

Cortex-M

Maximize energy efficiency on SoC
design for endpoint AI
Non-Confidential Issue 1.0
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

102723

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 30

Cortex-M

Maximize energy efficiency on SoC design for endpoint AI

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 December 8, 2021 Non-confidential First version

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

http://www.arm.com/company/policies/trademarks

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 30

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

https://www.arm.com/

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 30

Contents

1 Overview .. 5

2 Power dependency .. 7

2.1 Power Dependency Control Matrix ... 7

3 Power Control Framework ... 11

4 Standard low power interfaces .. 12

5 Low power interface infrastructure ... 14

5.1 LPI distributor .. 14

5.2 LPI combiner .. 15

5.3 LPI converter .. 15

6 Power domain controller ... 17

7 Access control bridge components ... 19

8 Power Dependency Control Matrix ... 21

9 Putting it all together .. 22

10 Software and hardware interactions ... 25

10.1 Software setup and partitioning ... 25

10.2 Power Dependency Control Matrix setup .. 25

10.3 Hardware and software event flow ... 26

11 Related information .. 29

12 Next steps .. 30

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 30

1 Overview
As modern microcontrollers and SoCs become increasingly complex, designers face the challenge of
maximizing energy efficiency while achieving a higher level of integration. To maximize energy
efficiency, the use of multiple power domains is widely adopted in the low-power SoC market. At the
same time, to address a higher level of integration, many SoCs contain multiple subsystems. Each
subsystem can be reused for multiple projects, leading to better time to market and software
reusability.

To address the challenges from the combination of these requirements, a standardized low power
control interface and a common power control concept is needed in the system architecture.

In this guide, we demonstrate the deployment of these approaches in Arm Cortex-M-based
subsystems. In addition, to reduce the software burden of working out power domain dependency, a
mechanism called Power Dependency Control Matrix (PDCM) is introduced and its benefits are
explained.

There is an increasing need for on-device processing closer to the data generated by Internet of
Things (IoT) endpoints, while still operating within low power budgets. These energy efficient and
highly compute-capable modern System on Chips (SoC) unlock new use cases called endpoint
Artificial Intelligence (AI). Traditionally, a low-power microcontroller can support multiple levels of
power states. Based on the sleep status of the processor, some of the functional design elements
inside the microcontroller can have its clocks gated off or even powered down. To help system
designs, the Arm Cortex-M processors architecturally support two levels of software-controlled
sleep modes: sleep and deep sleep. The corresponding status is indicated by the SLEEPING and
SLEEPDEEP status output signals:

Processor state SLEEPING output SLEEPDEEP output

Running 0 0

Sleeping 1 0

Deep sleep 1 1

Table 1: Processor sleep modes

Different power saving methods can be applied to the system in different sleep modes. For example, a
simple microcontroller can use these sleep output signals to control the memory macros’ power
modes and to control each peripheral. A peripheral could be running (ON with toggling clock), clock
gated (ON with static clock), in state retention (RET) or power down (OFF). To customize power
control of each peripheral based on application requirements, the following programmable registers
are added to the system to configure the power mode options of the peripherals:

Processor
and system
power state

Embedded
flash

SRAM Peripheral 1 Peripheral 2 Peripheral 3 Real Time
Clock

Running Running Running Configurable Configurable Configurable Configurable

Sleeping Clock gated Clock gated Configurable Configurable Configurable Configurable

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 30

Processor
and system
power state

Embedded
flash

SRAM Peripheral 1 Peripheral 2 Peripheral 3 Real Time
Clock

Deep sleep Power down State retention Configurable Configurable Configurable Configurable

Table 2: System power states

In modern SoC design, this technique is becoming inadequate under certain circumstances:

• There can be more than one processor in the system. There is no longer a single source of sleep
mode indication.

• Memories and peripherals can also be accessed by bus transaction initiators other than the
processor. For example, a Direct Memory Access (DMA) controller or external debugger. This
access occurs whether the processor is sleeping or not.

