

Helium Programmer's Guide:
Introduction to Helium
Non-Confidential Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

102102

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 34

Helium Programmer's Guide: Introduction to Helium

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 01 March 2020 Non-confidential First release

1.1 01 June 2020 Non-confidential Updated images

1.2 14 June 2021 Non-confidential Updated text and images

1.3 3 February 2022 Non-Confidential Added chapter to the Vector instruction example

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 34

document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Web Address

www.arm.com

https://developer.arm.com/docs
https://developer.arm.com/docs/dui0491/h/language-extensions/restrict

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 34

Contents

1 Overview .. 6

1.1 Before you begin .. 6

2 What is Helium? .. 7

2.1 Data processing methodologies .. 7

2.2 Single Instruction Single Data ... 7

2.3 Single Instruction Multiple Data ... 8

2.4 Helium and Neon comparison ... 9

2.5 Applications .. 9

3 Helium registers ... 11

3.1 Registers, vectors, lanes and elements ... 11

3.2 Data types ... 12

3.3 Predication register ... 13

4 Helium instructions ... 14

4.1 Helium instruction naming rules .. 14

4.2 Helium instruction set .. 15

4.3 Different types of load and store ... 15

4.4 Different types of math operations .. 16

5 Predication ... 17

5.1 Examples of predication .. 17

6 Vector instruction example: VMLA .. 23

6.1 Vector Multiply Accumulate ... 23

6.2 Implementation using intrinsics.. 24

6.3 How this can be done using C code ... 26

6.4 Tail-predication .. 27

7 Vector instruction example: VMLADAVA ... 29

8 Check your knowledge ... 32

9 Related information .. 33

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 34

10 Next steps .. 34

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 34

1 Overview
This guide introduces Arm Helium technology, which is the M-profile Vector Extension (MVE) for the
Arm Cortex-M processor series. The Arm Cortex-M55 processor is the first Arm processor to
support this technology. Helium is an extension of the Armv8.1-M architecture and delivers a
significant performance uplift for Machine Learning (ML) and Digital Signal Processing (DSP)
applications for small, embedded devices. Helium technology provides optimized performance by
using Single Instruction Multiple Data (SIMD) to perform the same operation simultaneously on
multiple data items. This can be particularly effective in DSP and ML.

 At the end of this guide:

• You will be familiar with Helium and the differences it has with Neon

• Helium registers

• Predication in Helium

1.1 Before you begin

You should have familiarity with the Arm architecture, see our Introducing the Arm architecture for
more information.

https://developer.arm.com/docs/ddi0553/latest

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 34

2 What is Helium?
Arm Helium technology is the M-Profile Vector Extension (MVE) for the Arm Cortex-M processor
series. Helium is an extension of the Armv8.1-M architecture and delivers a significant performance
increase for Machine Learning (ML) and Digital Signal Processing (DSP) applications.

Helium lets you optimize performance by using Single Instruction Multiple Data (SIMD) to perform
the same operation simultaneously on multiple data items. The Helium instructions are designed for
Digital Signal Processing (DSP) and Machine Learning (ML) applications.

2.1 Data processing methodologies

A common technique to accelerate workloads that process many data elements at the same time with
one instruction is to exploit opportunities for parallelism that are often available. This data processing
methodology is called Single-Instruction Multiple-Data (SIMD). Processing elements sequentially and
one at a time is called Single Instruction Single-Data (SISD). In this section of the guide, we will discuss
both operating on multiple data elements at the same time reduces the total time that is required to
process all data elements. A reduced compute time means that results are available at a higher
throughput and lower latency, and that the CPU can go in a low power state early to save energy.
With Armv8.1-M, the SIMD data processing methodology is supported with the Arm Helium
technology.

2.2 Single Instruction Single Data

Most Arm instructions are Single Instruction Single Data (SISD). Each instruction performs its
specified operation on a single data item. Processing multiple data items therefore requires multiple
instructions.

The following example shows how to perform four addition operations. You can see that this requires
four instructions to add values from four pairs of registers:
ADD r0, r0, r5

ADD r1, r1, r6

ADD r2, r2, r7

ADD r3, r3, r8

This method is slow, and it can be difficult to see how different registers are related.

If the values that you are dealing with, are smaller than the maximum register size, the extra potential
bandwidth is wasted with SISD instructions. For example, when adding 8-bit values together, each 8-
bit value must be loaded into a separate 32-bit register. Performing many individual operations on
small data items does not use machine resources efficiently.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 34

2.3 Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) instructions perform the same operation for multiple data
items. These data items are packed as separate lanes in a larger register.

For example, the following instruction adds four pairs of 32-bit values together. However, in this case,
the values are packed into separate lanes in two pairs of 128-bit registers: the q registers. Each lane in
the first source register is then added to the corresponding lane in the second source register, before
being stored in the same lane in the destination register. You can see this in the following code:
VADD.I32 q2, q1, q0

 // This operation adds two 32-bit (word) lanes, q0 and q1,

// and stores the result in q2.

