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Preface

This preface introduces the Arm Debug Interface Architecture Specification ADIv5.0 to ADIv5.2. It contains the 
following sections:

• About this manual on page x.

• Using this book on page xi.

• Conventions on page xiii.

• Additional reading on page xv.

• Feedback on page xvi.
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 About this manual
About this manual

This manual describes the Architecture Specification for the ARM Debug Interface v5, ADIv5.0 to ADIv5.2 (ADIv5).

Intended audience

This specification is written for system designers and engineers who specify, design, or implement ADI5-compliant 
debug interfaces. The audience includes system designers and engineers who specify, design, or implement a 
System-on-Chip (SoC) that incorporates an ADIv5-compliant debug interface.

This specification is also intended for engineers who work with an ADIv5-compliant debug interface. This audience 
includes designers and engineers who:

• Specify, design, or implement hardware debuggers.

• Specify, design, or write debug software.

These engineers have no control over the design decisions that are made in the ADIv5 interface implementation to 
which they connect, but must be able to identify the ADIv5 interface components that are present, and understand 
how they operate.

This specification provides an architectural description of an ADIv5 interface. It does not describe how to 
implement the interface.
x Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
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Using this book

This specification is organized into the following chapters:

Chapter A1 About the Arm Debug Interface 

Read this chapter for a high-level view of the Arm Debug Interface (ADI). This chapter defines the 
logical subdivisions of an ADI, and summarizes the design choices that are made when 
implementing an ADI.

Chapter B1 About the DP 

Every ADI includes a single Debug Port (DP). The DP can be one of several types: a JTAG Debug 
Port (JTAG-DP), a Serial Wire Debug Port (SW-DP), or a Serial Wire/JTAG Debug Port (SWJ-DP). 
Read this chapter for a description of the features that must be implemented on the DP of any ADI.

Chapter B2 DP Reference Information 

Read this chapter for detailed reference information that applies to all DP types.

Chapter B3 The JTAG Debug Port 

Read this chapter for a description of the JTAG Debug Port (JTAG-DP), and in particular, the Debug 
Test Access Port State Machine (DBGTAPSM) and the scan chains that access the JTAG-DP.

Chapter B4 The Serial Wire Debug Port 

Read this chapter for a description of the Serial Wire Debug Port (SW-DP), and the Serial Wire 
Debug (SWD) protocols, which are used to access an SW-DP.

Chapter B5 The Serial Wire/JTAG Debug Port 

Read this chapter for a description of multiple protocol interoperability as implemented in the Serial 
Wire/JTAG Debug Port (SWJ-DP) CoreSight component.

Chapter C1 About the AP 

Read this chapter for a description of ADI Access Ports (APs), and details of the features that every 
AP must implement.

Chapter C2 The Memory Access Port 

Read this chapter for a description of the ADI Memory Access Port (MEM-AP).

Chapter C3 The JTAG Access Port 

Read this chapter for a description of the ADI JTAG Access Port (JTAG-AP).

Chapter C4 COM-AP programmers’ model 

Read this chapter for a description of the COM-AP programmers’ model.

Chapter D1 About ROM Tables 

Read this chapter for a general description of Arm debug component ROM Tables. Any ADI can 
include a ROM Table. An ADI with more than one debug component must include at least one ROM 
Table.

Appendix E1 Standard Memory Access Port Definitions 

Read this appendix for information on implementing the Memory Access Port (MEM-AP).

Appendix E2 Cross-over with the Arm Architecture 

Read this appendix for a description of the required or recommended options for the Arm Debug 
Interface for Arm architecture profiles.

Appendix E3 Pseudocode Definition 

Read this appendix for a description of the pseudocode that is used in this document.
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. xi
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Glossary 

Read the Glossary for definitions of some of the terms that are used in this manual.
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Conventions

The following sections describe conventions that this specification can use:

• Typographic conventions.

• Signals.

• Timing diagrams.

• Numbers on page xiv.

• Pseudocode descriptions on page xiv.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold  Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in 
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS 

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link:

• A URL, for example https://developer.arm.com.

• A cross-reference, that, if it is not on the current page, includes the page number of the 
referenced information. For example, Pseudocode descriptions on page xiv.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that 
defines the colored term, for example AMBA.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or 
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix DBG Denotes debug signals.

Timing diagrams

The figure that is named Key to timing diagram conventions on page xiv explains the components that are used in 
timing diagrams. Variations, when they occur, have clear labels. Do not assume any timing information that is not 
explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that 
time. The actual level is unimportant and does not affect normal operation.
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ID022122 Non-Confidential



 Preface 
 Conventions
Key to timing diagram conventions

Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to 
the bus change shown in Key to timing diagram conventions. If a timing diagram shows a single-bit signal in this 
way, its value does not affect the accompanying description.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In 
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This 
pseudocode is written in a monospace font, and is described in Appendix E3 Pseudocode Definition.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



 Preface 
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer https://developer.arm.com, for access to Arm documentation.

Arm publications

See the following documents for other information that is relevant to this specification:

• Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

• Arm® Architecture Reference Manual, Armv7-A and Armv7-R edition (ARM DDI 0406).

• Arm® v8-M Architecture Reference Manual (ARM DDI 0553).

• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

• Arm® CoreSight™ SoC-400 Technical Reference Manual (ARM 100536).

• AMBA® AXI™ and ACE™ Protocol Specification (ARM IHI 0022).

• Arm® AMBA® 5 AHB™ Protocol Specification (ARM IHI 0033).

• AMBA® APB Protocol Specification (ARM IHI 0024).

• Arm1136JF-S™ and Arm1136J-S™ Technical Reference Manual (ARM DDI 0211).

• Advanced Communications Channel™ Architecture Specification (ARM IHI 0076).

Other publications

The following books are referred to in this specification, or provide more information:

• IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE 1149.1-2001).

• JEDEC Standard Manufacturer’s Identification Code (JEDEC JEP106).
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Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this specification, send an e-mail to  errata@arm.com. Give:

• The title.

• The number, ARM IHI 0031G.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of 
any document when viewed with any other PDF reader.

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. 

Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find 
offensive terms in this document, please contact terms@arm.com.
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Chapter A1 
About the Arm Debug Interface

This chapter introduces the Arm Debug Interface (ADI) architecture and summarizes the design decisions that are 
required for an ADI implementation. It contains the following sections:

• ADI versions on page A1-20.

• Purpose of the ADI on page A1-23.

• The subdivisions of an ADIv5 implementation on page A1-25.

• The Debug Port (DP) on page A1-27.

• Access Ports (APs) on page A1-28.

• Design choices and implementation examples on page A1-32.
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A1.1 ADI versions
A1.1 ADI versions

The Arm Debug Interface version 5 (ADIv5) is the fifth major version of the Arm Debug Interface.

Note

The term ADIv5 refers to ADIv5.0, ADIv5.1, ADIv5.2, or any other release of the fifth major revision of ADI.

ADI versions before v5 are based on the IEEE 1149.1 JTAG interface, but are intended only for accessing Arm 
processor cores and Embedded Trace Macrocells (ETMs):

Debug interface versions 1 and 2 

Implemented on the ARM7TDMI® and ARM9® families of processor cores.

Debug interface version 3 

Introduced for the ARM10™ processor family.

ADIv4 

The first version of the ADI to be linked with an Arm architecture version, rather than an 
implementation of an Arm processor core. Arm recommends that ADIv4 is used with 
implementations of the Armv5 architecture.

ADIv5 has the following major advantages:

• ADIv5 interfaces can access a greater range of devices.

• Implementing the ADI can be separated from implementing the resource, which makes it easier to reuse 
implementations. However, this separation is not required.

• Use of the ADIv5 abstractions permits reusing software tools, for example debuggers.

Debug interfaces that implement ADI versions older than ADIv5 require the physical connection to the interface to 
use an IEEE 1149.1 JTAG interface. ADIv5 specifies two alternatives for the physical connection:

• An IEEE 1149.1 JTAG interface.

• A Serial Wire Debug interface with a low pin count.

The main components of ADIv5 are split between two main architectures:

• The AP architecture.

• The DP architecture.

A1.1.1   About the minor versions of ADIv5

ADI versions 5.1 and 5.2 are backwards-compatible extensions of the original ADIv5 specification. From the 
introduction of ADIv5.1, the original ADIv5 specification is described as ADIv5.0.

Note

ADIv5.1 was originally defined only as a supplement to the original ADIv5 Architecture Specification, which 
corresponds to issue A of this document. From issue B of this document, the specification integrates the descriptions 
of ADIv5.0, ADIv5.1, and ADIv5.2.

Features that are defined by ADIv5.0

ADIv5.0 defines:

• Two Debug Ports, JTAG-DP and SW-DP.

• Two Access Ports:

— JTAG-AP, for accessing legacy JTAG components.

— MEM-AP, for accessing memory and components with memory-mapped interfaces.
A1-20 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
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A1 About the Arm Debug Interface 
A1.1 ADI versions
• The identification model for Access Ports.

• A discovery mechanism for components that are attached to a MEM-AP.

Features added in v5.1

ADIv5.1 formalizes version numbering of Debug Ports:

• The programmers’ model of the JTAG-DP defined by ADIv5.0 is defined as Debug Port architecture version 
0 (DPv0).

• The programmers’ model of the SW-DP defined by ADIv5.0 is defined as Debug Port architecture version 
1 (DPv1).

ADIv5.1 adds the following functionality:

• Extensions to the AP identification model.

• Standard definitions for MEM-AP implementations for AMBA bus protocols.

• JTAG support in Debug Port architecture version 1.

• The Minimal Debug Port extension.

• Debug Port architecture version 2 (DPv2).

• Multiple protocol interoperability extensions that provide the following features:

— Simple switching between Serial Wire Debug and JTAG protocols. For more information, see 
Chapter B5 The Serial Wire/JTAG Debug Port.

— A dormant state, for interoperability with other protocols. For more information, see Switching 
between SWD and JTAG on page B5-128.

• Serial Wire Debug protocol version 2, that provides a multi-drop capability. For more information, see 
Chapter B4 The Serial Wire Debug Port.

• The Minimal Debug Port (MINDP) extension, which is a simplified version of the Debug Port that is 
intended for low gate-count implementations. For more information, see MINDP, Minimal DP extension on 
page B1-40.

Features added in ADIv5.2

ADIv5.2 adds the following functionality:

• Extensions to the MEM-AP programmers’ model to support:

— Large physical address spaces of up to 64 bits.

— Data sizes greater than 32 bits.

— Barrier operations.

• Armv8-A and Armv9-A definitions of MEM-AP to include extensions for:

— AMBA AXI3, AXI4, AXI4-Lite, and AXI5.

— AMBA ACE.

• Recommended implementations for:

— Armv7-A processors including the Large Physical Address Extension.

— Armv8-A processors.

• In addition to ROM Tables with a CIDR1.CLASS of 0x1, ROM Tables with a CIDR1.CLASS of 0x9, are 
permitted, provided their DEVID.FORMAT is 0x0, which indicates that they use the 32-bit ROM format 0. 
For more information, see ROM Table Types on page D1-227.
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A1.1 ADI versions
• In addition to using 4-bit JTAG IR instruction encodings, it is permitted to use 8-bit encodings. The 8-bit 
encodings are specified in IR scan chain and IR instructions on page B3-91.

• Relaxation of the CDBGPWRUPREQ/CDBGPWRUPACK handshake mechanism. For more information, 
see DLCR, Data Link Control register on page B2-61.
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A1.2 Purpose of the ADI

The ADI provides access to debug functionality that is provided by debug components in an embedded SoC.

This section summarizes various types of debug functionality that can be found in SoCs. It contains the following 
subsections:

• Embedded core debug functionality.

• System debug functionality.

• Compatibility between CoreSight and Arm debug interfaces on page A1-24.

For information about compatibility with the CoreSight™ architecture, see Compatibility between CoreSight and 
Arm debug interfaces on page A1-24.

A1.2.1   Embedded core debug functionality

An embedded microprocessor can provide the following debug features to enable the debugging of applications:

Processor state modification 

Facilities that enable an external host to modify the state of the processor, as defined by the contents 
of the internal registers and the memory system.

Processor state assessment 

Facilities that enable an external host to assess the state of the processor by providing access to the 
contents of the internal registers and the memory system.

Programming debug events 

Facilities that allow an external host to program debug events. An external host must be able to 
configure the debug logic so that when a special event occurs, such as the program flow reaching a 
certain instruction in the code, the core enters a special execution mode in which its state can be 
examined and modified by an external system. In this chapter, this special execution mode is 
referred to as Debug state.

Enter or exit Debug state 

Facilities to allow an external system to force the processor to enter or exit Debug state, and 
determine when the core enters or leaves Debug state.

Trace features 

Trace the program flow that is associated with programmable events.

Examples of technologies that provide these facilities are:

• The Armv8 Debug Architecture. For more information, see the Arm® Architecture Reference Manual, 
Armv8, for A-profile architecture.

• The Embedded Trace Macrocell. For more information, see the ETM Architecture Specification.

ADIv5 implementations can also access legacy components that implement an IEEE 1149.1 JTAG interface, which 
enables accessing debug resources in processors that implement earlier versions of the ADI.

A1.2.2   System debug functionality

The scope of debug information extends beyond the boundaries of an embedded microprocessor core, and includes 
the following elements:

• Components outside the cores that are embedded in the SoC.

• The interconnection fabric of the system.

To enable debugging these elements, an SoC can provide the following system-level debug features:

External host access 
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Facilities that enable an external host to access the following debug information:

• System state parameters that might not be visible to the embedded microprocessor core.

• Trace information about the interconnection fabric, for example accesses by the 
microprocessor core, or accesses by other devices such as Direct Memory Access (DMA) 
engines.

Access to diagnostic information 

A mechanism for the efficient collection and streaming of diagnostic information, for example 
program trace.

Diagnostic messaging 

Mechanisms for low-intrusion diagnostic messaging between software and debugger.

Cross-triggering 

Cross-triggering mechanisms that enable debug components to signal to each other.

Examples of technologies that provide these facilities are:

• The ADIv5 Debug Access Port (DAP).

• The CoreSight debug architecture. For more information, see the Arm® CoreSight™ Architecture 
Specification.

• CoreSight components. For more information, see the CoreSight™  SoC Technical Reference Manual. 

A1.2.3   Compatibility between CoreSight and Arm debug interfaces

ADIv5 is compatible with the Arm CoreSight architecture:

• ADIv5 can be used to access and control CoreSight-compatible components.

• The ADIv5 specification does not require debug components to comply with the CoreSight architecture.
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A1.3 The subdivisions of an ADIv5 implementation

An implementation of the ADI is called a DAP. A DAP provides a debugger with a standard interface to access 
debug resources in systems that use resource-specific methods to expose their debug information.

A1.3.1   Connections to the ADI

The logical block diagram in Figure A1-1 shows how an ADI implementation is connected between a debugger and 
the system to be debugged.

Figure A1-1 Block diagram of an ADIv5 implementation

To access a debug resource, the debugger passes the appropriate resource address information to the DAP. The DAP 
executes the request by selecting the appropriate resource and then accesses resource-specific transport methods that 
are presented by the system to be debugged. The DAP consists of the following elements:

Access Port (AP) 

An AP uses a resource-specific transport mechanism to access debug information in the system to 
be debugged, and passes the information to the DP using the AP Access mechanism that is specified 
in this document. Examples of debug resources are:

• The debug registers of the core processor.

• ETM or trace port debug registers.

• A ROM Table, see Chapter D1 About ROM Tables.

• A memory system.

• A legacy JTAG device.

A debugger uses APACC accesses to exchange information held in the AP registers, as described in 
Access Ports (APs) on page A1-28

Note

A DAP must contain at least one AP, but if needed an ADI can implement multiple APs.

Debug Port (DP) 

The DP provides a debugger with a common interface to access the information that is held in the 
APs. The DP includes the following elements:

• A physical connection to the debugger. ADIv5 supports the following physical connection 
types:

— JTAG-DP.

— SW-DP.

— SWJ-DP.

For details about the supported physical connections, see Chapter B1 About the DP.
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• DP registers, which hold information that is required to support the transport mechanism that 
is implemented by the DAP, as described in Accessing the DAP. A debugger uses the DPACC 
scan chain to exchange information held in the DP registers.

For detailed information about the DP registers, see DP register descriptions on page B2-53.

Resource-specific transport 

The connection between the DP and the APs performs the following tasks:

• Select the appropriate debug resource, based on the address information that was provided 
by the debugger.

• Transport the data between the APs and the DP.

A1.3.2   Accessing the DAP

The diagram in Figure A1-1 on page A1-25 shows how a debugger logically accesses the DP and AP registers. 

• Although the DP is involved in responding to APACC requests, this involvement is transparent to the 
debugger at the level of the APACC. 

• The debugger can use the DPACC method to access the DP registers, and achieve one of the following:

— Set the parameters for an imminent APACC. For example, the selection of a particular AP is done by 
setting the DP register SELECT.

— Read status information for a previous APACC. For example, the status of the sticky flags resulting 
from previous resource accesses is available from the DP register CTRL/STAT.

For details about the communication between the debugger and the DAP, see The Debug Port (DP) on page A1-27.

Note

Although this specification defines the ADIv5 in terms of the elements that are shown in Figure A1-1 on 
page A1-25, it is not mandatory to structure implementations in this way. The elements that are shown in the figure, 
however, provide a convenient representation for describing the programmers’ model.
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A1.4 The Debug Port (DP)

An ADI implementation includes a single DP that provides the following features:

• An external physical connection to the interface. The signals that make up the physical connection depend 
on the DP type.

• A method to obtain the identification code of the DAP.

• DP and AP access methods, which depend on the DP type.

• A method to abort a register access that appears to have failed.

The ADIv5 specification supports the following DP types:

The JTAG Debug Port (JTAG-DP) 

The JTAG-DP is accessed by IEEE 1149.1-compliant DBGTAP scan chains to read and write 
register information.

• For more information about DBGTAP scan chains, see Chapter B3 The JTAG Debug Port.

• IEEE Standard 1149.1 Test Access Port and Boundary Scan Architecture contains detailed 
information about the requirements for JTAG scan chains.

The Serial Wire Debug Port (SW-DP) 

The SW-DP is a two-pin serial interface that uses a packet-based protocol to read or write registers. 
The protocol requires the following steps for communication between the host, which is the 
debugger, and the target, which is the ADI:

1. A host-to-target packet request, which includes whether the required access is to a DP register 
(DPACC) or to an AP register (APACC), and a two-bit register address.

2. A target-to-host acknowledge response.

3. A data transfer phase, if necessary. This phase can be target-to-host or host-to-target, 
depending on the request that is made in the first phase.

For details about the SW-DP protocol, see Chapter B4 The Serial Wire Debug Port.

The Serial Wire/JTAG Debug Port (SWJ-DP) 

The SWJ-DP interface combines the SWD and JTAG Data Link protocols using the following 
mechanism:

• The pins that carry the signals are shared between the two options.

• The debugger can select which of the protocols it wants to use.

For details about how to implement the SWJ-DP, see Chapter B5 The Serial Wire/JTAG Debug Port. 
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A1.5 Access Ports (APs)

An AP uses a resource-specific transport mechanism to access debug information in the system to be debugged. The 
AP passes the information to the DP from where it can be accessed by a debugger using a standardized protocol 
over a standard physical connection.

The implementation of an AP depends on the resources it accesses. This specification includes programmers’ 
models for following two types of resources:

• Memory-mapped resources, such as debug peripherals, for which ADIv5 defines a MEM-AP programmers’ 
model. For a complete description of the MEM-AP programmers’ model, see Guide to the detailed 
description of a MEM-AP on page A1-30.

• Legacy IEEE 1149.1 JTAG devices, for which ADIv5 defines a JTAG-AP and associated programmers’ 
model. For a complete description of the JTAG-AP programmers’ model, see Guide to the detailed 
description of a JTAG-AP on page A1-31.

Note

This specification does not specify exact requirements for the transport between the AP and the resource. In 
particular, it does not require a MEM-AP to use a bus to connect to the system being debugged. For example, ADIv5 
might be directly integrated into the resource. In logical terms, however, a MEM-AP always accesses a 
memory-mapped resource in the system being debugged, which is why this specification describes MEM-AP 
accesses to the system being debugged as memory accesses.

In the future, more Arm APs might become available. 

An ADI can include APs that are specified by companies other than Arm.

All APs must follow a base standard for identification, and debuggers must be able to recognize and ignore APs that 
they do not support. For more information, see Chapter C1 About the AP.

As described in The subdivisions of an ADIv5 implementation on page A1-25:

• The simplest ADI has only one AP. This AP can be either a MEM-AP or a JTAG-AP.

• ADIs can have multiple APs. For example:

— A mixture of MEM-APs and JTAG-APs.

— All MEM-APs.

— All JTAG-APs.

• Debuggers must be able to recognize and ignore unsupported APs. 

For more information, see Chapter C1 About the AP.

A1.5.1   Using the Debug Port to access Access Ports

Figure A1-2 on page A1-30 shows the different levels between the physical connection to the debugger and the 
debug resources of the system being debugged. These levels are designed to enable efficient access to the system 
being debugged, and several levels provide registers within the DAP. This section describes how these register 
accesses are implemented.

The DAP supports two types of accesses: DP accesses and AP accesses. Because debuggers usually have serial 
interfaces, the methods of making these accesses are kept as short as possible, and all accesses are 32-bits.

The description that is given here is of scan chain access to the registers, from a debugger that is connected to a 
JTAG Debug Port. However, the process is similar when the access is from an SWD interface connection to an 
SW-DP. Differences when accessing the registers from a Serial Wire Debug interface connection are described in 
Chapter B4 The Serial Wire Debug Port.

Every AP or DP access transaction from the debugger includes two address bits, A[3:2]:

• For a DP register access, the address bits A[3:2] and SELECT.DPBANKSEL determine which register is 
accessed.
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• For an AP register access, SELECT.APSEL selects an AP to access, and the address bits A[3:2] are combined 
with SELECT.APBANKSEL to determine which AP register is accessed, as shown in Figure A1-2 on 
page A1-30. The two address bits A[3:2] are decoded to select one of the four 32-bit words from the register 
bank that is indicated by SELECT.APBANKSEL in the AP indicated by SELECT.APSEL.

Bits[1:0] of all AP and DP register addresses are 0b00.

For example, to access the register at address 0x14 in the AP that is selected when SELECT.APSEL is 0x00, the 
debugger must:

• Use a DP register write to set:

— SELECT.APSEL to 0x00.

— SELECT.APBANKSEL to 0x1.

• Use an AP register access with A[3:2] = 0b01.

The DAP combines A[3:2] with SELECT.APBANKSEL to generate the AP register address, 0x14. The debugger 
can access any of the four registers from 0x10 to 0x1C without changing SELECT.

This access model is shown in Figure A1-2 on page A1-30. This figure shows how the contents of the SELECT 
register are combined with the A[3:2] bits of the APACC scan-chain to form the address of a register in an AP. Other 
parts of the JTAG-DP are also shown. These parts are explained in greater detail in later sections.

• Figure C2-1 on page C2-149, for a MEM-AP implementation.

• Figure C3-1 on page C3-191, for a JTAG-AP implementation.

These figures give more detail of the connections to the debug or system resources.
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Figure A1-2 Structure of the DAP, showing DPv0 JTAG-DP accesses to a generic AP

A1.5.2   Guide to the detailed description of a MEM-AP

The operation and use of a MEM-AP must be understood within the content of interactions with all of the following 
components:

• The MEM-AP itself.

• The MEM-AP registers.

• The standard debug components registers that you access through the MEM-AP.

The MEM-AP is described in the following chapters of this specification:

• Chapter C1 About the AP.

• Chapter C2 The Memory Access Port.
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The MEM-AP provides access to zero, one, or more debug components. Any debug component that complies with 
the Arm Generic Identification Registers specification implements a set of Component Identification Registers. 
These registers are described in the Arm® CoreSight™ Architecture Specification.

If the MEM-AP connects to more than one debug component, the system that is accessed by the MEM-AP must 
also include at least one ROM Table. ROM Tables are accessed through a MEM-AP and are described in Chapter D1 
About ROM Tables.

Note

As shown in Design choices and implementation examples on page A1-32, a system with only one functional debug 
component might also implement a ROM Table.

A1.5.3   Guide to the detailed description of a JTAG-AP

To understand the operation and use of a JTAG-AP, you must understand:

• The JTAG-AP itself.

• The JTAG-AP registers.

The JTAG-AP is described in the following chapters of this specification:

• Chapter C1 About the AP.

• Chapter C3 The JTAG Access Port.

The JTAG-AP provides a standard JTAG connection to one or more legacy components. The connection between 
the JTAG-AP and the components is described by the IEEE 1149.1-1990 IEEE Standard Test Access Port and 
Boundary Scan Architecture. Details on how to use of this connection are outside the scope of this specification.

A1.5.4   Using the AP to access debug resources

Accessing the AP gives access to the system being debugged, which is shown as access to Debug resources in 
Figure A1-2 on page A1-30. 

In summary:

• In a MEM-AP, the debug resources are logically memory-mapped. Chapter C2 The Memory Access Port 
section MEM-AP register accesses and memory accesses on page C2-150 describes the method for accessing 
these resources. The connection between the MEM-AP and a debug resource, however, is outside the scope 
of this specification.

• In a JTAG-AP, the debug resources are connected through a standard JTAG serial connection, as defined in 
IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture. For more information 
about accessing the resources, see Chapter C3 The JTAG Access Port.
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. A1-31
ID022122 Non-Confidential



A1 About the Arm Debug Interface 
A1.6 Design choices and implementation examples
A1.6 Design choices and implementation examples

Figure A1-1 on page A1-25 introduces the components that comprise an ADI. 

Before implementing an ADI, certain design choices must be made, as described in this section regarding the 
following functional blocks of the interface:

• Choices for the DP.

• Choices for the APs.

Note

This specification is written for engineers implementing an Arm Debug Interface, and for engineers using an Arm 
Debug Interface. The design choices outlined in this specification for a debug interface have an implicit purpose. If 
the reasoning behind the design choices are not explicit, the implementer of the debug interface must be contacted 
for further information.

A1.6.1   Choices for the DP

The DP determines which type of physical connection the ADI presents to the debugger. A DAP has only one DP, 
so your choice for the DP type decides the physical connection for the entire design. You can choose from the 
following DP types:

• JTAG-DP.

• SW-DP.

• SWJ-DP.

Note

Note the following with respect to the DP types mentioned in this document:

• In an illustration of an ADI, a component that is labeled DP can represent any of the available options.

• Arm might define more DP types in the future.

A1.6.2   Choices for the APs

A single ADI uses a single AP to connect to a single debug component, for example:

• A MEM-AP that connects to a single microprocessor core, as shown in Figure A1-3.

• A JTAG-AP that connects to a single legacy IEEE 1149.1 device, as shown in Figure A1-4 on page A1-33.

Figure A1-3 Simple ADI MEM-AP Implementation
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Figure A1-4 Simple ADI JTAG-AP Implementation

A system with only a single debug component often implements a ROM table, as explained in ROM Tables on 
page C2-148 and shown in Figure A1-5.

Figure A1-5 Simple example of an ADI implementation, with ROM Table

Because a single ADI can include multiple APs, design choices for APs must be made at two levels:

• Choosing the number of APs in the ADI, and whether each AP is a MEM-AP or a JTAG-AP. These decisions 
are outlined in Top-level AP planning choices.

• The choices that have to be made for each implemented AP, as outlined in the following sections:

— Choices for JTAG-APs on page A1-35.

— Choices for MEM-APs on page A1-35.

Top-level AP planning choices

In a more complex system, there can be multiple APs. Each AP can be connected to multiple components, or 
multiple address spaces. An AP can be implemented as one of the following three types:

• As a MEM-AP with a memory-mapped debug bus connection. The debug bus connects directly to one or 
more debug register files.

• As a MEM-AP with a memory-mapped system bus connection. The MEM-AP connection to the system bus 
provides access to one or more debug register files.

• As a JTAG-AP. A JTAG-AP connects directly to one or more JTAG devices, and enables connection to legacy 
hardware components.

Note
The connection between legacy hardware components and a JTAG-AP is defined by the JTAG standard. For 
more information, see Chapter C3 The JTAG Access Port.

If you are designing or specifying an ADI, it must be decided how many APs and of which types are required.This 
depends largely on the debug components of the system to which your ADI connects.
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Figure A1-6 shows a more complex ADI and illustrates the different AP types.

Figure A1-6 Complex Arm Debug Interface that uses several AP types

The ADIv5 architecture specification supports the following features:

• A DAP is permitted to contain multiple APs.

• A single MEM-AP is permitted to access multiple register files. 

• An AP is permitted to access a mixture of system memory and debug register files.

When implementing these features, however, you must observe the following conditions:

• Every AP must follow the basic standard for identification that is described this specification. 

• Debuggers must have a way to ignore APs that they do not recognize.

In illustrations such as Figure A1-2 on page A1-30, the DP can be of any DP type that is defined by ADIv5.
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Choices for MEM-APs

The following design decisions must be made for a MEM-AP:

Decisions that depend on the requirements of those debug components 

The main decisions to be made for a MEM-AP concern the connection between the MEM-AP and 
the memory-mapped debug components that are connected to it. These decisions include:

• Whether a bus is required for this connection.

• The width of the bus, if implemented.

• The memory map of the MEM-AP address space.

Inclusion of a ROM Table 

If a MEM-AP connects to more than one debug component, the system must include one or more 
ROM Tables to provide information about the debug system. A system that has only one other 
component does not require a ROM Table, but a system designer might choose to include one 
anyway. For more information, see ROM Tables on page C2-148.

The inclusion of IMPLEMENTATION DEFINED MEM-AP features 

• Certain features must be included if the connection is less than 32-bits wide. 

• The debug components can place limitations on the connection, for example a component 
might require 32-bit access.

For more information about conditional MEM-AP features, see:

• MEM-AP functions on page C2-152.

• MEM-AP implementation requirements on page C2-162.

For detailed information about implementing a MEM-AP, see Chapter C2 The Memory Access Port.

Choices for JTAG-APs

The following design decisions must be made for a JTAG-AP:

The number of JTAG scan chains that are connected to the JTAG-AP 

A single JTAG-AP can connect to up to eight JTAG scan chains. These scan chains can be split 
across multiple devices or components within the system being debugged.

The number of TAPs in each scan chain 

A single JTAG scan chain can contain multiple Test Access Ports (TAPs). However, Arm 
recommends that each scan chain connected to a JTAG-AP contains only one TAP.

For more information, see Chapter C3 The JTAG Access Port.
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Chapter B1 
About the DP

This part describes the features that are implemented by the DP.

A DP can be implemented as a JTAG Debug Port (JTAG-DP), a Serial Wire Debug Port (SW-DP), or a combined 
Serial Wire/JTAG Debug Port (SWJ-DP).

Requirements that apply to all DP types are described in the following sections in this chapter:

• MINDP, Minimal DP extension on page B1-40.

• Sticky flags and DP error responses on page B1-41.

• The transaction counter on page B1-43.

• Pushed-compare and pushed-verify operations on page B1-44.

• Power and reset control on page B1-46.

Reference information for all DP types is described in the following chapter:

• Chapter B2 DP Reference Information.

Specific information for each of the DP types is described in the following chapters:

• Chapter B3 The JTAG Debug Port.

• Chapter B4 The Serial Wire Debug Port.

• Chapter B5 The Serial Wire/JTAG Debug Port.
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B1.1 MINDP, Minimal DP extension

The MINDP programmers’ model is a simplified version of the DP that is intended for low gate-count 
implementations. MINDP implementations must use DPv1 or later.

MINDP implementations must omit the following DP features:

• Pushed-verify operation.

• Pushed-compare operation.

• The transaction counter.

MINDP implementations must observe the following conventions:

• The DPIDR.MIN field is RAO.

• The following fields of the CTRL/STAT register are RES0:

— TRNCNT.

— MASKLANE.

— STICKYCMP.

— TRNMODE.

See also CTRL/STAT.

• The ABORT.STKCMPCLR field is SBZ. Writing 0b1 to this bit is UNPREDICTABLE.
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B1.2 Sticky flags and DP error responses

Sticky flags signal transaction errors and are persistent between transactions. When set, a sticky flag remains set 
until the debugger actively clears it, even if the condition that caused the flag to be set no longer applies.

In the CTRL/STAT register, the sticky error flags are:

• STICKYERR, bit[5].

• STICKYCMP, bit [4].

• STICKYORUN, bit[1].

• WDATAERR, bit[7], SW-DP only.

After performing a series of APACC transactions, a debugger must check the CTRL/STAT register to check if an 
error occurred. If the debugger finds that a sticky flag is set, it clears the flag, and, if necessary, initiates extra 
APACC transactions to determine why the sticky flag was set. Because the flags are sticky, the debugger does not 
have to check the flags after every transaction, and must only check the CTRL/STAT register periodically, which 
reduces the overhead of checking for errors.

When an error is flagged, the current transaction is completed and subsequent APACC transactions are discarded 
until the sticky flag is cleared.

The DP response to an error condition and the method to clear the sticky flags depends on the DP type:

• An SW-DP immediately signals an error response.

• A JTAG-DP immediately discards all transaction and marks them as complete.

For details on how to clear the sticky flags for each DP type, see the descriptions of the sticky flag fields in 
CTRL/STAT, Control/Status register on page B2-55.

If pushed transactions are supported, the sticky flag CTRL/STAT.STICKYCMP reports the result of pushed 
operations, see Pushed-compare and pushed-verify operations on page B1-44. CTRL/STAT.STICKYCMP behaves 
in the same way as the sticky flags described in this section.

The DP uses the sticky flags in the CTRL/STAT register to signal the following transaction errors:

Read and write errors 

A read or write error can occur in the DAP or in the resource being accessed. In either case, when 
the error is detected, the Sticky Error flag CTRL/STAT.STICKYERR is set to 0b1.

For example, a read or write error might occur if the debugger makes an AP transaction request 
while the debug power domain is powered down. See Power and reset control on page B1-46 for 
information about power domains.

Overrun detection 

DPs support an overrun detection mode, which enables a debugger to send blocks of commands 
using a connection with high latency and high throughput. These commands must be sent with 
sufficient in-line delays to make overrun errors unlikely. To implement an overrun detection mode, 
the DAP can be programmed to set the Sticky Overrun flag, CTRL/STAT.STICKYORUN, to 0b1 if 
an overrun error occurs. In overrun detection mode, the debugger must check the Sticky Overrun 
flag for overrun errors after each sequence of APACC transactions. 

Overrun detection mode is enabled by setting the Overrun Detect bit, 
CTRL/STAT.ORUNDETECT, to 0b1. 

Due to the differences between the JTAG-DP and the SW-DP, their behavior in overrun detection 
mode is DATA LINK DEFINED:

JTAG-DP If the response to any transaction is not OK/FAULT, the Sticky Overrun flag, 
CTRL/STAT.STICKYORUN, is set to 0b1. 

The response to a transaction is WAIT until the previous AP transaction is complete. 
Subsequent responses are OK/FAULT. See Sticky overrun behavior on DPACC and 
APACC accesses on page B3-100.
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SW-DP If the response to any transaction is not OK, the Sticky Overrun flag, CTRL/STAT. 
STICKYORUN, is set to 0b1. 

If a previous AP transaction is incomplete, the first response to a transaction is WAIT. 
Subsequent responses are FAULT, because the STICKYORUN flag is 0b1. See Sticky 
overrun behavior on page B4-115.

The value of the Sticky Error flag, CTRL/STAT.STICKYERR, is not changed.

Note
The method for clearing the STICKYORUN flag depends on whether the DP type is SW-DP or 
JTAG-DP. See the descriptions of the STICKYORUN field in CTRL/STAT, Control/Status register 
on page B2-55 for more information.

If a new transaction results in an overrun error while an earlier transaction is incomplete, the earlier 
transaction completes normally. Other sticky flags, however, might be set to 0b1 during completion 
of the earlier transaction.

If the debugger clears the ORUNDETECT flag while STICKYORUN is 0b1, the resulting value of 
STICKYORUN is UNKNOWN.

To leave overrun detection mode, a debugger must perform the following steps:

1. Check the value of the CTRL/STAT.STICKYORUN flag.

2. If the STICKYORUN flag is 0b1, clear it to 0b0.

3. To disable overrun detection mode, clear the ORUNDETECT flag to 0b0.

Protocol errors (SW-DP only) 

The SW-DP can generate protocol errors, for example in the case of wire-level errors. 

Note

Although protocol errors can only occur in the SW-DP, they are described in this chapter because 
they are part of the sticky flags error-handling mechanism.

The required response is as follows:

• If the SW-DP detects a protocol error in a packet request, the DP does not respond to the 
message.

• If the SW-DP detects a parity error in the data phase of a write transaction, it sets the Sticky 
Write Data Error flag, CTRL/STAT.WDATAERR. The Sticky Write Data Error flag is treated 
in the same way as the other sticky flags described in this section.

For more information, see Parity on page B4-108 and Protocol error response on page B4-114.
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B1.3 The transaction counter

Except for MINDP implementations, DPs must include an AP transaction counter, CTRL/STAT.TRNCNT. The 
transaction counter enables a debugger to generate a sequence of AP transactions with a single AP transaction 
request. With a MEM-AP access, the transaction counter enables an AP transaction to generate a sequence of 
accesses to the connected memory system.

Note

Each AP defines which registers support sequences of transactions. If an AP register does not support sequences of 
transactions, or SELECT.APSEL selects an AP that is not present, then the result of a sequence of transactions to 
that register is UNPREDICTABLE. Reserved AP registers and the common AP IDR do not support sequences of 
transactions.

Examples of the use of the transaction counter are:

Memory fill operations 

To facilitate memory fill operations, the transaction counter can repeatedly write a single data value 
that is supplied in an AP transaction request. The MEM-AP includes a mechanism that initiates a 
series of AP accesses and automatically increments the access address after each AP access. This 
mechanism results in the supplied data value being written to a sequence of memory addresses under 
the control of the transaction counter. For more information, see Packed transfers on page C2-158.

Fast searches and memory verification 

To perform a fast search, or verify of an area of memory, the transaction counter can be used when 
reading from the DRW register, with pushed-compare or pushed-verify operations enabled. For 
examples of this application, see Pushed-compare and pushed-verify operations on page B1-44, 
and, for more details, Example of using the transaction counter for a pushed-compare operation on 
a MEM-AP on page C2-166.

Writing a value other than zero to the CTRL/STAT.TRNCNT field generates multiple AP transactions. For example, 
writing 0x001 to this field generates two AP transactions, and writing 0x002 generates three transactions.

If the transaction counter is not zero, it is decremented after each successful transaction. If one of the following is 
true, the transaction counter is not decremented and the transaction is not repeated:

• The transaction counter is zero.

• The CTRL/STAT.STICKYERR flag is 0b1.

• The CTRL/STAT.STICKYCMP flag is 0b1.

If a sequence of operations is terminated because the Sticky Error or Sticky Compare flag was set to 0b1, the 
transaction counter remains at the value from the last successful transaction, which enables the software to recover 
the location of the error, or determine where the compare or verify operation terminated.

The transaction counter does not automatically reload when it reaches zero.
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B1.4 Pushed-compare and pushed-verify operations

The DP supports pushed operations. Pushed operations improve performance where writes might be faster than 
reads. They are used as part of in-line tests, for example Flash ROM programming and monitor communication.

Pushed operations use the following mechanism:

1. The debugger initiates an AP write transaction. The value to be written is stored in the DP.

2. The DP reads a value from the AP.

Note
Whenever an AP write transaction is performed with pushed-compare or pushed-verify enabled, the AP 
access that results is a read operation, not a write.

3. The DP then compares the two values and updates the Sticky Compare flag, CTRL/STAT.STICKYCMP, 
based on the result of the comparison. Whenever the STICKYCMP bit is set to 0b1 in this way, any 
outstanding transaction repeats are canceled.

Pushed operations can affect AP behavior:

• Performing an AP read transaction with pushed-compare or pushed-verify enabled causes UNPREDICTABLE 
behavior.

• If an SW-DP performs an AP read transaction with pushed-compare or pushed-verify, an UNKNOWN value is 
returned, and the read has UNPREDICTABLE side effects, even though the wire-level protocol remains 
coherent.

• Each AP defines which registers support pushed transactions. If an AP register does not support pushed 
transactions, or SELECT.APSEL selects an AP that is not present, a pushed transaction sets STICKYCMP 
to an UNKNOWN value. Reserved AP registers and the common AP IDR do not support pushed transactions.

To configure pushed operations, use the CTRL/STAT register:

1. Enable the appropriate transfer mode using the Transfer Mode field, TRNMODE:

• A value of 0b01 in TRNMODE selects pushed-verify operations: if the values match, the 
STICKYCMP flag is set to 0b1.

• A value of 0b10 in TRNMODE selects pushed-compare operations: if the values do not match, the 
STICKYCMP flag is set to 0b1.

2. Select the byte lanes to be included in the comparison using the byte lane mask field, MASKLANE. A value 
of 0b1 for bit n of MASKLANE includes byte n of the APACC write value and the current AP value in the 
comparison. For details about the MASKLANE field, see CTRL/STAT, Control/Status register on 
page B2-55.

The following are examples of applications of pushed-verify and pushed-compare MEM-AP operations:

• Pushed-verify can be used to verify the contents of system memory. A series of expected values are written 
as AP transactions. With each write, the pushed-verify logic initiates an AP read access, and compares the 
result of this access with the expected value. If the values do not match, the CTRL/STAT.STICKYCMP flag 
is set to 0b1. This operation is described in more detail in Example of using a pushed-verify operation on a 
MEM-AP on page C2-165.

• Pushed-compare can be used to search system memory for a given value. However, this feature is most useful 
when it is performed using the AP transaction counter, which is described in The transaction counter on 
page B1-43. This operation is described in more detail in Chapter C2 The Memory Access Port section 
Example of using the transaction counter for a pushed-compare operation on a MEM-AP on page C2-166.

The following example describes pushed operations on a specific AP, which makes it easier to understand how 
pushed operations are implemented. Consider an AP write transaction to the Data Read/Write (DRW) register in a 
MEM-AP with a TRNMODE value of 0b10, and a MASKLANE value of 0b0101. The following actions take place:

1. The DP holds the data value from the AP write transaction in the pushed-compare logic, see Figure A1-2 on 
page A1-30.
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2. The AP reads from the address indicated by the MEM-AP Transfer Address Register (TAR).

3. The value that is returned by this read is compared with the value held in the pushed-compare logic. The 
comparison is masked using the value of MASKLANE. The example value, 0b0101, includes byte lanes zero 
and two in the comparison. The result is either a match or a mismatch.

4. In the example, the TRNMODE value of 0b10 selects pushed-compare operations:

• If the result of the comparison was a mismatch, the CTRL/STAT.STICKYCMP flag is set to 0b1 and 
any outstanding transactions are canceled.

• If the result of the comparison was a match, nothing happens.
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B1.5 Power and reset control 

The DP supports the following power and reset control fields in the CTRL/STAT register:

• Control fields for system and debug power control, CDBGPWRUPREQ, CDBGPWRUPACK, 
CSYSPWRUPREQ, and CSYSPWRUPACK. For more information, see System and debug power control 
behavior on page B2-77.

• Control fields for debug reset control, CDBGRSTREQ and CDBGRSTACK. For more information, see 
Debug reset control behavior on page B2-82.

These control bits are programmable by the debugger, and drive signals into the target system. 

The DP does not provide any control bits for requesting a system reset. However, it is common for the physical 
interface to the debugger to include a system reset pin, nSRST, which is intended to provide requests or stimuli into 
existing power and reset controllers. For details about how to implement a system reset pin, see System reset control 
behavior on page B2-84.

ADI does not replace the system power and reset controllers. This specification does not place any requirements on 
the operation of system power and reset controllers.
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DP Reference Information

This chapter contains the following reference information for the DP:

• DP architecture versions on page B2-48.

• DP register descriptions on page B2-53.

• System and debug power control behavior on page B2-77.

• Debug reset control behavior on page B2-82.

• System reset control behavior on page B2-84.
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B2.1 DP architecture versions

This section introduces the concept of DP architecture versions and describes the DP registers for the DP 
architecture versions DPv0, DPv1, and DPv2. It contains the following subsections: 

• DP architecture versions summary.

• DP architecture version 0 (DPv0) address map on page B2-49.

• DP architecture version 1 (DPv1) address map on page B2-50.

• DP architecture version 2 (DPv2) address map on page B2-51.

One of the significant differences between the JTAG-DP and the SW-DP is how the registers are accessed. For this 
reason, the tables that describe the registers do not include register address information. This information is included 
at the start of the detailed description of each register for each DP type.

Several aspects of the DP architecture are DATA LINK DEFINED, and described in the following chapters:

• Chapter B3 The JTAG Debug Port.

• Chapter B4 The Serial Wire Debug Port.

• Chapter B5 The Serial Wire/JTAG Debug Port.

B2.1.1   DP architecture versions summary

Every ADI includes a single DP that is compliant with one of the DP architecture versions. Table B2-1 shows the 
DP architecture versions.

Although the DP architecture versions are different, their register sets are similar, as summarized in Table B2-2. For 
details about how the register is implemented in a specific architecture version, and if the implementation is DATA 
LINK DEFINED, see DP register descriptions.

Table B2-1 DP architecture versions

Version number Description Debug Port Support Notes

DPv0 DP architecture version 0 JTAG-DP JTAG-DP in ADIv5.0

DPv1 DP architecture version 1 SW-DP, JTAG-DP SW-DP in ADIv5.0

DPv2 DP architecture version 2 SW-DP, JTAG-DP SW-DP version 2 in ADIv5.1

Table B2-2 Summary of DP registers

Name
DP architecture version

DPv0 DPv1 DPv2

ABORT Yes Yes Yes

DPIDR No Yes Yes

CTRL/STAT Yes Yes Yes

SELECT Yes Yes Yes

RDBUFF Yes Yes Yes

DLCR No Yes Yes

RESEND No Yes Yes
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B2.1.2   DP architecture version 0 (DPv0) address map

DPv0 supports JTAG-DP in ADIv5.

