
Arm® Streamline
Version 8.0

Target Setup Guide for Bare-metal Applications

Non-Confidential
Copyright © 2021–2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
101815_0800_00_en

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Arm® Streamline
Target Setup Guide for Bare-metal Applications

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0708-00 20 August 2021 Non-Confidential New document for v7.8

0709-00 18 November 2021 Non-Confidential New document for v7.9

0800-00 18 February 2022 Non-Confidential New document for v8.0

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 52

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 52

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00
Contents

Contents

1 Introduction... 7
1.1 Conventions..7
1.2 Other information... 8

2 Bare-metal Support... 9
2.1 Bare-metal support overview...9

3 Profiling with the bare-metal agent..10
3.1 Profiling with Barman.. 10
3.2 Data storage.. 11
3.3 Profiling with on-target RAM buffer..12
3.3.1 Configuring Barman..12
3.3.2 Extracting and importing data..17
3.3.3 Barman use case script... 18
3.4 Profiling with System Trace Macrocell...19
3.4.1 STM workflow... 20
3.4.2 Importing an STM trace.. 22
3.5 Profiling with Instrumentation Trace Macrocell...22
3.5.1 ITM workflow...23
3.5.2 Importing an ITM trace... 25
3.6 Profiling with Embedded Trace Macrocell.. 25
3.6.1 ETM workflow... 25
3.7 Interfacing with Barman... 29
3.7.1 Configuration #defines.. 29
3.7.2 Annotation #defines...30
3.7.3 Barman public API.. 31
3.7.4 External functions to implement...40
3.8 Custom counters.. 43
3.8.1 Configuring custom counters...43
3.8.2 Sampled and nonsampled counters..45
3.9 Using the bare-metal generation mechanism from the command line.. 46

4 Profiling with Instruction Trace..47

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00
Contents

4.1 Importing instruction trace...47
4.2 Instruction trace notes and restrictions.. 50

5 Examples..52
5.1 Examples using Barman.. 52

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 52

https://developer.arm.com/glossary

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 52

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Bare-metal Support

2 Bare-metal Support
Describes the bare-metal support available within Streamline.

2.1 Bare-metal support overview
Bare-metal support allows Streamline to visualize elements of the system state of a target device
that is running with no operating system or a light-weight real-time operating system.

For bare-metal support, you can profile your application using either of the following:

• The agent Barman.

• Instruction Trace.

Barman consists of two C source files that you build into the executable that runs on the target
device. A configuration and generation utility generates these files.

To profile with Instruction Trace, import a trace of the instructions that your application executed.
Streamline can then analyze this trace.

Related information
Profiling with Barman on page 10
Profiling with Instruction Trace on page 47

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3 Profiling with the bare-metal agent
This section explains how to profile your application with the bare-metal agent (Barman) with
different data storage modes.

3.1 Profiling with Barman
Barman consists of two C source files, barman.c and barman.h, that you build into the executable
that runs on the target device. A configuration and generation utility generates these files.

To use Barman, you must modify your existing executable to do the following:

• Initialize Barman at runtime.

• Periodically call the data collection routines that Barman provides.

• Optionally, stop the capture.

• Optionally, extract the raw data that Barman collects and provide it to Streamline for analysis.

Barman has the following features:

• It captures PMU counter values from Cortex®-A and Cortex-R class processors.

• It captures sampled PC values.

• It captures custom counters.

• It allows you to control the sample rate.

• It writes the data that it collects to memory.

• It has low data collection overhead.

Barman supports the following Arm® architectures:

• Armv7-A

• Armv7-R

• Armv7-M

• Armv8-A, both AArch32 and AArch64.

• Armv8-R

• Armv8-M

Barman is only intended for use in a development environment. Arm does not
recommend including Barman in a released product without performing a security
audit of the source code.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Related information
Data storage on page 11
Profiling with on-target RAM buffer on page 11
Profiling with System Trace Macrocell on page 19
Profiling with Instrumentation Trace Macrocell on page 22
Profiling with Embedded Trace Macrocell on page 25
Interfacing with Barman on page 29

3.2 Data storage
Barman uses a simple abstraction layer for handling the storage of collected data. Typically, the
data that Barman collects is stored in a RAM buffer on the target.

You can choose from the following data storage modes provided:

Linear RAM buffer mode
Data collection stops when the buffer is full. This mode ensures that no collected data is lost,
but no further data can be recorded.

Circular RAM buffer mode
Data collection continues after the buffer is full and the oldest data is lost as the newest data
overwrites it. This mode gives you control over when the data collection ends.

STM Interface
System Trace Macrocell (STM) data is collected on a DSTREAM device that is connected to
the target, or by another similar method. You then dump the STM trace into a host directory,
which you can import into Streamline for analysis.

ITM Interface
Instrumentation Trace Macrocell (ITM) data is collected on a DSTREAM device that is
connected to the target, or by another similar method. You then dump the ITM trace into a
host directory, which you can import into Streamline for analysis.

ETM Interface
Embedded Trace Macrocell (ETM) data is collected on a DSTREAM device that is connected
to the target, or by another similar method. You then dump the ETM trace into a host
directory, which you can import into Streamline for analysis.

Embedded Trace Macrocell (ETM) capture is a deprecated feature, and is to be
removed in Streamline version 8.4.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.3 Profiling with on-target RAM buffer
For Barman to be able to use either of the RAM buffer modes, you must provide the RAM buffer
on the target device. The RAM buffer is a dedicated, contiguous area of RAM that Barman can
write data to.

On multiprocessor systems, the RAM buffer must be at the same address for all processors. It is
your responsibility to allocate memory for the RAM buffer, either statically or dynamically.

This section describes how to collect profiling data using the RAM buffer on the target device.

3.3.1 Configuring Barman

You must configure Barman with the configuration and generation utility before you compile the
binary executable to be analyzed. Barman must then be built into the executable.

About this task
The configuration and generation utility is a wizard dialog available from the Streamline menu. The
generated header and source files, and the configuration XML file, are then saved into a folder of
your choice. The generation mechanism is also accessible from the command line.

