
specifies.

ARCHID, bits[15:0]

Architecture ID. Returns a value that identifies the architecture of the component.

Default

RO

ARCHITECT

31 21 20 19 16 15 0

ARCHIDREVISION

PRESENT
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-53
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Table B2-8 lists the ARCHID values for some example components where Arm is the
architect.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

Table B2-8 Example ARCHID values

ARCHID Description

0x0A00 RAS architecture

0x1A01 Instrumentation Trace Macrocell (ITM) architecture

0x1A02 DWT architecture

0x1A03 Flash Patch and Breakpoint unit (FPB) architecture

0x2A04 Processor debug architecture (ARMv8-M)

0x6A05 Processor debug architecture (ARMv8-R)

0x0A10 PC sample-based profiling

0x4A13 ETM architecture.

0x1A14 CTI architecture

0x6A15 Processor debug architecture (v8.0-A)

0x7A15 Processor debug architecture (v8.1-A)

0x8A15 Processor debug architecture (v8.2-A)

0x2A16 Processor Performance Monitor (PMU) architecture

0x0A17 Memory Access Port v2 architecture

0x0A27 JTAG Access Port v2 architecture

0x0A31 Basic trace router

0x0A34 Power requester

0x0A47 Unknown Access Port v2 architecture

0x0A50 HSSTP architecture

0x0A63 STM architecture

0x0A75 CoreSight ELA architecture

0x0AF7 CoreSight ROM architecture

Offset

0xFBC
B2-54 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.5 DEVID, Device Configuration Register

The DEVID characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

This register is IMPLEMENTATION DEFINED for each part number and designer.

The entire 32-bit field can be used because the data width is determined by the component itself.

Unused bits must be RES0.

If the component is configurable, Arm recommends that this register reflects any changes to a
standard configuration.

DEVID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID bit assignments are:

Bits[31:0]

IMPLEMENTATION DEFINED.

Accessing DEVID

DEVID can be accessed at the following address:

Default

RO

Offset

0xFC8

31 0

IMPLEMENTATION DEFINED
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-55
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.6 DEVID1, Device Configuration Register 1

The DEVID1 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

This register is IMPLEMENTATION DEFINED for each part number and designer.

The entire 32-bit field can be used because the data width is determined by the component itself.

Unused bits must be RES0.

If the component is configurable, Arm recommends that this register reflects any changes to a
standard configuration.

DEVID1 is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID1 bit assignments are:

Bits[31:0]

IMPLEMENTATION DEFINED.

Accessing DEVID1

DEVID1 can be accessed at the following address:

Default

RO

Offset

0xFC4

31 0

IMPLEMENTATION DEFINED
B2-56 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
B2.3.7 DEVID2, Device Configuration Register 2

The DEVID2 characteristics are:

Purpose

Indicates the capabilities of the component.

Usage constraints

This register is IMPLEMENTATION DEFINED for each part number and designer.

The entire 32-bit field can be used because the data width is determined by the component itself.

Unused bits must be RES0.

If the component is configurable, Arm recommends that this register reflects any changes to a
standard configuration.

DEVID2 is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVID2 bit assignments are:

Bits[31:0]

IMPLEMENTATION DEFINED.

Accessing DEVID2

DEVID2 can be accessed at the following address:

B2.3.8 DEVTYPE, Device Type Identifier Register

The DEVTYPE characteristics are:

Purpose

If the part number field is not recognized, a debugger can report the information that is provided by
DEVTYPE about the component instead.

Default

RO

Offset

0xFC0

31 0

IMPLEMENTATION DEFINED
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-57
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Usage constraints

DEVTYPE is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register that returns an IMPLEMENTATION DEFINED value.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0.

SUB, bits[7:4]

Sub type for the component device type, as described in Table B2-9.

MAJOR, bits[3:0]

Major type for the component device type, as described in Table B2-9.

Default

RO

Table B2-9 Device type encoding

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description

0x0 Miscellaneous 0x0 Other, undefined.

0x1-0x3 Reserved.

0x4 Validation component.

0x5-0xF Reserved.

0x1 Trace Sink 0x0 Other.

0x1 Trace port, for example TPIU.

0x2 Buffer, for example ETB.

0x3 Basic trace router.

0x4-0xF Reserved.

31 7 4 3 0

RES0 SUB MAJOR

8

B2-58 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
0x2 Trace Link 0x0 Other.

0x1 Trace funnel, Router.

0x2 Filter.

0x3 FIFO, Large Buffer.

0x4-0xF Reserved.

0x3 Trace Source 0x0 Other.

0x1 Associated with a processor core.

0x2 Associated with a DSP.

0x3 Associated with a Data Engine or coprocessor.

0x4 Associated with a Bus, stimulus-derived from bus activity.

0x5 Reserved.

0x6 Associated with software, stimulus-derived from software
activity.

0x7-0xF Reserved.

0x4 Debug Control 0x0 Other.

0x1 Trigger Matrix, for example ECT.

0x2 Debug Authentication Module. See Control of
authentication interfaces on page D2-117

0x3 Power requestor.

0x4-0xF Reserved.

0x5 Debug Logic 0x0 Other.

0x1 Processor core.

0x2 DSP.

0x3 Data Engine or coprocessor.

0x4 Bus, stimulus-derived from bus activity.

0x5 Memory, tightly coupled device such as Built In Self-Test
(BIST).

0x6-0xF Reserved.

Table B2-9 Device type encoding (continued)

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-59
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

B2.3.9 ITCTRL, Integration Mode Control Register

The ITCTRL characteristics are:

Purpose

A component can use this register to dynamically switch between functional mode and
integration mode.

In integration mode, topology detection is enabled. For more information, see Chapter B3
Topology Detection.

Usage constraints

After switching to integration mode and performing integration tests or topology detection,
reset the system to ensure correct behavior of CoreSight and other connected system
components.

ITCTRL is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

0x6 Performance Monitor 0x0 Other.

0x1 Associated with a processor.

0x2 Associated with a DSP.

0x3 Associated with a Data Engine or coprocessor.

0x4 Associated with a bus, stimulus-derived from bus activity.

0x5 Associated with a Memory Management Unit that conforms
to the Arm System MMU Architecture.

0x6-0xF Reserved.

0x7-0xF Reserved - -

Offset

0xFCC

Table B2-9 Device type encoding (continued)

MAJOR type [3:0] SUB type [7:4]

Value Description Value Description

Default

RW
B2-60 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bits[0] Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL

ITCTRL can be accessed at the following address:

B2.3.10 LSR and LAR, Software Lock Status Register and Software Lock Access Register

The characteristics of the Software lock registers are:

Purpose

The Software lock mechanism prevents accidental access to the registers of CoreSight components.
Software that is being debugged might accidentally write to memory used by CoreSight
components. Accidental accesses might disable those components, making the software impossible
to debug. The CoreSight programmers’ model includes a Lock Status Register, LSR, and a Lock
Access Register, LAR, to control software access to CoreSight components to ensure that the
likelihood of accidental access to CoreSight components is small.

Note

From CoreSight version 3.0 onwards, implementation of the Software lock mechanism that is
controlled by LAR and LSR is deprecated.

To ensure that the software being debugged can never access an unlocked CoreSight component, a
software monitor that accesses debug registers must unlock the component before accessing any
registers, and lock the component again before exiting the monitor.

Arm recommends that external accesses from a debugger are not subject to the Software lock, and
therefore that external reads of the LSR return zero. For information on how CoreSight components
can distinguish between external and internal accesses, see Debug APB interface memory map on
page D2-118.

A system can include several bus Requesters capable of accessing the same CoreSight component,
for example in systems that include several processors. In this case, it is possible for software
running on one processor, processor A, to accidentally access the component while it is being
programmed by a debug monitor running on another processor, processor B. Because the
component that is being accessed cannot distinguish between the two processors, processor A might
disable the component and cause problems for processor B. The probability of this occurring is low,
but must be considered if there are special circumstances that make this scenario more likely.

Offset

0xF00

RES0

31 01

IME
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-61
ID022122 Non-Confidential

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
Note

The claim tag cannot be used to manage accesses to the Software lock registers, because access to
the claim tag is subject to the Software lock mechanism.

Usage constraints

LSR and LAR are accessible as follows:

Configurations

LSR is included in all implementations, and LSR.SLI indicates whether LAR is implemented.

Attributes

32-bit registers.

Field Descriptions

The LSR and LAR bit assignments are:

LSR, bits[31:3]

RES0.

nTT, LSR bits[2]

This bit is always zero, which indicates that the component implements a 32-bit LAR.

SLK, LSR bits[1]

This field is used to return the current software lock status.

Permitted values of SLK are:

0 Writing to the other registers in the component is permitted.

1 Writing to the other registers in the component is blocked.

Note

When present, the reset value of this bit is 1.

SLI, LSR bits[0]

Default

LSR LAR

RO WO

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

31 0

KEYLAR 0xFB0
B2-62 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

CoreSight programmers’ model
B2.3 Component-specific registers for Class 0x9 CoreSight components
This field indicates whether a Software lock mechanism is implemented.

Permitted values of SLI are:

0 Software lock mechanism is not implemented.

1 Software lock mechanism is implemented.

Note

Some components have two programmable views, one only visible from external tools and
the other visible from software running on-chip. In this case:

• For accesses from external tools, the Software lock mechanism is not required and
LSR.SLI and LSR.SLK both return a value of zero.

• For accesses from software running on-chip the Software lock is optional, and, when
implemented, LSR.SLI has the value 0b1 and LSR.SLK returns the status of the
Software lock.

KEY, LAR bits[31:0]

Writing a value to this field controls write access to the other registers in the component.

Permitted values of KEY are:

Write 0xC5ACCE55

Signals that LSR must permit writing to the other registers in the component.

Write any other value

Signals that LSR must block writing to the other registers in the component.

Accessing LSR and LAR

LSR and LAR can be accessed at the following address:

Offset

LAR LSR

0xFB0 0xFB4
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B2-63
ID022122 Non-Confidential

CoreSight programmers’ model
B2.4 Component-specific registers for Class 0xF CoreLink, PrimeCell, and system components
B2.4 Component-specific registers for Class 0xF CoreLink, PrimeCell, and system
components

Components that have the value 0xF assigned to the CIDR1.CLASS field in the Component Identification Register
are CoreLink, PrimeCell, or system components. For details, see CIDR0-CIDR3, Component Identification
Registers on page B2-38.

CoreLink, PrimeCell, and system components are not related to the CoreSight system.

No component-specific registers are specified for this component class.
B2-64 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter B3
Topology Detection

This chapter describes the CoreSight topology detection registers. It contains the following sections:

• About topology detection on page B3-66.

• Requirements for topology detection signals on page B3-67.

• Combination with integration registers on page B3-68.

• Interfaces that are not connected or implemented on page B3-69.

• Variant interfaces on page B3-70.

• Documentation requirements for topology detection registers on page B3-71.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B3-65
ID022122 Non-Confidential

Topology Detection
B3.1 About topology detection
B3.1 About topology detection

CoreSight system components can have various interface types. A component specifies which interfaces are present,
and whether they act as Transmitter or Receiver. Each interface type defines a set of control signals that enable a
debugger to determine which other components are connected to it. These signals are referred to as topology
detection signals. During topology detection, a debugger probes each interface to determine which other
components are connected to it.

For the specification of the requirements for the topology detection signals for standard interfaces that are used by
Arm CoreSight components, see Chapter C7 Topology Detection at the Component Level. Interface vendors must
define the requirements for other interfaces, following the rules in Chapter D6 Topology Detection at the System
Level.
B3-66 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection
B3.2 Requirements for topology detection signals
B3.2 Requirements for topology detection signals

Topology detection signals must observe the following requirements:

• For each topology detection input, it must be possible to read the state of that input.

• For each topology detection output, it must be possible to drive the state of that output without affecting other
topology detection signals.

Note

It is not necessary to implement topology detection registers on the programming interface for the component,
because this connectivity is described by the ROM Table.

 Topology detection can be invasive. See Chapter D6 Topology Detection at the System Level.

B3.2.1 Recommended method

Arm recommends that topology detection registers are implemented as follows:

• Implement a topology detection mode that isolates the topology detection signals.

• For each topology detection output, provide a register that sets the value of that output in topology detection
mode.

• For each topology detection input, provide a register that returns the value of that input in topology detection
mode.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B3-67
ID022122 Non-Confidential

Topology Detection
B3.3 Combination with integration registers
B3.3 Combination with integration registers

In addition to the registers that are required for topology detection, many components implement integration
registers that provide the same control over most inputs and outputs. This technique enables rapid integration testing
when validating a SoC built from these components, because a test bench can assess the connectivity between two
components without knowledge of their underlying functionality.

For components that implement integration registers, Arm recommends reusing these registers for topology
detection. Use the ITCTRL register to select both integration mode and topology detection mode. See also ITCTRL,
Integration Mode Control Register on page B2-60.
B3-68 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection
B3.4 Interfaces that are not connected or implemented
B3.4 Interfaces that are not connected or implemented

Some components do not implement a fixed number of interfaces to allow for the possibility of interfaces not being
connected. To the debugger, there is no difference between an interface that is not present and one that is not
connected.

If the component requires that the interface is still usable when connected to a non-CoreSight component that is not
capable of topology detection, the programmers’ model must indicate whether the interface is connected or not.

If the component can only be connected to other CoreSight components, the tools can assume that the interface does
not exist if they fail to find any connected interfaces during topology detection. In this case, the programmers’ model
does not need to indicate whether the interface is connected, but if it does, some time can be saved during topology
detection.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B3-69
ID022122 Non-Confidential

Topology Detection
B3.5 Variant interfaces
B3.5 Variant interfaces

Usually, the connections between interfaces do not change after detection. However, sometimes it is necessary for
some components to share a component. For example, a component tracing the operation of a processor might
switch to tracing the operation of a different processor. It is important that the conditions under which a switch can
occur are understood.

The connections between interfaces can only change if all the following conditions apply:

• An interface is defined as being variant between multiple connections.

• The programmers’ model of the affected component controls the configuration by selecting between several
alternative connections for that interface.

• The number of valid alternative connections that are indicated in the programmers’ model, which is used to
reduce the autodetection time, is less than 32, and remains constant during switching.

If these conditions are too stringent for your application, a separate CoreSight component that multiplexes the
connections is required. Topology detection can then be performed between this new component and the
components it is connected to.

When a switch has occurred, topology detection must be repeated to determine the new connections. Because
topology detection can be invasive, Arm recommends performing topology detections for all configurations that are
likely to occur in advance.

B3.5.1 External multiplexing

Figure B3-1 shows an example of how variable connections can be implemented using an external multiplexer. This
example shows:

• A register that indicates that there are n inputs to select from. This register can be read by a debugger to
determine which values of the selection register are valid. The register is tied to the value n outside the
component.

• A selection register that selects the input to use.

• A variant connection receiving the selected input.

Figure B3-1 External multiplexing of connections

n

Input 1
Input n ... Variant

connection

Selection
register

Number of
valid

alternatives

CoreSight component

D

D

Q

Q

D Q
B3-70 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection
B3.6 Documentation requirements for topology detection registers
B3.6 Documentation requirements for topology detection registers

The component must have documentation that defines the interfaces present on that component. The definition of
each interface must include:

• Its name, using the format that is listed in Chapter D6 Topology Detection at the System Level.

• If the interface supports variable connections:

— How many connections are valid.

— How to switch between connections.

• How to control the topology detection signals listed for that interface in Chapter D6 Topology Detection at
the System Level.

B3.6.1 Interfaces where topology detection is not possible

If an interface can be connected to a non-CoreSight component, topology detection might not be possible. In this
case, the documentation must define a method to determine from the programmers’ model how such as component
is connected.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. B3-71
ID022122 Non-Confidential

Topology Detection
B3.6 Documentation requirements for topology detection registers
B3-72 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Part C
CoreSight Reusable Component Architecture

Chapter C1
About the Reusable Component Architecture

The CoreSight reusable component architecture specifies the rules that enable a component to be used with other
components that use the CoreSight architecture, and defines the physical interfaces of the components so that they
can be connected together easily.

Note

Unlike the visible component architecture, implementing the reusable component architecture is not mandatory.
Omitting the reusable component architecture from a self-contained system does not compromise its compatibility
with debuggers, but prevents it from being used with other CoreSight components.

If a component does not require the functionality that is provided by a particular interface, implementing the
interface is optional. For example, a component with no programmable registers does not need to implement the
AMBA APB interface.

It is possible to create a component that performs several functions internally, while presenting only one set of
reusable component interfaces. Doing so allows implementing pre-built platforms with an integrated CoreSight
infrastructure, enabling the platform to be integrated into a larger system as if it were a single CoreSight component.

The reusable component architecture is described in the following chapters:

• Chapter C2 AMBA APB and ATB Interfaces.

• Chapter C3 Event Interface.

• Chapter C4 Channel interface.

• Chapter C5 Authentication Interface.

• Chapter C6 Timestamp Interface.

• Chapter C7 Topology Detection at the Component Level.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C1-75
ID022122 Non-Confidential

About the Reusable Component Architecture

C1-76 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C2
AMBA APB and ATB Interfaces

This chapter describes the following AMBA interfaces:

• The AMBA APB interface on page C2-78, which is used to program CoreSight components.

• The AMBA ATB interface on page C2-80, which transfers trace data.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C2-77
ID022122 Non-Confidential

AMBA APB and ATB Interfaces
C2.1 AMBA APB interface
C2.1 AMBA APB interface

The following sections describe the AMBA APB interface:

• About the AMBA APB interface.

• AMBA APB interface signals.

• AMBA APB interface width on page C2-79.

• Alternative views of the register file on page C2-79.

C2.1.1 About the AMBA APB interface

The AMBA APB interface is used to program CoreSight components.

The interface supports:

• Simple, non-pipelined operation.

• Implementation of 8-bit, 16-bit, or 32-bit Completers.

• Stalling by the Completer.

• Error responses from the Completer.

For more information, see the Arm® AMBA® APB Protocol Specification.

Some legacy debug components implement a JTAG TAP Controller to access their functionality.

The bus that connects all CoreSight components is referred to as the Debug APB interface.

C2.1.2 AMBA APB interface signals

Table C2-1 shows the signals that comprise the AMBA APB interface.

Note

• The signal suffix DBG indicates that the Debug APB interface is used to access CoreSight components.

• The clamp value is the value that an output must be clamped to when the component is powered down or
disabled.

For more information, see the Arm® AMBA® APB Protocol Specification.

Table C2-1 Signals on the Debug APB interface

Name

Direction

Description
Requester Completer

Clamp
value

PCLKDBG Input Input - The rising edge of PCLKDBG
synchronizes all transfers on the AMBA 3
APB interface.

PRESETDBGn Input Input - This signal resets the interface and is
active-LOW.

PADDRDBG[31:2] Output Input 0 This bus indicates the address of the transfer.
It is not necessary to implement unused
bits.a

PSELDBG Output Input 0 This signal indicates that the Completer
device is selected and a data transfer is
required. There is a PSELDBG signal for
each Completer.
C2-78 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

AMBA APB and ATB Interfaces
C2.1 AMBA APB interface
C2.1.3 AMBA APB interface width

The AMBA APB interface is 32-bits wide.

Chapter B2 CoreSight programmers’ model describes the model compatible with a 32-bit AMBA APB interface.

C2.1.4 Alternative views of the register file

There might be several ways to access the registers of a component. It can be useful, for example, to provide special
instructions to make debug registers in a processor visible as registers in a linked coprocessor. Provided the debug
functionality of the component is also accessible through the AMBA APB interface, alternative methods to access
registers are permitted.

PENABLEDBG Output Input 0 This signal indicates the second and
subsequent cycles of an AMBA APB
interface transfer.

PWRITEDBG Output Input 0 When HIGH, PWRITEDBG indicates a
write access. When LOW, it indicates a read
access.

PWDATADBG[31:0] Output Input 0 PWDATADBG[31:0] is the write data bus.
When PWRITEDBG is HIGH, it indicates
that the write data bus is driven by the
Requester during write cycles. The write
data bus can be up to 32-bits wide.

PREADYDBG Input Output 1 This signal is used by the Completer to
extend an AMBA APB interface transfer.

PRDATADBG[31:0] Input Output 0 PRDATADBG[31:0] is the read data bus.
When PWRITEDBG is LOW, it indicates
that the read data bus is driven by the
selected Completer during read cycles. The
read data bus can be up to 32-bits wide.

PSLVERRDBG Input Output 1 This signal is returned in the second cycle of
the transfer, and indicates an error response.
Only use this signal for indicating that a
component is not available, for example
because it is powered down.

a. The use of PADDRDBG[31] to split the memory map and indicate the difference between external and internal
accesses is deprecated. For information on how components that require it can differentiate between external and
internal access, see Debug APB interface memory map on page D2-118.

Table C2-1 Signals on the Debug APB interface (continued)

Name

Direction

Description
Requester Completer

Clamp
value
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C2-79
ID022122 Non-Confidential

AMBA APB and ATB Interfaces
C2.2 AMBA ATB interface
C2.2 AMBA ATB interface

The AMBA ATB interface carries trace data around a SoC.

Every CoreSight component or platform with trace capabilities has an AMBA ATB interface, and is either a
Transmitter or Receiver on the AMBA ATB:

• A component or system that generates trace data is a Transmitter.

• A component or system that receives trace data is a Completer.

The AMBA ATB interface supports the following features:

• Stalling of data, using valid and ready responses.

• Byte-sized packets, together with control signals to indicate the number of bytes that are valid in a cycle.

• Originating component marker, giving each data packet an associated ID.

• Any trace protocol or data agnostic requirements for the format of the data.

• Check-pointing of data from all originating components.

For more information, see the Arm® AMBA® ATB Protocol Specification.
C2-80 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C3
Event Interface

A CoreSight system uses the event interface to transfer events between components. It is most commonly used for
communicating cross-trigger events between debug components and a Cross Trigger Interface (CTI).

The event interface signals are:

EVENTCLK Clock. This signal is typically mapped onto an existing clock signal.

EVENTRESETn Reset. This signal is typically mapped onto an existing reset signal.

EVENT This signal indicates the event, and is typically mapped onto a signal of a different name that
describes its purpose.

An event is indicated by a rising edge on EVENT. Therefore an event can be signaled at
most once every two EVENTCLK cycles.

If the event has a duration, the falling edge on EVENT indicates its completion.

The interface defines no back-pressure mechanism, so events that are close together might merge. For example, if
the event interface crosses an asynchronous boundary to a slower clock domain, events in close succession might
merge into a single event.

The source of an event interface is known as an event interface transmitter. The destination of an event interface is
known as an event interface receiver.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C3-81
ID022122 Non-Confidential

Event Interface

C3-82 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C4
Channel interface

This chapter describes the channel interface. It contains the following sections:

• About the channel interface on page C4-84.

• Channels on page C4-86.

• Channel interface signals on page C4-87.

• Channel connections on page C4-88.

• Synchronous and asynchronous conversions on page C4-89.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C4-83
ID022122 Non-Confidential

Channel interface
C4.1 About the channel interface
C4.1 About the channel interface

The channel interface is a special type of event interface that enables CoreSight components to communicate events,
as described in Chapter C3 Event Interface. The channel interface supports:

• A variable number of event channels.

• Bidirectional communication.

• Synchronous or asynchronous communication.

Some examples of useful events are:

• If two or more processors are required to stop at the same time, they must signal to each other when they have
stopped.

• To perform advanced profiling functions, profiling events from many different sources in the system must be
shared.

Figure C4-1 shows a channel interface that connects multiple CTIs, which are provided by CoreSight technology.
The channel interface can be supported directly by a CoreSight component, if necessary.

Figure C4-1 Implementation of a CTI-based channel interface

Note

When using the CTI:

• Some systems require more event signals than are supported by a CTI.