The JTAG-DP register accessed depends on both:

• The Instruction Register (IR) value for the DAP access.

• A[3:2] from the address field of the DAP access.

For more information, see Accessing the JTAG-DP registers.

Table B2-3 shows the DPv0 register map. The A[3:2] field of the DPACC scan chain provides bits[3:2] of the 
address. Bits[1:0] of the address are always 0b00.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED. In JTAG-DP, 
the register is implemented through the ABORT instruction.

Accessing the JTAG-DP registers

The JTAG-DP registers are only accessed when the IR for the DAP access contains the DPACC or ABORT 
instruction. The register accesses for each instruction are:

DPACC The DPACC scan chain accesses the DP CTRL/STAT, SELECT, and RDBUFF registers at 
addresses 0x0 to 0xC, although register address 0x0 is reserved, and the RDBUFF register at 0xC is 
always RAZ/WI on a JTAG-DP.

These registers are shown in the illustration of the JTAG-DP in Figure A1-2 on page A1-30.

ABORT For a write access with address 0x0, the ABORT scan chain accesses the ABORT register.

For a read access with address 0x0, and for any access with address 0x4 to 0xC, the behavior of the 
ABORT scan chain is UNPREDICTABLE.

For more information about the JTAG-DP scan chains, see Chapter B3 The JTAG Debug Port.

TARGETID No No Yes

DLPIDR No No Yes

TARGETSEL No No Yes

Table B2-2 Summary of DP registers (continued)

Name
DP architecture version

DPv0 DPv1 DPv2

Table B2-3 DPv0 register map

Address Name Access

0x0a

a. Reserved, UNPREDICTABLE.

- -

0x4 CTRL/STAT RW

0x8 SELECT RW

0xC RDBUFF R

- Wa
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B2.1.3   DP architecture version 1 (DPv1) address map

DPv1 extends DPv0 by adding support for SWD protocol version 1 and defining the following extra registers:

• The Debug Port Identification Register, DPIDR.

• The Data Link Control Register, DLCR.

• More DATA LINK DEFINED registers.

In addition, the definition of some of the DPv0 registers is changed:

• The behavior of writes to bits[4:1] of the ABORT register is defined.

• The behavior on writing to bits[5:4, 1] of the CTRL/STAT register is DATA LINK DEFINED.

• The SELECT register is write only.

For most register addresses, different registers are addressed on read and write accesses. In addition, the 
SELECT.DPBANKSEL bit determines which register is accessed at address 0x04.

Table B2-4 shows the DPv1 register map.

The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:

• If defined by the data link, DP register 0 is reserved for this purpose.

• In a JTAG-DP, this register is implemented through the ABORT instruction.

Table B2-4 DPv1 register map

Addressa

a. Bits [1:0] of the address are always 0b00.

DPBANKSELb

b. SELECT.DPBANKSEL. 

Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:

• ABORT

• Reserved, UNPREDICTABLE

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 to 0xF - - UNPREDICTABLE

0x8 x - RO DATA LINK DEFINED

SELECT WO -

0xC x RDBUFF RO -

- WO DATA LINK DEFINED
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SW-DP DATA LINK DEFINED registers, DPv1

Table B2-5 shows the DATA LINK DEFINED SW-DP registers for a DPv1 implementation. Bits[1:0] of the address are 
always 0b00.

For a DPv1 JTAG-DP, all DATA LINK DEFINED registers are reserved. Accesses to a reserved DATA LINK DEFINED 
register are UNPREDICTABLE.

B2.1.4   DP architecture version 2 (DPv2) address map

DPv2 extends DPv1 with support for SWD protocol version 2 and definitions for the following registers:

• The Target Identifier register, TARGETID.

• The Data Link Protocol Identification Register, DLPIDR.

• The DATA LINK DEFINED Target Selection register, TARGETSEL.

• The EVENT Status register, EVENTSTAT.

For most register addresses, different registers are addressed on read and write accesses. In addition, an extended 
SELECT.DPBANKSEL field determines which register is accessed at address 0x04.

Table B2-6 shows the DPv2 register map.

Table B2-5 SW-DP data link defined registers, DPv1

Address Name Access

0x0 ABORT WO

0x8 RESEND RO

0xCa

a. Reserved, SBZ.

- WO

Table B2-6 DPv2 address map

Addressa DPBANKSELb Name Access Notes

0x0 x DPIDR RO -

- WO DATA LINK DEFINED, as either:

• ABORT

• Reserved, RES0

0x4 0x0 CTRL/STAT RW -

0x1 DLCR RW -

0x2 TARGETID RO -

0x3 DLPIDR RO -

0x4 EVENTSTAT RO -

All other values - - Reserved, RES0

0x8 x - RO DATA LINK DEFINED

SELECT WO -
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The DP must implement the ABORT register. How this register is accessed is DATA LINK DEFINED, and:

• If defined by the data link, DP register 0 is reserved for this purpose.

• In JTAG-DP, the ABORT register is implemented through the ABORT instruction.

SW-DP DATA LINK DEFINED registers, DPv2

Table B2-7 shows the DATA LINK DEFINED SW-DP registers for a DPv2 implementation:

For a DPv2 JTAG-DP, all DATA LINK DEFINED registers are RES0.

B2.1.5   Register maps, and accesses to reserved addresses

The register memory maps for the DP and the AP within the DAP are shown in:

• Figure A1-2 on page A1-30, for accesses to JTAG-DP registers.

• Figure C2-1 on page C2-149, for accesses to MEM-AP registers.

• Figure C3-1 on page C3-191, for accesses to JTAG-AP registers.

There are several reserved addresses in these register maps. Reserved AP registers are RES0.

0xC x RDBUFF RO -

- WO DATA LINK DEFINED

a. Bits [1:0] of the address are always 0b00.

b. SELECT.DPBANKSEL field.

Table B2-7 SW-DP data link defined registers, DPv2

Addressa

a. Bits [1:0] of the address are always 0b00.

SWD protocol 
version

Name Access See also:

0x0 x ABORT WO -

0x8 x RESEND RO -

0xC v1 - WO Reserved, SBZ

v2 TARGETSEL WO -

Table B2-6 DPv2 address map (continued)

Addressa DPBANKSELb Name Access Notes
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B2.2 DP register descriptions

This section gives full descriptions of the DP registers.

The registers are listed alphabetically by name.

B2.2.1   ABORT, Abort register

The ABORT characteristics are:

Purpose 

ABORT forces an AP transaction abort.

From a software perspective, an abort is a fatal operation. It discards any outstanding and pending 
transactions, and leaves the AP in an UNPREDICTABLE state. On an SW-DP, however, the sticky error 
bits are not cleared to 0b0.

Writing 0b1 to the ABORT.DAPABORT register bit generates a DAP abort, causing the current AP 
transaction to abort. This action also terminates the transaction counter, if it was active. It is 
IMPLEMENTATION DEFINED whether the AP propagates the abort, for example by aborting a 
transaction in progress.

After a DAP abort:

• It is IMPLEMENTATION DEFINED which registers, if any, in the AP that was aborted can be 
accessed. If the register cannot be accessed, the DP returns a WAIT response to an AP access 
to the register. Arm recommends that any AP register that is not directly related to a stalling 
transaction is accessible, to allow a debugger to diagnose the cause of the error.

• A DP access or an AP access to any other AP are accepted by the DP. This includes AP 
accesses to non-existent APs, which are defined to behave as RAZ/WI.

Caution
Use this function only in extreme cases, when debug host software has observed stalled target 
hardware for an extended period. Stalled target hardware is indicated by repeated WAIT responses.

Note

In DPv1 and DPv2 only, the ABORT register has extra fields that clear error and sticky flag 
conditions. See the descriptions of the flag fields in CTRL/STAT, Control/Status register on 
page B2-55. In DPv0, these fields are reserved, SBZ.

Usage Constraints 

ABORT is accessible as follows:

Configurations 

ABORT is defined and implemented in DPv0, DPv1, and DPv2.

Attributes 

ABORT is a 32-bit write-only DP architecture register.

Default

WO
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Field descriptions

The ABORT bit assignments are:

Bits[31:1], DPv0
Bits[31:5], DPv1 or higher 

Reserved, SBZ.

ORUNERRCLR, bit[4], DPv1 or higher  

To clear the CTRL/STAT.STICKYORUN overrun error bit to 0b0, write 0b1 to this bit.

WDERRCLR, bit[3], DPv1 or higher 

To clear the CTRL/STAT.WDATAERR write data error bit to 0b0, write 0b1 to this bit.

STKERRCLR, bit[2], DPv1 or higher 

To clear the CTRL/STAT.STICKYERR sticky error bit to 0b0, write 0b1 to this bit.

STKCMPCLR, bit[1], DPv1 or higher 

To clear the CTRL/STAT.STICKYCMP sticky compare bit to 0b0, write 0b1 to this bit. It is 
IMPLEMENTATION DEFINED whether the CTRL/STAT.STICKYCMP bit is implemented. See 
MINDP, Minimal DP extension on page B1-40. 

DAPABORT, bit[0] 

To generate a DAP abort, which aborts the current AP transaction, write 0b1 to this bit.

Do this write only if the debugger has received WAIT responses over an extended period.

In DPv0, this bit is SBO.

Accessing ABORT

Access to ABORT is DATA LINK DEFINED:

JTAG-DP Access is through its own scan-chain. See the ABORT, JTAG-DP Abort register on page B3-96.

SW-DP Accessed by a write to offset 0x0 of the DP register map.

DP Offset Aa

a. Bits[1:0] of the register address are 
always 0b00.

SELECT.DPBANKSEL

0x0 X

Reserved, SBZ

31 5 4 3 2 1 0

ORUNERRCLR
WDERRCLR

STKERRCLR
STKCMPCLR

DAPABORT

DPv1 or higher
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B2.2.2   CTRL/STAT, Control/Status register

The CTRL/STAT characteristics are:

Purpose 

CTRL/STAT is a DP architecture register that is used to control and obtains status information about 
the DP.

Usage Constraints 

Access to the register and its value after a powerup reset are defined for each field individually, as 
shown in the table. Some of fields are RO, meaning they ignore writes. See the field descriptions 
for detailed information.

Configurations 

Included in all implementations.

Attributes 

CTRL/STAT is a 32-bit read/write register.

Field Access Value after powerup reset

CDBGPWRUPACK RO

CDBGPWRUPREQ RW 0b0

CDBGRSTACK RO

CDBGRSTREQ IMPLEMENTATION DEFINED, RW, or 
RAZ/WI. See Emulation of debug reset 
request.

0b0

CSYSPWRUPACK RO

CSYSPWRUPREQ RW 0b0

MASKLANEa

a. MASKLANE, TRNCNT, and TRNMODE are not supported in MINDP configuration. In MINDP 
configuration, the effect of writing a value other than zero to either TRNCNT or TRNMODE is 
UNPREDICTABLE.

RW UNKNOWN

ORUNDETECT RW 0b0

READOKb

b. DPv1 or higher.

DATA LINK DEFINED, RES0 or RO/WI. 
See field description.

0b0

STICKYCMPa DATA LINK DEFINED, R/W1C or RO/WI. 
See field description.

0b0

STICKYWERR DATA LINK DEFINED, R/W1C or RO/WI. 
See field description.

0b0

STICKYORUN DATA LINK DEFINED, R/W1C or RO/WI. 
See field description.

TRNCNTa RW UNKNOWN

TRNMODEa RW UNKNOWN

WDATAERR DATA LINK DEFINED, RES0 or RO/WI. 
See field description.

0b0
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Field descriptions

The CTRL/STAT bit assignments are: 

CSYSPWRUPACK, bit[31] 

System powerup acknowledge. Indicates the status of the CSYSPWRUPACK signal. See Power 
control requirements and operation on page B2-79.

This bit is RO, meaning it ignores writes.

CSYSPWRUPREQ, bit[30] 

System powerup request. This bit controls the CSYSPWRUPREQ signal. See Power control 
requirements and operation on page B2-79.

After a powerup reset, this bit is 0b0.

CDBGPWRUPACK, bit[29] 

Debug powerup acknowledge. Indicates the status of the CDBGPWRUPACK signal. See Power 
control requirements and operation on page B2-79.

This bit is RO, meaning it ignores writes.

CDBGPWRUPREQ, bit[28] 

Debug powerup request. This bit controls the CDBGPWRUPREQ signal. See Power control 
requirements and operation on page B2-79.

After a powerup reset, this bit is 0b0.

CDBGRSTACK, bit[27] 

Debug reset acknowledge. Indicates the status of the CDBGRSTACK signal. See Debug reset 
control behavior on page B2-82.

This bit is RO, meaning it ignores writes.

CDBGRSTREQ, bit[26] 

Debug reset request. This bit controls the CDBGRSTREQ signal. See Debug reset control 
behavior on page B2-82.

It is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI. See Emulation of debug reset 
request on page B2-83.

After a powerup reset, this bit is 0b0.

Bits[25:24] 

Reserved, RES0.

TRNCNT, bits[23:12] 

Transaction counter. See The transaction counter on page B1-43.

31 5 4 3 2 1 0

WDATAERR
READOK

STICKYERR

TRNMODE

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ
CDBGRSTACK
CDBGRSTREQ

RES0

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT
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After a powerup reset, the value of this field is UNKNOWN.

Note

It is IMPLEMENTATION DEFINED whether this field is implemented. 

TRNCNT is not supported in MINDP configuration. In MINDP configuration, the effect of writing 
a value other than zero to TRNCNT or TRNMODE is UNPREDICTABLE. See also MINDP, Minimal 
DP extension on page B1-40.

MASKLANE, bits[11:8] 

For pushed operations, the DP performs a byte-by-byte comparison of the word that is supplied in 
an AP write transaction with the current word at the target AP address. The MASKLANE field is 
used to select the bytes to be included in this comparison. For more information about pushed 
operations, see Pushed-compare and pushed-verify operations on page B1-44. 

Each of the 4 bits of the MASKLANE field corresponds to one of the 4 bytes of the words to be 
compared. Therefore, each bit is said to control one byte lane of the compare operation.

Table B2-8 shows how the bits of MASKLANE control the comparison masking.

Note

The MASKLANE field is only relevant if the Transfer Mode field TRNMODE is 0b01, for 
pushed-verify operations, or 0b10, for pushed-compare operations. See the description of the 
TRNMODE field and Pushed-compare and pushed-verify operations on page B1-44.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal DP 
extension on page B1-40.

After a powerup reset, the value of this field is UNKNOWN.

WDATAERR, bit[7] 

This bit is set to 0b1 if one of the following Write Data Error occurs:

• A parity or framing error on the data phase of a write.

• A write that has been accepted by the DP is then discarded without being submitted to the AP.

For more information, see Sticky flags and DP error responses on page B1-41.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations 

Access is reserved, RES0.

SW-DP, all implementations, and JTAG-DP, DPv1 and higher 

Access is RO/WI.

Table B2-8 Control of pushed operation comparisons by MASKLANE

MASKLANE Effect
Bits included in 
comparisonsa

a. Whether other bits are included is determined by the other bits of MASKLANE:

To compare the whole word, MASKLANE is set to 0b1111 to include all byte lanes. 

If a MASKLANE bit is 0b0, the corresponding byte lane is excluded from the comparison. 

0b1xxx Include byte lane 3 in comparisons. Bits[31:24].

0bx1xx Include byte lane 2 in comparisons. Bits[23:16].

0bxx1x Include byte lane 1 in comparisons. Bits[15:8].

0bxxx1 Include byte lane 0 in comparisons. Bits[7:0].
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To clear WDATAERR to 0b0, write 0b1 to the ABORT.WDERRCLR field in the 
ABORT register. A single write of the ABORT register can be used to clear multiple 
flags if necessary.

After clearing the WDATAERR flag, the data must typically be resent. 

After a powerup reset, WDATAERR is 0b0.

READOK, bit[6] 

This bit is DATA LINK DEFINED.

• On JTAG-DP, the bit is reserved, RES0.

• On SW-DP, access is RO/WI.

If the response to the previous AP read or RDBUFF read was OK, the bit is set to 0b1. If the 
response was not OK, it is cleared to 0b0.

This flag always indicates the response to the last AP read access. See Protocol error 
response on page B4-114.

After a powerup reset, this bit is 0b0.

Note

This field is defined for DPv1 and higher only.

STICKYERR, bit[5] 

This bit is set to 0b1 if an error is returned by an AP transaction. See Sticky flags and DP error 
responses on page B1-41.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations 

• Access is R/W1C.

• To clear STICKYERR to 0b0, write 0b1 to STICKYERR. This signals the DP to 
clear the flag and set it to 0b0. A single write of the CTRL/STAT register can be 
used to clear multiple flags if necessary. 

STICKYERR can also be cleared using the ABORT.STKERRCLR field.

SW-DP, all implementations, and JTAG-DP, DPv1 and higher 

• Access is RO/WI.

• To clear STICKYERR to 0b0, write 0b1 to the ABORT.STKERRCLR field in the 
ABORT register. A single write of the ABORT register can be used to clear 
multiple flags if necessary.

After clearing CTRL/STAT.STICKYERR, you must find the location where the error that caused 
the flag to be set occurred.

After a powerup reset, this bit is 0b0.

STICKYCMP, bit[4] 

This bit is set to 0b1 when a mismatch occurs during a pushed-compare operation or a match occurs 
during a pushed-verify operation. See Pushed-compare and pushed-verify operations on 
page B1-44.

It is IMPLEMENTATION DEFINED whether this field is implemented. See MINDP, Minimal DP 
extension on page B1-40.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations 

• Access is R/W1C.

• To clear STICKYCMP to 0b0, write 0b1 to STICKYCMP. This signals the DP to 
clear the flag and set it to 0b0. A single write of the CTRL/STAT register can be 
used to clear multiple flags if necessary.

STICKYCMP can also be cleared using the ABORT.STKERRCLR field.
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SW-DP, all implementations, and JTAG-DP, DPv1 and higher 

• Access is RO/WI.

• To clear STICKYCMP to 0b0, write 0b1 to the ABORT.STKCMPCLR field in the 
ABORT register. A single write of the ABORT register can be used to clear 
multiple flags if necessary.

After clearing STICKYCMP, you must retrieve the value of the transaction counter to find the 
location where the error that caused the flag to be set occurred.

After a powerup reset, this bit is 0b0.

TRNMODE, bits[3:2] 

This field sets the transfer mode for AP operations. 

In normal operation, AP transactions are passed to the AP for processing, as described in Using the 
AP to access debug resources on page A1-31.

In pushed-verify and pushed-compare operations, the DP compares the value that is supplied in an 
AP write transaction with the value held in the target AP address. The AP write transaction 
generates a read access to the debug memory system as described in Pushed-compare and 
pushed-verify operations on page B1-44.

TRNMODE can have one of the following values:

0b00 Normal operation.

0b01 Pushed-verify mode.

0b10 Pushed-compare mode.

0b11 Reserved.

After a powerup reset, the value of this field is UNKNOWN.

Note

It is IMPLEMENTATION DEFINED whether this field is implemented. 

TRNMODE is not supported in MINDP configuration. In MINDP configuration, the effect of 
writing a value other than zero to TRNCNT or TRNMODE is UNPREDICTABLE. See also MINDP, 
Minimal DP extension on page B1-40.

STICKYORUN, bit[1] 

If overrun detection is enabled, this bit is set to 0b1 when an overrun occurs. See bit[0] of this register 
for details of enabling overrun detection.

Access to and how to clear this field are DATA LINK DEFINED:

JTAG-DP, all implementations 

• Access is R/W1C.

• To clear STICKYORUN to 0b0, write 0b1 to STICKYORUN. This signals the DP 
to clear the flag and set it to 0b0. A single write of the CTRL/STAT register can 
be used to clear multiple flags if necessary.

STICKYORUN can also be cleared using the ABORT.STKERRCLR field.

SW-DP, all implementations, and JTAG-DP, DPv1 and higher 

• Access is RO/WI.

• To clear STICKYORUN to 0b0, write 0b1 to the ABORT.ORUNERRCLR field 
in the ABORT register. A single write of the ABORT register can be used to clear 
multiple flags if necessary.

After clearing STICKYORUN, the specific DP or AP transaction initiated the overrun that caused 
the flag to be set must be identified. The transactions for that DP or AP are repeated from the 
transaction pointed to by the transaction counter.

After a powerup reset, this bit is 0b0.
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ORUNDETECT, bit[0] 

This bit can have one of the following values:

0b0 Overrun detection is disabled.

0b1 Overrun detection is enabled.

For more information about overrun detection, see Sticky flags and DP error responses on 
page B1-41.

After a powerup reset, this bit is 0b0.

Accessing CTRL/STAT

CTRL/STAT can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 
0b00.

SELECT.DPBANKSEL

0x4 0x0
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B2.2.3   DLCR, Data Link Control register

The DLCR characteristics are:

Purpose 

DLCR controls the operating mode of the Data Link.

Usage Constraints 

DLCR is DATA LINK DEFINED:

• For a JTAG DP, the DLCR register is RES0.

• For an SW-DP, the DLCR register has the fields that are described in Field descriptions on 
page B2-63.

DLCR is accessible as follows:

Configurations 

DLCR is implemented in DPv1 and DPv2.

Attributes DLCR is a 32-bit DATA LINK DEFINED DP architecture register. 

Field descriptions

The DLCR bit assignments for an SW-DP are:

Bits[31:10] 

Reserved, RES0.

TURNROUND, bits[9:8] 

For an SW-DP, this field defines the turnaround tristate period. For details about line turnaround, 
see Line turnaround on page B4-107. Table B2-9 shows the permitted values of this field, and their 
meanings.

Default

RW

Table B2-9 Turnaround tristate period field, TURNROUND, bit definitions

DLCR.TURNROUND Turnaround tristate period

0b00 1 data perioda.

0b01 2 data periodsa.

0b10 3 data periodsa.

0b11 4 data periodsa.

RES0RES0

31 010 9 8 7 6 5

TURNROUND
RES0
RES1
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After a powerup or line reset, this field is 0b00.

Note

Support for varying the turnaround tristate period is IMPLEMENTATION DEFINED. An implementation 
that does not support variable turnaround must treat writing a value other than 0b00 to the 
TURNROUND field as an immediate protocol error.

Bit[7] Reserved, RES0.

Bit[6] Reserved, RES1.

Bits[5:0] 

Reserved, RES0.

Accessing DLCR

DLCR can be accessed at the following address:

B2.2.4   DLPIDR, Data Link Protocol Identification register

The DLPIDR characteristics are:

Purpose DLPIDR provides protocol version information.

Configurations 

DLPIDR is implemented in DPv2.

Note

An SWD Port that implements DPv2 must implement at least SWD protocol version 2.

Usage Constraints 

For a JTAG-DP, DLPIDR is reserved and any result from accessing the register is UNPREDICTABLE.

DLPIDR is accessible as follows:

Attributes 

DLPIDR is a 32-bit DATA LINK DEFINED register.

a. A data period is the period of a single data bit on the 
SWD interface. 

DP Offset Aa

a. Bits[1:0] of the register address are always 
0b00.

SELECT.DPBANKSEL

0x4 0x1

Default

RO
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Field descriptions

For an SW-DP, the DLPIDR bit assignments are:

TINSTANCE, bits[31:28] 

IMPLEMENTATION DEFINED. Defines an instance number for this device. This value must be unique 
for all devices with identical TARGETID.TPARTNO and TARGETID.TDESIGNER fields that are 
connected together in a multi-drop system.

Bits[27:4] RES0.

PROTVSN, bits[3:0] 

Defines the SWD protocol version that is implemented. Valid values for this field are:

0x1 SWD protocol version 2. Adds support for multidrop extensions. See Chapter B4 The 
Serial Wire Debug Port.

All other values of this field are reserved.

Accessing DLPIDR

DLPIDR can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 
0b00.

SELECT.DPBANKSEL

0x4 0x3

PROTVSNRES0

31 28 27 4 3 0

TINSTANCE
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B2.2.5   DPIDR, Debug Port Identification Register

The DPIDR characteristics are:

Purpose 

DPIDR provides information about the DP.

Usage Constraints 

DPIDR is accessible as follows:

Configurations 

DPIDR is defined and implemented only in DPv1 and DPv2.

Note

In DPv0, the DPIDR is reserved and accesses are UNPREDICTABLE.

In all DP architecture versions, a JTAG-DP implementation must implement the IDCODE 
instruction and IDCODE scan-chain. The architecture does not require that the TAP IDCODE 
register value and the DPIDR value are the same.

Attributes 

A 32-bit DP architecture register.

Access to the DPIDR is not affected by the value of SELECT.DPBANKSEL.

Field descriptions

The DPIDR bit assignments are:

REVISION, bits[31:28] 

Revision code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:20] 

Part Number for the DP. This value is provided by the designer of the DP and must not be changed.

Bits[19:17] Reserved, RES0.

MIN, bit[16] MINDP functions implemented:

0b0 Transaction counter, Pushed-verify, and Pushed-find operations are implemented.

0b1 Transaction counter, Pushed-verify, and Pushed-find operations are not implemented.

VERSION, bits[15:12] 

Version of the DP architecture implemented. Permitted values are:

0x0 Reserved. Implementations of DPv0 do not implement DPIDR.

0x1 DPv1 is implemented.

0x2 DPv2 is implemented.

Default

RO

DESIGNERRES0PARTNOREVISION VERSION

MIN

31 28 27 20 19 17 16 15 12 11 2 1 0

RAO
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All remaining values are reserved.

DESIGNER, bits[11:1] 

Code that identifies the designer of the DP.

This field indicates the designer of the DP and not the implementer, except where the two are the 
same. To obtain a number, or to see the assignment of these codes, contact JEDEC  
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example, 
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding that is used in the DPIDR is as follows:

• The JEP106 continuation code, DPIDR bits[11:8], is the number of times that 0x7F appears 
before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, IDR bits[7:1], equals bits[6:0] of the final number of the 
JEDEC code. For example, for Arm® Limited this field is 0x3B.

Bit[0] RAO.

Accessing DPIDR

DPIDR can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x0 x
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B2.2.6   EVENTSTAT, Event Status register

The EVENTSTAT characteristics are:

Purpose EVENTSTAT is used by the system to signal an event to the external debugger. The nature of the 
event is IMPLEMENTATION DEFINED.

Arm recommends connecting EVENTSTAT to one of the following:

• An output trigger of a CoreSight Cross-Trigger Interface (CTI) with software acknowledge.

• An output from a uniprocessor system that indicates whether the processor is halted:

— For Armv6-M, Armv7-M, and Armv8-M processors, the recommended HALTED 
signal.

— For all other Arm architecture processors, the recommended DBGACK signal.

Usage Constraints 

EVENTSTAT is accessible as follows:

Configurations 

EVENTSTAT is implemented in DPv2.

Attributes 

A 32-bit RO register.

Field descriptions

The EVENTSTAT bit assignments are:

Bits[31:1] Reserved, RES0.

EA, bit[0] If an event is implemented, this field is the event status flag. Valid values for the flag are:

0b0 An event requires attention.

0b1 There is no event requiring attention.

If no event is implemented, this field is RAZ.

Note

The status of the event is inverted in the register, and when debugging an implementation that does 
not implement an event, debuggers interpret a value of zero as an event requiring attention, and poll 
other registers to detect the status of the system.

Accessing EVENTSTAT

EVENTSTAT can be accessed at the following address:

Default

RO

DP Offset Aa SELECT.DPBANKSEL

0x4 0x4

RES0

31 1 0

EA
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a. Bits[1:0] of the register address are always 0b00.
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B2.2.7   RDBUFF, Read Buffer register

The RDBUFF characteristics are:

Purpose 

The purpose and behavior of RDBUFF is DATA LINK DEFINED:

JTAG-DP The Read Buffer is architecturally defined to provide a DP read operation that does not 
have any side effects. This definition allows a debugger to insert a DP read of RDBUFF 
at the end of a sequence of operations, to return the final AP Read Result and ACK 
values.

SW-DP On an SW-DP, the Read Buffer presents data that was captured during the previous AP 
read, enabling repeatedly returning the value without generating a new AP access.

Note
After reading the DP Read Buffer, its contents are no longer valid. The result of a second 
read of the DP Read Buffer is UNKNOWN.

If you require the value from an AP register read, that read must be followed by one of:

• A second AP register access, with the appropriate AP selected as the current AP.

• A read of the DP Read Buffer.

The second access to either the AP or the DP stalls until the result of the original AP 
read is available.

Usage Constraints 

RDBUFF is accessible as follows:

Configurations 

RDBUFF is implemented in DPv0, DPv1, and DPv2.

Attributes 

A 32-bit read-only buffer.

The RDBUFF bit assignments are:

Bits[31:0] DATA LINK DEFINED:

JTAG-DP RAZ/WI

SW-DP Data for previous AP read.

Accessing RDBUFF

RDBUFF can be accessed at the following address:

Default

RO

DP Offseta

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0xC x

31 0

DATA LINK DEFINED
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B2.2.8   RESEND, Read Resend register

The RESEND register characteristics are:

Purpose 

Performing a read to RESEND does not capture new data from the AP, but returns the value that 
was returned by the last AP read or DP RDBUFF read.

RESEND enables the debugger to recover read data from a corrupted SW-DP transfer without 
having to re-issue the original read request, or generate a new access to the connected debug 
memory system.

RESEND can be accessed multiple times, and always returns the same value until a new access is 
made to an AP register or the DP RDBUFF register.

Usage Constraints 

Arm recommends that debuggers only access RESEND when a failed read has been indicated by 
the SW-DP, and at no other time. The reason for this is that, if an implementation cannot resend the 
information, it is permitted to treat reads RESEND as a protocol error.

RESEND is accessible as follows:

Configurations 

RESEND is implemented in DPv1 and DPv2.

For these versions, RESEND is included in all implementations.

Attributes 

A 32-bit read-only DP architecture register.

RESEND is:

• A read-only register.

• Accessed by a read of offset 0x8 in the DP register map.

• DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP The value that was returned by the last AP read or DP RDBUFF read.

Field descriptions

The RESEND bit assignments are:

Bits[31:0] DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP Data for previous AP read.

Default

RO

31 0

DATA LINK DEFINED
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Accessing RESEND

RESEND can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x8 x
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B2.2.9   SELECT, AP Select register

The SELECT characteristics are:

Purpose 

SELECT:

• Selects an AP and the active register banks within that AP.

• Selects the DP address bank.

Usage Constraints 

SELECT is accessible as follows:

Configurations 

A DP architecture register. SELECT is implemented in DPv0, DPv1, and DPv2.

Note

This specification deprecates reading SELECT in a DPv0 implementation.

Attributes 

SELECT is a 32-bit DP architecture register. 

Field descriptions

The SELECT bit assignments are:

APSEL, bits[31:24] 

Selects the AP with the ID number APSEL. If there is no AP with the ID APSEL, all AP transactions 
return zero on reads and are ignored on writes. See Register maps, and accesses to reserved 
addresses on page B2-52.

After a powerup reset, the value of this field is UNKNOWN.

Note

Every ADI implementation must include at least one AP.

Bits[23:8] Reserved, RES0.

APBANKSEL, bits[7:4] 

Selects the active four-word register bank on the current AP. See Using the AP to access debug 
resources on page A1-31.

After a powerup reset, the value of this field is UNKNOWN.

DPv0 DPv1 DPv2

RW WO WO

APSEL

31 4 3 0

APBANKSEL
DPBANKSEL

24 23 8 7

Reserved
RES0
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DPBANKSEL, bit[3:0] 

Debug Port address bank select.

The behavior of SELECT.DPBANKSEL depends on the DP version, as follows:

DPv0 In DPv0, the SELECT.DPBANKSEL field must be written as zero, otherwise accesses 
to DP register 0x4 are UNPREDICTABLE.

DPv1 In DPv1, the SELECT.DPBANKSEL field controls which DP register is selected at 
address 0x4, and Table B2-10 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved 
value, accesses to DP register 0x4 are UNPREDICTABLE.

DPv2 In DPv2 the SELECT.DPBANKSEL field controls which DP register is selected at 
address 0x4, and Table B2-11 shows the permitted values of this field.

All other values of SELECT.DPBANKSEL are reserved. If the field is set to a reserved 
value, accesses to DP register 0x4 are RES0.

After a powerup reset, this field is 0x0.

Note

Some previous ADI revisions have described DPBANKSEL as a single-bit field called CTRSEL, 
defined only for SW-DP. From Issue B of this specification, DPBANKSEL is redefined. The new 
definition is backwards-compatible.

Accessing SELECT

SELECT can be accessed at the following address:

Table B2-10 DPBANKSEL DP register allocation in DPv1

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

Table B2-11 DPBANKSEL DP register allocation in DPv2

DPBANKSEL DP register at address 0x4

0x0 CTRL/STAT

0x1 DLCR

0x2 TARGETID

0x3 DLPIDR

0x4 EVENTSTAT

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x8 Not applicable
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B2.2.10   TARGETID, Target Identification register

The TARGETID characteristics are:

Purpose 

TARGETID provides information about the target when the host is connected to a single device.

Usage Constraints 

TARGETID is accessible as follows:

Configurations 

TARGETID is implemented in DPv2.

Attributes 

TARGETID is a 32-bit read-only register.

Field descriptions

The TARGETID bit assignments are:

TREVISION, bits[31:28] 

Target revision.

TPARTNO, bits[27:12] 

IMPLEMENTATION DEFINED. The value is assigned by the designer of the part. The value must be 
unique to the part.

TDESIGNER, bits[11:1] 

IMPLEMENTATION DEFINED. 

This field indicates the designer of the part and not the implementer, except where the two are the 
same. 

Designers must insert their JEDEC-assigned code here.

Note

The Arm JEP106 value is not shown for the TDESIGNER field. Arm might design a DP containing 
the TARGETID register, but typically, the designer of the part, referenced in the TPARTNO field, 
is another designer who creates a part around the licensed Arm IP. If the designer of the part is Arm, 
then the value of this field is 0x23B.

To obtain a number, or to see the assignment of these codes, contact JEDEC at  
http://www.jedec.org.

A JEP106 code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example, 
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

Default

RO

TDESIGNERTPARTNOTREVISION 1

31 28 27 12 11 1 0
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The encoding that is used in TARGETID is as follows:

• The JEP106 continuation code, TARGETID bits[11:8], is the number of times that 0x7F 
appears before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, TARGETID bits[7:1], equals bits[6:0] of the final number 
of the JEDEC code.

Bit[0] RAO.

Accessing TARGETID

TARGETID can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0x4 0x2
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B2.2.11   TARGETSEL, Target Selection register

The TARGETSEL characteristics are:

Purpose 

TARGETSEL selects the target device in an SWD multi-drop system.

On a write to TARGETSEL immediately following a line reset sequence, the target is selected if 
both the following conditions are met:

• Bits[31:28] match bits[31:28] in the DLPIDR.

• Bits[27:0] match bits[27:0] in the TARGETID register.

Writing any other value de-selects the target. Debug tools must write 0xFFFFFFFF to de-select all 
targets. 0xFFFFFFFF is an invalid TARGETID value. All other invalid TARGETID values are 
reserved.

During the response phase of a write to the TARGETSEL register, the target does not drive the line. 
See Sticky flags and DP error responses on page B1-41 for more information.

Usage Constraints 

The register is DATA LINK DEFINED:

JTAG-DP The register is reserved, any access is UNPREDICTABLE.

SW-DP If SWD protocol version 2 is implemented, the register is implemented.

The register is accessible as follows:

Configurations 

TARGETSEL is implemented in DPv2.

Note
In Issue A of this document, this register was called ROUTESEL, and was a reserved write-only 
register.

Attributes 

TARGETSEL is a 32-bit DP architecture register.

Field descriptions

For an SW-DP, the TARGETSEL bit assignments are:

TINSTANCE, bits[31:28] 

IMPLEMENTATION DEFINED. The instance number for this device. See DLPIDR.

TPARTNO, bits[27:12] 

IMPLEMENTATION DEFINED. The value that is assigned by the designer of the part. See TARGETID.

SW-DP JTAG-DP

WO UNPREDICTABLE

TDESIGNERTPARTNO 1

31 28 27 12 11 1 0

TINSTANCE
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. B2-75
ID022122 Non-Confidential



B2 DP Reference Information 
B2.2 DP register descriptions
TDESIGNER, bits[11:1] 

IMPLEMENTATION DEFINED. The 11-bit code that is formed from the JEDEC JEP106 continuation 
code and identity code. See TARGETID.

Bit[0] SBO.

Accessing TARGETSEL

TARGETSEL can be accessed at the following address:

DP Offset Aa

a. Bits[1:0] of the register address are always 0b00.

SELECT.DPBANKSEL

0xC x
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B2.3 System and debug power control behavior

This section gives detailed information about system and debug power.

B2.3.1   The DAP power domains model

The DAP model supports multiple power domains, which provide support for debug components that can be 
powered down.

Three power domains are modeled:

Always-on power domain 

Power domain that must be powered up for the debugger to connect to the device.

System power domain 

Power domains that include system components.

Debug power domain 

Power domain that includes the entire debug subsystem.

The system and debug power domains can be subdivided if necessary. However, to define a simple debug interface, 
the device must be partitioned into system and debug power domains at the top level. Any finer-grained control is 
outside the scope of this model.

In most situations, debuggers power up the complete SoC. However, if a debugger is investigating an energy 
management issue, it might want to power up only the debug domain. To achieve this goal, SoC designers might 
want to map the power controller into a bus segment that the DAP can access when only the debug power domain 
is powered up.

When using an Arm Debug Interface, for the debug process to work correctly, systems must not remove power from 
the DP during a debug session. If power is removed, the DAP controller state is lost. However, the DAP is designed 
to permit the rest of the DAP and the system to be powered down and debugged while maintaining power to the DP.

The DP registers reside in the always-on power domain, on the external interface side of the DP. Therefore, DP 
registers can always be driven, enabling powerup requests to be made to a system power controller. The power and 
reset control bits are part of the DP CTRL/STAT register. See Debug reset control behavior on page B2-82 for more 
information about the reset control bits in this register.

ADIv5 defines two pairs of power control signals:

• CDBGPWRUPREQ and CDBGPWRUPACK.

• CSYSPWRUPREQ and CSYSPWRUPACK.

Table B2-12 summarizes the programmers’ model for the power control signal pairs.

These signals are expected to provide requests to the system power and clock controller. The following sections 
describe these signal pairs.

Table B2-12 Debug Port programmers’ model

Signal Programmers’ model

CDBGPWRUPREQ Bit[28] of the CTRL/STAT register

CDBGPWRUPACK Bit[29] of the CTRL/STAT register

CSYSPWRUPREQ Bit[30] of the CTRL/STAT register

CSYSPWRUPACK Bit[31] of the CTRL/STAT register
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CDBGPWRUPREQ and CDBGPWRUPACK

CDBGPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system 
power controller to fully power up and ensure the clocks are available in the debug power domain.

CDBGPWRUPACK is the signal from the power controller to the debug interface. When CDBGPWRUPREQ is 
asserted, the power controller powers up the debug power domain and then asserts CDBGPWRUPACK to 
acknowledge that it has responded to the request.

It is IMPLEMENTATION DEFINED which components are in the debug power domain that is controlled by 
CDBGPWRUPREQ. This domain might include all debug components in the system, or it might, for example, be 
limited to exclude components that have extra levels of power control. The CDBGPWRUPREQ signal indicates 
that the debugger requires the debug resources of these components to be communicative. Communicative means 
that the debugger can access at least enough registers of the debug resource for it to determine the state of the 
resource. Whether the resource is active is IMPLEMENTATION DEFINED. The power and clock controller must power 
up and run the clocks of as many domains as necessary to comply with this request from the debugger for the 
resources to be communicative.

The power and clock controller must honor CDBGPWRUPREQ for as long as it is asserted. For example, if a 
component in a debug power domain requests to be powered down, the request must be emulated for non-debug 
logic within that power domain, including all components with a single shared domain.

If some debug resources of a component are not in the debug power domain, then at least the minimal debug 
interface of the component must be powered up. If the following requirements are met, power can be removed from 
the remainder of the component:

• There is some means to save and restore the state of the debug resources.

• The debugger can communicate with the debug resources when the remainder of the component is not 
powered.

The means to save and restore the values that are held in these resources might include software solutions. If the 
debug resources do lose their value when power is removed from the remainder of the component, then the debug 
interface must include means for the debugger to discover that the programmed values have been lost.

CDBGPWRUPACK is the acknowledge signal for the CDBGPWRUPREQ request signal. CDBGPWRUPACK 
must be asserted for as long as CDBGPWRUPREQ is asserted. See Powerup request and acknowledgement timing 
on page B2-80.

CSYSPWRUPREQ and CSYSPWRUPACK

CSYSPWRUPREQ is the signal from the debug interface to the power controller. This signal requests the system 
power controller to fully power up and ensure the clocks are available in the system power domain.

CSYSPWRUPACK is the signal from the power controller to the debug interface. When CSYSPWRUPREQ is 
asserted, the power controller powers up the system power domain and then asserts CSYSPWRUPACK to 
acknowledge that it has responded to the request.

It is IMPLEMENTATION DEFINED which components are in the debug power domain that is controlled by 
CSYSPWRUPREQ. This domain might include all debug components in the system, or might be limited, for 
example, to exclude components that have extra levels of power control, such as processors that implement 
independent Core Powerup Request controls.

The CSYSPWRUPREQ signal indicates that the debugger requires all debug resources of these components to be 
active. Active means that the debug resource can perform its debug function. An active resource is also 
communicative.

The power and clock controller must honor CSYSPWRUPREQ for as long as it is asserted.

CSYSPWRUPREQ has no effect on debug components that are controlled by CDBGPWRUPREQ, because those 
components have no debug logic in the system power domain. However, for components where some debug 
resources are in the system power domain that is controlled by CSYSPWRUPREQ, the request must be emulated 
for non-debug logic within that power domain.
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CSYSPWRUPACK is the acknowledge signal for the CSYSPWRUPREQ request signal. CSYSPWRUPACK 
must be asserted for as long as CSYSPWRUPREQ is asserted. See Powerup request and acknowledgement timing 
on page B2-80.

When CSYSPWRUPREQ is asserted by the debugger, CDBGPWRUPREQ must also be asserted.

B2.3.2   Power control requirements and operation

This section applies to both the system and the debug domain, and uses the following notation:

• CxxxPWRUPREQ refers to either CSYSPWRUPREQ or CDBGPWRUPREQ.

• CxxxPWRUPACK refers to either CSYSPWRUPACK or CDBGPWRUPACK.

All signals that are described in this section are active-high, so assert denotes taking the signal HIGH, and deassert 
denotes taking the signal LOW.

The rules for the operation of powerup requests and acknowledgments are:

• The debugger must not set CTRL/STAT.CSYSPWRUPREQ to 0b1 and CTRL/STAT.CDBGPWRUPREQ to 
0b0 at the same time. The response to this combination of requests is UNPREDICTABLE.

• To initiate powerup, the DP must assert CxxxPWRUPREQ.

— If the corresponding power domain is powered down or in a low-power retention state, the power 
controller must power up the domain when it detects that CxxxPWRUPREQ is asserted. After the 
domain is powered up, the controller must assert CxxxPWRUPACK.

— If the corresponding power domain is already powered up when the power controller detects that 
CxxxPWRUPREQ is asserted, the controller must still respond by asserting CxxxPWRUPACK, 
even though it does not affect the power domain.

• Arm strongly recommends that tools only initiate an AP transfer when CDBGPWRUPREQ and 
CDBGPWRUPACK are asserted. If CDBGPWRUPREQ or CDBGPWRUPACK is LOW, any AP 
transfer might generate a fault response.

• The DP requests removal of power to a domain by deasserting CxxxPWRUPREQ.

The power controller deasserts CxxxPWRUPACK when it has accepted the request to power down the 
domain.

Note

The power controller deasserting CxxxPWRUPACK, does not indicate that the domain has been powered 
down, it only indicates that the power controller has recognized and accepted the request to remove power.

• CxxxPWRUPACK must default to the LOW state, and only go HIGH on receipt of a CxxxPWRUPREQ 
request.

• After detecting the deassertion of CxxxPWRUPREQ, the power controller must gracefully power down the 
domain, unless removal of power from the domain would affect system operation. For example, the power 
controller might maintain power to the domain if it has other requests to maintain power.

• After powerdown has been requested through the deassertion of CxxxPWRUPREQ, tools must wait until 
CxxxPWRUPACK is LOW before making a new request for powerup.

This requirement ensures that the power control handshaking mechanism is not violated.

Figure B2-1 on page B2-80 shows the timing of the power control signals.
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Figure B2-1 Powerup request and acknowledgement timing

Note

Arm strongly recommends that all AP transactions are initiated between times T2 and T3 for CDBGPWRUPREQ 
and CDBGPWRUPACK, as shown in Figure B2-1.

B2.3.3   Emulation of powerdown

If a DAP asserts CxxxPRWUPREQ for a domain and the power controller receives a conflicting request for the 
domain from another source, it must emulate the powerdown request for the domain by completing the handshake 
process as expected, without actually removing power from the domain. This requirement enables debugging a 
system with power domains that power up and down dynamically.

The following requests cause a conflict when issued by another source after the DAP has asserted 
CxxxPRWUPREQ:

• A powerdown request.

• A request to enter a low-power retention mode, with clocks disabled.

Emulation of powerdown is relevant to application debugging, when the application developer does not care 
whether the core domain actually powers up and down because this aspect is controlled at the OS level.

B2.3.4   Emulation of power control

If the system to which a DAP is connected does not support the ADIv5 power control model, the required signals 
must be emulated or generated from other signals:

System power controllers that do not support the ADIv5 power control scheme 

To ensure that the DAP receives an immediate acknowledgment after initiating or removing a 
powerup request, connect CxxxPRWUPACK to CxxxPRWUPREQ, as shown in Figure B2-2.