• Many new SoCs are composed of multiple reusable subsystems. When these subsystems are
designed, the details of the SoC power control scheme can be unknown. For example, the
designers do not know how many levels of power states are available and whether the SoC fully
utilizes all the power states of the subsystem.

• Controlling the system’s overall power state and the power mode of each shared resource
requires system-specific runtime software intervention. This intervention is time consuming and
expensive in terms of processor runtime and resources. The runtime software might also impact
the response to power mode changes due to interrupt latency and to handle conflicting
processing tasks.

Consider a peripheral that is always on and receives data to its internal First In First Out (FIFO)
buffer. The processor is powered down and the DMA and the system Static Random Access Memory
(SRAM) are in retention. When the FIFO reaches the occupancy threshold, the DMA flushes it to
SRAM. This requires both the SRAM and the DMA to wake, but the processor could remain powered
down until a larger amount of data is collected in SRAM that requires processing. This arrangement
still requires software intervention to wake the DMA and SRAM, which therefore requires the
processor to wake up to handle this.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 30

2 Power dependency
To address these challenges, instead of looking at the power control arrangement using a processor-
centric view of sleep modes, we look at power control based on the power dependency relationship
between different domains. Consider a design element that is a shared system resource that has its
own power domain, like an interconnect or an SRAM. The power mode of this shared resource can be
determined by the power mode of one or more other functional design elements that utilizes this
resource. For example, if the processor or a DMA is in a functional power mode, the bus interconnect
and the SRAM must be in a functional power mode. We expect that the processor and DMA need
access to the system SRAM through the interconnect. Both the SRAM and interconnect power mode
requirements are dependent on the processor or the DMA, as shown in the following diagram:

Figure 1: Example power dependency diagram

2.1 Power Dependency Control Matrix

A power dependency diagram can represent the relationship of a small number of power domains,
however real systems can have many more power dependencies. These power dependencies are due
to more shared resources, peripherals, processing elements, and power domains. Based on the simple
dependency concept, we can represent the relationships between these domains using a simple two-
dimensional table of dependency called a Power Dependency Control Matrix. The following table
shows how we represent the previous power dependency diagram as a control matrix:

 Power mode of precedent power domains

Power mode of dependent power domains
(shared resources)

PD_CPU PD_DMA

PD_INTERCONNECT Y Y

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 30

 Power mode of precedent power domains

PD_SRAM Y

Y

Table 3: Power Dependency Control Matrix example

The table rows show power domains that are being controlled. The table columns show controller
power domains that can act as dependencies. A Y in the table indicates a dependency between a
controller power domain and a controlled power domain. This dependency means that when the
power mode of PD_CPU is ON, the minimum power mode of PD_INTERCONNECT is also ON. This
arrangement does not necessarily guarantee that the PD_INTERCONNECT wakes up simultaneously
with the PD_ CPU. This arrangement guarantees if both PD_INTERCONNECT and PD_CPU is ON,
the dependency with the PD_CPU maintains the ON power mode of PD_INTERCONNECT. The
PD_INTERCONNECT wake behavior depends on the system needs, and either wakes on detecting
an access from the PD_CPU or PD_DMA, or when the PD_CPU is switched to ON.

To make the power control scalable and configurable for different use cases, some of the entries in
the matrix are controlled by software programmable registers. By having this configurability, the
power switching of power domains can be hardware autonomous in runtime after a boot time
configuration, or even after a runtime reconfiguration for a long period of use. The following table
shows an example of a more complex system where software configurability (cfg), is provided for
some entries in the matrix:

 Power mode of precedent power domains

Power mode of
dependent power
domains

PD_CPU0 PD_CPU1 PD_DMA0 PD_DMA1

PD_INTERCONNECT Y Y Y Y

PD_FLASH Y Y cfg cfg

PD_SRAM0 cfg cfg cfg cfg

PD_SRAM1 cfg cfg cfg cfg

Table 4: Configurable power dependency control matrix

For example, we can configure the PD_SRAM0 to be only dependent on PD_CPU0 and PD_DMA0,
and PD_ SRAM1 to be only dependent on PD_CPU1 and PD_DMA1.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 30