• In a platform-oriented system, it is necessary to connect event signals together within the platform and export
only a set of standard interfaces for extension at higher levels.

The channel interface is designed to enable components to communicate events with minimal overhead. However,
if multiple events are presented to the channel interface in close succession, they might be interpreted as a single
event. Figure C4-2 on page C4-85 illustrates this limitation for a situation where events that are generated in a fast
clock domain, Clock A, are passed to a slower clock domain, Clock B. In Clock A, two separate events can be seen,
but these events are too close together for Clock B, resulting in Clock B interpreting them as a single event.

Platform

Cross Trigger Interface
(CTI)

CTI

CoreSight component CoreSight component

CoreSight component

CoreSight component

Events Events

Events

Cross Trigger Matrix
(CTM)

Channel interface

Channel interface

Channel interface

Channel
interface
C4-84 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Channel interface
C4.1 About the channel interface
Figure C4-2 Event merging in the channel interface

This limitation makes the channel interface unsuitable for counting events that occur in rapid succession. An
example of this type of operation is counting the number of instructions that are executed by a processor over time.

The channel interface is suitable for the following:

• Transmission of an event that happens only once, for example a trigger signal to an ETB or TPIU to end trace
capture.

• Transmission of a low-speed signal level where precision is not important.

• Transmission of a signal subject to handshaking using another channel in the channel interface.

• Transmission of a signal subject to software handshaking, for example an interrupt request.

• Transmission of events to be counted that do not occur close together, for example the number of times a
peripheral causes an interrupt.

Clock A

Channel A value

Clock B

Channel B value
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C4-85
ID022122 Non-Confidential

Channel interface
C4.2 Channels
C4.2 Channels

The channel interface comprises two types of signals:

• Channel outputs, which transmit events that are generated by a component.

• Channel inputs, which listen for events that are generated by other components.

A component uses its channel outputs to transmit events to the channel inputs of all components in the system,
except its own.

The interface supports an IMPLEMENTATION DEFINED number of channels. Arm recommends that at least four
channels are implemented.

Components must treat all channels identically. It must be possible for the debugger to control which channels are
used for which purposes.

If a system consists of subsystems with different numbers of channels, and there is a requirement to pass events
between these subsystems, the following rules must be observed:

• A subset of the channels from the subsystem with the greater number of channels is connected to all the
channels in the other subsystem.

• The set of channels that is connected is always a contiguous set, starting from channel 0.

For example, in a system where subsystem A has eight channels and subsystem B has four channels, channels 0-3
from subsystem A are connected to channels 0-3 in subsystem B. Channels 4-7 are not connected to subsystem B.
C4-86 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Channel interface
C4.3 Channel interface signals
C4.3 Channel interface signals

Table C4-1 shows the set of signals that are required by an asynchronous channel interface. The clamp value is the
value that an output must be clamped to when the component is powered down or disabled.

Figure C4-3 shows how the asynchronous interface uses a basic four-phase handshaking protocol. The same
protocol is used by CHOUT and CHOUTACK.

Figure C4-3 Channel interface handshaking

Table C4-2 shows the set of signals that are required by a synchronous channel interface.

Table C4-1 Asynchronous channel interface signals

Name Direction
Clamp
value

Description

CHIN[n-1:0] Input - Channel input

CHINACK[n-1:0] Output 1 Channel input acknowledge

CHOUT[n-1:0] Output 0 Channel output

CHOUTACK[n-1:0] Input - Channel output acknowledge

CHIN[m]

CHINACK[m]

Table C4-2 Synchronous channel interface signals

Name Direction
Clamp
value

Description

CHCLK Input - Clock

CHIN[n-1:0] Input - Channel input

CHOUT[n-1:0] Output 0 Channel output
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C4-87
ID022122 Non-Confidential

Channel interface
C4.4 Channel connections
C4.4 Channel connections

The channel interface is bidirectional. Take care to connect the correct signals together. Figure C4-4 shows how to
connect two asynchronous channel interfaces together.

Figure C4-4 Asynchronous channel interface connection

Figure C4-5 shows how to connect two synchronous channel interfaces together.

Figure C4-5 Synchronous channel interface connection

A component can support:

• Only the input channels, which is appropriate for components that do not generate events, but have to react
to events from other components.

• Only the output channels, which is appropriate for components that generate events, but do not have to react
to events from other components.

• Both the input and output channels.

If a component does not support both sets of channels, the unsupported outputs must be clamped as shown in
Table C4-1 on page C4-87 and Table C4-2 on page C4-87.

If a component supports both input and output channels, the component must not reflect events on an input channel
to the corresponding output channel.

Component 1

CHOUT[n-1:0]
CHOUTACK[n-1:0]

CHIN[n-1:0]
CHINACK[n-1:0]

Component 2

CHOUT[n-1:0]
CHOUTACK[n-1:0]

CHIN[n-1:0]
CHINACK[n-1:0]

Component 1

CHCLK
CHIN[n-1:0]

CHOUT[n-1:0]

Component 2

CHOUT[n-1:0]
CHIN[n-1:0]

CHCLK
C4-88 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Channel interface
C4.5 Synchronous and asynchronous conversions
C4.5 Synchronous and asynchronous conversions

Figure C4-6 shows a circuit that makes it possible to convert between synchronous and asynchronous versions of
this interface.

Figure C4-6 Asynchronous to synchronous converter

Implementing a synchronous to asynchronous converter increases the likelihood of events being merged as
described in About the channel interface on page C4-84 on page C4-84.

CHIN CHOUT

CHOUT
DQ

CHIN

CHOUTACK

CHCLK

Synchronizer

Synchronizer

CHINACK

Asynchronous
interface

Synchronous
interface
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C4-89
ID022122 Non-Confidential

Channel interface
C4.5 Synchronous and asynchronous conversions
C4-90 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C5
Authentication Interface

This chapter defines the system requirements that control access to debug and trace peripherals, and how those
requirements are met by devices that comply with the CoreSight architecture. It contains the following sections:

• About the authentication interface on page C5-92.

• Definitions of Secure, hypervisor, and invasive debug on page C5-93.

• Authentication interface signals on page C5-94.

• Authentication rules on page C5-95.

• User mode debugging on page C5-100.

• Control of the authentication interface on page C5-101.

• Exemptions from implementing the authentication interface on page C5-102.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-91
ID022122 Non-Confidential

Authentication Interface
C5.1 About the authentication interface
C5.1 About the authentication interface

Use the authentication interface for restricting access to debug and trace functionality in the following ways:

• To prevent unauthorized people from modifying the behavior of the system, for example to prevent a mobile
phone from reporting a fake identification number to the network. This requires authenticated access to
invasive debug functions such as traditional core debug, but permits non-invasive tracing and profiling
functions.

• To prevent unauthorized people from reverse engineering a product or discovering secrets that are stored
within it, for example to read encryption keys. This requires authenticated access to all debug and trace
functions.

The authentication interface does not prevent accidental access of debug functionality by rogue code, making a
system impossible to debug. This type of access is managed by the Software lock mechanism that is optional in all
CoreSight components, see LSR and LAR, Software Lock Status Register and Software Lock Access Register on
page B2-61.
C5-92 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Authentication Interface
C5.2 Definitions of Secure, hypervisor, and invasive debug
C5.2 Definitions of Secure, hypervisor, and invasive debug

This section defines Secure debug, invasive debug, and hypervisor debug.

C5.2.1 Definition of Secure debug

A Non-secure debug operation is any operation where instructions executing on-chip with Non-secure privileges
have the same effect as external operations. Any other operation is a Secure debug operation.

Using this definition, debug operations that monitor the time that is taken by a Secure routine are Non-secure debug
operations, because the time taken can be measured by combining off-chip timing information with Non-secure
on-chip event generation information. Operations that affect the time that is taken by a Secure routine are considered
Secure debug operations.

C5.2.2 Definition of hypervisor debug

The meaning of hypervisor debug is IMPLEMENTATION DEFINED. For processors based on Arm architectures, see the
relevant Arm® Architecture Reference Manual.

C5.2.3 Definition of invasive debug

Any operation that changes the defined behavior of the system is invasive.

Examples include any changes to the contents of memory and insertion of instructions into a processor pipeline, but
not necessarily the act of changing the number of cycles that are taken to perform an operation, unless the number
of cycles is defined architecturally.

An implementation can treat an IMPLEMENTATION DEFINED set of effects that change the observable, but not the
defined behavior of the system, as invasive. Examples include most effects that change the number of cycles that
are taken to perform an operation.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-93
ID022122 Non-Confidential

Authentication Interface
C5.3 Authentication interface signals
C5.3 Authentication interface signals

Table C5-1 shows the authentication interface signals that a component might support. If a component uses a
non-invasive enable signal, it must import the invasive equivalent. For example, using SPNIDEN requires
importing SPIDEN, and using HNIDEN requires importing HIDEN.

The source of an authentication interface is known as the authentication interface Transmitter.

The destination of an authentication interface is known as an authentication interface Receiver.

Table C5-1 Authentication interface signals

Signal Description

AUTHCLK Clock (Not used for asynchronous authentication)a

a. Use of the asynchronous authentication interface is deprecated.

AUTHRESETn Reset (Not used for asynchronous authentication)a

DBGEN Invasive debug enable

NIDEN Non-invasive debug enable

SPNIDEN Secure non-invasive debug enable

SPIDEN Secure invasive debug enable

HIDEN Hypervisor invasive debug enable

HNIDEN Hypervisor non-invasive debug enable

RLPIDEN Realm invasive debug enable

RTPIDEN Root invasive debug enable
C5-94 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Authentication Interface
C5.4 Authentication rules
C5.4 Authentication rules

Authentication interface implementations must observe the following rules:

1. Synchronous interfaces must sample all signals synchronously, on the rising edge of AUTHCLK. Typically,
AUTHCLK is mapped onto another clock signal. It is IMPLEMENTATION DEFINED when a change of any of
the authentication signals takes effect. For example, a processor core might ignore changes to the
authentication signals while in Debug state. By extension, it is possible that a component only observes the
signals on reset, but it is recommended that more frequent changes are permitted.

Asynchronous interfaces must sample all signals asynchronously.

Arm recommends that processors implementing the authentication interface specify a sequence of
instructions that, when executed, wait until changes to the authentication signals have taken effect before
continuing.

2. If DBGEN is LOW, invasive debug is not permitted.

Invasive debug is any debug operation that might cause the behavior of the system to be modified.
Non-invasive debug, such as trace, is unaffected.

3. If NIDEN is LOW and DBGEN is LOW, neither invasive nor non-invasive debug is permitted.

4. If NIDEN is LOW and DBGEN is HIGH, both invasive and non-invasive debug are permitted. Arm
recommends that these signals are not driven in this way.

To ensure that a non-invasive component is correctly enabled, it must import both DBGEN and NIDEN, and
internally OR the result.

5. If SPIDEN is LOW, Secure invasive debug is not permitted.

6. If SPNIDEN is LOW and SPIDEN is LOW, all Secure debug is not permitted.

7. If SPNIDEN is LOW and SPIDEN is HIGH both invasive and non-invasive Secure debug are permitted.
Arm recommends that these signals are not driven in this way. To ensure that a non-invasive component is
correctly enabled, it must import SPIDEN in addition to SPNIDEN, and internally OR the result.

Note

Rules 5 to 7 are the equivalent of rules 2 to 4, but used for Secure debug. They are useful for systems that separate
Secure and Non-secure data, for example systems implementing Arm Security Extensions. Secure non-invasive
debug is any debug operation that enables a debugger to read Secure data. Secure invasive debug is any debug
operation that enables a debugger to change Secure data. If a debug component supports Secure non-invasive debug
functions by implementing the signal SPNIDEN, it must also observe the Secure invasive signal, SPIDEN.

1. If SPIDEN is HIGH and DBGEN is LOW, invasive debug is not permitted. Arm recommends that these
signals are not driven in this way. To ensure that a component that supports Secure invasive debug is correctly
controlled, Arm recommends importing both DBGEN and SPIDEN, and using the result of an internal AND
operation with the imported signals as operands for authentication.

2. If SPNIDEN is HIGH and NIDEN is LOW, debugging is not permitted. Arm recommends that these signals
are not driven in this way. To ensure that a component that supports Secure non-invasive debug is correctly
controlled, it must import NIDEN in addition to SPNIDEN, and internally AND the result.

3. If HIDEN is LOW, hypervisor invasive debug is not permitted.

4. If HNIDEN is LOW and HIDEN is LOW, all hypervisor debug is not permitted.

5. If HNIDEN is LOW and HIDEN is HIGH both invasive and non-invasive hypervisor debug are permitted.
Arm recommends that these signals are not driven in this way. To ensure that a non-invasive component is
correctly enabled, it must import HIDEN in addition to HNIDEN, and internally OR the result.

6. If a component supports HNIDEN, it must also support HIDEN and NIDEN.

7. If a component supports HIDEN, it must also support DBGEN.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-95
ID022122 Non-Confidential

Authentication Interface
C5.4 Authentication rules
8. If HIDEN is HIGH and DBGEN is LOW, invasive debug is not permitted. Arm does not recommend that
these signals are driven in this way. To ensure that a component that supports hypervisor invasive debug is
correctly controlled, Arm recommends importing both DBGEN and HIDEN, and using the result of an
internal AND operation with the imported signals as operands for authentication.

9. If HNIDEN is HIGH and NIDEN is LOW, debugging is not permitted. Arm does not recommend that these
signals are driven in this way. To ensure that a component that supports Secure non-invasive debug is
correctly controlled, it must import NIDEN in addition to HNIDEN, and internally AND the result.

10. If the value of any of the authentication signals changes, it is IMPLEMENTATION DEFINED when it takes effect.

Pipeline effects mean that it is not possible for these signals to be precise. Arm recommends not to use them
to enable and disable debugging around specific regions of code without a full understanding of the pipeline
behavior of the system.

11. The authentication interface is extended to include two additional signals to define invasive debug for Root
and Realm:

• RLPIDEN.

• RTPIDEN.

Note

Equivalent signals that define when Root and Realm non-invasive debug are permitted are not defined.

Root non-invasive debug is only enabled when Root invasive debug is enabled.

Realm non-invasive debug is only enabled when Realm invasive debug is enabled.

See Root and Realm signals on page C5-99.

The authentication rules can be summarized as follows:

• SPIDEN, DBGEN, SPNIDEN, and NIDEN enable Secure invasive debug, Non-secure invasive debug,
Secure non-invasive debug, and Non-secure non-invasive debug, respectively.

• Because invasive functionality requires non-invasive functionality to function correctly, if invasive debug is
enabled, non-invasive debug must also be enabled.

• Secure functionality must be disabled if the corresponding Non-secure functionality is disabled.

The following signal combinations are not permitted and behave as if RLPIDEN == 0:

• DBGEN == 0 & RLPIDEN == 1

The following signal combinations are not permitted and behave as if RTPIDEN == 0:

• DBGEN == 0 & RTPIDEN == 1

• RTPIDEN == 1 & RLPIDEN == 0

Table C5-2, Table C5-3 on page C5-97, Table C5-4 on page C5-97, and Table C5-5 on page C5-97 show the
equations that define whether a particular level of debug functionality is permitted for a debug component that
supports the authentication interface:

Table C5-2 Component without Secure debug capabilities

Debug functionality Equation

Invasive debug DBGEN

Non-invasive debug DBGEN | NIDEN
C5-96 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Authentication Interface
C5.4 Authentication rules
The SPIDEN and SPNIDEN signals have no dependencies on the HIDEN and HNIDEN signals, and conversely.

Table C5-6 shows the restrictions for SPIDEN and SPNIDEN and their effects. Numbers in brackets indicate the
rules that apply in each case, S indicates Secure, and NS indicates Non-secure.

Table C5-3 Component with Secure debug capabilities

Debug functionality Equation

Non-secure invasive debug DBGEN

Non-secure non-invasive debug DBGEN | NIDEN

Secure invasive debug DBGEN & SPIDEN

Secure non-invasive debug (SPIDEN | SPNIDEN) & (DBGEN | NIDEN)

Table C5-4 Component with hypervisor debug capabilities

Debug functionality Equation

Hypervisor invasive debug HIDEN & DBGEN

Hypervisor non-invasive debug (HIDEN | HNIDEN) & (DBGEN | NIDEN)

Table C5-5 Component with Root and Realm debug capabilities

Debug functionality Equation

Root Invasive debug DBGEN & RLPIDEN & SPIDEN &RTPIDEN

Realm Invasive debug DBGEN & RLPIDEN

Table C5-6 Authentication signal restrictions for SPIDEN and SPNIDEN

SPIDEN DBGEN SPNIDEN NIDEN
Valid signal
combination

Invasive debug
permitted

Non-invasive
debug permitted

S NS S NS

0 0 0 0 Yes No (2,5) No (2) No (3,6) No (3)

0 0 0 1 Yes No (2,5) No (2) No (6) Yes

0 0 1 0 Noa (2) No (2,5) No (2) No (3,6) No (3)

0 0 1 1 Yes No (2,5) No (2) Yes Yes

0 1 0 0 No (4) No (5) Yes (4) No (6) Yes (4)

0 1 0 1 Yes No (5) Yes No (6) Yes

0 1 1 0 No (4) No (5) Yes (4) Yes (4) Yes (4)

0 1 1 1 Yes No (5) Yes Yes Yes

1 0 0 0 No (7) No (2) No (2) No (3) No (3)

1 0 0 1 No (7) No (2) No (2) Yes (7) Yes

1 0 1 0 Noa (1,2) No (2) No (2) No (3) No (3)

1 0 1 1 Noa (1) No (2) No (2) Yes Yes
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-97
ID022122 Non-Confidential

Authentication Interface
C5.4 Authentication rules
Table C5-7 shows the restrictions for HIDEN and HNIDEN and their effects. Numbers in brackets indicate the
rules that apply in each case, H indicates hypervisor, and NH indicates non-hypervisor.

1 1 0 0 No (4,7) Yes (7) Yes (4) Yes (4,7) Yes (4)

1 1 0 1 No (7) Yes (7) Yes Yes (7) Yes

1 1 1 0 No (4) Yes (4) Yes (4) Yes (4) Yes (4)

1 1 1 1 Yes Yes Yes Yes Yes

a. These signal combinations were permitted in previous versions of the CoreSight architecture but are deprecated from
v2.0 onwards.

Table C5-7 Authentication signal restrictions for HIDEN and HNIDEN

HIDEN DBGEN HNIDEN NIDEN
Valid signal
combination

Invasive debug
permitted

Non-invasive
debug permitted

H NH H NH

0 0 0 0 Yes No (2, 3) No (2) No (3) No (3)

0 0 0 1 Yes No (2, 3) No (2) No (3) Yes

0 0 1 0 No (9) No (2, 3) No (2) No (3) No (3)

0 0 1 1 Yes No (2, 3) No (2) Yes Yes

0 1 0 0 No (4) No (3) Yes (4) No (4) Yes (4)

0 1 0 1 Yes No (3) Yes No (4) Yes

0 1 1 0 No (4) No (3) Yes (4) Yes (4) Yes (4)

0 1 1 1 Yes No (3) Yes Yes Yes

1 0 0 0 No (7) No (2) No (2) No (3) No (3)

1 0 0 1 No (7) No (2) No (2) Yes (5) Yes

1 0 1 0 No (8, 9) No (2) No (2) No (3) No (3)

1 0 1 1 No (8) No (2) No (2) Yes Yes

1 1 0 0 No (4, 5) Yes (5) Yes (4) Yes (4, 5) Yes (4)

1 1 0 1 No (5) Yes (5) Yes Yes (5) Yes

1 1 1 0 No (4) Yes (4) Yes (4) Yes (4) Yes (4)

1 1 1 1 Yes Yes Yes Yes Yes

Table C5-6 Authentication signal restrictions for SPIDEN and SPNIDEN (continued)

SPIDEN DBGEN SPNIDEN NIDEN
Valid signal
combination

Invasive debug
permitted

Non-invasive
debug permitted

S NS S NS
C5-98 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Authentication Interface
C5.4 Authentication rules
C5.4.1 Root and Realm signals

Arm® Realm Management Extension (RME) System Architecture and Arm® Architecture Reference Manual
Supplement. The Realm Management Extension (RME) require that changes to the authentication status of the
system only occur at specific times around a reset.

RTPIDEN effects are not permitted to change except when the system is in RME system reset.

To ensure an entire system observes the same value of RTPIDEN at all times, Arm recommends that the system
samples RTPIDEN on leaving RME system reset and keeps this sampled signal stable while the system is not in
RME system reset. The sampled signal is distributed to all components which consume RTPIDEN.

A component which consumes RTPIDEN might choose to only sample RTPIDEN when leaving reset. However,
this is not mandatory.

RLPIDEN effects are not permitted to change after RMSD firmware is loaded.

To ensure an entire system observes the same value of RLPIDEN at all times, Arm recommends that the system
samples RLPIDEN on leaving RME system reset and keeps this sampled signal stable while the system is not in
RME system reset. However, an exception to this is MSD firmware explicitly permitting RLPIDEN to change. If
MSD firmware permits RLPIDEN to change, a new RLPIDEN value is sampled under control of MSD firmware.
The sampled signal is distributed to all components which consume RLPIDEN.

A component that consumes RLPIDEN might choose to only sample RLPIDEN when leaving reset. This is not
mandatory. Such a component will be unable to observe changes in RLPIDEN after the component has left reset.

A system must ensure that the sequencing of resets is appropriate to ensure that the sampled RTPIDEN and
RLPIDEN are further sampled by the components appropriately.

LEGACY_TZ_EN

A component might operate in a system that can be configured to operate with or without RME. Arm recommends
the component has an input signal, LEGACY_TZ_EN, when a component needs to be aware of the Root or Realm
debug authentication status. LEGACY_TZ_EN defines whether the component is operating with RME enabled or
disabled.

When LEGACY_TZ_EN is 1, RTPIDEN and RLPIDEN are ignored and the component behaves as if Root and
Realm debug are disabled.

Note

A component is permitted to indicate support for RME when LEGACY_TZ_EN is 1. However, the component
behaves as if RME is disabled, and Root debug and Realm debug are disabled.

LEGACY_TZ_EN is not permitted to change value after RME system reset has been deasserted. Arm recommends
that LEGACY_TZ_EN is only sampled as the component leaves reset.

Note

LEGACY_TZ_EN is not part of the authentication interface.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-99
ID022122 Non-Confidential

Authentication Interface
C5.5 User mode debugging
C5.5 User mode debugging

Individual components can offer greater control over the permitted level of debugging. For example, some
processors implementing Arm Security Extensions can grant permission to debug-specific Secure processes by
permitting debugging of Secure User mode without permitting debugging of Secure privileged modes. This level of
control is extended to the ETM. For more information, see the Arm® Embedded Trace Macrocell Architecture
Specification.

Figure C5-1 shows how the signals of the CoreSight authentication interface interact with the two registers that are
controlled by the Secure Operating System (OS), SUIDEN and SUNIDEN:

• If DBGEN is asserted, NIDEN is ignored and assumed asserted.

• If SPIDEN is asserted, SPNIDEN is ignored and assumed asserted.

• In all other cases, the permissions that are represented by all the boxes bounding each level of debug
functionality must be granted before that level of debug functionality is enabled.

