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1 Overview 
As modern microcontrollers and SoCs become increasingly complex, designers face the challenge of 
maximizing energy efficiency while achieving a higher level of integration. To maximize energy 
efficiency, the use of multiple power domains is widely adopted in the low-power SoC market. At the 
same time, to address a higher level of integration, many SoCs contain multiple subsystems. Each 
subsystem can be reused for multiple projects, leading to better time to market and software 
reusability.  

To address the challenges from the combination of these requirements, a standardized low power 
control interface and a common power control concept is needed in the system architecture.  

In this guide, we demonstrate the deployment of these approaches in Arm Cortex-M-based 
subsystems. In addition, to reduce the software burden of working out power domain dependency, a 
mechanism called Power Dependency Control Matrix (PDCM) is introduced and its benefits are 
explained. 

There is an increasing need for on-device processing closer to the data generated by Internet of 
Things (IoT) endpoints, while still operating within low power budgets. These energy efficient and 
highly compute-capable modern System on Chips (SoC) unlock new use cases called endpoint 
Artificial Intelligence (AI). Traditionally, a low-power microcontroller can support multiple levels of 
power states. Based on the sleep status of the processor, some of the functional design elements 
inside the microcontroller can have its clocks gated off or even powered down. To help system 
designs, the Arm Cortex-M processors architecturally support two levels of software-controlled 
sleep modes: sleep and deep sleep. The corresponding status is indicated by the SLEEPING and 
SLEEPDEEP status output signals: 

Processor state SLEEPING output SLEEPDEEP output 

Running 0 0 

Sleeping 1 0 

Deep sleep 1 1 

Table 1: Processor sleep modes 

Different power saving methods can be applied to the system in different sleep modes. For example, a 
simple microcontroller can use these sleep output signals to control the memory macros’ power 
modes and to control each peripheral. A peripheral could be running (ON with toggling clock), clock 
gated (ON with static clock), in state retention (RET) or power down (OFF). To customize power 
control of each peripheral based on application requirements, the following programmable registers 
are added to the system to configure the power mode options of the peripherals: 

Processor 
and system 
power state 

Embedded 
flash 

SRAM Peripheral 1 Peripheral 2 Peripheral 3 Real Time 
Clock 

Running Running Running Configurable Configurable Configurable Configurable 

Sleeping Clock gated Clock gated Configurable Configurable Configurable Configurable 
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Processor 
and system 
power state 

Embedded 
flash 

SRAM Peripheral 1 Peripheral 2 Peripheral 3 Real Time 
Clock 

Deep sleep Power down State retention Configurable Configurable Configurable Configurable 

Table 2: System power states 

In modern SoC design, this technique is becoming inadequate under certain circumstances:  

• There can be more than one processor in the system. There is no longer a single source of sleep 
mode indication.  

• Memories and peripherals can also be accessed by bus transaction initiators other than the 
processor. For example, a Direct Memory Access (DMA) controller or external debugger. This 
access occurs whether the processor is sleeping or not.  

• Many new SoCs are composed of multiple reusable subsystems. When these subsystems are 
designed, the details of the SoC power control scheme can be unknown. For example, the 
designers do not know how many levels of power states are available and whether the SoC fully 
utilizes all the power states of the subsystem.  

• Controlling the system’s overall power state and the power mode of each shared resource 
requires system-specific runtime software intervention. This intervention is time consuming and 
expensive in terms of processor runtime and resources. The runtime software might also impact 
the response to power mode changes due to interrupt latency and to handle conflicting 
processing tasks.  