// Each of the four 32-bit lanes in each register is added separately.

 // There are no carries between the lanes.

This single instruction operates on all data values in the large register, as you can see here:

Being able to specify parallel operations in a single instruction like this allows the processor to do the
calculations simultaneously, which increases performance and throughput. The preceding diagram
shows 128-bit registers, with each register holding four 32-bit values. Operations on data elements
with different data sizes are possible for Helium registers. We explain this in more detail in Helium
registers.

The addition operations that are shown in the diagram are independent for each lane. For example,
any overflow or carry from lane 0 does not affect lane 1. Lane 1 is an entirely separate calculation.

Media processors, like audio and video devices, often split each full data register into multiple
registers and perform computations on the registers in parallel. If the processing for the data sets is
simple and repeated many times, SIMD can give considerable performance improvements. It is
beneficial for digital signal processing, and multimedia algorithms, for example:

• Audio, video, and image-processing codecs

• 2D graphics based on rectangular blocks of pixels

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 34

• 3D graphics

• Color-space conversion

• Physics simulations

• Machine Learning

o Convolutions

o Clustering

2.4 Helium and Neon comparison

One of their main differences between Helium and Neon is that Helium is the extension that is used
for the Armv8.1-M architecture. Neon is the extension that is used for the Armv7-A architecture.

The similarities between Helium and Neon are:

• Both use 128-bit vectors.

• Both reuse floating point registers.

• Both provide instructions to perform vector add and vector multiply.

The differences between Helium and Neon are:

• Neon vectors can be 64 or 128bit

• Helium includes eight vector registers in Helium and Neon includes 16 vector registers.

• Helium includes both regular registers and vector registers. This allows Helium to reduce the
register pressure.

• Helium includes features like loop predication and lane predication that Neon does not include.

2.5 Applications

Two of the main applications for Helium are Digital Signal Processing (DSP) and Machine Learning
(ML). Helium offers significant performance increase in these areas.

Helium provides intrinsics targeted for DSP instructions, for example:

• vld2q, which loads blocks of data from memory and writes them to the destination registers

• vrmlsldavhaq is useful for the multiplication of complex numbers, which is often used in DSP

ML is a subset of Artificial Intelligence (AI) that provides systems the ability to automatically learn and
improve from experience without being explicitly programmed. Helium helps to boost Matrix
Multiplication operations, which are the foundation of Convolutional Neural Networks or Classical
based Machine Learning kernels.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 34

Applications that can be greatly accelerated by Helium are Fast Fourier Transform (FFT) and
Complex Dot Product as there are specific instructions which help implement these calculations.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 34

3 Helium registers

3.1 Registers, vectors, lanes and elements

The Helium registers contain vectors of elements of the same data type. The same element position in
the input and output registers is referred to as a lane.

Usually each Helium instruction results in n operations, where n is the number of lanes that the input
vectors are divided into. Each operation is contained within the lane.

The number of lanes in a Helium vector depends on the size of the vector and the data elements in the
vector.

A 128-bit Helium vector can contain the following element sizes:

• Two 64-bit integers

• Four 32-bit integers or single precision float

• Eight 16-bit integers or half precision float

• Sixteen 8-bit integers

Elements in a vector are ordered from the least significant bit to the most significant bit. That is,
element 0 uses the least significant bits of the register. Let’s look at an example of a Helium
instruction. The instruction VADD.16 q0, q0, q5 performs a parallel addition of eight lanes of

16-bit (8 x 16 = 128) integer elements from vectors in q5 and q0, storing the result in q0. This can be

seen in the following diagram:

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 34

Helium instructions use a mix of vector and scalar operands, including:

• Vector by vector to vector

• Vector by scalar to vector

• Vector by vector to scalar

For example, multiplication, this can be seen in Vector instruction example. You can find more
examples in the Armv8-M Architecture Reference Manual.

3.2 Data types

When programming for Helium in C or C++, different data types let you declare vectors of different
sizes. To use these data types, we must add the library arm_mve.h to the program. This header file

provides data types that look like the following:

• Sixteen 8-bit elements = int8x16, uint8x16

• Eight 16-bit elements = int16x8, uint16x8, float16x8

• Four 32-bit elements = int32x4, uint32x4, float32x4

• Two 64-bit elements = int64x2, uint64x2

https://developer.arm.com/docs/ddi0553/latest

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 34

3.3 Predication register

Predication lets you selectively perform mathematic operations on lanes in a vector. The predication
mask specifies which lanes are processed, by setting bits to true (1) or false (0). The predication status
and control register, VPR.P0, contains this predication mask. We explain this in Helium instructions.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 34

4 Helium instructions
This section provides a brief overview of some of the instructions in Helium.

Helium registers discussed the different lane configurations that can be used in Helium registers.
Helium instructions cannot execute correctly unless they are aware of the configuration of the data
within the vector register. This data is encoded within the instruction itself. Helium instructions
provides 20 scalar instructions and 130 vector instructions.