Figure C5-1 Interaction between CoreSight and Arm Security Extensions

NIDENDBGEN

SUNIDEN aSUIDEN a

SPNIDEN

Invasive Non-secure User core

Invasive Non-secure system

Invasive Secure User core

Invasive Non-secure privileged core

Non-invasive Non-secure User core

Non-invasive Non-secure system

Non-invasive Secure User core

Non-invasive Non-secure privileged core

Pin control
a Indicates control by the Secure operating system

Implication, for example
DBGEN implies NIDEN

SPIDEN

Invasive Secure privileged core
Invasive Secure system

Non-invasive Secure privileged core
Non-invasive Secure system
C5-100 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Authentication Interface
C5.6 Control of the authentication interface
C5.6 Control of the authentication interface

The authentication interface is controlled at the system level. For more information, see Control of authentication
interfaces on page D2-117.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C5-101
ID022122 Non-Confidential

Authentication Interface
C5.7 Exemptions from implementing the authentication interface
C5.7 Exemptions from implementing the authentication interface

It is not necessary to implement the authentication interface to control debug functions that are only
software-accessible. For these functions, it is sufficient to use standard mechanisms to control software access to
privileged and Secure resources.
C5-102 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C6
Timestamp Interface

A CoreSight system uses the wide timestamp interface to distribute a time value to debug components. Typically
this time value is included in a trace stream to permit correlation of events in multiple trace streams.

Table C6-1 shows the signals that are defined for the timestamp interface.

If a system with multiple components implements the timestamp interface, the same timestamp is used by all
components. If systems use different clocks or different timestamp distribution mechanisms, there might be skew
between the timestamp values that are observed by the components.

Some components might not implement a full 64-bit timestamp. These components use an IMPLEMENTATION
DEFINED subset of the 64-bit timestamp value. Arm recommends using the subset that provides the largest set of
unique observable timestamp values. This subset might depend on the clock speed of the component.

Arm recommends that new designs share the same source of time for both PEs and CoreSight components.

Table C6-1 Timestamp interface signals

Name Description

TSCLK Interface clock

TSRESETn Interface reset

TSVALUEB[63:0] Timestamp value, encoded as a natural binary number.

A value of 0 indicates that the timestamp is UNKNOWN, which
occurs when the timestamp value source is disabled or when
the timestamp value is reset.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C6-103
ID022122 Non-Confidential

Timestamp Interface

Note

Previous versions of this specification recommended that the timestamp resolution is at least 10% of the fastest
processor in the system. This recommendation has been removed. However, Arm recommends that the timestamp
resolution is reasonably high to allow for fine-grained correlation of traces.

The source of a timestamp is known as a timestamp Transmitter. The destination of a timestamp is known as a
timestamp Receiver.
C6-104 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter C7
Topology Detection at the Component Level

This chapter describes how to detect components that are connected to the AMBA ATB interface and where they
are logically located in any corresponding hierarchical connection. It contains the following sections:

• About topology detection at the component level on page C7-106.

• Interface types for topology detection on page C7-107.

• Interface requirements for topology detection on page C7-109.

• Signals for topology detection on page C7-110.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C7-105
ID022122 Non-Confidential

Topology Detection at the Component Level
C7.1 About topology detection at the component level
C7.1 About topology detection at the component level

This chapter describes how to perform topology detection on each interface type. Chapter B3 Topology Detection
describes the topology detection requirements of CoreSight components. Chapter D6 Topology Detection at the
System Level describes how debuggers can use this information to detect the topology of a target system.
C7-106 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection at the Component Level
C7.2 Interface types for topology detection
C7.2 Interface types for topology detection

A component has several interfaces that contain one or more signals. Each interface is defined in terms of the
following parameters:

• A name, for example channel interface.

• A direction:

— Transmitter, always connected to one or more Receivers of the same type.

— Receiver, always connected to one or more Transmitters of the same type.

— Bidirectional, always connected to one or more identical bidirectional interfaces.

— Probe, read-only interface to trace the activity of a bus without affecting the behavior of that bus.

The following conditions apply to the interfaces used for topology detection:

• The list of interfaces must be defined for each block for the purposes of topology detection.

• Not all signals that are used in the implementation must be exposed in an interface, provided the signals that
are not exposed are irrelevant for topology detection.

• Signals that are exposed in the interface must be strictly defined.

C7.2.1 Interfaces on standard components

Table C7-1 shows the interfaces present on common CoreSight components. For specific interface details, see the
appropriate Technical Reference Manual.

Table C7-1 Interfaces on some example components

Programmable
component

Interfaces

CoreSight ETMa

CoreSight PTMb

• AMBA ATB interface, Transmitter.

• One or more events, Transmitter. EXTOUT[n-1:0].

• One or more events, Receiver. EXTIN[n-1:0].

• Event, Transmitter. TRIGOUT.

• Variant: CoreETM, Receiver.

The number of core interfaces can be read from the programmers’ model of the ETM or PTM.

The state of DBGACK can be driven directly in all Arm cores, including those cores that are not CoreSight
compliant.

CoreSight ETB • AMBA ATB interface, Receiver:

• Event, Transmitter. ACQCOMP.

• Event, Transmitter. FULL.

• Event, Receiver. TRIGIN.

• Event, Receiver. FLUSHIN.

TPIU • AMBA ATB interface, Receiver:

• Event, Receiver. TRIGIN.

• Event, Receiver. FLUSHIN.

Debug Ports and
Access Ports

No topology detection interfaces.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C7-107
ID022122 Non-Confidential

Topology Detection at the Component Level
C7.2 Interface types for topology detection
HTM • AMBA ATB interface, Transmitter:

• 2x event, Transmitter. HTMEXTOUT[1:0].

• 2x event, Transmitter. HTMEXTIN[1:0].

• Event, Transmitter. HTMTRIGGER.

• Variant: AHB, probe.

The number of AHB interfaces can be read from the programmers’ model of the HTM.

The method to perform topology detection of this interface is not defined.

CoreSight Funnel • One or more AMBA ATB interfaces, slave.

• AMBA ATB interface, Transmitter.

CTI • One or more events, Receiver. TRIGIN[7:0].

• One or more events, Transmitter. TRIGOUT[7:0].

• Channel, bidirectional.

VIC (PL190/192) 32x event, Transmitter: VICINTSOURCE[n].

a. An ETM that implements the ETMv3 or ETMv4 architecture.

b. A PTM that implements the PFTv1 architecture.

Table C7-1 Interfaces on some example components (continued)

Programmable
component

Interfaces
C7-108 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection at the Component Level
C7.3 Interface requirements for topology detection
C7.3 Interface requirements for topology detection

For all controllable signals, each interface type specifies:

• The signals on the Transmitter interface that must be controllable or observable.

• The signals on the Receiver interface that must be controllable or observable.

• The transitions on the interface that must be performed to trigger the following actions:

— To initialize topology detection.

— To assert the Transmitter interface.

— To check whether the Receiver interface is asserted.

— To deassert the Transmitter interface.

— To check whether the Receiver interface is deasserted.

If the interface is bidirectional, each interface to be tested must in turn be treated as a Transmitter while the other
interfaces of that type are treated as Receiver. See Chapter D6 Topology Detection at the System Level.

For signals that must be controllable, it must be possible to independently control the value of outputs, and read the
value of inputs. See Chapter B3 Topology Detection.

Usually each Transmitter interface specifies one output, and the Receiver interface specifies the corresponding
input. When choosing a signal, observe the conditions that are described in the following section:

• Intermediate non-programmable components.

• Multi-way connections.

C7.3.1 Intermediate non-programmable components

Sufficient control signals must be available to enable the interface to be driven to an active state so that it passes
through any intermediate non-programmable components. For example, in AMBA ATB interfaces, ATVALID
must be controllable, because if it is LOW, an intermediate bridge does not pass any control signals through it.

C7.3.2 Multi-way connections

In a multi-way connection:

• Asserting and deasserting a Transmitter signal might cause an effect to be seen on multiple Receivers.

• Asserting and deasserting a Receiver signal might cause an effect to be seen on multiple Transmitters.

Sufficient signals must be controllable to cause the arbitration logic to route between the Transmitter and Receiver.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. C7-109
ID022122 Non-Confidential

Topology Detection at the Component Level
C7.4 Signals for topology detection
C7.4 Signals for topology detection

Table C7-2 shows the controllable signals for each interface type that is listed in Table C7-1 on page C7-107.

Table C7-3 lists the signals that an interface must implement to support topology detection between Transmitters
and Receivers of key interface types. Use the table with the algorithm given in Detection algorithm on page D6-155.
For the full specification of a signal, see the relevant interface specification.

Table C7-2 Controllable signals for each interface type

Interface Transmitter wires Receiver wires

AMBA ATB interface ATVALID ATVALID, ATREADY

CoreETM DBGACKa

a. Using DBGACK for topology detection is restricted by the fact that in some Arm processors it
cannot be controlled, or it can only be controlled from a JTAG debugger. To perform topology
detection on a processor that has this restriction, use a different IMPLEMENTATION DEFINED
controllable signal, or the Device Affinity registers, DEVAFF0-DEVAFF1, which indicate the
association of a processor with the ETM.

DBGACKa

Eventb

b. The event interface is defined for miscellaneous point-to-point connections that carry a one-bit
signal. An event interface might implement an acknowledge signal, that, if implemented, must be
controllable. To implement the event interface, substitute EVENT and EVENTACK for the
equivalent signals in the appropriate interface.

EVENT EVENT, EVENTACK, if present

Channel, bidirectional CHOUT[0] CHIN[0], CHINACK[0], if asynchronous

Table C7-3 Topology detection sequences

Signal AMBA ATB Core ETM Event interface Channel interface

Transmitter preamble ATVALID ← 0 DBGACK ← 0 EVENT ← 0 CHOUT[0] ← 0

Receiver preamble ATREADY ← 0 None EVENTACK ← 0, if present CHINACK[0] ← 0, if present

Transmitter assert ATVALID ← 1 DBGACK ← 1 EVENT ← 1 CHOUT[0] ← 1

Receiver check
asserted

ATVALID == 1 DBGACK == 1 EVENT == 1 CHIN[0] == 1

Receiver post-assert ATREADY ← 1 None EVENTACK ← 1, if present CHINACK[0] ← 1, if present

Transmitter deassert ATVALID ← 0 DBGACK ← 0 EVENT ← 0 CHOUT[0] ← 0

Receiver check
deasserted

ATVALID == 0 DBGACK == 0 EVENT == 0 CHIN[0] == 0

Receiver post-deassert ATREADY ← 0 None EVENTACK ← 0, if present CHINACK[0] ← 0, if present
C7-110 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Part D
CoreSight System Architecture

Chapter D1
About the System Architecture

The system architecture specifies:

• Rules that must be followed by all systems that implement CoreSight components.

• Additional information that is required by debuggers to use a CoreSight system.

The system architecture is described in the following chapters:

• Chapter D2 System Considerations.

• Chapter D3 Physical Interface.

• Chapter D4 Trace Formatter.

• Chapter D5 About ROM Tables.

• Chapter D6 Topology Detection at the System Level.

• Chapter D7 Compliance Requirements.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D1-113
ID022122 Non-Confidential

About the System Architecture

D1-114 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D2
System Considerations

This chapter describes system aspects that must be considered when integrating CoreSight components into a
system. It has the following sections:

• Clock and power domains on page D2-116 describes the requirements for the clock and power domain
structure that is exposed to debuggers.

• Control of authentication interfaces on page D2-117 describes the requirements for the signals in the
authentication interface.

• Memory system design on page D2-118 describes how to expose CoreSight registers to system software.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D2-115
ID022122 Non-Confidential

System Considerations
D2.1 Clock and power domains
D2.1 Clock and power domains

CoreSight can be used in systems with many clock and power domains. CoreSight systems themselves, however,
always define the following clock and power domains:

System domain This domain comprises most non-debug functionality. The clock frequencies in this domain
can be asynchronous to the other domains and can vary over time in response to varying
performance requirements. The clocks can be stopped, and the power can be removed,
leading to the loss of all state information.

Debug domain This domain comprises most debug functionality. When debug functionality is not required,
the power can be removed or the clocks can be stopped to reduce power consumption.

Always-on domain This domain comprises the power controller and the interface to the debugger. The power
is never removed, even when the device is dormant, which enables the debugger to connect
to the device even when it is powered down.

When deviating from the default clock and power domains, observe the following rules:

• When implementing extra clock and power domains by subdividing one of the default clock and power
domains, make sure that the clock and power domains respond appropriately to requests made using the
debug interface. For example, an implementation can have two system clock domains, as long as both
domains are permanently accessible whenever a System Power Up request is made.

• When implementing fewer clock and power domains by combining two or more of the default clock and
power domains, make sure that all requests made using the debug interface are operational. For example,
when combining the system and debug power domains, the combined domain must always be powered up
whenever a System Power Up request or a Debug Power Up request is made.

The debugger can use the debug interface to make the following requests to the system:

• Power up everything in the system domain. When this request is made, all logic in the system domain must
be kept permanently powered up, and be continuously accessible to the debugger.

• Power up everything in the debug domain. When this request is made, all logic in the debug domain must be
kept permanently powered up, and be continuously accessible to the debugger.

• Reset everything in the debug domain. When this request is made, all logic in the debug domain must be reset
to its initial state.

The debugger interface is managed by an implementation of the ADI. For more information, see the appropriate
CoreSight Technical Reference Manual.
D2-116 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

System Considerations
D2.2 Control of authentication interfaces
D2.2 Control of authentication interfaces

A CoreSight system prevents unauthorized debugging by disabling debug functionality, rather than by preventing
access to the debug registers. This mechanism is controlled by the authentication interface. For more information
about the authentication interface, see Chapter C5 Authentication Interface.

Each signal can be driven in one of the following ways:

• Tied LOW. This method is most appropriate for production systems where the specified debug functionality
is not required, and prevents in-the-field debugging. There is usually an alternative development chip with
the same functionality enabled.

• Tied HIGH. This method is most appropriate for prototype or development systems where authentication is
not required.

• Connected to a fuse that is blown in production parts to disable debug functionality, which prevents
in-the-field debugging.

• Driven by a custom authentication module, that unlocks debug functionality after a successful authentication
sequence. This method provides the most flexibility. In systems where high security is required, Arm
recommends using a challenge-response mechanism that is based on an on-chip random number generator or
a hardware key unique to that device.

When secure debugging is enabled, secure operations are visible to the outside world, and sometimes to software
running in the Non-secure world.

Arm recommends that devices are split into development and production devices:

• Development devices can have secure debugging enabled by authorized developers. All secure data must be
replaced by test data suitable for development purposes, where losses are minimal if the test data is disclosed.

• Production devices can never have secure debugging enabled. These devices are loaded with the real secure
data.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D2-117
ID022122 Non-Confidential

System Considerations
D2.3 Memory system design
D2.3 Memory system design

This section describes how to expose CoreSight registers to system software.

D2.3.1 Debug APB interface memory map

Components and the interconnect are not required to differentiate between external and internal accesses unless one
of the following applies:

• The component implements the Software lock mechanism that is described in the programmers’ model, see
LSR and LAR, Software Lock Status Register and Software Lock Access Register on page B2-61.

Note

From v3.0 onwards, implementation of the Software lock is deprecated. If a component implements the
Software lock, but is accessed using an interconnect that does not support indicating the difference between
external and internal accesses, Arm strongly recommends that the component is configured as follows:

— LSR is RAZ to indicate that the Software lock mechanism is not implemented. See also LSR and LAR,
Software Lock Status Register and Software Lock Access Register on page B2-61.

— PADDRDBG[31] is tied to HIGH to force all accesses to be interpreted as external accesses. See also
AMBA APB interface signals on page C2-78.

• The component implements an OS lock mechanism, for example an ETM.

For the limited set of components that must differentiate between external and internal accesses, Arm recommends
that two views of the component are provided in the memory system, one for internal accesses, and one for external
accesses:

• The two views can be located anywhere in the Debug APB interface address space.

• Arm strongly recommends that a ROM Table provides a pointer only to the external view.

• Arm recommends that one of the address bits is used to differentiate the views.

An example of this configuration is shown in Figure D2-1, where a 4KB component of a PE at address
0xB00000000 uses two adjacent views at addresses 0x00002000 and 0x00003000 in the APB memory map.
Accesses to addresses between 0x00002000 and 0x00002FFF, for which address bit[12] has a value of 0b0, are
external accesses, and accesses to addresses between 0x00003000 and 0x00003FFF, for which address bit[12]
has a value of 0b1, are internal accesses.

Figure D2-1 Example of an AMBA APB interface memory map for a component with external and internal views

Note

From v3.0 onwards, the use of PADDRDBG[31] to split the memory map into two 2GB segments to indicate the
difference between external and internal accesses is deprecated. An older implementation having its external and
internal views 2GB apart can be regarded as a special case of a version 3.0 implementation: one that uses address
bit[31] to differentiate between external and internal accesses.

If a component requires more than one view, and those views are not related to the external and internal views
described in this section, the arrangement of those views in the memory system is IMPLEMENTATION DEFINED.

Unused

Unused

Component C (int)

Debug APB

Component C (ext)

Other

Other

Processor Memory Map

Component N (ext)
Component N (int)

4KB
8KB

Component

Component N
internal access

external access

0x00003000-0x00003FFF: bit [12] is 0b1 for int
0x00002000-0x00002FFF: bit [12] is 0b0 for ext

0x000000000xB0000000
D2-118 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

System Considerations
D2.3 Memory system design
Examples of implementations of a system with three components are shown in Figure D2-2 and Figure D2-3 on
page D2-120:

• In the example that is shown in Figure D2-2, one of the components, Component C, requires differentiation
between external and internal accesses. The component provides two adjacent views allowing external
accesses at addresses for which bit[12] equals 0b0, and internal accesses at addresses for which bit[12] equals
0b1.

• In the example that is shown in Figure D2-3 on page D2-120, all three components require differentiation
between external and internal accesses. As in the example that is shown in Figure D2-2, address bit[12] is
used to differentiate between external and internal accesses, leading to a configuration where the external
views are interleaved with the internal views.

Figure D2-2 Example that includes one component with external and internal views

Unused

Unused

0x00000000-0x00000FFF

0x00001000-0x00001FFF

0x00002000-0x00002FFF
0x00003000-0x00003FFF

Other

Other

Processor 2
Memory Map

Component C (int)

Debug APB

Component A
Component B

Component C (ext)

ROM table

Other

pointers

ROM table

Unused

pointers

0xA0000000-0x00000FFF

0xA0001000-0x00001FFF

0xA0002000-0x00002FFF
0xA0003000-0x00003FFF

bit [12] is 0b0 for ext
bit [12] is 0b1 for int

Other

Other

Processor 1
Memory Map

ROM table

Other

pointers

0xB0000000-0x00000FFF

0xB0001000-0x00001FFF

0xB0002000-0x00002FFF
0xB0003000-0x00003FFF

4KB

4KB

8KB

Component A
Component B

Component C (ext)
Component C (int)

4KB

4KB

8KB

Component A
Component B

Component C (ext)
Component C (int)
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D2-119
ID022122 Non-Confidential

System Considerations
D2.3 Memory system design
Figure D2-3 Example that includes three components with external and internal views

D2.3.2 Access to the Debug APB interface

When designing a CoreSight system, ensure that the registers of CoreSight components are visible to privileged
software.

Note

Do not prevent Non-secure software from accessing the registers of CoreSight components, even if those
components can debug secure software. Doing so seriously restricts debugging of Non-secure software.

For system bus transaction Requesters that support privileged and unprivileged modes, Arm recommends the
following:

• If the Requester does not have an MMU or MPU, the system prevents access to the CoreSight components
by unprivileged software.

• If the Requester does have an MMU or MPU, the MMU or MPU is used to prevent access to the CoreSight
components by unprivileged software.

• CoreSight components are marked as Device memory.

Unused

Unused

0x00002000-0x00002FFF

0x00003000-0x00003FFF

0x00004000-0x00004FFF
0x00005000-0x00005FFF Component C (int)

Debug APB

Component B (ext)
Component B (int)
Component C (ext)

ROM table

Unused

pointers

bit [12] is 0b0 for ext
bit [12] is 0b1 for int

Other

Other

Component B (ext)
Component B (int)
Component C (ext)
Component C (int)

ROM table

Other

pointers

0xB0002000-0xB0002FFF

0xB0003000-0xB0003FFF

0xB0004000-0xB0004FFF
0xB0005000-0xB0005FFF

Component A (ext)
Component A (int)

0xB0000000-0xB0000FFF

0xB0001000-0xB0001FFF

Other

Other

Component B (ext)
Component B (int)
Component C (ext)
Component C (int)

ROM table

Other

pointers

0xA0002000-0xA0002FFF

0xA0003000-0xA0003FFF

0xA0004000-0xA0004FFF
0xA0005000-0xA0005FFF

Component A (ext)
Component A (int)

0xA0000000-0xA0000FFF

0xA0001000-0xA0001FFF

Component A (ext)
Component A (int)

0x00000000-0x00000FFF

0x00001000-0x00001FFF

bit [12] is 0b0 for ext
bit [12] is 0b1 for int

bit [12] is 0b0 for ext
bit [12] is 0b1 for int

8KB

8KB

8KB

8KB

8KB

8KB

Processor 2
Memory Map

Processor 1
Memory Map
D2-120 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D3
Physical Interface

This chapter describes the external pin interface, timing, and connector type that is required for the trace port on a
target system. It contains the following sections:

• Arm JTAG 20 on page D3-122.

• CoreSight 10 and CoreSight 20 connectors on page D3-124.

• Arm MICTOR on page D3-128.

• Target Connector Signal details on page D3-133.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-121
ID022122 Non-Confidential

Physical Interface
D3.1 Arm JTAG 20
D3.1 Arm JTAG 20

The Arm JTAG 20 connector is a 20-way 2.54mm pitch connector. It supports the following interfaces:

• JTAG interface, which is based on IEEE 1149.1-1990 and includes the Arm RTCK signal.

• Serial wire debug (SWD) interface.

• Serial Wire Output (SWO) interface.

Figure D3-1 shows the Arm JTAG 20 connector pinout.

Figure D3-1 Arm JTAG 20 connector pinout

Table D3-1 shows the Arm JTAG 20 pinout as used on the target board.

2
4
6
8
10
12

16
18
20

14

1
3
5
7
9

11

15
17
19

13

Table D3-1 Arm JTAG 20 interface pinout table

Pin Signal name

1 VTREF

2 NC

3 nTRST

4 GND

5 TDI

6 GND

7 TMS/SWDIO

8 GND

9 TCK/SWCLK

10 GND

11 RTCK

12 GND

13 TDO/SWO

14 GND

15 nSRST

16 GND

17 DBGRQ/TRIGIN
D3-122 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.1 Arm JTAG 20
See Target Connector Signal details on page D3-133 for a description of the signals in Table D3-1 on page D3-122.

18 GND

19 DBGACK /TRIGOUT

20 GND

Table D3-1 Arm JTAG 20 interface pinout table (continued)

Pin Signal name
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-123
ID022122 Non-Confidential

Physical Interface
D3.2 CoreSight 10 and CoreSight 20 connectors
D3.2 CoreSight 10 and CoreSight 20 connectors

The CoreSight 10 and CoreSight 20 connectors are used for debug targets requiring JTAG, SWD, SWO, and
low-bandwidth trace connectivity.

This section describes 10-way and 20-way connectors that are mounted on debug target boards. These connectors
are specified as 0.050 inch pitch two-row pin headers, Samtec FTSH or equivalent. For more information, see the
Samtec website, www.samtec.com.

The connectors are grouped into compatible sets according to the functions they support. Some targets support
communication by both SWD and JTAG using the SWJ-DP block to switch between protocols.

Note

Some of the tables in this section have a column that is named MICTOR, which lists the equivalent pin numbers on
a CoreSight-compatible Matched Impedance Connector (MICTOR) connector for the named CoreSight pin. A
target can feature both CoreSight and MICTOR connectors, where the signals are connected in parallel as suggested
by the pinout tables. This configuration enables the target to be debugged using either physical connector.

The connector pin layouts are described in:

• Combined CoreSight 10 and CoreSight 20 pin names.

• CoreSight 10 pinouts on page D3-125.

• CoreSight 20 pinouts including trace on page D3-126.

D3.2.1 Combined CoreSight 10 and CoreSight 20 pin names

Table D3-2 summarizes the combined pin names for the CoreSight 10 and CoreSight 20 connectors.