Figure B2-2 Emulation of powerup control

System power controllers that do not support separate power domains 

If the debug power domain is part of the system power domain, CSYSPWRUPREQ and 
CDBGPWRUPREQ can independently request powerup. To correctly emulate power control:

• To ensure that the DAP receives an immediate acknowledgement of after initiating or 
removing a system powerup request, connect CSYSPRWUPACK to CSYSPRWUPREQ.

T1 T2 T3 T4

CxxxPWRUPREQ

CxxxPWRUPACK

Power state undefined
(Debug recommended off)

Power state undefined
(Debug recommended off)

Normal operation
(Powered up)

Debug Access Port
(DAP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK
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• Generate appropriate CxxxPRWUPACK signals that ensure that the DAP sees the correct 
response when it asserts CxxxPRWUPREQ.

Note
The CxxxPWRUPACK signals must be emulated as described. Setting 
CTRL/STAT.CSYSPWRUPREQ to 0b1 and CTRL/STAT.CDBGPWRUPREQ to 0b0 in the 
CTRL/STAT register leads to UNPREDICTABLE system behavior.

The connections are shown in Figure B2-3.

Figure B2-3 Signal generation for a single system and debug power domain

Debug Access Port (DAP)

CSYSPWRUPREQ

CSYSPWRUPACK

CDBGPWRUPREQ

CDBGPWRUPACK

System power controller

CDBGPWRUPREQ

CDBGPWRUPACK
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B2.4 Debug reset control behavior

The DP register CTRL/STAT provides two fields for reset control of the debug domain:

• CTRL/STAT.CDBGRSTREQ, Debug reset request.

• CTRL/STAT.CDBGRSTACK, Debug reset acknowledge.

The associated signals, CDBGRSTREQ and CDBGRSTACK, provide a connection to a system reset controller. 
The debug domain that is controlled by these signals covers the internal DAP and the connection between the DAP 
and the debug components, for example the debug bus.

The DP registers are in the always-on power domain on the external interface side of the DP. Therefore, the registers 
can be driven at any time, to generate a reset request to the system reset controller.

Figure B2-4 shows the reset request and acknowledge timing.

Figure B2-4 Reset request and acknowledge timing

Note

The use of AMBA APB signal names in the examples do not indicate a requirement that a debug bus must be 
implemented using an AMBA APB.

The steps in Figure B2-4 include:

1. At T1, the debugger writes 0b1 to CTRL/STAT.CDBGRSTREQ. This initiates the reset request.

The debug domain is reset between T1a and T1b. The reset is complete by T2. This operation resets the AP 
registers and other AP state.

Note

There is no reset of the DP registers and DP state. These registers are only reset by a powerup reset.

2. At T2, the system reset controller acknowledges that the reset of the debug domain has completed. The 
CDBGRSTACK signal sets the CTRL/STAT.CDBGRSTACK bit to 0b1.

3. At T3, the debugger checks the DP CTRL/STAT register and finds that the reset has completed. Therefore, 
it writes 0b0 to CTRL/STAT.CDBGRSTREQ, which removes the reset request signal.

4. At T4, the system reset controller recognizes that CDBGRSTREQ is no longer asserted, and deasserts 
CDBGRSTACK.

Caution

If CDBGRSTREQ is removed before the reset controller asserts CDBGRSTACK, the behavior is 
UNPREDICTABLE.

The AP debug components are also reset on powerup of the debug power domain.

A debug reset request has no effect on devices that are powered down when the request is issued.

T1 T2 T3 T4

CDBGRSTREQ

CDBGRSTACK

PRESETDBGn

T1a T1b
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B2.4.1   Emulation of debug reset request

If the debug reset control is not supported then:

• It is IMPLEMENTATION DEFINED whether CTRL/STAT.CDBGRSTREQ is read/write or RAZ/WI.

• CTRL/STAT.CDBGRSTACK is RAZ.

Note

Arm recommends tying CDBGRSTACK LOW so that the debugger can use a timeout mechanism to detect 
whether debug reset is implemented.

B2.4.2   Limitations of CDBGRSTREQ and CDBGRSTACK

Debug reset control behavior on page B2-82 shows how these bits can drive the debug reset signal, 
PRESETDBGn. In an actual system, there might be other reset signals that are associated with other debug buses. 
For example, in a CoreSight system, ATRESETn resets all registers in the AMBA ATB domain.

Note

It is IMPLEMENTATION DEFINED which components are reset by CDBGRSTREQ. Figure B2-4 on page B2-82 is an 
example only. Not only components that use PRESETDBGn are reset.

Because debug logic might be accessible by the system, an implementation might have corner cases if 
CDBGRSTREQ is set at the same time as the system is using the debug logic. For example, the reset might occur 
during a transaction, causing a system or software malfunction. 

It is IMPLEMENTATION DEFINED whether CDBGRSTREQ can be used when debug power is off.

A system might include IMPLEMENTATION DEFINED conditions which prevent a debug reset from occurring, for 
example when certain levels of debug are not permitted.

When a debug reset is prevented from occurring, CDBGRSTREQ is ignored and CDBGRSTACK is held LOW.

Caution

System-level use of debug components must be handled with caution. Arm recommends that such system-level 
usage is not combined with a reset system that permits those debug components to be reset without the knowledge 
of the system. Arm recommends that debuggers do not use debug reset requests unless necessary.
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B2.5 System reset control behavior

The DP does not provide control bits for requesting a system reset. However, it is common for the physical interface 
to the debugger to include a system reset pin, nSRST. This section describes the recommended behavior of the 
system when a system reset is requested on the nSRST pin.

nSRST is an active-LOW pin that can be asserted and deasserted at any point in time, regardless of the current state 
of the target system, to return the target system to a known state for booting and for starting a debug session.

While nSRST is asserted:

• The target system must be held in the known state.

• The debugger must be able to access the debug domain of the target system.

B2.5.1   Limitations of system reset control

The debugger must ensure that the DAP is not accessing the system when asserting nSRST. When nSRST is 
asserted, the debugger can access the debug domain.

The effect of nSRST on the debug domain is IMPLEMENTATION DEFINED. 

For example, to safely return the target system to a known state, the debug domain might also require to be reset. 
When nSRST is asserted, the entire system must be reset, including the debug domain. However, the debug domain 
must be released from reset to allow the debugger access. Only the non-debug domain is held in reset while nSRST 
is asserted.

Arm recommends that debuggers set CTRL/STAT.CDBGPWRUPREQ to 0b0 while nSRST is initially asserted.

Figure B2-5 shows a system reset timing example.

Figure B2-5  Example system reset timing

The steps in Figure B2-5 include:

1. At time T1, the debugger writes 0b0 to CTRL/STAT.CDBGPWRUPREQ.

2. At time T2, the system power controller acknowledges the request and CTRL/STAT.CDBGPWRUPACK is 
set to 0b0.

3. At time T3, the debugger asserts nSRST. The debug domain and non-debug domain are reset at time T3a. 
The debug domain reset is complete by time T3b.

4. At time T4, the debugger writes 0b1 to CTRL/STAT.CDBGPWRUPREQ. This might occur before or after 
the debug reset is complete.

5. At time T5, the system power controller acknowledges this request and signals the debug domain reset is 
complete by setting CTRL/STAT.CDBGPWRUPACK to 0b1. The debugger can now program the debug 
domain.

6. At time T6, the debugger releases nSRST. The non-debug domain reset completes at time T6a.

CDBGPWRUPREQ
T1

CDBGPWRUPACK

nSRST

Debug reset

Non-debug reset

T2 T3 T3aT3b T4 T5 T6 T6a
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Chapter B3 
The JTAG Debug Port

This chapter describes the implementation of the JTAG Debug Port (JTAG-DP), and in particular, the Debug Test 
Access Port (DBGTAP), the Debug Test Access Port State Machine (DBGTAPSM), and scan chains. 

It is only relevant to ADI implementations that use a JTAG-DP. In this case, the JTAG-DP provides the external 
connection to the DAP, and all interface accesses are made using the scan chains, which are driven by the 
DBGTAPSM.

This chapter contains the following sections:

• The scan chain interface on page B3-87.

• IR scan chain and IR instructions on page B3-91.

• DR scan chain and DR instructions on page B3-95.
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B3.1 About the JTAG-DP

The JTAG-DP is based on the IEEE 1149.1 Standard for TAP and Boundary Scan Architecture, widely referred to 
as JTAG. To emphasize that the JTAG-DP is intended for accessing debug components, the naming convention that 
is used in this document differs from the IEEE 1149.1 naming convention by adding the prefix DBG, as shown in 
Table B3-1:

The signal naming conventions of IEEE 1149.1 are modified in a similar way, for example the IEEE 1149.1 TDI 
signal is named DBGTDI on a JTAG Debug Port. See Physical connection to the JTAG-DP on page B3-87 for the 
complete list of the JTAG-DP signal names.

Table B3-1 Comparison of IEEE 1149.1 and JTAG-DP naming

IEEE 1149.1 name JTAG-DP name JTAG-DP description

TAP DBGTAP Debug Test Access Port.

TAPSM DBGTAPSM Debug Test Access Port State Machine.
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B3.2 The scan chain interface

When a DAP is implemented with a JTAG-DP, the wire-level interface accesses the APACC scan chain to access 
debug resources in the system being debugged, or the DPACC scan chain to access information internal to the DAP. 

B3.2.1   DAP elements

The DAP requires the following elements to support JTAG scan chains:

• A DBGTAPSM.

• An IR, which selects and controls the available scan chains.

• Various Data Registers (DRs), which hold the information that is exposed through the available scan chains, 
and interface to:

— The DP registers in the DAP itself.

— The debug registers in the device or debug component being accessed through the DAP.

Figure B3-1 shows how the scan chains provide access to the different levels of the DAP architecture. For more 
details, see Figure A1-2 on page A1-30.

Figure B3-1 JTAG-DP scan chain access to the different levels of the ADI

B3.2.2   Physical connection to the JTAG-DP

The physical connection to the JTAG-DP closely follows the JTAG model. Table B3-2 lists the recommended 
signals for the JTAG-DP physical connection alongside their equivalent JTAG signal names.

DAP

DAP

JTAG-DP AP
AP Access

Debug
resources in 
the system 

being 
debugged

Resource-specific
transport

DP

AP

DBGTDI
DBGTDO
DBGTMS

TCK
DBGTRSTn

Result

APACC

Scan
chains

Resource-specific
access Debug

resources in 
the system 

being 
debugged

Physical connection perspective

Scan chains perspective

DPACC

ABORT
IDCODE

DP Access

AP Access

Table B3-2 JTAG-DP signal connections

JTAG-DP 
signal name

JTAG equivalent 
signal name

Direction Required? Description

DBGTDI TDI Input Yes Debug Data In

DBGTDO TDO Output Yes Debug Data Out
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B3.2.3   The Debug TAP State Machine (DBGTAPSM)

The DBGTAPSM controls the operation of a JTAG-DP. In particular, it controls the scan chain interface that 
provides the external physical interface to the DAP through the JTAG-DP. It is based closely on the JTAG TAP State 
Machine, see IEEE 1149.1-1990 IEEE Standard Test Access Port and Boundary Scan Architecture.

Figure B3-2 shows the state diagram for the DBGTAPSM.

Figure B3-2 State diagram for the DBGTAPSM

TCK TCK Input Yes Debug Clock

DBGTMS TMS Input Yes Debug Mode Select

DBGTRSTn TRST Input Optional Debug TAP Reset

Table B3-2 JTAG-DP signal connections (continued)

JTAG-DP 
signal name

JTAG equivalent 
signal name

Direction Required? Description

DBGTMS=1

DBGTMS=0

DBGTMS=1 DBGTMS=1

DBGTMS=1 DBGTMS=0 DBGTMS=1 DBGTMS=0

DBGTMS=1

DBGTMS=1

DBGTMS=0

Run-Test/Idle

Test-Logic-
Reset

Select-
DR-Scan

Select-
IR-Scan

DBGTMS=1

Capture-DR

DBGTMS=0

DBGTMS=0

DBGTMS=0

Capture-IR

DBGTMS=0

Shift-IR

Exit1-IR

DBGTMS=1

Pause-IR

DBGTMS=0

Exit2-IR

DBGTMS=1

Update-IR

DBGTMS=1

DBGTMS=0

Shift-DR

Exit1-DR

DBGTMS=1

Pause-DR

DBGTMS=0

Exit2-DR

DBGTMS=1

Update-DR

DBGTMS=1

DBGTMS=0

DBGTMS=1

DBGTMS=0 DBGTMS=0

DBGTMS=1

DBGTMS=0

Based on IEEE Std 1149.1-1990. Copyright © 2006 IEEE. All rights reserved.

DBGTMS=0

Note that Arm signal names differ from those used in the IEEE diagram.
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The DBGTAPSM uses the following process:

• The DBGTDI signal input is the start of the scan chain and the DBGTDO signal output is the end of the scan 
chain.

• When the DBGTAPSM goes through the Capture-IR state:

— When using a 4-bit IR, 0b0001 is transferred to the IR scan chain.

— When using an 8-bit IR, 0b00000001 is transferred to the IR scan chain.

— The IR scan chain is connected between DBGTDI and DBGTDO.

• While the DBGTAPSM is in the Shift-IR state, the IR scan chain advances one bit for each rising edge of 
TCK. On the first tick:

— The LSB of the IR scan chain is output on DBGTDO.

— Bit[1] of the IR scan chain is transferred to bit[0].

— Bit[2] of the IR scan chain is transferred to bit[1].

— Similarly, for every other bit n of the IR scan chain, bit[n] of the scan chain is transferred to bit[n-1].

— The value on DBGTDI is transferred to the MSB of the IR scan chain.

• When the DBGTAPSM goes through the Update-IR state, the value that is scanned into the IR scan chain is 
transferred into the Instruction Register.

• The value that is held in the Instruction Register selects a Data Register, and an associated DR scan chain. 
When the DBGTAPSM goes through the Capture-DR state, the value of the selected DR is transferred to the 
selected DR scan chain, which is connected between DBGTDI and DBGTDO.

This data is then shifted while the DBGTAPSM is in the Shift-DR state, in the same manner as the IR shift 
in the Shift-IR state.

• When the DBGTAPSM goes through the Update-DR state, the value that is scanned into the DR scan chain 
is transferred into the selected Data Register.

• When the DBGTAPSM is in the Run-Test/Idle state, no special actions occur. Debuggers can use this state 
as a true resting state. 

Note

This behavior is different from the behavior of previous versions of the ADI that were based on the IEEE 
JTAG standard. From ADIv5, there is no requirement for debuggers to gate TCK to obtain a true rest state.

To ensure that the transfer can be clocked through the JTAG-DP, after going through the Update-DR state the host 
must do one of the following:

• Start a new JTAG scan operation.

• Put the DBGTAPSM in to Run-Test/Idle, and remain in Run-Test/Idle until a new scan can be started.

• If the host is driving the JTAG clock, continue to clock the JTAG interface for at least eight cycles in 
Run-Test/Idle. After completing this sequence, the host can stop the clock.

The behavior of the IR and DR scan chains is described in more detail in IR scan chain and IR instructions on 
page B3-91 and DR scan chain and DR instructions on page B3-95.

The DBGTRSTn signal only resets the DBGTAP state machine and Instruction Register. DBGTRSTn 
asynchronously takes the DBGTAPSM to the Test-Logic-Reset state. As shown in Figure B3-2 on page B3-88, the 
Test-Logic-Reset state can also be entered synchronously from any state by a sequence of five TCK cycles with 
DBGTMS HIGH. However, depending on the initial state of the DBGTAPSM, this transition might take the state 
machine through one of the Update states, with the resulting side effects.

The reset behavior of the registers is as follows:

• The DP registers are only reset on a powerup reset.
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. B3-89
ID022122 Non-Confidential



B3 The JTAG Debug Port 
B3.2 The scan chain interface
• The AP registers are reset on a powerup reset, and also by the Debug Reset Control described in Debug reset 
control behavior on page B2-82.
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B3.3 IR scan chain and IR instructions

This section describes the JTAG-DP IR, accessed through the IR scan chain.
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B3.3.1   Required IR instructions

As described in The Debug TAP State Machine (DBGTAPSM) on page B3-88, the JTAG-DP transfers an instruction 
into the IR. This instruction determines the DR that the JTAG-DP DR maps onto, as described in DR scan chain 
and DR instructions on page B3-95. 

The width of the IR is IMPLEMENTATION DEFINED, and can be 4 or 8 bits.

The standard IR instructions, which are required for all JTAG-DP implementations, are listed in Table B3-3, and 
recommended IMPLEMENTATION DEFINED extensions to this instruction set are described in IMPLEMENTATION 
DEFINED extensions to the IR instruction set on page B3-93.

Unused IR instruction values are reserved and select the BYPASS register.

Table B3-3 Standard IR instructions

4-bit IR 
instruction 
value

8-bit IR 
instruction 
value

Data 
register

DR scan 
length

Notes

0b0xxx 0b0xxxxxxx - - IMPLEMENTATION DEFINED extensions 
to the IR instruction set on page B3-93.

- 0b10000000-

0b11110111

- - Reserved.

0b1000 0b11111000 ABORT 35 -

0b1001 0b11111001 - - Reserved.

0b1010 0b11111010 DPACC 35 See DPACC and APACC, JTAG-DP DP, and 
AP Access registers on page B3-98.

0b1011 0b11111011 APACC 35

0b110x 0b1111110x - - Reserved.

0b1110 0b11111110 IDCODE 32 -

0b1111 0b11111111 BYPASS 1 Required by JTAG specification.
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B3.3.2   IMPLEMENTATION DEFINED extensions to the IR instruction set

The 4-bit IR instructions 0b0000 to 0b0111 and the 8-bit instructions 0b00000000 to 0b01111111 are reserved for 
IMPLEMENTATION DEFINED extensions to the DAP.

These instructions can be used for accessing a boundary scan register, for IEEE 1149.1 compliance, as shown in 
Table B3-4. All these instructions select the boundary scan data register.

Note

This extension describes only boundary scan instructions that are described by IEEE 1149.1-2001. Later editions of 
IEEE 1149.1 define additional instructions. 

Arm recommends that:

• Separate JTAG TAPs are used for boundary scan and debug.

• The instructions that are listed in Table B3-4 are not implemented.

If the IR register is set to an IR instruction value that is not implemented, or reserved, then the BYPASS register is 
selected.

If you require a boundary scan implementation, you must implement the instructions that are required by 
IEEE 1149.1. The other IR instruction values that are listed in Table B3-4 are reserved encodings that must be used 
if that function is implemented in the boundary scan. If implemented, these instructions must behave as required by 
the IEEE 1149.1 specification. If not implemented, they select the BYPASS register.

Note

EXTEST instruction The original revision of the IEEE 1149.1 specification, 1149.1-1990, requires that 
instruction {000..0} is EXTEST. However, in more recent editions this requirement is 
removed and the specification recommends that instruction {000..0} is reserved. See the 
IEEE specification for more details.

The IEEE 1149.1 specification also defines the IDCODE and BYPASS instructions, which are included in 
Table B3-3 on page B3-92.

B3.3.3   IR, JTAG-DP Instruction Register

Purpose 

Holds the current DAP Controller instruction.

Configurations 

This register is mandatory in the IEEE 1149.1 standard.

Table B3-4 Recommended IMPLEMENTATION DEFINED IR instructions for IEEE 1149.1-compliance

4-bit IR instruction 
value

8-bit IR instruction 
value

Instruction Required by IEEE 1149.1?

0b0000 0b00000000 EXTEST See note in main text.

0b0001 0b00000001 SAMPLE Yes

0b0010 0b00000010 PRELOAD Yes

0b0100 0b00000100 INTEST No

0b0101 0b00000101 CLAMP No

0b0110 0b00000110 HIGHZ No
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Attributes 

IMPLEMENTATION DEFINED, a 4-bit or 8-bit register.

Operation

The operation of the IR register is shown in the following figure:

When in Shift-IR state, the shift section of the IR is selected as the serial path between DBGTDI and DBGTDO. 
At the Capture-IR state, the binary value 0b0001 for 4-bit instructions, or 0b00000001 for 8-bit instructions,  is loaded 
into this shift section. This value is shifted out, least significant bit first, during Shift-IR, while a new instruction is 
shifted in, least significant bit first:

• At the Update-IR state, the value in the shift section is loaded into the IR and becomes the current instruction.

• In the Test-Logic-Reset state, IDCODE becomes the current instruction.

0b0001

DBGTDI DBGTDOData[3:0]

IR[3:0]

3 0

0b00000001

DBGTDI DBGTDOData[7:0]

IR[7:0]

7 0

4-bit IR length 8-bit IR length
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B3.4 DR scan chain and DR instructions

The DR scan chain is associated with the DR registers:

• The BYPASS and IDCODE registers, as defined by the IEEE 1149.1 standard.

• The DPACC and APACC Access registers, xPACC.

• An ABORT register, to abort a transaction.

This section describes each of these registers.

The instruction in the IR register determines which of these scan chains is connected to the DBGTDI and DBGTDO 
signals, see IR scan chain and IR instructions on page B3-91.
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. B3-95
ID022122 Non-Confidential



B3 The JTAG Debug Port 
B3.4 DR scan chain and DR instructions
B3.4.1   ABORT, JTAG-DP Abort register

Purpose 

Access the ABORT register in the DP, to force an AP abort.

This implementation is the JTAG-DP implementation of the ABORT register.

Attributes 

A 35-bit register.

Operation

The operation of the ABORT register is shown in the following figure:

When the ABORT instruction is the current instruction in the IR, the serial path between DBGTDI and DBGTDO 
is connected to a 35-bit scan chain that accesses the ABORT register.

In DPv0, the effect of writing a value other than 0x00000001 to the ABORT register is UNPREDICTABLE, which means 
that, in DPv0, the debugger must scan the value 0x000000008 into this scan chain. For more information, see ABORT, 
Abort register on page B2-53. 

B3.4.2   BYPASS, JTAG-DP Bypass register

Purpose 

Bypasses the device, by providing a direct path between DBGTDI and DBGTDO.

Configurations 

This register is mandatory in the IEEE 1149.1 standard.

Attributes 

A 1-bit register.

Operation

The operation of the BYPASS register is shown in the following figure:

When the BYPASS instruction is the current instruction in the IR:

• In the Shift-DR state, data is transferred from DBGTDI to DBGTDO with a delay of one TCK cycle.

• In the Capture-DR state, a logic 0 is loaded into this register.

0 0 0

DBGTDI DBGTDO

ABORT[31:0]

RnW
A[3:2]Abort Register

0

UNKNOWN

34

031

0b0

DBGTDI DBGTDOBypass
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• In the Update-DR state, nothing happens. The shifted-in data is ignored.
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B3.4.3   DPACC and APACC, JTAG-DP DP, and AP Access registers

The DPACC and APACC scan chains have the same format.

Purpose 

DPACC and APACC are used to read from and write to DP or AP registers. 

The DPACC scan chain uses A[3:2], SELECT.DPBANKSEL and RnW to determine the address of 
the DP register to be accessed, as summarized in Table B3-5. For detailed information about 
addressing JTAG-DP registers, see DP architecture versions on page B2-48.

Note

The DP register ABORT is accessed through the ABORT instruction. 

 

• MEM-AP Programmers’ Model on page C2-167 for details of accessing MEM-AP registers.

• JTAG-AP register summary on page C3-205 for details of accessing JTAG-AP registers.

Attributes DPACC and APACC are 35-bit registers.

Operation

The operation of the DPACC and APACC registers is shown in the following figure:

Table B3-5 JTAG-DP Register access summary.

Register Access

Address 
(Aa,SELECT.DPBANKSEL)

a. Bits [1:0] of the address are always 0b00.

DPv0 DPv1 DPv2

CTRL/STAT RW 0x4, - 0x4, 0x0 0x4, 0x0 

DLCR RW - 0x4, 0x1 0x4, 0x1

DLPIDR RO - - 0x4, 0x3

DPIDR RO - 0x0, x 0x0, x

EVENTSTAT RO - - 0x4, 0x4

RDBUFF RO 0xC, - 0xC, x 0xC, x

SELECT WOb

b. RW for DPv0

0x8, - 0x8, x 0x8, x

TARGETID RO - - 0x4, 0x2

Data[2:1]

ACK[2:0]

Data[34:3]

0

ReadResult[31:0]

DBGTDO

3 2

A[3:2] RnWDATAIN[31:0]

Data[0]

DBGTDI

34
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When the DPACC or APACC instruction is the current instruction in the IR, the shift section of the DP Access 
register or AP Access register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK 
response. The ACK responses that are implemented are summarized in Table B3-6.

All other ACK encodings are reserved.

• In the Shift-DR state, this data is shifted out, least significant bit first. The first three bits of data that are 
shifted out are ACK[2:0].

As the returned data is shifted out to DBGTDO, new data is shifted in from DBGTDI, as described in 
OK/FAULT response to a DPACC or APACC access.

• Operation in the Update-DR depends on whether the ACK[2:0] response was OK/FAULT or WAIT. The two 
cases are described in:

— OK/FAULT response to a DPACC or APACC access.

— WAIT response to a DPACC or APACC access on page B3-100.

OK/FAULT response to a DPACC or APACC access

If the response indicated by ACK[2:0] is OK/FAULT, the previous transaction has completed. The response code 
does not show whether the transaction completed successfully or failed. You must read the CTRL/STAT register to 
find whether the transaction was successful:

• If the previous instruction in the IR was not one of DPACC, APACC, or BYPASS, the captured 
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

• If the previous transaction was a read that completed successfully, the captured ReadResult[31:0] is the 
requested register value. This result is shifted out as Data[34:3].

• If the previous transaction was a write, or a read that did not complete successfully, the captured 
ReadResult[31:0] is UNKNOWN, and if Data[34:3] is shifted out it must be discarded.

An OK/FAULT response is followed by an Update-DR operation to fulfill the read or write request that is formed 
by the values that were shifted into the scan chain:

• DBGTDI and DBGTDO connect to the scan chain corresponding to the current IR instruction, and the 
specified address is used to select a register.

• For write requests, corresponding to RnW having a value of 0b0, the value in DATAIN[31:0] is written to the 
selected register.

• For read requests, corresponding to RnW having a value of 0b1, the value in DATAIN[31:0] is IGNORED. 
Another scan is required to obtain the read data.

Register accesses can be pipelined, because a single DPACC or APACC scan can return the result of the previous 
read operation at the same time as shifting in a request for another register access. At the end of a sequence of 
pipelined register reads, you can read the DP RDBUFF register to shift out the result of the final register read.

Reading the DP RDBUFF register has no effect on the operation of the DBGTAPSM. For details about returning 
the result from a previous DPACC or APACC scan, see section Target response summary on page B3-101.

Table B3-6 DPACC and APACC ACK responses

Response ACK[2:0] encoding See:

OK/FAULT 0b010 OK/FAULT response to a DPACC or APACC access

WAIT 0b001 WAIT response to a DPACC or APACC access on page B3-100
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If the current IR instruction is APACC, an AP access is requested:

• If any sticky flag in the DP CTRL/STAT register is 0b1, the transaction is discarded. The next scan returns an 
OK/FAULT response. For more information, see Sticky flags and DP error responses on page B1-41.

• If pushed-compare or pushed-verify operations are enabled, the scanned-in value of RnW must be 0b0, 
otherwise behavior is UNPREDICTABLE. On Update-DR, a read request is issued, and the returned value is 
compared against DATAIN[31:0]. The CTRL/STAT.STICKYCMP flag is updated based on this comparison. 
For more information, see Pushed-compare and pushed-verify operations on page B1-44.

Pushed operations are enabled using the CTRL/STAT.TRNMODE field.

• The AP access does not complete until the AP signals it as completed. For example, if you access a MEM-AP, 
the AP access might cause an access to a memory system connected to the MEM-AP. In this case, the AP 
access does not complete until the memory system signals to the MEM-AP that the memory access has 
completed.

WAIT response to a DPACC or APACC access

A WAIT response indicates that the previous transaction has not completed. Normally, after receiving a WAIT 
response the host retries the DPACC or APACC access.

Note

The previous transaction might be either a DP or an AP access. DP accesses are stalled, by returning WAIT, until 
any previous AP transaction has completed.

Normally, if software detects a WAIT response, it retries the same transfer, which enables the protocol to process 
data as quickly as possible. However, if the software has retried a transfer several times, and has waited long enough 
for a slow interconnect and memory system to respond, it might write to the ABORT register to cancel the operation. 
This action signals to the active AP that it must terminate the transfer that it is attempting, to permit access to other 
parts of the debug system. An AP might not be able to terminate a transfer on its SoC interface. However, on 
receiving an ABORT, the AP must free its interface to the DP.

No request is generated at the Update-DR state, and the shifted-in data is discarded. The captured value of 
ReadResult[31:0] is UNKNOWN.

Sticky overrun behavior on DPACC and APACC accesses

At the Capture-DR state, if the previous transaction has not completed, a WAIT response is generated. In this case, 
if the Overrun Detect flag, CTRL/STAT.ORUNDETECT is 0b1, the Sticky Overrun flag, 
CTRL/STAT.STICKYORUN, is set to 0b1. 

As long as the previous transaction is not completed, subsequent scans also receive a WAIT response.

When the previous transaction has completed, any additional APACC transactions are abandoned and scans respond 
with an OK/FAULT response. However, DP registers can be accessed. In particular, the CTRL/STAT register can 
be accessed, to confirm that the Sticky Overrun flag is 0b1, and to clear the flag to 0b0 after gathering any required 
information about the overrun condition. See Sticky flags and DP error responses on page B1-41 for more 
information.

Minimum response times

As explained in OK/FAULT response to a DPACC or APACC access on page B3-99, a DP or AP register access is 
initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the 
Capture-DR state of the following DPACC or APACC access. If the requested register access has not completed, 
however, the second access generates a WAIT response.

The timing between the Update-DR state and the Capture-DR state is defined in terms of TCK cycles. Referring to 
Figure B3-2 on page B3-88, there are two paths from the Update-DR state, where the register access is initiated, to 
the Capture-DR state, where the response is captured:

• A direct path through Select-DR-Scan.
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• A path through Run-Test/Idle and Select-DR-Scan.

If the second path is followed, the state machine can spend a variable number of TCK cycles in the Run-Test/Idle 
state, which in turn varies the number of TCK cycles between the Update-DR and Capture-DR states.

A JTAG-DP implementation might impose an IMPLEMENTATION DEFINED lower limit on the number of TCK cycles 
between the Update-DR and Capture-DR states, and always generate an immediate WAIT response if Capture-DR 
is entered before this limit has expired. Although any debugger must be able to recover successfully from any WAIT 
response, Arm recommends that debuggers must be able to adapt to any IMPLEMENTATION DEFINED limit.

Note

Accessing AP registers or debug resources in connected device through an AP can be subjected to other variable 
response delays in the system. A debugger that can adapt to these delays and avoid wasting WAIT scans operates 
more efficiently and provides higher maximum data throughput.

Target response summary

As described in OK/FAULT response to a DPACC or APACC access on page B3-99, a DP or AP register access is 
initiated at the Update-DR state of one DPACC or APACC access, and the result of the access is returned at the 
Capture-DR state of the following DPACC or APACC access. The target responses, at the Capture-DR state, for 
every possible DPACC and APACC access in the previous scan, are summarized in:

• Table B3-7, for cases where the previous scan was a DPACC access.

• Table B3-8 on page B3-102, for cases where the previous scan was an APACC access.

Note

The target responses that are shown in Table B3-7 are independent of the operation being performed in the current 
DPACC or APACC scan. In this table, Read result is the data that is shifted out as Data[34:3], and ACK is decoded 
from the data that is shifted out as Data[2:0].

Table B3-7 JTAG-DP target response summary, when previous scana was a DPACC access

Previous scana, at Update-DR 
state

Current scan, at Capture-DR state
Notes

Access Ab Sticky?c AP stated Read result ACK

X X X Busy UNKNOWN WAIT If the Overrun Detect flag is 0b1, this access and 
response sequence causes the Sticky Overrun 
flag to be set to 0b1. See CTRL/STAT, 
Control/Status register on page B2-55.

R 0b00 X Not Busy UNKNOWN OK/ FAULT The return value depends on the DP version:

DPv1, DPv2 Returns the value of DPIDR.

DPv0 Returns UNKNOWN value.

0b01 CTRL/STAT Returns CTRL/STAT value.

0b10 SELECT Returns SELECT value.

0b11 0x00000000 Returns RDBUFF value, always zero.
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W 0b00 X Not Busy UNKNOWN OK/ FAULT The result depends on the DP version:

DPv2 Write is ignored, returns RES0.

DPv0, DPv1 Behavior is UNPREDICTABLE.

0b01 Value has been written to CTRL/STAT.

0b10 Value has been written to SELECT.

0b11 Writes to RDBUFF always ignored.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates that are made 
following a WAIT response are discarded.

b. A[3:2] in the DPACC access.

c. The Sticky? column indicates whether any Sticky flag was 0b1 in the DP CTRL/STAT register.

d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.

Table B3-8 JTAG-DP target response summary, when previous scana was an APACC access

Previous scana, at Update-DR 
state

Current scan, at Capture-DR state
Notes

Access Ab Sticky?c AP stated Read result ACK

X X X Busy UNKNOWN WAIT If the Overrun Detect flag is 0b1, this access and 
response sequence causes the Sticky Overrun 
flag to be set to 0b1. See CTRL/STAT, 
Control/Status register on page B2-55.

R X No Ready See Notes OK/ FAULT Returns the value of the AP register that was 
addressed on the previous scan. 
If pushed-verify or pushed-compare is 
implemented and enabled, the behavior is 
UNPREDICTABLE.

Error UNKNOWN Sticky Error flag is set to 0b1.

W X No Ready UNKNOWN OK/ FAULT The data that was captured at the previous scan 
has been written to the requested AP register.

If pushed-verify or pushed-compare is 
implemented and enabled, the previous pushed 
transaction might have set the Sticky Compare 
flag to 0b1, see Pushed-compare and 
pushed-verify operations on page B1-44.

Error UNKNOWN Sticky Error flag is set to 0b1.

X X Yes Not busy UNKNOWN OK/ FAULT Previous transaction was discarded.

a. The previous scan is the most recent scan for which the ACK response at the Capture-DR state was OK/FAULT. Updates that are made 
following a WAIT response are discarded.

b. A[3:2] in the APACC access.

c. The Sticky? column indicates whether any Sticky flag was 0b1 in the DP CTRL/STAT register.

d. The state of the AP when the current scan reaches the Capture-DR state, or the response from the AP at that time.

Table B3-7 JTAG-DP target response summary, when previous scana was a DPACC access (continued)

Previous scana, at Update-DR 
state

Current scan, at Capture-DR state
Notes

Access Ab Sticky?c AP stated Read result ACK
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Host response summary

The ACK column, for the Current scan, at Capture-DR state section of Table B3-7 on page B3-101 and Table B3-8 
on page B3-102, shows the responses that the host might receive after initiating a DPACC or APACC access. 
Table B3-9 indicates the normal action of a host in response to each of these ACKs.

Table B3-9 Summary of JTAG-DP host responses

Access 
type

ACK 
from target

Suggested host action in response to ACK

Read OK/FAULT Capture read data.

Write OK/FAULT No action required.

Read or Write WAIT Repeat the same access until either an OK/FAULT ACK is received or the 
wait timeout is reached.

If necessary, use the ABORT register to enable access to the AP.

Read or Write Invalid ACK Assume that a target or line error has occurred and treat as a fatal error.
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B3.4.4   IDCODE, the JTAG TAP ID register

Purpose 

JTAG-DP TAP identification. The IDCODE value enables a debugger to identify the Debug Port to 
which it is connected. JTAG-DP implementations have different IDCODE values, so that a 
debugger can distinguish between them. 

When the IDCODE instruction is the current instruction in the IR, the shift section of the Device ID 
Code register is selected as the serial path between DBGTDI and DBGTDO:

• In the Capture-DR state, the 32-bit device ID code is loaded into this shift section.

• In the Shift-DR state, this data is shifted out, least significant bit first.

• Nothing happens at the Update-DR state. The shifted-in data is ignored.

Attributes 

A 32-bit register.

Field descriptions

The IDCODE bit assignments and operating mode are:

VERSION, bits[31:28] 

Version code. The meaning of this field is IMPLEMENTATION DEFINED.

PARTNO, bits[27:12] 

Part Number for the DP TAP. This value is provided by the designer of the DP TAP and must not 
be changed.

DESIGNER, bits[11:1] 

The Designer ID is an 11-bit JEDEC code that identifies the designer of the JTAG-DP TAP. It is 
formed from the JEDEC JEP106 continuation code and identity code as shown in Table B3-10.

JEDEC codes are assigned by the JEDEC Solid State Technology Association, see JEP106, 
Standard Manufacturer’s Identification Code.

Normally, this field identifies the designer of the ADIv5 implementation, rather than the system 
architect or the device manufacturer. If the DAP is used for boundary scan, however, the field must 
conform to the JEDEC Manufacturer ID assigned to the manufacturer of the device.

The Arm default value for this field is 0x23B. Other designers must use their own JEDEC assigned 
code.

Bit[0] 

RAO.

Table B3-10 JEDEC JEP106 manufacturer ID code, with Arm values

JEP106 field Width (bits)  Bits in IDCODE Arm registered value

Continuation code 4 Bits[11:8] 0b0100 (0x4)

Identity code 7 Bits[7:1] 0b0111011 (0x3B)

Data[31:0]

1VERSION

31 28 27 12 11 1 0

PARTNO DESIGNER

DBGTDI DBGTDO
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Chapter B4 
The Serial Wire Debug Port

This chapter describes the implementation of the Serial Wire Debug Port (SW-DP), including the SWD interface. 
It is only relevant if the ADI implementation uses an SW-DP. In this case, the SW-DP provides the external 
connection to the debug interface and all interface accesses are made using the SWD protocol summarized in this 
chapter.

Note

The Arm SWD interface is a synchronous serial interface. This specification does not describe the physical 
characteristics of the SWD interface, such as signal timings.

This chapter contains the following sections:

• About the SWD protocol on page B4-106.

• SWD protocol operation on page B4-110.

• SWD interface on page B4-122.
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B4.1 About the SWD protocol

This section provides general information about the Arm SWD protocol. It contains the following sections:

• Basic operation.

• SWD protocol versions.

• Line turnaround.

• Idle cycles.

• Bit order.

• Parity.

• Limitations of multi-drop.

B4.1.1   Basic operation

The Arm SWD interface uses a single bidirectional data connection and a separate clock to transfer data 
synchronously. An operation on the wire consists of two or three phases:

Packet request 

The external host debugger issues a request to the DP. The DP is the target of the request.

Acknowledge response 

The target sends an acknowledge response to the host.

Data transfer phase 

This phase is only present when either:

• A data read or data write request is followed by a valid (OK) acknowledge response.

• The CTRL/STAT.ORUNDETECT flag is 0b1.

The data transfer is one of:

• Target to host, following a read request (RDATA).

• Host to target, following a write request (WDATA).

Note
If the CTRL/STAT.ORUNDETECT bit is 0b1, a data transfer phase is required on all responses, 
including WAIT and FAULT. For more information, see Sticky overrun behavior on page B4-115.

When the SW-DP receives a packet request from the debug host, it must respond immediately by entering the 
acknowledge phase. There is a turnaround period between these phases, as they are in different directions. If a data 
phase is required, it follows immediately after the acknowledge phase.

For a write request, there is a turnaround period between the acknowledge phase and the WDATA data transfer 
phase. Following the WDATA data transfer phase the host continues to drive the wire. There is no additional 
turnaround period.

For a read request, there is no turnaround period between the acknowledge phase and the data transfer phase. There 
is a turnaround period following the RDATA data transfer phase, following which the host drives the wire. 

To ensure that the transfer can be clocked through the SW-DP, after the data transfer phase the host must do one of 
the following:

• Immediately start a new SWD operation with the start bit of a new packet request.

• Continue to drive the SWD interface with idle cycles until the host starts a new SWD operation.

• If the host is driving the SWD clock, continue to clock the SWD interface with at least 8 idle cycles. After 
completing this sequence, the host can stop the clock.
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B4.1.2   SWD protocol versions

SWD protocol version 1 is a point-to-point architecture, supporting connection between a single host and a single 
device. It permits connection to multiple devices by providing extra connections from the host, which has several 
disadvantages:

• It complicates the physical connection standard, by having variants with different numbers of connections.

• It increases the number of pins that are required for the connector on the device PCB, which is unacceptable 
where size is a limiting factor.

• It increases the number of pins that are required on a package with multiple dies inside.

• It makes it difficult to integrate multiple platforms that are accessed by the SWD protocol into the same chip.

Techniques to solve this require connections that are shared between multiple Serial Wire devices. These 
connections are detrimental to the maximum speed of operation, but in many situations they provide an acceptable 
trade-off.

SWD protocol version 2 is a multi-drop architecture that:

• Enables a two-wire host connection to communicate simultaneously with multiple devices.

• Permits an effectively unlimited number of devices to be connected simultaneously, subject to electrical 
constraints.

• Is largely backwards-compatible, because provision for multi-drop support in a device does not break 
point-to-point compatibility with existing host equipment that does not support the multi-drop extensions. 

• Permits a device to power down completely, while the device is not selected.

• Prevents multiple devices from driving the wire simultaneously, and continues to support the wire being 
actively driven both HIGH and LOW, maintaining a high maximum clock speed.

• Permits multi-drop connections incorporating devices that do not implement the SWD protocol.

Note

SWD protocol version 2 requires the implementation of dormant state, which can limit its compatibility with SWD 
version 1:

• For an SWJ-DP implementation, JTAG is selected on a powerup reset. Selecting SWD bypasses the dormant 
state, and subsequent operation is compatible with SWD protocol version 1.

• For an SW-DP implementation of SWD protocol version 2, the dormant state is selected on a powerup reset, 
meaning the start-up state differs from a start-up with SWD protocol version 1. After SWD operation is 
selected, operation is compatible with SWD protocol version 1.

B4.1.3   Line turnaround

To prevent contention, a turnaround period is required when the device driving the wire changes. For the turnaround 
period, neither the host nor the target drives the wire, and the state of the wire is undefined. See also Line pull-up 
on page B4-122.

Note

The line turnaround period can provide for pad delays when using a high sample clock frequency.

The length of the turnaround period is controlled by DLCR.TURNROUND. The default setting is a turnaround 
period of one clock cycle.
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B4.1.4   Idle cycles

After completing a transaction, the host must either insert idle cycles or continue immediately with the start bit of 
a new transaction. 

The host clocks the SWD interface with the line LOW to insert idle cycles.

B4.1.5   Bit order

All data values in SWD operations are transferred LSB first. 

For example, the OK response of 0b001 appears on the wire as 1, followed by 0, followed by 0, as shown in 
Figure B4-1 on page B4-111 and Figure B4-2 on page B4-112.

B4.1.6   Parity

A simple parity check is applied to all packet request and data transfer phases. Even parity is used:

Packet requests 

• If the number of bits with a value of 0b1 is odd, the parity bit is set to 0b1.

• If the number of bits with a value of 0b1 is even, the parity bit is set to 0b0.

Data transfers (WDATA and RDATA) 

The parity check is made over the 32 data bits WDATA[0:31] or RDATA[0:31]:

• If the number of bits with a value of 0b1 is odd, the parity bit is set to 0b1.

• If the number of bits with a value of 0b1 is even, the parity bit is set to 0b0.

The packet request parity bit is shown in each of the diagrams in this section, from Figure B4-1 on page B4-111 to 
Figure B4-7 on page B4-116. It appears on the wire immediately after the A[2:3] bits. A parity error in the packet 
request is detected by the SW-DP, which responds with a protocol error. See Protocol error response on 
page B4-114.

The WDATA parity bit is shown in Figure B4-1 on page B4-111 and in Figure B4-7 on page B4-116. It appears on 
the wire immediately after the WDATA[31] bit. A parity error in the WDATA data transfer phase is detected by the 
SW-DP and, other than writes to TARGETSEL, recorded in CTRL/STAT.WDATAERR. If overrun detection is 
enabled, it is IMPLEMENTATION DEFINED whether CTRL/STAT.STICKYORUN is set to 0b1. A parity error in a write 
to TARGETSEL deselects the target.

If a SWD write parity error occurs, the transaction is discarded and the register is not updated. This applies to both 
DP and AP writes.

The RDATA parity bit is shown in Figure B4-2 on page B4-112. It appears on the wire immediately after the 
RDATA[31] bit. The debugger must check for parity errors in the RDATA data transfer phase and retry the read if 
necessary.

Note

The ACK[0:2] bits are never included in the parity calculation. Debuggers must remember this principle when 
parity checking the data from a read operation, when the debugger receives a continuous stream of 36 bits, as shown 
in Figure B4-2 on page B4-112:

• Bit 35 is the parity bit.

• Bits 3-34 are RDATA[0:31].

• Bits 0-2 are ACK[0:2].

The parity check must be applied to bits 3-34 of this block of data and the result must be compared with bit[35], the 
parity bit.
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B4.1.7   Limitations of multi-drop

This section describes the configuration and auto-detection limitations of a multi-drop SWD system.

System configuration

Each device must be configured with a unique target ID, which includes a 4-bit instance ID, to differentiate between 
otherwise identical targets. The 4-bit ID places a limit of 16 such targets in any system. To ensure the target IDs do 
not conflict, identical devices must be configured before they are connected.

Auto-detection of the target

It is not possible to interrogate a multi-drop SWD system that includes multiple devices to establish which devices 
are connected. For a target with multiple devices, because all devices are selected on coming out of a line reset, no 
communication with a device is possible without prior selection of that target using its target ID. Therefore, 
connection to a multi-drop SWD system that includes multiple devices requires that either:

• The host has prior knowledge of the devices in the system and is configured before target connection.