4.1 Helium instruction naming rules

The names of Helium instructions follow a common pattern. This pattern lets you determine
information about the instruction operation from its name.

The following syntax shows the common pattern:

Note: Some of the letters are overloaded, but their position makes the meaning unambiguous.
V[<mod>]<op>[<shape>][<extra>][<cond>][<.dt>] [<dest>, <src>…]

V

 Short for vector. Present on all the assembly instructions

mod

 Short for modifier, for example None, Q (sat), H (halving), and D (doubling)

op

 Short for operation, for example, ADD, MUL, MIN

shape

 Indicates an extension, for example, None, L (long), or N (narrow)

extra

 Indicates an instruction-specific modifier, for example, None, T (top), B (bottom), V (across)

cond

 Short for conditional which is used for predication in Helium

.dt

 Short for data type, for example, Float (F), Integer (I), Signed (S), Unsigned (U), 8, 16, 32 or 64.
For

 some instructions, only the size is required, for others both a type and a size are needed.

dest

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 34

 Indicates the destination of the vector registers, which is where the results get put

src

 Indicates the source vector register(s), which is where the input comes from

The common pattern can be seen with examples for the MOV instruction which you can see here:

• VMOVN<T><v>.<dt> Qd, Qm

o In this example, the shape is N, which performs a narrowing to half-width of each data element
before it is written to the destination register.

• VQMOVN<T><v>.dt Qd, Qm

o In this example, the mod is Q, which Performs an element-wise saturation to half-width.

4.2 Helium instruction set

Helium includes a variety of instructions and each of these instructions perform different operations,
for example math operations like add, multiply, and subtract. Some of these instructions are
particularly suited for DSP or ML, for example the intrinsic vmladavaq. vmladavaq is where there

are two vectors and the corresponding lanes in each of these vectors are multiplied together. The
result from the multiplication is added all together and the scalar value is added to this value. These
math operations may all use matrix operations. Matrix operations are helpful for DSP. This is because
these operations allow DSP chips to digitize sounds or images that are stored or transmitted
electronically.

4.3 Different types of load and store

Helium provides three different types of load and store instructions:

• Vector load or store

This is the most straightforward way to load data into vectors. With vector load or store, each lane or memory is
accessed in sequence, starting from a base address that is specified in a scalar register. For example, VLDRB.u8 (Vector

Load Register Byte), loads consecutive bytes from memory into a destination vector register.

• Interleaving and deinterleaving

Interleaving stores and deinterleaving loads let you operate on different channels of data stored in a repeating pattern.
A deinterleaving load reads consecutive memory locations and separates the data for each channel into multiple
different registers. An interleaving store performs the reverse operation, combining data channels from multiple
registers into a single data stream.

For example, stereo audio data may consist of interleaved left and right channel data. You can use the VLD2 instruction
to load right-audio channel data values into the lanes of one vector register, and left-audio channel data values into
another vector register.

• Scatter or Gather

Scatter or Gather involves gathering data from non-contiguous locations. In this, a Helium register which holds a vector
of offset values allows multiple non-contiguous addresses to be accessed with a single instruction. For example, when
manipulating one color channel of RGB data, you gather data items from every third memory location and load them
into a vector register.

Generators are the viddup, vddup, viwddup, and vdwdup instructions. These instructions generate incrementing or

decrementing index sequences intended to be passed to gather or scatter load and stores. For example:

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 34

// 16-bit vector gather load with decrementing offsets with a step of 2

mov r0, #20 // decrementing sequence start

vddup.u16 q0, r0, #2 // Generator, decrement step of 2

 // q0 = [20 18 16 14 12 10 8 6]

vldrh.s16 q1, [r1, q0, uxtw #1] // gather load, base = r1, offset = q0

Scatter-gather offsets are unsigned. Offsets are limited to the range of the vector type. If data that is
stored in memory is a different size to the vector lanes, then widening or narrowing is required. This is
usually required for packing or unpacking input or output data. An example is the instruction
VLDRB.U32 (Vector Load Register Byte). This instruction loads four consecutive bytes from memory
and will zero-extend the byte to 32 bits and then place it into the corresponding lane in the
destination vector.

4.4 Different types of math operations
Math Operation Description

Basic arithmetic Integers are used in arithmetic such as addition and
subtraction. This is used in many of the predication examples
that will be explained in Predication.

Complex arithmetic Instructions like add or multiply (VCMLA) operate on real

and imaginary components in the same vector. This might be
used in, for example, Fast Fourier transforms (FFTs).

MAC operators Operands are multiplied and accumulated. We explained
one of these instructions, VMLA, in Vector instruction

example. This might be used in, for example, matrix
multiplication.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 34

5 Predication
Predication provides a way to conditionally execute a block of instructions, on lanes that meet
specified criteria. The predication mask specifies which lanes are processed by setting bits to true (1)
or false (0).