See Target Connector Signal details on page D3-133 for a description of the signals in Table D3-2.

The following sections describe the use of pins 6, 8, 11, and 13:

• EXTa and EXTb pins on page D3-125.

• GND/TgtPwr+Cap pins on page D3-125.

Table D3-2 Summary of pin names

Pin Combined pin name Pin Combined pin name

1 VTref 11 Gnd/TgtPwr+Cap

2 TMS/SWDIO 12 TraceClk/RTCK

3 GND 13 Gnd/TgtPwr+Cap

4 TCK/SWCLK 14 TraceD0/SWO

5 GND 15 GND

6 TDO/SWO/EXTa/TraceCtl 16 TraceD1/nTRST

7 Key 17 GND

8 TDI/EXTb 18 TraceD2/TrigIn

9 GNDDetect 19 GND

10 nSRST 20 TraceD3/TrigOut
D3-124 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.2 CoreSight 10 and CoreSight 20 connectors
EXTa and EXTb pins

Some pins on the connector have functions that are only used for certain connection layouts. Where a pin is not
required for a particular debug communication protocol, it can be reused for a user-defined target function. These
pins are labeled EXTa and EXTb in the tables in this chapter. Select any alternate functions carefully, and consider
the effects of connecting debug equipment that is capable of communicating using multiple protocols.

GND/TgtPwr+Cap pins

There are two usage options for these pins:

Target boards

Standard target boards can connect these two pins directly to signal ground, GND.

Some special target boards, for example, boards that are used for evaluation or demonstration
purposes, can use these pins to supply power to the target board. In this case, the target board must
include capacitors between each of the pins and signal ground. The capacitors must be situated
extremely close to the connector so that they maintain an effective AC ground, that is, high
frequency signal return path. Typical values for the capacitors are 10nF.

Debug equipment

Debug communication equipment that is designed to work with special valuation or demonstration
target boards provides an operating current, typically up to 100mA, at a target-specific supply
voltage, for example, 3.3V, 5V, or 9V. Arm recommends that the debug equipment includes some
protection when it is connected to standard target boards that have connected these pins directly to
GND, for example, a current limiting circuit. This debug equipment must include capacitors
between each of these power pins and signal ground. The capacitors must be situated extremely
close to the connector so that they maintain an effective AC ground, ensuring a high frequency
signal return path. Typical values for the capacitors are 10nF.

Standard debug communication equipment can connect these pins directly to GND. It is also
possible for these pins to have only a high frequency signal return path to ground, using 10nF
capacitors. This option is also compatible in the unlikely case where a target board has a connection
between the debug connector TgtPwr pins, but is powered from another source.

D3.2.2 CoreSight 10 pinouts

There are two pinouts for a 10-pin connector:

• Pinout that supports communication using SWD.

• Pinout for JTAG.

The pinouts are arranged to facilitate dynamic switching between the protocols.

Note

SWD is the preferred protocol for debugging because it provides more data bandwidth over fewer pins, which
increases the bandwidth that is available to application functions. JTAG can be used where the target is
communicating with a tool chain that does not support SWD, or with test tools performing board-level boundary
scan testing, where it might be acceptable to sacrifice the functional pins multiplexed with JTAG.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-125
ID022122 Non-Confidential

Physical Interface
D3.2 CoreSight 10 and CoreSight 20 connectors
Table D3-3 shows the CoreSight 10 for targets using SWD or JTAG for debug communication, and includes an
optional SWO signal for conveying application and instrumentation trace.

The SWD layout is typically used in a CoreSight system that uses an SWJ-DP operating in SWD mode.

The JTAG layout is typically used in a CoreSight system that includes a JTAG-DP, or a system with an SWJ-DP
operating in JTAG mode, possibly because it is cascaded with other JTAG TAPs.

Note

A target board can use this connector for performing board-level boundary scans but then switch its SWJ-DP into
SWD mode for debugging according to the layout shown in Table D3-3. This method frees up pins 6 and 8 for either
application functions or SWO.

It is not necessary to choose the switching mode at the time of chip or board development. The connector can be
switched and the target board can be operated in either SWD or JTAG mode.

D3.2.3 CoreSight 20 pinouts including trace

20-way connectors include support for a narrow trace port of up to four data bits, operating at moderate speeds of
up to 100MSamples/sec.

Table D3-4 on page D3-127 shows the CoreSight 20 for targets using SWD or JTAG for debug communication, and
includes an optional SWO signal for conveying application or instrumentation trace. Alternatively, a target trace
port operating in CoreSight normal or bypass modes might convey the TraceCtl signal on pin 6.

Table D3-3 CoreSight 10 for SWD or JTAG systems

Pin name for SWD
Pin number

Pin name for JTAG
Pin number

10-way MICTOR 10-way MICTOR

VTref 1 12 VTref 1 12

SWDIO 2 17 TMS 2 17

GND 3 - GND 3 -

SWCLK 4 15 TCK 4 15

GND 5 - GND 5 -

SWO 6 11 TDO 6 11

Key 7 - Key 7 -

NC/EXTb 8 19 TDI 8 19

GNDDetect 9 - GNDDetect 9 -

nSRST 10 9 nSRST 10 9
D3-126 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.2 CoreSight 10 and CoreSight 20 connectors
Both pin 6 and pin 8 in the SWD layout are shown with alternative extra signals, EXTa and EXTb, which provides
flexibility to communicate other signals on these pins. For example, future target systems and trace equipment might
convey two more trace data signals on these pins.

The SWD layout is typically used in a CoreSight system that uses an SWJ-DP operating in SWD mode.

The JTAG layout is typically used in a CoreSight system that includes a JTAG-DP, or a system with an SWJ-DP
operating JTAG mode, possibly because it is cascaded with other JTAG TAPs. This layout is the recommended
debug connection for a processor that is built with support for instruction trace, for example, a processor that
includes an ETM.

Note

A target board can use this layout for performing board-level boundary scans but then switch its SWJ-DP into SWD
mode for debugging according to the layout shown in Table D3-4. This method frees up pins 6 and 8 for either
application functions or SWO.

It is not necessary to choose the switching mode at the time of chip or board development. The connector can be
switched and the target board can be operated in either SWD or JTAG mode.

Table D3-4 CoreSight 20 for future SWD or JTAG systems

Pin name for SWD
Pin number

Pin name for JTAG
Pin number

20-way MICTOR 20-way MICTOR

VTref 1 12 VTref 1 12

SWDIO 2 17 TMS 2 17

GND 3 - GND 3 -

SWCLK 4 15 TCK 4 15

GND 5 - GND 5 -

SWO/EXTa/TraceCtl 6 11 TDO 6 11

Key 7 - Key 7 -

NC/EXTb 8 (19) TDI 8 19

GNDDetect 9 - GNDDetect 9 -

nSRST 10 9 nSRST 10 9

Gnd/TgtPwr+Cap 11 - Gnd/TgtPwr+Cap 11 -

TraceClk 12 6 TraceClk 12 6

Gnd/TgtPwr+Cap 13 - Gnd/TgtPwr+Cap 13 -

TraceD0 14 38 TraceD0 14 38

GND 15 - GND 15 -

TraceD1 16 28 TraceD1 16 28

GND 17 - GND 17 -

TraceD2 18 26 TraceD2 18 26

GND 19 - GND 19 -

TraceD3 20 24 TraceD3 20 24
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-127
ID022122 Non-Confidential

Physical Interface
D3.3 Arm MICTOR
D3.3 Arm MICTOR

The following sections describe:

• Target system connector.

• Target connector description.

• Decoding requirements for Trace Capture Devices on page D3-131.

• Electrical characteristics on page D3-132.

D3.3.1 Target system connector

The specified target system connector is the AMP MICTOR. This connector supports:

• JTAG interface, which is based on IEEE 1149.1-1990 and includes the Arm RTCK signal.

• Trace port interface, with up to 16 data pins.

• Serial Wire Debug (SWD) interface.

• Serial Wire Output (SWO) interface.

• Optional power supply pin.

• Reference voltage pin to enable support of a range of target voltages.

• Optional system reset request pin.

• Optional extra trigger pins for communicating with the target.

For tracing with large port widths that have more than 16 data pins, two connectors are required. See Single target
connector pinout on page D3-129 and Dual target connector pinout on page D3-130.

The AMP MICTOR connector is a high-density matched-impedance connector. This connector has several
important attributes:

• Direct connection to a logic analyzer probe using a high-density adapter cable with termination, for example
HPE5346A from Agilent.

• Matching impedance characteristics, enabling the connector to be used at high speeds.

• Many ground fingers to ensure good signal integrity.

• Inclusion of one or both of the JTAG and SWD runtime control signals, enabling a single debug connection
to the target.

Table D3-5 lists the AMP part numbers for the four possible connectors.

D3.3.2 Target connector description

This section contains details of the physical layout of the connector and recommended board orientation as follows:

• Single target connector pinout on page D3-129.

• Dual target connector pinout on page D3-130.

Table D3-5 Connector part numbers

AMP part number Description

2-767004-2 Vertical, surface mount, board to board or cable connectors

767054-1

767061-1

767044-1 Right angle, straddle mount, board to board or cable connector
D3-128 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.3 Arm MICTOR
Single target connector pinout

Figure D3-2 shows how the connector and PCB can be oriented on the target system, as seen from above the PCB.
The trace connector is mounted near the edge of the board to minimize the intrusiveness of the TPA when the
interconnect is a direct PCB to PCB link.

Figure D3-2 Recommended orientation for a single connector

Table D3-6 shows the connections on a single MICTOR connector, and indicates the differences with the
connections specified in the Arm® Embedded Trace Macrocell Architecture Specification. If a signal is not
implemented on the target system, it must be replaced with a logic 0 connection.

12

Pin 1 chamfer

3738

Edge of printed circuit board

Target system

Table D3-6 Single target connector pinout

Pin Signal Pin Signal

38 TRACEDATA[0] 37 TRACEDATA[8]

36 TRACECTL 35 TRACEDATA[9]

34 Logic 1 33 TRACEDATA[10]

32 Logic 0 31 TRACEDATA[11]

30 Logic 0 29 TRACEDATA[12]

28 TRACEDATA[1] 27 TRACEDATA[13]

26 TRACEDATA[2] 25 TRACEDATA[14]

24 TRACEDATA[3] 23 TRACEDATA[15]

22 TRACEDATA[4] 21 nTRST

20 TRACEDATA[5] 19 TDI

18 TRACEDATA[6] 17 TMS /SWDIO

16 TRACEDATA[7] 15 TCK/SWCLK

14 VSupply 13 RTCK

12 VTRef 11 TDO/SWO

10 No connection, was EXTTRIG 9 nSRST

8 TRIGOUT/DBGACK 7 TRIGIN/DBGRQ
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-129
ID022122 Non-Confidential

Physical Interface
D3.3 Arm MICTOR
Dual target connector pinout

Figure D3-3 shows the arrangement for two connectors. Arm recommends that they are placed in line, with pins 1
separated by 1.35inches.

Figure D3-3 Recommended orientation for two connectors

Table D3-7 shows the connections for the secondary MICTOR connector. For the primary connector, see
Table D3-6 on page D3-129. If a signal is not implemented on the target system, it must be replaced with a logic 0
connection.

6 TRACECLK 5 GND

4 No connection 3 No connection

2 No connection 1 No connection

Table D3-6 Single target connector pinout (continued)

Pin Signal Pin Signal

12

Pin 1 chamfer

3738

Edge of printed circuit board

Target system

12

Pin 1 chamfer

3738

1.35 inch

Table D3-7 Dual target connector pinout

Pin Signal Pin Signal

38 TRACEDATA[16] 37 TRACEDATA[24]

36 Logic 0 35 TRACEDATA[25]

34 Logic 1 33 TRACEDATA[26]

32 Logic 0 31 TRACEDATA[27]
D3-130 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.3 Arm MICTOR
D3.3.3 Decoding requirements for Trace Capture Devices

Table D3-8 shows the conditions that must be decoded by Trace Capture Devices (TCDs), for example a TPA or a
logic analyzer.

Normal trace data

When trace data is indicated, only the full field of TRACEDATA[n:0] has to be stored. TRACECTL can be
discarded to permit more efficient packing of data within the TCD.

Trigger packet

Although CoreSight does not use the encoding for a trigger packet, it must be implemented to maintain cross
compatibility with ETMv3.x trace ports. TRACEDATA signals must be stored because there is further information
that is emitted on this cycle, but the TRACECTL signal can be discarded. For more information, see the Arm®
Embedded Trace Macrocell Architecture Specification.

30 Logic 0 29 TRACEDATA[28]

28 TRACEDATA[17] 27 TRACEDATA[29]

26 TRACEDATA[18] 25 TRACEDATA[30]

24 TRACEDATA[19] 23 TRACEDATA[31]

22 TRACEDATA[20] 21 No connection

20 TRACEDATA[21] 19 No connection

18 TRACEDATA[22] 17 No connection

16 TRACEDATA[23] 15 No connection

14 No connection 13 No connection

12 VTRef 11 No connection

10 No connection 9 No connection

8 No connection 7 No connection

6 TRACECLK 5 GND

4 No connection 3 No connection

2 No connection 1 No connection

Table D3-7 Dual target connector pinout (continued)

Pin Signal Pin Signal

Table D3-8 Trace Capture Device decoding

TRACECTL TRACEDATA[0] TRACEDATA[1] Trigger Capture Description

0 x x No Yes Normal trace data

1 0 0 Yes Yes Trigger packet

1 0 1 Yes No Trigger

1 1 x No No Trace disable
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-131
ID022122 Non-Confidential

Physical Interface
D3.3 Arm MICTOR
Trigger

A trigger is used as a marker to enable the TCD to stop capture after a predetermined number of cycles. No data is
output on this cycle, and TRACEDATA[n:0] and TRACECTL must not be captured.

Trace disable

This signal indicates that the current cycle must not be captured because it contains no useful information.

D3.3.4 Electrical characteristics

Debug equipment must be able to deal with a wide range of signal voltage levels. Typical ASIC operating voltages
can range from 1V to 5V, although 1.8V to 3.3V is common.

It is important to keep the track length differences as small as possible to minimize skew between signals. Crosstalk
on the trace port must be kept to a minimum because it can cause erroneous trace results. To minimize the chance
of unpredictable responses, avoid stubs on the trace lines, especially at high frequencies. If stubs are necessary, make
them as small as possible.

The trace port clock line, TRACECLK must be series-terminated as close as possible to the pins of the driving
ASIC.

The maximum capacitance that is presented by the trace connector, cabling, and interfacing logic must be less than
15pF.

There are no inherent restrictions on operating frequency, other than ASIC pad technology and TPA limitations. It
is mandatory, however, to observe the following guidelines for maximizing the speed at which trace capture is
possible.

Figure D3-4 shows the timing for TRACECLK.

Figure D3-4 TRACECLK specification

Arm recommends that trace ports provide a TRACECLK that is as symmetrical as possible, because both edges
are used to capture trace. Figure D3-5 shows the setup and hold requirements for the trace data pins,
TRACEDATA[n:0] and TRACECTL, in relation to TRACECLK.

Figure D3-5 Trace data specification

Arm recommends observing the following principles:

• Make sure that the setup time Ts and the hold time Th are as large as possible, and make sure that both are
positive, which is required by some TPAs.

• Allow the TPAs to delay each trace data signal individually by up to a whole clock period, to compensate for
trace ports where Ts and Th are not balanced or vary between data signals.

TRACECLK
Tr

Twh Twl

Tf

Tcyc

TRACECLK

Ts
Th

Trace data
D3-132 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.4 Target Connector Signal details
D3.4 Target Connector Signal details

The signals on the target connector pins are:

• VTRef output.

• TRACECLK output.

• TRACECTL output.

• TRACEDATA[n:0] output.

• Logic one input on page D3-134.

• Logic 0 input on page D3-134.

• TRIGIN/DBGRQ input on page D3-134.

• TRIGOUT/DBGACK output on page D3-134.

• nSRST input on page D3-134.

• nTRST input on page D3-134.

• TDI input on page D3-134.

• TMS input on page D3-134.

• SWDIO input/output on page D3-134.

• TCK/SWCLK input on page D3-134.

• RTCK output on page D3-134.

• TDO output on page D3-135.

• SWO output on page D3-135.

• VSupply output on page D3-135.

• GND on page D3-135.

• No connection on page D3-135.

D3.4.1 VTRef output

The VTRef signal is intended to supply a logic-level reference voltage to enable debug equipment to adapt to the
signaling levels of the target board.

Note

VTRef does not supply operating current to the debug equipment.

Target boards must supply a voltage of 1-5V ±10%, implying a minimum of 0.9V, and a maximum of 5.5V. The DC
output impedance of the target board must be low enough to ensure that the output voltage does not change by more
than 1% when supplying a nominal signal current of 0.4mA. Debug equipment that connects to this signal must use
it as a signal rather than a power supply pin and not load it more heavily than a signal pin. The recommended
maximum source or sink current is 0.4mA.

D3.4.2 TRACECLK output

The trace port must be sampled on both edges of the TRACECLK clock signal. There is no requirement for
TRACECLK to be linked to a core clock.

D3.4.3 TRACECTL output

This signal, together with TRACEDATA[1:0], indicates whether trace information can be stored this cycle. It is not
necessary to store TRACECTL.

D3.4.4 TRACEDATA[n:0] output

This signal can be any size and represents the data that is generated from the trace system. To decompress the data,
an understanding of the data stream is required, because the data can be wrapped up within the Formatter protocol
or consist of direct data from a single trace source. See also Chapter D4 Trace Formatter.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-133
ID022122 Non-Confidential

Physical Interface
D3.4 Target Connector Signal details
D3.4.5 Logic one input

This signal pin is at a voltage level that represents logic 1, typically a resistor pull-up to VTRef.

D3.4.6 Logic 0 input

This signal pin is at a voltage level that represents logic 0, typically a resistor pull-down to GND.

D3.4.7 TRIGIN/DBGRQ input

This signal is used to change the behavior of on-chip logic, for example by connecting it to a CTI. Arm recommends
that this pin is pulled to a defined state, LOW, to avoid unintentional requests to any connected on-chip logic.

D3.4.8 TRIGOUT/DBGACK output

This signal can be connected to on-chip trigger generation logic such as a CTI to enable events to be propagated to
external devices.

D3.4.9 nSRST input

This signal is an open-collector output from the run control unit to the target system reset, or an input to the run
control unit so that a reset initiated on the target can be reported to the debugger.

On the target, pull up this pin to HIGH to avoid unintentional resets when there is no connection.

For more details on the use of nSRST, see the Arm® Debug Interface Architecture Specification.

D3.4.10 nTRST input

The nTRST signal is an open-collector input from the run control unit to the Reset signal on the target JTAG port.
On the target, pull up this pin to HIGH to avoid unintentional resets when there is no connection.

D3.4.11 TDI input

TDI is the Test Data In signal from the run control unit to the target JTAG port. Arm recommends that this pin is
set to a defined state.

D3.4.12 TMS input

TMS is the Test Mode Select signal from the run control unit to the target JTAG port. On the target, this pin must
be pulled up to HIGH to ensure that when there is no connection, the effect of any spurious TCKs is benign. For
connectors that share JTAG and SWD signals, this pin is shared with the SWDIO signal.

D3.4.13 SWDIO input/output

The Serial Wire Data I/O pin sends and receives serial data to and from the target during debugging. For connectors
that share JTAG and SWD signals, this pin is shared with the TMS signal.

D3.4.14 TCK/SWCLK input

TCK/SWCLK is the Test Clock signal from the run control unit to the target JTAG or SWD port. Arm recommends
that this pin is pulled to a defined state.

D3.4.15 RTCK output

RTCK is the Return Test Clock signal from the target JTAG port to the run control unit. Some targets, such as
Arm7TDMI-S™, must synchronize the JTAG port to internal clocks. To facilitate meeting this requirement, a
returned, and re-timed, TCK can be used to dynamically control the TCK rate.
D3-134 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Physical Interface
D3.4 Target Connector Signal details
D3.4.16 TDO output

TDO is the Test Data Out from the target JTAG port to the run control unit. This signal must be set to its inactive
drive state, tristate, when the JTAG state machine is not in the Shift-IR or Shift-DR states. For connectors that share
JTAG and SWD signals, this pin is shared with the SWO signal.

D3.4.17 SWO output

The Serial Wire Output pin can be used to provide trace data. For connectors that share JTAG and SWD signals,
this pin is shared with the TDO signal.

D3.4.18 VSupply output

The VSupply pin enables the target board to supply operating current to debug equipment so that an external power
supply is not required.

• This pin might not be used by all debug equipment.

• The VDD power rail typically drives the pin on the target board.

• Target board documentation indicates the VSupply pin voltage and the current available. Target boards must
supply a voltage that is nominally between 2V and 5V with a tolerance of ±10%, amounting to a minimum
of 1.8V and a maximum of 5.5V. A target board that drives this pin must provide a minimum supply current
of 250mA, where 400mA is recommended.

• To enable establishing the need for an external power supply to power the debug equipment, debug
equipment must indicate the required supply voltage range and the current power consumption over that
range.

• Target boards might have a limited amount of current available for external debug equipment, so a backup
mechanism to power the debug equipment must be provided in case VSupply is not connected or insufficient.

For some hardware, this pin is unused.

D3.4.19 GND

This pin must be connected to 0V on the target board to provide a signal return and logic reference.

D3.4.20 No connection

No connection must be made to this pin.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D3-135
ID022122 Non-Confidential

Physical Interface
D3.4 Target Connector Signal details
D3-136 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D4
Trace Formatter

This chapter describes trace formatter requirements for devices that comply with the CoreSight architecture. It
contains the following sections:

• About trace formatters on page D4-138.

• Frame descriptions on page D4-139.

• Modes of operation on page D4-144.

• Flush of trace data at the end of operation on page D4-145.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-137
ID022122 Non-Confidential

Trace Formatter
D4.1 About trace formatters
D4.1 About trace formatters

Formatters are methods for wrapping Trace Source IDs into the output Trace Data stream. This chapter specifies the
format that is used by Trace Sinks to embed AMBA ATB interface source IDs into a single trace stream. For more
information about the AMBA ATB protocol, see AMBA ATB interface on page C2-80.

The formatter protocol has the following features:

• It permits trace from several sources to be merged into a single stream and later separated.

• It does not place any requirements or constraints on the data that is emitted from trace sources.

• It is suitable for high-speed real-time decoding.

• It can be transmitted and stored as a bitstream without the need for separate alignment information.

• It can be decoded even if the start of the trace is lost.

• It indicates the position of the trigger signal around which trace capture is centered to the TPA, eliminating
the need for a separate pin.

• It indicates when the trace port is inactive to the TPA, eliminating the need for a separate flow control pin.

If the embedded trigger and flow control information is not required by the TPA, and only a single trace source is
used, it is possible to disable the formatting to achieve better data throughput.
D4-138 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Trace Formatter
D4.2 Frame descriptions
D4.2 Frame descriptions

The formatter protocol outputs data in 16-byte frames. Each frame consists of:

• 7 bytes of data.

• 8 mixed-use bytes, each of which contains:

— One bit to indicate the use of the remaining seven bits.

— Seven bits that can be data or a change of trace source ID.

• One byte of auxiliary bits, where each bit corresponds to one of the 8 mixed-use bytes:

— If the corresponding byte was data, this bit indicates the remaining bit of that data.

— If the corresponding byte was an ID change, this bit indicates when that ID change takes effect.

Figure D4-1 shows how these bytes are arranged in a formatter frame.

Figure D4-1 Formatter frame structure

Each time the ID changes, at least 1 byte of data must be output for that ID. Table D4-1 shows the meaning of each
bit in a formatter frame. It is output least significant bit first, starting with bit 0.