• The host attempts auto-detection by issuing a target select command for each of the devices it has been 
configured to support. While auto-detection is likely to involve many target select commands, it must be 
possible to iterate through all the supported devices in a reasonable time from the viewpoint of a user of the 
debug tools.

For this reason, debug tools cannot connect seamlessly to targets in a multi-drop SWD system that they have never 
seen before. If the debug tools can be provided with the target ID of such targets, however, the contents of the target 
can be auto-detected as normal.

To protect against multiple selected devices all driving the line simultaneously, the SWD protocol version 2 
requires:

• For multi-drop SWJ-DP, the JTAG connection is selected out of powerup reset. JTAG does not drive the line. 
See Chapter B5 The Serial Wire/JTAG Debug Port. 

• For multi-drop SW-DP, the DP is in the dormant state out of powerup reset. See Dormant operation on 
page B5-131. 
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B4.2 SWD protocol operation

This section gives an overview of the bidirectional operation of the protocol. This section illustrates each of the 
possible sequences of operations on the SWD interface data connection.

Note

The diagrams in this section are included to show the operation of the SWD protocol. The diagrams do not show 
timing diagrams for the protocol.

• Successful write operation (OK response) on page B4-111.

• Successful read operation (OK response) on page B4-112.

• WAIT response to read or write operation request on page B4-113.

• FAULT response to read or write operation request on page B4-113.

• Protocol error response on page B4-114.

• Sticky overrun behavior on page B4-115.

• SW-DP write buffering on page B4-116.

The illustrations of the different possible operations use the following terms:

Start A single start bit, with value 0b1.

APnDP A single bit, indicating whether the DP or the AP Access register is to be accessed. This bit is 0b0 
for a DPACC access, or 0b1 for an APACC access.

RnW A single bit, indicating whether the access is a read or a write. This bit is 0b0 for a write access, or 
0b1 for a read access.

A[2:3] Two bits, giving the A[3:2] address field for the DP or AP register Address:

• For a DPACC access, the register being addressed depends on the A[3:2] value and, if 
A[3:2]==0b01, the value that is held in SELECT. DPBANKSEL. For details, see:

— DP architecture version 1 (DPv1) address map on page B2-50

— DP architecture version 2 (DPv2) address map on page B2-51.

• For an APACC access, the register being addressed depends on the A[3:2] value and the value 
that is held in SELECT.{APSEL,APBANKSEL}. For details about addressing, see:

— MEM-AP Programmers’ Model on page C2-167 for accesses to a MEM-AP register

— JTAG-AP register summary on page C3-205 for accesses to a JTAG-AP register.

Note
The A[3:2] value is transmitted Least Significant Bit (LSB) first on the wire, which is why it appears 
as A[2:3] on the diagrams.

Parity A single parity bit for the preceding packet. See Parity on page B4-108.

Stop A single stop bit. In the synchronous SWD protocol, this bit is always 0b0.

Park A single bit. The host must drive the Park bit HIGH to park the line before tristating it for the 
turnaround period, to ensure that the line is read as HIGH by the target. This is required because the 
pull-up on the SWD interface is weak. The target reads this bit as 0b1.

Trn Turnaround. See Line turnaround on page B4-107.

Note
All the examples that are given in this chapter show the default turnaround period of one cycle.

ACK[0:2] A 3-bit target-to-host response.
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Note

The ACK value is transmitted LSB-first on the wire and so appears as ACK[0:2] on the diagrams.

 

WDATA[0:31] 

32 bits of write data, from host to target.

Note

The WDATA value is transmitted LSB-first on the wire and so appears as WDATA[0:31] on the 
diagrams.

RDATA[0:31] 

32 bits of read data, from target to host.

Note

The RDATA value is transmitted LSB-first on the wire and so appears as RDATA[0:31] on the 
diagrams.

B4.2.1   Successful write operation (OK response)

On receiving a write packet request, if the SW-DP is ready for the WDATA data transfer phase, and there is no error 
condition, it issues an OK response. This response is indicated by a response value of 0b001.

This response does not apply to writes to TARGETSEL. See Connection and line reset sequence on page B4-122. 

Therefore, a successful write operation consists of three phases:

1. An 8-bit write packet request, from the host to the target.

2. A 3-bit OK acknowledge response, from the target to the host.

3. A 33-bit WDATA data transfer phase, from the host to the target.

By default, there are single-cycle turnaround periods between each of these phases. See Line turnaround on 
page B4-107 for more information.

A successful write operation is shown in Figure B4-1.

Figure B4-1 SWD successful write operation

Table B4-1 SWD ACK responses summary table

ACK[0:2] encoding Response See:

0b100 OK Successful write operation (OK response), 
Successful read operation (OK response) on 
page B4-112.

0b010 WAIT WAIT response to read or write operation 
request on page B4-113.

0b001 FAULT FAULT response to read or write operation 
request on page B4-113.
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The host must start transferring the write data immediately after receiving the OK acknowledge response from the 
target. This behavior is the same for writing to the DP or to an AP. The OK response that is shown in Figure B4-1 
on page B4-111 indicates that the DP is ready to accept the write data. The DP writes this data after the write phase 
has completed, and therefore the response to the DP write itself is given on the next operation. However, the SW-DP 
can buffer AP writes, as described in SW-DP write buffering on page B4-116. 

There is no turnaround phase after the data phase. The host is driving the line, and can start the next operation 
immediately. 

B4.2.2   Successful read operation (OK response)

On receiving a read packet request, if the SW-DP is ready for the RDATA data transfer phase, and there is no error 
condition, it issues an OK response. This response is indicated by a response value of 0b001.

Therefore, a successful read operation consists of three phases:

1. An 8-bit read packet request, from the host to the target.

2. A 3-bit OK acknowledge response, from the target to the host.

3. A 33-bit RDATA data transfer phase, where data is transferred from the target to the host.

By default, there are single-cycle turnaround periods between the first and second of these phases, and after the third 
phase. See Line turnaround on page B4-107 for more information. However, there is no turnaround period between 
the second and third phases, because the line is driven by the target in both of these phases.

Figure B4-2 shows a successful read operation.

Figure B4-2 SWD successful read operation

If the host requested a read access to the DP, the SW-DP sends the read data immediately after the acknowledgement 
response.

Read accesses to the AP are posted, which means that the result of the access is returned on the next transfer. This 
result can be another AP register read, or a DP register read of RDBUFF.

To make a series of AP reads, a debugger only has to insert one read of the RDBUFF register:

• On the first AP read access, the read data that is returned is unknown. The debugger must discard this result.

• The next AP read access, if successful, returns the result of the previous AP read.

• This response can be repeated for any number of AP reads. Issuing the last AP read packet request returns 
the penultimate AP read result.

• The debugger can then read the DP RDBUFF register to obtain the last AP read result.

So that a debugger can recover from line errors, the next transaction after an AP register read can be any DP register 
read. If the next transaction is a DP register read other than a read of RDBUFF, then a following AP register read 
or read of RDBUFF returns the result of the first AP register read.

If the next transaction following an AP register read is an AP register write or a DP register write, the result of the 
first AP register read is lost because any following AP register read or read of RDBUFF returns an UNKNOWN value.
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B4.2.3   WAIT response to read or write operation request

If the SW-DP is not able to process the request from the debugger immediately, it must issue a WAIT response. A 
WAIT response to a read or write packet request consists of two phases:

1. An 8-bit read or write packet request, from the host to the target.

2. A 3-bit WAIT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases, and after the second phase. See Line 
turnaround on page B4-107 for more information.

A WAIT response to a read or write packet request is shown in Figure B4-3.

Figure B4-3 SWD WAIT response to a packet request

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and a data phase is required on a WAIT 
response. For more information, see Sticky overrun behavior on page B4-115.

A WAIT response must not be issued in response to the following requests, which must always be processed 
immediately:

• Reads of the DPIDR register.

• Reads of the CTRL/STAT register.

• Writes to the ABORT register.

In response to any other request, the DP issues a WAIT response if it cannot process the request, which happens if:

• A previous AP or DP access is outstanding.

• The new request is an AP read request and the result of the previous AP read is not yet available.

Normally, when a debugger receives a WAIT response it retries the same operation, to process data as quickly as 
possible. However, if several retries have been attempted, with a wait that is long enough for a slow interconnection 
and memory system to respond, the debugger might write to ABORT.DAPABORT, if appropriate. This value 
signals to the active AP that it must terminate the transfer that it is attempting. An AP implementation might be 
unable to terminate a transfer on its SoC interface, but on receiving a DAP abort request the AP must free up the 
interface to the Debug Port.

Writing to the ABORT register after receiving a WAIT response enables the debugger to access other parts of the 
debug system.

B4.2.4   FAULT response to read or write operation request

An SW-DP must not issue a FAULT response in response to:

• Reads of the DPIDR register, which is a read-only register.

• Reads of the CTRL/STAT register, which is a read/write register.

• Writes to the ABORT register, which is a write-only register.

For any other access, the SW-DP issues a FAULT response if any sticky flag is set to 0b1 in the CTRL/STAT register.

A FAULT response to a read or write packet request consists of two phases:

1. An 8-bit read or write packet request, from the host to the target.

2. A 3-bit FAULT acknowledge response, from the target to the host.

By default, there are single-cycle turnaround periods between these two phases and after the second phase. See Line 
turnaround on page B4-107 for more information.
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A FAULT response to a read or write packet request is shown in Figure B4-4.

Figure B4-4 SWD FAULT response to a packet request

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and a data phase is required on a FAULT 
response. For more information, see Sticky overrun behavior on page B4-115.

Use of the FAULT response enables the protocol to remain synchronized. A debugger might stream a block of data 
and then check the CTRL/STAT register at the end of the block.

In an SW-DP, the sticky error flags are cleared to 0b0 by writing bits in the ABORT register.

B4.2.5   Protocol error response

If any of the following occurs, a protocol error occurs:

• The Parity bit does not match the parity of the packet request.

For more information about the parity checks in the SWD protocol, see Parity on page B4-108.

• The Stop bit is not 0b0.

• The Park bit is not 0b1.

• DLCR.TURNROUND indicates an unsupported turnaround period. 

Note

A mismatch between the Parity bit in the WDATA transfer phase and the parity of the data does not cause a protocol 
error response, because the SW-DP has already given its response to the header. For more information, see Sticky 
flags and DP error responses on page B1-41.

Target response to protocol errors

On detecting a protocol error, the target enters the protocol error state.

If overrun detection is enabled, CTRL/STAT.STICKYORUN is set to 0b1 and the target must wait until the data 
phase of the transaction has completed before entering the protocol error state. Otherwise, it enters the protocol error 
state immediately.

When a protocol error is detected by the SW-DP, the SW-DP does not reply to the packet request and does not drive 
the line. This situation is illustrated in Figure B4-5 on page B4-115.

Note

 If SWD protocol version 2 is implemented, the SW-DP does also not reply to a TARGETSEL register write packet 
request.
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Figure B4-5 SWD protocol error after a packet request

In the protocol error state, the target behaves as follows:

• If the target detects a valid read of the DP DPIDR register, it is IMPLEMENTATION DEFINED whether the target 
leaves the protocol error state, and gives an OK response. 

• If the target detects a valid packet header other than the read of the DP DPIDR register, or the target detects 
an IMPLEMENTATION DEFINED number of additional protocol errors, it enters the lockout state. 

Arm recommends that the target enters the lockout state after one more protocol error is detected while in the 
protocol error state.

If the target cannot leave the protocol error state on a read of the DPIDR register, the protocol error and lockout 
states are equivalent.

The target must leave the protocol error state on a line reset. 

The target only leaves the lockout state on a line reset. 

If the SW-DP implements SWD protocol version 2, it must enter the lockout state after a single protocol error 
immediately after a line reset. However, if the first packet request detected by the target following line reset is valid 
it can then revert to entering the lockout state after an IMPLEMENTATION DEFINED number of protocol errors.

Host response to protocol errors

If the host does not receive an expected response from the target, it must not drive the line for at least the length of 
any potential data phase and then attempt a line reset. For more information, see Connection and line reset sequence 
on page B4-122.

The host can attempt reads of the DP DPIDR register before attempting a line reset, as the target might respond and 
leave the protocol error state, but Arm does not recommend this solution.

If the transfer that resulted in the original protocol error response was a write, it can be assumed that no write 
occurred. If the original transfer was a read, it is possible that the read was issued to an AP. Although this scenario 
is unlikely, the possibility must be considered because reads are pipelined.

B4.2.6   Sticky overrun behavior

If an SW-DP receives a transaction request when the previous transaction has not completed, it returns a WAIT 
response. If overrun detection is enabled in the CTRL/STAT register, the CTRL/STAT.STICKYORUN flag is set to 
0b1. Subsequent transactions generate FAULT responses, because a sticky flag is 0b1. If overrun detection is 
enabled, CTRL/STAT.STICKYORUN is also set if there is a FAULT response, protocol error, or line reset. 

When overrun detection is enabled, WAIT and FAULT responses require a data phase:

• If the transaction is a read, the data in the data phase is UNKNOWN. The target does not drive the line, and the 
host must not check the parity bit.

• If the transaction is a write, the data phase is ignored.

Figure B4-6 on page B4-116 shows the WAIT or FAULT response to a read operation when overrun detection is 
enabled.
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Figure B4-6 SW-DP WAIT or FAULT response to a read operation when overrun detection is enabled

Figure B4-7 shows the response to a write operation when overrun detection is enabled.

Figure B4-7 SW-DP WAIT or FAULT response to a write operation when overrun detection is enabled

B4.2.7   SW-DP write buffering

The SW-DP can implement a write buffer, enabling it to accept write operations even when other transactions are 
outstanding. If a DP implements a write buffer, the DP issues an OK response to a write request if it can accept the 
write into its write buffer. This response means that an OK response to a write request, other than a write to the 
ABORT register in the DP, indicates only that the write has been accepted by the DP. An OK response does not 
indicate that all previous transactions have completed.

The maximum number of outstanding transactions, and the types of transactions that might be outstanding, when a 
write is accepted, are IMPLEMENTATION DEFINED. However, the DP must be implemented so that all accesses occur 
in order. For example, if a DP only buffers writes to AP registers and it has any buffered writes, the DP must stall 
on a DP register write access to ensure that the writes are performed in order.

If a write is accepted into the write buffer but later abandoned, the CTRL/STAT.WDATAERR flag is set to 0b1. A 
buffered write is abandoned if:

• A sticky flag is set to 0b1 by a previous transaction.

• A DP read of the DPIDR or CTRL/STAT register is made. Because the DP must not stall reads of these 
registers, the DP must:

— Perform the DPIDR or CTRL/STAT register access immediately.

— Discard any buffered writes, because otherwise they would be performed out-of-order.

— Set the WDATAERR flag to 0b1.

• A DP write of the ABORT register is made. The DP must not stall an ABORT register access.

The flag being set means that if software makes a series of AP write transactions, it might not be possible to 
determine which transaction failed from examining the ACK responses, but it might be possible to use other 
inquiries to find which write failed. For example, if when using the auto-address increment (AddrInc) feature of a 
MEM-AP, software can read the TAR to find the address of the last successful write transaction.

The write buffer must be emptied before the following operations can be performed:

• Any AP read operation.

• Any DP operation other than a read of the DPIDR or CTRL/STAT register, or a write of the ABORT register.

If the write buffer is not empty, attempting these operations causes a WAIT response from the DP.

100

010

Tr
n

St
op

Pa
rit

y

AP
nD

P

1

St
ar

t

A[2:3]

Pa
rk

Tr
n

Wire driven by: Host Target

Clock

WAIT
FAULT

ACK[0:2]RnW

Line not driven for 33 cycles
(32 data bits + parity bit)

100

010

Pa
rit

y

Tr
n

Tr
n

St
op

Pa
rit

y

AP
nD

P

0

St
ar

t

A[2:3]

Pa
rk WDATA[0:31]

Value is ignored by the target

Wire driven by: Host Target Host

Clock

WAIT
FAULT

ACK[0:2]RnW
B4-116 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



B4 The Serial Wire Debug Port 
B4.2 SWD protocol operation
Note

If pushed-verify or pushed-compare is enabled, AP write transactions are converted into AP reads. These 
transactions are then treated in the same way as other AP read operations. See Pushed-compare and pushed-verify 
operations on page B1-44 for details of these operations.

If a DP read of the DPIDR or CTRL/STAT register, or a DP write to the ABORT register, is required immediately 
after a sequence of AP writes, the software must first perform an access that the DP is able to stall. This ensures that 
the write buffer is emptied before the DP register access is performed. If this access is not done, WDATAERR might 
be set to 0b1, causing the buffered writes to be lost.

Note

There is no requirement to insert an extra instruction to terminate the sequence of AP writes if the sequence of writes 
is followed by one of:

• An AP read operation.

• A write operation that can be stalled, such as a write to the SELECT register.

Often the requirement for an extra instruction can be avoided.

B4.2.8   Summary of target responses

The following subsections show the target SW-DP responses for different transaction requests:

• Target SW-DP responses to DP transaction requests.

• Target SW-DP responses to AP transaction requests on page B4-119.

Target SW-DP responses to DP transaction requests

For DP transaction requests, the register that is accessed is determined by:

• The value of A[3:2].

• In DPv1 or later, when A[3:2] is 0b01, the value of SELECT.DPBANKSEL.

The behavior of some read transaction requests depends on the register that is accessed, as Table B4-2 shows.

Table B4-2 shows the target SW-DP response to all possible debugger DP read operation requests.

Table B4-3 on page B4-118 shows the target SW-DP response to all possible debugger DP write operation requests, 
assuming the WDATA parity check is good.

Table B4-2 Target response summary for DP read transaction requests

A[3:2]
SELECT. 
DPBANKSEL

Sticky flag 
value 0b1?

AP 
Ready?

SW-DP (target) response

ACK Action

0b00 x xa xa OK Respond with register value.

0b01 0x0 xa xa OK Respond with register value.

Not 0x0 No Yes OK Respond with register value.

No No WAIT No data phase, unless overrun 
detection is enabledb.

Yes x FAULT No data phase, unless overrun 
detection is enabledb.
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0b10 x No Yes OK Respond by resending the last read 
value that is sent to the host. This 
value is the result of one of:

• The most recent AP read

• The most recent DP RDBUFF 
read.

No No WAIT No data phase, unless overrun 
detection is enabledb.

Yes x FAULT No data phase, unless overrun 
detection is enabledb.

0b11 x No Yes OK Respond with the value from the 
previous AP read, and set 
CTRL/STAT.READOK bit to 0b1.

No No WAIT No data phase, unless overrun 
detection is enabledb. Set 
CTRL/STAT.READOK bit to 0b0.

Yes x FAULT No data phase, unless overrun 
detection is enabledb. Set 
CTRL/STAT.READOK bit to 0b0.

a. The SW-DP must always give an OK response to a read of the DPIDR or CTRL/STAT register.

b. See Sticky overrun behavior on page B4-115 for details about the data phase when overrun detection is enabled.

Table B4-3 Target response summary for DP write transaction requests

A[3:2]
Protocol
version

Sticky flag 
value 0b1?

AP 
Ready?

SW-DP (target) response

ACK Action

0b00 x x x OK Write WDATA value to ABORT 
register.

0b01 or 

0b10

x No Yesa OK Write WDATA value to the selected 
DP register.

No WAIT No data phase, unless overrun 
detection is enabledb.

Yes x FAULT No data phase, unless overrun 
detection is enabledb.

Table B4-2 Target response summary for DP read transaction requests (continued)

A[3:2]
SELECT. 
DPBANKSEL

Sticky flag 
value 0b1?

AP 
Ready?

SW-DP (target) response

ACK Action
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Fault conditions that are not shown in these tables are described in Fault conditions not included in the target 
response tables on page B4-120.

Target SW-DP responses to AP transaction requests

For AP transaction requests, the register that is accessed is determined by the value of A[3:2] combined with the 
values of SELECT.{APSEL,APBANKSEL}. For more information, see Using the AP to access debug resources 
on page A1-31.

Table B4-4 summarizes the target SW-DP response to all possible debugger AP read operation requests.

Table B4-5 on page B4-120 summarizes the target SW-DP response to all possible debugger AP write operation 
requests, assuming the WDATA parity check is good.

0b11 v1 No Yesa OK Register is reserved, SBZ. Write is 
ignored.

No WAIT No data phase, unless overrun 
detection is enabledb.

Yes x FAULT No data phase, unless overrun 
detection is enabledb.

v2 x x None Write WDATA to TARGETSEL 
registerc. 

a. Writes might be accepted when other transactions are still outstanding. These writes might be abandoned later. 
See SW-DP write buffering on page B4-116 for more information.

b. See Sticky overrun behavior on page B4-115 for details about the data phase when overrun detection is enabled.

c. Target does not respond. See Connection and line reset sequence on page B4-122.

Table B4-4 Target response summary for AP read transaction requests

A[3:2]
Sticky flag 
value 0b1?

AP 
Ready?

SW-DP (target) response

ACK Action

0bxx No Yes OK Normallya, return value from previous AP readb and set 
CTRL/STAT.READOK bit to 0b1. Initiate AP read of 
addressed register.

a. If pushed-verify or pushed-compare is enabled, behavior is UNPREDICTABLE.

b. On the first of a sequence of AP reads, the value that is returned in the data phase is UNKNOWN.

No WAIT No data phase, unless overrun detection is enabledc. Set 
CTRL/STAT.READOK bit to 0b0.

c. See Sticky overrun behavior on page B4-115 for details of data phase when overrun detection is enabled.

Yes x FAULT No data phase, unless overrun detection is enabledc. Set 
CTRL/STAT.READOK bit to 0b0.

Table B4-3 Target response summary for DP write transaction requests (continued)

A[3:2]
Protocol
version

Sticky flag 
value 0b1?

AP 
Ready?

SW-DP (target) response

ACK Action
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Fault conditions that are not shown in these tables are described in Fault conditions not included in the target 
response tables.

Fault conditions not included in the target response tables

There are two fault conditions that are not included in possible operation requests listed in Table B4-2 on 
page B4-117 to Table B4-5:

Protocol error 

If there is a protocol error, the target does not respond to the request at all, which means that when 
the host expects an ACK response, it finds that the line is not driven. See Protocol error response 
on page B4-114. 

WDATA fails parity check (write operations only) 

The ACK response of the DP is sent before the parity check is performed, and is shown in 
Table B4-3 on page B4-118. When the parity check is performed and fails, the 
CTRL/STAT.WDATAERR flag is set to 0b1.

B4.2.9   Summary of host responses

Every access by a debugger to an SW-DP starts with an operation request. Summary of target responses on 
page B4-117 listed all possible requests from a debugger, and summarized how the SW-DP responds to each 
request.

Whenever a debugger issues an operation request to an SW-DP, it expects to receive a 3-bit acknowledgment, as 
listed in the ACK columns of Table B4-2 on page B4-117 to Table B4-5. Table B4-6 on page B4-121 summarizes 
how the debugger must respond to this acknowledgment, for all possible cases.

Note

For SWD protocol version 2, Table B4-6 on page B4-121 does not apply to writes to TARGETSEL. See Connection 
and line reset sequence.

Table B4-5 Target response summary for AP write transaction requests

A[3:2] Sticky flag value 0b1? AP Ready?
SW-DP (target) response

ACK Action

0bxx No Yesa

a. Writes might be accepted when other transactions are still outstanding. These writes might be abandoned later. 
See SW-DP write buffering on page B4-116 for more information.

OK Normallyb, write WDATA value to the 
indicated AP register.

b. If pushed-verify or pushed-compare is enabled, the write is converted to a read of the addressed AP register, and 
the value that is returned by this read is compared with the supplied WDATA value, see Pushed-compare and 
pushed-verify operations on page B1-44 for more information.

No WAIT No data phase, unless overrun detection 
is enabledc.

c. See Sticky overrun behavior on page B4-115 for details of data phase when overrun detection is enabled.

Yes x FAULT No data phase, unless overrun detection 
is enabledc.
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Table B4-6 Summary of host (debugger) responses to the SW-DP acknowledge

Operation 
requested

ACK 
received

Host response

Data phase Additional action

R OK Capture RDATA from target and 
check for valid paritya and 
protocol.

a. See Parity on page B4-108 for details of the parity checking.

If a parity or protocol fault occurs and it is not 
possible to flag the data as invalid, the host 
might have to repeat the original read request 
or use the RESEND registerb.

b. The host debugger might support corrupted reads, or it might have to retry the transfer.

Invalid 
ACK

Back off because of possible 
data phase.

The host can check CTRL/STAT register to 
see if the response sent was OK.

W OK Send WDATA. Validity of this transfer is confirmed on next 
access.

Invalid 
ACK

Back off to ensure that target 
does not capture next header as 
WDATA.

Repeat the write access. A FAULT response is 
possible if the first response was sent as OK 
but not recognized as valid by the debugger. 
The subsequent write is not affected by the 
first, misread, response.

x WAIT No data phase, unless overrun 
detection is enabledc.

c. If overrun detection is enabled, a data phase is required. See Sticky overrun behavior on page B4-115 for a 
description of the behavior on read and write operations.

Normally, repeat the original operation 
request. See WAIT response to read or write 
operation request on page B4-113 for more 
information.

FAULT No data phase, unless overrun 
detection is enabledc.

Can send new headers, but only an access to 
DP register addresses 0b0X gives a valid 
response.

No ACK Back off because of possible 
data phase.

Can attempt IDCODE register read. 
Otherwise reset connection and retrain. See 
Protocol error response on page B4-114.
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B4.3 SWD interface

The SWD protocol uses a synchronous serial interface, which comprises a single bidirectional data signal, and a 
clock signal.

This section gives an overview of the physical SWD interface.

B4.3.1   Line interface

The SWD interface uses a single bidirectional data pin, SWDIO. The same signal is used for both host and target 
sourced signals. 

The SWD interface is synchronous, and requires a clock pin, SWCLK.

When the target samples SWDIO, sampling is performed on the rising edge of SWCLK. When the target drives 
SWDIO, or stops driving it, signal changes are performed on the rising edge of SWCLK.

The clock can be sourced from the target and exported, or provided by the host. This clock is then used by the host 
as a reference for generation and sampling of data so that the target is not required to perform any over-sampling.

Both the target and host can drive the bus HIGH and LOW or tristate it. The ports must be able to tolerate short 
periods of contention that might occur because of a loss of synchronization.

The clock can be asynchronous to any system clock, including the debug logic clock. The SWD interface clock can 
be stopped when the debug port is idle, see About the SWD protocol on page B4-106.

B4.3.2   Line pull-up

To make sure that the line is in a known state when neither host nor target is driving the line, a 100K pull-up is 
required at the target. This pull-up can only be relied on to maintain the state of the wire. If the wire is driven LOW 
and released, the pull-up resistor eventually returns the line to the HIGH state, but this process takes many clock 
periods.

The pull-up is intended to prevent false detection of signals when no host is connected, and must be of a suitably 
high value to reduce current consumption from the target when the host actively pulls down the line.

Note

A small current drains from the target whenever the line is driven LOW. If the interface is left connected for 
extended periods when the target has to use a low-power mode, the line must be held HIGH, or reset, by the host 
until the interface is activated.

B4.3.3   Connection and line reset sequence

A debugger must use a line reset sequence to ensure that hot-plugging the serial connection does not result in 
unintentional transfers. The line reset sequence ensures that the SW-DP is synchronized correctly to the header that 
signals a connection.

The SWD interface does not include a reset signal. A line reset is achieved by holding the data signal HIGH for at 
least 50 clock cycles, followed by at least two idle cycles. Figure B4-8 on page B4-123 shows the interface timing 
for a line reset followed by a DP DPIDR register read.
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Figure B4-8 Line reset sequence followed by a DP DPIDR register read

A line reset is required when first connecting to the target. A line reset might be required following a protocol error. 
See Protocol error response on page B4-114. 

A line reset resets DLCR.

Note

Other SW-DP registers are reset only by a powerup reset.

When waiting for a packet header, if the target detects a sequence of 50 clock cycles with the data signal held HIGH, 
followed by at least two idle cycles, it must enter the reset state. It is IMPLEMENTATION DEFINED whether a sequence 
of 50 clock cycles with the data signal held HIGH that is detected at any other time causes the interface to enter the 
reset state.

The only valid transactions in reset state are:

• A read of the DPIDR register. This transaction takes the connection out of reset state.

• One of the switching sequences defined by Switching between SWD and JTAG on page B5-128, if 
implemented.

• A write to the TARGETSEL register, if SWD protocol version 2 is implemented. If this transaction selects 
the target, the interface remains in reset state.

Note
Only writes to TARGETSEL immediately after entry to the reset state can select or deselect the target. See 
Target selection protocol, SWD protocol version 2.

Any of these sequences can be aborted by a second line reset. The behavior of the target is UNPREDICTABLE if any 
other transaction is made in reset state.

If the host does not see an expected response when reading the DPIDR register, it must retry the reset sequence, 
because the target might have been in a state where, for example, it treated the initial line reset as a data phase of a 
transaction and therefore did not detect it as a valid line reset. If so, the target detects the line reset as a protocol 
error and requires a second line reset to respond correctly. 

If overrun detection is enabled, then the line reset sets CTRL/STAT.STICKYORUN to 0b1.

B4.3.4   Target selection protocol, SWD protocol version 2

1. Perform a line reset. See Figure B4-9 on page B4-124. 

2. Write to DP register 0xC, TARGETSEL, where the data indicates the selected target. The target response must 
be ignored. See Figure B4-9 on page B4-124. 

3. Read from the DP register 0x0, DPIDR, to verify that the target has been successfully selected.
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Figure B4-9 Line reset sequence followed by a DP TARGETSEL write

A write to the TARGETSEL register must always be followed by a read of the DPIDR register or a line reset. If the 
response to the DPIDR read is incorrect, or there is no response, the host must start the sequence again.

The target is selected on receiving a line reset sequence.

After receiving a line reset sequence, if the target receives a write request to TARGETSEL that does not select the 
same target, the target is deselected.

When deselected, the target ignores all accesses and must not drive the line. To select or deselect the target, a write 
to TARGETSEL must immediately follow a line reset sequence. Writes to TARGETSEL at any other time are 
UNPREDICTABLE.

If the target encounters a protocol error, it becomes deselected. Specifically, it does not respond to a read of the 
DPIDR register.

For more information, including the required behavior of the target during the response phase of the write to the 
TARGETSEL register, see Sticky flags and DP error responses on page B1-41.

A parity error in the data phase of a write to the TARGETSEL register does not set the CTRL/STAT.WDATAERR 
bit to 0b1. A parity error in the data phase of a write to the TARGETSEL register is treated as a protocol error.

Accesses to the TARGETSEL register are not affected by the state of the CTRL/STAT.{WDATAERR, 
STICKYERR, STICKYCMP, STICKYORUN} bits.

Implementations of SWD protocol version 2 must also support dormant operation. See Dormant operation on 
page B5-131.
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Chapter B5 
The Serial Wire/JTAG Debug Port

This chapter describes multiple protocol interoperability as implemented in the Serial Wire/JTAG Debug Port 
(SWJ-DP) CoreSight component. It contains the following sections:

• About the SWJ-DP on page B5-126.

• Switching between SWD and JTAG on page B5-128.

• Dormant operation on page B5-131.

• Restrictions on switching between operating modes on page B5-138.
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B5.1 About the SWJ-DP

The SWJ-DP interface provides a mechanism to select between SWD and JTAG Data Link protocols. This 
mechanism enables the DP to provide JTAG and SWD connections while making efficient use of package pins 
through sharing, or overlaying, pins.

Implementing an SWJ-DP enables an SoC to connect to legacy JTAG equipment without the need to change to the 
DP design. If an SWD tool is available, the JTAG interface is not needed and only two pins are required, instead of 
the four or five used for JTAG.This frees up some pins for alternative use. See also Limitations when reusing pins.

B5.1.1   SWJ-DP structure

The SWJ-DP comprises both an SW-DP and a JTAG-DP. It selects either the SW-DP or the JTAG-DP as the 
interface to the DAP, and switches between the SWD and JTAG Data Link protocols. Switching is achieved by 
routing the shared pins as shown in Table B5-1. 

The mechanism for switching between SWD and JTAG is described in Switching from JTAG to SWD operation on 
page B5-129.

Note

While the DP is in SWD mode, the JTAG pins TDI, TDO, and nTRST are expected to be reused.

An SWJ-DP can be implemented in a package where the JTAG pins TDI, TDO, and nTRST are not connected 
because an SWJ-DP does not need these JTAG pins to switch the DP to SWD mode.

The following rules apply to SWJ-DP implementations:

• There is no requirement to implement separate SW-DP and JTAG-DP blocks within the SWJ-DP.

• The number, type, and location of APs accessed by the SWJ-DP must not depend on whether the SW-DP or 
the JTAG-DP is selected. Each DP type must access the same debug resources. There is no requirement to 
implement these APs as shared APs.

For this reason, tools must not rely on the state of a DP or any AP it accesses to persist when the other DP is 
selected. After switching DPs, the debugger must re-initialize the DAP, including setting the 
CTRL/STAT.{CDBGPWRUPREQ, CSYSPWRUPREQ} bits correctly.

• The JTAG-DP and SW-DP programmers’ models do not have to implement the same DP architecture 
version. See Chapter B1 About the DP. 

• If the JTAG protocol is never used, a pull-down on TDI at the target is required.

B5.1.2   Limitations when reusing pins

If the JTAG pins on the SWJ-DP interface are not used, they can be reused. However, there is a trade-off between 
the number of pins that are used and compatibility with existing hardware and test equipment.

In the following situations, the use of a JTAG debug interface must be maintained:

• The DP is included in an existing scan chain. This is often true for on-chip TAPs used for testing or other 
purposes.

Table B5-1 Routing of SWJ-DP pins 

SWJ-DP pin SW-DP pin JTAG-DP pin

SWDIOTMS SWDIO TMS

SWDCLKTCK CLK TCK

TDO - TDO

TDI - TDI

TRSTn - TRSTn (optional)
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• The device must be enabled to be cascaded with legacy devices which use JTAG for debug, although this 
requirement can also be supported using a JTAG-AP.

• There is a requirement to use existing debug hardware with the corresponding test TAPs, for example, in 
Automatic Test Equipment (ATE).

The following must be observed:

• When reusing pins, there must be no conflict with their use in JTAG operation. 

• To support use of SWJ-DP in a scan chain with other JTAG devices, the default behavior after a DP reset 
must be to transition any reused pins from their alternative function to their JTAG function, if the direction 
of the alternative function is compatible with being driven by a JTAG debug device. The transition of the 
JTAG TAP to the Shift-DR or Shift-IR state can be used for this transition.

• The alternate function of reused pins cannot be used while the SoC is being used in JTAG operation.

• The switching scheme must enable a JTAG debugger to connect by sending a specific sequence, provided 
there is no conflict on the TDI and TDO pins.

• The connection sequence that is used for SWD must be safe when applied to the JTAG interface, even when 
hot-plugged, to enable the debugger to continually retry its access sequence. 

• A sequence with TMS HIGH must ensure that all parts of the SWJ-DP are in a known reset state.

• The pattern that selects SWD must have no effect on JTAG devices. 

• An SWJ-DP implementation must be compatible with a free-running TCK, or a gated clock, that is supplied 
by the external tools.
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B5.2 Switching between SWD and JTAG

SWJ-DP enables either an SWD or JTAG protocol to be used on the debug port. This section describes in detail how 
the switching mechanism is implemented, and how to switch between the two interfaces.

Note

On devices where the dormant state of operation is implemented, Arm deprecates the mechanism that is described 
in The Switching Mechanism, and recommends using a transition through dormant state instead. For more 
information about dormant state, see Dormant operation on page B5-131.

B5.2.1   The Switching Mechanism

The implementation uses a watcher circuit that detects a specific 16-bit select sequence on SWDIOTMS:

• A 16-bit sequence to switch from JTAG to SWD operation.

• A 16-bit sequence to switch from SWD to JTAG.

Note

Arm deprecates use of these sequences on devices where the dormant state of operation is implemented. 

Arm recommends using a transition through dormant state instead. For more information, see Dormant operation 
on page B5-131.

SWJ-DP defaults to JTAG operation on powerup reset and therefore the JTAG protocol can be used from reset 
without sending a select sequence.

Switching from one protocol to the other can only occur when the selected interface is in its reset state. The JTAG 
TAP state machine must be in its Test-Logic-Reset (TLR) state and the SWD interface must be in line-reset. The 
powerup reset state for a JTAG TAP state machine is the Test-Logic-Reset state.

Having detected a switching sequence, SWJ-DP does not detect more sequences until after a reset condition. If 
JTAG is selected, the JTAG TAP state machine being in the TLR state is the reset condition. If SWD is selected, a 
line reset is the reset condition.

Figure B5-1 on page B5-129 is a simplified state diagram that shows how SWJ-DP transitions between selected, 
detecting, and selection states.
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Figure B5-1 SWD and JTAG select state diagram

Note

For Figure B5-1:

• The JTAG-to-SWD sequence terminates in the SW-Sel reset state.

• The SWD-to-JTAG sequence terminates in the JTAG-Sel TLR state.

The recommended sequences end with a reset sequence for the selected state, to ensure that the target is in the 
relevant reset state.

B5.2.2   Switching from JTAG to SWD operation

To switch SWJ-DP from JTAG to SWD operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the current 
interface is in its reset state. The JTAG interface only detects the 16-bit JTAG-to-SWD sequence starting 
from the TLR state.

2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS.

3. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that if SWJ-DP was 
already in SWD operation before sending the select sequence, the SWD interface enters line reset state.

The 16-bit JTAG-to-SWD select sequence is 0b0111 1001 1110 0111, most-significant-bit (MSB) first. This sequence 
can be represented as one of the following:

• 0x79E7, transmitted MSB first.

• 0xE79E, transmitted least-significant-bit (LSB) first.

Figure B5-2 on page B5-130 shows the interface timing. The sequence that is shown in the figure has been chosen 
to ensure that the SWJ-DP switches to SWD, independent of whether it was previously expecting JTAG or SWD. 
As long as the 50 cycles with SWDIOTMS HIGH sequence are sent first, the JTAG-to-SWD select sequence does 
not affect SW-DP or the SWD and JTAG protocols that are used in the SWJ-DP, or any other TAP Controllers that 
might be connected to SWDIOTMS.

On selecting SWD operation, the SWD interface returns to its reset state. See Connection and line reset sequence 
on page B4-122.
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ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. B5-129
ID022122 Non-Confidential



B5 The Serial Wire/JTAG Debug Port 
B5.2 Switching between SWD and JTAG
Figure B5-2 shows that JTAG-to-SWD sequence begins immediately after the 50 cycles with SWDIOTMS HIGH. 
Unlike a normal line reset, the two cycles with SWDIOTMS LOW are not present.

Figure B5-2 JTAG-to-SWD sequence timing

B5.2.3   Switching from SWD to JTAG operation

To switch SWJ-DP from SWD to JTAG operation:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the current 
interface is in its reset state. The SWD interface only detects the 16-bit SWD-to-JTAG sequence when it is 
in the reset state.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that if SWJ-DP 
was already in JTAG operation before sending the select sequence, the JTAG TAP enters the 
Test-Logic-Reset state.

The 16-bit SWD-to-JTAG select sequence is 0b0011 1100 1110 0111, MSB first. This sequence can be represented as 
either of the following:

• 0x3CE7, transmitted MSB first

• 0xE73C, transmitted LSB first.

Figure B5-3 shows the SWD-to-JTAG sequence timing. The sequence that is shown in the figure has been chosen 
to ensure that the SWJ-DP switches to JTAG, independent of whether it was previously expecting JTAG or SWD. 
If the SWDIOTMS HIGH sequence is sent first, the SWD-to-JTAG select sequence does not affect SW-DP or the 
SWD and JTAG protocols that are used in the SWJ-DP, or any other TAP Controllers that might be connected to 
SWDIOTMS.

Figure B5-3 shows that the SWD-to-JTAG sequence begins immediately after the 50 cycles with SWDIOTMS 
HIGH.Unlike a normal line reset, the two cycles with SWDIOTMS LOW cycles are not present.

Figure B5-3 SWD-to-JTAG sequence timing
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B5.3 Dormant operation

An alternative to the selection mechanism for switching between JTAG and SWD operation that is described in 
Switching between SWD and JTAG on page B5-128 is the dormant state of operation.

To switch between JTAG and SWD operation, a debugger must first place the target into dormant state and then 
transition to the required operating state.

Using dormant state allows the target to be placed into a quiescent mode, allowing devices to inter-operate with 
other devices implementing other protocols. Those other protocols must also implement a quiescent state, with a 
mechanism for entering and leaving that state that is compatible, but not necessarily compliant, with the SWJ-DP 
and SW-DP protocols.

Dormant operation is required by SWJ-DP and SW-DP implementations that implement SWD protocol version 2. 
SWD protocol version 2 is described in Chapter B4 The Serial Wire Debug Port. Otherwise, support for dormant 
state is IMPLEMENTATION DEFINED. In the dormant state, the target must ignore any stimulus, with any timing, other 
than a defined Selection Alert sequence.

The Selection Alert sequence must be followed by a protocol-specific Activation code.

Selection of dormant state is possible when either JTAG or SWD operation is selected. Figure B5-4 extends the state 
diagram of Figure B5-1 on page B5-129 to include selection of dormant state, for an SWJ-DP implementation.

Figure B5-4 SWJ-DP selection of JTAG, SWD, and dormant states

Note

Following the DS-to-JTAG activation code, the JTAG TAP is in either the Test-Logic-Reset state or Run-Test/Idle 
state, and therefore this state machine is in either the JTAG-Sel TLR state or the JTAG-Sel selected state. Normally, 
the TAP state that the state machine returns to is the TAP state it left from, but it is also possible to reset the JTAG 
TAP state machine when JTAG is not the selected protocol. To ensure that the TAP is in the Run-Test/Idle state, 
Arm recommends that the DS-to-JTAG sequence is followed by a single clock with SWDIOTMS LOW.

The DS-to-SWD sequence is shown terminating in the SW-Sel reset state. The recommended sequence ends with a 
line reset to ensure that the target is in the reset state.
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B5.3.1   Using the dormant state outside of SWJ-DP

An SWD device that does not implement JTAG can nevertheless implement dormant state, and inter-operate with 
SWJ-DP and other JTAG devices that also implement dormant state. In this case:

• The operating mode selection state machine is simplified.

• The initial state, entered on a powerup reset, is the dormant state.

Figure B5-5 shows the state diagram for an SW-DP that implements protocol version 2 illustrating it supports 
dormant operation.

Figure B5-5 SW-DP selection of SWD, and dormant states

The dormant state enables multi-drop SWJ-DP, SW-DP, and JTAG TAPs to share a physical connection to a host, 
as shown in Figure B5-6. These different devices can be in different physical packages, on different dies in a single 
package, or on a single die.

Figure B5-6 Multiple JTAG, SW, SWJ (multi-drop), and other protocol devices on shared connection
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B5.3.2   Switching from JTAG to dormant state

To switch from JTAG to dormant state, a debugger must:

1. Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence places the JTAG TAP state 
machine into the TLR state, and selects the IDCODE instruction.

2. Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

The recommended 31-bit JTAG-to-DS select sequence is 0b010_1110_1110_1110_1110_1110_1110_0110, MSB first. 
This sequence can be represented as either:

• 0x2EEEEEE6 transmitted MSB first, that is, starting from bit 30.

• 0x33BBBBBA transmitted LSB first.

Figure B5-7 Recommended JTAG-to-DS sequence timing

Requirements for implementations

The JTAG-to-DS sequence is the shortest sequence that switches from JTAG-to-DS. For compatibility with other 
standards, all JTAG devices that implement dormant state must recognize other sequences as valid JTAG-to-DS 
select sequences.

The full sequence is defined around the concept of a zero-bit-DR-scan (ZBS or ZBS scan) which is in turn defined 
by transitions of the JTAG TAP state machine. A ZBS is defined as any JTAG TAP state machine sequence that 
starts at Capture-DR and ends in Update-DR without passing through Shift-DR.

Examples of a ZBS are:

• Capture-DR Exit1-DR Update-DR

• Capture-DR Exit1-DR Pause-DR … Pause-DR Exit2-DR Update-DR

The sequence also uses the ZBS count, which is defined as follows:

• If the TAP state machine enters either the Select-IR-Scan or TLR state, the ZBS count is unlocked and reset 
to zero, which includes asynchronously entering Test-Logic-Reset following assertion of nTRST. At reset, 
the ZBS count is unlocked and reset to zero.

• On entering Update-DR at the end of a ZBS scan, if the ZBS count is unlocked and less than seven, it is 
incremented by one.

• The counter does not increment past seven. On entering Update-DR at the end of a ZBS scan, if the ZBS 
count is unlocked and equal to seven, it is not incremented. The count does not wrap to zero.

• The ZBS count is locked if the TAP state machine enters the Shift-DR state and the ZBS count is not zero.

The JTAG-to-DS sequence is defined as any sequence of TAP state machine transitions that terminates in the 
Run-Test/Idle state with a locked ZBS count of six. On entering Run-Test/Idle, the target is placed into Dormant 
State (DS).

The behavior of the target on entering Run-Test/Idle with other locked ZBS counts is IMPLEMENTATION DEFINED.

At least
5 clocks with
SWDIOTMS

HIGH

0 1 0 1 1 1 0 ... 1 1 0 0 1 1 0

JTAG-to-DS sequence

SWCLKTCK

SWDIOTMS
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. B5-133
ID022122 Non-Confidential



B5 The Serial Wire/JTAG Debug Port 
B5.3 Dormant operation
Although the recommended JTAG-to-DS sequence starts by placing the JTAG TAP state machine in the 
Test-Logic-Reset state, this transition is not required for recognizing the JTAG-to-DS sequence. However, tools 
must ensure that the IR is loaded with either the BYPASS or IDCODE instruction before placing the target into the 
dormant state. If the IR is not loaded with either of these instructions when the target is put into dormant state, the 
behavior is unpredictable.