Each bit represents the predication of a lane in the 128-bit Helium vector. Therefore, when using
vectors which contain a lane width of 32 bits, 4 out of the 16 bits control predication. The following
table shows different lane widths:

Lane widths Bits in VPR.P0

32 bits [12, 8, 4, 0]

16 bits [14, 12, 10, 8, 6, 4, 2, 0]

8 bits [15:0]

You can find more information about lanes and lane widths in the Armv8-M Architecture Reference
Manual.

There are four different types of predication intrinsics:

_m

 Merging

_z

 Zeroing

 _x

 Don't care.

_p

 Predicated

The different types of predication can be used for loop tail handling. When input data is not a multiple
of 128-bits, the final loop iteration needs to process a partially empty vector. For example, a data
array of ten 32-bit values is processed as two full iterations on vectors containing four elements, and
a final loop iteration on a vector containing two elements. Merging predication loads a value from the
inactive vector into these lanes. Zeroing predication can mark the unused lanes on the final loop
iteration. Pruning predication can only store the values in the lanes that are set to true. Don’t care
predication can be used when we don’t care whether an undeclared or declared value are loaded into
the unused lanes.

5.1 Examples of predication

Merging

https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6/6-14
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6/6-14

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 34

Merging predication can be used for clipping values in a vector that exceed a specified maximum.
Merging predication is where false predicated lanes, are filled with the corresponding element from
the inactive vector.

The intrinsic vaddq_m is an example of a merging predication. vaddq_m adds two vectors together,

and the false predicated lanes are filled with the value from the inactive vector. This is explained in the
following example:
int32x4_t [__arm_]vaddq_m[_s32] (int32x4_t inactive, int32x4_t a, int32x4_t b,

mve_pred16_t p)

In this example, the four inputs are:

• Inactive

o A 32x4 vector which contains 4,4,4,4

• a

o A 32x4 vector which contains 5,2,3,6

• b

o A 32x4 vector which contains 7, 1, 6, 2

• P

o A predicate mask, containing 16 bits. For 32-bit lanes, the bits in the mask which control lane
predication are bits 12, 8, 4, and 0. In this example, bits 12 and 1 have been set to true and bits 8 and
4 have been set to false, resulting in a predicate mask of 0001000000000001.

This example uses a vector that is 32x4. The vector could be a different size. Helium registers has
more information. However, the vector registers; inactive, a and b must contain the same number

of lanes.

Looking at the lane predication in detail, we can see that:

• Bits 8 and 4 control lanes two and three. In our example, these bits contain zero. This means that lanes two and three
take their value from the inactive vector. In both cases this value is four.

• Bits 12 and 0 control lanes one and four. In our example these bits contain one. This means that lanes one and four take
their value from the result of adding the corresponding lanes in the vectors A and B.

o For bit 12 this corresponds to 5+7 = 12

o For bit 0 this corresponds to 6+8 = 14

Therefore, the result vector equals: 12,4,4,14.

This process is illustrated in the following diagram:

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 34

The following assembly code assumes that r0 points to the 0x11111111 0x22222222

0x33333333 0x44444444 pattern in memory. The following code is an example of merging

predication:
// predicated addition (inactive lanes untouched)

mov r1, 0xf00f // set mask for 32-bit elements 0 & 3

vmsr p0, r1 // set predicate bit 0 & 4

vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333 0x44444444}

movw r2, 0x5555

movt r2, 0x5555

vdup.32 q1, r2 // q1 = {0x55555555 0x55555555 0x55555555 0x55555555}

vpst

vaddt.i32 q1, q0, q0 // q1 = {0x22222222 0x55555555 0x55555555 0x88888888}

movw r2, 0x0000 // set upper bound = 0x30000000

movt r2, 0x3000

vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333 0x44444444}

vpt.s32 ge, q0, r2 // enable lanes greater or equal than r2

vdupt.32 q0, r2 // set q0[i] to r2 for active lanes, others are untouched

 // q0 = { 0x11111111 0x22222222 0x30000000 0x30000000}

Zeroing

Zeroing predication is used for load instructions.

The false predicated lanes are set to zero. The following intrinsic is an example of a zeroing predicated
load, which loads consecutive elements from memory into a destination vector register:
uint32x4_t [__arm_]vldrwq_z[_s32] (uint32_t const * base, mve_pred16_t p)

Consider an example where the two inputs are:

• Base

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 34

o A pointer to the start of an array containing 32-bit unsigned integer values. In this example, it
contains 5, 2, 3, 6.

• p

o A predicated mask. For 32-bit lanes, the bits in the mask which control lane predication are bits 12,
8, 4, 0. In this example, it equals 0000000000010001.

The output is a vector containing the result in b.