31 24 23 17 15 8 7 1 0

ID or Data (J)

ID or Data (B)Data

ID or Data (C)DataID or Data (D)Data

ID or Data (E)DataID or Data (G)Data

ID or Data (H)Data

ID or Data (A)Data FF

FF

FF

J FFABCDEGH

16

Bytes 3-0

Bytes 7-4

Bytes 11-8

Bytes 15-12

Table D4-1 Meaning of bits in a formatter frame

Byte
number

Bits Description

0 0 ID or Data control for bits[7:1], marked F in Figure D4-1.

7:1 Depends on bit 0:

0 = Data[7:1].

1 = New ID.

1 7:0 Data[7:0].

2 7:0 ID or Data, see byte 0.

3 7:0 Data[7:0].

4 7:0 ID or Data, see byte 0.

5 7:0 Data[7:0].

6 7:0 ID or Data, see byte 0.

7 7:0 Data[7:0].

8 7:0 ID or Data, see byte 0.

9 7:0 Data[7:0].
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-139
ID022122 Non-Confidential

Trace Formatter
D4.2 Frame descriptions
D4.2.1 Frame example

Two trace sources with IDs of 0x03 and 0x15 generate trace data and are interleaved on the trace bus, presenting one
word of data at a time.

The following stream of bytes is output by the formatter:

0x07, 0xAA, 0xA6, 0xA7, 0x2B, 0xA8, 0x54, 0x52, 0x52, 0x54, 0x07, 0xCA, 0xC6, 0xC7, 0xC8, 0x1C.

Figure D4-2 on page D4-141 shows the corresponding frame.

10 7:0 ID or Data, see byte 0.

11 7:0 Data[7:0].

12 7:0 ID or Data, see byte 0.

13 7:0 Data[7:0].

14 7:0 ID or Data, see byte 0.

15 0 Auxiliary bit for byte 0, see bit in Figure D4-1 on page D4-139 marked A.

The meaning of this bit depends on whether byte 0 contains data or a new ID:

Data = Data[0].

New ID:

0 = Byte 1 corresponds to the new ID.

1 = Byte 1 corresponds to the old ID.

The new ID takes effect from the next data byte after byte 1.

1 Auxiliary bit for byte 2, marked B in Figure D4-1 on page D4-139. See bit 0.

If byte 2 contains a new ID, this bit indicates whether the new ID takes effect from byte 3
or the following data byte.

2 Auxiliary bit for byte 4, marked C in Figure D4-1 on page D4-139. See bit 0.

3 Auxiliary bit for byte 6, marked D in Figure D4-1 on page D4-139. See bit 0.

4 Auxiliary bit for byte 8, marked E in Figure D4-1 on page D4-139. See bit 0.

5 Auxiliary bit for byte 10, marked G in Figure D4-1 on page D4-139. See bit 0.

6 Auxiliary bit for byte 12, marked H in Figure D4-1 on page D4-139. See bit 0.

7 Auxiliary bit for byte 14, marked J in Figure D4-1 on page D4-139. See bit 0.

If byte 14 is a new ID, this bit is reserved. It must be zero, and must be ignored when
decompressing the frame. The new ID takes effect from the first data byte of the next
frame.

Table D4-1 Meaning of bits in a formatter frame (continued)

Byte
number

Bits Description
D4-140 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Trace Formatter
D4.2 Frame descriptions
Figure D4-2 Example formatter frame

Table D4-2 shows how this frame is decoded.

31 24 23 17 16 15 8 7 1 0

Data 0x64

Data 0x53Data 0xA7

ID 0x15Data 0xA8Data 0x2AData 0x52

Data 0x29Data 0x54ID 0x03Data 0xCA

Data 0x63Data 0xC7

ID 0x03Data 0xAA 10

10

01

0 000011100

Bytes 3-0

Bytes 7-4

Bytes 11-8

Bytes 15-12

Table D4-2 Decoding the example formatter frame

Byte Observation Interpretation Data ID

0 Bit[0] is set. This byte represents the new ID 0x03. Bit[0] of byte 15 is clear, so
the new ID takes effect immediately.

- 0x03

1 Data byte for the trace with the new ID 0x03. 0xAA 0x03

2 Bit[0] is clear This byte is a data byte for the trace with the current ID 0x03.
Bit[0] of the data is taken from bit[1] of byte 15.

0xA6 0x03

3 Data byte. 0xA7 0x03

4 Bit[0] is set This byte represents the new ID 0x15. Bit[2] of byte 15 is set, so
the next data byte continues to use the current ID 0x03.

- 0x03

5 Data byte for the trace with the current ID 0x03. 0xA8 0x03

6 Bit[0] is clear. This byte is a data byte for the trace with the new ID 0x15. Bit[0]
of the data is taken from bit[3] of byte 15.

0x55 0x15

7 Data byte. 0x52 0x15

8 Bit[0] is clear. This byte is a data byte. Bit[0] of the data is taken from bit[4] of
byte 15.

0x53 0x15

9 Data byte. 0x54 0x15

10 Bit[0] is set. This byte represents the new ID 0x03. Bit[5] of byte 15 is clear, so
the new ID takes effect immediately.

- 0x03

11 Data byte for the trace with the new ID 0x03. 0xCA 0x03

12 Bit[0] is clear. This byte is a data byte for the trace with the current ID 0x03.
Bit[0] of the data is taken from bit[6] of byte 15.

0xC6 0x03

13 Data byte. 0xC7 0x03

14 Bit[0] is clear. This byte is a data byte. Bit[0] of the data is taken from bit[7] of
byte 15.

0xC8 0x03

15 Auxiliary bits. - -
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-141
ID022122 Non-Confidential

Trace Formatter
D4.2 Frame descriptions
D4.2.2 Frame synchronization packet

The frame synchronization packet enables a TPA or trace decompressor to find the start of a frame. It is output
periodically between frames. It is output least significant bit first, starting with bit[0]. In continuous mode, the TPA
might discard all frame synchronization packets after the start of a frame is found. See Modes of operation on
page D4-144 for more information about continuous mode.

Figure D4-3 shows a frame synchronization packet.

Figure D4-3 Full frame synchronization packet

This sequence cannot occur at any other time, if ID 0x7F has not been used. See Special trace source IDs for more
information on reserved source IDs.

Note

Frame synchronization packets and frame data are always multiples of 32-bits, but do not always start on a 32-bit
boundary. Because halfword synchronization packets can occur within frames and between frames, they can also
start on 16-bit boundaries. See also Halfword synchronization packet.

D4.2.3 Halfword synchronization packet

Halfword synchronization packets enable a TPA to detect when the trace port is idle and there is no trace to be
captured. They observe the following rules:

• They are output between frames or within a frame.

• If they appear within a frame, they are always aligned to a 16-bit boundary.

• They are output least significant bit first, starting with bit[0].

• They are only generated in continuous mode. If a TPA detects a halfword synchronization packet, it must
discard it, because it does not form part of a formatter frame. See Modes of operation on page D4-144 for
more information about continuous mode.

Figure D4-4 shows a halfword synchronization packet.

Figure D4-4 Halfword synchronization packet

Note

Frame synchronization packets and frame data are always multiples of 32-bits, but do not always start on a 32-bit
boundary. Because halfword synchronization packets can occur within frames and between frames, they can also
start on 16-bit boundaries.

D4.2.4 Special trace source IDs

The following IDs are for special purposes and must not be used under normal operation:

0x00 This ID indicates a NULL trace source. Any data following this ID change must be ignored by the
debugger, which is required if there is insufficient trace data available to complete a formatter frame.

0x70-0x7A Reserved.

10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1

1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D4-142 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Trace Formatter
D4.2 Frame descriptions
0x7B This ID indicates a flush response. Trace that is output with the flush response ID signifies that all
trace that was generated previous to a flush request has been output.

Each byte of trace that is output with ID 0x7B constitutes a separate flush response, whereby the
value of the byte can be one of the following:

0x00 All active trace sources have indicated a flush response.

0x01-0x6F The trace source ID with this value has indicated a flush response.

0x70-0xFF Reserved.

Note

The use of trace source ID 0x7B is also permitted on ATB, with the same payload semantics.

0x7C Reserved.

0x7D This ID indicates a trigger within the trace stream and is accompanied by one byte of data for each
trigger. The value of each data byte indicates the ID of the trigger. A data byte with a value of zero
indicates that the trigger ID is UNKNOWN.

Note

The use of trace source ID 0x7D is also permitted on ATB, with the same payload semantics.

0x7E Reserved.

0x7F This ID must never be used because it conflicts with the synchronization packet encodings.

D4.2.5 Data overheads

The formatter protocol adds an overhead of 6% to the bandwidth requirement of a trace port. It also requires one
byte of extra trace every time the source ID changes. Arm recommends that components that arbitrate between trace
sources switch between different source IDs as infrequently as possible.

Under certain conditions, the formatter can be bypassed to eliminate this overhead. For more information, see
Bypass on page D4-144.

D4.2.6 Repeating the trace source ID

If a large amount of consecutive trace is generated by a single source ID, the ID must be repeated periodically. This
mechanism ensures that the debugger can determine the source of the trace even when the beginning of the trace
has been lost.

Arm recommends repeating the source ID approximately every ten frames.

D4.2.7 Indication of alignment points

In most trace protocols, it is necessary to periodically indicate the beginning of a packet. This process is called
alignment synchronization. Most protocols achieve alignment synchronization by periodically outputting a packet
similar to the Frame Synchronization Packet.

When using a protocol that is unable to output such a packet, use the formatter protocol to indicate the position of
synchronization points by using two source IDs. The trace source starts outputting trace using the first ID, then
switches to the second ID at the first alignment point. It switches back to the first ID at the next alignment point,
and continues switching at each subsequent alignment point.

A trace source that uses ID switching in this manner cannot use bypass mode. See Bypass on page D4-144.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-143
ID022122 Non-Confidential

Trace Formatter
D4.3 Modes of operation
D4.3 Modes of operation

The formatter can operate in one of three modes. Not all modes are supported by all components that implement a
formatter. For example, an ETB does not need to support continuous mode.

D4.3.1 Bypass

In this mode, the trace is output without modification. No formatting information is inserted into the trace stream.
When using bypass mode, observe the following rules:

• Only one trace source ID is in use.

• If the trace is to be output over a trace port, the TRACECTL pin must be implemented, and the TPA must
support this pin. This configuration enables the TPA to determine the position of the trigger and detect when
no trace is available for capture. See Decoding requirements for Trace Capture Devices on page D3-131.

• The debugger does not need to report the position of the trigger as seen by the trace sink. In bypass mode, the
trigger ID 0x7D is not generated.

To ensure that all trace is output from a trace sink when stopping trace, extra data might be added to the end of the
trace stream. See Bypass mode on page D4-145.

D4.3.2 Normal

The formatter is enabled, and the TRACECTL pin is used to determine the position of the trigger and detect when
no trace is available for capture. Halfword synchronization packets are not generated. The TPA does not have to
decode any part of the trace stream.

This mode is the easiest to support by TPAs designed for ETMs.

D4.3.3 Continuous

The formatter is enabled, but the TRACECTL pin is not used. The TPA must decode part of the formatter protocol
to determine the position of the trigger and detect when no trace is available for capture.
D4-144 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Trace Formatter
D4.4 Flush of trace data at the end of operation
D4.4 Flush of trace data at the end of operation

To support AMBA ATB protocol flushes, the formatter must ensure that all trace is output, because the trace that
remains after a flush might be insufficient to complete a frame or use all the pins in the trace port. This section
describes how the remaining trace must be formatted.

Note

When tracing is resumed, some leftover trace that is generated by the flush sequence might be output before any
new trace is output. Look for the first synchronization packet in the protocol before starting to decompress the trace.

Trace that is output with the flush response ID 0x7B signifies that all trace that was generated previous to a flush
request has been output. See also Special trace source IDs on page D4-142.

D4.4.1 Bypass mode

When running in bypass mode, if the formatter cannot guarantee that all trace has been output, it must output an
extra sequence at the end of the trace. This mechanism ensures that all trace stored in the formatter is output, even
if, for example, there is insufficient trace to use all the pins of a trace port.

The sequence consists of a single bit that is set, followed by a series of zeros. This sequence does not represent real
trace data and must always be removed before decompression when the trace sink has been requested to stop trace
output.

The following two examples show sequences that can be observed on a 32-bit trace port. Figure D4-5 shows an
example of how the last AMBA ATB protocol transaction left three bytes within the formatter.

Figure D4-5 End of session example 1

Figure D4-6 shows an example of how the trace finishes on a 32-bit trace port boundary.

Figure D4-6 End of session example 2

D4.4.2 Normal and continuous mode

When running in normal or continuous mode, the formatter must complete the frame currently being output, using
the null ID encoding, ID 0x00. Any data that is associated with this ID can be ignored. More frames of data
corresponding to the null ID can be generated to ensure that all trace has been output.

0x01

0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00

0xAA
[Real Data]

0x55
[Real Data]

0xAA
[Real Data]
0xAA

[Real Data]
0x55

[Real Data]
0x55

[Real Data]

0x55
[Real Data]

31 24 23 16 15 8 07

0xAA
[Real Data]

0x010x00 0x00 0x00

0x00 0x00 0x00 0x00

0xAA
[Real Data]

0x55
[Real Data]

0xAA
[Real Data]
0xAA

[Real Data]
0x55

[Real Data]
0x55

[Real Data]

0x55
[Real Data]

31 24 23 16 15 8 07
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D4-145
ID022122 Non-Confidential

Trace Formatter
D4.4 Flush of trace data at the end of operation
D4-146 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D5
About ROM Tables

The chapter describes ROM Tables. It includes the following sections:

• ROM Tables Overview on page D5-148.

• ROM Table Types on page D5-149.

• Component and Peripheral ID Registers for ROM Tables on page D5-150.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D5-147
ID022122 Non-Confidential

About ROM Tables
D5.1 ROM Tables Overview
D5.1 ROM Tables Overview

ROM Tables hold information about debug components.

• Systems with a single debug component do not require a ROM Table. However, a designer might choose to
implement such a system to include a ROM Table.

• Systems with more than one debug component must include at least one ROM Table.

A ROM Table connects to a bus controlled by a Memory Access Port (MEM-AP). In other words, the ROM Table
is part of the address space of the memory system that is connected to a MEM-AP. More than one ROM Table can
be connected to a single bus.

A ROM Table always occupies 4KB of memory.
D5-148 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

About ROM Tables
D5.2 ROM Table Types
D5.2 ROM Table Types

The following types of ROM Tables in Arm® Debug Interface Architecture Specification (ADIv6.0) are permitted to
be used with components that comply with CoreSight version 3.0:

Class 0x1 ROM Tables

In a Class 0x1 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x1, which identifies the component as a Class
0x1 ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• A Class 0x1 ROM Table is a read-only device.

For a detailed description of the Class 0x1 ROM Table entries and registers, see Arm® Debug
Interface Architecture Specification (ADIv6.0) .

Class 0x9 ROM Tables

In a Class 0x9 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x9, which identifies the component as a
CoreSight Component.

• The DEVTYPE and DEVID registers contain information about the ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• Class 0x9 ROM Table entries are 32 or 64 bits wide.

For a detailed description of the Class 0x9 ROM Table entries and registers, see Arm® Debug
Interface Architecture Specification (ADIv6.0) .

Note

Class 0x9 ROM Tables can be used alongside Class 0x1 ROM Tables, and both Class 0x9 and Class 0x1 ROM
Tables might be present in systems that comply with CoreSight v3.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D5-149
ID022122 Non-Confidential

About ROM Tables
D5.3 Component and Peripheral ID Registers for ROM Tables
D5.3 Component and Peripheral ID Registers for ROM Tables

Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the
ROM Table. PIDR0-PIDR7, Peripheral Identification Registers on page B2-40 in Chapter B2 CoreSight
programmers’ model describes these registers. This section only describes particular features of the registers when
they relate to a ROM Table.

D5.3.1 Identifying the debug SoC, system, or subsystem

The Unique Component Identifier in a ROM table uniquely identifies the SoC, platform, or subsystem described by
the ROM table. For example:

• A cluster of components grouped together with a ROM table hierarchy pointing to all the components is
uniquely identified by the outermost ROM Table in the cluster.

• A subsystem of all components connected to a single MEM-AP is uniquely identified by the outermost ROM
Table in the subsystem. This ROM Table is usually the first component pointed to by the MEM-AP.

• An SoC, consisting of multiple MEM-APs implementing the ADIv5, is uniquely identified by the collective
Unique Component Identifiers from all of the outermost ROM Tables pointed to by each of the Memory
Access Ports.

• An SoC, consisting of multiple MEM-APs implementing the ADIv6, is uniquely identified by the Unique
Component Identifiers from the outermost ROM Table providing pointers to by each of the MEM-APs. This
ROM Table is usually the first component pointed to by the DP.

An SoC, system, or subsystem might be configurable when being built. For example, a cluster of processors might
permit the number of processors to be configurable. The ROM Table, which describes such a collection of
components, might have the same Unique Component Identifier for all configurations of the system. However, this
is only permitted when components are either included or excluded, and is not permitted to be the same when the
location of any component in the address map changes or components significantly change in function. In effect, a
ROM Table Unique Component Identifier uniquely identifies a superset configuration of the collection of
components. ROM Tables with the same Unique Component Identifier might only describe a subset of this superset.
D5-150 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D6
Topology Detection at the System Level

This chapter describes topology detection at the system level. It contains the following sections:

• About topology detection at the system level on page D6-152.

• Detection on page D6-153.

• Components that are not recognized on page D6-154.

• Detection algorithm on page D6-155.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D6-151
ID022122 Non-Confidential

Topology Detection at the System Level
D6.1 About topology detection at the system level
D6.1 About topology detection at the system level

Chapter B3 Topology Detection describes the topology detection requirements of CoreSight components.
Chapter C7 Topology Detection at the Component Level describes how to perform topology detection on each
interface type. This chapter describes how debuggers can use this information to detect the topology of a target
system.
D6-152 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection at the System Level
D6.2 Detection
D6.2 Detection

When connecting to a CoreSight system, a debugger performs the following steps:

1. It finds the DP.

2. It ensures that the system is powered up, and that its clocks are running. The DP provides facilities to assist
with this assessment.

3. It looks for a ROM Table with the location of all components.

4. It compares the Peripheral ID of the ROM Table against a list of saved system descriptions. For information
on this ID, see PIDR0-PIDR7 in Arm® Debug Interface v6 Specification.

5. If a description of the system with this ID is saved, it uses that description. If not, the debugger continues
with the following steps:

a. It identifies each component.

b. It looks up information that is known about that component to determine what interfaces are supported
and how to control them for topology detection.

c. It performs topology detection. See Detection algorithm on page D6-155.

d. It saves the description for later use.

D6.2.1 Saved descriptions

Because topology detection can be invasive, it is important that the description of the system is saved when
discovered, so that the debugger can be connected non-invasively in the future. The debugger must have the
possibility to force topology detection to be redone, in case two different targets are accidentally assigned the same
ROM Table ID.

Note

Software running on the system must be able to determine the topology of the CoreSight system, and keep
functioning when topology detection registers are enabled.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D6-153
ID022122 Non-Confidential

Topology Detection at the System Level
D6.3 Components that are not recognized
D6.3 Components that are not recognized

When an unrecognized component is encountered, the JEDEC code and CoreSight component class of the
component is used to indicate which type of component has been encountered and who to ask for further
information. Alternatively, DEVARCH, if present, can be used to determine the generic architecture of a
component. The component must be otherwise ignored.
D6-154 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Topology Detection at the System Level
D6.4 Detection algorithm
D6.4 Detection algorithm

Arm recommends that a debugger connecting to a system executes the following algorithm, to determine the
topology of the system:

for each component, c
execute (component preamble) for c

for each interface type, t
for each transmitter interface and bidirectional interface of type t, m

execute (transmitter preamble) for interface m
for each receiver interface and bidirectional interface of type t, s

execute (receiver preamble) for interface s
for each transmitter interface and bidirectional interface of type t, m

execute (transmitter assert) for interface m
for each receiver interface and bidirectional interface of type t, s

if (receiver check asserted) for interface s
record connection between m and s

for each slave interface and bidirectional interface of type t, s
execute receiver post-assert for interface s

execute (transmitter deassert) for interface m
for each receiver interface and bidirectional interface of type t, s

if not (receiver check deasserted) for interface s
raise error

for each receiver interface and bidirectional interface of type t, s
execute (receiver post-deassert) for interface s

for each component, c
execute (component postamble) for c

Signals for topology detection on page C7-110 describes preambles, and assert and deassert sequences for common
interfaces. If a component does not specify a preamble or postamble, they are as follows:

Component preamble

Set ITCTRL.IME to 0b1.

Component postamble

Clear ITCTRL.IME to 0b0.

Note

After a device has been in integration mode, it might behave differently than before. After performing integration
or topology detection, reset the system to ensure correct behavior of CoreSight and other connected system
components that are affected by the integration or topology detection.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D6-155
ID022122 Non-Confidential

Topology Detection at the System Level
D6.4 Detection algorithm
D6-156 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Chapter D7
Compliance Requirements

This chapter describes the requirements for CoreSight compliance. It contains the following sections:

• About compliance classes on page D7-158.

• CoreSight debug on page D7-159.

• CoreSight trace on page D7-161.

• Multiple DPs on page D7-164.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D7-157
ID022122 Non-Confidential

Compliance Requirements
D7.1 About compliance classes
D7.1 About compliance classes

This chapter defines the requirements that a system must meet to claim CoreSight compliance. It refers to specific
revisions of components available from Arm.

These requirements are aimed at interoperability between debuggers, and only cover behavior that is visible to such
tools. The following behavior is specified:

• Minimum functionality. This functionality must be available in all compliant systems.

• Optional functionality. Arm recommends that debuggers aiming to support compliant systems support this
functionality.

Note

Systems can implement extra functionality, provided it does not affect the use of the minimum functionality.
Debuggers might not be able to support this extra functionality.

Two levels of compliance are defined:

• CoreSight debug, which is the basic level of compliance. A processor supporting CoreSight debug does not
need to comply with the CoreSight visible component architecture, although doing so makes it easier to build
a CoreSight system.

• CoreSight trace, which includes all the requirements for CoreSight debug, and adds trace functionality.

The level of compliance is claimed for each individual processor in the system. For example, a system incorporating
three processors might claim CoreSight trace for the first processor, CoreSight debug for the second, and no
CoreSight compliance for the third.
D7-158 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Compliance Requirements
D7.2 CoreSight debug
D7.2 CoreSight debug

This section defines the CoreSight debug compliance class.

Note

A CoreSight component is a component that implements the CoreSight visible component architecture.

D7.2.1 Minimum debug functionality

Systems claiming CoreSight debug compliance must conform to the following rules:

• Each CoreSight system must contain exactly one DP, and implement a JTAG-DP or a SW-DP component.
The JTAG or Serial Wire interface of the component must be accessible to debug tools. For more information
about implementing multiple systems containing DPs, see Multiple DPs on page D7-164.

• All CoreSight components must comply with all the following requirements:

— They must be accessible through a MEM-AP.

— They must be discoverable through a valid ROM Table, that must itself conform to the requirements
for CoreSight components.

• All processors claiming CoreSight debug compliance must observe at least one of the following
requirements:

— They must conform to the CoreSight visible component architecture, while conforming to the
requirements for CoreSight components.

— They must be accessible using a JTAG TAP Controller that is connected in series with the JTAG TAP
Controller of the JTAG-DP, connected to the TDI side of the JTAG-DP as Figure D7-8 on
page D7-164 shows.

— They must be accessible using a JTAG TAP Controller that is connected in a chain of TAP Controllers
that are controlled by the JTAG-AP.

• All debug functionality must be visible and detectable, with its clocks running, when Debug Power Up is
requested in the JTAG-DP programmers’ model, except where it is hidden due to security restrictions.