Procedure
1. Access this utility from Streamline > Generate Barman Sources.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

2. Configure the default configuration options, such as:

• The number of processor elements.

• Whether you intend to supply executable image memory map information.

• Whether you intend to provide process or task level information (for example if you are
running an RTOS).

• The data storage mode (linear or circular RAM buffer).

Barman uses statically allocated, fixed sized headers for information such as details of the active
processors on the system, and task, thread, and process information.

Max number of mmap layout records and Max number of task information records are the
maximum amount of space in the header for storing the task, thread, and process information.
For example, if you have an RTOS with a fixed number of threads, specify the number of
threads here. Max number of mmap layout records specifies the number of address mapping
entries for mapping sections of the ELF image to addresses in memory. If you have a single ELF
image that is physically mapped to memory, leave this value as zero.

The Minimum sample period is the minimum time in nanoseconds between samples. Set this
value to be an integer multiple of the timer sampling rate. For example, if you have a fixed
timer interrupt operating at 1000Hz, but due to memory constraints you want to sample at

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

100Hz, set Minimum sample period to 10000000. This value ensures that there is at least
10ms between each sample.

To provide your own implementation of the memory functions for Barman, for example memcpy
and memset, deselect Enable builtin memory functions.

See Profiling with System Trace Macrocell for information about using the STM
Interface data storage backend.

See Profiling with Instrumentation Trace Macrocell for information about using
the ITM Interface data storage backend.

See Profiling with Embedded Trace Macrocell for information about using the
ETM Interface data storage backend.

See the gator protocol documentation in <install_directory>/sw/streamline/
protocol/gator/ for more information about pmus.xml and events.xml.

3. Select the target processor from the pre-defined list.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

4. Select the PMU counters to collect during the capture session by double-clicking on them in
the Available events list. Alternatively you can drag and drop the events into the Selected
events list. To deselect events, drag and drop them back into the Available events list.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

5. Add custom counters.

6. Select generator options.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

7. Finish.

Results
The setup process produces the following output:

• A configuration file, barman.xml, which contains the settings that were entered into the
configuration wizard, and which can be used to reproduce the same configuration later.

• barman.c. You must compile and link this file into the bare-metal executable.

• barman.h. You must include this header when calling any of the functions within the agent. It
also declares function prototypes for the functions you must implement.

• barman_in_memory_helpers.py. You can use this file as a use case script in Arm® Development
Studio. It helps you dump the contents of the in-memory capture buffer.

You need the compiler flag --gnu for armcc (Arm® Compiler 5) to compile barman.c.

Related information
Barman use case script on page 18

3.3.2 Extracting and importing data

You must extract the data from the RAM buffer when the capture is complete.

For example, you could choose to do one of the following:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

• Save the data to the file system of the target device, if one exists.

• Retrieve the data from RAM using JTAG during a debug session.

• Transfer the data over one of the available communication interfaces, for example ethernet or
USB.

After extracting the raw data, give the data file a .raw extension. You can import this file into
Streamline by clicking Import Capture File(s)… . The imported data is then available for
Streamline to analyze.

If you added a custom pmus.xml or events.xml file during the configuration and generation stage,
you must provide a copy of the same file into the .apc directory that is created for the imported
capture. The files must be named pmus.xml and events.xml and must be placed in the directory
alongside the barman.raw file for them to be detected and used.

3.3.3 Barman use case script

Streamline generates the file barman_in_memory_helpers.py with the Barman agent sources
when you select an in-memory data storage backend. You can use it as a use case script in Arm®

Development Studio to help you dump the contents of the in-memory capture buffer.

Run the script with the following command:

usecase run "barman_in_memory_helpers.py" <usecase_command>

Two use case commands are available:

get_parameters
Prints the current details of the buffer and information about how to dump it.

dump
Dumps the contents of the memory buffer in a file that you specify with the option --file
 <PATH> .

Examples
The following examples show how to use these use case commands.

• To use the get_parameters use case command, enter:

usecase run "barman_in_memory_helpers.py" get_parameters

Output:

Barman memory buffer details:
 Base address: 0x0000000000001580
 Dump length: 1787404
 Bytes written: 1785996 of 67099264 (2.7%)
To dump this buffer use the command:
 dump memory <PATH> 0x1580 +1787404
Or use the usecase command 'dump':

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

 usecase run "barman_in_memory_helpers.py" dump --file <PATH>

• To use the dump use case command, enter:

usecase run "barman_in_memory_helpers.py" dump --file barman.raw

Output:

Executing command:
 dump binary memory "barman.raw" 0x1580 +1787404
Memory successfully dumped to file barman.raw

Related information
Configuring Barman on page 12
Use case scripts

3.4 Profiling with System Trace Macrocell
This section describes the collection of profiling data using System Trace Macrocell (STM).

Further information about STM, including the Technical Reference Manual, can be found on Arm
Developer.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 52

https://developer.arm.com/documentation/101470/latest/Debugging-with-Scripts/Use-case-scripts
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace/coresight-components/system-trace-macrocell
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace/coresight-components/system-trace-macrocell

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.4.1 STM workflow

The workflow for STM involves a complex series of interactions between the applications involved.

1. Generate Barman agent code for STM using the Barman Generator Wizard dialog in
Streamline.

a. Select STM Interface as the data storage backend.

b. Specify the STM parameters for your project.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Barman reserves the channels following the channel number that you
specify. The number of channels reserved is the Maximum number of CPU
cores specified on the previous page of the wizard.

c. Complete the remainder of the wizard as for a standard bare-metal project.

2. Add the Barman agent files that the wizard generates to your project.

3. Instrument your bare-metal application code with Barman agent calls (initialization, periodic
sampling).

4. Compile and link your project.

5. Connect your target to a DSTREAM device.

6. Configure your target for collecting STM data into its RAM buffer.

7. Run the application on a target.

8. When you want to end the profiling, stop the application.

9. Dump the STM trace from the DSTREAM device into a directory.

10. Let Streamline import the trace file dump. Streamline reformats it and prepares it for analysis.

• If you are using Arm® Development Studio, you can dump the STM trace
into a directory using the following command:

trace dump <directory> STM

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

• If you do not launch your bare-metal application from within Arm
Development Studio, you must handle connecting to DSTREAM, obtaining
the trace file, and importing it into Streamline.