A given power domain can have multiple power modes presented as additional rows and columns in
the matrix to provide finer grain dependency control between the power modes. In the following
table, unavailable power modes are indicated by a dash (-):

 Precedent power domains

PD_CPU0

PD_CPU1 PD_DMA0

PD_DMA1

Dependent power
domains (shared
resources)

Power
mode

ON RET ON RET ON RET ON RET

PD_INTERCONNECT ON Y cfg Y cfg Y cfg Y -

RET cfg cfg cfg -

PD_FLASH ON Y cfg Y cfg cfg - cfg -

RET - - - - - - - -

PD_SRAM0 ON Y - cfg - cfg - cfg -

RET Y Y cfg cfg cfg cfg cfg -

PD_SRAM1 ON cfg - Y - cfg - cfg -

RET cfg cfg Y Y cfg cfg cfg -

Table 5: Power dependency control matrix with fine grain power mode control

The actual number of power modes of the dependent power domain shown in the table can be less
than the total number of power modes supported. In addition, the implementation or other runtime
conditions such as pending transactions can result in a higher selected power mode used. This mode
differs from the power mode defined by the Power Dependency Control Matrix because the Power
Dependency Control Matrix defines the minimum power mode requirements.

Some of the power domains in the system can have no internal power control interface to define a
minimum power mode. These power domains only maintain a single power mode independently of
other conditions typically in the OFF power mode. For example, a RAM macro has no dedicated
power control interface. To overcome this limitation, software can define the minimum power mode
by programming the Minimum Allowed Power Mode entry for the dependent power domains. This
definition allows the power domain to maintain a minimum power mode when no other power
domains are requesting the resource.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 30

For example, in the following table PD_INTERCONNECT, PD_SRAM0, and PD_SRAM1 support a
configurable minimum power mode that can be ON or RET to preserve content. Subsystem designs
are required to be extended with further external functional design elements and interface with other
subsystems. To fulfil these requirements, further precedent domains can be added to the Power
Dependency Control Matrix as extension power domains. In the following table, PD_EXTn represents
extension power domains:

Precedent power domains

 PD_CPU0 PD_CPU1 PD_DMA0 PD_DMA1 PD_EXTn Minimum
Allowed
Power Mode

Dependent power
domains (shared
resources)

Power
mode

ON RET ON RET ON RET ON RET ON RET

PD_INTERCONNECT ON Y cfg Y cfg Y cfg Y - cfg - cfg:
ON/RET/OFF

RET cfg cfg cfg cfg cfg cfg - - cfg cfg

PD_FLASH ON Y cfg Y cfg cfg - cfg - cfg - OFF

RET - - - - - - - - - -

PD_SRAM0 ON Y - cfg - cfg - cfg - cfg - cfg:
ON/RET/OFF

RET Y Y cfg cfg cfg cfg cfg - cfg -

PD_SRAM1 ON cfg - Y - cfg - cfg - cfg - cfg:
ON/RET/OFF

RET cfg cfg Y Y cfg cfg cfg - cfg cfg

Table 6: Power Dependency Control Matrix with minimum power mode

The Power Dependency Control Matrix concept can easily scale to accommodate multiple processors
if there is no single definition of sleep mode. This concept can effectively cope with a scalable number
of functional design elements and shared resources in the system and can be extended to span over
multiple subsystems.

The control matrix also allows any connected power domain in the system to request other shared
resources and combine these resource requests and manage the availability and context retention of
shared resources according to the constraints.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 30

3 Power Control Framework
The Power Dependency Control Matrix and the sensitivity settings defined for each power domain
allow, as much as possible, system power control using hardware autonomous dynamic power
transitions. These transitions reduce the software interactions needed for system management and
therefore improves its responsiveness and power reduction.

These benefits of the Power Dependency Control Matrix require further infrastructure. The
provision of the Power Dependency Control Matrix and power efficient components is insufficient.
The functional design elements must participate in a coordinated system level power management
infrastructure. It is also important that integration of functional design elements is achievable in a
timely manner.