Looking at the lane predication in detail:

• Four numbers are contained within memory. These numbers are loaded into a vector through base, the pointer to the
array.

• Bits 12 and 8 control lanes four and three. In our example, these bits contain zero. This means that lanes four and three
are populated with the value zero.

• Bits 4 and 0 control lanes two and one. In our example, these bits contain one. This means that lanes one and two are
populated with the value from memory.

Therefore, the result vector equals 0, 0, 2, 5.

 This process is illustrated in the following diagram:

The following assembly code assumes that r0 points to the 0x11111111 0x22222222

0x33333333 0x44444444 pattern in memory. The following code is an example of zeroing

predication:
// starting with predicated load (zeroing of inactive lanes)

// 32-bit load

mov r1, 0x0ff0 // set mask for 32-bit elements 1 & 2

vmsr p0, r1 // set predicate bits

vpst // activate predication for the next slot

vldrwt.s32 q0, [r0] // q0 = { 0x00000000 0x22222222 0x33333333

0x00000000}

// 8-bit load

mov r1, 0x1111 // set mask for 8-bit elements 0, 4, 8, 12

vmsr p0, r1 // set predicate bits

vpst // activate predication for the next slot

vldrbt.s8 q0, [r0] // q0 = { 0x11 0x00 0x00 0x00 0x22 0x00 0x00 0x00

0x33 0x00 0x00 0x00 0x44 0x00 0x00 0x00}

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 34

// 16-bit load

mov r1, 0x300c // set mask for 16-bit elements 1 & 6

vmsr p0, r1 // set predicate bits

vpst // activate predication for the next slot

vldrht.s16 q0, [r0] // q0 = { 0x0000 0x1111 0x000 0x00000 0x000 0x00000

0x4444 0x0000}

Don't care

Don’t care predication is like zeroing predication, because it is used for load instructions. The
difference between don’t care predication and zeroing predication is that, when a lane has been set to
false, an undeclared variable is left undefined instead of having a 0 as the output.

Predicated

Predicated predication is used when a scalar output is returned. False-predicated lanes are not used
when computing the output.

The following intrinsic is an example of predicated predication. This intrinsic finds the minimum value
of the elements in a vector, then compares that minimum value to the specified value a. The intrinsic
returns the smaller of the two values:
int32_t [__arm_]vminvq_p[_s32] (int32_t a, int32x4_t b, mve_pred16_t p)

Consider an example in which the three inputs are:

• a

o a scalar value that equals 4

• b

o a 32x4 vector that contains the values: 5, 2, 3, 6

• p

o a predicated mask. For 32-bit lanes, the bits in the mask which control lane predication are bits 12, 8,
4, 0. In this example, it equals 0001000000000001

The output is the smaller of a or the minimum value in b.

Looking at the lane predication in detail:

• Bits 8 and 4 controls lanes two and three. In our example, these bits contain zero. This means that these lanes are not
used.

• Bits 12 and 0 control lanes one and four. In our example, these bits contain one. This means that lanes one and four are
compared to see which contains the smallest number. In this example, the smallest number is 5.

• The minimum value: 5 is compared with the scalar value (a), which is 4.

• Therefore, the intrinsic returns 4.

This process is illustrated in the following diagram:

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 34

The following assembly code assumes that r0 points to the 0x11111111 0x22222222

0x33333333 0x44444444 pattern in memory. The following code is an example of predicated

predication:
// predicated 32-bit MAC (inactive lanes ignored)

mov r1, 0x00ff // set mask for 32-bit elements 0 & 1

vmsr p0, r1 // set predicate bits

vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333

0x44444444}

clrm {r2, r3}

vpst

vrmlaldavht.s32 r2, r3, q0, q0 // r2,r3 = (sum(q0[i] * q0[i]) + (1<<7)) >> 8 i={0,1}

 // (0x11111111 ^2 + 0x22222222 ^ 2 + (1<<7)) >> 8

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 34

6 Vector instruction example: VMLA
In this section of the guide, we introduce how Helium uses vector instructions when performing
parallel arithmetic on vectors using vector registers. We also show how we can use intrinsics to
perform parallel arithmetic.

6.1 Vector Multiply Accumulate

The first example that we have chosen to show parallel arithmetic is Vector Multiply Accumulate
(VMLA). At a high level, in VMLA each element in the source vector is multiplied by a scalar value. The

result is added to the respective element from the destination vector.

The results are stored in the destination register.

The following example shows the VMLA instruction:
VMLA.S32 VectorOne, VectorTwo, Scalarvalue

This instruction shows that VectorOne is the accumulator vector register and is the destination

register for the entire operation.

VMLA has three inputs and one output. The three inputs are:

• VectorOne

o The accumulator vector register and destination register

• VectorTwo

o The source vector register

• Scalarvalue

o The scalar general-purpose register

The output is:

• VectorOne

o The accumulator vector register and destination register

In the example, the vector registers, VectorOne and VectorTwo, are divided into four lanes of 32-

bit values. However, the vector registers could be divided into eight 16-bit values or sixteen 8-bit
values, depending on which data types you are operating on. Both VectorOne and VectorTwo

must contain the same number of data lanes.