Related information
Configuring Barman on page 12

3.4.2 Importing an STM trace

Import STM trace files into Streamline for analysis.

Procedure
1. Click Import Capture File(s)… in the Streamline Data view.
2. Select the import file type STM Trace Files (STPv2).

3. Select the trace file to import.
4. Click Open and a new dialog box opens.
5. Enter the location of the barman.xml file that the Barman Generator Wizard produced.

This file contains information about how to find relevant data in the trace file. For example, the
channel numbers used.

6. Click OK.

Results
Streamline then reformats the data, and converts the STM trace file into a Barman agent raw file.

Related information
Import an STM trace from the command line

3.5 Profiling with Instrumentation Trace Macrocell
This section describes the collection of profiling data using Instrumentation Trace Macrocell (ITM).

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 52

https://developer.arm.com/documentation/101816/0708/Use-Streamline-from-the-command-line/Streamline-command-line-options/Import-modes

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.5.1 ITM workflow

The workflow for ITM involves a complex series of interactions between the applications involved.

1. Generate Barman agent code for ITM using the Barman Generator Wizard dialog in Streamline.

a. Select ITM Interface as the data storage backend.

Barman uses ports 16-19 for ITM.

b. Complete the remainder of the wizard as for a standard bare-metal project.

c. If you selected a Cortex®-M processor, select the number of cycles for the PC sampling
interval.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

2. Add the Barman agent files that the wizard generates to your project.

3. Instrument your bare-metal application code with Barman agent calls (initialization, periodic
sampling).

4. Compile and link your project.

5. Connect your target to a DSTREAM device.

6. Configure your target for collecting ITM data into its RAM buffer.

7. Run the application on a target.

8. When you want to end the profiling, stop the application.

9. Dump the ITM trace from the DSTREAM device into a directory.

10. Let Streamline import the trace file dump. Streamline reformats it and prepares it for analysis.

• If you are using Arm® Development Studio, you can dump the ITM trace into a
directory using the following command:

trace dump <directory> ITM

• If you do not launch your bare-metal application from within Arm Development
Studio, you must handle connecting to DSTREAM, obtaining the trace file, and
importing it into Streamline.

Related information
Configuring Barman on page 12

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.5.2 Importing an ITM trace

Import ITM trace files into Streamline for analysis.

Procedure
1. Click Import Capture File(s)… in the Streamline Data view.
2. Select the import file type ITM Trace Files.

3. Select the trace file to import.
4. Click Open and a new dialog box opens.
5. Enter the location of the barman.xml file that the Barman Generator Wizard produced.

This file contains information about how to find relevant data in the trace file. For example, the
channel numbers used.

6. Click OK.

Results
Streamline then reformats the data, and converts the ITM trace file into a Barman agent raw file.

Related information
Import an ITM trace from the command line

3.6 Profiling with Embedded Trace Macrocell
This section describes the collection of profiling data using Embedded Trace Macrocell (ETM).

Embedded Trace Macrocell (ETM) capture is a deprecated feature, and is to be
removed in Streamline version 8.4.

3.6.1 ETM workflow

The bare-metal agent can use the Data Trace feature that is provided with the Embedded Trace
Macrocell (ETM) for streaming data from an R-class device in Arm® Development Studio.

The ETM interface requires ETM 3 or ETM 4 with data address tracing enabled.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 52

https://developer.arm.com/documentation/101816/0708/Use-Streamline-from-the-command-line/Streamline-command-line-options/Import-modes

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Embedded Trace Macrocell (ETM) capture is a deprecated feature, and is to be
removed in Streamline version 8.4.

To use ETM, generate the bare-metal agent as follows:

1. Open the Barman Generator Wizard by selecting Streamline > Generate Barman sources.

2. Select ETM interface as the data storage backend.

3. Click Finish.

To trace the device in Arm Development Studio, enable data address tracing from within the DTSL
settings of your debug connection. For ETM 3, Streamline supports data-only mode. You can
enable data value tracing, however it is not required, and it slows execution and greatly increases
the trace size.

Different devices have different sets of options so this dialog might vary from the
image shown.

You must use either DSTREAM or a large in-memory trace buffer for storing the trace. If you select
System Memory Trace Buffer (ETR/TMC), configure the in-memory trace buffer in the ETR tab.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

It is technically possible to use an on chip ETB for storing the trace, but the limited size, often less
than 1KB, is not sufficient to store the capture.

For ETM4, you must enable ETM tracing for all cores you are interested in collecting data from.
On this tab, you can also enable data address tracing. If the Enable ETM Timestamps option is
available, select it.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

You can run the provided python script, barman_etm_filter_script.py, as part of the debug
configuration. The Barman Generator Wizard outputs this script alongside the generated source
files. Set it as the debug initialization debugger script in your target debug configuration in Arm
Development Studio. In the Debug Configurations dialog, click the Debugger tab, and enter the
location of the script in the Run debug initialization debugger script field. This script limits tracing
to the part of the bare-metal agent that sends the data. This limitation prevents you from getting
the instruction trace, but reducing the amount of trace data in this way leads to smaller captures,
faster imports, and the possibility to capture traces for longer. If you use ETM 4, Arm strongly
recommends that you run this script. ETM 4 imports are much slower than ETM 3 imports. Limiting
the trace data reduces the import time.

Use the following command to dump the ETM trace data:

trace dump <OUTPUT> <ETM_SOURCES>

Import this trace data into Streamline using the import button, or using the -import-etm-dt
command-line option, in the same way as for STM and ITM.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Related information
Arm Debug and Trace Architecture
Embedded Trace Macrocell Architecture Specification ETMv1.0 to ETMv3.5
Embedded Trace Macrocell Architecture Specification ETMv4.0 to ETMv4.5
Debug and Trace Services Layer (DTSL)
DTSL Configuration Editor dialog box

3.7 Interfacing with Barman
When Barman is linked into your executable code, the code must call the following functions:

1. barman_initialize to initialize Barman.