This is possible if there is a standardized way to produce, transfer, distribute, and apply power mode
information across subsystems. This standardized framework is called the Power Control
Framework.

The key parts of this framework include the following:

• Standard Low Power Interfaces

• Low Power Interface infrastructure elements

• Power domain controllers

• Access control bridge components

• Power Dependency Control Matrix component

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 30

4 Standard low power interfaces
The Arm Advanced Microcontroller Bus Architecture (AMBA) Low Power Interface (LPI)
specification defines the interfaces that allow power mode information to traverse the system. The
AMBA LPI specification is data agnostic, therefore it can transfer any type of information. In this
guide, the AMBA LPI is used to represent power mode information. The details of the AMBA LPI are
described in the AMBA Low Power Interface Specification Arm Q-Channel and P-Channel Interfaces.

For simple use cases where there are only two power modes like ON and OFF, the AMBA Q-Channel
interface is sufficient. This interface allows the device to indicate to the power controller that the
Quiescent state can be entered or exited using QACTIVE. The interface also allows the power
controller to request the device to enter or leave Quiescent state. These features enable the power
controller to prepare a power domain for entering or leaving a lower power mode. The interface is
shown in the following diagram:

For complex cases where there are more than two power modes, AMBA P-Channel interface is
required. This interface allows the device to indicate to the power controller the power mode the
device needs using PACTIVE. The power controller requests the device to transition to a particular
power mode indicted by PSTATE, as shown in the following diagram:

Figure 2: Q-Channel Low Power Interface

https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/documentation/ihi0068/c/

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 30

In the power domain, each functional design element states the power mode requirements and
constraints using the individual LPI interface. These requirements are then collated using a power LPI
network. Every design element in the power domain is responsible for driving its own power mode
constraints. For example, if a hardware accelerator is waiting for an event or processing data, its
individual LPI interface uses the power LPI network to tell the power domain controller to stay ON.

Functional design elements without intrinsic support for LPI must implement an integration layer to
provide this support. If a component power control interface does not directly match the AMBA LPI
interfaces, an integration layer approach can also be used to convert the interfaces into LPI. The LPI
integration layer is shown in the following diagram:

Figure 3: P-Channel Low Power Interface

Figure 4: Low Power Interface integration layer

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 30

5 Low power interface infrastructure
The power LPI network gathers and merges power mode requirements from the power domain
functional design elements. The power LPI network then gives the requirements to the power domain
controller using a single power LPI. To help provide these requirements, Arm defined and
implemented the following reusable standard LPI infrastructure components:

• Low Power Interface Distributor

• Low Power Interface Combiner

• Low Power Interface Converter, from P-Channel to Q-Channel

The Arm CoreLink Power Control Kit PCK-600 is a complete solution based on AMBA LPI standard.
This section provides an overview of this kit. For more details, see the Arm CoreLink PCK-600 Power
Control Kit Technical Reference Manual.

5.1 LPI distributor

The LPI distributor shown in the following diagram can split a single LPI into multiple LPIs and
distribute the LPIs in parallel or in sequence to devices:

The LPI distributor is typically used to expand the number of LPIs of the power controller to match
the number of LPIs on all functional design elements. Sequencing can be used to manage race
conditions in the controlled functional design elements.

When distributing in parallel, the request from the control LPI is sent to all device LPIs and all device
LPIs must accept the request before the request on the control LPI is accepted. If any device LPI
denies the request, all device LPIs are returned to the previous state and the originating request on
the control LPI is denied.

When distributing in sequence, the request from the control LPI is sent to each device LPI and
accepted in sequence. When all device LPIs have accepted the request, the request of the control LPI
is accepted. If any device LPI denies the request, this process is reversed for all device LPIs that have
previously accepted the request to return them to the earlier state before the originating control LPI
request is denied.