The pseudocode function EnterDormantState describes the function of the JTAG-to-DS sequence detector. It is 
notionally called on every TAP state machine transition. The function takes the state being entered as an argument, 
and returns a Boolean that indicates whether dormant state must be entered.

For details of the pseudocode language, see Appendix E3 Pseudocode Definition.

enumeration TAPState {
    TestLogicReset, RunTestIdle,
    SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
    SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR};

boolean shiftDRflag = FALSE;
integer ZBScount = 0;
boolean ZBSlocked = FALSE;

// EnterDormantState()
// ===================

boolean EnterDormantState(TAPState state)
    case state of
        when CaptureDR
            shiftDRflag = FALSE;
        when ShiftDR
            shiftDRflag = TRUE;

            if ZBScount != 0 then ZBSlocked = TRUE;
        when UpdateDR
            if !ZBSlocked && !shiftDRflag && ZBScount < 7 then
                ZBScount = ZBScount + 1;
        when SelectIRScan, TestLogicReset
            ZBScount = 0;  ZBSlocked = FALSE;
        return state == RunTestIdle && ZBSlocked && ZBScount == 6;

Note

If the JTAG-to-DS sequence is terminated by entering the TLR state, an SWJ-DP can immediately detect a 
JTAG-to-SWD sequence.

B5.3.3   Switching from SWD to dormant state

To switch from SWD to dormant state:

1. Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD 
interface is in the reset state. The target only detects the SWD-to-DS sequence when it is in the reset state.

2. Send the 16-bit SWD-to-DS select sequence on SWDIOTMS.

The 16-bit SWD-to-DS select sequence is 0b0011_1101_1100_0111, MSB first. This sequence can be represented as 
either:

• 0x3DC7 transmitted MSB first.

• 0xE3BC transmitted LSB first.

Figure B5-8 on page B5-135 shows that the SWD-to-DS sequence begins immediately after the 50 cycles with 
SWDIOTMS HIGH. Unlike a normal line reset, the two cycles with SWDIOTMS LOW are not present.
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Figure B5-8 SWD-to-DS sequence timing

B5.3.4   Leaving dormant state

To ensure that the probability for any protocol being used to accidentally signal the DP to leave the dormant state 
is low, the sequence for leaving the dormant state is considerably longer than the sequence for entering it.

To signal the DP to leave the dormant state:

1. Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the target is 
not in the middle of detecting a Selection Alert sequence. The target is permitted to detect the Selection Alert 
sequence even if this eight cycle sequence is not present.

2. Send the 128-bit Selection Alert sequence on SWDIOTMS.

3. Send four SWCLKTCK cycles with SWDIOTMS LOW. The target must ignore the value on SWDIOTMS 
during these cycles.

4. Send the required activation code sequence on SWDIOTMS.

5. Send a sequence to place the target into a known state

• If selecting JTAG, the target is in either the Run/Test Idle or TLR states, see the Note that follows 
Figure B5-4 on page B5-131 for more information. Arm recommends that the debugger sends one 
SWCLKTCK cycle with SWDIOTMS LOW, to ensure that the TAP state machine is in the 
Run-Test/Idle state. Alternatively, send at least five SWCLKTCK cycles with SWDIOTMS HIGH 
to ensure that the TAP state machine is in the Test-Logic/Reset state.

• If selecting SWD, the target is in the protocol error state. The debugger must send at least 50 
SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD interface is in 
the line reset state.

Note

The Activation code selects a protocol, not a target. In a multi-drop SWD system with multiple SW-DPs, a 
target must then be selected. For more information, see Target selection protocol, SWD protocol version 2 on 
page B4-123. 

The Selection Alert sequence, in binary, is

0100_1001_1100_1111_1001_0000_0100_0110_1010_1001_1011_0100_1010_0001_0110_0001_ 
1001_0111_1111_0101_1011_1011_1100_0111_0100_0101_0111_0000_0011_1101_1001_1000

This sequence is sent MSB first. This sequence can be represented as either:

• 0x49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.

• 0x19BC0EA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.
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Figure B5-9 Selection Alert sequence

Note

The Selection Alert sequence can be generated by implementing a Linear Feedback Shift Register (LFSR) 
implementing feedback on bits 6, 5, 3 and 0, starting in the state 0b1001001 and shifting out one bit from bit 0 each 
cycle. The sequence starts with a zero start bit and continues with the output of the LFSR.

Figure B5-10 LSFR for generating Selection Alert sequence

The value of the activation code depends on whether SWD or JTAG operation is to be requested. Table B5-2 defines 
the activation codes a debugger must use for JTAG devices, SW-DP devices, and SWJ-DP devices. These sequences 
are sent MSB first.

JTAG online activation codes

For compatibility with other standards, all JTAG devices that implement dormant state using the ADIv5-defined 
selection alert sequence, must recognize other sequences as valid JTAG-Serial activation codes.

Figure B5-11 on page B5-137 shows the sequence that a JTAG device must recognize, as a state diagram.

SWCLKTCK

SWDIOTMS

At least 8 cycles 
with SWDIOTMS

HIGH

0 1 0 0 1 0 ... 0 1 1 0 0 0

Selection Alert sequence
(128 cycles)

(0)(0) (0) (0)

4 cycles with 
SWDIOTMS 

LOW

Activation
code

Selected
technology

1 0 0 1 10 0

Selection 
Alert 

sequence

Table B5-2 Activation codes

Activation code Value, MSB first

Devices activated Protocol selected

Other 
JTAG

ADIv5 Debug Ports

JTAG SW SWJ

JTAG-Serial 0b0000_0000_0000 Yes Yes No Yes JTAG

Arm CoreSight SW-DP 0b0101_1000 No No Yes Yes SWD

Arm CoreSight JTAG-DP 0b0101_0000 No Yes No Yes JTAG
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Figure B5-11 Dormant to JTAG state diagram

Each of the bit-strings that are shown in Figure B5-11 are received MSB first. The transition out of state G2 requires 
a reset of the JTAG TAP, but otherwise returns to dormant state. For more information on this sequence, contact 
Arm.

Note

ADIv5 does not define any other activation codes, but also does not prohibit an implementation from recognizing 
other activation codes for compatibility with other standards. Implementations can also use alternative selection 
alert mechanisms. Debuggers can generate multiple selection alert sequences to alert multiple devices, and then use 
the common activation codes to select which devices to activate.

Dormant A

<128-bit-seq>

B

xxxx

C

00x0 00x

E

x

1

0

x

other

1

0

0

0

1

JTAG-Sel

x

Selection Alert Sequence Extended JTAG Activation Code

0101 xxxx
ARM CoreSight 
activation codes

D2

D1

F2

F1

G1

G21 xxxxxxxx xxxxxxxx xxxxxxxx
JTAG TAP 

reset
(see text)

x
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B5.4 Restrictions on switching between operating modes

A debugger must not mix JTAG-DP and SW-DP reads and writes of DAP registers in a single debug session. A 
single debug session is defined as from when a debugger connection is made with the system in a reset state through 
to the debugger connection being broken. At the start of a debug session, the state of the target is UNKNOWN. 

Attempting to mix JTAG-DP and SW-DP reads and writes of DAP registers while any component of the DAP is 
active can have unpredictable results. 

A powerup reset cycle might be required to reset the DAP before a change in active Data Link protocol. However, 
this cycle is not required when switching between the active protocol and dormant state.
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Chapter C1 
About the AP

A DAP can include multiple APs. 

This chapter gives an overview of APs, and describes the features that must be implemented by every AP. It contains 
the following sections:

• AP requirements on page C1-142.

• Selecting and accessing an AP on page C1-143.

• AP Programmers’ Model on page C1-144.

The following chapters provide two AP definitions:

• Chapter C2 The Memory Access Port.

• Chapter C3 The JTAG Access Port.

Designers can use the ADI architecture specification to implement other APs.
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C1.1 AP requirements

A DAP can implement multiple APs, and use a mixture of AP types.

Note

This specification permits a DAP to include AP types that are not defined in the specification, even if such an AP 
is the only AP in the DAP. A debugger must be able to detect any AP and must ignore any AP that it does not 
recognize.

All APs must observe the following requirements:

• Every AP must implement an IR as described in AP Programmers’ Model on page C1-144. This 
identification model is required for implementations of the MEM-AP and JTAG-AP implementations that are 
defined by Arm, by any future Arm AP implementations, and by any APs that might be implemented by any 
third party.

• Any AP must support accesses by the implemented DP, as described in Using the AP to access debug 
resources on page A1-31. A summary of how to access an AP is given in Selecting and accessing an AP on 
page C1-143.

• For all APs, reserved registers must be RES0. This requirement applies to all APs, including any implemented 
by companies other than Arm.

There are no other requirements for APs in the ADIv5 specifications. All features that are provided by an AP can 
be IMPLEMENTATION DEFINED.
C1-142 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



C1 About the AP 
C1.2 Selecting and accessing an AP
C1.2 Selecting and accessing an AP

Any APACC request to a MEM-AP, a JTAG-AP, or an AP not defined by this specification must be answered by 
the DP according to the following addressing scheme:

• The value of the SELECT.APSEL field must be used to select which AP is accessed. 

• The value of the SELECT.APBANKSEL field must be used to select the four-register bank of AP registers 
is accessed. This information is passed as the A[7:4] field of the AP access.

• The A[3:2] field that is passed in the APACC access must be used to select the AP register within the selected 
four-register bank.

• The RnW field for the APACC access must be used to determine whether the AP register access is a read 
access or a write access.

For detailed information about DP support for APACC accesses, see Chapter B3 The JTAG Debug Port and 
Chapter B4 The Serial Wire Debug Port.

Examples of implementations of APACC accesses are shown in Figure C2-1 on page C2-149 for a MEM-AP, and 
Figure C3-1 on page C3-191 for a JTAG-AP.

C1.2.1   Stalling accesses

AP interfaces can support stalling accesses, which enable the AP to be connected to slow devices, such as a memory 
system or a long JTAG scan chain. As a result, the DAP can put an AP access into a pending state, and the access 
does not have to complete within a fixed number of cycles. This is important because often an AP access cannot 
complete until the associated memory access or JTAG scan has completed. For more information, see:

• Stalling accesses on page C2-154, for stalling accesses to a MEM-AP.

• Stalling accesses on page C3-196, for stalling accesses to a JTAG-AP.
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C1.3 AP Programmers’ Model

This section describes the AP programmers’ model, which must be implemented by all APs.

C1.3.1   Summary

ADIv5 requires every AP to implement an AP Identification Register, IDR, at offset 0xFC. IDR is the last register in 
the AP register space, and is described in IDR, Identification Register.

The IDR is the only register that must be implemented by all Access Ports, see Table C1-1.

For information about the programmers’ model for specific AP implementations, see Chapter C2 The Memory 
Access Port and Chapter C3 The JTAG Access Port.

C1.3.2   IDR, Identification Register

Purpose 

IDR identifies the Access Port. An IDR value of zero indicates that there is no AP present.

Usage constraints 

The value of IDR after a reset is IMPLEMENTATION DEFINED.

IDR is accessible as follows:

Configurations 

IDR is implemented in DPv0, DPv1, and DPv2.

DAPs that comply with the ADIv5 specification must implement the JEP106 code and 
provide a value in the REVISION and CLASS fields.

Attributes 

IDR is A 32-bit read-only register.

Field descriptions

The IDR bit assignments are:

REVISION, bits[31:28] 

Starts at 0x0 for the first implementation of an AP design, and increments by 1 on each major or 
minor revision of the design. Major design revisions introduce functionality changes, minor 
revisions are bug fixes.

Table C1-1 Common AP programmers’ model

Offset Type Name Description

0xFC RO IDR Identification Register.

Default

RO

TYPEDESIGNERREVISION

31 28 27 17 16 4 3 0

CLASS RES0 VARIANT

1213 8 7
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DESIGNER, bits[27:17] 

Code that identifies the designer of the AP.

This field indicates the designer of the AP and not the implementer, except where the two are the 
same. To obtain a number, or to see the assignment of these codes, contact JEDEC  
http://www.jedec.org.

A JEDEC code takes the following form:

• A sequence of zero or more numbers, all having the value 0x7F.

• A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit. For example, 
Arm Limited is assigned the code 0x7F 0x7F 0x7F 0x7F 0x3B.

The encoding that is used in the IDR is as follows:

• The JEP106 continuation code, IDR bits[27:24], is the number of times that 0x7F appears 
before the final number. For example, for Arm Limited this field is 0x4.

• The JEP106 identification code, IDR bits[23:17], equals bits[6:0] of the final number of the 
JEDEC code. For example, for Arm Limited this field is 0x3B.

Note

The JEP106 codes are assigned by JEDEC to identify the manufacturer of a device. However, in the 
AP Identification register they identify the designer of the AP.

An implementer of an Arm MEM-AP or JTAG-AP must not change these AP Identification 
Register values.

Note

• For backwards compatibility, debuggers must treat an AP return a JEP106 field of zero as an 
AP designed by Arm. This encoding was used in early implementations of the DAP. In such 
an implementation, the REVISION and CLASS fields are also RAZ.

• DAPs that comply with the ADIv5 specification must use the JEP106 code and provide a 
value in the REVISION and CLASS fields.

CLASS, bits[16:13] 

Defines the class of AP. An AP belongs to a class if it follows a programmers’ model that is defined 
as part of the ADIv5 specification or extensions to it. This field can have the following values:

0b0000 No defined class.

0b0001 COM Access Port. See Chapter C4 COM-AP programmers’ model.

0b1000 Memory Access Port. See Chapter C2 The Memory Access Port.

Bits[12:8] Reserved, RES0. This field is reserved for future ID register fields. If a debugger reads a non-zero 
value in this field, it must treat the AP as unidentifiable.

VARIANT, bits[7:4] 

Together with the TYPE field, this field identifies the AP implementation. VARIANT differentiates 
AP implementations that have the same value of TYPE.

Each AP designer must maintain their own list of implementations and associated AP Identification 
codes.

TYPE, bits[3:0] 

Indicates the type of bus, or other connection, that connects to the AP. Table C1-2 on page C1-146 
lists the possible values of the Type field for an AP designed by Arm. It also shows the value of the 
CLASS field, which corresponds to bits[16:13] of the IDR, for each value of TYPE.

Together with the VARIANT field, this field identifies the AP implementation. AP implementations 
that have the same value of TYPE are differentiated by their VARIANT value.
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Each AP designer must maintain their own list of implementations and associated AP Identification 
codes.

Accessing IDR

IDR can be accessed at the following address:

Table C1-2 AP Identification types for an AP designed by Arm

TYPE Connection to AP CLASS Notes

0x0 JTAG connection 0b0000 VARIANT field, bits [7:4] of 
IDR, must be non-zero.

0x0 COM-AP 0b0001 -

0x1 AMBA AHB3 bus 0b1000 -

0x2 AMBA APB2 or APB3 bus 0b1000 -

0x4 AMBA AXI3 or AXI4 bus, with 
optional ACE-Lite support

0b1000 Not defined in Issue A of this 
document.

0x5 AMBA AHB5 bus 0b1000 -

0x6 AMBA APB4 and APB5 bus 0b1000 -

0x7 AMBA AXI5 bus 0b1000 -

0x8 AMBA AHB5 with enhanced HPROT 0b1000 -

Other Reserved - -

Offset

0xFC
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Chapter C2 
The Memory Access Port

This chapter describes the implementation of the Memory Access Port (MEM-AP) and how a MEM-AP connects 
the DP to a debug component.

This chapter contains the following sections:

• About the MEM-AP on page C2-148.

• MEM-AP functions on page C2-152.

• Implementing a MEM-AP on page C2-162.

• MEM-AP examples of pushed-verify and pushed-compare on page C2-165.

• MEM-AP Programmers’ Model on page C2-167.

• MEM-AP register descriptions on page C2-168.

For information that applies to all APs, see Chapter C1 About the AP.
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C2.1 About the MEM-AP

A MEM-AP provides a DAP with AP access to a memory-mapped abstraction of a set of debug resources in the 
system being debugged.

Note

Access to a MEM-AP might only access a register within the MEM-AP without generating a memory access to the 
system being debugged.

C2.1.1    The programmers’ model for debug register access

The programmers’ model for debug registers is a memory map. Although use of a memory bus system is not 
required, this abstraction enables the same programming model to be used for accessing debug registers and system 
memory. With this model, the debug registers might be implemented as a peripheral within the system memory 
space.

The debug registers in a debug component occupy one or more 4KB blocks of address space, and a system might 
contain several such debug components.

Although this specification permits a debug component to implement multiple 4KB blocks, most components 
implement a single block. 

Note

Although a component can occupy only 4KB of address space, Arm recommends that the base address of each 
component is aligned to the largest translation granule supported by any processor that can access the component. 
For an Armv8 or Armv9 processor, the granule size can be up to 64KB.

Debug register files

A 4KB block of address space accessible from an AP can be referred to as a debug register file. A single AP can 
access multiple debug register files. There is a base standard for debug register file identification and debuggers 
must be able to recognize and ignore register files that they do not support.

A single MEM-AP can access a mixture of system memory and debug register files.

ROM Tables

A ROM Table is a special case of a debug register file. It is a 4KB memory block that identifies a system.

If there is only one debug component in the system to which the MEM-AP is connected, the ROM Table is optional. 
However, because the ROM Table contains a unique system identifier that identifies the complete SoC to the 
debugger, an implementation might choose to include a ROM Table even if there is only one other debug component 
in the system.

When a system includes more than one debug component it must include a ROM Table.

For more information, Chapter D1 About ROM Tables describes ROM Tables.

C2.1.2   Selecting and accessing the MEM-AP

Figure C2-1 on page C2-149 shows the implementation of a MEM-AP, and how the MEM-AP connects the DP to 
the debug components. Two example debug components are shown, a processor core and an ETM, together with a 
ROM Table. APACC accesses to the DP are passed to the MEM-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs 
and JTAG-APs. See also Selecting and accessing an AP on page C1-143.
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Figure C2-1 MEM-AP connecting the DP to debug components
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C2.1.3   The MEM-AP registers

The MEM-AP registers, and the memory map of the MEM-AP, are described in detail in MEM-AP register 
descriptions on page C2-168. However, a basic knowledge of the functions of these registers is required to 
understand the operation of the MEM-AP. The MEM-AP registers are shown in Figure C2-1 on page C2-149:

Control/Status Word register, CSW 

The CSW holds control and status information for the MEM-AP.

Transfer Address Register, TAR 

The TAR holds the address for the next access to the memory system, or set of debug resources that 
are connected to the MEM-AP. The MEM-AP can be configured so that the TAR is incremented 
automatically after each memory access. Reading or writing to the TAR does not cause a memory 
access.

Data Read/Write register, DRW 

The DRW is used for memory accesses:

• Writing to the DRW initiates a write to the address specified by the TAR.

• Reading from the DRW initiates a read from the address that is specified by the TAR. When 
the read access completes, the value is returned from the DRW.

Banked Data Registers, BD0 to BD3 

The Banked Data Registers, BD0-BD3, provide direct read or write access to a block of four words 
of memory, starting at the address that is specified in the TAR:

• Accessing BD0 accesses (TAR[31:4] << 4) in memory.

• Accessing BD1 accesses ((TAR[31:4] << 4) + 0x4) in memory.

• Accessing BD2 accesses ((TAR[31:4] << 4) + 0x8) in memory.

• Accessing BD3 accesses ((TAR[31:4] << 4) + 0xC) in memory.

The value in TAR[3:0] is ignored in constructing the access address:

• The values of bits[3:2] of the access address depend solely on which of the four banked data 
registers is being accessed.

• Bits[1:0] of the access are always zero.

Configuration register, CFG 

The CFG register hold information about the configuration of the MEM-AP. 

Debug Base Address register, BASE 

The BASE register is a pointer into the connected memory system. It points to one of:

• The start of a set of debug registers for the single connected debug component.

• The start of a ROM Table that describes the connected debug components.

Identification Register, IDR 

The IDR register identifies the MEM-AP.

Note

This brief summary of the MEM-AP registers does not include cross-references to the detailed register descriptions. 
For more information about these registers, see MEM-AP register descriptions on page C2-168.

C2.1.4   MEM-AP register accesses and memory accesses

Note

In this section, an access to the debug resources is described as a memory access. 
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This section summarizes all the possible APACC accesses to a MEM-AP, and covers accesses to each of the 
MEM-AP registers. These accesses are summarized in the following sections:

• Accesses that do not initiate a memory access.

• Accesses that initiate a memory access.

• Accesses that support pushed transactions and the transaction counter.

Accesses that do not initiate a memory access

APACC accesses to the following MEM-AP registers do not cause a memory access:

• The Control/Status Word register, CSW.

• The Transfer Address Register, TAR.

• The Configuration register, CFG.

• The Debug Base Address register, BASE.

• The Identification Register, IDR.

Accesses that initiate a memory access

This section introduces the APACC accesses to MEM-AP registers that initiate one or more memory accesses. 
These APACC accesses are:

• Accesses to the DRW register. A memory access is initiated, using the address that is held in the TAR.

• Accesses to one of the Banked Data Registers, BD0-BD3. 

The address that is used for the memory access depends on which Banked Data Register is accessed.

• Accesses to the Memory Barrier Transfer register, MBT.

However, if the MEM-AP implementation includes the Large Data Extension, and CSW.Size specifies a transfer 
size that is larger than a word, some DRW and BD0-BD3 accesses do not initiate a memory access, see DRW, Data 
Read/Write register on page C2-181 and Accessing BD0-BD3 on page C2-172.

Sometimes, a single AP transaction initiates more than one memory access:

• When the transaction counter is set. See The transaction counter on page B1-43.

• When packed transfers are supported and enabled and the transfer size is smaller than word. See Packed 
transfers on page C2-158.

For more information, see Packed transfers on page C2-158.

If an AP transaction initiates one or more memory accesses, the AP transaction does not complete until one of the 
following occurs:

• All the memory accesses complete successfully.

• A memory access terminates with an error response. In this case, any outstanding accesses to the debug 
component are abandoned.

• The AP accesses are aborted using the ABORT register.

Accesses that support pushed transactions and the transaction counter

A MEM-AP supports pushed transactions and sequences of transactions to the following registers only:

• DRW, Data Read/Write register.

• BD0-BD3, Banked Data registers.

For more information, see:

• Pushed-compare and pushed-verify operations on page B1-44.

• The transaction counter on page B1-43.
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C2.2 MEM-AP functions

This section describes the functions of a MEM-AP. These functions are controlled by the MEM-AP registers, as 
described in MEM-AP register descriptions on page C2-168.

The following sections describe functions that a MEM-AP must support:

• Enabling access to the connected debug device or memory system.

• Auto-incrementing the Transfer Address Register (TAR).

• Stalling accesses on page C2-154.

• Response to debug component errors on page C2-155.

The following sections describe functions for which it is IMPLEMENTATION DEFINED whether a particular MEM-AP 
supports them:

• Variable access size for memory accesses on page C2-156.

• Byte lanes on page C2-157.

• Packed transfers on page C2-158.

• Software access control on page C2-161.

• Implementing a MEM-AP on page C2-162.

Note

Some of the IMPLEMENTATION DEFINED functions are inter-dependent. Their dependencies are summarized in 
MEM-AP implementation requirements on page C2-162.

C2.2.1   Enabling access to the connected debug device or memory system

Access to the debug device or memory system is controlled by Device Enable signal, DEVICEEN. This signal is 
an input to the DAP. DEVICEEN is normally tied HIGH, so that it is asserted even when the Debug Enable signal, 
DBGEN, is LOW, allowing the MEM-AP to be programmed even when debug is disabled.

The current value of the DEVICEEN signal is shown by the read-only CSW.DeviceEn flag that indicates whether 
the MEM-AP is able to issue transactions to the memory system to which it is connected. 

When CSW.DeviceEn is 0b0, no transactions can be issued to any address, and any access to the Data Read/Write 
Register or to any of BD0-BD3 immediately causes the CTRL/STAT.STICKYERR bit to be set to 0b1. The access 
does not cause a MEM-AP transaction.

If there is no DEVICEEN signal for a device, the DeviceEn flag must Read-As-One.

C2.2.2   Auto-incrementing the Transfer Address Register (TAR)

As indicated in The MEM-AP registers on page C2-150, the TAR holds an address in the address map of the debug 
resource that is connected to the MEM-AP. This address is used as:

• The address in the debug component memory map of read or write accesses that are initiated by a read or 
write of the DRW.

• The base address determines the address in the debug component memory map of read or write accesses that 
are initiated by a read or write of one of BD0-BD3, as described in Accesses that initiate a memory access 
on page C2-151.

Software can configure the MEM-AP to auto-increment the TAR on every read or write access to the DRW. 
Auto-incrementing is controlled by the CSW.AddrInc field.

When auto address incrementing is enabled, the address in the TAR is updated whenever an access to the DRW is 
successful. However, if the DRW transaction completes with an error response, or the transaction is aborted, the 
TAR is not incremented.
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Note

Accesses to BD0-BD3 never cause the TAR to auto-increment. The AddrInc field has no effect on accesses to 
BD0-BD3.

The permitted values of the AddrInc field are summarized in Table C2-1.

The modes of operation that is associated with each of the possible settings of this field are:

Auto-increment off 

The address in the TAR is not automatically incremented, and remains unchanged after any Data 
Read/Write Register access.

Increment single 

After a successful DRW access, the address in the TAR is incremented by the size of the access. For 
information about different access sizes, see Variable access size for memory accesses on 
page C2-156.

Note

It is IMPLEMENTATION DEFINED whether a MEM-AP supports transfer sizes other than Word. If a 
MEM-AP only supports word transfers and Increment single is selected, the TAR always 
increments by four after a successful DRW transaction.

Increment packed 

Setting AddrInc to 0b10, Increment packed, enables packed transfers, which pack multiple halfword 
or byte memory accesses into a single word APACC access. Packed transfers are described in more 
detail in Packed transfers on page C2-158.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports packed transfers, but:

• An implementation that supports transfers smaller than a word must support packed transfers.

• Packed transfers cannot be supported on a MEM-AP that only supports word transfers.

When packed transfer operation is enabled and the transfer size is smaller than a word, each DRW 
access causes multiple memory accesses, and the value in the TAR is auto-incremented correctly 
after each memory access. For example:

• For packed accesses with a CSW.Size value of 0b001, denoting halfword (16-bits) transfers, 
each DRW read access generates two data bus transfers. The value in the TAR is incremented 
by 0x2 after each successful data bus transfer. As described in Packed transfers on 
page C2-158, the two halfword values from the two reads are packed into a single 32-bit word 
that is returned through the APACC.

Table C2-1 Summary of AddrInc field values

AddrInc value Description Support required?

0b00 Auto-increment off Always.

0b01 Increment single Always.

0b10 Increment packed If Packed transfers are supported. See Packed transfers on 
page C2-158.

If Packed transfers are not supported, the value 0b10 selects the 
Auto-increment off mode and reading the AddrInc value returns 
0b00.

0b11 Reserved -
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• With packed accesses enabled, and a CSW.Size value of 0b000, denoting byte transfers, a 
single DRW write operation generates four 8-bit data bus transfers, and the TAR is 
incremented by 0x1 after each of these transfers.

Automatic address increment is only guaranteed to operate on the 10 least significant bits of the address that is held 
in the TAR. Whether it is possible to auto increment bit [10] and beyond is IMPLEMENTATION DEFINED, which means 
that auto address incrementing at a 1KB boundary is IMPLEMENTATION DEFINED. For example, if the TAR is 0x14A4, 
and the access size is word, successive accesses to the DRW increment TAR to 0x14A8, 0x14AC, and in steps of 4 
bytes up to the end of the 1KB range at 0x17FC. The auto-increment behavior on the next DRW access is 
IMPLEMENTATION DEFINED.

C2.2.3   Stalling accesses

A MEM-AP access by the DP to the DRW register or one of BD0-BD3 might not complete until the required 
memory access is completed. Therefore, to be able to support slow connections, a MEM-AP must support stalling 
accesses, which do not have to be completed within a fixed number of cycles. 

An example of the importance of stalling accesses can be found in the Armv7 Debug Architecture, which specifies 
a mode of operation where accesses to the Data Transfer Registers (DTRs) and Instruction Transfer Register (ITR) 
do not complete until the processor is ready to accept new data. The following sequence describes how a processor 
that complies with the Armv7 Debug Architecture, and an ADIv5 DAP that comprises a MEM-AP and a JTAG-DP, 
might co-operate to inform the debugger that it has to retry an access because of such a condition.

1. The initial conditions are:

• The processor core is idle and configured to stall accesses to its ITR and DTRs when it is not ready to 
accept new data.

• The DP SELECT register addresses a MEM-AP with a connection to the processor.

• The AP TAR addresses the ITR of the processor core.

2. The debugger writes a first instruction to the ITR:

a. The debugger performs an AP write to DRW with the first instruction to execute:

• The AP is ready, so the DP returns an OK/FAULT ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR addresses the ITR on the processor, and the AP access consists of a write to the DRW. 
Therefore, the AP initiates a write to the ITR through its connection to the processor.

c. The core accepts the transfer, because the processor is idle and the instruction complete flag, 
InstrCompl, is 0b1.

d. The transfer completes.

e. The core starts to execute the instruction from the ITR. InstrCompl is set to 0b0.

Note

The ACK value OK/FAULT is issued before the transfer is accepted by the core.

3. The debugger writes a second instruction to the ITR:

a. The debugger performs an AP write to DRW with the next instruction to execute:

• The AP is ready, so the DP returns an OK/FAULT ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR has not changed, and the AP initiates a second write to the ITR through its connection to the 
processor.

c. The core is still executing the first instruction (InstrCompl is 0b0) and cannot accept the transfer.

d. The transfer cannot complete, and the AP remains busy.
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Note

ACK returns the value OK/FAULT because the AP is ready to accept a new transfer. The AP does not know 
that the core is not able to accept the transfer until it attempts the transfer.

4. The debugger writes a third instruction to the ITR:

a. The debugger performs an AP write to DRW with the next instruction to execute:

• The AP is not ready, so the DP returns a WAIT ACK response.

• In the Update-DR state, the DP discards the AP access request, because the AP was not ready 
at Capture-DR.

b. The debugger might retry the AP write until the DP returns the ACK value OK/FAULT instead of 
WAIT in the Capture-DR state to signal that the first instruction has completed.

5. When the core completes the first instruction, the following happens:

a. InstrCompl is set to 0b1.

b. The external debug interface on the core is now ready to accept the second instruction.

c. The AP transfer from stage 3 is accepted by the core, and the second instruction is written to the ITR.

d. The core starts to execute the second instruction. InstrCompl is set to 0b0 again.

e. Because the AP transfer is complete, the AP returns to the ready state.

6. The debugger retries writing the third instruction to the ITR:

a. The debugger performs an AP write to DRW with the third instruction:

• The AP is ready, so the DP returns an OK/FAULT ACK response.

• In the Update-DR state, the DP initiates a transfer to the AP.

b. The TAR has not changed. The AP initiates another write to the ITR through its connection to the 
processor.

c. The response to the AP write attempt depends on whether the processor has finished processing the 
last instruction that was written to the ITR:

• If the processor is idle (InstrCompl is 0b1), the AP transfer completes, writing a new instruction 
to the ITR. The core starts to execute the new instruction, and the AP returns to the ready state. 
This stage, stage 6, of the debug session is repeated for the next instruction from the debugger.

• If the processor is still processing the previous instruction, InstrCompl is 0b0. The processor 
cannot accept the transfer and the AP remains busy. The debug session repeats stage 4.

C2.2.4   Response to debug component errors

If the MEM-AP receives an error response from a debug component, it returns an error to the DP. As a result of this 
error, the DP sets the STICKYERR flag. For more information about error handling flags, see Sticky flags and DP 
error responses on page B1-41.
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C2.2.5   Variable access size for memory accesses

It is IMPLEMENTATION DEFINED whether a MEM-AP supports memory access sizes other than word (32-bit).

If a MEM-AP implementation does not support the Large Data Extension, but does support various access sizes, it 
must support word, halfword, and byte accesses.

Note

The ADI specification does not require a MEM-AP to support access sizes other than word. If a MEM-AP can 
access other memory, such as system memory. However, Arm recommends that it supports other access sizes as 
well.

For more information, see MEM-AP implementation requirements on page C2-162.

The access size is controlled by the CSW.Size field. Table C2-2 shows the access size options.

When a CSW.Size specifies a size that is smaller than a word, the resulting data access is returned in byte lanes. See 
Byte lanes on page C2-157 for more information.

Caution

If BD0-BD3 are accessed with CSW.Size set to any size other than word or doubleword, behavior is 
UNPREDICTABLE.

Table C2-2 Size field values when the MEM-AP supports different access sizes

Size value, CSW.Size Memory access size Support required?

0b000 Byte (8-bits) No

0b001 Halfword (16-bits) No

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the 
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data Extension 
on page C2-163. If the extension is not implemented, this value is reserved.

Doubleword (64-bits) No

0b100b 128-bits No

0b101b 256-bits No

0b110 - 0b111 Reserved -
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C2.2.6   Byte lanes

A MEM-AP that supports memory transfers of less than 32-bits uses byte lanes for the data transfers between the 
DRW and the debug component. Which byte lanes are used depends on:

• The memory transfer size, which is specified by the CSW.Size field, see Variable access size for memory 
accesses on page C2-156.

• The two least significant bits of the TAR, TAR[1:0].

If supported, packed transfers also use byte lanes for byte and halfword transfers, as described in Packed transfers 
on page C2-158.

Table C2-3 shows how byte lanes are used in DRW.

Big-endian support

The byte lane with the lowest address corresponds to the least significant byte of DRW or BD0-BD3, and can be 
described as little-endian.

Previous versions of this manual described a variant of the MEM-AP which supported an alternative byte-lane 
scheme, where the byte lane with the lowest address corresponded to the most significant byte of DRW or 
BD0-BD3, or big-endian. bit[0] of the CFG register was used to describe whether the MEM-AP was little-endian 
or big-endian. ADIv5.2 obsoletes this scheme.

If the target uses a big-endian memory arrangement, the external debugger must treat the values that are passed 
through the MEM-AP accordingly.

Table C2-3 Byte-laning of memory accesses from DRW

CSW[2:0], Size TAR[1:0] Access data

0b000, byte 0b00 DRW[7:0]

0b01 DRW[15:8]

0b10 DRW[23:16]

0b11 DRW[31:24]

0b001, halfword 0b00 DRW[15:0]

0b10 DRW[31:16]

0bX1 IMPLEMENTATION DEFINEDa

a. IMPLEMENTATION DEFINED behavior is one of the following:

Unaligned portions of the address are ignored. For example, an unaligned word 
access to 0x8003 accesses the 32-bit value at 0x8000.

The access is faulted, and the MEM-AP returns an error response.

The access is made to the unaligned address specified in TAR[31:0], and the 
result is packed as if packed transfers were enabled, see Packed transfers on 
page C2-158. The data transfer might be split into more than one memory access 
across the connection to the debug component.

For example, an unaligned word access to 0x8003 accesses the bytes at 0x8003, 
0x8004, 0x8005, and 0x8006. This word access might generate four byte-wide 
accesses to memory, or the accesses to bytes 0x8004 and 0x8005 might be 
performed as a single halfword (16-bit) access.

0b010, word 0b00 DRW[31:0]

0b1X, 0bX1 IMPLEMENTATION DEFINEDa
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C2.2.7   Packed transfers

Whether a MEM-AP supports packed transfers is IMPLEMENTATION DEFINED. If packed transfers are supported, 
they are enabled by setting the auto address increment field, CSW.AddrInc, to 0b10 (Increment packed). See 
Auto-incrementing the Transfer Address Register (TAR) on page C2-152.

When packed transfers are enabled, each access to the DRW results in one of the following actions, depending on 
the value of the CSW.Size field, see Variable access size for memory accesses on page C2-156:

• If CSW.Size = 0b010 (word), there is a single word (32-bit) access.

• If CSW.Size = 0b001 (halfword), there are 2 halfword (16-bit) accesses.

• If CSW.Size = 0b000 (byte), there are 4 byte (8-bit) accesses.

Use of packed transfers with CSW.Size set to a transfer size larger than word is UNPREDICTABLE.

Note

Packing occurs before any pushed comparisons are made. Pushed comparisons are made and the STICKYCMP flag 
is set to 0b1, if necessary, only when a complete word of data has been packed into the DRW. See Pushed-compare 
and pushed-verify operations on page B1-44 for a description of pushed comparisons.

When packed transfers are enabled, after each successful memory access the address held in the Transfer Address 
Register is automatically updated by the access size.

Accesses are always made in increasing memory address order:

• For write accesses to memory, data is unpacked from the DRW in byte-lanes that depend on the memory 
address of each write access.

• For read accesses, data is packed into the DRW in byte-lanes that depend on the memory address of each read 
access.

The byte lanes for data packing and unpacking are the same as the byte lanes that are described in Table C2-3 on 
page C2-157, as shown in the following examples:

• Example C2-1, Halfword packed write operation.

• Example C2-2 on page C2-159, Byte packed write operation on page C2-159.

• Example C2-3 on page C2-159, Halfword packed read operation on page C2-159.

Note

The descriptions in these examples assume that each memory access completes successfully. If any access 
terminates with an error response, the sequence is halted at that point, and the MEM-AP returns an error to the DP.

Example C2-1 Halfword packed write operation

This example describes a single word (32-bit) write access to DRW on a MEM-AP with the following settings:

• CSW.Size = 0b001, specifying halfword (16-bit) memory accesses.

• CSW.AddrInc = 0b10, specifying packed transfer operation.

• TAR[31:0] = 0x00000000, the base address of the access.

Two write transfers are made. The halfword entries in Table C2-3 on page C2-157 define the byte lanes for these 
accesses. The accesses are made in the following order:

1. TAR[1] == 0b0, so DRW[15:0] is written to address 0x00000000.

After this transfer, the value in the TAR is increased by the transfer size of 2, and becomes 0x00000002.

2. TAR[1] == 0b1, so DRW[31:16] is written to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.
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Example C2-2 Byte packed write operation

This example describes a single word (32-bit) write access to DRW on a MEM-AP with the following settings:

• CSW.Size = 0b000, specifying byte (8-bit) memory accesses

• CSW.AddrInc = 0b10, specifying packed transfer operation

• TAR[31:0] = 0x00000002, the base address of the access.

Four write transfers are made. The byte entries in Table C2-3 on page C2-157 define the byte lanes for these 
accesses. The accesses are made in the following order:

1. TAR[1:0] == 0b10, so DRW[23:16] is written to address 0x00000002.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000003.

2. TAR[1:0] == 0b11, so write DRW[31:24] is written to address 0x00000003.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000004.

3. TAR[1:0] == 0b00, so write DRW[7:0] is written to address 0x00000004.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000005.

4. TAR[1:0] == 0b01, so write DRW[15:8] is written to address 0x00000005.

After this transfer, the value in the TAR is increased by the transfer size, 1, and becomes 0x00000006.

Example C2-3 Halfword packed read operation

This example describes a single word (32-bit) read access to DRW on a MEM-AP with the following settings:

• CSW.Size = 0b001, specifying halfword (16-bit) memory accesses.

• CSW.AddrInc = 0b10, to give packed transfer operation.

• TAR[31:0] = 0x00000002, to define the base address of the access.

Two read transfers are made. The little-endian halfword entries in Table C2-3 on page C2-157 define the byte lanes 
for these accesses. The accesses are made in the following order:

• TAR[1] == 0b1, so read a halfword from address 0x00000002, and pack this value into DRW[31:16].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000004.

• TAR[1] == 0b0, so read a halfword from address 0x00000004, and pack this value into DRW[15:0].

After this transfer, the value in the TAR is increased by the transfer size, 2, and becomes 0x00000006.

• The complete word has been read into the DRW, and the APACC read access completes.

The optional DP transaction counter, described in The transaction counter on page B1-43, enables an external 
debugger to make a single AP transaction request that generates multiple AP transactions. Each of these transactions 
transfers a single word (32-bits) of data, and the TAR is incremented automatically between the transactions. If the 
MEM-AP supports memory accesses smaller than word and packed transfers and packed transfer operation is 
enabled, each of the AP transactions that are driven by the transaction counter is split into multiple memory 
accesses. For example, if the transaction counter is programmed to generate eight word accesses, and the MEM-AP 
is programmed to make packed byte transfers, a total of 32 memory accesses of 1 byte are made.

C2.2.8   Completer Memory Ports

A MEM-AP can include a Completer memory port, which can be used by an external bus transaction Requester to 
access the area of memory that is requested by the MEM-AP. For example, the external bus transaction Requester 
can be permitted to access the debug registers of the system to which the MEM-AP is connected.
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If a MEM-AP implements a Completer memory port, Completer memory port accesses are multiplexed with DAP 
accesses. Completer memory port accesses have bit[31] of the access address forced to zero. A debug component 
can use the value of this address bit to distinguish between Completer memory port accesses and DAP accesses.

For more information about MEM-AP memory addressing, see BASE, Debug Base Address register on 
page C2-168.

Note

The DAP can emulate a Completer memory port access by setting bit [31] of the TAR to 0b0.
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C2.2.9   Software access control

It is IMPLEMENTATION DEFINED whether the CSW register includes the debug software access enable flag 
CSW.DbgSwEnable.

The CSW.DbgSwEnable flag can be applied as follows:

Using DbgSwEnable to control a Completer memory port 

If a MEM-AP implements a Completer memory port, the DbgSwEnable flag can be used to enable 
or disable the port as shown in Table C2-4. For information about Completer memory ports, see 
Completer Memory Ports on page C2-159.

Using DbgSwEnable to control software access to debug resources 

The DbgSwEnable flag can drive a system-level signal, DBGSWENABLE. This signal gates 
software access to debug resources. For example, in a processor that complies with the Armv7 
Debug Architecture, some CP14 registers are not accessible when DBGSWENABLE is LOW. For 
more information, see the Arm Architecture Reference Manual, Armv7-A and Armv7-R edition.

If neither of these applications is implemented, CSW.DbgSwEnable is RAZ.

If CSW.DbgSwEnable is implemented and the MEM-AP is disabled, CSW.DbgSwEnable must be treated as one.

Caution

Arm strongly recommends not setting CSW.DbgSwEnable to zero. If CSW.DbgSwEnable is implemented, setting 
it to zero can cause software that is executing on the target to malfunction.

Table C2-4 Using DbgSwEnable to control a Completer memory port

Value of 
DbgSwEnable

Effect on Completer memory port

0b0 Disabled.

0b1 Enabled. 
This value is the value after a reset.

Table C2-5 Using DbgSwEnable to control software access to debug resources

Value of
DbgSwEnable

Corresponding value of the 
DBGSWENABLE signal

0b0 LOW.

0b1 HIGH.

This value is the value after a reset.
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C2.3 Implementing a MEM-AP

This section gives information about the implementation of a MEM-AP and contains the following:

• IMPLEMENTATION DEFINED features of a MEM-AP implementation.

• MEM-AP implementation requirements.

• MEM-AP Extensions on page C2-163.

C2.3.1   IMPLEMENTATION DEFINED features of a MEM-AP implementation

The following features of a MEM-AP implementation are IMPLEMENTATION DEFINED:

• Whether the MEM-AP supports data bus access sizes other than word size.

• Whether the MEM-AP supports packed transfers.

• Whether the MEM-AP includes the MEM-AP Large Physical Address Extension on page C2-163, which 
implements support for addresses larger than 32 bits.

• Whether the MEM-AP includes MEM-AP Barrier Operation Extension on page C2-163, which implements 
support for barrier operations.

• Whether the MEM-AP supports the features that are described in Software access control on page C2-161.

These implementation choices affect the following register fields:

• CSW.{DbgSwEnable, Mode, AddrInc, Size}.

• CFG.{LD, LA, BE}.

In addition, the CSW register can include the following optional fields that are not described elsewhere in this 
chapter:

CSW.Prot and CSW.Type, bits[30:24] and bits[15:12] 

These fields can be implemented to provide a bus access control mechanism. If implemented, it 
enables a debugger to specify flags for a memory access. The permitted values and their significance 
are IMPLEMENTATION DEFINED because they relate to the underlying bus architecture. These bits 
must reset to a valid access type and Arm strongly recommends that these bits are reset to a useful 
access type. This reset value might not be zero. For example:

• If the bus supports privileged and non-privileged accesses, the reset value of this field must 
select privileged accesses.

• If the bus supports code and data accesses, the reset value must select data accesses.

• If the bus supports both Secure and Non-secure address spaces, CSW.Prot and CSW.Type 
must reset to select Non-secure addresses.

CSW.SPIDEN, bit[23] 

This field can be implemented to indicate whether the MEM-AP can generate secure accesses.

Several reference implementation options for implementers and users of MEM-APs when connecting to standard 
memory interfaces are defined in Appendix E1 Standard Memory Access Port Definitions.

C2.3.2   MEM-AP implementation requirements

The descriptions that are given in the section MEM-AP functions on page C2-152 indicate several areas where the 
MEM-AP functionality is IMPLEMENTATION DEFINED. However, the IMPLEMENTATION DEFINED features are 
inter-dependent. These dependencies are summarized here.

In a MEM-AP:

• The options for the size of data bus accesses are:

— Support word (32-bit) accesses only.
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— Support word (32-bit), halfword (16-bit), and byte (8-bit) accesses, and optionally support larger 
access sizes.

No other combinations of supported access sizes are permitted. For more information, see Variable access 
size for memory accesses on page C2-156.

• If access sizes smaller than word are not supported, packed transfers are not supported. Otherwise, it is 
IMPLEMENTATION DEFINED whether packed transfers are supported. For more information, see Packed 
transfers on page C2-158.

• It is IMPLEMENTATION DEFINED whether access sizes larger than 32-bit are supported. If larger access sizes 
are not supported, CFG.LD is RAZ. For more information, see MEM-AP Large Data Extension.

• It is IMPLEMENTATION DEFINED whether addresses larger than 32-bit are supported. If larger addresses are not 
supported, CFG.LA is RAZ. For more information, see MEM-AP Large Physical Address Extension.