2. barman_enable_sampling to enable sampling.

3. The appropriate sample function, barman_sample_counters or
barman_sample_counters_with_program_counter, to periodically collect data.

In a multiprocessor system, a call to one of the sampling functions only reads the counters for the
processor element the code is executing on.

If you are running a preemptive kernel, RTOS, or similar, you must ensure that the thread running
a call to a sampling function is not migrated from one processor element to another during the
execution of the call.

In a multiprocessor system, if you are using periodic sampling (for example with a timer interrupt),
you must provide a mechanism to call the sampling function for each processor element. In other
words, to capture the counters of each processor element, there must be a timer interrupt or
thread that is run separately on each processor element.

3.7.1 Configuration #defines

The configuration UI configures the following defines, which are stored in barman.h. They can be
overridden at compile time as compiler parameters.

Define Description

BM_CONFIG_ENABLE_LOGGING Enables logging of messages when set to true.

BM_CONFIG_ENABLE_DEBUG_LOGGING If BM_CONFIG_ENABLE_LOGGING is true, enables debug messages
when set to true.

BM_CONFIG_ENABLE_BUILTIN_MEMFUNCS Enables the use of built-in memory functions such as
__builtin_memset and __builtin_memcpy when set to true.

BM_CONFIG_MAX_CORES The maximum number of processor elements supported.

BM_CONFIG_MAX_MMAP_LAYOUTS The maximum number of mmap layout entries to be stored in the
data header. Configure to reflect the number of sections to be
mapped for any process images.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 52

https://developer.arm.com/documentation/101470/latest/Using-Debug-Probes-with-Arm-Development-Studio/Debug-Hardware-configuration/Arm-Debug-and-Trace-Architecture
https://developer.arm.com/documentation/ihi0014/latest
https://developer.arm.com/documentation/ihi0064/latest
https://developer.arm.com/documentation/101470/latest/Debug-and-Trace-Services-Layer--DTSL-
https://developer.arm.com/documentation/101470/latest/Perspectives-and-Views/DTSL-Configuration-Editor-dialog-box

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Define Description
BM_CONFIG_MAX_TASK_INFOS The maximum number of distinct task entries that will be stored in

the data. For single-threaded applications, this number can be zero,
indicating that no information is provided.

For multi-threaded applications or RTOS, this value indicates
the maximum number of entries to store in the data header for
describing processes, threads, and tasks.

BM_CONFIG_MIN_SAMPLE_PERIOD The minimum period between samples in nanoseconds. If this value
is greater than zero, calls to sampling functions are rate limited to
ensure that there is a minimum interval of nanoseconds between
samples.

BARMAN_DISABLED Disables the Barman entry points at compile time when defined to
a nonzero value. Use to conditionally disable calls to Barman, for
example in production code.

3.7.2 Annotation #defines

Color macros to use for annotations.

Define Description

BM_ANNOTATE_COLOR_<color_name> Named annotation color, where <color_name> is one of the
following colors:

RED

BLUE

GREEN

PURPLE

YELLOW

CYAN

WHITE

LTGRAY

DKGRAY

BLACK

BM_ANNOTATE_COLOR_CYCLIC Annotation color that cycles through a predefined set.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Define Description
BM_ANNOTATE_COLOR_RGB(<R>, <G>,) Create an annotation color from its components, where <R>, <G>,

and are defined as follows:

R

The red component, where 0 ≤ R ≤ 255.

B

The blue component, where 0 ≤ B ≤ 255.

G

The green component, where 0 ≤ G ≤ 255.

3.7.3 Barman public API

Use the bare-metal agent by calling the following public API functions.

barman_initialize
The prototype of barman_initialize varies depending on the datastore chosen.

When using the linear or circular RAM buffer:

BM_NONNULL((1, 3, 4))
bm_bool barman_initialize(bm_uint8 * buffer, bm_uintptr buffer_length,

When using STM:

BM_NONNULL((2, 3, 4))
bm_bool barman_initialize_with_stm_interface(void *
 stm_configuration_registers, void * stm_extended_stimulus_ports,

When using ITM on Arm® M-profile architectures:

BM_NONNULL((1, 2))
bm_bool barman_initialize_with_itm_interface(

When using ITM on Arm A- or R-profile architectures:

BM_NONNULL((1, 2, 3))
bm_bool barman_initialize_with_itm_interface(void * itm_registers,

The remaining parameters for each datastore are the same:

 const char * target_name,
 const struct bm_protocol_clock_info * clock_info,
#if BM_CONFIG_MAX_TASK_INFOS > 0
 bm_uint32 num_task_entries,
 const struct bm_protocol_task_info * task_entries,
#endif
#if BM_CONFIG_MAX_MMAP_LAYOUTS > 0
 bm_uint32 num_mmap_entries,
 const struct bm_protocol_mmap_layout * mmap_entries,

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

#endif
 bm_uint32 timer_sample_rate);

Description Initialize Barman.

Parameters buffer

Pointer to in memory buffer.

buffer_length

Length of the in memory buffer.

stm_configuration_registers

Base address of the STM configuration registers. This
parameter can be NULL if it is initialized elsewhere, for
example by the debugger.

stm_extended_stimulus_ports

Base address of the STM extended stimulus ports.

itm_registers

Base address of the ITM registers.

datastore_config

Pointer to the configuration to pass to
barman_ext_datastore_initialize.

target_name

Name of the target device.

clock_info

Information about the monotonic clock used for
timestamps.

num_task_entries

Length of the array of task entries in
task_entries. If this value is greater than
BM_CONFIG_MAX_TASK_INFOS, it is truncated.

task_entries

The task information descriptors. Can be NULL.

num_mmap_entries

The length of the array of mmap entries in
mmap_entries. If this value is greater than
BM_CONFIG_MAX_MMAP_LAYOUT, it is truncated.

mmap_entries

The mmap image layout descriptors. Can be NULL.

timer_sample_rate

Timer-based sampling rate in Hertz. Zero indicates
no timer-based sampling (assumes a maximum 4GHz
sample rate). This value is informative only, and is used
for reporting the timer frequency in the Streamline UI.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

If BM_CONFIG_MAX_TASK_INFOS ≤ 0, num_task_entries and task_entries are
not present.