• All debug functionality must be operational when System Power Up is requested in the JTAG-DP
programmers’ model, except where it is hidden due to security restrictions.

• All debug functionality must be reset to its initial state when Debug Reset is requested in the JTAG-DP
programmers’ model.

• For each CoreSight component and JTAG controlled processor, all inputs and outputs that are defined as type
event are connected to a CTI component, unless there is only one component in the system with event inputs
or outputs, in which case no CTI is required. For Arm JTAG controlled processors, the required connections
are documented in the CoreSight Technology System Design Guide.

• All channel interfaces of CoreSight components, for example interfaces that are present on CTIs, are
connected together, so that the channels are shared between all components. CoreSight technology from Arm
provides a CTM for connecting three or more channel interfaces together where required.

• Unless stated otherwise in this specification, extra logic between components that is visible to the tools is not
permitted. See also Variant interfaces on page B3-70.

• Arm recommends all system designs to be CoreSight compliant, but recognizes that this recommendation
might not always be achievable. If a system requires certain operations to be performed before it complies
with the CoreSight compliance criteria, clearly state what these operations are, and clearly state that it is not
CoreSight compliant until they have been performed.

D7.2.2 Optional debug functionality

CoreSight debug systems can also implement visibility of system components through a MEM-AP.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D7-159
ID022122 Non-Confidential

Compliance Requirements
D7.2 CoreSight debug
Single-core debug

Figure D7-1 shows the simplest CoreSight debug configuration for a single-core system. In this configuration, no
trace capabilities are provided. The processor is accessed via a JTAG-AP, to ensure that it can be powered down
without affecting other components on the master JTAG TAP chain.

Figure D7-1 Single core with JTAG debug access

Multi-core debug

Figure D7-2 shows a multi-core CoreSight debug system:

• One of the processors is a fully compliant CoreSight component.

• Cross triggering is supported between processors.

• Both processors provide access to program the CTI and processor with interfaces that comply with the
CoreSight architecture.

An alternative method to provide memory access that is not shown in the figure is to use AHB-AP.

Figure D7-2 Multi-core system

JTAG
processorJTAG-DP JTAG-AP

JTAG-
Processor

Cross trigger interface

Debug APB

APB
bridge

JTAG-
DP

JTAG
AP

APB-
AP

Processor

that comply with CoreSight debug interfaces
D7-160 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Compliance Requirements
D7.3 CoreSight trace
D7.3 CoreSight trace

This section defines the CoreSight trace compliance class.

D7.3.1 Minimum trace functionality

Systems claiming CoreSight trace compliance must comply with the minimum requirements for CoreSight debug,
plus the following:

• All Arm-compatible processors claiming CoreSight trace compliance must implement an Arm CoreSight
ETM.

• Processors that are not Arm-compatible must implement a trace solution that complies with the following
requirements:

— It must implement the CoreSight visible component architecture.

— It must provide the processor with at least instruction trace as a CoreSight trace source.

• The system must implement one or more trace sinks:

— If a TPIU is implemented, its output is connected to a compliant connector as defined in Chapter D3
Physical Interface.

• All CoreSight trace sources must drain into one or more of the trace sinks:

— Where two or more trace sources drain into the same trace sink, they are connected through one or
more CoreSight trace funnels.

— The trace cannot travel through multiple paths to reach the same endpoint. See the example in
Figure D7-3.

Figure D7-3 Non-compliant Replicator and CoreSight trace funnel connection

A particular example that must be avoided is feedback. See example in Figure D7-4.

Figure D7-4 Non-compliant feedback loop

D7.3.2 Optional trace functionality

CoreSight debug systems can also implement CoreSight debug optional functionality and tracing of AHB buses
using the Arm AHB Trace Macrocell (HTM).

Basic single-core trace

Figure D7-5 on page D7-162 shows an example system with single-core trace using the CoreSight infrastructure.
The ETM, which complies with the CoreSight architecture, outputs directly to a TPIU for direct output of core trace
off-chip. The tracing of only a single trace source enables the TPIU to be configured in bypass mode because source
IDs do not need to be embedded in the trace data.

FunnelETM

Funnel
ETM
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D7-161
ID022122 Non-Confidential

Compliance Requirements
D7.3 CoreSight trace
Figure D7-5 Single-core trace with formatting bypass

Advanced single-core trace

Figure D7-6 shows an example system with full trace capabilities in a single-core system. The ETM provides Arm
processor tracing, and the HTM provides bus tracing. The CoreSight trace funnel combines trace from both sources
into a single trace stream, that is then replicated to provide on-chip storage using the CoreSight ETB and output
off-chip using the TPIU. Components can be configured via the Debug-APB and cross triggered using the CTIs,
through the CTM.

Figure D7-6 Full CoreSight trace with single core

Multi-core trace

Figure D7-7 on page D7-163 shows a system with an Arm processor and a DSP. A third smaller subsystem is added
to support merging of multiple CoreSight AMBA ATB interfaces into a single trace stream.

Arm
Cortex

processor
ETM TPIU

Cross trigger interface

Debug APB

APB
bridge

Bypass, no formatting

SWJ-
DP

APB-
AP

Arm
Cortex

processor TPIU

Cross trigger
interface

Debug APB

APB
bridgeMEM-

AP

F

AXI/AHB Cross trigger matrix Memory

Cross trigger interface

Funnel
ETB

Cross trigger
interface

HTMAPB-
AP

ETM

FSystem Trace
Macrocell

(STM)

Formatting
turned on

SWJ-
DP
D7-162 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Compliance Requirements
D7.3 CoreSight trace
Figure D7-7 Full system trace with Arm processor and CoreSight compliant DSP

Interconnect
AXI/AHB

Debug
APB

Debug
APB

APB bridge

Memory

SWJ-DP

APB-AP

AHB-AP

Trace
port

Trace
Funnel

Replicator

ETB
F

TPIU
F

CTI

Trace
Funnel

CTI

CTIETM

HTM

ETM
DSP

DSP

AXI/AHB

Cross trigger matrix

Debug
APB

Memory

Trace
Funnel

CTI

CTI

HTM

Processor

Cross trigger matrix

Cross trigger matrix
System 1 System 2

System 3
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D7-163
ID022122 Non-Confidential

Compliance Requirements
D7.4 Multiple DPs
D7.4 Multiple DPs

In the context of this specification, a system is defined as one of the following:

• All components that are accessible through a single DP, a MEM-AP, or a JTAG-AP.

• All components before a JTAG-DP in a serial JTAG TAP chain.

The following rules apply to the arrangement of multiple DPs:

• Connections between JTAG TAP Controllers cannot be interleaved between systems. For example, if there
are two systems sharing a JTAG TAP chain, each with a JTAG-DP and two JTAG processors connected in
series with the JTAG-DP, the connections that are shown in Figure D7-8 are permitted, while the connections
shown in Figure D7-9 are not permitted.

In Figure D7-8:

— System 1 is defined as the two processors before the first JTAG-DP in the TAP chain.

— System 2 is defined as the two processors before the second JTAG-DP in the TAP chain.

Figure D7-8 JTAG connections across systems

Figure D7-9 Non-compliant interleaved JTAG connections across systems

• Extra JTAG TAP Controllers can be implemented in series with JTAG TAP Controllers of the CoreSight
systems. For example, in Figure D7-10, processor A is not part of either CoreSight system 1 or 2. The
debugger considers processor A to be part of system 2, because the JTAG-DP closest to the TDO side of
processor A is in system 2. If the debugger does not recognize processor A, then it is ignored, otherwise the
debugger attempts topology detection on system 2 with processor A, and fails to find any connections
between processor A and system 2.

Figure D7-10 Systems with extra JTAG TAP Controllers

• A JTAG-DP must not be accessed through the JTAG-AP of another system, as shown in Figure D7-11.

Processor 1

Processor 2

JTAG-DP

Processor 1

Processor 2

JTAG-DP

TDI

TDO

System 1 System 2

Processor 1

JTAG-DP

Processor 1

JTAG-DP

TDI

TDO

System 1 System 2

Processor 1

Processor 2

JTAG-DP

Processor 1

Processor 2

JTAG-DP

TDI

TDO

System 1 System 2

Processor A
D7-164 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Compliance Requirements
D7.4 Multiple DPs
Figure D7-11 Non-compliant JTAG-DP connection

SWJ-
DP

JTAG-
AP

MEM-
AP

JTAG-
DP

JTAG-
AP
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. D7-165
ID022122 Non-Confidential

Compliance Requirements
D7.4 Multiple DPs
D7-166 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Part E
Appendixes

Appendix E1
Power Requester

This appendix describes the power requestor which Arm recommends that some CoreSight components implement.
It contains the following sections:

• About the power requester on page E1-170.

• Register descriptions on page E1-171.

• Powering non-visible components on page E1-188.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-169
ID022122 Non-Confidential

Power Requester
E1.1 About the power requester
E1.1 About the power requester

The power requester belongs to the component Class 0x9, CoreSight component.

The power requester can control the application or removal of power for up to 32 power domains.
E1-170 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
E1.2 Register descriptions

Table E1-1 shows the power requester registers, in order of their address offset in the 4KB block where the
programmers’ model resides. The remainder of the chapter describes how to implement the registers, in alphabetical
order.

E1.2.1 AUTHSTATUS, Authentication Status Register

For a full description of this register, see AUTHSTATUS, Authentication Status Register on page B2-45.

The AUTHSTATUS characteristics are:

Purpose

Reports the required security level and status of the authentication interface. Where functionality
changes on a given security level, this change in status must be reported in this register.

Usage constraints

None.

Table E1-1 Power requestor register summary

Offset Type Name Description

0x000 RW CDBGPWRUPREQ Debug Power Request Register

0x004 RO CDBGPWRUPACK Debug Power Request Acknowledge Register

0x008-0xEFC RES0 - Reserved

0xF00 RW ITCTRL Integration Mode Control Register

0xF04-0xF9C RES0 - Reserved

0xFA0 RW CLAIMSET Claim Tag Set Register

0xFA4 RW CLAIMCLR Claim Tag Clear Register

0xFA8-0xFAC RES0 - Reserved

0xFB0 WO LAR Software Lock Access Register

0xFB4 RO LSR Software Lock Status Register

0xFB8 RO AUTHSTATUS Authentication Status Register

0xFBC RO DEVARCH Device Architecture Register

0xFC0-0xFC4 RES0 - Reserved

0xFC8 RO DEVID Device configuration Register

0xFCC RO DEVTYPE Device Type identifier Register

0xFD0-0xFDC RO PIDR4-PIDR7 Peripheral Identification Registers

0xFE0-0xFEC RO PIDR0-PIDR3

0xFF0-0xFFC RO CIDR0-CIDR3 Component Identification Registers

Default

RO
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-171
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The AUTHSTATUS bit assignments are:

Bits[31:28]

RES0. See AUTHSTATUS, Authentication Status Register on page B2-45.

RTNID, bits [27:26]

Root non-invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

RTID, bits [25:24]

Root invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

SUNID, bits[23:22]

Secure Unprivileged non-invasive debug. See AUTHSTATUS, Authentication Status
Register on page B2-45.

SUID, bits[21:20]

Secure Unprivileged invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

NSUNID, bits[19:18]

Non-secure Unprivileged non-invasive debug. See AUTHSTATUS, Authentication Status
Register on page B2-45.

NSUID, bits[17:16]

Non-secure Unprivileged invasive debug. See AUTHSTATUS, Authentication Status
Register on page B2-45.

RLNID, bits[15:14]

Realm non-invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

RLID, bits[13:12]

Realm invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

HNID, bits[11:10]

Hypervisor non-invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

HID, bits[9:8]

Hypervisor invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

SNID, bits[7:6]

RES0 RTNID RTID SUNID SUID

NSUNID

NSUID RLNID RLID

01

NSID

2567

SID

89

SNID

NSNID

1011

HID

1231 141516171825262728 2423 22 13192021

HNID

34
E1-172 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Secure non-invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

SID, bits[5:4]

Secure invasive debug. See AUTHSTATUS, Authentication Status Register on page B2-45.

NSNID, bits[3:2]

Non-secure non-invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

NSID, bits[1:0]

Non-secure invasive debug. See AUTHSTATUS, Authentication Status Register on
page B2-45.

Accessing AUTHSTATUS

AUTHSTATUS can be accessed at the following address:

E1.2.2 CDBGPWRUPACK, Debug Power Request Acknowledge Register

The CDBGPWRUPACK characteristics are:

Purpose

Returns the status of the power requests that CDBGPWRUPREQ issues.

Usage constraints

The register can monitor the power requests for up to 32 power domains.

CDBGPWRUPACK is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The CDBGPWRUPACK bit assignments are:

Bits[31:DEVID.NUMREQ]

RES0

ACK, bits[DEVID.NUMREQ-1:0]

Component Offset

GPR 0xFB8

Default

RO

31 0

RES0

DEVID.NUMREQ DEVID.NUMREQ-1

ACK
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-173
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
The size of this field is IMPLEMENTATION DEFINED, and equals the value of DEVID.NUMREQ.

Permitted values of bit[n] are:

0 Power domain n is not powered.

1 Power domain n is powered.

Accessing CDBGPWRUPACK

CDBGPWRUPACK can be accessed at the following address:

E1.2.3 CDBGPWRUPREQ, Debug Power Request Register

The CDBGPWRUPREQ characteristics are:

Purpose

Controls whether a power request is active for a power domain.

Usage constraints

CDBGPWRUPREQ can issue power requests for up to 32 power domains.

CDBGPWRUPREQ is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit register.

Field Descriptions

The CDBGPWRUPREQ bit assignments are:

Bits[31:DEVID.NUMREQ]

RES0.

REQ, bits[DEVID.NUMREQ-1:0]

The size of this field is IMPLEMENTATION DEFINED, and equals the value of DEVID.NUMREQ.

Permitted values of bit[n] are:

0 Power request for power domain n is not active.

1 Power request for power domain n is active.

Component Offset

GPR 0x004

Default

RW

31 0

RES0

DEVID.NUMREQ DEVID.NUMREQ-1

REQ
E1-174 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Accessing CDBGPWRUPREQ

CDBGPWRUPREQ can be accessed at the following address:

E1.2.4 CIDR0-CIDR3, Component Identification Registers

This section describes the bit assignments for GPR components that implement the CIDR0-CIDR3. For a full
description of the CIDR, see Component and Peripheral Identification Registers on page B2-38.

The CIDR characteristics are:

Purpose

Provide information to identify a CoreSight component.

Usage constraints

CIDR0-CIDR3 are accessible as follows:

Configurations

Included in all implementations.

Attributes

Four 32-bit management registers.

Field Descriptions

The CIDR0 bit assignments are:

CIDR3 bits[31:8]

RES0.

Component Offset

GPR 0x000

Default

RO

31 0

RES0 PRMBL_3

8 7

CIDR3 0xFFC

31 0

RES0 PRMBL_2

8 7

CIDR2 0xFF8

31 0

RES0 PRMBL_1

8 7

CLASS

4 3

CIDR1 0xFF4

31 0

RES0 PRMBL_0

8 7

CIDR0 0xFF0
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-175
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
PRMBL_3, CIDR3 bits[7:0]

0xB1.

CIDR2 bits[31:8]

RES0.

PRMBL_2, CIDR2 bits[7:0]

0x05.

CIDR1 bits[31:8]

RES0.

CLASS, CIDR1 bits[7:4]

0x9 CoreSight component.

PRMBL_1, CIDR1 bits[3:0]

0x0.

CIDR0 bits[31:8]

RES0.

PRMBL_0, CIDR0 bits[7:0]

0x0D.

Accessing the CIDR

CIDR0-CIDR3 can be accessed at the following address:

E1.2.5 CLAIMCLR, Claim Tag Clear Register

For a full description of this register, and how to deploy it in a claim tag protocol, see CLAIMSET and CLAIMCLR,
Claim Tag Set Register and Claim Tag Clear Register on page B2-48.

The CLAIMCLR characteristics are:

Purpose

Clears claim tags and returns the current claim tag values.

Usage constraints

Must be used with CLAIMSET.

To indicate the width of the area that represents valid claim tags, a component must use
CLAIMSET.

If CLAIMCLR and CLAIMSET are implemented, all debug agents that use them must
implement a common claim tag protocol.

The value of CLAIMCLR must be zero at reset.

Component
Offset

CIDR0 CIDR1 CIDR2 CIDR3

GPR 0xFF0 0xFF4 0xFF8 0xFFC
E1-176 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
CLAIMCLR is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The CLAIMCLR bit assignments are:

Bits[31:nTags]

RAZ/WI.

CLR, bits[nTags-1:0]

The size n of this field is IMPLEMENTATION DEFINED, and equals the number of bits set in
CLAIMSET.

Permitted values of bit[n] are:

Write 0 No effect.

Write 1 Clear the claim tag for bit[n].

Read 0 The debug functionality that is tagged by bit[n] is available.

Read 1 The debug functionality that is tagged by bit[n] is claimed.

Accessing CLAIMCLR

CLAIMCLR can be accessed at the following address:

E1.2.6 CLAIMSET, Claim Tag Set Register

For a full description of this register, and how to deploy it in a claim tag protocol, see CLAIMSET and CLAIMCLR,
Claim Tag Set Register and Claim Tag Clear Register on page B2-48.

The CLAIMSET characteristics are:

Purpose

Sets claim tags and returns the valid claim tags.

Usage constraints

Must be used with CLAIMSET.

The bits indicating valid claim tags must be consecutive.

Default

RW

Component Offset

GPR 0xFA4

31 0

CLRRAZ/WI

nTags-1nTags
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-177
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
If CLAIMCLR and CLAIMSET are implemented, all debug agents that use them must
implement a common claim tag protocol.

CLAIMSET is accessible as follows:

Configurations Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The CLAIMSET bit assignments are:

Bits[31:nTags]

RAZ/WI.

SET, bits[nTags-1:0]

The size n of this field is IMPLEMENTATION DEFINED.

Permitted values of bit[n] are:

Write 0 No effect.

Write 1 Set the claim tag for bit[n].

Read 0 The claim tag that is represented by bit[n] is implemented.

Read 1 The claim tag that is represented by bit[n] is not implemented.

Accessing CLAIMSET

CLAIMSET can be accessed at the following address:

E1.2.7 DEVARCH, Device Architecture Register

This section describes the bit assignments for GPR components that implement DEVARCH. For a full description
of DEVARCH, see DEVARCH, Device Architecture Register on page B2-53.

The DEVARCH characteristics are:

Purpose

Identifies the architect and architecture of a CoreSight component. The architect might
differ from the designer of a component, for example when Arm defines the architecture but
another company designs and implements the component.

Usage constraints

Default

RW

Component Offset

GPR 0xFA0

31 0

SETRAZ/WI

nTags-1nTags
E1-178 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
DEVARCH is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The DEVARCH bit assignments are:

ARCHITECT, bits[31:21]

0x23B The architect is Arm.

PRESENT, bit[20]

1 DEVARCH is present.

REVISION, bits[19:16]

0x0

ARCHID, bits[15:0]

0xA34 Power Requestor.

Accessing DEVARCH

DEVARCH can be accessed at the following address:

E1.2.8 DEVID, Device configuration Register

This section describes the bit assignments for GPR components that implement DEVID. For a full description of
DEVID, see DEVID, Device Configuration Register on page B2-55.

The DEVID characteristics are:

Purpose

Indicates how many power domains the power requestor supports.

Usage constraints

Default

RO

Component Offset

GPR 0xFBC

ARCHITECT

31 21 20 19 16 15 0

ARCHIDREVISION

PRESENT
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-179
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
DEVID is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The DEVID bit assignments are:

Bits[31:6]

RES0

NUMREQ, bits[5:0]

IMPLEMENTATION DEFINED. Number of power domains to be managed by
CDBGPWRUPREQ and CDBGPWRUPACK.

Accessing DEVID

DEVID can be accessed at the following address:

E1.2.9 DEVTYPE, Device Type Register

This section describes the bit assignments for GPR components that implement DEVTYPE. For a full description
of DEVTYPE, see DEVTYPE, Device Type Identifier Register on page B2-57.

The DEVTYPE characteristics are:

Purpose

If the part number field is not recognized, a debugger can report the information that is
provided by DEVTYPE about the component instead.

Usage constraints

DEVTYPE is accessible as follows:

Configurations

Default

RO

Component Offset

GPR 0xFC8

RES0

31 056

NUMREQ

Default

RO
E1-180 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The DEVTYPE bit assignments are:

Bits[31:8]

RES0. Ensures that the bits that are not associated with the component type have a
well-defined value.

SUB, bits[7:4]

0x3 Power Requester.

MAJOR, bits[3:0]

0x4 Debug Control.

Accessing DEVTYPE

DEVTYPE can be accessed at the following address:

E1.2.10 ITCTRL, Integration Mode Control Register

This section describes the bit assignments for GPR components that implement ITCTRL. For a full description of
ITCTRL, see ITCTRL, Integration Mode Control Register on page B2-60.

The ITCTRL characteristics are:

Purpose

A component can use this register to dynamically switch between functional mode and
integration mode.

In integration mode, topology detection is enabled. For more information, see Chapter B3
Topology Detection.

Usage constraints

After switching to integration mode and performing integration tests or topology detection,
reset the system to ensure correct behavior of CoreSight and other connected system
components.

ITCTRL is accessible as follows:

Configurations

Component Offset

GPR 0xFCC

31 7 4 3 0

RES0 SUB MAJOR

8

Default

RW
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-181
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
Included in all implementations.

Attributes

A 32-bit management register.

Field Descriptions

The ITCTRL bit assignments are:

Bits[31:1]

RES0.

IME, bits[0]

Permitted values of IME are:

0 The component must enter functional mode.

1 The component must enter integration mode, and enable support for topology
detection and integration testing.

When no integration functionality is implemented, this field is RES0.

Accessing ITCTRL Register

ITCTRL can be accessed at the following address:

E1.2.11 LAR, Lock Access Register

For a full description of this register, and how to deploy it in a Software lock mechanism, see LSR and LAR, Software
Lock Status Register and Software Lock Access Register on page B2-61.

The LAR characteristics are:

Purpose

Components can use this register to enable write access to device registers.

Usage constraints

LAR is accessible as follows:

Configurations

LSR.SLI indicates whether a Software lock mechanism is implemented. If a Software lock
mechanism is implemented, LAR is implemented, and must be used with LSR.

Attributes

A 32-bit management register.

Component Offset

GPR 0xF00

RES0

31 01

IME

Default

WO
E1-182 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Field Descriptions

The LAR bit assignments are:

KEY, bits[31:0]

Writing a value to this field controls write access to the control registers.

Permitted values of KEY are:

Write 0xC5ACCE55

Signals that LSR must permit writing to the control registers.

Write any other value

Signals that LSR must block writing to the control registers.

Accessing LAR

LAR can be accessed at the following address:

E1.2.12 LSR, Lock Status Register

For a full description of this register, and how to deploy it in a Software lock mechanism, see LSR and LAR, Software
Lock Status Register and Software Lock Access Register on page B2-61.

The LSR characteristics are:

Purpose

Defines the parameters for a Software lock mechanism that can be implemented to control
write access to device registers.

Usage constraints

LSR is accessible as follows:

Configurations

Included in all implementations.

Attributes

A 32-bit management register.

Component Offset

GPR 0xFB0

31 0

KEYLAR 0xFB0

Default

RO
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-183
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
Field Descriptions

The LSR bit assignments are:

Bits[31:3]

RES0.

nTT, bits[2]

0 LAR is a 32-bit register.

SLK, bits[1]

This field is used to return the current software lock status.

Permitted values of SLK are:

0 Writing to the control registers must be permitted.

1 Writing to the control registers must be blocked.

SLI, bits[0]

This field indicates whether a Software lock mechanism is implemented.