• It is IMPLEMENTATION DEFINED whether barrier operations are supported. If barrier operations are not 
supported, CSW.Mode is RAZ. For more information, see MEM-AP Barrier Operation Extension.

C2.3.3   MEM-AP Extensions

The following subsections summarize the effects of the optional MEM-AP Extensions.

MEM-AP Large Physical Address Extension

The MEM-AP Large Physical Address Extension provides address spaces of up to 64-bits. 

Implementing this extension changes the format of the following MEM-AP registers:

• BASE, Debug Base Address register on page C2-168.

• CFG, Configuration register on page C2-175.

• CSW, Control/Status Word register on page C2-178.

• DRW, Data Read/Write register on page C2-181.

• TAR, Transfer Address Register on page C2-183.

MEM-AP Large Data Extension

The MEM-AP Large Data Extension can support 32-bit, 64-bit, 128-bit, or 256-bit accesses, in addition to optional 
8-bit and 16-bit accesses. 

The following registers have different formats to support this extension:

• CSW, Control/Status Word register on page C2-178.

• DRW, Data Read/Write register on page C2-181.

• BD0-BD3, Banked Data registers on page C2-171.

• CFG, Configuration register on page C2-175.

Although the extension can support 64-bit, 128-bit, and 256-bit accesses, it does not require an implementation to 
support all these access sizes. If the CSW.Size field is written with a value corresponding to a size that is not 
supported, or with a reserved value:

• A read of the field returns a value corresponding to a supported size.

• MEM-AP behavior corresponds to the value returned by the read of the CSW.Size field.

MEM-AP Barrier Operation Extension

The MEM-AP Barrier Operation Extension provides support for barrier operations. If the bus supports a weak 
memory ordering model, then barrier operations must create order.

The following registers are new or have different formats to support this extension:

• CSW, Control/Status Word register on page C2-178.

• MBT, Memory Barrier Transfer register on page C2-183.
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MEM-AP Memory Tagging Extension

The MEM-AP Memory Tagging Extension updates the following in the MEM-AP programmers model:

• CFG1.

• T0TR.

• CSW.MTE is added.

When memory tagging of accesses is disabled, system read accesses do not request the Allocation tag from the 
memory system.

When memory tagging of accesses is disabled, system write accesses do not update the Allocation tag.

When memory tagging of accesses is enabled, system read accesses request the Allocation tag from the memory 
system and store the tag received in T0TR, in the position defined by the following equations:

• ADDR_LSB = CFG1.TAG0GRAN

• ADDR_MSB = CFG1.TAG0GRAN + (log2(32/CFG1.TAG0SIZE) - 1)

• ADDR_OFFSET = Address_accessed[ADDR_MSB:ADDR_LSB]

• T0TR_LSB = ADDR_OFFSET * CFG1.TAG0SIZE

• T0TR_MSB = (ADDR_OFFSET * CFG1.TAG0SIZE) + (CFG1.TAG0SIZE - 1)

• T0TR[T0TR_MSB:T0TR_LSB] = Allocation_tag

Other bits of T0TR are unchanged.

When memory tagging of accesses is enabled, system write accesses Update the Allocation tag from the memory 
system using data from T0TR, from the position defined by the following equations:

• ADDR_LSB = CFG1.TAG0GRAN

• ADDR_MSB = CFG1.TAG0GRAN + (log2(32/CFG1.TAG0SIZE) - 1)

• ADDR_OFFSET = Address_accessed[ADDR_MSB:ADDR_LSB]

• T0TR_LSB = ADDR_OFFSET * CFG1.TAG0SIZE

• T0TR_MSB = (ADDR_OFFSET * CFG1.TAG0SIZE) + (CFG1.TAG0SIZE - 1)

• Allocation_tag = T0TR[T0TR_MSB:T0TR_LSB]
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C2.4 MEM-AP examples of pushed-verify and pushed-compare

A DP might support pushed operations, as described in Pushed-compare and pushed-verify operations on 
page B1-44. However, these operations involve interaction between the DP and an AP, because each pushed 
operation requires an AP read, which, in the case of a MEM-AP, requires a read from the connected debug memory 
system. This section gives some examples of pushed operations on a DP that is connected to a MEM-AP.

C2.4.1   Example of using a pushed-verify operation on a MEM-AP

The following pushed-verify mechanism verifies the contents of system memory:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the memory region that is to be verified to the TAR.

3. Write a series of expected values as AP transactions. On each write transaction, the DP issues an AP read 
access, compares the result against the value that is supplied in the AP write transaction, and sets the 
CTRL/STAT.STICKYCMP bit if the values do not match.

The TAR is incremented on each transaction.

In this way, the series of values that are supplied is compared against the contents of the memory region, and 
STICKYCMP is set to 0b1 if they do not match.

C2.4.2   Example of using a pushed-find operation on a MEM-AP

The following pushed-find mechanism searches system memory for a particular word:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the debug register region that is to be searched to theTAR.

3. Repeatedly write the value to be searched for as an AP write transaction to the DRW. On each transaction, 
the MEM-AP reads the location indicated by the TAR. 

The return value is compared with the value supplied in the AP write transaction. If they match, the 
STICKYCMP flag is set to 0b1. If they do not match, the TAR is incremented.

Pushed-find can be combined with byte lane masking to search for specific bytes.

For an example of how the transaction counter can refine this search operation, see Example of using the transaction 
counter for a pushed-compare operation on a MEM-AP on page C2-166.

Pushed-find without address incrementing can be used to poll a single location, for example to test the value of a 
flag after completion of an operation.
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C2.4.3   Example of using the transaction counter for a pushed-compare operation on a MEM-AP

The transaction counter can refine the pushed-compare search operation that is described in Example of using a 
pushed-find operation on a MEM-AP on page C2-165. Pushed-compare enables searching system memory for a 
particular word, or, when used with byte lane masking, specific bytes. The transaction counter enables using a single 
AP write transaction to search an area of memory.

To perform a search under the control of the transaction counter:

1. Make sure that the MEM-AP CSW register is set up to increment the TAR after each access.

2. Write the start address of the debug register region that is to be searched to theTAR.

3. Write to the transaction counter field, CTRL/STAT.TRNCNT to indicate the required number of repeat 
accesses. This value defines the size of the region to be searched.

4. Write the search value as an AP write to the DRW. The MEM-AP repeatedly reads the location indicated by 
the TAR. The value that is returned by each read is compared with the value supplied in the AP write 
transaction. If they match, the STICKYCMP flag is set to 0b1 and the operation completes. 

• The TAR is incremented. 

• If the transaction counter is non-zero, it is decremented. 

The operation completes when either the STICKYCMP flag is set to 0b1 or after the final read when the 
transaction counter was zero.
C2-166 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



C2 The Memory Access Port 
C2.5 MEM-AP Programmers’ Model
C2.5 MEM-AP Programmers’ Model

Table C2-6 shows a memory map of the MEM-AP registers, and indicates where they are described in detail.

All registers that are listed in Table C2-6 are required in every MEM-AP implementation.

Reserved addresses in the register memory map are RES0.

Using the Debug Port to access Access Ports on page A1-28 explains how to access AP registers.

Table C2-6 MEM-AP programmers’ model

Offset Type Name Description 

0x00 RW CSW See CSW, Control/Status Word register on page C2-178.

0x04 - 0x08 RW TAR See TAR, Transfer Address Register on page C2-183. 

If the implementation includes the Large Physical Address Extension, 
the word at offset 0x04 represents the least significant word of the 
transfer address, and the word at offset 0x08 represents the most 
significant word.

If the implementation does not include the Large Physical Address 
Extension, the word at offset 0x04 represents the transfer address, and 
the word at offset 0x08 is RES0.

0x0C RW DRW See DRW, Data Read/Write register on page C2-181.

0x10 - 0x1C RW BD0-BD3 See BD0-BD3, Banked Data registers on page C2-171.

0x20 IMP 
DEF

MBT See MBT, Memory Barrier Transfer register on page C2-183.

The entries in this row only apply if the implementation includes the 
Barrier Operation Extension.

Otherwise, this register is reserved, RES0.

0x24 - 0x2C - RES0 Reserved for future use.

0x30 RW T0TR See T0TR, Tag 0 Transfer register on page C2-186.

0x34 - 0xDC - - Reserved, RES0.

0xE0 RO CFG1 See CFG1, Configuration register 1 on page C2-177.

0xE4 - 0xEC - - Reserved, RES0.

0xF0 RO BASE See BASE, Debug Base Address register on page C2-168.

If the implementation includes the Large Physical Address Extension, 
the word at this offset represents the most significant word of the debug 
base address.

If the implementation does not include the Large Physical Address 
Extension, the word at this offset is RES0.

0xF4 RO CFG See CFG, Configuration register on page C2-175.

0xF8 RO BASE See BASE, Debug Base Address register on page C2-168.

If the implementation includes the Large Physical Address Extension, 
the word at this offset represents the least significant word of the debug 
base address.

If the implementation does not include the Large Physical Address 
Extension, the word at this offset represents the entire debug base 
address.

0xFC RO IDR See IDR, Identification Register on page C1-144.
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C2.6 MEM-AP register descriptions

This section describes the MEM-AP registers:

• BASE, Debug Base Address register.

• BD0-BD3, Banked Data registers on page C2-171.

• CFG, Configuration register on page C2-175.

• CSW, Control/Status Word register on page C2-178.

• DRW, Data Read/Write register on page C2-181.

• MBT, Memory Barrier Transfer register on page C2-183.

• TAR, Transfer Address Register on page C2-183.

C2.6.1   BASE, Debug Base Address register

The BASE characteristics are:

Purpose 

BASE provides an index into the connected memory-mapped resource. This index value points to 
one of the following:

• The start of a set of debug registers.

• A ROM Table that describes the connected debug components.

To discover information about the debug components that are connected to the MEM-AP, a 
debugger can examine the four Component ID registers CIDR0-CIDR3 in the Arm® CoreSight™ 
Architecture Specification, which are at offset 0xFF0 from the base address. To examine CIDRn, the 
debugger writes its address, base address + 0xFF0 + n×4, to the TAR and reads the DRW register. 
The return value allows the debugger to determine the component type of the connected component, 
which is one of the following:

• ROM Table.

• Debug component.

• Other.

The ADIv5 architecture specification does not specify requirements for the type of component 
pointed to by BASE. 

For more information about CIDR0-CIDR3, see the Arm® CoreSight™ Architecture Specification. 

Usage constraints 

The following constraints apply:

• If the bus supports both Secure and Non-secure address spaces, the BASE register is defined 
to be a Non-secure address. Whether the ROM Tables are also accessible in the Secure 
address space is IMPLEMENTATION DEFINED.

• A debugger must handle the following situations as non-fatal errors:

— The base address that is specified by BASEADDR is a faulting location.

— The four words starting at (base address + 0xFF0) are not valid Component ID 
registers.

— An entry in the ROM Table points to a faulting location.

— An entry in the ROM Table points to a memory block that does not have a set of four 
valid Component ID registers at offset 0xFF0.

Typically, a debugger issues a warning if it encounters one of these situations. However, Arm 
recommends that it continues operating. An example of an implementation that might cause 
errors of this type is a system with static base address or ROM Table entries that enable entire 
subsystems to be disabled, for example by a tie-off input, packaging choice, fuse, or similar.
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BASE is accessible as follows:

Configurations 

In the 64-bit register implementation, the two words making up BASE are not contiguous in the 
MEM-AP programmers’ model.

Early implementations of DAPs had different implementations of the Debug Base Address register, 
as described in Legacy format of the BASE register on page C2-171. The legacy format is a 32-bit 
register at offset 0xF8.

When BASE is implemented as a 64-bit register, it can specify any address in a 64-bit physical 
address space. However:

• ROM Tables support only 32-bit signed offset values.

• Armv7-A processors with the MMU disabled, and Armv7-R, Armv6-M, Armv7-M, and 
Armv8-M processors can access only a 32-bit physical address space.

Arm recommends that all debug components:

• Are located in the bottom 4GB of the physical address space.

• Are located in one 2GB half of the physical address space.

When BASE is implemented as a 32-bit register and the MEM-AP implements a dedicated 
connection between the DAP and a set of debug registers, the address map of the connection must 
be aliased into two logical 2GB segments. Segmentation enables the device to distinguish two types 
of access:

• Debugger-initiated accesses, which address the logical segment with TAR[31]=0b1.

• System-initiated accesses, which, if permitted, address the logical segment with 
TAR[31]=0b0.

With such an implementation, BASEADDR[31] must be 0b1. 

Note

• Even where system-initiated accesses are not permitted, Arm recommends that the debug 
component address space is segmented in this way, and that debugger-initiated accesses have 
TAR[31]=0b1.

• Other systems might include IMPLEMENTATION DEFINED methods for signaling debugger 
accesses to system components.

Attributes 

A 32-bit or 64-bit read-only register.

Default

RO
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Field descriptions

The BASE bit assignments are:

BASEADDR[31:12], bits[31:12] of word at offset 0xF8
BASEADDR[63:32], bits[31:0] of word at offset 0xF0, 64-bit register only 

The 20 or 52 most significant bits of the base address, which is the address offset of the start of the 
debug register space in the memory-mapped resource, or a ROM Table address. BASEADDR is 
padded with the 12-bit value 0x000 to complete the 32-bit or 64-bit base address.

If BASE is implemented as a 32-bit register, the word at offset 0xF0 is RES0.

The details of the memory area pointed to by the base address depend on the number of debug 
components that are connected to the ADI:

• If the ADI is connected to a single debug component, as in the system that is shown in 
Figure A1-3 on page A1-32, the base address is the start of the debug registers for that 
component.

If a debug component occupies more than one 4KB page of memory, the base address is the 
address of the 4KB block which contains the Peripheral ID and Component ID registers of 
the component.

• If the ADI is connected to more than one debug component, as in the system that is shown in 
Figure A1-6 on page A1-34, the base address is the address of a ROM Table, which contains 
the addresses of the other debug components that are connected to the interface. For 
information about ROM Tables, see Chapter D1 About ROM Tables.

A system that contains only a single debug component might be implemented with a separate 
ROM Table, as shown in Figure A1-5 on page A1-33. In this case, the base address is the 
address of the ROM Table.

Bits[11:2] of word at offset 0xF8 

Reserved, RES0.

Format, bit[1] of word at offset 0xF8 

Base address register format.

This field is RAO, indicating the ADIv5 format.

Note

This bit is RAZ in one of the legacy Debug Base Address register formats, see Legacy format of the 
BASE register on page C2-171.

P, bit[0] of word at offset 0xF8 

This field indicates whether a debug entry for this MEM-AP is present:

0b0 No debug entry is present.

0b1 Debug entry is present.

BASEADDR[31:12]

31 12 11 2 0

RES0 1 P

1

Format

word at 
offset
0xF0

64-bit implementations: BASEADDR[63:32]
32-bit implementations: RES0

31 0

word at 
offset
0xF8
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Note

Legacy format of the BASE register includes a description of the legacy format of BASE when there 
is no debug entry present.

Accessing BASE

BASE can be accessed from the MEM-AP register space:

Legacy format of the BASE register

The legacy format of the BASE register is as follows:

Legacy format when no debug entries are present 

The BASE bit assignment when there are no debug entries present is:

NOTPRESENT, bits[31:0] 

This field has the value 0xFFFFFFFF, indicating that there are no debug entries.

Legacy format for specifying BASEADDR 

When bit[1] of the BASE register is 0b0, the legacy format of the register holds the base address 
value. In this case, the BASE bit assignments are:

BASEADDR, bits[31:12] 

Bits[31:12] of the base address. Bits[11:0] of the base address are zero.

Bits[11:2] 

Reserved, RAZ.

FORMAT, bit[1] 

RAZ, indicating that the BASE register uses the legacy 32-bit BASE register format.

Bit[0] 

Reserved, RAZ.

The legacy format is defined only for 32-bit addresses and not permitted for a MEM-AP that 
implements the Large Physical Address Extension.

The legacy format must not be used for new ADI designs.

C2.6.2   BD0-BD3, Banked Data registers

The BD0-BD3 register characteristics are:

Purpose 

BD0-BD3 map AP accesses directly to memory accesses, without having to change the value in the 
TAR. Together, the four BD0-BD3 give access to four words of the memory space, starting at the 
address that is specified in the TAR.

Each Banked Data register holds a 32-bit data value:

• In write mode, a Banked Data register holds a value to write to memory.

• In read mode, a Banked Data register holds a value that is read from memory.

Usage Constraints 

Offset if Large Physical 
Address extension is 
not implemented

Offset if Large Physical Address extension is 
implemented

Least significant word Most significant word

0xF8 0xF8 0xF0
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Auto address incrementing is not performed when a Banked Data register is accessed. The value of 
CSW.AddrInc has no effect on Banked Data register accesses.

The Large Data Extension supports memory access size values that are greater than word size, as 
described in Variable access size for memory accesses. 

• If the large data extension is implemented, accesses other than word or doubleword are 
UNPREDICTABLE.

• If the large data extension is not implemented, accesses other than word are UNPREDICTABLE.

The registers are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

BD0-BD3 are four 32-bit read/write registers.

Field descriptions

TheBD0-BD3 bit assignments are:

Banked data, BD0-BD3 bits[31:0] 

Data values for the current transfer.

See Accessing BD0-BD3 for more information about BD register accesses.

Accessing BD0-BD3

BD0-BD3 can be accessed from the MEM-AP register space.

Default

RW

31 0

banked data

31 0

banked data

0x10

0x14

BD0

BD1

31 0

banked data

31 0

banked data

0x18

0x1C

BD2

BD3
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If the Large Physical Address Extension is not implemented, BD0-BD3 can be accessed at the following offsets:

If the Large Physical Address Extension is implemented, BD0-BD3 can be accessed at the following offsets:

An access to a Banked Data register initiates an access to the memory address shown in the table. The AP access 
does not complete until the memory access has completed. 

If the access size specified in CSW.Size is doubleword, the lower-numbered register holds the least significant 
word, and the higher-numbered register holds the most significant word. To access a value, a debugger must access 
both registers of the pair making up the doubleword, where the lower-numbered register is accessed first.

For example, if the Large Physical Address Extension is implemented, to read the doubleword value at 
(TAR[63:4] << 4), a debugger must:

1. Read BD0, to obtain bits[31:0] of the doubleword. 

2. Read BD1, to obtain bits[63:32] of the doubleword.

When CSW.Size specifies doubleword access size, the following restrictions apply to the two required Banked Data 
register accesses:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• If CSW is accessed in the middle of the sequence, the following behavior is IMPLEMENTATION DEFINED: 

— Whether the CSW access is successful.

— Whether the CSW access results in an error response from the AP.

• If CSW is accessed in the middle of the sequence, that sequence is terminated, and the next access to a 
Banked Data register is the first access of a new sequence.

If a write sequence is terminated, no memory write is initiated.

• The effect of not accessing the appropriate register first is UNPREDICTABLE.

Register Offset
Memory Address that is accessed

Word Accessa Doubleword Accessb

BD0 0x10 TAR[31:4] << 4 TAR[31:4] << 4, accessed first

BD1 0x14 (TAR[31:4] << 4) + 0x4 TAR[31:4] << 4, accessed second

BD2 0x18 (TAR[31:4] << 4) + 0x8 (TAR[31:4] << 4) + 0x8, accessed first

BD3 0x1C (TAR[31:4] << 4) + 0xC (TAR[31:4] << 4) + 0x8, accessed second

Register Offset
Memory Address that is accessed

Word Accessa

a. Bits[1:0] of the address are always 0b00.

Doubleword Accessb

b. Bits[2:0] of the address are always 0b000.

BD0 0x10 TAR[63:4] << 4 TAR[63:4] << 4, accessed first

BD1 0x14 (TAR[63:4] << 4) + 0x4 TAR[63:4] << 4, accessed second

BD2 0x18 (TAR[63:4] << 4) + 0x8 (TAR[63:4] << 4) + 0x8, accessed first

BD3 0x1C (TAR[63:4] << 4) + 0xC (TAR[63:4] << 4) + 0x8, accessed second
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• After accessing the first Banked Data register of a pair, the effect of accessing any MEM-AP register other 
than CSW or the second Banked Data register of the pair is UNPREDICTABLE. Examples of sequences that lead 
to an UNPREDICTABLE result include:

— Accessing BD1 and then accessing BD2.

— Two consecutive accesses to the same Banked Data register.
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C2.6.3   CFG, Configuration register

The CFG characteristics are:

Purpose 

CFG indicates whether the MEM-AP implementation includes the Large Data and Large Physical 
Address Extensions.

Usage constraints 

CFG is accessible as follows:

Configurations 

CFG is included in all implementations.

Attributes 

A 32-bit read-only register.

Field descriptions

The CFG bit assignments are:

Bits[31:3] Reserved, RES0.

LD, bit[2] Large Data. This bit indicates whether the MEM-AP implementation includes the Large Data 
Extension, which provides support for data items larger than 32-bits. LD has one of the following 
values

0b0 The implementation does not support data items that are larger than 32 bits.

0b1 The implementation includes the Large Data Extension, and supports data items larger 
than 32 bits.

For more information, see MEM-AP Large Data Extension on page C2-163.

Regardless of the value of the LD field, the MEM-AP must support word-size data items, and might 
support smaller data items. See also CSW.Size.

LA, bit[1] Long Address. This field indicates whether the MEM-AP implementation includes the Large 
Physical Address Extension, which supports physical addresses of more than 32-bits. LA has one 
of the following values:

0b0 The implementation support only physical addresses of 32 bits or smaller.

Memory locations for the TAR and BASE registers, which are at offsets 0x08 and 0xF0 
in the MEM-AP register map, are reserved.

0b1 The implementation supports physical addresses with more than 32 bits:

• The TAR is a 64-bit register, at offsets 0x04 and 0x08 in the MEM-AP register 
map.

• The BASE register is a 64-bit register, at offsets 0xF8 and 0xF0 in the MEM-AP 
register map.

For more information, see MEM-AP Large Physical Address Extension on 
page C2-163.

BE, bit[0] Big-Endian. ADIv5.2 obsoletes support for big-endian MEM-AP, and this bit must RAZ. For more 
information, see Big-endian support on page C2-157.

Default

RO

LALD

31 0

RES0 BE

123
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Accessing CFG

CFG can be accessed from the MEM-AP register space:

Offset

0xF4
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C2.6.4   CFG1, Configuration register 1

The CFG1 characteristics are:

Purpose 

CFG1 indicates the features of the implementation of the MEM-AP.

Usage constraints 

CFG1 is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit read-only register.

The CFG1 bit assignments are:

Bits[31:9] 

Reserved, RES0.

TAG0GRAN, bits[8:4] 

Memory tagging granule.

When Memory Tagging Extension implemented 

0x04 Memory tagging granule is 16 bytes.

All other values are reserved.

Otherwise 

Reserved, RES0.

TAG0SIZE, bits[3:0] 

Memory tagging support. The defined values of this field are:

0x0 Memory Tagging Extension not implemented. T0TR not implemented. CSW.MTE is 
not implemented.

0x4 Memory Tagging Extension implemented. Tag size is 4-bits. T0TR is implemented. 
CSW.MTE is implemented.

All other values are reserved.

Accessing CFG1

CFG1 can be accessed from the MEM-AP register space:

Default

RO

Offset

0xE0

31 03

RES0

48

TAG0SIZETAG0GRAN

9
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C2.6.5   CSW, Control/Status Word register

The CSW characteristics are:

Purpose 

CSW configures and controls accesses through the MEM-AP to or from a connected memory 
system.

Usage constraints 

Some of the fields are read-only or IMPLEMENTATION DEFINED.

The register as a whole is accessible as follows:

Configurations 

Included in all implementations. 

Attributes 

A 32-bit read/write register.

Field Descriptions

The CSW bit assignments are:

DbgSwEnable, bit[31] 

Debug software access enable. 

This field is optional. If not implemented, it is RAZ.

If implemented, it has one of the following values:

0b0 Debug software access is disabled. If DeviceEn is 0b0, DbgSwEnable must be ignored 
and treated as one.

0b1 Debug software access is enabled.

The use of this field is IMPLEMENTATION DEFINED, see Software access control on page C2-161.

Prot, bits[30:24] 

Used with the Type field to define the bus access protection control. 

A debugger can use these fields to specify flags for a debug access. The permitted values and their 
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For 
more information, see Implementing a MEM-AP on page C2-162.

These fields are OPTIONAL. If not implemented, they are RES0.

SPIDEN, bit[23] 

Secure Debug Enabled. This field has one of the following values:

0b0 Secure access is disabled.

0b1 Secure access is enabled.

Default

RW

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SPIDEN

1516

Prot RES0 Mode Size

DbgSwEnable RES0

2

MTE

14

Type
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This field is optional, and read-only. If not implemented, the bit is RES0.

If CSW.DeviceEn is 0b0, SPIDEN is ignored and the effective value of SPIDEN is 0b1.

For more information, see Enabling access to the connected debug device or memory system on 
page C2-152.

Bits[22:16] 

Reserved, RES0.

Type, bits[15:12], when Memory tagging control is not implemented. 

Used with the Prot field to define the bus access protection control.

A debugger can use these fields to specify flags for a debug access. The permitted values and their 
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For 
more information, see Implementing a MEM-AP on page C2-162.

This field is OPTIONAL. If not implemented, it is RES0.

MTE, bit [15], when Memory tagging control is implemented. 

Memory Tagging control. The possible values of this bit are:

0b0 Memory tagging accesses disabled.

0b1 Memory tagging accesses enabled.

When memory tagging accesses are enabled, system read and write accesses via DRW, BDx, and 
DARx, use T0TR for transferring tag information.

Type, bits[14:12] , when Memory tagging control is implemented. 

Used with the Prot field to define the bus access protection control.

A debugger can use these fields to specify flags for a debug access. The permitted values and their 
significance are IMPLEMENTATION DEFINED, and depend on the underlying bus architecture. For 
more information, see Implementing a MEM-AP on page C2-162.

This field is OPTIONAL. If not implemented, it is RES0.

Mode, bits[11:8] 

Mode of operation of the MEM-AP. This field has one of the following values:

0b0000 Basic mode.

0b0001 Barrier support enabled. For more information, see MEM-AP Barrier Operation 
Extension on page C2-163.

Other Reserved.

The set of supported modes is IMPLEMENTATION DEFINED. If the implementation supports only one 
mode, this field can be RO.

If this field is RW, the reset value of this field is UNKNOWN.

TrInProg, bit[7] 

Transfer in progress. This field has one of the following values:

0b0 The connection to the memory system is idle.

0b1 A transfer is in progress on the connection to the memory system.

After an ABORT operation, debug software can read this bit to check whether the aborted 
transaction completed.

DeviceEn, bit[6] 

Device enabled. 

This field has one of the following values:

0b0 The MEM-AP is not enabled.

0b1 Transactions can be issued through the MEM-AP.

See Enabling access to the connected debug device or memory system on page C2-152.
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This field is read-only.

AddrInc, bits[5:4] 

Address auto-increment and packing mode. The possible values are of this field are:

0b00 Address auto-increment disabled.

0b01 Address increment-single enabled.

0b10 Address increment-packed enabled.

All other values are reserved.

The reset value of this field is UNKNOWN.

Bit[3] 

Reserved, RES0.

Size, bits[2:0] 

The size of the data type that is used to access the MEM-AP, as shown in Table C2-7.

It is IMPLEMENTATION DEFINED whether a MEM-AP supports access sizes other than 32-bits, and 
whether the Size field is RW or RO:

• If other sizes are supported, the Size field is RW, and the field indicates the size of the 
accesses to perform. When this field is RW, its reset value is UNKNOWN.

• If other sizes are not supported, this field is RO and it reads as 0b010 to indicate that only 
32-bit accesses are supported.

Accessing CSW

CSW can be accessed from the MEM-AP register space:

Table C2-7 Size field values 

Size Field Data Type Supported

0b000 Byte (8-bits) IMPLEMENTATION DEFINED

0b001 Halfword (16-bits) IMPLEMENTATION DEFINED

0b010 Word (32-bits) Yesa

a. On a MEM-AP implementation that does not support access sizes other than word, the 
Size field is read-only, and always returns the value 0b010.

0b011b

b. Supported by the MEM-AP Large Data Extension, see MEM-AP Large Data 
Extension on page C2-163. The following usage constraints apply:

If the extension is not implemented, this value is reserved.

If a reserved value, or a value corresponding to an unsupported access size, is written 
to this field, reading the field returns the value corresponding to a supported size, and 
the MEM-AP behaves according to the return value.

Doubleword (64-bits) IMPLEMENTATION DEFINED

0b100b 128-bits IMPLEMENTATION DEFINED

0b101b 256-bits IMPLEMENTATION DEFINED

0b110 - 0b111 Reserved -

Offset

0x00
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C2.6.6   DRW, Data Read/Write register

The DRW characteristics are:

Purpose 

DRW maps the value that is passed in an AP access directly to one or more memory accesses at the 
address that is specified in the TAR. 

The value depends on the access mode:

• In write mode, DRW holds the value to write for the current transfer to the address specified 
in the TAR.

• In read mode, DRW holds the value that is read in the current transfer from the address that 
is specified in the TAR.

The AP access does not complete until the memory access, or accesses, complete.

Usage constraints 

MEM-AP implementations that include the Large Data Extension enable accessing values with a 
data type that is larger than the size of DRW, which requires multiple access to DRW to complete a 
single memory access, as shown in Table C2-8.

Memory accesses that involve multiple DRW accesses have the following limitations:

• The effect of mixing reads and writes in the sequence is UNPREDICTABLE.

• An access to CSW in the middle of a sequence terminates that sequence. The next access to 
DRW is the first access of a new sequence. If a write sequence is terminated, no memory 
write is initiated.

• After the first DRW access of the sequence, the effect of accessing any MEM-AP register 
other than the CSW or DRW is UNPREDICTABLE.

• Depending on the value of CSW.AddrInc, the TAR might be incremented after each DRW 
access. See Auto-incrementing the Transfer Address Register (TAR) on page C2-152.

Table C2-8 DRW access behavior for different data type sizes

Size of 
data 
type

CSW.Size

Required 
number of 
DRW 
accesses 

Read behavior Write behavior

8 bitsa,b 0b000 1 Each read initiates a memory access and 
returns the value to be read using byte 
lanes.

Each write initiates a memory access and 
writes the value to be written using byte 
lanes. 16 bitsa,b 0b001 1

32 bitsc 0b010 1 Each read initiates a memory access and 
returns the value to be read. 

Each write initiates a memory access and 
writes the value to be written. 

64 bitsd 0b011 2 On first read:

• Initiate a memory access.

• Return the least significant 32-bit 
word of the value being read. 

On subsequent reads:

• Do not initiate another memory 
access.

• Return the next 32-bit word of the 
value being read. 

On the first read, the AP access does not 
complete until the memory access 
completes.

On writes before the last write:

• Specifies the next 32-bit word of the 
value to be written, starting from the 
least significant word. 

• Do not initiate a memory access.

On last write:

• Specify the most significant 32-bit 
word of the value to be written. 

• Initiate a memory access.

On the last write, the AP access does not 
complete until the memory access 
completes.

128 bitsd 0b100 4

256 bitsd 0b101 8

a. Support is IMPLEMENTATION DEFINED.
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DRW is accessible as follows:

Configurations 

The MEM-AP Large Data Extension, described in MEM-AP Large Data Extension on page C2-163, 
modifies the behavior of this register for accesses with CSW.Size set to a value larger than 0b010.

Attributes 

DRW is a 32-bit MEM-AP register.

Field descriptions

The DRW bit assignments are:

Data, bits[31:0] 

Data value of the current transfer.

Accessing DRW

DRW can be accessed from the MEM-AP register space:

b. A single access to the DRW register might result in multiple memory accesses, depending on the values of CSW.AddrInc. See Packed 
transfers on page C2-158.

c. Supported by all MEM-AP implementations.

d. Might be supported by MEM-AP applications that include the Large Data Extension. Support is IMPLEMENTATION DEFINED.

Default

RW

Offset

0x0C

Data

31 0
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C2.6.7   MBT, Memory Barrier Transfer register

The MBT register characteristics are:

Purpose 

MBT generates a barrier operation on the bus.

Usage constraints 

If CSW.Mode has a value other than 0b0001, writes to MBT are ignored.

MBT is accessible as follows:

Configurations 

If the Barrier Operation Extension is not implemented, MBT is RES0.

MBT is implemented only if the MEM-AP implementation includes the MEM-AP Barrier 
Operation Extension, see MEM-AP Barrier Operation Extension on page C2-163.

Attributes MBT is a 32-bit MEM-AP register.

Other properties of the register are IMPLEMENTATION DEFINED.

Field descriptions

The MBT bit assignments are:

Bits[31:0] 

IMPLEMENTATION DEFINED.

Accessing MBT

MBT can be accessed from the MEM-AP register space:

C2.6.8   TAR, Transfer Address Register

The TAR characteristics are:

Purpose 

TAR holds the memory address to be accessed through AP accesses.

Note
The address that is held in TAR represents an address in the memory system to which the MEM-AP 
is connected, not an address within the MEM-AP itself.

Default

IMPLEMENTATION DEFINED

Offset

0x20

IMPLEMENTATION DEFINED

31 0
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Configurations and Usage constraints 

When using the DRW, TAR specifies the memory address to access:

• If the MEM-AP does not support accesses smaller than word, TAR[1:0] is RES0.

• The contents of TAR can be incremented automatically on a successful DRW access, see 
Auto-incrementing the Transfer Address Register (TAR) on page C2-152.

When accessing memory through BD0-BD3, Banked Data registers on page C2-171, bits [3:0] of 
TAR are ignored, and TAR[63:4] or TAR[31:4] specifies the base address of the 16-byte block of 
memory that can be accessed.

The size and reset value of TAR are as follows:

The register is accessible as follows:

Attributes 

A 32-bit or 64-bit MEM-AP register. 

Field descriptions

The TAR bit assignments are:

Address[63:32], bits[31:0] of the register word at offset 0x08 

Most significant word of the memory address for the current transfer.

If the MEM-AP implementation does not include the Large Physical Address Extension, this field 
is RES0.

Address[31:0], bits[31:0] of the register word at offset 0x04 

Least significant word of the memory address for the current transfer.

Large Physical 
Address 
Extension

TAR Size

Reset Value

Least significant word
(offset 0x04)

Most significant word
(offset 0x08)

No 32 bits UNKNOWN -

Yes 64 bits UNKNOWN 0x00000000

Default

RW

Address[31:0]

31 0

Offset:
0x08

Implementations without Large Physical Address extension: RES0
Implementations with Large Physical Address extension: Address[63:32]

31 0

Offset:
0x04
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Accessing TAR

TAR can be accessed from the MEM-AP register space:

Offset

Least significant byte Most significant bytea

a. Applicable only to MEM-AP implementations 
with a Large Physical Address Extension.

0x04 0x08
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. C2-185
ID022122 Non-Confidential



C2 The Memory Access Port 
C2.6 MEM-AP register descriptions
C2.6.9   T0TR, Tag 0 Transfer register

The T0TR register characteristics are:

Purpose 

Stores tag values for transfers.

Usage constraints 

The register is accessible as follows:

Configurations 

Implemented when the Memory Tagging Extension is implemented.

Attributes A 32-bit MEM-AP register.

Field Descriptions

The T0TR bit assignments are:

T7, bits[31:28] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b111.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b111.

This field resets to an architecturally UNKNOWN value on a Reset.

T6, bits[27:24] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b110.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b110.

This field resets to an architecturally UNKNOWN value on a Reset.

T5, bits[23:20] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b101.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b101.

This field resets to an architecturally UNKNOWN value on a Reset.

T4, bits[19:16] 

Allocation tag value.

Default

RW

31 03

T4 T3 T2 T1

478111215161920

T5T6T7 T0

23242728
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On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b100.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b100.

This field resets to an architecturally UNKNOWN value on a Reset.

T3, bits[15:12] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b011.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b011.

This field resets to an architecturally UNKNOWN value on a Reset.

T2, bits[11:8] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b010.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b010.

This field resets to an architecturally UNKNOWN value on a Reset.

T1, bits[7:4] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b001.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b001.

This field resets to an architecturally UNKNOWN value on a Reset.

T0, bits[3:0] 

Allocation tag value.

On reads, holds the Allocation tag value for the most recent system memory read transaction 
performed with address[6:4] == 0b000.

On writes, holds the Allocation tag value for the next system memory write transaction 
performed with address[6:4] == 0b000.

This field resets to an architecturally UNKNOWN value on a Reset.

Accessing T0TR

T0TR can be accessed from the MEM-AP register space:

Offset

0x30
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Chapter C3 
The JTAG Access Port

This chapter describes the implementation of the JTAG Access Port (JTAG-AP), and how a JTAG-AP provides a 
Debug Port connection to one or more JTAG components. The JTAG-AP is an optional component of a Debug 
Access Port.

This chapter contains the following sections:

• About the JTAG-AP on page C3-190.

• Operation of the JTAG-AP on page C3-195.

• The JTAG Engine Byte Command Protocol on page C3-198.

• JTAG-AP register summary on page C3-205.

• JTAG-AP register descriptions on page C3-206.

Note

Chapter C1 About the AP gives additional information about APs.
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C3.1 About the JTAG-AP

The JTAG Access Port is an optional component of a Debug Access Port (DAP). It enables up to eight legacy 
IEEE 1149.1 JTAG scan chains to be connected to the DAP. Each scan chain can contain any number of TAPs. 
However, Arm recommends that only one TAP is connected to each scan chain.

An external debugger accesses a JTAG component, which is connected to a JTAG-AP, through a JTAG scan chain. 
The debugger accesses this scan chain using APACC accesses to registers in the JTAG-AP. A debugger also has to 
access JTAG-AP registers to control the JTAG-AP, or to obtain status or identification information from the 
JTAG-AP. 

C3.1.1   Selecting and accessing the JTAG-AP

Figure C3-1 on page C3-191 shows the implementation of a JTAG-AP and how the JTAG-AP connects the DP to 
up to eight JTAG devices. APACC accesses to the DP are passed to the JTAG-AP.

The method of selecting an AP, and selecting a specific register within the selected AP, is the same for MEM-APs 
and JTAG-APs, and is summarized in Selecting and accessing an AP on page C1-143.
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Figure C3-1 JTAG-AP connecting the DP to JTAG devices
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C3.1.2   Logical structure of the JTAG-AP

A JTAG-AP:

— Interprets a sequence of command bytes from the Command FIFO.

— Drives standard JTAG signals to the JTAG Port Multiplexer.

— Receives the TDO signal from the Port Multiplexer.

— Generates a response and passes it to the Response FIFO.

A JTAG-AP comprises:

• The JTAG Port Multiplexer, which multiplexes up to eight JTAG ports to the JTAG Engine. In addition to 
forwarding the standard JTAG signals to and from each port, it provides control and status signals for each 
port.

• Byte Command and Response FIFOs, which enable efficient use of the JTAG Engine.

The following rules apply to the FIFO sizes:

— The Response FIFO must be 7 bytes deep.

— The Command FIFO must be at least 4 bytes deep. Although the Command FIFO can be up to 7 bytes 
deep, there is unlikely to be any advantage in having a Command FIFO that is larger than 4 bytes.

• The JTAG-AP registers, which can be divided into three groups:

— An Identification Register.

— Control and status registers.

— FIFO access registers.

Figure C3-2 on page C3-193 shows the JTAG-AP structure. 
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Figure C3-2 Structure of the JTAG Access Port (JTAG-AP)
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C3.1.3   JTAG port signals

The signal bundle between the JTAG Port Multiplexer and each implemented JTAG port includes:

• The standard IEEE 1149.1 JTAG signals.

• Port control and status signals.

Table C3-1 gives the full signal list that applies to each implemented port.

Table C3-1 JTAG Access Port JTAG port signals

Signal Directiona Description Notes

TCK Out Test Clock JTAG IEEE 1149.1 standard signals.

TMS Out Test Mode Select

TDI Out Test Data In

TDO In Test Data Out

TRST* Out Test Reset Active LOW JTAG IEEE 1149.1 standard signal.

nSRSTOUT Out Subsystem Reset Active LOW.

SRSTCONNECTED In Subsystem Reset 
Connected

Tie-off configuration signals to the JTAG Port 
Multiplexer.

PORTCONNECTED In Port Connected

PORTENABLED In Port Enabled Can be deasserted by the JTAG subsystem, for 
example when the connected TAP powers down.

a. Signal directions are given relative to the JTAG Port Multiplexer in the JTAG-AP.
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C3.2 Operation of the JTAG-AP

The JTAG-AP communicates with the device using standard JTAG signals and scan chains. This operation is 
controlled by the JTAG Engine. The Engine includes a serializer that takes TDI data out of the Command FIFO and 
returns TDO data to the Response FIFO, see Figure C3-2 on page C3-193.

The external debugger:

1. Encodes JTAG commands and data into the JTAG Engine Byte Command Protocol, which is described in 
The JTAG Engine Byte Command Protocol on page C3-198.

2. Writes to the BWFIFOn registers to transfer the encoded JTAG Engine commands and data to the JTAG 
Command FIFO.

3. Reads from the BRFIFOn registers to collect JTAG TDO in response to the encoded JTAG Engine 
commands.

4. Decodes the actual TDO data from the response data.

The JTAG Engine provides the connection between stages 2 and 3 of this process.

Note

The JTAG-AP can connect to up to eight JTAG devices. The debugger must write to the PSEL register to select 
which JTAG port or ports the JTAG Port Multiplexer connects to the JTAG Engine. 

The debugger can start reading data from TDO before completing writing data to TDI, as long as it has completed 
writing the command header. A debugger can take advantage of this principle to exchange data that exceeds the size 
of the command and response FIFOs.

For example:

1. The debugger writes two bytes to BWFIFO2, to specify:

a. A TDI_TDO scan, with 64 bits of TDI data.

b. The TDO data is to be returned to the debugger.

2. The debugger writes a word to BWFIFO4, containing the first 32 bits of TDI data.

3. The debugger reads a word from BRFIFO4, to obtain the first 32 bits of TDO data.

4. The debugger writes another word to BWFIFO4, with the next 32 bits of TDI data.

5. The debugger reads another word from BRFIFO4, to obtain the next 32 bits of TDO data.

This method provides an efficient encapsulation of the JTAG scan chain. 

If the requested data is not available, a read of BRFIFOn stalls, as described in Stalling accesses on page C3-196. 
To reduce the number of stalls that are caused by AP accesses to devices with a slow clock, the debugger can write 
several bytes of TDI data before attempting to read the first byte of TDO data.

Operation of the JTAG-AP is described in more detail in The JTAG Engine Byte Command Protocol on 
page C3-198. 
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C3.2.1   Stalling accesses

 AP accesses to JTAG engine FIFOs can be stalled.

As shown in Figure C3-2 on page C3-193, the JTAG Engine FIFOs comprise the following registers:

• The Byte Response FIFO Registers, BRFIFO1 to BRFIFO4.

• The Byte Command FIFO Registers, BWFIFO1 to BWFIFO4.

The JTAG Engine FIFOs are described in BRFIFO1-BRFIFO4, and can be used to access the JTAG state machine 
and JTAG scan chains as described in The JTAG Engine Byte Command Protocol on page C3-198.

AP accesses to JTAG-AP registers that do not access the JTAG Engine FIFOs cannot be stalled. As shown in 
Figure C3-2 on page C3-193, this rule applies to the following registers:

• CSW.

• PSEL.

• PSTA.

• IDR.

A JTAG-AP access can stall in the following situations:

Stalling read accesses 

The JTAG-AP can stall read accesses to the Byte Response FIFO Registers, BRFIFO1 to BRFIFO4. 

Depending which of these registers is targeted, a single register read transfers between 1 and 4 bytes 
of data from the byte Response FIFO. The register access stalls if the FIFO does not contain enough 
data. For example, if the Response FIFO only contains 2 bytes of data and a read access is performed 
to BRFIFO4 to transfer 4 bytes of data, the access stalls and remains stalled until there are 4 bytes 
of data available in the Response FIFO.

CSW.RFIFOCNT can be read to find the number of bytes of data that are available in the Response 
FIFO. A read of the CSW always completes immediately.

Stalling write accesses 

The JTAG-AP can stall write accesses to the Byte Command FIFO Registers, BWFIFO1 to 
BWFIFO4. 

Depending which of these registers is targeted, a single register write transfers between 1 and 4 
bytes of data into the byte Command FIFO. The register access stalls if the FIFO does not contain 
enough free space to accept all the write data. For example, if the Command FIFO only has 1 byte 
free and a write access to BWFIFO3 is performed to transfer 3 bytes into the Command FIFO, the 
access stalls and remains stalled until the Command FIFO is able to accept the three bytes of data.

CSW.WFIFOCNT can be read to find the number of command bytes in the Command FIFO that 
are waiting to be processed by the JTAG Engine, which can be used to calculate the number of free 
bytes in the FIFO. A read of the CSW always completes immediately.

C3.2.2   Resetting connected JTAG devices or subsystems

Resets of JTAG devices or subsystems that are connected to the JTAG-AP can be triggered with the following 
signals:

• The TRST* signal for JTAG Test Resets.

• The nSRSTOUT signal for subsystem resets.

These signals are controlled by the CSW.TRST_OUT and CSW.SRST_OUT fields. A JTAG test reset might have 
to be clocked out for several TCK cycles with TMS HIGH to generate the reset. For more information see CSW, 
Control/Status Word Register on page C3-211.
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C3.2.3   Pushed transaction and transaction counter support

A JTAG-AP supports pushed transactions and sequences of transactions to the following registers only:

• PSTA.

• BRFIFO1-BRFIFO4.

For more information, see:

• Pushed-compare and pushed-verify operations on page B1-44.