If BM_CONFIG_MAX_MMAP_LAYOUTS ≤ 0, num_mmap_entries and mmap_entries are
not present.

barman_enable_sampling
void barman_enable_sampling(void);

Description Enables sampling. Call when all PMUs are enabled and the data
store is configured.

barman_disable_sampling
void barman_disable_sampling(void);

Description Disables sampling without reconfiguring the PMU. To resume
sampling, call barman_enable_sampling.

barman_sample_counters
void barman_sample_counters(bm_bool sample_return_address);

Description Reads the configured PMU counters for the current processing
element and inserts them into the data store. Can also insert
a Program Counter record using the return address as the PC
sample.

Parameter sample_return_address

BM_TRUE to sample the return address as PC,
BM_FALSE to ignore.

• The Call Paths view displays the PC values. This view is blank
if the application does not call barman_sample_counters
with sample_return_address == BM_TRUE, or
barman_sample_counters_with_program_counter with pc != BM_NULL.

• Application code that is not doing periodic sampling typically calls this
function with sample_return_address == BM_TRUE.

• This function must be run on the processing element for the PMU that
it intends to sample from. It must not be migrated to another processing
element for the duration of the call. This is necessary as it needs to
program the per processing element PMU registers.

barman_sample_counters_with_program_counter
void barman_sample_counters_with_program_counter(const void * pc);

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Description Reads the configured PMU counters for the current processing
element and inserts them into the data store.

Parameter pc

The PC value to record. The PC entry is not inserted if
pc == BM_NULL.

• The Call Paths view displays the PC values. This view is blank if the
application does not call barman_sample_counters_with_program_counter
with pc != BM_NULL, or barman_sample_counters with
sample_return_address == BM_TRUE.

• A periodic interrupt handler typically calls this function, with pc ==
 <the_exception_return_address>.

• This function must be run on the processing element for the PMU that
it intends to sample from. It must not be migrated to another processing
element for the duration of the call. This is necessary as it needs to
program the per processing element PMU registers.

The following functions are available if BM_CONFIG_MAX_TASK_INFOS > 0 :

barman_add_task_record
bm_bool barman_add_task_record(bm_uint64 timestamp, const struct
 bm_protocol_task_info * task_entry);

Description Adds a task information record.

Parameters timestamp

The timestamp at which the record is inserted.

task_entry

The new task entry.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

barman_record_task_switch
void barman_record_task_switch(enum bm_task_switch_reason reason);

Description Records that a task switch has occurred. Call this function
after the new task is made the current task, so a call to
barman_ext_get_current_task_id returns the new task
ID. For example, insert it into the scheduler of an RTOS just
after the new task is selected to record the task switch.

Parameter reason

Reason for the task switch.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Call after the task switch has occurred so that bm_ext_get_current_task
returns the task_id of the switched to task.

The following function is available if BM_CONFIG_MAX_MMAP_LAYOUTS > 0:

barman_add_mmap_record
bm_bool barman_add_mmap_record(bm_uint64 timestamp, const struct
 bm_protocol_mmap_layout * mmap_entry);

Description Adds a mmap information record.

Parameters timestamp

The timestamp at which the record is inserted.

mmap_entry

The new mmap entry.

Return value BM_TRUE

On success.

BM_FALSE

On failure.

Data types associated with the public API functions:

bm_protocol_clock_info
struct bm_protocol_clock_info
{
 bm_uint64 timestamp_base;
 bm_uint64 timestamp_multiplier;
 bm_uint64 timestamp_divisor;
 bm_uint64 unix_base_ns;
};

Description Defines information about the monotonic clock used in the
trace. Timestamp information is stored in arbitrary units within
samples. Arbitrary units reduce the overhead of making the
trace by removing the need to transform the timestamp into
nanoseconds at the point the sample is recorded. The host
expects timestamps to be in nanoseconds. The arbitrary
timestamp information is transformed to nanoseconds
according to the following formula:

bm_uint64 nanoseconds = (((timestamp -
 timestamp_base) * timestamp_multiplier) /
 timestamp_divisor;

Therefore for a clock that already returns time in nanoseconds,
timestamp_multiplier and timestamp_divisor should
be configured as 1 and 1. If the clock counts in microseconds
then the multiplier and divisor should be set to 1000 and 1. If
the clock counts at a rate of n Hertz, then the multiplier should
be set to 1000000000 and the divisor to n.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Members timestamp_base

The base value of the timestamp so that this value is
zero in the trace.

timestamp_multiplier

The clock rate ratio multiplier.

timestamp_divisor

The clock rate ratio divisor

unix_base_ns

The Unix timestamp base value, in nanoseconds, so a
timestamp_base maps to a unix_base Unix time
value.

bm_protocol_task_info
struct bm_protocol_task_info
{
 bm_task_id_t task_id;
 const char * task_name;
};

Description A task information record. Describes information about a unique
task within the system.

Members task_id

The task ID.

task_name

The name of the task.

bm_protocol_mmap_layout
struct bm_protocol_mmap_layout
{
#if BM_CONFIG_MAX_TASK_INFOS > 0
 bm_task_id_t task_id;
#endif
 bm_uintptr base_address;
 bm_uintptr length;
 bm_uintptr image_offset;
 const char * image_name;
};

Description An MMAP layout record. Describes the position of an
executable image (or section thereof) in memory, allowing the
host to map PC values to the appropriate executable image.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Members task_id

The task ID to associate with the map.

base_address

The base address of the image, or image section.

length

The length of the image, or image section.

image_offset

The image section offset.

image_name

The name of the image.

bm_task_switch_reason
enum bm_task_switch_reason
{
 BM_TASK_SWITCH_REASON_PREEMPTED = 0,
 BM_TASK_SWITCH_REASON_WAIT = 1
};

Description Reason for a task switch.

Members BM_TASK_SWITCH_REASON_PREEMPTED

Thread is preempted.