Consider a peripheral that is always on and receives data to its internal First In First Out (FIFO) 
buffer. The processor is powered down and the DMA and the system Static Random Access Memory 
(SRAM) are in retention. When the FIFO reaches the occupancy threshold, the DMA flushes it to 
SRAM. This requires both the SRAM and the DMA to wake, but the processor could remain powered 
down until a larger amount of data is collected in SRAM that requires processing. This arrangement 
still requires software intervention to wake the DMA and SRAM, which therefore requires the 
processor to wake up to handle this. 
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2 Power dependency 
To address these challenges, instead of looking at the power control arrangement using a processor-
centric view of sleep modes, we look at power control based on the power dependency relationship 
between different domains. Consider a design element that is a shared system resource that has its 
own power domain, like an interconnect or an SRAM. The power mode of this shared resource can be 
determined by the power mode of one or more other functional design elements that utilizes this 
resource. For example, if the processor or a DMA is in a functional power mode, the bus interconnect 
and the SRAM must be in a functional power mode. We expect that the processor and DMA need 
access to the system SRAM through the interconnect. Both the SRAM and interconnect power mode 
requirements are dependent on the processor or the DMA, as shown in the following diagram: 

Figure 1: Example power dependency diagram 

2.1 Power Dependency Control Matrix  

A power dependency diagram can represent the relationship of a small number of power domains, 
however real systems can have many more power dependencies. These power dependencies are due 
to more shared resources, peripherals, processing elements, and power domains. Based on the simple 
dependency concept, we can represent the relationships between these domains using a simple two-
dimensional table of dependency called a Power Dependency Control Matrix. The following table 
shows how we represent the previous power dependency diagram as a control matrix: 

 Power mode of precedent power domains 

Power mode of dependent power domains 
(shared resources) 

PD_CPU PD_DMA 

PD_INTERCONNECT Y Y 
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 Power mode of precedent power domains 

PD_SRAM Y 

 

Y 

Table 3: Power Dependency Control Matrix example 

The table rows show power domains that are being controlled. The table columns show controller 
power domains that can act as dependencies. A Y in the table indicates a dependency between a 
controller power domain and a controlled power domain. This dependency means that when the 
power mode of PD_CPU is ON, the minimum power mode of PD_INTERCONNECT is also ON. This 
arrangement does not necessarily guarantee that the PD_INTERCONNECT wakes up simultaneously 
with the PD_ CPU. This arrangement guarantees if both PD_INTERCONNECT and PD_CPU is ON, 
the dependency with the PD_CPU maintains the ON power mode of PD_INTERCONNECT. The 
PD_INTERCONNECT wake behavior depends on the system needs, and either wakes on detecting 
an access from the PD_CPU or PD_DMA, or when the PD_CPU is switched to ON.  

To make the power control scalable and configurable for different use cases, some of the entries in 
the matrix are controlled by software programmable registers. By having this configurability, the 
power switching of power domains can be hardware autonomous in runtime after a boot time 
configuration, or even after a runtime reconfiguration for a long period of use. The following table 
shows an example of a more complex system where software configurability (cfg), is provided for 
some entries in the matrix: 

 Power mode of precedent power domains 

Power mode of 
dependent power 
domains 

PD_CPU0 PD_CPU1 PD_DMA0 PD_DMA1 

PD_INTERCONNECT Y Y Y Y 

PD_FLASH Y Y cfg cfg 

PD_SRAM0 cfg cfg cfg cfg 

PD_SRAM1 cfg cfg cfg cfg 

Table 4: Configurable power dependency control matrix 

For example, we can configure the PD_SRAM0 to be only dependent on PD_CPU0 and PD_DMA0, 
and PD_ SRAM1 to be only dependent on PD_CPU1 and PD_DMA1. 
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A given power domain can have multiple power modes presented as additional rows and columns in 
the matrix to provide finer grain dependency control between the power modes. In the following 
table, unavailable power modes are indicated by a dash (-):  

 Precedent power domains 

PD_CPU0 

 

PD_CPU1 PD_DMA0 

 

PD_DMA1 

Dependent power 
domains (shared 
resources) 

Power 
mode 

ON RET ON RET ON RET ON RET 

PD_INTERCONNECT ON Y cfg Y cfg Y cfg Y - 

RET cfg cfg cfg - 

PD_FLASH ON Y cfg Y cfg cfg - cfg - 

RET - - - - - - - - 

PD_SRAM0 ON Y - cfg - cfg - cfg - 

RET Y Y cfg cfg cfg cfg cfg - 

PD_SRAM1 ON cfg - Y - cfg - cfg - 

RET cfg cfg Y Y cfg cfg cfg - 

Table 5: Power dependency control matrix with fine grain power mode control 

The actual number of power modes of the dependent power domain shown in the table can be less 
than the total number of power modes supported. In addition, the implementation or other runtime 
conditions such as pending transactions can result in a higher selected power mode used. This mode 
differs from the power mode defined by the Power Dependency Control Matrix because the Power 
Dependency Control Matrix defines the minimum power mode requirements. 