In our example, the inputs:

• VectorOne contains the numbers 7,1,6,2

• VectorTwo contains the numbers 5,2,3,6.

• Scalarvalue contains 2.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 24 of 34

When the three inputs have been declared:

• Scalarvalue is multiped with VectorTwo

• VectorTwo is added to VectorOne.

• VectorOne is outputted.

That is, VectorOne[i] = VectorOne[i] + VectorTwo[i] * Scalarvalue where
i={0..elts-1}

These steps are shown in the following diagram:

6.2 Implementation using intrinsics

One way that you could use VMLA in your C code is by using intrinsics. Intrinsics are functions which

the compiler understands and replaces with low-level Helium instructions.

 First, we declare two arrays to hold the input vectors and an integer variable to hold the scalar value.
You can see this in the following code:

//Declaring the arrays and the scalar value const int arrayone[] = {5, 2, 3, 6}; const int arraytwo[] = {7,
1, 6, 2}; int32_t Scalarvalue = 2;

In this example, we only use four numbers in our vectors. However, in a real-world example more than
four numbers may be used.

The intrinsic specification uses pointers to the input and output arrays. This can be seen in the
following code:
//Declaring the pointer value int32_t *pone = arrayone; int32_t *ptwo = arraytwo;

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 25 of 34

When the arrays, and the pointers, have been declared, the values can be loaded into vector registers.

The following code uses intrinsics to load the array values into helium vector registers:
//Loading the 4 values from the array int32x4_t VectorOne = vld1q_s32 (pone); int32x4_t

VectorTwo = vld1q_s32 (ptwo);

In the following code this performs the multiply and accumulate operation:
int32x4_t Result = vmlaq_n_s32 (VectorTwo, VectorOne, Scalarvalue);

This is stating Result = VectorOne + (VectorTwo x Scalarvalue).

Here is a complete working example:
#include <stdio.h>

#include <stdlib.h>

#include "arm_mve.h"

int main(void) {

 printf("Program started\n");

 //Declaring arrays

 const int32_t arrayone[] = {5, 2, 3, 6};

 const int arraytwo[] = {7, 1, 6, 2};

 const int inactivearray[] = {4,4,4,4};

 const int m[] = {8,8,8,8};

 //Value that arraytwo is being multiplied by

 int32_t scalarvalue = 2;

 //pointer values for both arrays (need this because otherwise it would print out

 4 every time)

 int32_t *pone = arrayone;

 int *ptwo = arraytwo;

 //Loading the 4 values from the array

 int32x4_t VectorOne = vld1q_s32 (pone);

 int32x4_t VectorTwo = vld1q_s32 (ptwo);

 //The VMLA instruction

 int32x4_t Result = vmlaq_n_s32 (VectorTwo, VectorOne, scalarvalue);

 //Printing the results

 printf("Element 0: %d\n", vgetq_lane_s32 (Result,0));

 printf("Element 1: %d\n", vgetq_lane_s32 (Result,1));

 printf("Element 2: %d\n", vgetq_lane_s32 (Result,2));

 printf("Element 3: %d\n", vgetq_lane_s32 (Result,3));

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 34

}

6.3 How this can be done using C code

In the previous sections of this guide, we introduced the multiply-accumulate instruction and how it
can be generated from intrinsics. Now let’s look at the multiply-accumulate instruction can be
generated from C source code. We use the following motivating example:
void vmla (int *__restrict Qda, int *__restrict Qn, int Rm, int N) {

for (int i = 0; i<N; i++)

 Qda[i] += Qn[i] * Rm;

}

The preceding code shows that the C implementation is an almost direct translation of the pseudo-
code that is shown in the previous section, Qda = Qda + (Qn x Rm). In the preceding example, the

first two arguments of the function VMLA are integer pointers modeling the two input streams. The
first one is also the output stream. The arguments are annotated with the __restrict keyword to

indicate that streams Qda and Qn do not overlap. For more details on __restrict see Arm Compiler
toolchain Compiler Reference. The third argument is the scalar value Rm. The fourth argument is N

which determines how many numbers will be processed, In the previous section and example this was
4, here it is a run-time value N.

This example also shows that writing C code has advantages compared to writing intrinsics. C code is
more compact, readable, and portable. However, writing C code relies on the compiler to efficiently
translate your code into machine instructions. When more fine-grained control of the generated
instructions is required, intrinsics might be a better solution.