• The transaction counter on page B1-43.
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C3.3 The JTAG Engine Byte Command Protocol

All JTAG commands, including TMS and TDI data, are written to the JTAG-AP Command FIFO through the 
interface that is provided by the four Byte Write FIFO Registers, BWFIFO1 to BWFIFO4. To provide high 
command packing, the JTAG commands are encoded as a byte protocol, and depending on which of the Byte Write 
FIFO registers is written to, up to 4 bytes can be written to the FIFO in a single operation. See BWFIFO1-BWFIFO4, 
Byte FIFO registers for write access on page C3-208.

Data from the TDO signal from the JTAG Port Multiplexor is transferred to the JTAG-AP Response FIFO. The four 
Byte Read FIFO Registers provide an interface to the Response FIFO. See BRFIFO1-BRFIFO4, Byte FIFO 
registers for read access on page C3-206.

In the JTAG Engine Byte Command Protocol, all commands are 1 byte (8-bits). Table C3-2 summarizes the 
commands and the following sections describe them in more detail. Where appropriate, the command descriptions 
also describe the TDO data that is produced by the command, and how it is encoded in the Byte Read FIFOs.

C3.3.1   The encoding of the TMS packet

The TMS packet is a single byte. The payload of the packet holds:

• Between 1 and 5 data bits to be sent on TMS.

• An indication of whether TDI is held at 0 or at 1 while these bits are sent.

While a TMS packet is being executed, no response is captured from TDO. The normal use of TMS packets is to 
move around the JTAG state machine. See The Debug TAP State Machine (DBGTAPSM) on page B3-88.

Table C3-3 shows the possible encodings of a TMS packet.

When the JTAG Engine decodes a TMS packet, TDI is held at the value indicated by bit [6] while all the TMS data 
bits are sent. If you have to send TMS bits with different TDI values, you must use multiple TMS packets.

Table C3-2 Summary of JTAG Engine Byte Command Protocol

Bits of the Command byte
Opcode

[7] [6] [5] [4] [3] [2] [1] [0]

0 Opcode payload TMS

1 0 0 Opcode payload TDI_TDO

1 0 1 X X X X X Reserved

1 1 0 X X X X X Reserved

1 1 1 X X X X X Reserved

Table C3-3 TMS packet encodings

Command byte
Bits of 
TMS data

[7] [6] [5] [4] [3] [2] [1] [0]

0 TDI 1 TMS[4] TMS[3] TMS[2] TMS[1] TMS[0] 5

0 TDI 0 1 TMS[3] TMS[2] TMS[1] TMS[0] 4

0 TDI 0 0 1 TMS[2] TMS[1] TMS[0] 3

0 TDI 0 0 0 1 TMS[1] TMS[0] 2

0 TDI 0 0 0 0 1 TMS[0] 1
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The TMS data bits are sent LSB first, so in each row of Table C3-3 on page C3-198, TMS[0] is the first bit to be sent.

For example, the TMS packet that is used to send the TMS bit sequence 1-1-0-1, while keeping TDI at 1, is shown 
in Figure C3-3. As the diagram shows, this sequence of TMS signals takes four TCK cycles.

Figure C3-3 TMS packet example with TDI held at 1

To send TMS bit sequence 1-0, while keeping TDI at 0, the TMS packet is as shown in Figure C3-4. As shown in 
the diagram, this sequence of TMS signals takes two TCK cycles.

Figure C3-4 TMS packet example with TDI held at 0

C3.3.2   The encoding of the TDI_TDO packet

A TDI_TDO packet is a multi-byte packet that is at least two bytes long. It comprises:

• The TDI_TDO opcode byte.

• A second byte, that contains:

— For short packets, of fewer than 7 TDI bits, the packed TDI bits.

— Otherwise, the length of the packet.

• If required, between 1 and 16 extra bytes containing the TDI bits.

The following subsections describe these bytes.

The TDI_TDO opcode byte, the first byte of the packet

This byte is the packet header. It indicates the start of a TDI_TDO packet, and contains information about the 
command subtype. Figure C3-5 shows the format of this byte.

Figure C3-5 TDI_TDO first byte (opcode) format
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Bits[3:0] are control bits that define the TDI_TDO subtype. Table C3-4 describes all the bits of the first byte of the 
TDI_TDO packet.

Table C3-4 Format of the first byte of TDI_TDO (opcode)

Bit Name Valuea

a. Given for bits that have a fixed value for the TDI_TDO first byte.

Description

[7] TDI_TDO 0b1 The value of these bits indicates whether this byte is the first byte of a 
TDI_TDO packet

[6] 0b0

[5] 0b0

[4] - SBZ Reserved, Should Be Zero.

[3] TMS - TMS value to use on the last cycle of the scan:

0b0 = TMS LOW on last cycle

0b1 = TMS HIGH on last cycle.

For all earlier cycles of the scan:

• If the previous TMS or TDI_TDO packet finished with TMS high 
for the last cycle, it is UNPREDICTABLE whether TMS is HIGH or 
LOW for this scan.

• In all other cases, TMS is LOW.

[2] RTDO - Read TDO. This bit determines whether TDO values returned during the 
scan are captured and placed in the Response FIFO:

0b0 = Do not capture TDO

0b1 = Capture TDO.

Caution
Do not set this bit to 0b1 if more than one JTAG port is selected and 
enabled. If you do, the TDO values captured are UNKNOWN.

[1] TDI - TDI value to use throughout the scan if the UTDI bit is 0b1:

0b0 = hold TDI signal LOW throughout the scan

0b1 = hold TDI signal HIGH throughout the scan

The value of the TDI bit is ignored if the UTDI is 0b0.

[0] UTDI - Use TDI bit. This bit determines whether the TDI bits to be used during 
the scan are supplied in the other bytes of the TDI_TDO packet, or 
whether the TDI bit, bit[1], specifies the TDI signal to use throughout the 
scan:

0b0 = TDI bits for the scan are supplied in the other bytes of the 
TDI_TDO packet.

0b1 = The TDI bit, bit[1], determines the TDI signal to use throughout the 
scan.

If this bit is 0b1, no TDI data is included in the TDI_TDO packetb.

b. When the Packed format is used for the second byte of the packet, certain bits of that byte are designated as TDI 
data bits. If UTDI = 0b1, however, the value of these bits is ignored, as described in The TDI_TDO length byte, 
the second byte of the packet on page C3-201. There is no advantage in using the packed format when UTDI = 
0b1, but it is possible to do so.
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The TDI_TDO length byte, the second byte of the packet

There are two alternative formats for the second byte of the TDI_TDO packet:

Normal If bit[7] of the TDI_TDO length byte is zero, the byte is in the normal length byte format, and 
specifies the length of the scan, which can be any value between 1 and 128 bits. Bits [6:0] of the 
byte give the length in bits of the required scan, minus one, as shown in Figure C3-6.

Figure C3-6 TDI_TDO second byte (length byte), normal format

When the TDI_TDO length byte is in the normal format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the TDI data for the scan is 
packed into extra bytes of the packet, that follow the length byte. See The data bytes, the 
remaining byte or bytes of the packet on page C3-202 for more information.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b1, no TDI data is required for 
the scan, and the length byte is the last byte of the packet. If the UTDI bit is 0b1, the 
TDI_TDO packet is always two bytes long.

See The TDI_TDO opcode byte, the first byte of the packet on page C3-199 for more information 
about the UTDI bit.

Packed If bit[7] of the second byte of the TDI_TDO packet is one, the byte is in the packed length byte 
format, and contains between 1 and 6 bits of TDI data:

• The length of the required scan is implied by the data in bits[6:0].

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the TDI data for the scan is 
packed into the least significant bits of the length byte.

• The second byte is the last byte of the TDI_TDO packet, meaning the packet is 2 bytes long.

Note

The packed format of the TDI_TDO length byte can only be used if the required scan contains 6 bits 
or less.

Figure C3-7 shows the permitted contents of the length byte when the packed format is used.

Figure C3-7 TDI_TDO second byte (length byte), packed format

The packed format for the TDI_TDO length byte is summarized in Table C3-5 on page C3-202.

[7] [5] [4] [3] [2] [1] [0]

0 (Length of scan) - 1
(Possible scan length of 1 to 128 bits)

[6]

Indicates Normal format

0 100001 TDI[0]

0 10001 TDI[1] TDI[0]

0 1001 TDI[1]TDI[2] TDI[0]

0 101 TDI[1]TDI[2]TDI[3] TDI[0]

01 1 TDI[1]TDI[2]TDI[3]TDI[4] TDI[0]

1 TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]

[7] [5] [4] [3] [2] [1] [0]

1 TDI[0]

[6]

Indicates Packed format

Scan length = 6 bits

Scan length = 5 bits

Scan length = 4 bits

Scan length = 3 bits

Scan length = 2 bits

Scan length = 1 bit
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When the TDI_TDO length byte is in the packed format:

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b0, the data that is packed into 
bits[5:0] of the length byte determines the value of the TDI signal during the scan. Bit[0] of 
the length byte always holds TDI[0], meaning that this bit determines the TDI signal value 
for the first TCK cycle of the scan.

• If the UTDI bit of the first byte of the TDI_TDO packet is 0b1, the data that is packed into 
bits[5:0] of the length byte only indicates the length of the required scan, and does not affect 
the value of the TDI signal during the scan. For example, if the complete length byte is 
0b10001XXX, referring to Figure C3-7 on page C3-201 shows that a scan of 3 bits is required. 
The TDI signal value, for all three bits, is the TDI value from the first byte of the packet, see 
Table C3-3 on page C3-198.

See also The TDI_TDO opcode byte, the first byte of the packet on page C3-199.

Note

The packed format can be used when the UTDI bit in the first byte of the packet is 0b1. However, 
there is no advantage in using the packed format when UTDI = 0b1, because the normal format is 
easier to use, and the TDI_TDO packet is 2 bytes long, whichever format is used.

The data bytes, the remaining byte or bytes of the packet

If the TDI_TDO opcode byte is 0x00, and the length byte is in the normal format, the TDI_TDO packet is more than 
two bytes long. In this case:

• Bits[6:0] of the length byte contain the required scan length minus one, in bits.

• The TDI data for the scan is packed into extra bytes of the packet.

The packing of TDI data uses as few bytes as possible, and the least significant bit of TDI data, TDI[0], is always 
bit[0] of the first data byte. TDI[0] is the TDI signal value for the first TCK cycle of the scan.

The number of data bytes required is the length of the scan divided by eight, rounded up to an integer value. In the 
last data byte, any bits that are not required for TDI data must be 0b0. For example, a scan of 21 cycles requires 3 
data bytes, giving a total TDI_TDO packet size of 5 bytes. Figure C3-8 on page C3-203 shows the formatting of the 
complete TDI_TDO packet for this example.

Table C3-5 TDI_TDO length byte, packed format

Scan length (bits) Must be zero bits Data start flag TDI data for scana

a. When the UTDI bit of the first byte of the TDI_TDO packet is 0b1, the values of these bits are 
ignored.

6 None Bit[6] = 0b1 Bits[5:0]

5 Bit[6] = 0b0 Bit[5] = 0b1 Bits[4:0]

4 Bits[6:5] = 0b00 Bit[4] = 0b1 Bits[3:0]

3 Bits[6:4] = 0b000 Bit[3] = 0b1 Bits[2:0]

2 Bits[6:3] = 0b0000 Bit[2] = 0b1 Bits[1:0]

1 Bits[6:2] = 0b00000 Bit[1] = 0b1 Bit[0]
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Figure C3-8 TDI_TDO formatting example. Complete packet for a scan of 21 TCK cycles

The bit assignments for the bytes shown in Figure C3-8 are:

Byte 1, the opcode byte 

Bits[7:5] The TDI_TDO opcode, 0b100.

Bit[3] The TMS bit. A value of 0b1 indicates that TMS must be HIGH for the last cycle of the 
scan.

Bit[2] The RTDO bit. A value of 0b1 indicates that TDO data must be captured during the scan.

Byte 2, the length byte 

Bit[7] A value of 0b0 indicates that this length byte is in normal format.

Bits[6:0] The value of ((length of scan) - 1). This field has the value 0b0010100, which is 20, 
meaning the scan length is 21 bits.

Bytes 3 and 4, the first and second data bytes 

These bytes contain TDI[15:0], the TDI data for the first 16 cycles of the scan.

Byte 5, the third data byte 

This byte contains TDI[20:16], the TDI data for the final five cycles of the scan. Any bits that are 
not required for TDI data must be 0b0, so bits [7:5] = 0b000.

C3.3.3   Response bytes from a TDI_TDO packet

If the Read TDO (RTDO) bit, which is bit [2] of a TDI_TDO packet header, is 0b1, the value of the TDO signal is 
captured for each TCK cycle of the scan. This captured TDO data is packed into bytes and each byte is inserted into 
the Response FIFO when it is completed.

Figure C3-8 shows a TDI_TDO packet with RTDO = 0b1.

Note

If more than one JTAG port is selected and enabled, the returned TDO values are UNKNOWN.

The number of bytes of TDO data that is inserted in the Response FIFO is the scan length divided by 8, rounded up 
to an integer value. When the scan length is not an exact multiple of 8, the last byte of returned data is padded with 
bits having a value of 0b0.

The scan stalls if the Response FIFO is full when a byte of TDO data is ready for insertion.

Figure C3-9 on page C3-204 shows the formatting of the TDO data bytes transferred to the Response FIFO for a 
scan of 21 TCK cycles where TDO capture is enabled.

0 TDI[20]00 TDI[17]TDI[18]TDI[19] TDI[16]

TDI[14]TDI[15] TDI[13] TDI[9]TDI[10]TDI[11]TDI[12] TDI[8]

TDI[6] TDI[1]TDI[2]TDI[3]TDI[4]TDI[5]TDI[7] TDI[0]

00 0 0101 0

0 01100

[7] [5] [4] [3] [2] [1] [0]

1 0

[6]

TDI_TDO opcode, with TMS = 1 and RTDO = 1    

Length byte, normal format (bit [7] = 0)

First data byte

Second data byte

Third data byte
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Figure C3-9 TDI_TDO response data formatting example. Scan of 21 TCK cycles

If the RTDO bit is 0b0, no response bytes are placed in the Response FIFO.

For details about the Read TDO (RTDO) bit, see The TDI_TDO opcode byte, the first byte of the packet on 
page C3-199.

0 TDO[20]00 TDO[17]TDO[18]TDO[19] TDO[16]

TDO[14]TDO[15] TDO[13] TDO[9]TDO[10]TDO[11]TDO[12] TDO[8]

TDO[6] TDO[1]TDO[2]TDO[3]TDO[4]TDO[5]

[7] [5] [4] [3] [2] [1] [0]

TDO[7] TDO[0]

[6]

First data byte transferred to Response FIFO

Second data byte transferred to Response FIFO

Third data byte transferred to Response FIFO
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C3.4 JTAG-AP register summary

Table C3-6 shows the memory map of the JTAG-AP registers, and indicates where they are described in detail.

For more information on accessing AP registers, see Using the Debug Port to access Access Ports on page A1-28.

All the registers that are listed in Table C3-6 are required in every JTAG-AP implementation.

Table C3-6 Summary of JTAG Access Port (JTAG-AP) registers

Register Address Access Reset value Notes

CSW 0x00 RW Depends on the state of the 
connected signals when the 
register is reada

a. For details about the reset values of individual fields, see the CSW field descriptions.

CSW

PSEL 0x04 RW UNKNOWN PSEL

PSTA 0x08 RW 0x00000000 PSTA

- 0x0C - - Reserved, RES0

BRFIFO1-BRFIFO4 0x10 RO b

b. Accesses to Byte FIFO Read Registers stall until data is available in the FIFO. Therefore they do not have reset 
values.

Read, single entry

WO - Write, single entry

0x14 RO b Read, two entries

WO - Write, two entries

0x18 RO b Read, three entries

WO - Write, three entries

0x1C RO b Read, four entries

WO - Write, four entries

- 0x20 - 0xF8 - - Reserved, RES0

IDR 0xFC RO IMPLEMENTATION DEFINED See IDR, 
Identification 
Register on 
page C1-144
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C3.5 JTAG-AP register descriptions

This section describes each of the JTAG-AP registers. Table C3-6 on page C3-205 shows these registers, and 
indexes the full register descriptions in this section. The following subsections describe these registers:

• BRFIFO1-BRFIFO4, Byte FIFO registers for read access.

• BWFIFO1-BWFIFO4, Byte FIFO registers for write access on page C3-208.

• CSW, Control/Status Word Register on page C3-211.

• PSEL, Port Select register on page C3-214.

• PSTA, Port Status Register on page C3-216.

C3.5.1   BRFIFO1-BRFIFO4, Byte FIFO registers for read access

The BRFIFO1-BRFIFO4 characteristics are:

Purpose 

Enable 1 byte, 2 bytes, 3 bytes, or 4 bytes to be read in parallel from the Response FIFO.

The JTAG Engine Byte Command protocol that is used for the commands and responses is 
described in The JTAG Engine Byte Command Protocol on page C3-198.

Usage constraints 

BRFIFO1-BRFIFO4 are mapped to the same JTAG-AP register addresses as 
BRFIFO1-BRFIFO4. The AP accesses the BRFIFOn on read operations, and the BWFIFOn 
on write operations.

An AP transaction that reads more responses than are available in the Response FIFO stalls 
until enough data is available to match the request. To check the number of response bytes 
that are available, read the CSW.RFIFOCNT field before initiating an AP transaction to 
read from the Response FIFO.

BRFIFO1-BRFIFO4 are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A set of four 32-bit RO registers.

Register BRFIFO1 BRFIFO2 BRFIFO3 BRFIFO4

Address 0x10 0x14 0x18 0x1C

Number of bytes read 
from Response FIFO

1 2 3 4

Default

RO
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Field descriptions

The BRFIFO1-BRFIFO4 bit assignments are:

BRFIFO1 bits[31:8] 

RES0

Byte 1, BRFIFO1 bits[7:0] 

The first byte to be read from the Response FIFO.

BRFIFO2 bits[31:16] 

RES0

Byte 2, BRFIFO2 bits[15:8] 

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO2 bits[7:0] 

The first byte to be read from the Response FIFO.

BRFIFO3 bits[31:24] 

RES0

Byte 3, BRFIFO3 bits[23:16] 

The third byte to be read from the Response FIFO.

Byte 2, BRFIFO3 bits[15:8] 

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO3 bits[7:0] 

The first byte to be read from the Response FIFO.

Byte 4, BRFIFO4 bits[31:24] 

The fourth byte to be read from the Response FIFO.

Byte 3, BRFIFO4 bits[23:16] 

The third byte to be read from the Response FIFO.

Byte 2, BRFIFO4 bits[15:8] 

The second byte to be read from the Response FIFO.

Byte 1, BRFIFO4 bits[7:0] 

The first byte to be read from the Response FIFO.

31 0

RES0

24

RES0 RES0 Byte 1

23 16 15 8 7

0x10BRFIFO1

31 0

RES0

24

RES0 Byte 2 Byte 1

23 16 15 8 7

0x14BRFIFO2

31 0

RES0

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0x18BRFIFO3

31 0

Byte 4

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0x1CBRFIFO4
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Accessing BRFIFO1-BRFIFO4

BRFIFO1-BRFIFO4 can be accessed from the JTAG-AP register space:

C3.5.2   BWFIFO1-BWFIFO4, Byte FIFO registers for write access

The BWFIFO1-BWFIFO4 characteristics are:

Purpose 

Enable 1 byte, 2 bytes, 3 bytes, or 4 bytes to be written in parallel to the Command FIFO.

The JTAG Engine Byte Command protocol that is used for the commands and responses is 
described in The JTAG Engine Byte Command Protocol on page C3-198.

Usage constraints 

BWFIFO1-BWFIFO4 are mapped to the same JTAG-AP register addresses as 
BRFIFO1-BRFIFO4. The AP accesses the BRFIFOn on read operations, and the BWFIFOn 
on write operations.

An AP transaction that writes more commands than there is space for in the Command FIFO 
stalls until there is enough space in the Command FIFO. Space in the Command FIFO is 
freed as commands are executed by the JTAG Engine. To check the number of commands 
already present in the Command FIFO, read the CSW.WFIFOCNT field before initiating an 
AP transaction to write to the Command FIFO. The number of additional commands you 
can write to the FIFO can be calculated by subtracting the return value from the size of the 
Command FIFO.

BWFIFO1-BWFIFO4 registers are accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A set of four 32-bit WO registers.

Access
Offset

BRFIFO1 BRFIFO2 BRFIFO3 BRFIFO4

Read 0x10 0x14 0x18 0x1C

Number of bytes read 1 2 3 4

Register BWFIFO1 BWFIFO2 BWFIFO3 BWFIFO4

Address 0x10 0x14 0x18 0x1C

Number of bytes written 
to Command FIFO

1 2 3 4

Default

WO
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Field descriptions

The BWFIFO1-BWFIFO4 bit assignments are:

BWFIFO1 bits[31:8] 

RES0

Byte 1, BWFIFO1 bits[7:0] 

The first byte to be written to the Command FIFO.

BWFIFO2 bits[31:16] 

RES0

Byte 2, BWFIFO2 bits[15:8] 

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO2 bits[7:0] 

The first byte to be written to the Command FIFO.

BWFIFO3 bits[31:24] 

RES0

Byte 3, BWFIFO3 bits[23:16] 

The third byte to be written to the Command FIFO.

Byte 2, BWFIFO3 bits[15:8] 

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO3 bits[7:0] 

The first byte to be written to the Command FIFO.

Byte 4, BWFIFO4 bits[31:24] 

The fourth byte to be written to the Command FIFO.

Byte 3, BWFIFO4 bits[23:16] 

The third byte to be written to the Command FIFO.

Byte 2, BWFIFO4 bits[15:8] 

The second byte to be written to the Command FIFO.

Byte 1, BWFIFO4 bits[7:0] 

The first byte to be written to the Command FIFO.

31 0

RES0

24

RES0 RES0 Byte 1

23 16 15 8 7

0x10BWFIFO1

31 0

RES0

24

RES0 Byte 2 Byte 1

23 16 15 8 7

0x14BWFIFO2

31 0

RES0

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0x18BWFIFO3

31 0

Byte 4

24

Byte 3 Byte 2 Byte 1

23 16 15 8 7

0x1CBWFIFO4
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Accessing BWFIFO1-BWFIFO4

BWFIFO1-BWFIFO4 can be accessed from the JTAG-AP register space:

Access
Offset

BWFIFO1 BWFIFO2 BWFIFO3 BWFIFO4

Write 0x10 0x14 0x18 0x1C

Number of bytes written 1 2 3 4
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C3.5.3   CSW, Control/Status Word Register

The CSW register attributes are:

Purpose 

CSW register configures and controls transfers through the JTAG interface.

Usage constraints 

Several fields in the register are read-only, see Field descriptions.

CSW is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A32-bit read/write register.

Field descriptions

The CSW bit assignments are:

SERACTV, bit[31] 

JTAG Engine active. 

This read-only field can have one of the following values:

0b0 JTAG Engine is inactive, provided WFIFOCNT is also 0b0.

0b1 JTAG Engine is processing commands from the Command FIFO.

Note

The JTAG Engine is only guaranteed to be inactive if both SERACTV and WFIFOCNT are zero.

The reset value of this field is 0b0.

WFIFOCNT, bits[30:28] 

Command FIFO outstanding byte count. 

This read-only field returns the number of command bytes held in the Command FIFO that have yet 
to be processed by the JTAG Engine. The reset value is 0b000.

Bit[27] 

Reserved, RES0.

RFIFOCNT, bits[26:24] 

Response FIFO outstanding byte count. 

Default

RW

31 30 24 23 4 3 2 0

RES0

PORTCONNECTEDRFIFOCNT

28 27 26 1

RES0
WFIFOCNT
SERACTV

SRSTCONNECTED
TRST_OUT
SRST_OUT
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This read-only field returns the number of bytes of response data available in the Response FIFO.

The reset value of this field is 0b000.

Bits[23:4] 

Reserved, RES0.

PORTCONNECTED, bit[3] 

Selected ports connected. 

This read-only field returns the logical AND of the PORTCONNECTED signals from all ports that 
are currently selected. 

This field is read-only. The reset value depends on the state of the connected signals when the 
register is read.

SRSTCONNECTED, bit[2] 

Selected ports reset connected.

This read-only field returns the logical AND of the SRSTCONNECTED signals from all ports that 
are currently selected. 

The reset value depends on the state of the connected signals when the register is read.

TRST_OUT, bit[1] 

This field drives the TRST* signal for the currently selected port or ports. 

0b0 Deassert TRST* HIGH.

0b1 Assert TRST* LOW.

Note

The TRST* signal is active LOW: when TRST_OUT has the value 0b1, the TRST* output is LOW.

TRST_OUT does not self-reset: it must be cleared to 0b0 by a software write. The reset value is 0b0.

Although TRST_OUT drives the TRST* signal, writing to this field only causes the field value to 
change. It might be necessary to clock the devices connected to the selected JTAG ports using TCK, 
to enable the devices to recognize the change on TRST*:

1. Write 0b1 to the CSW.TRST_OUT bit, to specify that TRST* must be asserted LOW.

2. Drive a sequence of at least five TMS = 1 clocks from the JTAG Engine by issuing the 
command 0b00111111 to the JTAG Engine. This sequence guarantees that the TAP enters the 
Test-Logic/Reset state, even if it has no TRST* connection.

3. Write 0b0 to CSW.TRST_OUT, to make sure that the TRST* signal is HIGH on subsequent 
TCK cycles.

If the JTAG connection is not clocked in this way while TRST* is asserted LOW, some or all TAPs 
might not reset.

SRST_OUT, bit[0] 

This field drives the nSRSTOUT signal for the port or ports that are currently selected, and can have 
one of the following values:

0b0 Deassert nSRSTOUT HIGH.

0b1 Assert nSRSTOUT LOW.

Note
The nSRSTOUT signal is active LOW: when SRST_OUT has the value 0b1, the nSRSTOUT 
output is LOW. 

SRST_OUT does not self-reset: it must be cleared to 0b0 by a software write. The reset value is 0b0.
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Accessing CSW

CSW can be accessed from the JTAG-AP register space:

Offset

0x00
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C3.5.4   PSEL, Port Select register

The PSEL characteristics are:

Purpose 

PSEL selects one or more JTAG ports to be driven by the JTAG Engine.

Usage constraints 

PSEL must only be written to when the JTAG Engine is inactive and the WFIFO is empty. 
Writing to PSEL at any other time has UNPREDICTABLE results, so before writing to PSEL, 
you must read the JTAG-AP CSW and make sure that the SERACTV and WFIFOCNT 
fields are both zero.

The reset value of PSEL is UNKNOWN.

PSEL is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit read/write register.

Field descriptions

The PSEL bit assignments are:

Bits[31:8] 

Reserved, RES0.

PSEL7-PSEL0, bits[7:0] 

Select control for the JTAG ports. 

The possible values of each of the PSELn fields are:

0b0 JTAG port n is not selected.

0b1 JTAG port n is selected.

If JTAG port n is not connected to the JTAG-AP, it is IMPLEMENTATION DEFINED whether PSELn is 
read/write or RES0. 

Note

JTAG port n is enabled only if all the following are true:

• The port is connected to the JTAG-AP.

• PSELn is 0b1.

• The PORTENABLED signal from the port to the JTAG-AP is asserted HIGH.

When more than one JTAG port is selected in PSEL:

• The same values for TDI, TMS, TRST*, and nSRSTOUT are driven to all selected ports.

Default

RW

31 0

RES0

8 7

PSEL7-PSEL0
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• The return values from TDO are UNKNOWN.

Using the normal, serially connected model for JTAG, IR updates are always made in parallel, which 
enables updating multiple TAPs in parallel. This update mechanism can be useful, for example to 
provide synchronized behavior.

Because each JTAG port can contain multiple TAPs connected in series, the process for updating 
TAPs in parallel is as follows:

1. Scan each JTAG port in turn, by selecting each port in turn in the PSEL register. When 
scanning a port, leave the required TAP in the TAP Exit1 or Exit2 state.

2. When all ports have been scanned in this way, write to PSEL again to select all the required 
ports.

3. Scan through the TAP Update state. All the TAPs are updated synchronously.

Accessing PSEL

PSEL can be accessed from the JTAG-AP register space:

Offset

0x04
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C3.5.5   PSTA, Port Status Register

The PSTA register characteristics are:

Purpose 

PSTA indicates whether a connected and selected JTAG port has been disabled, even if it has been 
re-enabled.

Usage constraints 

Writing a value with any non-zero bits to PSTA when the JTAG-AP engine is not idle is 
UNPREDICTABLE. The JTAG-AP Engine is idle when both CSW.SERACTV and CSW.WFIFOCNT 
are zero.

The reset value of PSTA0-PSTA7 is 0b0.

The register is accessible as follows:

Configurations 

Included in all implementations.

Attributes 

A 32-bit read/write register.

Field descriptions

The PSTA bit assignments are:

Bits[31:8] 

RES0.

PSTA7-PSTA0, bits[7:0] 

Each field PSTAn represents a sticky status flag for JTAG port n, and behaves as R/W1C.

PSTAn is set to 0b1 if all the following are true: 

• JTAG port n is connected to the JTAG-AP.

• PSEL.PSELn is 0b1.

• JTAG port n is disabled.

Once set to 0b1, PSTAn remains set until it is written with the value 0b1.

As long as PSTAn is 0b1, JTAG port n remains disabled.

If JTAG port n is not connected to the JTAG-AP, PSTAn is RES0.

Default

RW

31 0

RES0

8 7

PSTA7-PSTA0
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Table C3-7 shows the behavior of PSTAn on reads and writes:

Accessing PSTA

PSTA can be accessed from the JTAG-AP register space:

Table C3-7 Read and write behavior of PSTAn

Value Meaning on reads Action on writes

0b0 Port has not been disabled, or port is not 
connected.

No action, write is ignored.

0b1 Port has been disabled. Clear PSTAn to 0b0.

Offset

0x08
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Chapter C4 
COM-AP programmers’ model

This chapter describes the COM-AP. It contains the following sections:

• About the COM-AP on page C4-220.

• COM-AP register map on page C4-221.
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4.1 About the COM-AP

IZBNM The COM Port functionality can be included in a Debug Interface Access Port.

IMNZC This specification defines a new type of Access Port, which is known as a COM-AP, for use in systems using ADIv5. 
For more information, see AP requirements on page C1-142.
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4.2 COM-AP register map

RVBNM A COM-AP implements the register map that is shown in Table C4-1.

4.2.1 DP abort

The following rules describe the DP abort:

RMNZX The COM-AP optionally implements the DP abort mechanism.

RPOIY When an abort request occurs, the abort is ignored if there is no ongoing input transaction to the COM-AP.

RSDFO When an abort request occurs, if there is an ongoing input transaction to the COM-AP:

• The input transaction must complete in finite time.

• If the input transaction did not complete normally, SR.TRINPROG is set to 0b1 until the input transaction 
completes normally.

IZOPQ Arm recommends that if the input transaction did not complete normally, the COM-AP returns an error to the 
requester of the input transaction.

IGGSS After an abort request, the COM-AP is an UNKNOWN state, and is IMPLEMENTATION DEFINED which COM-AP 
registers are accessible. Arm recommends that:

• Reads of all registers operate as normal.

• Writes to DR and DBR while SR.TRINPROG is 0b1 return an error, otherwise they operate as normal.

IBLKA Normally, only writes to the DBR have the possibility of stalling input transactions for a variable amount of time 
until there is space in the TxEngine FIFO. This means that DP aborts normally only affect DBR writes.

4.2.2 IDR, Identification Register

IZLKZ For a full description of the IDR, see the IDR, Identification Register on page C1-144.

RZPBD IDR.Class is b0001 for a COM-AP.

RWBRT For a COM-AP designed by Arm, the IDR fields are assigned as follows:

• IDR.TYPE takes the value 0x0.

• IDR.VARIANT takes an IMPLEMENTATION DEFINED value.

• IDR.REVISION takes an IMPLEMENTATION DEFINED value.

• The JEP106 value in the IDR.DESIGNER takes the value 0x23B, which is Arm’s JEP106 value.

Table C4-1 COM-AP register map

Offset Register Description

0x00-0x7C - COM Port programmers’ model. See the Advanced Communication Channel 
Architecture Specification for more information.

0x80-0xF8 - Reserved, RES0.

0xFC IDR Identification Register. See the Advanced Communication Channel 
Architecture Specification for more information.
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ROM Tables





Chapter D1 
About ROM Tables

The chapter describes ROM Tables. It includes the following sections:

• ROM Tables Overview on page D1-226.

• ROM Table Types on page D1-227.

• Component and Peripheral ID Registers for ROM Tables on page D1-228.

• Location of the ROM Table on page D1-229.
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D1.1 ROM Tables Overview

ROM Tables hold information about debug components.

• Systems with a single debug component do not require a ROM Table. However, a designer might choose to 
implement such a system to include a ROM Table.

• Systems with more than one debug component must include at least one ROM Table.

A ROM Table connects to a bus controlled by a MEM-AP. In other words, the ROM Table is part of the address 
space of the memory system that is connected to a MEM-AP. More than one ROM Table can be connected to a single 
bus.

 A ROM Table always occupies 4KB of memory.
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D1.2 ROM Table Types

The following types of ROM Tables in the Arm® Debug Interface Architecture Specification (ADIv6.0) are permitted 
to be used with ADIv5:

Class 0x1 ROM Tables 

In a Class 0x1 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x1, which identifies the component as a Class 
0x1 ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory

• A Class 0x1 ROM Table is a read-only device.

For a detailed description of the Class 0x1 ROM Table entries and registers, see Arm® Debug 
Interface Architecture Specification (ADIv6.0).

Class 0x9 ROM Tables 

In a Class 0x9 ROM Table implementation:

• The Component class field, CIDR1.CLASS, is 0x9, which identifies the component as a 
CoreSight Component.

• The DEVTYPE and DEVID registers contain information about the ROM Table.

• The PIDR4.SIZE field must be 0.

• A ROM Table must occupy a single 4KB block of memory.

• For ADIv5 implementations, the DEVID.FORMAT field must be 0, which indicates that the 
ROM Table entries are 32 bits wide.

For a detailed description of the Class 0x9 ROM Table entries and registers, see Arm® Debug 
Interface Architecture Specification (ADIv6.0).

Note

Class 0x9 ROM Tables can be used alongside Class 0x1 ROM Tables, and both Class 0x9 and Class 0x1 ROM 
Tables might be present in systems with an ADIv5-compliant interface.
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D1.3 Component and Peripheral ID Registers for ROM Tables

Any ROM Table must implement a set of Component and Peripheral ID Registers, that start at offset 0xFD0 in the 
ROM Table. PIDR0-PIDR7 registers in Arm® CoreSight™ Architecture Specification describes these registers. This 
section only describes particular features of the registers when they relate to a ROM Table.

D1.3.1   Identifying the debug SoC, system, or subsystem

The Unique Component Identifier in a ROM table uniquely identifies the SoC, platform, or subsystem described by 
the ROM table. For example:

• A cluster of components grouped together with a ROM table hierarchy pointing to all the components is 
uniquely identified by the outermost ROM Table in the cluster.

• A subsystem of all components connected to a single Memory Access Port is uniquely identified by the 
outermost ROM Table in the subsystem. This ROM Table is usually the first component pointed to by the 
Memory Access Port.

• An SoC, consisting of multiple Memory Access Ports implementing the Arm Debug Interface version 5, is 
uniquely identified by the collective Unique Component Identifiers from all of the outermost ROM Tables 
pointed to by each of the Memory Access Ports.

An SoC, system, or subsystem might be configurable when being built. For example, a cluster of processors might 
permit the number of processors to be configurable. The ROM Table, which describes such a collection of 
components, might have the same Unique Component Identifier for all configurations of the system. Although, this 
is only permitted when components are either included or excluded, and is not permitted to be the same when the 
location of any component in the address map changes or components significantly change in function. In effect, a 
ROM Table Unique Component Identifier uniquely identifies a superset configuration of the collection of 
components. ROM Tables with the same Unique Component Identifier might only describe a subset of this superset.

If the ADI implements DPv2, the DP TARGETID register also uniquely identifies the SoC or platform, and Arm 
deprecates use of the top-level ROM Table Peripheral ID registers as a unique identifier by tools.

Note

• If SWJ-DP is implemented, it is not required that both the JTAG-DP and SW-DP implement the same DP 
architecture version, and therefore TARGETID. Tools might be using a DP that does not implement DPv2.

• Deprecation of the use of the top-level ROM Table peripheral ID registers by tools does not remove the 
requirement on implementations to provide a unique identifier in the top-level ROM Table peripheral ID 
registers. Future releases of this manual might remove this requirement.
D1-228 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



D1 About ROM Tables 
D1.4 Location of the ROM Table
D1.4 Location of the ROM Table

This section describes how to provide a pointer to the top-level ROM Table. 

While entries in a ROM Table are always relative addresses, the top-level pointer to a ROM Table always takes the 
form of an absolute address.

From an Access Port 

Each MEM-AP contains a BASE register that indicates one of the following:

• The base address of a ROM Table.

• The address of a debug component, which must be the only debug component that is 
accessible from that AP. The memory system that is accessed by this MEM-AP does not 
contain a ROM Table.

• No debug components are accessible from this AP, which is indicated by BASE.P having the 
value 0b0.

From processor cores 

The operating system or debug monitor must be aware of the memory map of the system to find the 
ROM Table and debug components.
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Appendix E1 
Standard Memory Access Port Definitions

This appendix provides information on implementing the Memory Access Port (MEM-AP). It contains the 
following sections:

• Introduction on page E1-234.

• AMBA AXI3 and AXI4 on page E1-235.

• AMBA AXI4 with ACE-Lite on page E1-237.

• AMBA AXI5 on page E1-240.

• AMBA AHB3 on page E1-243.

• AMBA AHB5 on page E1-245.

• AMBA AHB5 with enhanced HPROT control on page E1-247.

• AMBA APB2 and APB3 on page E1-249.
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E1.1 Introduction

The MEM-AP programmers’ model includes IMPLEMENTATION DEFINED features. This appendix provides reference 
implementation options for implementers and users of MEM-APs when connecting to standard memory interfaces. 
In particular, it provides the recommended interpretations of the following fields:

• CSW.Prot.

• CSW.SPIDEN.

• CSW.Type.

• CSW.AddrInc.

• CSW.Size.
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E1.2 AMBA AXI3 and AXI4

This section describes the implementation of the CSW register for AMBA AXI3 and AXI4 implementations. For 
more information, see AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and 
ACE-Lite™. 

E1.2.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178.

Prot, bits[30:24] 

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28] 

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-1.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior 
depends on the vale of CSW.SPIDEN. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is 
HIGH.

0b0 Secure transfer requested. If CSW.SPIDEN is 0b1, ARPROT[1] or 
AWPROT[1] is LOW. If CSW.SPIDEN is 0b0, no transfer is 
initiated, and Arm recommends that an error response is returned to 
the DP if an access is made to the DRW or Banked Data registers.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SPIDEN

1516

Prot RES0 Mode Size

DbgSwEnable RES0

2

MTE

14

Type

Table E1-1 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged
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CACHE[3:0], bits[27:24] 

Drives AxCACHE[3:0], where x is R for reads and W for writes, see 
Table E1-2. 

Note
AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE. 

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit[23] 

The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Bits[22:16] 

RES0.

Type, bits[15:12] 

RES0.

Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

AddrInc, bits[5:4] 

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on 
page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION 
DEFINED whether larger access sizes are supported. 

Table E1-2 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
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E1.3 AMBA AXI4 with ACE-Lite

This section describes the register implementation for AMBA AXI4 implementations with ACE-Lite For more 
information, see the AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE and 
ACE-Lite™.

The following registers are covered:

• CSW register implementation.

• MBT register implementation on page E1-239.

E1.3.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178.

Prot, bits[30:24] 

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28] 

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-3.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior 
depends on the value of CSW.SPIDEN. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is 
HIGH.

0b0 Secure transfer requested. If CSW.SPIDEN is 0b1, ARPROT[1] or 
AWPROT[1] is LOW. If CSW.SPIDEN is 0b0, no transfer is 
initiated, and Arm recommends that an error response is returned to 
the DP if an access is made to the DRW or Banked Data registers.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SPIDEN

1516

Prot RES0 Mode Size

DbgSwEnable RES0

2

MTE

14

Type

Table E1-3 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. E1-237
ID022122 Non-Confidential



Appendix E1 Standard Memory Access Port Definitions 
E1.3 AMBA AXI4 with ACE-Lite
CACHE[3:0], bits[27:24] 

Drives AxCACHE[3:0], where x is R for reads and W for writes, see 
Table E1-4.

Note
AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE. 

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit[23] 

The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Bits[22:16] 

RES0.

Type, bits[15:12] 

The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for 
writes.

The settings for the CSW.Type bit field are:

bit[15] Reserved, RES0.

DOMAIN[1:0], bits[14:13] 

Possible values are:

0b00 Non-shareable.

0b01 Inner shareable.

0b10 Outer shareable.

0b11 System.

The reset value of this field is 0b11.

EnMBT, bit[12] 

Enable MBT accesses. 

It is IMPLEMENTATION DEFINED whether this field is RW or RAO. If it is RW, 
the reset value is 0b0, and must be set to 0b1 before writing to the MBT register.

Mode, bits[11:8] 

It is IMPLEMENTATION DEFINED whether this field is RW or RO. If it is RW, the reset value 
is 0b0000, and must be set to 0b0001 before writing to the MBT register. If it is RO, then it 
has the fixed value 0b0001.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

Table E1-4 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
E1-238 Copyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved.ARM IHI 0031G
Non-Confidential ID022122



Appendix E1 Standard Memory Access Port Definitions 
E1.3 AMBA AXI4 with ACE-Lite
AddrInc, bits[5:4] 

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on 
page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION 
DEFINED whether larger access sizes are supported. 

E1.3.2   MBT register implementation

Attributes 

MBT register is a read/write register.

Bits[31:3] 

Reserved, RES0.

BarTran, bits[2:1] 

Possible values are:

0b00 Reserved

0b01 Memory barrier

0b10 Reserved

0b11 Synchronization barrier.

Bit[0] 

On reads:

0b0 Barrier transaction in progress.

0b1 No barrier transaction in progress.

SBO on writes. 

31 0

RES0

BarTran
Bit [0]

123
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E1.4 AMBA AXI5

This section describes the register implementation for AMBA AXI5 implementations. For more information, see 
the AMBA® AXI™ and ACE™ Protocol Specification AXI5.

The following registers are covered:

• CSW register implementation on page E1-237.

Support for the Memory Tagging Extension in an AXI5 MEM-AP is optional. When the Memory Tagging 
Extension is implemented:

• The MEM-AP implements the Large Data Extension, supporting access sizes of up to at least 64-bits.

• The MEM-AP implements the Memory Tagging Extension, supporting 4-bit tags with a 16-byte memory 
tagging granule.

When memory tagging is enabled, the data size selected by CSW.SIZE must be one of:

• 64-bits.

• An integer multiple of 128-bits.

Note

This specification permits a MEM-AP with memory tagging to only support data value sizes up to 64 bits. However 
AXI5 does require a bus width of 128-bit and any AXI-AP design needs to ensure it implements the requirements 
of both specifications.

System memory read accesses with memory tagging enabled perform AXI Transfer tag operations on ARTAGOP.

System memory write accesses with memory tagging enabled perform AXI Update tag operations on AWTAGOP

Note

AXI-AP has no need for the Transfer or Match tag operations on AWTAGOP.

When a 64-bit system memory read access is initiated, the AXI-AP performs a read transaction of at least 128-bits, 
and discards the unused data bytes.

When a 64-bit system memory write access is initiated, the AXI-AP performs a write transaction of at least 128-bits, 
and drives the write strobes appropriately to ensure only the correct 64-bits of data are transferred.

E1.4.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178.

Prot, bits[30:24] 

For reads, the CSW.Prot field drives the AXI ARCACHE and ARPROT signals.

For writes, the CSW.Prot field drives the AXI AWCACHE and AWPROT signals.

PROT
[2:0]

CACHE
[3:0] Type

31 30 24 23 22 12 8 7 6 5 4 3 2 0

RES0 RES0 Size

RES0

DeviceEn
TrInProg

SPIDENDbgSwEnable

1615

AddrInc

28 27

MTE

14 13
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The settings for the CSW.Prot field are:

PROT[2:0], bits[30:28] 

Drives AxPROT[2:0], where x is R for reads and W for writes, see Table E1-3 
on page E1-237.

CSW.Prot[29], Non-secure, specifies a non-secure transfer. Its behavior 
depends on the value of CSW.SPIDEN. For values in CSW.Prot[29]:

0b1 Non-secure transfer requested. ARPROT[1] or AWPROT[1] is 
HIGH.

0b0 Secure transfer requested. If CSW.SPIDEN is 0b1, ARPROT[1] or 
AWPROT[1] is LOW. If CSW.SPIDEN is 0b0, no transfer is 
initiated, and Arm recommends that an error response is returned to 
the DP if an access is made to the DRW or Banked Data registers.

CACHE[3:0], bits[27:24] 

Drives AxCACHE[3:0], where x is R for reads and W for writes, see 
Table E1-4 on page E1-238.

Note
AMBA AXI4 requires asymmetrical usage of ARCACHE and AWCACHE. 

The reset value of CSW.Prot is 0b0110000.

SPIDEN, bit[23] 

The CSW.SPIDEN bit reflects the state of the CoreSight authentication signal, SPIDEN.

Bits[22:16] 

RES0.

MTE, bit[15] 

Memory Tagging control. The possible values of this bit are:

0b0 Memory tagging accesses disabled.

0b1 Memory tagging accesses enabled.

When memory tagging accesses are enabled, system read and write accesses via DRW, 
BDx, and DARx, use T0TR for transferring tag information.