Some of the power domains in the system can have no internal power control interface to define a 
minimum power mode. These power domains only maintain a single power mode independently of 
other conditions typically in the OFF power mode. For example, a RAM macro has no dedicated 
power control interface. To overcome this limitation, software can define the minimum power mode 
by programming the Minimum Allowed Power Mode entry for the dependent power domains. This 
definition allows the power domain to maintain a minimum power mode when no other power 
domains are requesting the resource.  
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For example, in the following table PD_INTERCONNECT, PD_SRAM0, and PD_SRAM1 support a 
configurable minimum power mode that can be ON or RET to preserve content. Subsystem designs 
are required to be extended with further external functional design elements and interface with other 
subsystems. To fulfil these requirements, further precedent domains can be added to the Power 
Dependency Control Matrix as extension power domains. In the following table, PD_EXTn represents 
extension power domains: 

Precedent power domains 

 PD_CPU0 PD_CPU1 PD_DMA0 PD_DMA1 PD_EXTn Minimum 
Allowed 
Power Mode 

Dependent power 
domains (shared 
resources) 

Power 
mode 

ON RET ON RET ON RET ON RET ON RET  

PD_INTERCONNECT ON Y cfg Y cfg Y cfg Y - cfg - cfg: 
ON/RET/OFF 

RET cfg cfg cfg cfg cfg cfg - - cfg cfg 

PD_FLASH ON Y cfg Y cfg cfg - cfg - cfg - OFF 

RET - - - - - - - - - - 

PD_SRAM0 ON Y - cfg - cfg - cfg - cfg - cfg: 
ON/RET/OFF 

RET Y Y cfg cfg cfg cfg cfg - cfg - 

PD_SRAM1 ON cfg - Y - cfg - cfg - cfg - cfg: 
ON/RET/OFF 

RET cfg cfg Y Y cfg cfg cfg - cfg cfg 

Table 6: Power Dependency Control Matrix with minimum power mode 

The Power Dependency Control Matrix concept can easily scale to accommodate multiple processors 
if there is no single definition of sleep mode. This concept can effectively cope with a scalable number 
of functional design elements and shared resources in the system and can be extended to span over 
multiple subsystems. 

The control matrix also allows any connected power domain in the system to request other shared 
resources and combine these resource requests and manage the availability and context retention of 
shared resources according to the constraints. 
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3 Power Control Framework 
The Power Dependency Control Matrix and the sensitivity settings defined for each power domain 
allow, as much as possible, system power control using hardware autonomous dynamic power 
transitions. These transitions reduce the software interactions needed for system management and 
therefore improves its responsiveness and power reduction. 

These benefits of the Power Dependency Control Matrix require further infrastructure. The 
provision of the Power Dependency Control Matrix and power efficient components is insufficient. 
The functional design elements must participate in a coordinated system level power management 
infrastructure. It is also important that integration of functional design elements is achievable in a 
timely manner. 

This is possible if there is a standardized way to produce, transfer, distribute, and apply power mode 
information across subsystems. This standardized framework is called the Power Control 
Framework. 

The key parts of this framework include the following: 

• Standard Low Power Interfaces 

• Low Power Interface infrastructure elements 

• Power domain controllers 

• Access control bridge components 

• Power Dependency Control Matrix component 
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4 Standard low power interfaces 
The Arm Advanced Microcontroller Bus Architecture (AMBA) Low Power Interface (LPI) 
specification defines the interfaces that allow power mode information to traverse the system. The 
AMBA LPI specification is data agnostic, therefore it can transfer any type of information. In this 
guide, the AMBA LPI is used to represent power mode information. The details of the AMBA LPI are 
described in the AMBA Low Power Interface Specification Arm Q-Channel and P-Channel Interfaces. 