Permitted values of SLI are:

0 Software lock mechanism is not implemented.

1 Software lock mechanism is implemented.

Accessing LSR

LSR can be accessed at the following address:

E1.2.13 PIDR0-PIDR7, Peripheral Identification Register

This section describes the bit assignments for GPR components that implement PIDR0-PIDR7. For a full
description of the PIDR, see PIDR0-PIDR7, Peripheral Identification Registers on page B2-40.

The PIDR characteristics are:PIDR3PIDR4

Purpose

Provide information to identify a CoreSight component.

Usage constraints

PIDR0-PIDR7 are accessible as follows:

Component Offset

GPR 0xFB4

RES0

31 03 2 1

nTT
SLK
SLI

LSR 0xFB4

Default

IMPLEMENTATION DEFINED
E1-184 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Configurations

Included in all implementations.

Attributes

Eight 32-bit management registers.

Field Descriptions

The PIDR bit assignments are:

PIDR3 bits[31:8]

RES0.

REVAND, PIDR3 bits[7:4]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

CMOD, PIDR3 bits[3:0]

31 0

RES0

8 7

CMODREVAND

4 3

PIDR3 0xFEC

JEDEC

31 0

RES0

8 7

DES_1REVISION

4 3

1

2

PIDR2 0xFE8

31 0

RES0 PART_1

8 7

DES_0

4 3

PIDR1 0xFE4

31 0

RES0 PART_0

8 7

PIDR0 0xFE0

31 0

RES0PIDR7 0xFDC

31 0

RES0PIDR6 0xFD8

31 0

RES0PIDR5 0xFD4

31 0

RES0

8 7

DES_2SIZE

4 3

PIDR4 0xFD0
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-185
ID022122 Non-Confidential

Power Requester
E1.2 Register descriptions
See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

PIDR2 bits[31:8]

RES0.

REVISION, PIDR2 bits[7:4]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

JEDEC, PIDR2 bits[3]

0b1.

DES_1, PIDR2 bits[2:0]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

PIDR1 bits[31:8]

RES0.

DES_0, PIDR1 bits[7:4]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

PART_1, PIDR1 bits[3:0]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

PIDR0 bits[31:8]

RES0.

PART_0, PIDR0 bits[7:0]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.

PIDR7 bits[31:0]

RES0.

PIDR6 bits[31:0]

RES0.

PIDR5 bits[31:0]

RES0.

PIDR4 bits[31:8]

RES0.

SIZE, PIDR4 bits[7:4]

0x0 The GPR uses a single 4KB memory block.

DES_2, PIDR4 bits[3:0]

See register descriptions in PIDR0-PIDR7, Peripheral Identification Registers on
page B2-40.
E1-186 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Power Requester
E1.2 Register descriptions
Accessing the PIDR

PIDR0-PIDR7 can be accessed at the following address:

Component
Offset

PIDR0 PIDR1 PIDR2 PIDR3 PIDR4 PIDR5 PIDR6 PIDR7

GPR 0xFE0 0xFE4 0xFE8 0xFEC 0xFD0 0xFD4 0xFD8 0xFDC
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E1-187
ID022122 Non-Confidential

Power Requester
E1.3 Powering non-visible components
E1.3 Powering non-visible components

Some components do not have a visible programmers’ model, for example a Cross Trigger Matrix (CTM), which
is used in cross-triggering components in a CoreSight system. When requesting power for a visible component,
power must be supplied to any associated non-visible components as well.

For example, if two Cross Trigger Interfaces (CTIs) are connected through a CTM, a response to a power request
for the CTIs must also power the CTM.
E1-188 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Appendix E2
Revisions

This appendix describes the main technical changes between released versions of this specification.

Table E2-1 Differences between v1.0 and v2.0

Change Location

Renamed register fields for consistency across Arm documentation. Entire document.

Clarified that all registers are accessed in little-endian format. About the programmers’ model on page B2-32.

Added new registers to Class 0x9 CoreSight component. DEVID1, Device Configuration Register 1 on page B2-56.

DEVID2, Device Configuration Register 2 on page B2-57.

DEVARCH, Device Architecture Register on page B2-53.

DEVAFF0-DEVAFF1, Device Affinity Registers on
page B2-51.

Added new interfaces. Chapter C3 Event Interface.

Chapter C6 Timestamp Interface.

Updated channel interface. Chapter C4 Channel interface.

Updated the definition of the authentication interface to deprecate some
previously permitted encodings.

Chapter C5 Authentication Interface.

Updated the connector information. Chapter D3 Physical Interface.

Updated the permitted trace ID values to include 0x7D. Special trace source IDs on page D4-142.

Added the power requester and ROM Table values. Appendix E1 Power Requester.

ROM Tables Overview on page D5-148.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E2-189
ID022122 Non-Confidential

Revisions

Table E2-2 Differences between v2.0 and v3.0

Change Location

The use of LAR and LSR to implement the Software lock mechanism
is deprecated.

LSR and LAR, Software Lock Status Register and Software
Lock Access Register on page B2-61.

The use of PADDRDBG[31] to split the memory map and indicate the
difference between external and internal accesses is deprecated.

Debug APB interface memory map on page D2-118

Use of the PIDR4.SIZE field is deprecated. Components that occupy more than 4KB of address space
on page B2-34 and PIDR0-PIDR7, Peripheral
Identification Registers on page B2-40.

The AUTHSTATUS description is extended to include optional fields
that can be used to indicate hypervisor debug visibility.

AUTHSTATUS, Authentication Status Register on
page B2-45.

The Authentication Interface is extended to support signals that control
debug for a hypervisor.

Chapter C5 Authentication Interface.

The rules for assigning a Unique Component Identifier and a revision
number to a component have been updated.

Chapter B2 Component and Peripheral Identification
registers.

Trace Formatter ID 0x7B, which was reserved in earlier versions, is
allocated to indicate a flush response.

Special trace source IDs on page D4-142.

Introduced Class 0x9 ROM Tables, and adopted the designation Class
0x1 ROM Tables for the existing format.

Chapter D5 About ROM Tables.

See Arm® Debug Interface Architecture Specification
(ADIv6.0).

Support for Realm Management Extension is added Component-specific registers for Class 0x9 CoreSight
components on page B2-44.

Chapter C5 Authentication Interface.

Support in AUTHSTATUS for indicating Unprivileged debug AUTHSTATUS, Authentication Status Register on
page B2-45.
E2-190 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Appendix E3
Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper
procedures and functions that are used by pseudocode. It contains the following sections:

• About the Arm pseudocode on page E3-192.

• Pseudocode for instruction descriptions on page E3-193.

• Data types on page E3-195.

• Operators on page E3-200.

• Statements and control structures on page E3-206.

• Built-in functions on page E3-211.

• Miscellaneous helper procedures and functions on page E3-214.

• Arm pseudocode definition index on page E3-216.

Note

This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm
pseudocode. This appendix is not complete. Changes are planned for future releases.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-191
ID022122 Non-Confidential

Pseudocode Definition
E3.1 About the Arm pseudocode
E3.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description
of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions on page E3-193
gives general information about this instruction pseudocode, including its limitations.

The following sections describe the Arm pseudocode in detail:

• Data types on page E3-195.

• Operators on page E3-200.

• Statements and control structures on page E3-206.

Built-in functions on page E3-211 and Miscellaneous helper procedures and functions on page E3-214 describe
some built-in functions and pseudocode helper functions that are used by the pseudocode functions that are
described elsewhere in this manual. Arm pseudocode definition index on page E3-216 contains the indexes to the
pseudocode.

E3.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs.

For more information, see Special statements on page E3-210.
E3-192 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.2 Pseudocode for instruction descriptions
E3.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does,
subject to the limitations described in General limitations of Arm pseudocode on page E3-192 and Limitations of
the instruction pseudocode on page E3-194.

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the
instruction. Instruction encoding diagrams and instruction pseudocode gives more information about the
pseudocode provided for each instruction.

E3.2.1 Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific
pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the
instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being described.
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding
corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction
is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions
on page K1-11158.

• A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the
instruction, and one of the following is true:

• The encoding diagram is not for an A32/T32 instruction.

• The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

• The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of
the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In
that case, abandon this execution model and consult the relevant instruction set chapter instead to find out
how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED,
though there are some other possibilities. For example, unallocated hint instructions are documented as being
reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform
that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP.
If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common
pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in
parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit
or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and
initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.

In a few cases, the encoding diagram contains more than one bit or field with same name. In these cases, the
values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode
contains a special case using the Consistent() function to specify what happens if they are not identical.
Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same
value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must
contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode
and their corresponding encoding diagrams.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-193
ID022122 Non-Confidential

Pseudocode Definition
E3.2 Pseudocode for instruction descriptions
There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider.
This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the
instruction. If any of them do not match, abandon this execution model and treat the instruction as
CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions on page K1-11158.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding
diagram. That pseudocode starts with all variables set to the values they were left with by the
encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the
EncodingSpecificOperations() call performs steps 3 and 4.

E3.2.2 Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the
fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory
accesses. For a description of the ordering requirements on memory accesses, see Ordering constraints on
page E2-6790.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its
condition code check:

— UNDEFINED instruction.

— Hyp trap.

— Monitor trap.

— Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if
ConditionPassed() then … structure, either directly or in the EncodingSpecificOperations() function call, and
so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:

— Conditional execution of undefined instructions on page G1-8582.

— EL2 configurable controls on page G1-8626.

— EL3 configurable controls on page G1-8646.

— Configurable instruction controls on page D1-4555.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction
generates more than one floating-point exception and one or more of those floating-point exceptions is
trapped. Combinations of floating-point exceptions on page E1-6767 describes the exact rules.

Note
There is no limitation in the case where all the floating-point exceptions are untrapped, because the
pseudocode specifies the same behavior as the cross-referenced section.

• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result
of the execution of a pseudocode function such as Abort(), or implicitly, for example if an interrupt is taken
during execution of an LDM instruction. If this happens, the pseudocode does not describe the extent to which
the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in
Handling exceptions that are taken to an Exception level using AArch32 on page G1-8545.
E3-194 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.3 Data types
E3.3 Data types

This section describes:

• General data type rules.

• Bitstrings.

• Integers on page E3-196.

• Reals on page E3-196.

• Booleans on page E3-196.

• Enumerations on page E3-197.

• Structures on page E3-197.

• Tuples on page E3-198.

• Arrays on page E3-199.

E3.3.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:

• Bitstring.

• Integer.

• Boolean.

• Real.

• Enumeration.

• Tuple.

• Struct.

• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E3.3.2 Bitstrings

This section describes the bitstring data type.

Syntax
bits(N) The type name of a bitstring of length N.

bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-195
ID022122 Non-Confidential

Pseudocode Definition
E3.3 Data types
Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E3.3.3 Integers

This section describes the data type for integer numbers.

Syntax

integer The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret
those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they have
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it
must be written as -0x80000000.

E3.3.4 Reals

This section describes the data type for real numbers.

Syntax

real The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

E3.3.5 Booleans

This section describes the Boolean data type.

Syntax

boolean The type name for the Boolean data type.
E3-196 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.3 Data types
TRUE The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE
or FALSE.

E3.3.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration called Example, which can take on the values Example_One,
Example_Two, Example_Three.

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

E3.3.7 Structures

This section describes the structure data type.

Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount)

An example definition for a new structure called ShiftSpec that contains an bitstring member called
shift and a integer member named amount. Structure definitions must not be terminated with a
semicolon.

ShiftSpec abc;

A declaration of a variable named abc of type ShiftSpec.

abc.shift

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-197
ID022122 Non-Confidential

Pseudocode Definition
E3.3 Data types
In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc,
the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E3.3.8 Tuples

This section describes the tuple data type.

Examples

(bits(32) shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n) = ('00', 0);

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of
different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section,
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation.
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).

• shift_n to be of type integer.

• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
E3-198 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.3 Data types
E3.3.9 Arrays

This section describes the array data type.

Syntax

array The type name for the array data type.

array data_type array_name[A..B];

Declaration of an array of type data_type, which might be compound data type. It is named
array_name and is indexed with an integer range from A to B.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types.
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30.

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.

• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing. See Function and procedure calls on page E3-206.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-199
ID022122 Non-Confidential

Pseudocode Definition
E3.4 Operators
E3.4 Operators

This section describes:

• Relational operators.

• Boolean operators.

• Bitstring operators on page E3-201.

• Arithmetic operators on page E3-201.

• The assignment operator on page E3-202.

• Precedence rules on page E3-204.

• Conditional expressions on page E3-204.

• Operator polymorphism on page E3-204.

E3.4.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y
and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an enumeration
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for
equality with an integer to allow a d==15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any bit
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than,
and greater than or equal comparisons between them, producing Boolean results.

Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be
a list of expressions separated by commas.

E3.4.2 Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

Note

This is known as short circuit evaluation.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.
E3-200 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.4 Operators
Note

If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing
x and y together. The operator EOR only accepts bitstring arguments.

E3.4.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring
being sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in
<integer_list> must be:

• >= 0.

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with
both end values included. For example, instr<31:28> represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

E3.4.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no
issues arise about overflow or similar errors.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-201
ID022122 Non-Confidential

Pseudocode Definition
E3.4 Operators
Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0>
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).

• x >> n = RoundDown(x * 2^(-n)).

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer, then x^n is of type integer.

• If x is of type real, then x^n is of type real.

E3.4.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.
E3-202 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.4 Operators
General expression syntax

An expression is one of the following:

• A literal.

• A variable, optionally preceded by a data type name to declare its type.

• The word UNKNOWN preceded by a data type name to declare its type.

• The result of applying a language-defined operator to other expressions.

• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-203
ID022122 Non-Confidential

Pseudocode Definition
E3.4 Operators
• For a function, the definition of the function determines the data type.

E3.4.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their
results, but see Boolean operators on page E3-200.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example,
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

E3.4.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E3.4.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on
various combinations of integers, reals and bitstrings.

Table E3-1 on page E3-204 summarizes the operand types valid for each unary operator and the result type.
Table E3-2 on page E3-204 summarizes the operand types valid for each binary operator and the result type.

Table E3-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean

Table E3-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real
E3-204 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.4 Operators
<, >

<= , >=

integer integer
boolean

real real

+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real

Table E3-2 Result and operand types permitted for binary operators (continued)

Operator First operand type Second operand type Result type
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-205
ID022122 Non-Confidential

Pseudocode Definition
E3.5 Statements and control structures
E3.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

• Statements and Indentation.

• Function and procedure calls.

• Conditional control structures on page E3-208.

• Loop control structures on page E3-209.

• Special statements on page E3-210.

• Comments on page E3-210.

E3.5.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

E3.5.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
E3-206 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.5 Statements and control structures
Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but
different behaviors in AArch32 and AArch64 states.

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the
same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

Return statements

A procedure return has the form:

return;

A function return has the form:
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-207
ID022122 Non-Confidential

Pseudocode Definition
E3.5 Statements and control structures
return <expression>;

where <expression> is of the type declared in the function prototype line.

E3.5.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement 2>, and <statement A> must be terminated by semicolons. This, and the
fact that the else part is optional, distinguish its use as a control structure from its use as a ternary operator.

case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
E3-208 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.5 Statements and control structures
<statement A>;
<statement B>;
…
<statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <expression>,
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details, see Equality and non-equality on page E3-200.

E3.5.4 Loop control structures

This section describes the three loop control structures used in the pseudocode.

repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the
expression is false.

for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1>
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This
repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is
less than or equal than <integer_expr2>.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-209
ID022122 Non-Confidential

Pseudocode Definition
E3.5 Statements and control structures
E3.5.5 Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

E3.5.6 Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon.
E3-210 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.6 Built-in functions
E3.6 Built-in functions

This section describes:

• Bitstring manipulation functions.

• Arithmetic functions on page E3-212.

E3.6.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.

• Zeros(n) = Replicate('0', n).

• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x) is an integer result equal to the number of bits of x that are ones.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-211
ID022122 Non-Confidential

Pseudocode Definition
E3.6 Built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones

• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

E3.6.2 Arithmetic functions

This section defines built-in arithmetic functions.

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.
E3-212 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.6 Built-in functions
Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces:

— RoundDown(x) if x > 0.0.

— 0 if x == 0.0.

— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and
y must both be of type integer or of type real. The function returns a value of the same type as its operands.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-213
ID022122 Non-Confidential

Pseudocode Definition
E3.7 Miscellaneous helper procedures and functions
E3.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together
with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of
these helper procedures and functions.

Note

Chapter J1 Armv8 Pseudocode also has an entry for each of these functions, but currently these entries do not say
anything about the effect of the function. When this information is added in Chapter J1, this section will be removed
from the manual.

E3.7.1 EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

E3.7.2 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

E3.7.3 Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address);

E3.7.4 Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

E3.7.5 Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address);

E3.7.6 Hint_Yield()

This procedure performs a Yield hint.

Hint_Yield();

E3.7.7 IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used
only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
 assert type != Fault_None;

boolean IsExternalAbort(FaultRecord fault);
E3-214 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.7 Miscellaneous helper procedures and functions
E3.7.8 IsAsyncAbort()

This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It
is used only in exception entry pseudocode.

boolean IsAsyncAbort(Fault type)
 assert type != Fault_None;

boolean IsAsyncAbort(FaultRecord fault);

E3.7.9 LSInstructionSyndrome()

This function returns the extended syndrome information for a fault reported in the HSR.

bits(11) LSInstructionSyndrome();

E3.7.10 ProcessorID()

This function returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();

E3.7.11 RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset
values, and FALSE otherwise.

boolean RemapRegsHaveResetValues();

E3.7.12 ResetControlRegisters()

This function resets the System registers and memory-mapped control registers that have architecturally defined
reset values to those values. For more information about the affected registers, see:

• Reset behavior on page D1-4564.

• PE state on reset into AArch32 state on page G1-8602.

AArch64.ResetControlRegisters(boolean ResetIsCold)
AArch32.ResetControlRegisters(boolean ResetIsCold)

E3.7.13 ThisInstr()

This function returns the bitstring encoding of the currently executing instruction.

bits(32) ThisInstr();

Note

Currently, this function is used only on 32-bit instruction encodings.

E3.7.14 ThisInstrLength()

This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

integer ThisInstrLength();
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-215
ID022122 Non-Confidential

Pseudocode Definition
E3.8 Arm pseudocode definition index
E3.8 Arm pseudocode definition index

This section contains the following tables:

• Table E3-3 on page E3-216 which contains the pseudocode data types.

• Table E3-4 on page E3-216 which contains the pseudocode operators.

• Table E3-5 on page E3-217 which contains the pseudocode keywords and control structures.

• Table E3-6 on page E3-218 which contains the statements with special behaviors.

Table E3-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table E3-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings

Used in the left-hand side of an assignment or a tuple to discard
the result

+ Unary plus on integers or reals

Addition of integers, reals, and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings

/ Division of reals
E3-216 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Pseudocode Definition
E3.8 Arm pseudocode definition index
&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

case … of … Control structure for the

if … then … else … Condition expression selecting between two values

Table E3-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the
upper limit

for … = … downto … Loop control structure, counting down from the initial value to
the lower limit

if … then … else … Conditional control structure

otherwise Introduces default case in case … of … control structure

Table E3-4 Index of pseudocode operators (continued)

Operator Meaning
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. E3-217
ID022122 Non-Confidential

Pseudocode Definition
E3.8 Arm pseudocode definition index
repeat … until … Loop control structure that runs at least once until the
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition
is satisfied

Table E3-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table E3-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
E3-218 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary

This glossary describes some of the technical terms that are used in Arm documentation.

AHB An AMBA bus protocol supporting pipelined operation, with the address and data phases
occurring during different clock periods, meaning that the address phase of a transfer can occur
during the data phase of the previous transfer. AHB provides a subset of the functionality of the
AMBA AXI protocol.

See also AMBA and AHB-Lite.

AHB Access Port (AHB-AP)
An optional component that provides an AHB interface to a SoC.

CoreSight supports access to a system bus infrastructure using the AHB Access Port (AHB-AP).
The AHB-AP provides an AHB Requester port for direct access to system memory. Other bus
protocols can use AHB bridges to map transactions. For example, you can use AHB to AXI
bridges to provide AHB access to an AXI bus matrix.

See also Debug Access Port (DAP).

AHB Trace Macrocell (HTM)
A trace source that makes bus information visible. This information cannot be inferred from the
processor using just a trace macrocell. HTM trace can provide:

• An understanding of multi-layer bus utilization.

• Software debug. For example, visibility of access to memory areas and data accesses.

• Bus event detection for trace trigger or filters, and for bus profiling.

See also AHB.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-219
ID022122 Non-Confidential

Glossary
AHB-Lite A subset of the full AMBA AHB protocol specification. It provides all the basic functions that
are required by most AMBA AHB Completer and Requester designs, particularly when used
with a multi-layer AMBA interconnect.

Aligned A data item that is stored at an address that is exactly divisible by the number of bytes that
defines its data size. Aligned doublewords, words, and halfwords have addresses that are
divisible by eight, four, and two respectively. An aligned access is one where the address of the
access is aligned to the size of each element of the access.

AMBA The AMBA family of protocol specifications is the Arm open standard for on-chip buses.
AMBA provides solutions for the interconnection and management of the functional blocks that
make up a System-on-Chip (SoC). Applications include the development of embedded systems
with one or more processors or signal processors and multiple peripherals.

APB An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt
controllers, UARTs, and I/O ports. It connects to the main system bus through a
system-to-peripheral bus bridge that helps reduce system power consumption.

APB Access Port (APB-AP)
An optional component that provides an APB interface to a SoC, usually to its main functional
buses.

APB-AP See APB Access Port (APB-AP).

ATB An AMBA bus protocol for trace data. A trace device can use an ATB to share CoreSight
capture resources.

ATB bridge A synchronous ATB bridge provides a register slice that meets timing requirements by adding
a pipeline stage. It provides a unidirectional link between two synchronous ATB domains.

An asynchronous ATB bridge provides a unidirectional link between two ATB domains with
asynchronous clocks, and connects components in different clock domains.

See also ATB.

AXI An AMBA bus protocol that supports:

• Separate phases for address or control and data.

• Unaligned data transfers using byte strobes.

• Burst-based transactions with only start address issued.

• Separate read and write data channels.

• Issuing multiple outstanding addresses.

• Out-of-order transaction completion.

• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

See also AXI coherency extensions (ACE).

AXI coherency extensions (ACE)
The AXI coherency extensions (ACE) provide extra channels and signaling to an AXI interface
to support system level cache coherency.

Cold reset A cold reset has the same effect as starting the processor by turning on the power, and clears
main memory and many internal settings. Some program failures can lock up the core and
require a cold reset to restart the system.

See also Warm reset.

Core reset See Warm reset.
Glossary-220 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary
CoreSight Arm on-chip debug and trace components, that provide the infrastructure for monitoring,
tracing, and debugging a complete system on chip.

See also CoreSight ECT and CoreSight ETM.

CoreSight ECT See Embedded Cross Trigger (ECT).

CoreSight ETB See Embedded Trace Buffer (ETB).

CoreSight ETM See Embedded Trace Macrocell (ETM).

Cross Trigger Interface (CTI)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTI provides the interface
between a processor or ETM and the CTM.

Cross Trigger Matrix (CTM)
Part of an Embedded Cross Trigger (ECT) device. In an ECT, the CTM combines the trigger
requests generated by CTIs and broadcasts them to all CTIs as channel triggers.

CTI See Cross Trigger Interface (CTI).

CTM See Cross Trigger Matrix (CTM).

DAP See Debug Access Port (DAP).

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)
A collection of Debug Ports and Access Ports that are compliant with the Arm Debug Interface
(ADI), and provide access to system buses on a debug target.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP). The
interface has four or five signals.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

DNM See Do-Not-Modify (DNM).