When this VMLA function is compiled with Arm Compiler 6.14, the following assembly code is

generated:
 dlstp.32 lr, r3

.LBB0_1:

 vldrw.u32 q0, [r1], #16

 vldrw.u32 q1, [r12], #16

 vmla.u32 q1, q0, r2

 vstrw.32 q1, [r0]

 mov r0, r12

 letp lr, .LBB0_1

Let’s look first at the generated function body that follows label LBB0_1. There are two load

instructions loading 16 bytes in vector registers >q0 and q1. Vector q1 is multiplied by the scalar
value in r2, which contains function argument Rm, and accumulated in vector registers q0. The results

are then stored to r0, which corresponds to function argument Qda. The first and last instruction in
this example are instructions that control the execution of the loop, which we will be discussed in Tail-
predication.

The VMLA instruction uses vector registers, we have shown that we are generating vector code from

C-code that is using scalar values and operations with Qda[i] += Qn[i] * Rm. For example, auto-
vectorization by the compiler can transform scalar code to vector code in an efficient way. Auto-
vectorization is enabled with optimization level –Os and above.

https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6/6-14
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6/6-14
https://developer.arm.com/architectures/instruction-sets/simd-isas/helium/helium-programmers-guide/coding-for-helium

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 34

Arm Compiler User Guide: Selecting optimization options helps to transform existing code and
serves as an alternative to writing (vector) intrinsics.

In Tail-predication, we discuss the last interesting aspect of the generated code example: the loop
control instructions.

6.4 Tail-predication

In Predication, we mention tail-predication as one of the predication forms introduced in Armv8.1.
The assembly code example in How this can be done using C code shows usage of two of these new
instructions:

• DLSTP: Do-Loop-Start, Tail-Predicated

• LETP: Loop-End, Tail-Predicated

These two instructions are the tail-predication version of the Do-Loop Start (DLS) and Loop-End (LE)
instructions and are part of the low-overhead-branches extension that aim to speed-up loop
execution. Tail-predication is best illustrated with an example:
for (int i=0; i < 10; i++)

 A[i] += B[i] + C[i];

In this example, the loop iterates ten times, which means that it is processing 10 integer elements. If
we can vectorize this code and can pack four integer elements in one vector, we have two vector
operations processing eight elements. Because we need to process ten elements, we need a scalar
loop (a tail loop), that processes the remaining two elements. In pseudo-code. The vectorized code
looks like this:
for (int i=0; i < 8; i+=4) // the vector loop

 A[i:4] += B[i:4] * C[i:4];

for (int i=8; i < 10; i++) // the tail-loop

 A[i] += B[i] * C[i];

The vector loop increments with four. It processes four 4 elements at the same time, which is
indicated with the i:4 array index notation. The tail loop is the original loop, except that it starts at 8.

This means that it executes only the last 2 iterations, so I=8, I=9, the ninth and tenth iterations

respectively.

Having both the vector and the tail loop comes at a cost, which is the overhead of executing 2 loops,
and code density. Tail-predication solves these problems and allows the execution of these loops. For
example, loops that process several elements. Where number of elements being processed are not an
exact multiple of the number of elements that fit in a vector, in one single vector loop. In pseudo-code,
that looks like this:
 for (int i=0; i < 12; i+=4) // the vector loop and the tail-loop

 A[i:4] += B[i:4] * C[i:4], active lane if i<10

The loop bound has been adjusted to 12, and the step size is 4, so that this loop executes 3 iterations.
Executing 3 iterations of this vector loop would process 12 elements, while we need to process only
10. For the last iteration, tail-predication means that the last 2 lanes are disabled to make sure we
only process these 10 elements and not 12. In the previous pseudo code example, this is indicated

https://developer.arm.com/docs/100748/0612/using-common-compiler-options/selecting-optimization-options

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 34

with the active lane if i<10 annotation. The Armv8.1-M tail-predication loop instruction

solves this in hardware.

Let’s now look again at the assembly output in the How this can be done using C code and the tail-
predicated loop. The loop is set up with the following instruction:
dlstp.32 lr, r3

The instruction dlstp sets up a tail-predicated loop, where register lr contains the number of

elements to be processed, with its initial value coming from register r3. This makes sense if we
remember what the VMLA function prototype looks like:

 void vmla (int *__restrict Qda, int *__restrict Qn, int Rm, int N)

Function argument N corresponds to the number of elements that are processed by the loop, is the
fourth function argument and is passed in register r3. After this, the loop body is executed, and we

branch back to the beginning with new instruction, which looks like:
letp lr, .LBB0_1

This Loop-End (LE) instruction branches back to label. LBB0_1 and decrements the number of

elements to be processed in register lr. It also ensures that, for the last iteration, the right vector

lanes are enabled or disabled, for example, it takes care of the tail-predication. Using Arm Compiler 6,
tail-predicated loops can be generated from source code or intrinsics.

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 29 of 34

7 Vector instruction example:
VMLADAVA
The next example is the Vector Multiply Accumulate Add Accumulate Across Vector (VMLADAVA)

instruction. We are introducing the VMLADAVA instruction across another instruction, which is the

VMLADAV. The VMLADAV instruction multiplies together the corresponding lanes of two input

vectors, then sums these individual results to a produce a single value.