For simple use cases where there are only two power modes like ON and OFF, the AMBA Q-Channel 
interface is sufficient. This interface allows the device to indicate to the power controller that the 
Quiescent state can be entered or exited using QACTIVE. The interface also allows the power 
controller to request the device to enter or leave Quiescent state. These features enable the power 
controller to prepare a power domain for entering or leaving a lower power mode. The interface is 
shown in the following diagram:  

For complex cases where there are more than two power modes, AMBA P-Channel interface is 
required. This interface allows the device to indicate to the power controller the power mode the 
device needs using PACTIVE. The power controller requests the device to transition to a particular 
power mode indicted by PSTATE, as shown in the following diagram: 

 

 

 

 

Figure 2: Q-Channel Low Power Interface 

https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/documentation/ihi0068/c/
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In the power domain, each functional design element states the power mode requirements and 
constraints using the individual LPI interface. These requirements are then collated using a power LPI 
network. Every design element in the power domain is responsible for driving its own power mode 
constraints. For example, if a hardware accelerator is waiting for an event or processing data, its 
individual LPI interface uses the power LPI network to tell the power domain controller to stay ON. 

Functional design elements without intrinsic support for LPI must implement an integration layer to 
provide this support. If a component power control interface does not directly match the AMBA LPI 
interfaces, an integration layer approach can also be used to convert the interfaces into LPI. The LPI 
integration layer is shown in the following diagram: 

Figure 3: P-Channel Low Power Interface 

Figure 4: Low Power Interface integration layer 
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5 Low power interface infrastructure 
The power LPI network gathers and merges power mode requirements from the power domain 
functional design elements. The power LPI network then gives the requirements to the power domain 
controller using a single power LPI. To help provide these requirements, Arm defined and 
implemented the following reusable standard LPI infrastructure components: 

• Low Power Interface Distributor 

• Low Power Interface Combiner 

• Low Power Interface Converter, from P-Channel to Q-Channel 

The Arm CoreLink Power Control Kit PCK-600 is a complete solution based on AMBA LPI standard. 
This section provides an overview of this kit. For more details, see the Arm CoreLink PCK-600 Power 
Control Kit Technical Reference Manual. 

5.1 LPI distributor 

The LPI distributor shown in the following diagram can split a single LPI into multiple LPIs and 
distribute the LPIs in parallel or in sequence to devices:  

The LPI distributor is typically used to expand the number of LPIs of the power controller to match 
the number of LPIs on all functional design elements. Sequencing can be used to manage race 
conditions in the controlled functional design elements. 

When distributing in parallel, the request from the control LPI is sent to all device LPIs and all device 
LPIs must accept the request before the request on the control LPI is accepted. If any device LPI 
denies the request, all device LPIs are returned to the previous state and the originating request on 
the control LPI is denied. 

When distributing in sequence, the request from the control LPI is sent to each device LPI and 
accepted in sequence. When all device LPIs have accepted the request, the request of the control LPI 
is accepted. If any device LPI denies the request, this process is reversed for all device LPIs that have 
previously accepted the request to return them to the earlier state before the originating control LPI 
request is denied. 

Figure 5: LPI distributor 

https://developer.arm.com/documentation/101150/0004
https://developer.arm.com/documentation/101150/0004
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Both Q-Channel and P-Channel versions of the distributors are defined. 

5.2 LPI combiner 

The LPI combiner shown in the following diagram merges the LPI requests from multiple power 
controllers to a single LPI:  

If any upstream power controllers on the control LPI request a lower power mode, the device LPI also 
requests a lower power mode. Also, if all upstream power controllers on the control LPI request a 
higher power mode, the device LPI then requests a higher power mode downstream. This request is 
typically used to manage the boundary of power domains that can operate independently. 