Figure 5: LPI distributor

https://developer.arm.com/documentation/101150/0004
https://developer.arm.com/documentation/101150/0004

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 30

Both Q-Channel and P-Channel versions of the distributors are defined.

5.2 LPI combiner

The LPI combiner shown in the following diagram merges the LPI requests from multiple power
controllers to a single LPI:

If any upstream power controllers on the control LPI request a lower power mode, the device LPI also
requests a lower power mode. Also, if all upstream power controllers on the control LPI request a
higher power mode, the device LPI then requests a higher power mode downstream. This request is
typically used to manage the boundary of power domains that can operate independently.

5.3 LPI converter

The LPI converter shown in the following diagram can, for example, translate between the LPI
protocols from AMBA P-Channel to AMBA Q-Channel:

This unit compresses the multiple P-Channel states to two states based on the system integrator
configuration. By utilizing these LPI infrastructure components, you can create structures to manage
and sequence the state of each functional design element in the power domain so that they can enter
a power mode safely. For example, in a power domain with three functional design elements, it may be
necessary for one of the functional design elements to enter a specific individual power mode before
allowing the other two functional design elements to specify a power mode to avoid a system

Figure 6: LPI combiner

Figure 7: P-to-Q LPI converter

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 30

deadlock. An LPI Distributor working as a sequencer can be deployed to transition the critical
functional design element into the requested power mode before transitioning the remaining
functional design elements through another LPI Distributor in parallel.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 30

6 Power domain controller
For power domain control, a component called the Power Policy Unit (PPU) is used. The PPU is a
versatile technology-independent power infrastructure element that interfaces with functional
design elements of a power domain, using the power LPI network for controlling domain power
modes in coordination with device quiescence to ensure safe power mode transitions. It also
performs the task of sequencing the controls of reset, isolation, clock, supply, and retention. This
sequencing removes the need for software to perform low level control of these functionalities.

The PPU also introduces a level of autonomy in which the power domain can switch power modes
without using software. This autonomous operation is important for power modes that require fast
response times like logic or RAM retention states. No context is lost and the operation can be
transparent to software, but state transitions must have minimal latency to preserve system
performance. The PPU in dynamic operation can enter and exit allowed power modes based on the
power mode requirements from the power LPI network without software intervention. If a dynamic
operation is not required, the PPU can operate in static mode using software to request domains to
enter a power mode.

For more details about the PPU, see the Arm Power Policy Unit Architecture Specification. The PPU
structure is shown in the following diagram:

The PPU has the following interfaces:

• Device control interface. This interface is for low level device control and to ensure device
quiescence and functional control. This includes either a P-Channel or multiple Q-Channel LPI,
and additional device controls that include clock enables, resets, and isolation control.

• Power Control State Machine (PCSM) interface. For controlling low-level technology-specific
power switch and retention controls. The Power Control State Machine is a technology
dependent state machine for the sequencing of power switch chains and retention controls that
can include RAM and register retention. The PCSM executes power mode changes under PPU
direction. The interface between the PPU and the PCSM is a P-Channel LPI.

• Software interface. Status information, configuration settings and static control.

Figure 8: Power Policy Unit structure

https://developer.arm.com/documentation/den0051/e

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 30

The following shows a high-level diagram of how the PPU and PCSM connect to each other and
control a power gated domain. The dotted lines around components and signal connections indicate
these are implementation dependent. The PPU must be placed in a power domain that is always-on
relative to the power domain that the PPU is controlling.

Figure 9: Power Policy Unit high level diagram

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 30

7 Access control bridge components
In some cases, you want to allow part of the system to be in a non-functional powered off mode or
retention power mode, even though a bus transaction might arrive from another part of the system.
This type of capability is referred to in this guide as access control.

Applications for access control include the following:

• To ensure a controlled power cycle for a resource, by ensuring all accesses to it are complete
before entering non-functional power mode and providing responses during this period

• To preserve the availability of a resource while allowing it to enter a power saving mode. The
resource is woken automatically when access is attempted.