BM_TASK_SWITCH_REASON_WAIT

Thread is blocked waiting, for example on I/O.

WFI and WFE event handling functions:

barman_wfi
void barman_wfi(void);

Description Wraps WFI instruction and sends events before and after the
WFI to log the time in WFI. This function is safe to use in place
of the usual WFI asm instruction, as it degenerates to just a
WFI instruction when Barman is disabled.

barman_wfe
void barman_wfe(void);

Description Wraps WFE instruction and sends events before and after the
WFE to log the time in WFE. This function is safe to use in
place of the usual WFE asm instruction as it degenerates to just
a WFE instruction when Barman is disabled.

barman_before_idle
void barman_before_idle(void);

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Description Call before a WFI or WFE, or other similar halting event, to log
entry into the paused state. Can be used in situations where
barman_wfi() or barman_wfe() is not suitable.

• You must use barman_before_idle in a pair with barman_after_idle().

• Using barman_wfi() or barman_wfe() is usually preferred, as it takes care
of calling the before and after functions.

barman_after_idle
void barman_after_idle(void);

Description Call after a WFI or WFE, or other similar halting event, to log
exit from the paused state. Can be used in situations where
barman_wfi() or barman_wfe() is not suitable.

• You must use barman_after_idle in a pair with barman_before_idle().

• Using barman_wfi() or barman_wfe() is usually preferred, as it takes care
of calling the before and after functions.

Functions for recording textual annotations:

barman_annotate_channel
void barman_annotate_channel(bm_uint32 channel, bm_uint32 color, const char *
 string)

Description Adds a string annotation with a display color, and assigns it to a
channel.

Parameters channel

The channel number.

color

The annotation color from bm_annotation_colors .

text

The annotation text, or null to end the previous
annotation.

Annotation channels and groups are used to organize annotations within the
threads and processes section of the Timeline view. Each annotation channel
appears in its own row under the thread. Channels can also be grouped
and displayed under a group name, using the barman_annotate_name_group
function.

barman_annotate_name_channel
void barman_annotate_name_channel(bm_uint32 channel, bm_uint32 group, const
 char * name)

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Description Defines a channel and attaches it to an existing group.

Parameters channel

The channel number.

group

The group number.

name

The name of the channel.

The channel number must be unique within the task.

barman_annotate_name_group
void barman_annotate_name_group(bm_uint32 group, const char * name)

Description Defines an annotation group.

Parameters group

The group number.

name

The name of the group.

The group identifier, group, must be unique within the task.

barman_annotate_marker
void barman_annotate_marker(bm_uint32 color, const char * text)

Description Adds a bookmark with a string and a color to the Timeline view
and Log view. The string is displayed in the Timeline view when
you hover over the bookmark, and in the Message column in
the Log view.

Parameters color

The marker color from bm_annotation_colors .

text

The marker text, or null for no text.

bm_annotation_colors

Description Color macros for annotations. See Annotation #defines .

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.7.4 External functions to implement

You must provide the following external functions.

barman_ext_get_timestamp
extern bm_uint64 barman_ext_get_timestamp(void);

Description Reads the current sample timestamp value, which must
be provided for the time at the point of the call. The timer
must provide monotonically incrementing values from an
implementation defined start point. The counter must not
overflow during the period that it is used. The counter is in
arbitrary units. The mechanism for converting those units to
nanoseconds is described as part of the protocol data header.

Return value The timestamp value in arbitrary units.

The following functions have weak linkage implementations that can be overridden if necessary:

barman_ext_disable_interrupts_local
extern bm_uintptr barman_ext_disable_interrupts_local(void);

Description Disables interrupts on the local processor only. Used to
allow atomic accesses to certain resources, for example PMU
counters.

Return value The current interrupt enablement status value.
This value must be preserved and passed to
barman_ext_enable_interrupts_local to restore the
previous state.

A weak implementation of this function is provided that modifies DAIF on
AArch64, or CPSR on AArch32.

barman_ext_enable_interrupts_local
extern void barman_ext_enable_interrupts_local(bm_uintptr previous_state);

Description Enables interrupts on the local processor only.

Parameter previous_state

The value that was previously returned from
barman_ext_disable_interrupts_local.

A weak implementation of this function is provided that modifies DAIF on
AArch64, or CPSR on AArch32.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

The following functions must be defined if BM_CONFIG_MAX_CORES > 1:

barman_ext_map_multiprocessor_affinity_to_core_no
extern bm_uint32 barman_ext_map_multiprocessor_affinity_to_core_no(bm_uintptr
 mpidr);

Description Given the MPIDR register, returns a unique processor number.
The implementation must return a value between 0 and N,
where N is the maximum number of processors in the system.
For any valid permutation of the arguments, a unique value
must be returned. This value must not change between
successive calls to this function for the same argument values.

//
// Example implementation where processors
 are arranged as follows:
//
// aff2 | aff1 | aff0 | cpuno
// -----+------+------+------
// 0 | 0 | 0 | 0
// 0 | 0 | 1 | 1
// 0 | 0 | 2 | 2
// 0 | 0 | 3 | 3
// 0 | 1 | 0 | 4
// 0 | 1 | 1 | 5
//
bm_uint32
 barman_ext_map_multiprocessor_affinity_to_core_no(bm_uintptr
 mpidr)
{
 return (mpidr & 0x03) + ((mpidr >> 6) &
 0x4);
}

Parameter mpidr

The value of the MPIDR register.

Return value The processor number.

This function only needs defining when BM_CONFIG_MAX_CORES > 1.

barman_ext_map_multiprocessor_affinity_to_cluster_no
extern bm_uint32
 barman_ext_map_multiprocessor_affinity_to_cluster_no(bm_uintptr mpidr);

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Description Given the MPIDR register, return the appropriate cluster
number. Cluster IDs should be numbered from 0 to N, where N
is the number of clusters in the system.

//
// Example implementation which is
 compatible with the example implementation
 of
//
 barman_ext_map_multiprocessor_affinity_to_core_no
 given above.
//
bm_uint32
 barman_ext_map_multiprocessor_affinity_to_cluster_no(bm_uintptr
 mpidr)
{
 return ((mpidr >> 8) & 0x1);
}

Parameter mpidr

The value of the MPIDR register.