5.3 LPI converter 

The LPI converter shown in the following diagram can, for example, translate between the LPI 
protocols from AMBA P-Channel to AMBA Q-Channel:  

This unit compresses the multiple P-Channel states to two states based on the system integrator 
configuration. By utilizing these LPI infrastructure components, you can create structures to manage 
and sequence the state of each functional design element in the power domain so that they can enter 
a power mode safely. For example, in a power domain with three functional design elements, it may be 
necessary for one of the functional design elements to enter a specific individual power mode before 
allowing the other two functional design elements to specify a power mode to avoid a system 

Figure 6: LPI combiner 

Figure 7: P-to-Q LPI converter 
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deadlock. An LPI Distributor working as a sequencer can be deployed to transition the critical 
functional design element into the requested power mode before transitioning the remaining 
functional design elements through another LPI Distributor in parallel. 
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6 Power domain controller 
For power domain control, a component called the Power Policy Unit (PPU) is used. The PPU is a 
versatile technology-independent power infrastructure element that interfaces with functional 
design elements of a power domain, using the power LPI network for controlling domain power 
modes in coordination with device quiescence to ensure safe power mode transitions. It also 
performs the task of sequencing the controls of reset, isolation, clock, supply, and retention. This 
sequencing removes the need for software to perform low level control of these functionalities. 

The PPU also introduces a level of autonomy in which the power domain can switch power modes 
without using software. This autonomous operation is important for power modes that require fast 
response times like logic or RAM retention states. No context is lost and the operation can be 
transparent to software, but state transitions must have minimal latency to preserve system 
performance. The PPU in dynamic operation can enter and exit allowed power modes based on the 
power mode requirements from the power LPI network without software intervention. If a dynamic 
operation is not required, the PPU can operate in static mode using software to request domains to 
enter a power mode. 

For more details about the PPU, see the Arm Power Policy Unit Architecture Specification. The PPU 
structure is shown in the following diagram: 

The PPU has the following interfaces: 

• Device control interface. This interface is for low level device control and to ensure device 
quiescence and functional control. This includes either a P-Channel or multiple Q-Channel LPI, 
and additional device controls that include clock enables, resets, and isolation control. 

• Power Control State Machine (PCSM) interface. For controlling low-level technology-specific 
power switch and retention controls. The Power Control State Machine is a technology 
dependent state machine for the sequencing of power switch chains and retention controls that 
can include RAM and register retention. The PCSM executes power mode changes under PPU 
direction. The interface between the PPU and the PCSM is a P-Channel LPI. 

• Software interface. Status information, configuration settings and static control.  

Figure 8: Power Policy Unit structure 

https://developer.arm.com/documentation/den0051/e
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The following shows a high-level diagram of how the PPU and PCSM connect to each other and 
control a power gated domain. The dotted lines around components and signal connections indicate 
these are implementation dependent. The PPU must be placed in a power domain that is always-on 
relative to the power domain that the PPU is controlling. 

 

Figure 9: Power Policy Unit high level diagram 
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7 Access control bridge components 
In some cases, you want to allow part of the system to be in a non-functional powered off mode or 
retention power mode, even though a bus transaction might arrive from another part of the system. 
This type of capability is referred to in this guide as access control. 

Applications for access control include the following: 

• To ensure a controlled power cycle for a resource, by ensuring all accesses to it are complete 
before entering non-functional power mode and providing responses during this period 

• To preserve the availability of a resource while allowing it to enter a power saving mode. The 
resource is woken automatically when access is attempted. 

• Preventing access to a resource from selected interfaces during post reset or runtime 
configuration 

Access control support can be integrated into an initiator or into system components such as network 
interconnects and domain bridges. For example, the Arm CoreLink SIE-300 Access Control Gate, 
Sync-Down Bridge, and Sync-Up Bridge incorporates access control capabilities. For more 
information, see the Arm CoreLink SIE-300 AXI5 System IP for Embedded Technical Reference 
Manual. 