• Preventing access to a resource from selected interfaces during post reset or runtime
configuration

Access control support can be integrated into an initiator or into system components such as network
interconnects and domain bridges. For example, the Arm CoreLink SIE-300 Access Control Gate,
Sync-Down Bridge, and Sync-Up Bridge incorporates access control capabilities. For more
information, see the Arm CoreLink SIE-300 AXI5 System IP for Embedded Technical Reference
Manual.

The following diagram shows an example integration of the standalone Access Control Gate (ACG) on
an interconnect path between two design elements:

Figure 10: Access Control Gate between two domains

https://developer.arm.com/documentation/101526/0100?lang=en
https://developer.arm.com/documentation/101526/0100?lang=en

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 30

In this diagram, before Power Domain B enters a non-functional power mode, the PPU of Power
Domain B requests that the Access Control Gate is closed through LPI B1. In preparation to close, all
in-flight transactions must be completed. In-flight transactions can cause denial of the LPI request
depending on the ACG configuration. When there are no more in-flight transactions and any new
transactions are blocked by either stalling or terminating them with an error response, the ACG
breaks the interconnect path between the two power domains. This break allows the initiator half
bridge and any functional design element in Power Domain B to be placed into an inaccessible,
quiescent state. Then, the LPI B1 accepts the request and indicates to PPU of Power Domain B that
the power domain can enter a non-functional power mode that can save power.

When a transaction arrives at the ACG in Power Domain A when Power Domain B is in a non-
functional power mode, the ACG can be configured to respond to any new transactions with an error.
Alternatively, the transaction can be configured to stall access and send a hint using LPI A2 – ACTIVE
to the PPU of Power Domain B to request Power Domain B to enter a functional power mode. When
the PPU of Power Domain B receives this hint, the PPU then dynamically requests Power Domain B
to enter a functional power mode. This hint is also called a wakeup request in this guide.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 30

8 Power Dependency Control Matrix
The following diagram shows a high-level implementation of the Power Dependency Control Matrix
(PDCM):

PDCM incorporates two sets of LPIs, one to interact with the PPUs of the dependent domains and
one to interact with the PPUs of the precedent domains. The software interface provides access to
memory mapped registers to configure the required power dependencies.

PDCM provides one-way dependencies, which means the precedent domains are not influenced by
the dependent domains through PDCM. Therefore, the control LPI of precedent domains do not
provide hints to the precedent PPUs and do not deny requests from the precedent PPUs. These LPIs
follow the power modes of precedent power domains.

Figure 11: Power Dependency Control Matrix component

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 30

9 Putting it all together
The power control framework enables a system to use all the benefits of the Power Dependency
Control Matrix. Using these components, you can compose a system with multiple power domains
and hardware that can autonomously move between power modes, depending on the activity and the
preconfigured dependencies.

The following diagram shows an example subsystem using power control with the Power
Dependency Control Matrix:

Figure 12: Subsystem example

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 30

This system consists of a prebuilt main subsystem that is reusable, and an additional expansion
subsystem that adds functionality to form a complete system.

The expansion subsystem contains the following:

• PD_AON is the Always-On power domain and hosts all other power gated domains inside. There
is a minimal amount of logic in it, such as functional design elements, that need to operate like
Timer and PHY. The domain also contains the Wake-up Interrupt Controller (WIC) needed to
wake PD_SYS, PD_CPU, the PPUs, and PCSMs to provide power control-related functionality.

• PD_SYS is the System Power Domain and PD_EXP is an independent Expansion Power Domain,
containing most of the functional design elements

• PD_CPU, PD_FLASH, and PD_SRAM0/1 are additional power domains inside PD_SYS for the
CPU and for each memory block

• ACGs are present across the system for access control. These ACGs are used in stall and wake
configuration. On a transaction arrival, the PPU of the target power domain is requested to move
the power domain to a functional power mode through LPI of the ACG.