Return value The cluster number.

This function only needs defining when BM_CONFIG_MAX_CORES > 1.

The following function must be defined if BM_CONFIG_MAX_TASK_INFOS > 0:

barman_ext_get_current_task_id
extern bm_task_id_t barman_ext_get_current_task_id(void);

Description Returns the current task ID.

The following functions must be defined if BM_CONFIG_ENABLE_LOGGING != 0:

barman_ext_log_info
void barman_ext_log_info(const char * message, ...);

Description Prints an info message.

Parameter message

barman_ext_log_warning
void barman_ext_log_warning(const char * message, ...);

Description Prints a warning message.

Parameter message

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

barman_ext_log_error
void barman_ext_log_error(const char * message, ...);

Description Prints an error message.

Parameter message

The following function must be defined if BM_CONFIG_ENABLE_DEBUG_LOGGING != 0:

barman_ext_log_debug
void barman_ext_log_debug(const char * message, ...);

Description Prints a debug message.

Parameter message

3.8 Custom counters
You can configure one custom chart, with one or more series, in the configuration wizard.

3.8.1 Configuring custom counters

You can configure chart properties for custom counters.

The following chart properties can be configured:

Name
Human readable name for the chart.

Series Composition
Defines how to arrange series on the chart (stacked, overlay, or logarithmic).

Rendering Type
Defines how to render series on the chart (filled, line, or bar).

Per Processor
Indicates whether the data in the chart is per processor.

Average Selection
Sets whether the cross-section marker in Streamline displays average values.

Average Cores
Sets whether Streamline averages the values of multiple cores when viewing the aggregate
data of a per processor chart.

Percentage
Sets whether to display data as a percentage of the maximum value in the chart.

The following series properties can be configured:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Name
Human readable name for the series.

Units
Defines the unit type to display in Streamline.

Sampled
When set to true, the value for this counter is sampled along with the PMU counters. When
false, you must call a function to update the counter value.

Multiplier
Number to multiply by for fixed-point math. As the data sent from the agent is int64, it must
be scaled. For example, the value 123 with a multiplier of 0.01 can represent the value 1.23.

Class
Specifies the nature of the data that is fed into the chart as follows:

delta
Used for values that increment or are accumulated over time, such as hardware
performance counters. The exact time when the data occurs is unknown and therefore
the data is interpolated between timestamps.

incident
The same as delta, except the exact time is known so no interpolation is calculated.
Used for counters such as software trace.

absolute
Used for singular or impulse values, such as system memory used.

Display
The display value determines how to calculate the data when zooming out for each time bin
as follows:

accumulate
Sum up the data (valid only for delta and incident class counters).

hertz
Does the same as accumulate then normalizes the value to one second (valid only for
delta and incident class counters).

minimum
Display the smallest value encountered (valid only for absolute class counters).

maximum
Display the largest value encountered (valid only for absolute class counters).

average
Display the average (valid only for absolute class counters).

Color
The color to display the series in. If not set, Streamline selects a color.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

Description
Human readable description for the series. This description becomes the tooltip when
hovering over the series in Streamline.

3.8.2 Sampled and nonsampled counters

Sampled counters are polled when the PMU counter values are read.

For each sampled custom counter, a function prototype is generated of the following form:

extern bm_bool barman_cc_<chart_name>_<series_name>_sample_now(bm_uint64 *
 value_out);

For example:

extern bm_bool barman_cc_interrupts_fiq_sample_now(bm_uint64 * value_out);

You must implement this function to set the value of the uint64 at *value_out to the value of the
counter, then return BM_TRUE. If the counter value cannot be sampled, for example due to another
thread accessing the hardware, the function can return BM_FALSE and be skipped.

You are responsible for writing nonsampled counters to the capture. For each nonsampled series,
the following two functions are declared:

bm_bool barman_cc_<chart_name>_<series_name>_update_value(bm_uint64 timestamp,
 bm_uint32 core, bm_uint64 value);
bm_bool barman_cc_<chart_name>_<series_name>_update_value_now(bm_uint64 value);

For example:

bm_bool barman_cc_interrupts_fiq_update_value(bm_uint64 timestamp, bm_uint32 core,
 bm_uint64 value);
bm_bool barman_cc_interrupts_fiq_update_value_now(bm_uint64 value);

The second function is a shorthand for the first that passes the current timestamp and core
number to the appropriate arguments.

When you call these functions, the value for the counter is stored to the capture.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with the bare-metal agent

3.9 Using the bare-metal generation mechanism from the
command line

You can pass the configured, and optionally modified, XML file produced in the bare-metal
configuration process to the command line. The generator then outputs the source and header
files.

Enter streamline -generate-bare-metal-agent <options>

The following command-line arguments are available:

-c, -config <config.xml>
The configuration file to use to generate the bare-metal agent.

-p, -pmus <pmus.xml>
Specify the path to your pmus.xml file.

-e, -events <events.xml>
Specify the path to your events.xml file.

-o, -output <output_path>
Specify the output path to where the generated files will be written.

Related information
Streamline command-line options

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 52

https://developer.arm.com/documentation/101816/0706/Use-Streamline-from-the-command-line/Streamline-command-line-options

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with Instruction Trace

4 Profiling with Instruction Trace
This section describes how to import an instruction trace, and restrictions related to this task.

4.1 Importing instruction trace
Import a trace of the instructions that your application executed for Streamline to analyze. The
supported forms of instruction trace are PTM 1.0-1.1, ETM 3.0-3.5, and ETM 4.0-4.2.

Before you begin
1. Collect the instruction trace for your application using Arm® Debugger. See the Arm

Development Studio User Guide for instructions.

2. Export the instruction trace using the following command:

trace dump <output> <instruction_trace_sources>

<instruction_trace_sources> must only specify valid ETM sources. For example,
CSETM_APP_0.

Procedure
1. Click Import Capture File(s)… .
2. Navigate to the directory that contains the trace dump.
3. Select any of the files in the directory.