The following diagram shows an example integration of the standalone Access Control Gate (ACG) on 
an interconnect path between two design elements:  

Figure 10: Access Control Gate between two domains 

https://developer.arm.com/documentation/101526/0100?lang=en
https://developer.arm.com/documentation/101526/0100?lang=en
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In this diagram, before Power Domain B enters a non-functional power mode, the PPU of Power 
Domain B requests that the Access Control Gate is closed through LPI B1. In preparation to close, all 
in-flight transactions must be completed. In-flight transactions can cause denial of the LPI request 
depending on the ACG configuration. When there are no more in-flight transactions and any new 
transactions are blocked by either stalling or terminating them with an error response, the ACG 
breaks the interconnect path between the two power domains. This break allows the initiator half 
bridge and any functional design element in Power Domain B to be placed into an inaccessible, 
quiescent state. Then, the LPI B1 accepts the request and indicates to PPU of Power Domain B that 
the power domain can enter a non-functional power mode that can save power. 

When a transaction arrives at the ACG in Power Domain A when Power Domain B is in a non-
functional power mode, the ACG can be configured to respond to any new transactions with an error. 
Alternatively, the transaction can be configured to stall access and send a hint using LPI A2 – ACTIVE 
to the PPU of Power Domain B to request Power Domain B to enter a functional power mode. When 
the PPU of Power Domain B receives this hint, the PPU then dynamically requests Power Domain B 
to enter a functional power mode. This hint is also called a wakeup request in this guide. 
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8 Power Dependency Control Matrix 
The following diagram shows a high-level implementation of the Power Dependency Control Matrix 
(PDCM):  

PDCM incorporates two sets of LPIs, one to interact with the PPUs of the dependent domains and 
one to interact with the PPUs of the precedent domains. The software interface provides access to 
memory mapped registers to configure the required power dependencies. 

PDCM provides one-way dependencies, which means the precedent domains are not influenced by 
the dependent domains through PDCM. Therefore, the control LPI of precedent domains do not 
provide hints to the precedent PPUs and do not deny requests from the precedent PPUs. These LPIs 
follow the power modes of precedent power domains. 

Figure 11: Power Dependency Control Matrix component 
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9 Putting it all together 
The power control framework enables a system to use all the benefits of the Power Dependency 
Control Matrix. Using these components, you can compose a system with multiple power domains 
and hardware that can autonomously move between power modes, depending on the activity and the 
preconfigured dependencies. 

The following diagram shows an example subsystem using power control with the Power 
Dependency Control Matrix: 

Figure 12: Subsystem example 
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This system consists of a prebuilt main subsystem that is reusable, and an additional expansion 
subsystem that adds functionality to form a complete system. 

The expansion subsystem contains the following: 

• PD_AON is the Always-On power domain and hosts all other power gated domains inside. There 
is a minimal amount of logic in it, such as functional design elements, that need to operate like 
Timer and PHY. The domain also contains the Wake-up Interrupt Controller (WIC) needed to 
wake PD_SYS, PD_CPU, the PPUs, and PCSMs to provide power control-related functionality. 

• PD_SYS is the System Power Domain and PD_EXP is an independent Expansion Power Domain, 
containing most of the functional design elements 

• PD_CPU, PD_FLASH, and PD_SRAM0/1 are additional power domains inside PD_SYS for the 
CPU and for each memory block 

• ACGs are present across the system for access control. These ACGs are used in stall and wake 
configuration. On a transaction arrival, the PPU of the target power domain is requested to move 
the power domain to a functional power mode through LPI of the ACG. 