• PPUs and PCSMs are provided to control each power domain

• LPI networks for each PPU are used to collate all local LPIs together to connect to the PPU

• PDCM is connected to all PPUs which helps to define the relationship between each power
domain

Notice how the expansion subsystem uses its own LPI network to support multiple additional LPIs in
the expansion subsystem using a single PD_SYS LPI expansion. ACGs then allow the USB controller to
be independently power controlled while an LPI to the PDCM allows dependency-based power
control between PD_EXP and the rest of the system. In the following table, if a domain is Y, the power
mode of the dependent power domain is sensitive to the power mode of the precedent power
domain:

 Precedent power domains

PD_SYS PD_CPU PD_EXP Minimum Allowed Power
Mode

Dependent power domains (shared
resources)

Power
mode

ON RET ON RET ON RET

PD_SYS ON - - Y - cfg - cfg: ON/RET/OFF

RET - - Y Y cfg cfg

PD_FLASH ON cfg - Y - cfg - OFF

PD_SRAM0 ON cfg - Y - cfg - cfg: ON/RET/OFF

RET cfg cfg Y Y cfg cfg

PD_SRAM1 ON cfg - cfg - cfg - cfg: ON/RET/OFF

RET cfg cfg cfg cfg cfg cfg

Table 7: Power dependency control matrix example

If a dependency is configured, the power mode of the precedent domain determines the minimum
power mode for the dependent domain. The PDCM prevents the dependent power domain from
entering a lower power mode. When a domain needs to maintain a certain power mode independently

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 30

of other conditions, software can control the intended minimum power mode by programming the
Minimum Allowed Power Mode for the domain. This power mode can be ON, Retention, or OFF.

The PD_EXP is not a dependent power domain in the table because the USB controller in this domain
can request its power mode to remain active independently once it is in functional power mode. For
example, a register write through the ACG to the USB controller can be used to wake the PD_EXP
power domain. This first register write sets a mode register inside the controller to cause the USB to
request PD_EXP to be kept ON. From this point, the power mode of the USB controller remains ON
until it has completed its task. Alternatively, a register write to the USB controller shuts it down,
causing it to remove its request to keep PD_EXP ON. The power domain is then powered down.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 30

10 Software and hardware
interactions
This section is an example showing a setup of the Power Dependency Control Matrix. The example
system acts as a USB device that responds to USB host requests periodically. In between the host
requests the system is IDLE and includes a suspended USB link and the processor in Wait For
Interrupt (WFI) sleep mode.

10.1 Software setup and partitioning

The following is required for this example:

• SRAM0 contains the stack and heap of the software running on the CPU

• SRAM1 contains the circular buffers of USB

• Flash contains the software that is executed in place

10.2 Power Dependency Control Matrix setup

After power on reset for first time boot, software needs to setup the PDCM. This is done using
memory mapped register configuration of the PDCM. The software needs to configure PDCM to
represent the power dependencies of the use case so that no data loss can occur.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 30

In this example, the PDCM entries are set up in the following ways:

 Precedent power domains

PD_SYS PD_CPU PD_EXP Minimum Allowed Power
Mode

Dependent power domains (shared
resources)

Power
mode

ON RET ON RET ON RET

PD_SYS ON - - Y - cfg:
N

- cfg: OFF

RET - - Y Y cfg:
Y

cfg: Y

PD_FLASH ON cfg:
N

- Y - cfg:
N

- OFF

PD_SRAM0 ON cfg:
N

- Y - cfg:
N

- cfg: OFF

RET cfg:
N

cfg:
N

Y Y cfg:
N

cfg:
N

PD_SRAM1 ON cfg:
N

- cfg:
Y

- cfg:
N

- cfg: OFF

RET cfg:
N

cfg:
N

cfg:
Y

cfg:
Y

cfg:
Y

cfg: Y

Table 8: Power dependency control matrix setup

10.3 Hardware and software event flow

In each use case, the system transitions through different system states. In this guide, only the
important LPI transactions are represented for clarity.

The following describes the sequence of activities in the Power Control Framework elements
corresponding to the transitions:

1. System idle state. When all outstanding operations are performed, the processor enters WFI
deep sleep with WIC enabled. After the USB link times out, the link is suspended and the system
becomes idle. During idle periods, only the USB PHY and the WIC are active.