The following diagram shows an example for the VMLADAV instruction:

Like the VMLADAV instruction, the VMLADAVA multiplies together the corresponding lanes of two

input vectors, then sums these individual results to produce a scalar value. The difference to the
VMLADAV is that this summed scalar result is then added to an existing value in the specified scalar

register.

The following diagram shows an example for the VMLADAVA instruction:

R

x x x x

R

x x x x

R input

R output

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 34

The following fragment code shows how to write a program with intrinsics using VMLADAV and

VMLADAVA instructions:
int main(void) {

 // Declare the arrays and the scalar value

 const int arrayone[] = {3, 4, 6, 5};

 const int arraytwo[] = {1, 2, 3, 4};

 int32_t Scalar = 0;

 // Declare pointers to the two input vector arrays

 int32_t *pone = arrayone;

 int32_t *ptwo = arraytwo;

 // Load the values from the arrays

 int32x4_t VectorOne = vld1q_s32 (pone);

 int32x4_t VectorTwo = vld1q_s32 (ptwo);

 // Use VMLADAV to multiply the vector elements and sum the results

 Scalar = vmladav (VectorTwo, VectorOne);

 printf("Sum of products (VMLADAV) = %d\n", Scalar);

 // Use VMLADAVA to multiply the vector elements and sum the results, adding to

the existing value in Scalar

 Scalar = vmladava (Scalar, VectorTwo, VectorOne);

 printf("Accumulated sum of products (VMLADAVA) = %d\n", Scalar);

 return EXIT_SUCCESS;

}

 When you run the program, you see the following:
Sum of products (VMLADAV) = 49

Accumulated sum of products (VMLADAVA) = 98

These are further examples to show the VMLADAV and VMLADAVA instructions:

// 16-bit Vector Multiply Add Dual Accumulate Across Vector

MOV R2, #0

MOV R3, #1000

VIDUP.U16 Q0, R2, #1 // Generates incrementing sequence, starting at 0 with step

of 1

VMUL.S16 Q0, Q0, R3 // Multiply by 1000

VDDUP.U16 Q1, R2, #1 // Generates decrementing sequence, starting at 8 with step

of 1

VMUL.S16 Q1, Q1, R3 // Multiply by 1000

// non-accumulated

 // Q0 = [0 1000 2000 3000 4000 5000 6000 7000]

 // Q1 = [8000 7000 6000 5000 4000 3000 2000 1000]

VMLADAV.S16 R0, Q0, Q1 // R0 = sum(Q0[i] * Q1[i])

 // R0 = 84000000

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 34

// with accumulation

 // Q0 = [0 1000 2000 3000 4000 5000 6000 7000]

 // Q1 = [8000 7000 6000 5000 4000 3000 2000 1000]

VMLADAVA.S16 R0, Q0, Q1 // R0 = R0 + sum(Q0[i] * Q1[i])

 // R0 input = 84000000

 // R0 output = 168000000

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 34

8 Check your knowledge
Q. Which predication type fills false predicated lanes with the corresponding element from the
inactive vector?

 A. Merging

Q. In the instruction VMLA.S32, what does the S32 indicate?

 A. S32 indicates that each vector lane loaded by the VMLA instruction contains a 32-bit signed
integer.

Q. Which type of load would be used to unpack data and which type of store would be used to pack
data?

 A. Widening load is used to unpack the data and a narrowing store is used to pack the data.

Q. Does Helium contain 8 or 16 vector registers?

 A. Helium contains 8. Neon contains 16

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 33 of 34

9 Related information
Here are some resources related to material in this guide:

• Arm architecture and reference manuals

• Arm Community: Ask development questions and find articles and blogs on specific topics from Arm experts.

• Armv8-M Architecture Reference Manual

• Arm Compiler toolchain Compiler Reference

• Arm Compiler User Guide: Selecting optimization options

• Arm Compiler 6.14

• Getting started with Arm Helium: The new vector extension for the M-profile Architecture

• White paper, Introduction to the Armv8.1 architecture

https://community.arm.com/
https://developer.arm.com/docs/dui0491/h/language-extensions/restrict
https://www.arm.com/
https://developer.arm.com/docs/ddi0553/latest
https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-helium-the-new-vector-extension-for-arm-m-profile-architecture
http://www.arm.com/company/policies/trademarks
https://pages.arm.com/introduction-armv8.1m.html

Helium Programmer's Guide: Introduction to Helium 102102
Issue 1.3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 34 of 34

10 Next steps
This guide has introduced Helium. We have looked at what is Helium, Helium registers, Helium
instructions and how this can be used in a vector example.

You can explore some of these concepts in our Coding for Helium guide.

https://developer.arm.com/docs/100748/0612/using-common-compiler-options/selecting-optimization-options