• PPUs and PCSMs are provided to control each power domain 

• LPI networks for each PPU are used to collate all local LPIs together to connect to the PPU 

• PDCM is connected to all PPUs which helps to define the relationship between each power 
domain 

Notice how the expansion subsystem uses its own LPI network to support multiple additional LPIs in 
the expansion subsystem using a single PD_SYS LPI expansion. ACGs then allow the USB controller to 
be independently power controlled while an LPI to the PDCM allows dependency-based power 
control between PD_EXP and the rest of the system. In the following table, if a domain is Y, the power 
mode of the dependent power domain is sensitive to the power mode of the precedent power 
domain: 

 Precedent power domains 

PD_SYS PD_CPU PD_EXP Minimum Allowed Power 
Mode 

Dependent power domains (shared 
resources) 

Power 
mode 

ON RET ON RET ON RET  

PD_SYS ON - - Y - cfg - cfg: ON/RET/OFF 

RET - - Y Y cfg cfg 

PD_FLASH ON cfg - Y - cfg - OFF 

PD_SRAM0 ON cfg - Y - cfg - cfg: ON/RET/OFF 

RET cfg cfg Y Y cfg cfg 

PD_SRAM1 ON cfg - cfg - cfg - cfg: ON/RET/OFF 

RET cfg cfg cfg cfg cfg cfg 

Table 7: Power dependency control matrix example 

If a dependency is configured, the power mode of the precedent domain determines the minimum 
power mode for the dependent domain. The PDCM prevents the dependent power domain from 
entering a lower power mode. When a domain needs to maintain a certain power mode independently 



Cortex-M Maximize energy efficiency on SoC design 
for endpoint AI 

102723 
Issue 1.0 

 
 

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 24 of 30 

of other conditions, software can control the intended minimum power mode by programming the 
Minimum Allowed Power Mode for the domain. This power mode can be ON, Retention, or OFF. 

The PD_EXP is not a dependent power domain in the table because the USB controller in this domain 
can request its power mode to remain active independently once it is in functional power mode. For 
example, a register write through the ACG to the USB controller can be used to wake the PD_EXP 
power domain. This first register write sets a mode register inside the controller to cause the USB to 
request PD_EXP to be kept ON. From this point, the power mode of the USB controller remains ON 
until it has completed its task. Alternatively, a register write to the USB controller shuts it down, 
causing it to remove its request to keep PD_EXP ON. The power domain is then powered down. 
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10 Software and hardware 
interactions 
This section is an example showing a setup of the Power Dependency Control Matrix. The example 
system acts as a USB device that responds to USB host requests periodically. In between the host 
requests the system is IDLE and includes a suspended USB link and the processor in Wait For 
Interrupt (WFI) sleep mode. 

10.1 Software setup and partitioning 

The following is required for this example: 

• SRAM0 contains the stack and heap of the software running on the CPU 

• SRAM1 contains the circular buffers of USB 

• Flash contains the software that is executed in place 

10.2 Power Dependency Control Matrix setup 

After power on reset for first time boot, software needs to setup the PDCM. This is done using 
memory mapped register configuration of the PDCM. The software needs to configure PDCM to 
represent the power dependencies of the use case so that no data loss can occur.  
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In this example, the PDCM entries are set up in the following ways: 

 Precedent power domains 

PD_SYS PD_CPU PD_EXP Minimum Allowed Power 
Mode 

Dependent power domains (shared 
resources) 

Power 
mode 

ON RET ON RET ON RET  

PD_SYS ON - - Y - cfg: 
N 

- cfg: OFF 

RET - - Y Y cfg: 
Y 

cfg: Y 

PD_FLASH ON cfg: 
N 

- Y - cfg: 
N 

- OFF 

PD_SRAM0 ON cfg: 
N 

- Y - cfg: 
N 

- cfg: OFF 

RET cfg: 
N 

cfg: 
N 

Y Y cfg: 
N 

cfg: 
N 

PD_SRAM1 ON cfg: 
N 

- cfg: 
Y 

- cfg: 
N 

- cfg: OFF 

RET cfg: 
N 

cfg: 
N 

cfg: 
Y 

cfg: 
Y 

cfg: 
Y 

cfg: Y 

Table 8: Power dependency control matrix setup 

10.3 Hardware and software event flow 

In each use case, the system transitions through different system states. In this guide, only the 
important LPI transactions are represented for clarity.  

The following describes the sequence of activities in the Power Control Framework elements 
corresponding to the transitions: 

1. System idle state. When all outstanding operations are performed, the processor enters WFI 
deep sleep with WIC enabled. After the USB link times out, the link is suspended and the system 
becomes idle. During idle periods, only the USB PHY and the WIC are active. 