2. System Power down state. The PD_CPU and PD_EXP power domains target the software-defined
minimum power mode RET. As shown in the PDCM settings in Software hardware interactions,
the PD_SYS, PD_SRAM0, and PD_SRAM1 target RET power mode. PD_FLASH targets OFF
power mode.

3. Wake up PD_EXP. When the USB PHY detects a wake request, the PD_EXP moves to ON power
mode by the corresponding PPU. This mode enables the USB controller to restore the link and
process the request from the host. The dependent power domains of PD_EXP remain in RET
power mode.

4. Wake up PD_SYS and PD_SRAM1. On the first bus access to SRAM1 by the USB controller, the
ACGs located on the data path temporarily stall the access while the PD_SYS and the PD_SRAM1
power domains wake up in sequence. At this point, the PD_SYS, PD_EXP, and PD_SRAM1 are in

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 30

ON power mode. PD_SRAM0 is still in RET power mode and the PD_FLASH is still in OFF power
mode.

5. Wake up PD_CPU. Once the USB descriptor is updated in SRAM1 by the USB controller, an IRQ
is generated for the CPU to further process the descriptor. This IRQ through the Wakeup
Interrupt Controller of the CPU wakes the PD_CPU and the corresponding PPU moves it to
functional power mode. As part of the power mode change, the PDCM is also notified that the
PD_CPU is now in ON state.

6. Wake up PD_SRAM0 and PD_FLASH. When the processor wakes up and resumes execution,
typically a stacking operation occurs resulting in the RAM access. The ACG stalls the bus
transaction until the PD_SRAM0 is moved to a functional power mode by its corresponding PPU.

a. The same behavior occurs for flash access and PD_FLASH is moved to functional power mode
by the corresponding PPU.

b. At this point, the PD_SYS, PD_EXP, PD_SRAM1, PD_SRAM0, and PD_FLASH are in ON power
mode. All the descriptor content can then be processed by the processor.

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 30

When the operation is finished, the system goes back to idle state.

The software and hardware event flow are shown in the following diagram:

Figure 13: Software and hardware event flow

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 30

11 Related information
The following resources are related to material in this guide:

• AMBA Low Power Interface Specification

• Arm CoreLink PCK-600 Power Control Kit

• Arm CoreLink SIE-300 AXI5 System IP for Embedded Technical Reference Manual

• Arm Corstone-300 Foundation IP

• Arm Power Policy Unit Architecture Specification

• Cortex-M55

• Ethos-U55 and Ethos-U65

https://developer.arm.com/documentation/ihi0068/c/
https://developer.arm.com/documentation/101150/0004
https://developer.arm.com/documentation/101526/0100?lang=en
https://www.arm.com/products/silicon-ip-subsystems/corstone-300
https://developer.arm.com/documentation/den0051/e
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u65

Cortex-M Maximize energy efficiency on SoC design
for endpoint AI

102723
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 30

12 Next steps
In this guide, you learned that power dependency usage relationships between different power
domains enables a more scalable power control scheme than the processor-centric view of sleep
modes. This approach addresses the challenges of system integration and expandability of modern
SoCs targeting energy-efficient, intelligent IoT endpoints.

The power dependency-centric view with the framework offers hardware autonomous power
transitions with very low latency and minimal software intervention, enabling opportunistic power
saving. In some application scenarios, full software control could still be required. The introduction of
the framework and the PPU allows Arm partners to take full software control over these mechanisms
if needed using the memory mapped registers of the PPU.

As a next step, consider the following points when designing a system based on the principles
described in this guide:

• The frequency of secure software calls during PDCM programming can have performance
implications. A non-secure PDCM interface can be provided to reduce secure service calls.

• Software and hardware race conditions can occur when programming the PDCM. Software that
configures the PDCM should consider these conditions.

• When re-programming the PDCM to switch between use cases that remove a particular
dependency, care must be taken not to corrupt an actively used dependency.