A wizard opens, enabling you to choose what to do with the import.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 52

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-trace-for-bare-metal-or-Linux-kernel-targets
https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-trace-for-bare-metal-or-Linux-kernel-targets

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with Instruction Trace

4. Select Instruction Trace.

5. Select the sources to import, and specify the timing information for them.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with Instruction Trace

6. Select the executable images that were run.

Streamline uses these files to decode the trace.
7. Configure parameters for the capture that Streamline generates from the trace.

Results
Streamline reads the instruction trace and generates a capture from it. The generated capture
contains the following:

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with Instruction Trace

• Charts that give approximate information about branching, instructions, load/stores, and
exceptions.

• The Call Paths view and Functions view that Streamline derives from the instruction trace.

• Optionally, the Exceptions view, which shows the exceptions that were taken.

Related information
Configuring trace for bare-metal or Linux kernel targets
Capturing trace data using the command-line debugger

4.2 Instruction trace notes and restrictions
There are some restrictions to instruction traces.

• Dynamic compilation and code modification is not supported. If the modification happens
before the code is traced, and you supply an ELF image containing the executable code after
modification, Streamline can support one-off runtime code modification. You can use the Arm®

Development Studio memory dump command, specifying the ELF output format.

• You must specify whether the imported files are M-profile, otherwise interrupts are not shown
correctly. This restriction does not usually affect the import of the trace, just the output.

• The Call Paths view tracks function entry and exit instructions, and attempts to track state
across interrupts even when simple context switching is used. This functionality might not be
compatible with a more complex OS.

Streamline generates timing information from the trace in one of the following ways:

• Using timestamps, if they are included in all the relevant trace streams.

◦ Use this method if it is available, especially if you are importing streams from more than one
processing element.

◦ Timestamps give a near-accurate representation of the relative times of different events.
The accuracy of the timing information depends on the relative frequency of timestamp
packets within each trace stream.

◦ Timestamps allow showing periods of inactivity such as during WFE or WFI.

◦ Timestamps are usually clocked using a separate clock to the processor. Arm recommends
that you enter the duration of the capture rather than the clock frequency for the
timestamp clock, unless you know the exact frequency.

• Using cycle counts, if cycle-accurate mode is enabled for all relevant trace streams.

◦ Use this mode if timestamps are not available as it gives better relative timing information
between different instructions in the trace.

◦ Timing information is not synchronized across different processing elements.

◦ Unless the cycle counter increments during WFE or WFI instructions, it is not possible to
see how long the processor waited for.

◦ Systems using dynamic frequency scaling are not clocked correctly because the cycle count
for individual instructions does not change with the clock frequency.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 52

https://developer.arm.com/documentation/101470/latest/Configuring-debug-connections-in-Arm-Debugger/Configuring-trace-for-bare-metal-or-Linux-kernel-targets
https://developer.arm.com/documentation/101470/latest/Running-Arm-Debugger-from-the-operating-system-command-line-or-from-a-script/Capturing-trace-data-using-the-command-line-debugger

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00

Profiling with Instruction Trace

• Using the instruction counter.

◦ The only mode that is universally available.

◦ This mode has all the same limitations as the cycle counter mode.

◦ This mode cannot display relative timing information for different instructions.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 52

Arm® Streamline Target Setup Guide for Bare-metal
Applications

Document ID: 101815_0800_00_en
Issue: 00
Examples

5 Examples
This section contains information about the bare-metal examples that are supplied with Streamline.

5.1 Examples using Barman
Streamline includes several examples of how to use Barman.

You can find these examples in <install_directory>/sw/streamline/examples/barman.

Streamline_bare_metal_ARMv8_AArch64
A demonstration of how to use Barman with AArch64, from configuring the bare-metal agent
to analyzing the results.

Streamline_bare_metal_Cortex_R5
A demonstration of how to use Barman with Arm® Cortex®-R5, from configuring the bare-
metal agent to analyzing the results.

Streamline_bare_metal_M_profile
A demonstration of how to use Barman with Armv7-M and Armv8-M, from configuring the
bare-metal agent to analyzing the results.

u-boot-instrumentation
An example of how to modify U-Boot to allow it to be profiled using Barman.

RTX5_Cortex-A9_Blinky_Streamline A demonstration of how to use Barman with the CMSIS
RTX5 RTOS on a Cortex-A9 processor, collection of profiling information from RAM with
DSTREAM, and analysis in Streamline.

RTX5_Cortex-M33_Blinky_Streamline A demonstration of how to use Barman with the CMSIS
RTX5 RTOS on a Cortex-M33 processor, collection of profiling information via ITM with DSTREAM,
and analysis in Streamline.

Copyright © 2021–2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 52

	Arm® Streamline Target Setup Guide for Bare-metal Applications
	Contents
	1 Introduction
	1.1 Conventions
	1.2 Other information

	2 Bare-metal Support
	2.1 Bare-metal support overview

	3 Profiling with the bare-metal agent
	3.1 Profiling with Barman
	3.2 Data storage
	3.3 Profiling with on-target RAM buffer
	3.3.1 Configuring Barman
	3.3.2 Extracting and importing data
	3.3.3 Barman use case script

	3.4 Profiling with System Trace Macrocell
	3.4.1 STM workflow
	3.4.2 Importing an STM trace

	3.5 Profiling with Instrumentation Trace Macrocell
	3.5.1 ITM workflow
	3.5.2 Importing an ITM trace

	3.6 Profiling with Embedded Trace Macrocell
	3.6.1 ETM workflow

	3.7 Interfacing with Barman
	3.7.1 Configuration #defines
	3.7.2 Annotation #defines
	3.7.3 Barman public API
	3.7.4 External functions to implement

	3.8 Custom counters
	3.8.1 Configuring custom counters
	3.8.2 Sampled and nonsampled counters

	3.9 Using the bare-metal generation mechanism from the command line

	4 Profiling with Instruction Trace
	4.1 Importing instruction trace
	4.2 Instruction trace notes and restrictions

	5 Examples
	5.1 Examples using Barman