Do-Not-Modify (DNM) A value that must not be altered by software. DNM fields read as UNKNOWN values, and must
only be written with the value read from the same field on the same core.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned A data item having a memory address that is divisible by eight.

ECT See Embedded Cross Trigger (ECT).

Embedded Cross Trigger (ECT)
A modular system that supports the interaction and synchronization of multiple triggering
events with an SoC. It comprises:

• Cross Trigger Interface (CTI).

• Cross Trigger Matrix (CTM).

Embedded Trace Buffer (ETB)
A Logic block that extends the information capture functionality of a trace macrocell.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor, outputs trace information on a trace
port. The ETM provides processor driven trace through a trace port compliant to the ATB
protocol. An ETM always supports instruction trace, and might support data trace.

ETB See Embedded Trace Buffer (ETB).
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-221
ID022122 Non-Confidential

Glossary
ETM See Embedded Trace Macrocell (ETM).

Event In an Arm trace macrocell:

Simple An observable condition that a trace macrocell can use to control aspects of a
trace.

Complex A boolean combination of simple events that a trace macrocell can use to control
aspects of a trace.

Formatter In an ETB or TPIU, an internal input block that embeds the trace source ID in the data to create
a single trace stream.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm
debugger, a computer providing debugging services to a target being debugged.

HTM See AHB Trace Macrocell (HTM).

IEEE 1149.1 The IEEE Standard that defines TAP. Commonly referred to as JTAG.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture
specification available from the IEEE Standards Association http://standards.ieee.org.

IGN An abbreviation for Ignore, when describing the behavior of a register or memory access.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but must be defined and documented by
individual implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

IMPLEMENTATION SPECIFIC
In the context of Arm trace macrocells, behavior that is not architecturally defined, and might
not be documented by an individual implementation. Used when there are several
implementation options available and the option that is chosen does not affect software
compatibility.

When IMPLEMENTATION SPECIFIC is used with this meaning in body text, it is always in SMALL
CAPITALS.

See also IMPLEMENTATION DEFINED.

In-Circuit Emulator A device that provides access to the signals of a circuit while that circuit is operating, and lets
you moderate those signals.

Instruction Synchronization Barrier (ISB)
An operation to ensure that any instruction that comes after the ISB operation is fetched only
after the ISB has completed.

Instrumentation trace A component for debugging real-time systems through a simple memory-mapped trace
interface. It provides printf style debugging.

Intelligent Energy Manager
An energy manager solution consisting of both software and hardware components that function
together to prolong battery life in an Arm processor-based device.

ISB See Instruction Synchronization Barrier (ISB).
Glossary-222 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary
Joint Test Action Group (JTAG)
An IEEE group that is focused on silicon chip testing methods. Many debug and programming
tools use a Joint Test Action Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture
specification available from the IEEE Standards Association http://standards.ieee.org.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)
An optional component that provides debugger access to on-chip scan chains.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See Debug Access Port (DAP).

nSRST Abbreviation of System Reset. The signal that causes the target system other than the TAP
Controller to be reset.

See also nTRST and Joint Test Action Group (JTAG).

nTRST Abbreviation of TAP Reset. The electronic signal that causes the target system TAP Controller
to be reset.

See also nSRST and Joint Test Action Group (JTAG).

Power-on reset See Cold reset.

Program Flow Trace (PFT)
The Program Flow Trace (PFT) architecture assumes that any trace decompressor has a copy of
the program being traced, and generally outputs only enough trace for the decompressor to
reconstruct the program flow. However, its trace output also enables a decompressor to
reconstruct the program flow when it does not have a copy of parts of the program, for example
because the program uses self-modifying code.

A Program Flow Trace Macrocell (PTM) implements the Program Flow Trace architecture.

RAO See Read-As-One (RAO).

RAO/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field.
Software can rely on the field reading as all 1s, and on writes being ignored. This description
can apply to a single bit that reads as 1, or to a field that reads as all 1s.

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.
Software can rely on the field reading as all 0s, and on writes being ignored. This description
can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ)

Read-As-One (RAO) Hardware must implement the field as reading as all 1s. Software can rely on the field reading
as all 1s. This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ) Hardware must implement the field as reading as all 0s. Software can rely on the field reading
as all 0s. This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

RealView ICE An Arm JTAG interface unit for debugging embedded processor cores that uses a DBGTAP or
Serial Wire interface.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-223
ID022122 Non-Confidential

Glossary
Replicator In an Arm trace macrocell, a replicator enables two-trace sinks to be wired together and to
operate independently on the same incoming trace stream. The input trace stream is output onto
two independent ATB ports.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in
register descriptions, and for fields in architecturally defined data structures that are held in
memory, for example in translation table descriptors.

Note

RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Therefore, the definition of RES0 for register fields is:

If a bit is RES0 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

The bit might be described as RES0, WI, to distinguish it from a bit that
behaves as described in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value that is successfully written to
the bit.

Note
As indicated in this list, this value might be written by an indirect
write to the register.

If the bit has not been successfully written since reset, then the read
of the bit returns the reset value if there is one, or otherwise returns
an UNKNOWN value.

• A direct write to the bit must update a storage location that is
associated with the bit.

• The value of the bit must have no effect on the operation of the core,
other than determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation
defined on a field-by-field basis.

If a bit is RES0 only in some contexts

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value that was last successfully written to
the bit, regardless of the use of the register when the bit was written.
Glossary-224 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary
Note
As indicated in this list, this value might be written by an indirect write to
the register.

If the bit has not been successfully written since reset, then the read of the
bit returns the reset value if there is one, or otherwise returns an unknown
value.

• A direct write to the bit must update a storage location that is associated
with the bit.

• While the use of the register is such that the bit is described as RES0, the
value of the bit must have no effect on the operation of the core, other than
determining the value read back from that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only or write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit
as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or
as 0, or to a field that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in
register descriptions, and for fields in architecturally defined data structures that are held in
memory, for example in translation table descriptors.

Note

RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Therefore, the definition of RES1 for register fields is:

If a bit is RES1 in all contexts

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

The bit might be described as RES1, WI, to distinguish it from a bit that
behaves as described in 2.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-225
ID022122 Non-Confidential

Glossary
2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value that is successfully written to
the bit.

Note
As indicated in this list, this value might be written by an indirect
write to the register.

If the bit has not been successfully written since reset, then the read
of the bit returns the reset value if there is one, or otherwise returns
an UNKNOWN value.

• A direct write to the bit must update a storage location that is
associated with the bit.

• The value of the bit must have no effect on the operation of the core,
other than determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation
defined on a field-by-field basis.

If a bit is RES1 only in some contexts

When the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit,
regardless of the use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to
the register.

If the bit has not been successfully written since reset, then the read of the
bit returns the reset value if there is one, or otherwise returns an unknown
value.

• A direct write to the bit must update a storage location that is associated
with the bit.

• While the use of the register is such that the bit is described as RES1, the
value of the bit must have no effect on the operation of the core, other than
determining the value read back from that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only or write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit
as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or
as 0, or to a field that should be written as its preserved value or as all 1s.
Glossary-226 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary
In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation, reserved:

Reserved

• Instruction and 32-bit system control register encodings are UNPREDICTABLE.

• Reserved 64-bit system control register encodings are UNDEFINED.

• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Serial wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger.

The SWDP consists of two terminals that provide synchronous access to debug interfaces. The
terminals are SWDIO and SWCLK.

Serial Wire Debug Port (SWDP)
The interface for serial wire debug.

Serial Wire JTAG Debug Port (SWJ - DP)
The SWJ - DP is a combined JTAG-DP and SWDP that you can use to connect either a Serial
Wire Debug (SWD) or JTAG probe to a target.

Should-Be-One (SBO) Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be
written as all 1s.

Should-Be-One-or-Preserved (SBOP)
The Armv7 Large Physical Address Extension modified the definition of SBOP to apply to
register fields that are SBOP in some but not all contexts. From the introduction of Armv8 such
register fields are described as RES1, see RES1. The definition of SBOP given here applies only
to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized,
it should preserve the value of the field by writing the value that it previously read from the field.
Otherwise, it should write the field as all 1s.

If software writes a value to the field that is not a value that was previously read for the field
and is not all 1s, it must expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or
to a field that should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ) Hardware must ignore writes to the field.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-227
ID022122 Non-Confidential

Glossary
Software should write the field as all 0s. If software writes a value that is not all 0s, it must
expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be
written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
The Armv7 Large Physical Address Extension modified the definition of SBZP to apply to
register fields that are SBZP in some but not all contexts. From the introduction of Armv8 such
register fields are described as RES0, see RES0. The definition of SBZP given here applies only
to fields that are SBZP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized,
it must preserve the value of the field by writing the value that it previously read from the field.
Otherwise, it must write the field as all 0s.

If software writes a value to the field that is not a value that was previously read for the field
and is not all 0s, it must expect an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or
to a field that should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial wire debug (SWD).

SWDP See Serial Wire Debug Port (SWDP).

SWJ - DP See Serial Wire JTAG Debug Port (SWJ - DP)

TAP Controller Logic on a device that enables access to some or all of that device for test purposes. The circuit
functionality is defined in IEEE 1149.1.

See also Joint Test Action Group (JTAG).

TCD See Trace Capture Device (TCD).

TCK The clock for the TAP data lines TMS, TDI, and TDO.

See also Test Data Input (TDI), Test Data Output (TDO).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and
control interface to a JTAG boundary-scan architecture. The mandatory terminals are TDI,
TDO, TMS, and TCK. In the JTAG standard, the nTRST signal is optional, but this signal is
mandatory in Arm processors because it is used to reset the debug logic.

See also Joint Test Action Group (JTAG), TAP Controller, TCK, Test Data Input (TDI), Test
Data Output (TDO), TMS.

Test Data Input (TDI) Test Data Input (TDI) is the input to a TAP Controller from the data source (upstream). Usually,
this input connects the RealView ICE run control unit to the first TAP controller.

See also Joint Test Action Group (JTAG), RealView ICE, and TAP Controller.

Test Data Output (TDO)
Test Data Output (TDO) is the electronic signal output from a TAP Controller to the downstream
data sink. Usually, this output connects the last TAP controller to the RealView ICE run control
unit.

See also Joint Test Action Group (JTAG), RealView ICE, TAP Controller.
Glossary-228 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

Glossary
TMS Test Mode Select.

TPA See Trace Port Analyzer (TPA).

TPIU See Trace Port Interface Unit (TPIU).

Trace Capture Device (TCD)
A generic term to describe Trace Port Analyzers, logic analyzers, and on-chip trace buffers.

Trace funnel In an Arm trace macrocell, a device that combines multiple trace sources onto a single bus.

See also AHB Trace Macrocell (HTM), CoreSight.

Trace hardware A term for a device that contains an Arm trace macrocell.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This device can be a
low-cost product that is designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
Drains trace data and acts as a bridge between the on-chip trace data and the data stream that is
captured by a TPA.

Trigger In the context of tracing, a trigger is an event that instructs the debugger to stop collecting trace
and display the trace information around the trigger position, without halting the core. The exact
information that is displayed depends on the position of the trigger within the buffer.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the
elements of the access.

See also Aligned.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on
the field reading as zero.

See also UNKNOWN.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment,
instruction to instruction, and implementation to implementation. An UNKNOWN value must not
return information that cannot be accessed at the current or a lower level of privilege using
instructions that are not unpredictable or constrained unpredictable and do not return UNKNOWN
values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE For an Arm processor, UNPREDICTABLE means that the behavior cannot be relied upon.
UNPREDICTABLE behavior must not perform any function that cannot be performed at the current
or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An
instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of UNPREDICTABLE
instructions at a lower level of privilege can be trapped to the hypervisor, if at least one
instruction that is not unpredictable can be trapped to the hypervisor if executed at that lower
level of privilege.
ARM IHI 0029F Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. Glossary-229
ID022122 Non-Confidential

Glossary
For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot
be relied on. Such conditions have not been validated. When applied to the programming of an
event resource, only the output of that event resource is UNPREDICTABLE. UNPREDICTABLE
behavior can affect the behavior of the entire system, because the trace macrocell can cause the
core to enter debug state, and external outputs can be used for other purposes.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug
controller and debug logic. This type of reset is useful if you are using the debugging features
of a processor.

See also Cold reset.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
Glossary-230 Copyright © 2004, 2005, 2012, 2013, 2017, 2022 Arm Limited or its affiliates. All rights reserved. ARM IHI 0029F
Non-Confidential ID022122

	Arm CoreSight Architecture Specification v3.0
	Contents
	Preface
	About this document
	Intended audience

	Using this document
	Part A, CoreSight Architecture
	Part B, CoreSight Visible Component Architecture
	Part C, CoreSight Reusable Component Architecture
	Part D, CoreSight System Architecture
	Part E, Appendixes

	Conventions
	Typographic conventions
	Signals
	Timing diagrams
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book
	Progressive terminology commitment

	Part A: CoreSight Architecture�
	A1: About the CoreSight Architecture�
	A1.1 Purpose of the CoreSight architecture
	A1.2 Structure of the CoreSight architecture
	A1.2.1 Visible component architecture
	A1.2.2 Reusable component architecture
	A1.2.3 System architecture

	A1.3 CoreSight component types
	A1.4 CoreSight topology detection
	A1.4.1 Basic topology detection infrastructure
	A1.4.2 Mechanism for topology detection

	Part B: CoreSight Visible Component Architecture�
	B1: About the Visible Component Architecture�
	B2: CoreSight programmers’ model�
	B2.1 About the programmers’ model
	B2.1.1 Basic structure of the programmers’ model
	B2.1.2 The Unique Component Identifier
	B2.1.3 Conventions for registers with less than 32 valid bits
	B2.1.4 Components that occupy more than 4KB of address space
	B2.1.5 Programmers’ Model Quick Reference

	B2.2 Component and Peripheral Identification Registers
	B2.2.1 CIDR0-CIDR3, Component Identification Registers
	B2.2.2 PIDR0-PIDR7, Peripheral Identification Registers

	B2.3 Component-specific registers for Class 0x9 CoreSight components
	B2.3.1 AUTHSTATUS, Authentication Status Register
	B2.3.2 CLAIMSET and CLAIMCLR, Claim Tag Set Register and Claim Tag Clear Register
	B2.3.3 DEVAFF0-DEVAFF1, Device Affinity Registers
	B2.3.4 DEVARCH, Device Architecture Register
	B2.3.5 DEVID, Device Configuration Register
	B2.3.6 DEVID1, Device Configuration Register 1
	B2.3.7 DEVID2, Device Configuration Register 2
	B2.3.8 DEVTYPE, Device Type Identifier Register
	B2.3.9 ITCTRL, Integration Mode Control Register
	B2.3.10 LSR and LAR, Software Lock Status Register and Software Lock Access Register

	B2.4 Component-specific registers for Class 0xF CoreLink, PrimeCell, and system components

	B3: Topology Detection�
	B3.1 About topology detection
	B3.2 Requirements for topology detection signals
	B3.2.1 Recommended method

	B3.3 Combination with integration registers
	B3.4 Interfaces that are not connected or implemented
	B3.5 Variant interfaces
	B3.5.1 External multiplexing

	B3.6 Documentation requirements for topology detection registers
	B3.6.1 Interfaces where topology detection is not possible

	Part C: CoreSight Reusable Component Architecture�
	C1: About the Reusable Component Architecture�
	C2: AMBA APB and ATB Interfaces�
	C2.1 AMBA APB interface
	C2.1.1 About the AMBA APB interface
	C2.1.2 AMBA APB interface signals
	C2.1.3 AMBA APB interface width
	C2.1.4 Alternative views of the register file

	C2.2 AMBA ATB interface

	C3: Event Interface�
	C4: Channel interface�
	C4.1 About the channel interface
	C4.2 Channels
	C4.3 Channel interface signals
	C4.4 Channel connections
	C4.5 Synchronous and asynchronous conversions

	C5: Authentication Interface�
	C5.1 About the authentication interface
	C5.2 Definitions of Secure, hypervisor, and invasive debug
	C5.2.1 Definition of Secure debug
	C5.2.2 Definition of hypervisor debug
	C5.2.3 Definition of invasive debug

	C5.3 Authentication interface signals
	C5.4 Authentication rules
	C5.4.1 Root and Realm signals

	C5.5 User mode debugging
	C5.6 Control of the authentication interface
	C5.7 Exemptions from implementing the authentication interface

	C6: Timestamp Interface�
	C7: Topology Detection at the Component Level�
	C7.1 About topology detection at the component level
	C7.2 Interface types for topology detection
	C7.2.1 Interfaces on standard components

	C7.3 Interface requirements for topology detection
	C7.3.1 Intermediate non-programmable components
	C7.3.2 Multi-way connections

	C7.4 Signals for topology detection

	Part D: CoreSight System Architecture�
	D1: About the System Architecture�
	D2: System Considerations�
	D2.1 Clock and power domains
	D2.2 Control of authentication interfaces
	D2.3 Memory system design
	D2.3.1 Debug APB interface memory map
	D2.3.2 Access to the Debug APB interface

	D3: Physical Interface�
	D3.1 Arm JTAG 20
	D3.2 CoreSight 10 and CoreSight 20 connectors
	D3.2.1 Combined CoreSight 10 and CoreSight 20 pin names
	D3.2.2 CoreSight 10 pinouts
	D3.2.3 CoreSight 20 pinouts including trace

	D3.3 Arm MICTOR
	D3.3.1 Target system connector
	D3.3.2 Target connector description
	D3.3.3 Decoding requirements for Trace Capture Devices
	D3.3.4 Electrical characteristics

	D3.4 Target Connector Signal details
	D3.4.1 VTRef output
	D3.4.2 TRACECLK output
	D3.4.3 TRACECTL output
	D3.4.4 TRACEDATA[n:0] output
	D3.4.5 Logic one input
	D3.4.6 Logic 0 input
	D3.4.7 TRIGIN / DBGRQ input
	D3.4.8 TRIGOUT / DBGACK output
	D3.4.9 nSRST input
	D3.4.10 nTRST input
	D3.4.11 TDI input
	D3.4.12 TMS input
	D3.4.13 SWDIO input/output
	D3.4.14 TCK / SWCLK input
	D3.4.15 RTCK output
	D3.4.16 TDO output
	D3.4.17 SWO output
	D3.4.18 VSupply output
	D3.4.19 GND
	D3.4.20 No connection

	D4: Trace Formatter�
	D4.1 About trace formatters
	D4.2 Frame descriptions
	D4.2.1 Frame example
	D4.2.2 Frame synchronization packet
	D4.2.3 Halfword synchronization packet
	D4.2.4 Special trace source IDs
	D4.2.5 Data overheads
	D4.2.6 Repeating the trace source ID
	D4.2.7 Indication of alignment points

	D4.3 Modes of operation
	D4.3.1 Bypass
	D4.3.2 Normal
	D4.3.3 Continuous

	D4.4 Flush of trace data at the end of operation
	D4.4.1 Bypass mode
	D4.4.2 Normal and continuous mode

	D5: About ROM Tables�
	D5.1 ROM Tables Overview
	D5.2 ROM Table Types
	D5.3 Component and Peripheral ID Registers for ROM Tables
	D5.3.1 Identifying the debug SoC, system, or subsystem

	D6: Topology Detection at the System Level�
	D6.1 About topology detection at the system level
	D6.2 Detection
	D6.2.1 Saved descriptions

	D6.3 Components that are not recognized
	D6.4 Detection algorithm

	D7: Compliance Requirements�
	D7.1 About compliance classes
	D7.2 CoreSight debug
	D7.2.1 Minimum debug functionality
	D7.2.2 Optional debug functionality

	D7.3 CoreSight trace
	D7.3.1 Minimum trace functionality
	D7.3.2 Optional trace functionality

	D7.4 Multiple DPs

	Part E: Appendixes�
	E1: Power Requester�
	E1.1 About the power requester
	E1.2 Register descriptions
	E1.2.1 AUTHSTATUS, Authentication Status Register
	E1.2.2 CDBGPWRUPACK, Debug Power Request Acknowledge Register
	E1.2.3 CDBGPWRUPREQ, Debug Power Request Register
	E1.2.4 CIDR0-CIDR3, Component Identification Registers
	E1.2.5 CLAIMCLR, Claim Tag Clear Register
	E1.2.6 CLAIMSET, Claim Tag Set Register
	E1.2.7 DEVARCH, Device Architecture Register
	E1.2.8 DEVID, Device configuration Register
	E1.2.9 DEVTYPE, Device Type Register
	E1.2.10 ITCTRL, Integration Mode Control Register
	E1.2.11 LAR, Lock Access Register
	E1.2.12 LSR, Lock Status Register
	E1.2.13 PIDR0-PIDR7, Peripheral Identification Register

	E1.3 Powering non-visible components

	E2: Revisions�
	E3: Pseudocode Definition�
	E3.1 About the Arm pseudocode
	E3.1.1 General limitations of Arm pseudocode

	E3.2 Pseudocode for instruction descriptions
	E3.2.1 Instruction encoding diagrams and instruction pseudocode
	E3.2.2 Limitations of the instruction pseudocode

	E3.3 Data types
	E3.3.1 General data type rules
	E3.3.2 Bitstrings
	Syntax
	Description

	E3.3.3 Integers
	Syntax
	Description

	E3.3.4 Reals
	Syntax
	Description

	E3.3.5 Booleans
	Syntax
	Description

	E3.3.6 Enumerations
	Syntax and examples
	Description

	E3.3.7 Structures
	Syntax and examples
	Description

	E3.3.8 Tuples
	Examples
	Description

	E3.3.9 Arrays
	Syntax
	Description

	E3.4 Operators
	E3.4.1 Relational operators
	Equality and non-equality
	Comparisons
	Set membership with IN

	E3.4.2 Boolean operators
	E3.4.3 Bitstring operators
	Logical operations on bitstrings
	Bitstring concatenation and slicing

	E3.4.4 Arithmetic operators
	Unary plus and minus
	Addition and subtraction
	Multiplication
	Division and modulo
	Scaling
	Raising to a power

	E3.4.5 The assignment operator
	General expression syntax

	E3.4.6 Precedence rules
	E3.4.7 Conditional expressions
	E3.4.8 Operator polymorphism

	E3.5 Statements and control structures
	E3.5.1 Statements and Indentation
	E3.5.2 Function and procedure calls
	Procedure and function definitions
	Procedure calls
	Return statements

	E3.5.3 Conditional control structures
	if … then … else …
	case … of …

	E3.5.4 Loop control structures
	repeat … until …
	while … do
	for …

	E3.5.5 Special statements
	UNDEFINED
	UNPREDICTABLE
	SEE…
	IMPLEMENTATION_DEFINED

	E3.5.6 Comments

	E3.6 Built-in functions
	E3.6.1 Bitstring manipulation functions
	Bitstring length and most significant bit
	Bitstring concatenation and replication
	Bitstring count
	Testing a bitstring for being all zero or all ones
	Lowest and highest set bits of a bitstring
	Zero-extension and sign-extension of bitstrings
	Converting bitstrings to integers

	E3.6.2 Arithmetic functions
	Absolute value
	Rounding and aligning
	Maximum and minimum

	E3.7 Miscellaneous helper procedures and functions
	E3.7.1 EndOfInstruction()
	E3.7.2 Hint_Debug()
	E3.7.3 Hint_PreloadData()
	E3.7.4 Hint_PreloadDataForWrite()
	E3.7.5 Hint_PreloadInstr()
	E3.7.6 Hint_Yield()
	E3.7.7 IsExternalAbort()
	E3.7.8 IsAsyncAbort()
	E3.7.9 LSInstructionSyndrome()
	E3.7.10 ProcessorID()
	E3.7.11 RemapRegsHaveResetValues()
	E3.7.12 ResetControlRegisters()
	E3.7.13 ThisInstr()
	E3.7.14 ThisInstrLength()

	E3.8 Arm pseudocode definition index

	Glossary