Table E1-5 CSW.Prot mapping to ARPROT or AWPROT

Bit ARPROT signal AWPROT signal Description

30 ARPROT[2] AWPROT[2] Instruction

29 ARPROT[1] AWPROT[1] Non-secure

28 ARPROT[0] AWPROT[0] Privileged

Table E1-6 CSW.Prot mapping to ARCACHE or AWCACHE

Bit ARCACHE signal AWCACHE signal

27 ARCACHE[3] AWCACHE[3]

26 ARCACHE[2] AWCACHE[2]

25 ARCACHE[1] AWCACHE[1]

24 ARCACHE[0] AWCACHE[0]
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When the Memory Tagging Extension is not implemented, this field is RES0.

Type, bits[14:13] 

The CSW.Type field drives the AXI AxDOMAIN signals, where x is R for reads and W for 
writes.

The settings for the CSW.Type bit field are:

DOMAIN[1:0], bits[14:13] 

Possible values are:

0b00 Non-shareable.

0b01 Inner shareable.

0b10 Outer shareable.

0b11 System.

The reset value of this field is 0b11.

Bits[12:8] 

RES0.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

AddrInc, bits[5:4] 

CSW.AddrInc supports the Increment Packed mode of transfer. See Packed transfers on 
page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses. It is IMPLEMENTATION 
DEFINED whether larger access sizes are supported. 
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E1.5 AMBA AHB3

This section describes the implementation of the CSW register for AMBA AHB implementations. For more 
information, see the AMBA® Specification (Rev 2.0) and the AMBA® 3 AHB-Lite™ Protocol Specification.

E1.5.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178.

Prot, bits[30:24] 

The CSW.Prot field drives the AHB HPROT signals. The settings for the CSW.Prot field 
are:

HNONSEC, bit[30] 

Drives the value of an IMPLEMENTATION DEFINED HNONSEC 
signal.

HNONSEC is not a formally defined AHB3 signal.

If implemented, the reset value of this field is 0b1.

If not implemented, this field is SBO, and if set to 0b0 the behavior 
of an AHB-AP transaction is UNPREDICTABLE.

MasterType, bit[29] 

Master Type bit. MasterType permits the AHB-AP to mimic a 
second AHB Requester by driving a different value on 
HMASTER[3:0]. Support for this function is IMPLEMENTATION 
DEFINED. Valid values for this bit are:

0b1 Drive HMASTER[3:0] with the bus transaction 
Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus transaction 
Requester ID for the second bus transaction Requester.

HPROT[4], Allocate, bit[28] 

Drives HPROT[4], Allocate. HPROT[4] is an Armv5 extension to 
AHB. For more information, see the Arm1136JF-S™ and 
Arm1136J-S™ Technical Reference Manual.

If the AHB Requester interface does not support the Armv5 
extension to AHB, this bit is RAZ/WI.

HPROT
[3:0] Type

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

RES0 Mode Size

RES0

DeviceEn
TrInProg

SPIDEN

DbgSwEnable

1615

AddrInc

HNONSEC
MasterType
HPROT[4], Allocate

29 28 27
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HPROT[3:0], bits[27:24] 

Drives HPROT[3:0]. See Table E1-7. Support for each HPROT 
signal in the AHB Requester interface is IMPLEMENTATION 
DEFINED.

The reset value of CSW.Prot is 0b1000011. 

SPIDEN, bit[23] 

It is IMPLEMENTATION DEFINED whether the CSW.SPIDEN bit reflects the state of the 
CoreSight authentication signal, SPIDEN. Otherwise, the CSW.SPIDEN bit is RAZ.

This bit is always read-only.

Note

AMBA AHB does not support Security Extensions.

Bits[22:16] 

RES0.

Type, bits[15:12] 

RES0.

Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

AddrInc, bits[5:4] 

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See 
Packed transfers on page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses.

Table E1-7 CSW.Prot mapping

Bit HPROT signal Description
Description when not implemented 
at the AHB Requester interface

27 HPROT[3] Cacheable RAZ/WI

26 HPROT[2] Bufferable RAZ/WI

25 HPROT[1] Privileged RAO/WI

24 HPROT[0] Data RAO/WI
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E1.6 AMBA AHB5

This section describes the implementation of the CSW register for AMBA AHB implementations. For more 
information, see the AMBA® Specification (Rev 2.0) and the Arm® AMBA® 5 AHB Protocol Specification.

E1.6.1   CSW register implementation

DbgSwEnable, bit[31] 

See CFG, Configuration register on page C2-175.

HNONSEC, Bit[30] 

Drives the value of HNONSEC. It is IMPLEMENTATION DEFINED whether the HNONSEC 
field is supported.

If implemented, the reset value of this field is 0b1.

MasterType, bit[29] 

Master Type field. MasterType permits the AHB-AP to mimic a second AHB Requester by 
driving a different value on HMASTER[3:0]. Support for this function is IMPLEMENTATION 
DEFINED. Valid values for this field are:

0b1 Drive HMASTER[3:0] with the bus transaction Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus transaction Requester ID for the second 
bus transaction Requester.

If this function is not implemented, the field is RES0.

Bit[28] 

RES0.

HPROT, bits[27:24] 

Drives the value of HPROT[6:0]:

• Support for each HPROT signal is IMPLEMENTATION DEFINED.

• HPROT[5] is always driven with the value 0.

• Bit[27] drives HPROT[6], HPROT[4], and HPROT[3].

• Bit[26] drives HPROT[2].

• Bit[25] drives HPROT[1].

• Bit[24] drives HPROT[0].

SPIDEN, bit[23] 

It is IMPLEMENTATION DEFINED whether CSW.SPIDEN reflects the state of the CoreSight 
authentication interface. If Secure debug is not supported, CSW.SPIDEN is RES0.

This field is always read-only.

Bits[22:16] 

RES0.

Type, bits[15:12] 

RES0.

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SPIDENRES0

1615

HPROT RES0 Type Mode Size

29 28 27

MasterType
HNONSEC
DbgSwEnable

2
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Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

Transfer in progress. This field has one of the following values:

0b0 The connection to the memory system is idle.

0b1 A transfer is in progress on the connection to the memory system.

After an ABORT operation, debug software can read this bit to check whether the aborted 
transaction completed.

DeviceEn, bit[6] 

Device enabled. 

This field has one of the following values:

0b0 The MEM-AP is not enabled.

0b1 Transactions can be issued through the MEM-AP.

This bit corresponds to the value of the DEVICEEN signal, which is a control input to the 
DAP. If DEVICEEN is not implemented this bit is RAO. See also Enabling access to the 
connected debug device or memory system on page C2-152.

This field is read-only.

AddrInc, bits[5:4] 

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See 
Packed transfers on page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses.
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E1.7 AMBA AHB5 with enhanced HPROT control

This section describes the implementation of the CSW register for AMBA AHB with enhanced HPROT control 
implementations. For more information, see the AMBA® Specification (Rev 2.0) and the Arm® AMBA® 5 AHB 
Protocol Specification.

E1.7.1   CSW register implementation

DbgSwEnable, bit[31] 

See CFG, Configuration register on page C2-175.

HNONSEC, Bit[30] 

Drives the value of HNONSEC. It is IMPLEMENTATION DEFINED whether the HNONSEC 
field is supported.

If implemented, the reset value of this field is 0b1.

MasterType, bit[29] 

Requester Type field. MasterType permits the AHB-AP to mimic a second AHB Requester 
by driving a different value on HMASTER[3:0]. Support for this function is 
IMPLEMENTATION DEFINED. Valid values for this field are:

0b1 Drive HMASTER[3:0] with the bus transaction Requester ID for the AHB-AP.

0b0 Drive HMASTER[3:0] with the bus transaction Requester ID for the second 
bus transaction Requester.

If this function is not implemented, the field is RES0.

HPROT, bits[28:24, 15] 

Drives the value of HPROT[6:0]:

• Support for each HPROT signal is IMPLEMENTATION DEFINED.

• Bit[15] drives HPROT[6].

• HPROT[5] is always driven with the value 0.

• Bits[28:24] drive HPROT[4:0].

SPIDEN, bit[23] 

It is IMPLEMENTATION DEFINED whether CSW.SPIDEN reflects the state of the CoreSight 
authentication interface. If Secure debug is not supported, CSW.SPIDEN is RES0.

This field is always read-only.

Bits[22:16] 

RES0.

HPROT, bit[15] 

Used to control HPROT, see the HPROT field.

Type, bits[14:12] 

31 30 24 23 22 12 11 8 7 6 5 4 3 0

AddrInc
DeviceEn
TrInProg

SPIDEN

1615

HPROT RES0 Type Mode Size

29 28

MasterType
HNONSEC
DbgSwEnable

214

HPROT
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RES0.

Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

Transfer in progress. This field has one of the following values:

0b0 The connection to the memory system is idle.

0b1 A transfer is in progress on the connection to the memory system.

After an ABORT operation, debug software can read this bit to check whether the aborted 
transaction completed.

DeviceEn, bit[6] 

Device enabled. 

This field has one of the following values:

0b0 The MEM-AP is not enabled.

0b1 Transactions can be issued through the MEM-AP.

This bit corresponds to the value of the DEVICEEN signal, which is a control input to the 
DAP. If DEVICEEN is not implemented this bit is RAO. See also Enabling access to the 
connected debug device or memory system on page C2-152.

This field is read-only.

AddrInc, bits[5:4] 

Support for the Increment Packed mode of transfer is IMPLEMENTATION DEFINED. See 
Packed transfers on page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size must support word, half-word, and byte size accesses.
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E1.8 AMBA APB2 and APB3

This section describes the implementation of the CSW register for AMBA APB2 and APB3 implementations. For 
more information see the AMBA® Specification (Rev 2.0), and the AMBA® APB Protocol Specification Version: 2.0.

E1.8.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178

Prot, bits[30:24] 

RES0.

SPIDEN, bit[23] 

RES0.

Bits[22:16] 

RES0.

Type, bits[15:12] 

RES0.

Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

AddrInc, bits[5:4] 

CSW.AddrInc does not support the Increment Packed mode of transfer, and reads as 0b00. 
See also Packed transfers on page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are 
ignored. 

Type

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

Prot RES0 Mode Size

RES0

DeviceEn
TrInProg

SPIDENDbgSwEnable

1615

AddrInc
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E1.9 AMBA APB4 and APB5

This section describes the implementation of the CSW register for AMBA APB4 and APB5 implementations. For 
more information see the AMBA® APB Protocol Specification.

E1.9.1   CSW register implementation

DbgSwEnable, bit[31] 

See CSW, Control/Status Word register on page C2-178.

Prot[2:0], bits[30:28] 

Drives PPROT[2:0].

Bit[29], Non-secure, corresponds to Prot[1], and specifies a non-secure transfer. This bit can 
have one of the following values:

0b1 Non-secure transfer requested. PPROT[1] is HIGH.

0b0 Secure transfer requested. The resulting behavior depends on the value of the 
CSW.SPIDEN field:

• If CSW.SPIDEN is 0b1, PPROT[1] is LOW. 

• If CSW.SPIDEN is 0b0, no transfer is initiated, and Arm recommends 
that, if an access is made to the DRW or BD0-BD3 registers, an error 
response is returned.

Bits[27:24] 

RES0.

SPIDEN, bit[23] 

It is IMPLEMENTATION DEFINED whether CSW.SPIDEN reflects the state of the CoreSight 
authentication interface. If Secure debug is not supported, CSW.SPIDEN is RES0.

This field is always read-only.

Bits[22:16] 

RES0.

Type, bits[15:12] 

RES0.

Mode, bits[11:8] 

RES0.

TrInProg, bit[7] 

See CSW, Control/Status Word register on page C2-178.

DeviceEn, bit[6] 

See CSW, Control/Status Word register on page C2-178.

Prot[2:0] RES0 Type

31 30 24 23 22 12 11 8 7 6 5 4 3 2 0

RES0 Mode Size

RES0

DeviceEn
TrInProg

SPIDENDbgSwEnable

1615

AddrInc

28 27
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AddrInc, bits[5:4] 

CSW.AddrInc does not support the Increment Packed mode of transfer, and reads as 0b00. 
See also Packed transfers on page C2-158.

Bit[3] 

RES0.

Size, bits[2:0] 

CSW.Size only supports word accesses, and reads as 0b010. Writes to CSW.Size are 
ignored. 
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Cross-over with the Arm Architecture

This appendix describes the required or recommended options for the Arm Debug Interface for the Armv6-M and 
all Armv7 and Armv8 architecture profiles. It contains the following sections:

• Introduction on page E2-254.

• Armv6-M, Armv7-M, and Armv8-M architecture profiles on page E2-255.

• PEs with a physical address of up to 32 bits on page E2-256.

• PEs with a physical address greater than 32 bits on page E2-257.

• Summary of the requirements for ADIv5 implementations on page E2-258.
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E2.1 Introduction

ADIv5 is the recommended external debug interface for Armv6-M, all Armv7, all Armv8,and Arm v9 architecture 
profiles.

When designing with Arm Cortex™ processor cores and Arm CoreSight technology, the choice of Debug Access 
Port (DAP) features might be at the discretion of the system designer. Arm recommends that system designers 
choose a DAP that implements all the recommended features for each Arm architecture processing element (PE) 
that is contained in the design.

ADIv5 might also be used with other architecture variants. For example, an ADIv5 JTAG Access Port (JTAG-AP) 
might access a Debug Test Access Port (DBGTAP), as defined by Arm Debug Interface v4 (ADIv4) for Armv6 
architecture processors.
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E2.2 Armv6-M, Armv7-M, and Armv8-M architecture profiles

Arm recommends that a DP that implements ADIv5 is used to access the debug features of the Armv6-M, 
Armv7-M, or Armv8-M architecture.

Arm recommends that the DP implements the SWD interface, either through an SW-DP or SWJ-DP. A JTAG-DP 
is permitted. 

When accessing debug features of the Armv6-M architecture, or the Armv8-M architecture without the Main 
Extension, Arm recommends that the DP implements the MINDP model. See MINDP, Minimal DP extension on 
page B1-40.

There must be one MEM-AP for each PE, which complies with the following rules:

• The MEM-AP must be able to address the complete memory space visible to the PE, including all debug 
peripherals and the NVIC. 

• The MEM-AP must support byte, half-word, and word size accesses to memory. 

• A MEM-AP that is used to access debug features of the Armv6-M architecture, or the Armv8-M architecture 
without the Main Extension, is not required to support the packed increment transfer mode. 

• A MEM-AP that is used to access debug features of the Armv7-M architecture, or the Armv8-M architecture 
with the Main Extension, is permitted to support the packed increment transfer mode.

Other APs can be connected to the DAP.
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E2.3 PEs with a physical address of up to 32 bits

The Armv7-A without the Large Physical Address Extension, Armv7-R, and Armv8-R AArch32 architecture 
profiles do not require a DAP that is compliant with ADIv5. The Arm development tools, however, do require a 
DAP that is compliant with ADIv5.

Where a DAP that is compliant with ADIv5 is implemented, Arm recommends that the DP implements the JTAG 
and SWD interfaces through an SWJ-DP.

Many PEs can be connected to a single MEM-AP. The MEM-AP must only be able to address the debug peripherals 
of the connected PEs. If the MEM-AP can only address the debug peripherals, it is only required to support word 
size accesses to memory, and therefore is not required to support the packed increment transfer mode.

Arm recommends that debug implementations include a MEM-AP that can address the complete memory space 
visible to the PE or PEs. This MEM-AP might be a second MEM-AP in the DAP. Arm recommends that a MEM-AP 
that can access the complete memory space supports byte, half-word, and word size accesses to memory. This 
MEM-AP is permitted to support the packed increment transfer mode.

Other APs can also be connected to the DAP.

Note

Do not confuse the Armv7-A or Armv8-A Large Physical Address Extension with the ADI MEM-AP Large 
Physical Address Extension.
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E2.4 PEs with a physical address greater than 32 bits

The requirements for Armv7-A with Large Physical Address Extension, and Armv8-A, Armv8-R AArch64, and 
Armv9-A architecture profiles are the same as for those described in PEs with a physical address of up to 32 bits 
on page E2-256, with the following additions for any MEM-AP with system access:

• MEM-AP Large Physical Address Extension, up to at least the size that is supported by the PE.

• For Armv7-A systems with the Large Physical Address Extension, Arm recommends that the MEM-AP 
implements the Large Data Extension providing at least doubleword accesses, to allow for atomic update of 
page table entries.

• For Armv8-A, Armv8-R AArch64, and Armv9-A systems, the MEM-AP must implement the Large Data 
Extension providing at least doubleword accesses.
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E2.5 Summary of the requirements for ADIv5 implementations

Table E2-1 summarizes the required and recommended components of an ADI implementation for each of the Arm 
architecture variants for which ADIv5 is the required or recommended DAP.

Table E2-1 Recommended ADI implementations for Arm Architecture variants

Component

Armv6-M 
and 
Armv8-M 
without 
Main 
Extension

Armv7-M 
and 
Armv8-M 
with Main 
Extension

PEs with a 
physical 
address up 
to 32 bits

PEs with a 
physical 
address 
greater than 
32 bits

DAP ADIv5 Required Required Recommended Recommended

DP JTAG-DP Permitted Permitted Permitted Permitted

SW-DP - - Permitted Permitted

SWJ-DP - - Recommended Recommended

SWJ-DP or SW-DP Recommended Recommended - -

MEM-AP One per PE Required Required Permitted Permitted

Access to system memory Required Required Permitted Permitted

Support for 8-bit and 16-bit accesses Required Required Required only 
if system 
access is 
supported

Required only 
if system 
access is 
supported

Support for 32-bit accesses Required Required Required Required

Support for 64-bit accesses Permitted Permitted Permitted Required

Support for large physical addresses Not permitted Not permitted Permitted Required if 
system access 
is supported

Support for packed increment transfers Permitted Permitted Permitted Permitted

Support for the Memory Tagging 
Extension

Not permitted Not permitted Permitted Required if 
system access 
is supported 
and system 
supports 
memory 
tagging.
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This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper 
procedures and functions that are used by pseudocode. It contains the following sections:

• About the Arm pseudocode on page E3-260.

• Pseudocode for instruction descriptions on page E3-261.

• Data types on page E3-263.

• Operators on page E3-268.

• Statements and control structures on page E3-274.

• Built-in functions on page E3-279.

• Miscellaneous helper procedures and functions on page E3-282.

• Arm pseudocode definition index on page E3-284.

Note

This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm 
pseudocode. This appendix is not complete. Changes are planned for future releases. 
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E3.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description 
of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions on page E3-261 
gives general information about this instruction pseudocode, including its limitations. 

The following sections describe the Arm pseudocode in detail:

• Data types on page E3-263.

• Operators on page E3-268.

• Statements and control structures on page E3-274.

Built-in functions on page E3-279 and Miscellaneous helper procedures and functions on page E3-282 describe 
some built-in functions and pseudocode helper functions that are used by the pseudocode functions that are 
described elsewhere in this manual. Arm pseudocode definition index on page E3-284 contains the indexes to the 
pseudocode.

E3.1.1   General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that 
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to 
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs. 

For more information, see Special statements on page E3-278.
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E3.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does, 
subject to the limitations described in General limitations of Arm pseudocode on page E3-260 and Limitations of 
the instruction pseudocode on page E3-262. 

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the 
instruction. Instruction encoding diagrams and instruction pseudocode gives more information about the 
pseudocode provided for each instruction.

E3.2.1   Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific 
pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the 
instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being described. 
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its 
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding 
corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction 
is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions 
on page K1-11158.

• A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32 
instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the 
instruction, and one of the following is true:

• The encoding diagram is not for an A32/T32 instruction.

• The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

• The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of 
the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In 
that case, abandon this execution model and consult the relevant instruction set chapter instead to find out 
how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED, 
though there are some other possibilities. For example, unallocated hint instructions are documented as being 
reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform 
that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP. 
If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common 
pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in 
parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit 
or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and 
initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.

In a few cases, the encoding diagram contains more than one bit or field with same name. In these cases, the 
values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode 
contains a special case using the Consistent() function to specify what happens if they are not identical. 
Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same 
value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must 
contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode 
and their corresponding encoding diagrams.
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There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider. 
This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED 
UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the 
instruction. If any of them do not match, abandon this execution model and treat the instruction as 
CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions on page K1-11158.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding 
diagram. That pseudocode starts with all variables set to the values they were left with by the 
encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the 
EncodingSpecificOperations() call performs steps 3 and 4.

E3.2.2   Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the 
fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory 
accesses. For a description of the ordering requirements on memory accesses, see Ordering constraints on 
page E2-6790.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its 
condition code check:

— UNDEFINED instruction.

— Hyp trap.

— Monitor trap.

— Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if 
ConditionPassed() then … structure, either directly or in the EncodingSpecificOperations() function call, and 
so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:

— Conditional execution of undefined instructions on page G1-8582.

— EL2 configurable controls on page G1-8626.

— EL3 configurable controls on page G1-8646.

— Configurable instruction controls on page D1-4555.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction 
generates more than one floating-point exception and one or more of those floating-point exceptions is 
trapped. Combinations of floating-point exceptions on page E1-6767 describes the exact rules.

Note
There is no limitation in the case where all the floating-point exceptions are untrapped, because the 
pseudocode specifies the same behavior as the cross-referenced section.

• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result 
of the execution of a pseudocode function such as Abort(), or implicitly, for example if an interrupt is taken 
during execution of an LDM instruction. If this happens, the pseudocode does not describe the extent to which 
the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in 
Handling exceptions that are taken to an Exception level using AArch32 on page G1-8545.
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E3.3 Data types

This section describes:

• General data type rules.

• Bitstrings.

• Integers on page E3-264.

• Reals on page E3-264.

• Booleans on page E3-264.

• Enumerations on page E3-265.

• Structures on page E3-265.

• Tuples on page E3-266.

• Arrays on page E3-267.

E3.3.1   General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following 
types:

• Bitstring.

• Integer.

• Boolean.

• Real.

• Enumeration.

• Tuple.

• Struct.

• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The 
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the 
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type. 
The following example declares explicitly that a variable named count is an integer. 

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E3.3.2   Bitstrings

This section describes the bitstring data type. 

Syntax
bits(N) The type name of a bitstring of length N.

bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted 
length of a bitstring is 0.
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Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by 
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be 
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring 
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order 
matches the order in which bitstrings derived from encoding diagrams are printed. 

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is, 
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the 
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and 
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are 
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E3.3.3   Integers

This section describes the data type for integer numbers. 

Syntax

integer The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical 
integers rather than what computer languages and architectures commonly call integers. Computer integers are 
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret 
those bitstrings as integers.

Integer  literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style 
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer  literals are treated as positive unless they have 
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it 
must be written as -0x80000000.

E3.3.4   Reals

This section describes the data type for real numbers. 

Syntax

real The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer 
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the 
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal, 
but 0.0 is a real constant literal.

E3.3.5   Booleans

This section describes the Boolean data type. 

Syntax

boolean The type name for the Boolean data type.
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TRUE The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE 
or FALSE.

E3.3.6   Enumerations

This section describes the enumeration data type. 

Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three}; 

A definition of a new enumeration called Example, which can take on the values Example_One, 
Example_Two, Example_Three. 

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by 
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration 
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its 
possible values.

E3.3.7   Structures

This section describes the structure data type. 

Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount) 

An example definition for a new structure called ShiftSpec that contains an bitstring member called 
shift and a integer member named amount. Structure definitions must not be terminated with a 
semicolon.

ShiftSpec abc; 

A declaration of a variable named abc of type ShiftSpec. 

abc.shift 

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data 
types. This can include compound data types. The data items of a structure are called its members and are named. 
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In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of 
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc, 
the members of this structure are referred to as abc.shift and abc.amount. 

Every definition of a structure creates a different type, even if the number and type of their members are identical. 
For example: 

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in 
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E3.3.8   Tuples

This section describes the tuple data type. 

Examples

(bits(32) shifter_result, bit shifter_carry_out) 

An example of the tuple syntax. 

(shift_t, shift_n) = ('00', 0); 

An example of assigning values to a tuple. 

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of 
different types and a tuple must contain at least one data item. 

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section, 
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation. 
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of 
ordered data types between parentheses. This means that the example tuple at the start of this section is of type 
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of 
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).

• shift_n to be of type integer.

• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
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E3.3.9   Arrays

This section describes the array data type. 

Syntax

array The type name for the array data type. 

array data_type array_name[A..B]; 

Declaration of an array of type data_type, which might be compound data type. It is named 
array_name and is indexed with an integer range from A to B. 

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types. 
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the 
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30. 

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at 
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.

• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that 
enumeration type. An array declared with an integer range type as the index must be accessed using integer values 
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error. 

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are 
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package 
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register 
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD 
element processing. See Function and procedure calls on page E3-274.
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E3.4 Operators

This section describes:

• Relational operators.

• Boolean operators.

• Bitstring operators on page E3-269.

• Arithmetic operators on page E3-269.

• The assignment operator on page E3-270.

• Precedence rules on page E3-272.

• Conditional expressions on page E3-272.

• Operator polymorphism on page E3-272.

E3.4.1   Relational operators 

The following operations yield results of type boolean. 

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y 
and for non-equality by using the expression x != y. In both cases, the result is of type boolean. 

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an enumeration 
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for 
equality with an integer to allow a d==15 test. 

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any bit 
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the 
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask. 

Note

This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than, 
and greater than or equal comparisons between them, producing Boolean results. 

Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be 
a list of expressions separated by commas. 

E3.4.2   Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is 
FALSE, the result is determined to be FALSE without evaluating y.

Note

This is known as short circuit evaluation. 

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result 
is determined to be TRUE without evaluating y.
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Note

If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing 
x and y together. The operator EOR only accepts bitstring arguments. 

E3.4.3   Bitstring operators

The following operations can be applied only to bitstrings. 

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained 
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by 
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to  create a new bitstring from 
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring 
being  sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the 
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in 
<integer_list> must be:

• >= 0.

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo 
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement 
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with 
both end values included. For example, instr<31:28>  represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in 
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram 
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for 
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A 
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to 
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

E3.4.4   Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from 
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no 
issues arise about overflow or similar errors.
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Unary plus and minus 

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both 
of type integer, and real otherwise. 

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to 
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2. 

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant 
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned 
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0> 
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of 
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y. 

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type 
integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).

• x >> n = RoundDown(x * 2^(-n)).

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer, then x^n is of type integer.

• If x is of type real, then x^n is of type real.

E3.4.5   The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An 
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax. 
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General expression syntax

An expression is one of the following:

• A literal.

• A variable, optionally preceded by a data type name to declare its type.

• The word UNKNOWN preceded by a data type name to declare its type.

• The result of applying a language-defined operator to other expressions.

• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or 
underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring 
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as 
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the 
architecture does not specify what value it is and software must not rely on such values. The value produced must 
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that 
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural 
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on 
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the 
circumstances under which it does so. For example, those circumstances might require that one or more of 
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function 
specifies the circumstances under which it can generate an assignable expression.

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be 
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or 
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them 
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.
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• For a function, the definition of the function determines the data type.

E3.4.6   Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their 
results, but see Boolean operators on page E3-268.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide 
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need 
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example, 
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

E3.4.7   Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression 
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E3.4.8   Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each 
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on 
various combinations of integers, reals and bitstrings.

Table E3-1 on page E3-272 summarizes the operand types valid for each unary operator and the result type. 
Table E3-2 on page E3-272 summarizes the operand types valid for each binary operator and the result type. 

Table E3-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean

Table E3-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real
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<, >

<= , >=

integer integer
boolean

real real

+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real

Table E3-2 Result and operand types permitted for binary operators (continued)

Operator First operand type Second operand type Result type
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E3.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

• Statements and Indentation.

• Function and procedure calls.

• Conditional control structures on page E3-276.

• Loop control structures on page E3-277.

• Special statements on page E3-278.

• Comments on page E3-278.

E3.5.1   Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated 
with a semicolon. 

Indentation normally indicates the structure in compound statements. The statements contained in structures such 
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure 
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation 
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of 
indent. 

E3.5.2   Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
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Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument 
definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but 
different behaviors in AArch32 and AArch64 states. 

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist 
because reading from and writing to an array element require different functions. They are frequently used in 
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For 
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the 
same name, but the value prototype and return type can be different. 

Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

Return statements

A procedure return has the form: 

return;

A function return has the form:
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return <expression>;

where <expression> is of the type declared in the function prototype line.

E3.5.3    Conditional control structures

This section describes how conditional control structures are used in the pseudocode. 

if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and 
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple 
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note

In these forms, <statement 1>, <statement 2>, and <statement A> must be terminated by semicolons. This, and the 
fact that the else part is optional, distinguish its use as a control structure from its use as a ternary operator. 

case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
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<statement A>;
<statement B>;
…
<statement Z>;

In this structure, <literal values1> and <literal values2> consist of  literal values of the same type as <expression>, 
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and 
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known 
as bitmasks. For details, see Equality and non-equality on page E3-268.

E3.5.4   Loop control structures

This section describes the three loop control structures used in the pseudocode. 

repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE. 
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside 
the loop body. 

while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the 
expression is false. 

for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1> 
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This 
repeats until <assignable expression> is more than or equal to <integer_expr2>. 

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is 
less than or equal than <integer_expr2>. 
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E3.5.5   Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that the Undefined 
Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a 
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The 
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from 
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION 
DEFINED. An optional <text> field can give more information.

E3.5.6   Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon. 
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E3.6 Built-in functions

This section describes:

• Bitstring manipulation functions.

• Arithmetic functions on page E3-280.

E3.6.1   Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.

• Zeros(n) = Replicate('0', n).

• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x)  is an integer result equal to the number of bits of x that are ones.
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Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones

• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros, 
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros, 
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign 
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient 
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient 
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that 
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

E3.6.2   Arithmetic functions

This section defines built-in arithmetic functions. 

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x. 
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Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces: 

— RoundDown(x) if x > 0.0.

— 0 if x == 0.0.

— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring 
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y) 
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its 
argument with its n low-order bits forced to zero.

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and 
y must both be of type integer or of type real. The function returns a value of the same type as its operands. 
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E3.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together 
with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of 
these helper procedures and functions.

Note

Chapter J1 Armv8 Pseudocode also has an entry for each of these functions, but currently these entries do not say 
anything about the effect of the function. When this information is added in Chapter J1, this section will be removed 
from the manual.

E3.7.1   EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

E3.7.2   Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

E3.7.3   Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address);

E3.7.4   Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

E3.7.5   Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address);

E3.7.6   Hint_Yield()

This procedure performs a Yield hint.

Hint_Yield();

E3.7.7   IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used 
only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
    assert type != Fault_None;

boolean IsExternalAbort(FaultRecord fault);
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E3.7.8   IsAsyncAbort()

This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It 
is used only in exception entry pseudocode.

boolean IsAsyncAbort(Fault type)
    assert type != Fault_None;

boolean IsAsyncAbort(FaultRecord fault);

E3.7.9   LSInstructionSyndrome()

This function returns the extended syndrome information for a fault reported in the HSR.

bits(11) LSInstructionSyndrome();

E3.7.10   ProcessorID()

This function returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();

E3.7.11   RemapRegsHaveResetValues()

This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset 
values, and FALSE otherwise.

boolean RemapRegsHaveResetValues();

E3.7.12   ResetControlRegisters()

This function resets the System registers and memory-mapped control registers that have architecturally defined 
reset values to those values. For more information about the affected registers, see:

• Reset behavior on page D1-4564.

• PE state on reset into AArch32 state on page G1-8602.

AArch64.ResetControlRegisters(boolean ResetIsCold)
AArch32.ResetControlRegisters(boolean ResetIsCold)

E3.7.13   ThisInstr()

This function returns the bitstring encoding of the currently executing instruction.

bits(32) ThisInstr();

Note

Currently, this function is used only on 32-bit instruction encodings.

E3.7.14   ThisInstrLength()

This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

integer ThisInstrLength();
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E3.8 Arm pseudocode definition index

This section contains the following tables:

• Table E3-3 on page E3-284 which contains the pseudocode data types.

• Table E3-4 on page E3-284 which contains the pseudocode operators. 

• Table E3-5 on page E3-285 which contains the pseudocode keywords and control structures.

• Table E3-6 on page E3-286 which contains the statements with special behaviors. 

Table E3-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type 

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table E3-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings

Used in the left-hand side of an assignment or a tuple to discard 
the result

+ Unary plus on integers or reals

Addition of integers, reals, and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings

/ Division of reals
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&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2 

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

case … of … Control structure for the

if … then … else … Condition expression selecting between two values

Table E3-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the 
upper limit

for … = … downto … Loop control structure, counting down from the initial value to 
the lower limit

if … then … else … Conditional control structure

otherwise Introduces default case in case … of … control structure

Table E3-4 Index of pseudocode operators (continued)

Operator Meaning
ARM IHI 0031GCopyright © 2006, 2009, 2012-2013, 2017-2018, 2020, 2022 Arm Limited or its affiliates. All rights reserved. E3-285
ID022122 Non-Confidential



Appendix E3 Pseudocode Definition 
E3.8 Arm pseudocode definition index
repeat … until … Loop control structure that runs at least once until the 
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition 
is satisfied

Table E3-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table E3-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
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Glossary

This glossary describes some of the terms that are used in Arm documentation.

Abort An abort occurs when an illegal memory access causes an exception. An abort can be generated by the hardware 
that manages memory accesses, or by the external memory system. 

ADI See Arm Debug Interface (ADI).

AHB
An AMBA bus protocol supporting pipelined operation, with the address and data phases occurring during different 
clock periods, meaning that the address phase of a transfer can occur during the data phase of the previous transfer. 
AHB provides a subset of the functionality of the AMBA AXI protocol.

See also AMBA.

Aligned A data item stored at an address that is exactly divisible by the number of bytes that defines its data size. Aligned 
doublewords, words, and halfwords have addresses that are divisible by eight, four, and two respectively. An aligned 
access is one where the address of the access is aligned to the size of each element of the access.

AMBA
The AMBA family of protocol specifications is the Arm open standard for on-chip buses. AMBA provides solutions 
for the interconnection and management of the functional blocks that make up a System-on-Chip (SoC). 
Applications include the development of embedded systems with one or more processors or signal processors and 
multiple peripherals.

APB
An AMBA bus protocol for ancillary or general-purpose peripherals such as timers, interrupt controllers, UARTs, 
and I/O ports. It connects to the main system bus through a system-to-peripheral bus bridge that helps reduce system 
power consumption.

Arm Debug Interface (ADI)
The ADI connects a debugger to a device. The ADI is used to access memory-mapped components in a system, such 
as processors and CoreSight components. The ADI protocol defines the physical wire protocols permitted, and the 
logical programmers model.
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AXI
An AMBA bus protocol that supports:

• Separate phases for address or control and data.

• Unaligned data transfers using byte strobes.

• Burst-based transactions with only start address issued.

• Separate read and write data channels.

• Issuing multiple outstanding addresses.

• Out-of-order transaction completion.

• Optional addition of register stages to meet timing or repropagation requirements.

The AXI protocol includes optional signaling extensions for low-power operation.

Big-endian In the context of the Arm architecture, big-endian is defined as the memory organization in which the least 
significant byte of a word is at a higher address than the most significant byte, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that 
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also Little-endian and Endianness.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement boundary scan technology using a 
standard JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form 
the chain connected between TDI and TDO, through which test data is shifted. A core can contain several shift 
registers, enabling a scan to access selected parts of the device..

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst 
includes address information, and the transfer type determines the addresses used for subsequent transfers.

Cold reset A cold reset has the same effect as starting the processor by turning the power on. This clears main memory and 
many internal settings. Some program failures can lock up the core and require a cold reset to restart the system.

This is also known as power-on or powerup reset.

See also Processing Element (PE), Warm reset.

Completer An agent in a computing system that responds to and completes a memory transaction that was initiated by a 
Requester.

See also Requester.

Core reset See Warm reset.

DAP See Debug Access Port (DAP).

Data Link layer The layer of an ADIv5 implementation that provides the functional and procedural means to transfer data between 
the external debugger and the Debug Port (DP). ADIv5 and upwards define two Data Link layers, one based on the 
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, referred to as JTAG, and one based on the 
Arm Serial Wire Debug protocol interface, referred to as SW-DP.

DATA LINK DEFINED
Means that the behavior is not defined by the base architecture, but must be defined and documented by individual 
Data Link layers of the architecture.

When DATA LINK DEFINED appears in body text, it is always in SMALL CAPITALS.

DBGTAP See Debug Test Access Port (DBGTAP).

Debug Access Port (DAP)
A block that acts as an AMBA, AHB, or AHB-Lite Requester on a system bus, to provide access to the debug target.

Debug Test Access Port (DBGTAP)
A debug control and data interface based on IEEE 1149.1 JTAG Test Access Port (TAP).
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Debugger A debugging system that includes a program, used to detect, locate, and correct software faults, together with 
custom hardware that supports software debugging.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned
A data item having a memory address that is divisible by eight.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a core, outputs trace information on a trace port. The ETM provides 
core-driven trace through a trace port compliant to the ATB protocol. An ETM always supports instruction trace, 
and might support data trace. 

Endianness The scheme that determines the order of the successive bytes of data in a larger data structure when that structure 
is stored in memory.

See also Little-endian and Big-endian.

ETM See Embedded Trace Macrocell (ETM).

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned
A data item having a memory address that is divisible by 2.

Host A computer that provides data and other services to another computer. In the context of an Arm debugger, a 
computer providing debugging services to a target being debugged.

IMP DEF See IMPLEMENTATION DEFINED.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but must be defined and documented by individual 
implementations.

When IMPLEMENTATION DEFINED appears in body text, it is always in SMALL CAPITALS.

Joint Test Action Group (JTAG)
An IEEE group focussed on silicon chip testing methods. Many debug and programming tools use a Joint Test 
Action Group (JTAG) interface port to communicate with processors.

See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-Scan Architecture specification available 
from the IEEE Standards Association.

JTAG See Joint Test Action Group (JTAG).

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides debugger access to on-chip scan chains.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for debug access.

JTAG-AP See JTAG Access Port (JTAG-AP).

JTAG-DP See JTAG Debug Port (JTAG-DP).

Little-endian In the context of the Arm architecture, little-endian is defined as the memory organization in which the most 
significant byte of a word is at a higher address than the least significant byte.

See also Big-endian and Endianness.

PE See Processing Element (PE).

Powerup reset See Cold reset.

Processing Element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm® Architecture Reference Manual. 
A PE implementation that is compliant with the Arm architecture must conform with the behaviors described in the 
corresponding Arm® Architecture Reference Manual.
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RAO See Read-As-One (RAO).

RAO/WI Read-as-One, Writes Ignored. 

Hardware must implement the field as Read-as-One, and must ignore writes to the field. Software can rely on the 
field reading as all 1s, and on writes being ignored. This description can apply to a single bit that reads as 0b1, or to 
a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-as-Zero, Writes ignored. 

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field. Software can rely on the 
field reading as all 0s, and all writes being ignored. This description can apply to a single bit that reads as 0b0, or to 
a field that reads as all 0s.

See also Read-As-Zero (RAZ). 

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s. Software can rely on the field reading as all 1s. This 
description can apply to a single bit that reads as 0b1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s. Software can rely on the field reading as all 0s. This 
description can apply to a single bit that reads as 0b0, or to a field that reads as all 0s.

Requester An agent in a computing system that is capable of initiating memory transactions.

See also Completer.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior. Used for fields in register descriptions, 
and for fields in architecturally-defined data structures that are held in memory, for example in translation table 
descriptors.

Note

RES0 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES0 for register fields is:

If a bit is RES0 in all contexts 

It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b0. In this case:

• Reads of the bit always return 0b0.

• Writes to the bit are ignored.

The bit might be described as RES0, WI, to distinguish it from a bit that behaves as described 
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit returns the last value successfully written to the bit.

Note
As indicated in this list, this value might be written by an indirect write to the register.
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If the bit has not been successfully written since reset, then the read of the bit returns 
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than 
determining the value read back from the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is implementation defined on a 
field-by-field basis.

If a bit is RES0 only in some contexts 

When the bit is described as RES0:

• An indirect write to the register sets the bit to 0b0.

• A read of the bit must return the value last successfully written to the bit, regardless of the 
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset 
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must 
have no effect on the operation of the core, other than determining the value read back from 
that bit.

For any RES0 bit, software:

• Must not rely on the bit reading as 0b0.

• Must use an SBZP policy to write to the bit.

The RES0 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0b0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

This RES0 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field 
that should be written as its preserved value or as all 0s.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in register descriptions, 
and for fields in architecturally-defined data structures that are held in memory, for example in translation table 
descriptors.

Note

RES1 is not used in descriptions of instruction encodings.

Within the architecture, there are some cases where a register bit or bitfield:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

This means the definition of RES1 for register fields is:

If a bit is RES1 in all contexts 
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It is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0b1. In this case:

• Reads of the bit always return 0b1.

• Writes to the bit are ignored.

The bit might be described as RES1, WI, to distinguish it from a bit that behaves as described 
in 2.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit returns the last value successfully written to the bit.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns 
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the core, other than 
determining the value read back from the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is implementation defined on a 
field-by-field basis.

If a bit is RES1 only in some contexts 

When the bit is described as RES1:

• An indirect write to the register sets the bit to 0b1.

• A read of the bit must return the value last successfully written to the bit, regardless of the 
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset 
value if there is one, or otherwise returns an unknown value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must 
have no effect on the operation of the core, other than determining the value read back from 
that bit.

For any RES1 bit, software:

• Must not rely on the bit reading as 0b1.

• Must use an SBOP policy to write to the bit.

The RES1 description can apply to bits or bitfields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 0b1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

This RES1 description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field 
that should be written as its preserved value or as all 1s.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved Unless otherwise stated in the architecture or product documentation:

• Reserved instruction and 32-bit system control register encodings are unpredictable.
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• Reserved 64-bit system control register encodings are undefined.

• Reserved register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan technology using a standard 
JTAG TAP interface. Each device contains at least one TAP controller containing shift registers that form the chain 
connected between TDI and TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

Serial Wire debug (SWD)
A debug implementation that uses a serial connection between the SoC and a debugger. This connection normally 
requires a bidirectional data signal and a separate clock signal, rather than the four to six signals required for a JTAG 
connection.

Serial-Wire Debug Port (SW-DP)
The interface for Serial Wire Debug.

Serial Wire JTAG Debug Port (SWJ-DP)
The SWJ-DP is a combined JTAG-DP and SW-DP that you can use to connect either a Serial Wire Debug (SWD) 
or JTAG probe to a target.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Software should write the field as all 1s. If software writes a value that is not all 1s, it must expect an 
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)
The Armv7 Large Physical Address Extension modified the definition of SBOP to apply to register fields that are 
SBOP in some but not all contexts. From the introduction of Armv8 such register fields are described as RES1, see 
RES1. The definition of SBOP given here applies only to fields that are SBOP in all contexts.

Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it should preserve 
the value of the field by writing the value that it previously read from the field. Otherwise, it should write the field 
as all 1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect 
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b1, or to a field that 
should be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP), Should-Be-One (SBO).

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Software should write the field as all 0s. If software writes a value that is not all 0s, it must expect an 
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0b0, or to a field that should be written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
The Armv7 Large Physical Address Extension modified the definition of SBZP to apply to register fields that are 
SBZP in some but not all contexts. From the introduction of Armv8 such register fields are described as res0, see 
RES0. The definition of SBZP given here applies only to field that are SBZP in all contexts.
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Hardware must ignore writes to the field.

If software has read the field since the core implementing the field was last reset and initialized, it must preserve the 
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all 
0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect 
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0b0, or to a field that 
should be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP), Should-Be-Zero (SBZ).

SWD See Serial Wire debug (SWD).

SW-DP See Serial-Wire Debug Port (SW-DP).

SWJ-DP See Serial Wire JTAG Debug Port (SWJ-DP)

TAP See Test Access Port (TAP).

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output and control interface to a 
JTAG boundary-scan architecture. The mandatory terminals are TDI, TDO, TMS, and TCK. In the JTAG standard, 
the nTRST signal is optional, but this signal is mandatory in Arm processors because it is used to reset the debug 
logic.

See also Joint Test Action Group (JTAG), Debug Test Access Port (DBGTAP).

Trace port A port on a device, such as a processor or ASIC, to output trace information.

Unaligned An unaligned access is an access where the address of the access is not aligned to the size of the elements of the 
access.

See also Aligned.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction, 
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at 
the current or a lower level of privilege using instructions that are not UNPREDICTABLE or CONSTRAINED 
UNPREDICTABLE and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNP See UNPREDICTABLE.

UNPREDICTABLE
For an Arm processor, UNPREDICTABLE means the behavior cannot be relied upon. UNPREDICTABLE behavior must 
not perform any function that cannot be performed at the current or a lower level of privilege using instructions that 
are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. An instruction that is 
UNPREDICTABLE can be implemented as UNDEFINED.

In an implementation that supports Virtualization, the Non-secure execution of unpredictable instructions at a lower 
level of privilege can be trapped to the hypervisor, provided that at least one instruction that is not unpredictable can 
be trapped to the hypervisor if executed at that lower level of privilege.

For an Arm trace macrocell, UNPREDICTABLE means that the behavior of the macrocell cannot be relied on. Such 
conditions have not been validated. When applied to the programming of an event resource, only the output of that 
event resource is UNPREDICTABLE. UNPREDICTABLE behavior can affect the behavior of the entire system, because 
the trace macrocell can cause the core to enter Debug state, and external outputs can be used for other purposes.
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Note

In issue A of this document, UNPREDICTABLE also meant an UNKNOWN value.

When UNPREDICTABLE appears in body text, it is always in SMALL CAPITALS.

W1C Hardware must implement the bit as follows:

• Writing a 0b1 to the bit clears the bit to 0b0.

• Writing a 0b0 to the bit has no effect.

Warm reset Also known as a core reset. Initializes most of the processor functionality, excluding the debug controller and debug 
logic. This type of reset is useful if you are using the debugging features of a processor.

See also Cold reset.

WI Hardware must must ignore writes to the field. Software can rely on writes being ignored. This description can apply 
to a single bit, or to a field.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned A data item having a memory address that is divisible by four.
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