2. System Power down state. The PD_CPU and PD_EXP power domains target the software-defined 
minimum power mode RET. As shown in the PDCM settings in Software hardware interactions, 
the PD_SYS, PD_SRAM0, and PD_SRAM1 target RET power mode. PD_FLASH targets OFF 
power mode. 

3. Wake up PD_EXP. When the USB PHY detects a wake request, the PD_EXP moves to ON power 
mode by the corresponding PPU. This mode enables the USB controller to restore the link and 
process the request from the host. The dependent power domains of PD_EXP remain in RET 
power mode. 

4. Wake up PD_SYS and PD_SRAM1. On the first bus access to SRAM1 by the USB controller, the 
ACGs located on the data path temporarily stall the access while the PD_SYS and the PD_SRAM1 
power domains wake up in sequence. At this point, the PD_SYS, PD_EXP, and PD_SRAM1 are in 
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ON power mode. PD_SRAM0 is still in RET power mode and the PD_FLASH is still in OFF power 
mode. 

5. Wake up PD_CPU. Once the USB descriptor is updated in SRAM1 by the USB controller, an IRQ 
is generated for the CPU to further process the descriptor. This IRQ through the Wakeup 
Interrupt Controller of the CPU wakes the PD_CPU and the corresponding PPU moves it to 
functional power mode. As part of the power mode change, the PDCM is also notified that the 
PD_CPU is now in ON state. 

6. Wake up PD_SRAM0 and PD_FLASH. When the processor wakes up and resumes execution, 
typically a stacking operation occurs resulting in the RAM access. The ACG stalls the bus 
transaction until the PD_SRAM0 is moved to a functional power mode by its corresponding PPU.  

a. The same behavior occurs for flash access and PD_FLASH is moved to functional power mode 
by the corresponding PPU. 

b. At this point, the PD_SYS, PD_EXP, PD_SRAM1, PD_SRAM0, and PD_FLASH are in ON power 
mode. All the descriptor content can then be processed by the processor.  
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When the operation is finished, the system goes back to idle state.  

The software and hardware event flow are shown in the following diagram: 

Figure 13: Software and hardware event flow 
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11 Related information 
The following resources are related to material in this guide: 

• AMBA Low Power Interface Specification 

• Arm CoreLink PCK-600 Power Control Kit  

• Arm CoreLink SIE-300 AXI5 System IP for Embedded Technical Reference Manual 

• Arm Corstone-300 Foundation IP 

• Arm Power Policy Unit Architecture Specification 

• Cortex-M55 

• Ethos-U55 and Ethos-U65 

https://developer.arm.com/documentation/ihi0068/c/
https://developer.arm.com/documentation/101150/0004
https://developer.arm.com/documentation/101526/0100?lang=en
https://www.arm.com/products/silicon-ip-subsystems/corstone-300
https://developer.arm.com/documentation/den0051/e
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u65
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12 Next steps 
In this guide, you learned that power dependency usage relationships between different power 
domains enables a more scalable power control scheme than the processor-centric view of sleep 
modes. This approach addresses the challenges of system integration and expandability of modern 
SoCs targeting energy-efficient, intelligent IoT endpoints. 

The power dependency-centric view with the framework offers hardware autonomous power 
transitions with very low latency and minimal software intervention, enabling opportunistic power 
saving. In some application scenarios, full software control could still be required. The introduction of 
the framework and the PPU allows Arm partners to take full software control over these mechanisms 
if needed using the memory mapped registers of the PPU. 

As a next step, consider the following points when designing a system based on the principles 
described in this guide: 

• The frequency of secure software calls during PDCM programming can have performance 
implications. A non-secure PDCM interface can be provided to reduce secure service calls. 

• Software and hardware race conditions can occur when programming the PDCM. Software that 
configures the PDCM should consider these conditions. 

• When re-programming the PDCM to switch between use cases that remove a particular 
dependency, care must be taken not to corrupt an actively used dependency. 


